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Given a set of incomplete observations, we study the nonparamet-
ric problem of testing whether data are Missing Completely At Random
(MCAR). Our first contribution is to characterise precisely the set of alter-
natives that can be distinguished from the MCAR null hypothesis. This re-
veals interesting and novel links to the theory of Fréchet classes (in particu-
lar, compatible distributions) and linear programming, that allow us to pro-
pose MCAR tests that are consistent against all detectable alternatives. We
define an incompatibility index as a natural measure of ease of detectability,
establish its key properties, and show how it can be computed exactly in some
cases and bounded in others. Moreover, we prove that our tests can attain the
minimax separation rate according to this measure, up to logarithmic factors.
Our methodology does not require any complete cases to be effective, and is
available in the R package MCARtest.

1. Introduction. Over the last century, a plethora of algorithms have been proposed to
address specific statistical challenges; in many cases these can be justified under modelling
assumptions on the underlying data generating mechanism. When faced with a data set and a
question of interest, the practitioner needs to assess the validity of the assumptions underpin-
ning these statistical models, in order to determine whether or not they can trust the output of
the method. Experienced practitioners recognise that mathematical assumptions can rarely be
expected to hold exactly, and develop intuition (sometimes backed up by formal tests) about
the seriousness of different violations.

One of the most commonly-encountered discrepancies between real data sets and mod-
els hypothesised in theoretical work is that of missing data. In fact, missingness may be
even more serious than many other types of departure from a statistical model, in that it
may be impossible even to run a particular algorithm without modification when data are
missing. Once it is accepted that methods for dealing with missing data are essential, the
primary concern is to understand the relationship between the data generating and missing-
ness mechanisms. In the ideal situation, these two sources of randomness are independent,
a setting known as Missing Completely At Random (MCAR). When this assumption holds,
the analysis becomes much easier, because we can regard our observed data as a represen-
tative sample from the wider population. For instance, theoretical guarantees have recently
been established in the MCAR setting for a variety of modern statistical problems, including
high-dimensional regression (Loh and Wainwright, 2012), high-dimensional or sparse prin-
cipal component analysis (Zhu, Wang and Samworth, 2022; Elsener and van de Geer, 2019),
classification (Cai and Zhang, 2019), and precision matrix and changepoint estimation (Loh
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2 T. B. BERRETT AND R. J. SAMWORTH

and Tan, 2018; Follain, Wang and Samworth, 2022). The failure of this assumption, on the
other hand, may introduce significant bias and necessitate further investigation of the nature
of the dependence between the data and the missingness (Davison, 2003; Little and Rubin,
2019).

Our aim in this work is to study the fundamental problem of testing the null hypothesis
that data are MCAR. It is important to recognise from the outset that in general there will ex-
ist alternatives (i.e. joint distributions of data and missingness that do not satisfy the MCAR
hypothesis) for which no test could have power greater than its size. Indeed, to give a toy ex-
ample, ifX1, . . . ,Xn

iid∼ N(0,1), but we only observe thoseXi that are non-negative, then the
joint distribution of our data is indistinguishable from the MCAR setting where X1, . . . ,Xn

are a random sample from the folded normal distribution on [0,∞), and each Xi is observed
independently with probability 1/2.

The first main contribution of this work, then, is to determine precisely the set of alter-
natives that are distinguishable from our null hypothesis. Surprisingly, this question turns
out to be relevant in several different subject areas, namely copula theory (Nelsen, 2007;
Dall’Aglio, Kotz and Salinetti, 2012), portfolio risk management (Embrechts and Puccetti,
2010; Rüschendorf, 2013), coalition games (Vorobev, 1962), quantum contextuality (Bell,
1966; Clauser and Shimony, 1978) and relational databases (Maier, 1983). To describe our re-
sults briefly, we introduce the notation that when a random vectorX takes values in a measur-
able space of the form X =

∏d
j=1Xj and when S ⊆ {1, . . . , d}, we write XS := (Xj : j ∈ S)

and XS :=
∏
j∈S Xj . Following, e.g., Joe (1997, Section 3), given a collection S of subsets of

{1, . . . , d}, and a collection of distributions PS := (PS : S ∈ S), we define their Fréchet class
F(PS) as the set of all distributions of X for which XS has marginal distribution PS for all
S ∈ S. In Section 2, we prove that it is only possible to detect that a joint distribution does not
satisfy the MCAR hypothesis if the marginal distributions for which we have simultaneous
observations are incompatible.

Our second contribution, in Section 3, is to introduce a new, universal test of the null
hypothesis of compatibility, and consequently (by our result in Section 2) the MCAR hy-
pothesis, in the discrete case. We prove that it has finite-sample Type I error control, and
is consistent against all incompatible alternatives. These results therefore describe precisely
what can be learnt about the plausibility of the MCAR hypothesis from data. Our method-
ology is based on a duality theorem due to Kellerer (1984) that gives a characterisation of
compatibility, and allows us to define a notion of an incompatibility index, denoted R(PS).
Although the result itself is rather abstract, we show how it motivates a test statistic that can
be computed straightforwardly using linear programming. We further argue that a more spe-
cific and involved analysis can lead to improved tests in certain cases. For instance, when
d = 3, with S =

{
{1,2},{2,3},{1,3}

}
and |X1| = r, |X2| = s and |X3| = 2, we show by

means of a minimax lower bound (Theorem 9) that our improved test achieves the optimal
separation rate in R(PS) simultaneously in r, s and the sample sizes for each observation
pattern, up to logarithmic factors.

The form of the incompatibility index is a supremum of a class of linear functionals,
and exact expressions can become complicated as |S| and the alphabet sizes increase. In
Section 3.4, we describe computational geometry algorithms that yield analytic expressions
for R(PS); code is available in the R package MCARtest (Berrett and Samworth, 2022),
and in principle, these can be applied for arbitrary S. As illustrations, we provide examples
with binary variables, where these expressions are more tractable. Moreover, as we show
in Section 3.3, in some cases we can exploit the structure of S to reduce the computation
of R(PS) to the computation of the analogous quantity for lower-dimensional settings, or at
least to bound it in terms of these simpler quantities.
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OPTIMAL MCAR TESTING 3

In Section 4, we explain how the methodology and theory described above extends to
continuous data, or to variables having both continuous and discrete components. Here we
have an additional approximation error in the minimax separation radius that depends on
the smoothness of the densities of the continuous components. Section 5 is devoted to a
theoretical and numerical study of a Monte Carlo version of our test, which uses bootstrap
samples to generate the critical value, and which has similar guarantees to our universal test.
Empirically, we find that this version also provides good Type I error control, and outperforms
a test due to Fuchs (1982) even when this latter test is provided with additional complete
cases (which are required for its application). Proofs of all of our results, as well as auxiliary
results (which are prefaced with an ‘S’), are deferred to the supplementary material (Berrett
and Samworth, 2023).

Our theory is based on the study of marginal polytopes, which is a topical problem in
convex geometry (Vlach, 1986; Wainwright and Jordan, 2008; Deza and Laurent, 2009). In-
deed, these polytopes are known to be extremely complicated (De Loera and Kim, 2014), but
are of considerable interest in hierarchical log-linear models (Eriksson et al., 2006), varia-
tional inference (Wainwright and Jordan, 2003), classical transportation (Kantorovich, 1942)
(reprinted as Kantorovich (2006)) and max flow-min cut problems (Gale, 1957). In the spe-
cial case where all variables are binary, marginal polytopes are equivalent to correlation
polytopes or cut polytopes, which have been heavily studied in their own right (Deza and
Laurent, 2009; Coons et al., 2020). In statistical contexts, recent work on hypothesis testing
over polyhedral parameter spaces has sought to elucidate the link between the difficulty of
the problem and the underlying geometry (Blanchard, Carpentier and Gutzeit, 2018; Wei,
Wainwright and Guntuboyina, 2019).

Most prior work on testing the MCAR hypothesis has been developed within the context
of parametric models such as multivariate normality (Little, 1988; Kim and Bentler, 2002;
Jamshidian and Jalal, 2010), Poisson or multinomial contingency tables with at least some
complete cases (Fuchs, 1982) or generalised estimating equations (Chen and Little, 1999;
Qu and Song, 2002). Li and Yu (2015) study the nonparametric problem of testing whether
or not a family of marginal distributions PS is consistent, i.e. whether, for each S,S′ ∈ S
with S ∩ S′ 6= ∅, the marginal distributions of PS and PS′ on the coordinates in S ∩ S′ agree
with each other. Spohn et al. (2021) consider an equivalent problem, using random forest
classification methods to test equalities of distributions. Consistency is a necessary, but not
sufficient, condition for compatibility*. To the best of our knowledge, the current paper is
the first both to characterise the set of detectable alternatives to the MCAR hypothesis, and
to provide tests that have asymptotic power 1 against all such detectable alternatives while
controlling the Type I error.

We conclude this introduction with some notation that is used throughout the paper. For
d ∈N, we write [d] := {1, . . . , d}, and also define [∞] := N. Given a countable set Ω, we write
2Ω for its power set, and 1Ω for the vector of ones indexed by the elements of Ω. If S ⊆ [d], we
denote 1S := (1{j∈S})j∈[d] ∈ {0,1}d. For x= (x1, . . . , xd)

T ∈ Rd, write xS = (xj : j ∈ S).
For x ∈ R, let x+ := max(x,0) and x− := max(−x,0). Given a, b ≥ 0, we write a . b
to mean that there exists a universal constant C > 0 such that a ≤ Cb, and, for a generic
quantity x, write a.x b to mean that there exists C , depending only on x, such that a≤Cb.
We also write a� b to mean a. b and b. a. For random elements X,Y , we write X ⊥⊥ Y

*However, in the special case where [d] ∈ S, a necessary and sufficient condition for compatibility is that PS
is the marginal distribution on XS of P[d], for each S ∈ S \ {[d]}. In other words, in this case, consistency is
sufficient for compatibility. A test of compatibility may therefore then be constructed by testing each of these
hypotheses via |S| − 1 two-sample tests and applying, e.g., a Bonferroni correction. More generally, this strategy
may be applied whenever S is decomposable (Lauritzen, Speed and Vijayan, 1984; Lauritzen and Spiegelhalter,
1988).
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4 T. B. BERRETT AND R. J. SAMWORTH

Symbol Type of mathematical object Interpretation
S Subset of 2[d] Set of possible observation patterns

X1, . . . ,Xd Measurable spaces Component spaces for X1, . . . ,Xd
X Product space

∏d
j=1Xj Product space for X = (X1, . . . ,Xd)

Ω Random vector in {0,1}d Revelation vector
X ◦Ω Random vector in

∏d
j=1

(
Xj ∪ {∗}

)
Observed data

XS
∏
j∈S Xj Partial product space for XS = (Xj : j ∈ S)

XS (XS : S ∈ S) Sequence of partial product spaces
P Set of distributions on X Possible distributions for X
PS Set of distributions on XS Possible distributions for XS
PS (PS : S ∈ S) Set of sequences of possible observed distributions
A Function from P to PS Marginalisation operator
P0
S Image of A Set of compatible sequences of distributions

FS(PS) A−1(PS) Fréchet class
R(PS, fS) Element of (−∞,1] Linear functional of PS
G+
S Set of functions from XS to [−1,∞)|S| Set of feasible fS

R(PS) sup
fS∈G+S

R(PS, fS) ∈ [0,1] Incompatibility index

TABLE 1
Key notation in the paper.

to mean that X and Y are independent. For probability measures P,Q on a measurable space
(Z,C), we denote their total variation distance as dTV(P,Q) := supC∈C |P (C)−Q(C)|. For
the reader’s convenience, we include a table of key notation as Table 1.

2. Fréchet classes and non-detectable alternatives. We begin with a brief discussion
of Fréchet classes, for which a good reference is Joe (1997, Section 3), as this will allow us to
characterise the set of detectable alternatives of an MCAR test. Throughout the paper, for d ∈
N and measurable topological spaces (X1,A1), . . . , (Xd,Ad), we let X :=

∏d
j=1Xj . Given a

collection S of subsets of [d] and a set of distributions PS = (PS : S ∈ S), where PS is defined
on XS , we write FS(PS) for the corresponding Fréchet class. As a simple example, if S ={
{1}, . . . ,{d}

}
, then FS(PS) is the class of all joint distributions with specified marginals

P{1}, . . . P{d}. It is easy to see that this Fréchet class in non-empty, because it includes the
product distribution P{1}× . . .×P{d}. More generally, if S1, . . . , Sm is a partition of [d] and
S = {S1, . . . , Sm}, then FS(PS) contains the corresponding product distribution. However,
when S contains subsets that overlap, the Fréchet classFS(PS) may be empty, or equivalently,
PS may be incompatible. One simple way in which this may occur is if d = 2 and S ={
{1},{1,2}

}
, but P{1} and P{1,2} are not consistent. More interestingly, when d≥ 3 it may

be the case that PS is consistent but we still have FS(PS) = ∅. For instance when d= 3 and
S =

{
{1,2},{1,3},{2,3}

}
, let ρ23 = ρ13 = 2−1/2, let ρ12 =−2−1/2 and, for 1≤ i < j ≤ 3,

let

P{i,j} =N

((
0
0

)
,

(
1 ρij
ρij 1

))
.

Then any joint distribution P{1,2,3} with these marginals would have ‘covariance matrix’ 1 −2−1/2 2−1/2

−2−1/2 1 2−1/2

2−1/2 2−1/2 1

 ,

which has a negative eigenvalue.
We are now in a position to describe the main statistical question that motivates our work.

Given x= (x1, . . . , xd) ∈ X and ω = (ω1, . . . , ωd) ∈ {0,1}d, we write x ◦ ω for the element
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OPTIMAL MCAR TESTING 5

of
∏d
j=1(Xj ∪ {?}) that has jth entry xj if ωj = 1 and jth entry ?, denoting a missing value,

if ωj = 0. Assume that we are given n independent copies of X ◦Ω, where the pair (X,Ω)
takes values in X × {0,1}d, and wish to test the hypothesis H0 :X ⊥⊥ Ω, i.e. that entries of
X are MCAR. This can be thought of as an independence test where we do not have complete
observations, though we will see that the missingness leads to very different phenomena.

Let S :=
{
S ⊆ [d] : P(Ω = 1S)> 0

}
denote the set of all missingness patterns that could

be observed. Writing PS for the conditional distribution of XS given that Ω = 1S , note that if
our data are MCAR, then PS := (PS : S ∈ S) is compatible, because XS

d
=XS |{Ω = 1S} ∼

PS , so the Fréchet class FS(PS) contains the distribution of X .
On the other hand, suppose now that our data are not MCAR, but that PS is still compatible.

If X̃ denotes a random vector, independent of Ω, whose distribution lies in the Fréchet class
FS(PS), then X̃ ◦ Ω

d
= X ◦ Ω, so no test of H0 can have power at compatible alternatives

that is greater than its size. The conclusion of this discussion is stated in Proposition 1 below,
where we let Ψ denote the set of all (randomised) tests based on our observed data X1 ◦
Ω1, . . . ,Xn ◦Ωn, i.e. the set of Borel measurable functions ψ :

(∏d
j=1(Xj ∪ {?})

)n→ [0,1].

PROPOSITION 1. Let P0 denote the set of distributions on X × {0,1}d that satisfy H0,
and let P ′0 denote the set of distributions on X × {0,1}d for which the corresponding se-
quence of conditional distributions PS is compatible. Then P0 ⊆ P ′0, but for any ψ ∈Ψ, we
have

sup
P∈P ′0

EPψ(X1 ◦Ω1, . . . ,Xn ◦Ωn) = sup
P∈P0

EPψ(X1 ◦Ω1, . . . ,Xn ◦Ωn).

A consequence of Proposition 1 is that it is only possible to have non-trivial power against
incompatible alternatives to H0, and a search for optimal tests of the MCAR property may
be reduced to looking for optimal tests of compatibility. In subsequent sections, we will
construct tests of compatibility, noting that if such a test rejects the null hypothesis, then we
can also reject the hypothesis of MCAR.

3. Testing compatibility. Let PS denote the set of sequences of the form PS = (PS :
S ∈ S), where PS is a distribution on XS , and let P0

S denote the subset of PS consisting of
those PS that are compatible. In testing compatibility, it is convenient to alter our model very
slightly, so that we have deterministic sample sizes within each observation pattern. More
precisely, given a collection S ⊆ 2[d] and PS = (PS : S ∈ S) ∈ PS, we assume that we are

given independent data (XS,i)S∈S,i∈[nS ], where XS,1, . . . ,XS,nS
iid∼ PS for each S ∈ S. Our

goal is to propose a test of H ′0 : PS ∈ P0
S , or equivalently, H ′0 : FS(PS) 6= ∅. To this end, for

S ∈ S, let G∗S denote the set of all bounded, upper semi-continuous functions on XS . We will
exploit the characterisation of Kellerer (1984, Proposition 3.13), which states that PS ∈ P0

S if
and only if
(1)∑

S∈S

∫
XS
fS(xS)dPS(xS)≥ 0 for all (fS : S ∈ S) ∈

∏
S∈S
G∗S with inf

x∈X

∑
S∈S

fS(xS)≥ 0.

This duality theorem can be regarded as a potentially infinite-dimensional generalisation of
Farkas’s lemma (Farkas, 1902), which underpins the theory of linear programming.

We now show how (1) can be used to define a quantitative measure of incompatibility. For
S ∈ S, let GS denote the subset of G∗S consisting of functions taking values in [−1,∞), and
let GS :=

∏
S∈S GS . Given fS ∈ GS for each S ∈ S, we write fS := (fS : S ∈ S) ∈ GS. Now let

G+
S :=

{
fS ∈ GS : inf

x∈X

∑
S∈S

fS(xS)≥ 0

}
.
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6 T. B. BERRETT AND R. J. SAMWORTH

Our key incompatibility index, then, is

(2) R(PS) := sup
fS∈G+

S

R(PS, fS),

where

R(PS, fS) :=− 1

|S|
∑
S∈S

∫
XS
fS(xS)dPS(xS).

Since the choice fS ≡ 0 for all S ∈ S means that the corresponding fS belongs to G+
S , we

see that R(PS) ≥ 0, and from (1), R(PS) = 0 if PS ∈ P0
S . Moreover, if (1) is violated by

some fS ∈ G∗S with infx∈X
∑

S∈S fS(xS)≥ 0, then by scaling we may assume that fS ∈ G+
S ,

and hence R(PS) > 0 whenever PS /∈ P0
S . Finally, observe that we also have R(PS) ≤ 1

for all PS ∈ PS; the extreme case R(PS) = 1 corresponds to strongly contextual families of
distributions, in the terminology of quantum contextuality (Abramsky and Brandenburger,
2011). When |X | <∞, we see from Theorem 2 below that R(PS) < 1 if and only if there
exists x ∈ X with PS({xS})> 0 for all S ∈ S.

THEOREM 2. Suppose that Xj is a locally compact Hausdorff space†, for each j ∈ [d],
and that every open set in X is σ-compact. Then for any PS ∈ PS,
(3)
R(PS) = inf

{
ε ∈ [0,1] : PS ∈ (1−ε)P0

S +εPS
}

= 1−sup
{
ε ∈ [0,1] : PS ∈ εP0

S +(1−ε)PS
}
.

Remark: If X is second countable, then every open set in X is σ-compact.
Theorem 2 can be regarded as providing a dual representation for R(PS). In the quantum

physics literature and for consistent families of distributions on discrete spaces, the second
and third expressions in (3) are known as the contextual fraction (Abramsky, Barbosa and
Mansfield, 2017). The first step of the proof of Theorem 2 is to apply the idea of Alexandroff
(one-point) compactification (Alexandroff, 1924) to reduce the problem to compact Haus-
dorff spaces. Strong duality for linear programming (Isii, 1964, Theorem 2.3), combined
with the Riesz representation theorem for positive linear functionals on the set of continuous
functions on compact spaces, then allows us to deduce the result.

Another important property of our incompatibility index is the fact that it is 1-Lipschitz
with respect to the total variation distance

dTV

(
(PS : S ∈ S), (QS : S ∈ S)

)
:=
∑
S∈S

dTV(PS ,QS)

on PS.

PROPOSITION 3. For any PS = (PS : S ∈ S) ∈ PS andQS = (QS : S ∈ S) ∈ PS, we have

|R(PS)−R(QS)| ≤ dTV(PS,QS).

With the basic properties of our incompatibility index now in place, we can now introduce
the minimax framework for our hypothesis testing problem. Writing nS := (nS : S ∈ S) ∈NS,
a test of H ′0 is a measurable function ψ′nS :

∏
S∈SX

nS
S → [0,1], and we write Ψ′nS for the set

of all such tests. Given ρ≥ 0, it is convenient to write

PS(ρ) := {PS ∈ PS :R(PS)≥ ρ},

†A brief glossary of definitions of topological and measure-theoretic concepts used in this result and its proof
is provided in Section S2 for the reader’s convenience.
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OPTIMAL MCAR TESTING 7

H ′0 : PS ∈ P0
S

H0 :X ⊥⊥Ω

MCAR

PS(ρ)

ρ

Fig 1: Illustration of our minimax testing framework.

so that PS(0) = PS, P0
S = PS \ ∪ε>0PS(ε) and PS(ε) = ∅ for ε > 1. The minimax risk at

separation ρ in this problem is defined as

R(nS, ρ) := inf
ψ′nS
∈Ψ′nS

{
sup
PS∈P0

S

EPS(ψ
′
nS) + sup

PS∈PS(ρ)
EPS(1−ψ′nS)

}
;

thus R(nS, ρ) = 0 for ρ > 1. Finally, the minimax testing radius is defined as

ρ∗(nS) := inf
{
ρ≥ 0 :R(nS, ρ)≤ 1/2},

so that ρ∗(nS)≤ 1. This framework is illustrated in Figure 1.

3.1. A universal test in the discrete case. In this subsection, we will assume that Xj =
[mj ] for every j ∈ [d], where mj ∈ N. Given our data, for each S ∈ S and AS ∈ 2XS , define
the empirical distribution of (XS,i)i∈[nS ] by

P̂S(AS) :=
1

nS

nS∑
i=1

1{XS,i∈AS}

and write P̂S := (P̂S : S ∈ S). We propose to reject H ′0 at the significance level α ∈ (0,1) if
R(P̂S)≥Cα, where

Cα :=
1

2

∑
S∈S

( |XS | − 1

nS

)1/2
+

{
1

2
log(1/α)

∑
S∈S

1

nS

}1/2

.

The following proposition provides size and power guarantees for this test.

PROPOSITION 4. Fix α,β ∈ (0,1). Whenever PS = (PS : S ∈ S) ∈ P0
S , we have

PPS

(
R(P̂S)≥Cα

)
≤ α. Moreover, for any PS ∈ PS satisfying

R(PS)≥Cα +Cβ,

we have PPS

(
R(P̂S)≥Cα

)
≥ 1− β.

Proposition 4 reveals in particular that in addition to having guaranteed finite-sample size
control, our test is consistent against any fixed, incompatible alternative; in other words,
whenever R(PS)> 0, we have PPS

(
R(P̂S)≥ Cα

)
→ 1 as minS∈S nS →∞. In combination

with Proposition 1, then, we see that from a testing perspective, compatibility is the right
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8 T. B. BERRETT AND R. J. SAMWORTH

proxy for MCAR, in that distributions of (X,Ω) that do not satisfy the MCAR hypothesis
are detectable if and only if their observed margins are incompatible. Moreover, we have the
following upper bound on the minimax separation rate:

ρ∗(nS)≤
∑
S∈S

( |XS | − 1

nS

)1/2
+ 2

(
log 2

∑
S∈S

1

nS

)1/2

.|S| max
S∈S

(
|XS |
nS

)1/2

.

As far as computation of the test statistic is concerned, observe that, writing XS := {(S,xS) :
S ∈ S, xS ∈ XS}, we can identify GS with [−1,∞)XS , and G+

S with a convex polyhedral
subset of [−1,∞)XS . Moreover, any PS ∈ PS can be identified with an element of [0,1]XS .
We will show in Proposition 6 below that the supremum in (2) is attained. In fact, R(PS, ·) is
linear, so we can compute R(P̂S) using efficient linear programming algorithms.

3.2. An improved test under additional information. In this subsection, we show how
in the discrete setting of Section 3.1, it may be possible to reduce the critical value of our
test, while retaining finite-sample Type I error control, when certain information about the
facet structure of relevant polytopes is available. This information does not depend on any
quantities that are unknown to the practitioner, though exact computation may be a challenge
when |S| or the alphabet sizes are large.

Before we can describe our improved test, it is helpful to study the geometric structure
of the problem further. Regarding G+

S as a polyhedral convex subset of [−1,∞)XS , it has
a finite number of extreme points, so supfS∈G+

S
R(PS, fS) = max`∈[L]R(PS, f

(`)
S ) for some

f
(1)
S , . . . , f

(L)
S ∈ G+

S . Thus PS ∈ P0
S if and only if max`∈[L]R(PS, f

(`)
S ) ≤ 0, and P0

S can be
identified with a finite intersection of halfspaces, i.e. it can be identified with a convex polyhe-
dron in [0,1]XS . Now define the marginal cone‡ P0,∗

S := {λ ·P0
S : λ≥ 0}. From the discussion

above, P0,∗
S can be identified with all non-negative multiples of a convex polyhedron, so can

itself be identified with a convex polyhedral cone in [0,∞)XS .
When ∅ 6= S2 ⊆ S1 ⊆ [d] and PS1

is a measure on XS1
, we write PS2

S1
for the marginal

measure of PS1
on XS2

. Recall that a family PS = (PS : S ∈ S) ∈ PS is consistent if,
whenever S1, S2 ∈ S have S1 ∩ S2 6= ∅, we have PS1∩S2

S1
= PS1∩S2

S2
. We let Pcons

S ⊆ PS
denote the set of consistent families of distributions on XS, with corresponding consistent
cone Pcons,∗

S := {λ · Pcons
S : λ ≥ 0} and consistent ball Pcons,∗∗

S := {λ · Pcons
S : λ ∈ [0,1]}.

Thinking of Pcons
S as a convex polytope in [0,∞)XS , the Minkowski sum P0,∗

S + Pcons,∗∗
S

is also a convex polyhedral set, so has a finite number of facets (Rockafellar, 1997, Theo-
rem 19.1). These facets fall into two categories: those that define the non-negativity condi-
tions (i.e. (PS)(S,xS) = PS({xS})≥ 0 for all S ∈ S and xS ∈ XS), which are not of primary
interest to us here, and the remainder, which we refer to as the set of essential facets. We
remark that, in decomposable settings where P0

S =Pcons
S , there are no essential facets. More

generally, regardless of whether S is decomposable, we still have the following:

PROPOSITION 5. P0
S is a full-dimensional subset of Pcons

S .

In addition to the geometric insight of Proposition 5, it is also interesting from a statisti-
cal perspective when we consider testing compatibility against consistent alternatives (which
captures the main essence of the problem in many examples; see the discussion at the end

‡Here, given λ > 0 and a distribution P on a measurable space (Z,C), the measure λ · P is defined in
the obvious way by (λ · P )(C) := λ · P (C) for C ∈ C; likewise, for a family of distributions P , we write
λ · P := {λ · P : P ∈ P}.
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of Section 3.2). It reveals a distinction with standard, fully-observed hypothesis testing prob-
lems (e.g. goodness-of-fit testing, two-sample testing, independence testing), where the null
hypothesis parameter space is of lower dimension than that of the alternative hypothesis pa-
rameter space (e.g., Fienberg, 1968).

We are now in a position to present Proposition 6, whose main (second) part provides a
decomposition of the incompatibility index.

PROPOSITION 6. In the discrete setting above, the supremum in (2) and the infimum
in (3) are attained. Moreover, writing F for the number of essential facets of P0,∗

S +Pcons,∗∗
S ,

there exist f (1)
S , . . . , f

(F )
S ∈ G+

S , depending only on S and XS, such that for any PS = (PS :
S ∈ S) ∈ PS, we have

max

{
max
`∈[F ]

R(PS,f
(`)
S )+,

1

|S|
max
S1,S2∈S

dTV

(
PS1∩S2

S1
, PS1∩S2

S2

)}
≤R(PS)

≤max
`∈[F ]

R(PS, f
(`)
S )+ + |S|2|S|+2 · max

S1,S2∈S
dTV

(
PS1∩S2

S1
, PS1∩S2

S2

)
,(4)

where we interpret max`∈[0]R(PS, f
(`)
S )+ = 0.

Proposition 6 shows in particular that when PS ∈ Pcons
S , the number of essential facets of

P0,∗
S +Pcons,∗∗

S governs the complexity of the incompatibility index, and we can write R(PS)
in irreducible form as

R(PS) = max
`∈[F ]

R(PS, f
(`)
S )+.

For general PS ∈ PS, Proposition 6 shows that R(PS) can be expressed as a maximum of
this irreducible part and (up to a multiplicative factor depending only on |S|) a total variation
measure of inconsistency that quantifies the distance of PS from Pcons

S . As we will see below,
the ideal situation is where we have knowledge of F , and we can then exploit this in the
construction of powerful tests. For instance, when S =

{
{1,2},{2,3},{1,3}

}
and X1 = [r],

X2 = [s] and X3 = [2], we have F = (2r − 2)(2s − 2); cf. Theorem 8 and the subsequent
discussion. In more complicated examples, such knowledge may not be readily available, but
we will also see, e.g. in Proposition 12 below, that it is nevertheless often possible to find
bounds of the form

(5) max
`∈[F ′]

R(PS, f
(`),′

S )+ ≤R(PS)≤DR max
`∈[F ′]

R(PS, f
(`),′

S )+

for some known DR > 0, F ′ ∈N0, f (1),′

S , . . . , f
(F ′),′

S ∈ G+
S ∩ [−1, |S| − 1]XS and for all PS ∈

Pcons
S . It then follows from (S11) in the proof of Proposition 6 that, in the upper bound in (4),

we may replace max`∈[F ]R(PS, f
(`)
S )+ by DRmax`∈[F ′]R(PS, f

(`),′

S )+.
Our alternative test rejects H ′0 : PS ∈ P0

S at the significance level α ∈ (0,1) if and only if
R(P̂S) ≥ C ′α ≡ C ′α

(
|X1|, . . . , |Xd|,S, (nS : S ∈ S),DR, F

′), where C ′α := max(C ′α,1,C
′
α,2),

and

C ′α,1 := |S|
{

2D2
R log

(2F ′|S|
α ∨ 1

)
minS∈S nS

}1/2

,

C ′α,2 = |S|
{

22|S|+7 max
S1,S2∈S:

S1 6=S2,S1∩S2 6=∅

|XS1∩S2
| log 2 + log

(2|S|(|S|−1)
α

)
nS1
∧ nS2

}1/2

.
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10 T. B. BERRETT AND R. J. SAMWORTH

Here, DR, F
′ are such that (5) holds. If the number of essential facets F of P0,∗

S + Pcons,∗∗
S

is known, then we may take F ′ = F and DR = 1. The following theorem provides size and
power guarantees for this test.

THEOREM 7. Fix α,β ∈ (0,1). If PS = (PS : S ∈ S) ∈ P0
S , then PPS

(
R(P̂S)≥C ′α

)
≤ α.

Moreover, there exists M ≡M(|S|,DR)> 0 such that for any PS ∈ PS satisfying

(6) R(PS)≥M(C ′α +C ′β),

we have PPS

(
R(P̂S)≥C ′α

)
≥ 1− β.

Of course, by combining Proposition 4 and Theorem 7, we see that the test that rejects H ′0
if R(P̂S) ≥min(Cα,C

′
α) =: Cmin

α remains of size α, so is an improved test that represents
the best of both worlds. By taking F ′ = F and DR = 1, Proposition 4 and Theorem 7 now
reveal that

ρ∗(nS)≤ 2 min
(
MC ′1/4,C1/4

)
.|S| min

{(
log(F ∨ 1)

minS∈S nS
+ max

S1,S2∈S:
S1 6=S2,S1∩S2 6=∅

|XS1∩S2
|

nS1
∧ nS2

)1/2

,max
S∈S

(
|XS |
nS

)1/2}
.

By McMullen’s Upper bound theorem (McMullen, 1970),

log(F ∨ 1) .|S| log |X | ·max
S∈S
|XS |,

so that, when all sample sizes are of the same order of magnitude, we have C ′α + C ′β .|S|
(Cα + Cβ) · log |X |. When tight bounds on logF are available, however, we may have that
C ′α +C ′β is much smaller than Cα +Cβ ; see the discussion following Theorem 8 below.

While these quantities are rather abstract, we can simplify them in certain cases. It is
known from previous work (e.g. Vlach, 1986) that when S =

{
{1,2},{2,3},{1,3}

}
and

X = [r] × [s] × [2] for some r, s ∈ N, the marginal cone induced by the set of compatible
measures is given by

P0,∗
S =

{
PS ≡ pS ∈ Pcons,∗

S : max
A⊆[r],B⊆[s]

(−pAB• + pA•1 + p•B1 − p••1)≤ 0
}
,

where, for example, pAB• := P{1,2}(A × B) and p••1 := P{1,3}([r] × {1}) = P{2,3}([s] ×
{1}). However, the extension in the first part of Theorem 8 below, which provides an ex-
act expression for the incompatibility index for an arbitrary family of consistent marginal
distributions, is new. The second part provides a representation of P0,∗

S + Pcons,∗∗
S as an in-

tersection of F = (2r − 2)(2s − 2) closed halfspaces; thus, C ′α is known exactly, and can be
used in our test of compatibility.

THEOREM 8. Let S =
{
{1,2},{2,3},{1,3}

}
and X = [r]× [s]× [2] for some r, s ∈N.

Then for any PS ∈ Pcons
S , we have

(7) R(PS) = 2 max
A⊆[r],B⊆[s]

(−pAB• + pA•1 + p•B1 − p••1)+.

Moreover,

P0,∗
S +Pcons,∗∗

S =
{
PS ≡ pS ∈ Pcons,∗

S : max
A⊆[r],B⊆[s]

(−pAB• + pA•1 + p•B1 − p••1)≤ 1/2
}
.

imsart-aos ver. 2020/08/06 file: output.tex date: May 19, 2023



OPTIMAL MCAR TESTING 11

Remark: In the special case s= 2, the expression in (7) simplifies to

(8) R(PS) = 2 max
j∈[2]

{
p•j1 −

r∑
i=1

min(pij•, pi•1)

}
+

.

This can be compared with corresponding expressions in the d= 4 cases that are given Ex-
ample 14 and in Proposition S3.

From the expression for F in this case, we see that when n{1,2} = n{2,3} = n{1,3} = n/3,
we have

C ′α +C ′β �
{
r+ s+ log

(
1/(α∧ β)

)
n

}1/2

, Cα +Cβ �
{
rs+ log

(
1/(α∧ β)

)
n

}1/2

.

More generally, as a consequence of Theorems 7 and 8,

(9) ρ∗(nS) .
( r+ s

n{1,2}

)1/2
+
( r

n{1,3}

)1/2
+
( s

n{2,3}

)1/2
.

The main challenge in the proof of Theorem 8 is to establish (7), since the second part then
follows using arguments from the proof of Proposition 6. Our strategy is to obtain matching
lower and upper bounds on R(PS) via the primal and dual formulations (2) and (3) respec-
tively. The lower bound requires, for each A ⊆ [r] and B ⊆ [s], a construction of fS ∈ G+

S
for which we can compute R(PS, fS). On the other hand, the upper bound relates R(PS) to
the maximum two-commodity flow (Ahuja, Magnanti and Orlin, 1988, Chapter 17) through
a specially-chosen network. Vlach (1986) gives a halfspace representation for P0,∗

S using the
max-flow min-cut theorem for a single-commodity flow through a simpler network; since
there is no general max-flow min-cut theorem for two-commodity flows (Leighton and Rao,
1999), our proof is more involved.

Theorem 9 below provides a lower bound on the minimax testing radius in the setting of
Theorem 8.

THEOREM 9. Let S =
{
{1,2},{2,3},{1,3}

}
with |X1| = r for some r ≥ 2, |X2| = 2

and |X3|= 2. There exists a universal constant c > 0 such that

ρ∗(nS)≥ cmax

{
1

log r
∧
(

r

(n{1,2} ∧ n{1,3}) log r

)1/2

,
1

(minS∈S nS)1/2

}
.

Theorem 9 may be applied in r×s×2 tables by noting that ρ∗ cannot decrease when |XS |
increases, for any S ∈ S. In particular, writing ρ∗r,s,2(nS) here to emphasise the dependence on
the alphabet sizes, in the main regime of interest where n{1,2} ≥ (r+ s) log(r+ s), n{1,3} ≥
r log r and n{2,3} ≥ s log s, we can conclude that

ρ∗r,s,2(nS)≥max{ρ∗r,2,2(nS), ρ∗2,s,2(nS)}

&
( r+ s

n{1,2} log(r+ s)

)1/2
+
( r

n{1,3} log r

)1/2
+
( s

n{2,3} log s

)1/2
.

When compared with our upper bound in (9), we see that our improved test is minimax
rate-optimal, up to logarithmic factors.

The proof of Theorem 9 relies on Lemma S1 in Section S1, which provides a bound on
the total variation distance between paired Poisson mixtures, and is an extension of both Wu
and Yang (2016, Lemma 3) and Jiao, Han and Weissman (2018, Lemma 32). We remark that
the sequences PS constructed in our lower bound belong to Pcons

S ; in other words, the same
lower bound on the minimax separation rate holds for testing against consistent alternatives.
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12 T. B. BERRETT AND R. J. SAMWORTH

3.3. Reductions. In this subsection, we show how, for certain S ⊆ 2[d], the incompati-
bility index R(PS) can be expressed in terms of R(PS′) for some collection S′ ⊆ 2J , with
J a proper subset of [d]. Conceptually, such formulae provide understanding of the facet
structure of P0,∗

S + Pcons,∗∗
S , which in turn allows us to obtain tighter bounds on the critical

values employed in our improved test (cf. Section 3.2). Computationally, these formulae ex-
tend the scope of results such as Theorem 8 by allowing us to provide explicit expressions for
R(PS) in a wider range of examples. Finally, these reductions allow us to conclude that our
improved test is minimax optimal (up to logarithmic factors) for wider classes of observation
patterns S.

Our first reduction considers a setting where there exists a subset of variables that are only
observed as part of a single observation pattern within our class of possible patterns. Given
S⊆ 2[d] and J ⊆ [d], we write S−J := {S ∩ Jc : S ∈ S}.

PROPOSITION 10. Let S⊆ 2[d], and suppose that ∅ 6= J ⊆ [d] and S0 ∈ S are such that
J ⊆ S0 but J ∩ S = ∅ for all S ∈ S \ {S0}. Writing P−JS := (PS : S ∈ S \ S0, P

S0∩Jc
S0

), we
have that if P−JS ∈ Pcons

S−J , then PS ∈ Pcons
S . Moreover, regardless of consistency,

R(PS) =R(P−JS ).

As an illustration of Proposition 10 suppose that X = [r]× [s]× [2]× [t]× [u] and S ={
{1,2,4},{2,3},{1,3,5}

}
. Then R(PS) =R(PS−{4,5}), and if P−{4,5}S ∈ Pcons

S−{4,5} , then

R(PS) = 2 max
A⊆[r],B⊆[s]

(
−pAB••• + pA•1•• + p•B1•• − p••1••

)
+
.

Moreover, when testing H ′0 in this setting, we may take the same critical value as when
S =

{
{1,2},{1,3},{2,3}

}
and X = [r] × [s] × [2], and analogously to (9), we obtain the

following upper bound on the minimax testing radius:

ρ∗(nS) .
( r+ s

n{1,2,4}

)1/2
+
( r

n{1,3,5}

)1/2
+
( s

n{2,3}

)1/2
.

Our lower bound arguments from Theorem 9 can also be adapted to this five-dimensional
setting. Briefly, mimicking the proof of Theorem 9, we should ensure in our choice of priors
that the marginals over variables {1,2,4}, {2,3} and {1,3,5} agree with those for {1,2},
{2,3} and {1,3} respectively in that earlier proof. This can be achieved by taking, for ex-
ample, pij•k• to equal pij•/t, where pij• was defined in the proof of Theorem 9. Arguing in
this way allows us to conclude that the lower bound on ρ∗(nS) from Theorem 9 continues
to hold, provided that we replace n{1,2} and n{1,3} with n{1,2,4} and n{1,3,5} respectively. In
other words, our improved test is indeed minimax optimal up to logarithmic factors when
S =

{
{1,2,4},{2,3},{1,3,5}

}
and X = [r]× [s]× [2]× [t]× [u].

Next, we consider a complementary situation where a subset of variables appears in all
of our possible observation patterns. For the purposes of this result, we will assume that
(Xj : j ∈ [d]) are Polish spaces, so that regular conditional distributions and disintegrations
are well-defined (e.g. Dudley (2018, Chapter 10) and Reeve, Cannings and Samworth (2021,
Lemma 35)). Specifically, if S ⊆ [d] and J ⊆ S, then there exists a family (PS|xJ : xJ ∈ XJ)
of probability measures on XS∩Jc with the properties that xJ 7→ PS|xJ (B) is measurable for
every measurable B ⊆XS∩Jc , and

∫
APS|xJ (B)dP JS (xJ) = PS(A×B) for all A ∈AJ ,B ∈

AS∩Jc . We then write PS|xJ := (PS|xJ : S ∈ S) for each xJ ∈ XJ .
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PROPOSITION 11. Let S ⊆ 2[d], and suppose that J ⊆ [d] is such that J ⊆ S for every
S ∈ S. Suppose further that there exists a distribution P J on XJ such that P JS = P J for all
S ∈ S. Then

(10) R(PS)≤
∫
XJ
R(PS|xJ )dP J(xJ).

Moreover, in the discrete case where Xj = [mj ] for some m1, . . . ,md ∈ N ∪ {∞}, the in-
equality (10) is in fact an equality.

As an application of Proposition 11, suppose that S =
{
{1,2,3},{1,3,4},{1,2,4}

}
,

where X1 = [r],X2 = [s],X3 = [t],X4 = [2], and where PS ∈ Pcons
S . Then Proposition 11

combined with Theorem 8 yields that

R(PS) = 2

r∑
i=1

max
A⊆[s],B⊆[t]

(−piAB• + piA•1 + pi•B1 − pi••1)+.

This shows that in this setting we can find f
(1)
S , . . . , f

(F )
S ∈ G+

S such that R(PS) =

max`∈[F ]R(PS, f
(`)
S )+, with F ≤ {(2s − 2)(2t − 2)}r ≤ 2r(s+t). Moreover, analogously

to (9), we may argue that

ρ∗(nS) .
(r(s+ t)

n{1,2,3}

)1/2
+
( rs

n{1,2,4}

)1/2
+
( rt

n{1,3,4}

)1/2
.

It is a consequence of Proposition S2 that this rate is optimal, up to logarithmic factors.
Our final reduction result provides good upper and lower bounds on R(PS) in settings

where there exists J ∈ S such that [d] can be partitioned into (I, J,K), where every S ∈ S is
a subset of either I ∪ J or J ∪K . As an alternative way of expressing this, if S1,S2 ⊆ S, we
say J ∈ S is a cut set for S1 and S2 if S1 ∩ S2 = {J} and (∪S∈S1

S)∩ (∪S∈S2
S) = J .

PROPOSITION 12. Let S⊆ 2[d], and suppose that S1,S2 ⊆ S are such that J is a cut set
for S1 and S2. Then for any PS ∈ PS, we have

max{R(PS1
),R(PS2

)} ≤R(PS)≤R(PS1
) +R(PS2

).

In Example 14(ii) below, we give an exact expression for R(PS) when PS ∈ Pcons
S in the

special case where S =
{
{1,2},{2,3},{1,3},{3,4},{1,4}

}
with Xj = [2] for all j ∈ [4].

Here, {1,3} is a cut set for S1 =
{
{1,2},{2,3},{1,3}

}
and S2 =

{
{1,3},{3,4},{1,4}

}
(see Figure 2(b)), and our calculations confirm that the conclusion of Proposition 12 holds
with these choices of S1,S2 and J . More generally, when S is as above,X = [2]× [r]× [s]× [t]
and PS ∈ Pcons

S , we can now see that R̃(PS)≤R(PS)≤ 2R̃(PS), where

R̃(PS) := 2 max

{
max

A⊆[r],B⊆[s]
(−p•AB• + p1A•• + p1•B• − p1•••),

max
A⊆[t],B⊆[s]

(−p••BA + p1••A + p1•B• − p1•••)

}
+

.

Thus (5) holds with DR = 2 and F ′ = (2s − 2){(2r − 2) + (2t − 2)} ≤ 2s+max(r,t)+1, so we
can apply our test using the critical value C ′α with these choices. In particular, we can deduce
from this that

(11) ρ∗(nS) .
( r+ s

n{2,3}

)1/2
+
( r

n{1,2}

)1/2
+
( s

n{1,3}

)1/2
+
( s+ t

n{3,4}

)1/2
+
( t

n{1,4}

)1/2
.
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14 T. B. BERRETT AND R. J. SAMWORTH

Proposition 12 also allows us to extend lower bounds on the minimax separation rate to this
setting. Indeed, when PS2

is compatible, we see that R(PS) = R(PS1
) so that the construc-

tions in our lower bound in Theorem 9 can be extended to apply here. Indeed, if we define
pj•i• as pij• was defined in proof of Theorem 9, define pji•• as p•ij was defined in proof of
Theorem 9, and take p•ji• = p••ij = 1{j≤2}/(2s) and pi••j = 1{j≤2}/4 then PS2

is compati-
ble and the same calculations as in the proof of Theorem 9 show that

ρ∗(nS) &
1

log s
∧
(

s

n{1,3} log s

)1/2

.

The constructions for the other terms in (11) are simple modifications of this and we see that
our test is again minimax optimal up to logarithmic factors.

3.4. Computation. While Cα can be easily calculated for any test of compatibility and
allows for a test with power against all incompatible alternatives, we have seen that C ′α can be
smaller and lead to more powerful tests. Practical use of C ′α requires knowledge of the num-
ber F of essential facets of the polyhedral set P0,∗

S + Pcons,∗∗
S , or DR and F ′ such that (5)

holds. These are fully determined by S and X , so in principle are known, but these polyhe-
dral sets can be highly complex and explicit expressions for their numbers of essential facets
are not generally available. Nevertheless, given particular S and X , it is possible to com-
pute explicit halfspace representations of P0,∗

S +Pcons,∗∗
S using well-developed packages for

linear programming. In this section we describe some of the basic geometric concepts in-
volved and how existing algorithms can be used in our setting. As our concern is to describe
computational methods, we restrict attention to discrete settings where |X | <∞, so PS is
finite-dimensional.

Existing work mentioned in the introduction has focused on the simpler problem of the
computation of the facet structure of P0

S , and we begin by describing the approach taken
there. Given PS := (PS : S ∈ S) ∈ P0

S , we write pS(xS) := PS({xS}) for (S,xS) ∈ XS and
pS := (pS : S ∈ S) ∈ [0,1]XS . Thus

P0
S = {PS ∈ PS :FS(PS) 6= ∅}

=

{
PS ∈ PS : ∃p ∈ [0,1]X s.t. pS(xS) =

∑
xSc∈XSc

p(xS , xSc)∀S ∈ S, xS ∈ XS
}

= {PS ∈ PS : ∃p ∈ [0,1]X s.t. Ap= pS},

where the matrix A = (A(S,yS),x)(S,yS)∈XS,x∈X ∈ {0,1}XS×X has entries

(12) A(S,yS),x := 1{xS=yS}.

Since each column of A has exactly |S| entries equal to 1 (one for each S ∈ S), it follows
that any p ∈ [0,1]X with Ap = pS satisfies 1TX p = |S|−11TXS

Ap = |S|−11TXS
pS = 1. We can

therefore write P0
S as the convex hull of the columns of A, with coefficients in the convex

combination given by p. In the rest of this section, we adopt for compactness the convention
that if i ∈ [2], then ī := 3− i, so that {̄i}= {1,2} \ {i}.

EXAMPLE 13. Consider the case d = 3, where S =
{
{1,2},{2,3},{1,3}

}
and X =

[2]3. Here we have |X | = 8, |XS| = 12 and, if we order the 12 rows according to
(1,1,•), (1,2,•), (2,1,•), (2,2,•) for S = {1,2}, then (•,1,1), (•,1,2), (•,2,1), (•,2,2) for

imsart-aos ver. 2020/08/06 file: output.tex date: May 19, 2023



OPTIMAL MCAR TESTING 15

S = {2,3}, then (1,•,1), (2,•,1), (1,•,2), (2,•,2) for S = {1,3}, we have

AT =



1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0
0 1 0 0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0 1 0
0 0 1 0 1 0 0 0 0 1 0 0
0 0 1 0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 0


.

In this case, the polytope P0
S has 16 facets; of these, 12 correspond to the simple non-

negativity conditions pS ≥ 0, while the remaining four essential facets are given by pi,j̄,• +
p•j2 +pī,•,1 ≤ 1 for i, j ∈ [2] (Vlach, 1986; Eriksson et al., 2006). More generally, when X =

[r]× [s]× [2] for some r, s ∈N, the marginal polytope P0
S has (2r−2)(2s−2)+rs+2(r+s)

facets, with rs+ 2(r+ s) of these corresponding to simple non-negativity conditions.

We now turn to the problem of computing the number of essential facets of the poly-
hedral set P0,∗

S + Pcons,∗∗
S , which is of more direct relevance in our context. As we see

from Theorem 8 and the example above, in the special case S =
{
{1,2},{2,3},{1,3}

}
and

X = [r] × [s] × [2], the structure of P0,∗
S + Pcons,∗∗

S is similar to that of P0
S ; indeed, both

polyhedral sets have the same numbers of essential and non-essential facets. However, the
facet structure of P0,∗

S +Pcons,∗∗
S is generally more complicated than that of P0

S ; Example 14
reveals that when d= 4 all irreducible choices of S except the simple chain pairs case exhibit
this difference. The Minkowski sum P0,∗

S + Pcons,∗∗
S is the convex hull of a set of direc-

tions (the columns of A) and a set of points (the vertices of Pcons
S , together with the origin).

Moreover, a halfspace representation of Pcons
S is given by

Pcons
S =

{
pS ∈ [0,∞)XS :

∑
xS∈XS

pS(xS) = 1 ∀S ∈ S,

∑
xS1∩Sc2∈XS1∩Sc2

pS1
(xS1

)−
∑

xSc
1
∩S2∈XSc1∩S2

pS2
(xS2

) = 0∀xS1∩S2
∈ XS1∩S2

, S1, S2 ∈ S
}
,

and we can convert this to a vertex representation using software such as the rcdd package
in R (Geyer and Meeden, 2021). In fact, as shown by Proposition 5, the equality constraints
of Pcons

S can be extracted from the equality constraints in the halfspace representation of
P0
S , a fact we use in our computations. The vertex representations of P0

S and Pcons
S lead

to a vertex representation of the sum P0,∗
S + Pcons,∗∗

S that can then be converted back to a
halfspace representation, again using software such as rcdd. The value of F is then given
by the number of halfspaces in this representation, once we subtract the number of halfspaces
defining Pcons

S .
To illustrate this computational approach, we find explicit expressions for R(PS) with

PS ∈ Pcons
S , for all irreducible four-dimensional examples with binary variables. If [d] ∈ S,

then P0
S = Pcons

S so F = 0 and R(PS) = 0 for PS ∈ Pcons
S . We are therefore more interested

in situations where [d] /∈ S, and where compatibility is not equivalent to consistency. By a
combination of Propositions 10 and 11, the set of possible irreducible observation patterns S
in the case d= 4 with [d] /∈ S is the following:

• Chain pairs: S =
{
{1,2},{2,3},{3,4},{1,4}

}
;

• All pairs except one: S =
{
{1,2},{1,3},{1,4},{2,3},{3,4}

}
;
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1 2

34

(a) Chain pairs

1 2

34

(b) All pairs except one

1 2

34

(c) All pairs

1 2

34

(d) Single triple

1 2

34

(e) All triples

Fig 2: Irreducible observation patterns S with d= 4.

• All pairs: S =
{
{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}

}
;

• Single triple: S =
{
{1,2,3},{1,4},{2,4},{3,4}

}
;

• All triples: S =
{
{1,2,3},{1,2,4},{1,3,4},{2,3,4}

}
.

These patterns are illustrated in Figure 2.

EXAMPLE 14. Let X1 = X2 = X3 = X4 = [2]. For PS ∈ Pcons
S , the following statements

hold:

(i) When S =
{
{1,2},{2,3},{3,4},{1,4}

}
,

R(PS) = 2 max
k,`∈[2]

{
p••k` − p•2k• −

2∑
i=1

min(pi1••, pi••`)

}
+

(13)

= 2 max
i,j,k∈[2]

(pij•• − p•jk• − p••k̄1 − pi••2)+.

From the second representation, we see that we may take F = 8. In fact, in this example
the facet structure of P0

S is again closely related to the facet structure of P0,∗
S +Pcons,∗∗

S ;
indeed, by Hoşten and Sullivant (2002, Theorem 3.5),

P0
S =

{
PS ∈ Pcons

S : max
i,j,k∈[2]

(pij•• − p•jk• − p••k̄,1 − pi••2)≤ 0
}

is a non-redundant halfspace representation. We give an analytic extension of (13) to
X1 = [r] for general r ∈N in Proposition S3 of Section S1.

(ii) When S =
{
{1,2},{2,3},{1,3},{3,4},{1,4}

}
,

R(PS) = 2 max

[
0,max
j∈[2]

{
p•j1• −

2∑
i=1

min(pij••, pi•1•)

}
,

imsart-aos ver. 2020/08/06 file: output.tex date: May 19, 2023



OPTIMAL MCAR TESTING 17

max
`∈[2]

{
p••1` −

2∑
i=1

min(pi•1•, pi••`)

}
, max
i,j,`∈[2]

(p••1` − pij•• − pī••` − p•j̄1•)
]

= max
{
R(P 123

S ),R(P 134
S ),R(PS\{{1,3}})

}
.

Here, we write, e.g., R(P 123
S ) instead of R(P

{1,2,3}
S ) for notational simplicity. This is a

simple example where P0,∗
S + Pcons,∗∗

S has a more complex facet structure than that of
P0
S . Indeed, Proposition 12 shows that max

{
R(P 123

S ),R(P 134
S )

}
≤ R(PS)≤ R(P 123

S ) +
R(P 134

S ), and hence that PS is compatible if and only if P 123
S and P 134

S are compatible.
On the other hand, writing

(14) p••1` − pij•• − pī••` − p•j̄1• = (p••1` − pi•1• − pī••`) + (p•j1• − pij•• − pī•1•),

shows that our expressions for R(PS) are non-redundant: P0,∗
S + Pcons,∗∗

S has F = 16
essential facets, while P0

S only has 8.
(iii) When S =

{
{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}

}
,

R(PS) = max

[
R(P 123

S ),R(P 124
S ),R(P 134

S ),R(P 234
S ),

2 max
i,j,k,`∈[2]

(−pij•• − p•jk• − pi•k• + pi••` + p•j•` + p••k` − p•••`),

R(PS\{{1,3},{2,4}}),R(PS\{{1,4},{2,3}}),R(PS\{{1,2},{3,4})

]
.(15)

Here, we see from the R code output that PS is compatible if and only if the first two lines
of (15) are non-positive. The final line can be bounded above by twice the first line: as
in (14), we have, for example, that

R(PS\{{1,3},{2,4}}) = max
i,j,`∈[2]

(p••1` − pij•• − pī••` − p•j̄1•)+ ≤R(P 134
S ) +R(P 123

S ).

We see from (15) that we may take F = 4× 4 + 16 + 3× 8 = 56. In the R output, the half-
space representation of P0,∗

S +Pcons,∗∗
S has 93 rows, 13 of which are equality constraints

coming from the consistency conditions, 24 of which are non-negativity constraints, and
the remaining 56 correspond to essential facets reflected in our expression R(PS) above.
Here P0

S has 32 essential facets.
(iv) When S =

{
{1,2,3},{1,4},{2,4},{3,4}

}
, we have compatibility if and only if

P 124
S , P 134

S , P 234
S are compatible and

p̃ijk` := pijk• + pī••` + p•j̄•` + p••k̄` − p•••` ≥ 0

for all i, j, k, ` ∈ [2]. These conditions are non-redundant, so that P0
S has 3× 4 + 16 = 28

essential facets. Further,

R(PS) = max

[
R(P 124

S ),R(P 134
S ),R(P 234

S ),−3

2
min

i,j,k,`∈[2]
p̃ijk`,− min

i,j,k,`∈[2]
(p̃ijk` + p̃īj̄k̄ ¯̀)

− min
i,j,k,`∈[2]

{
p̃īj̄k̄ ¯̀+min(pij••−pi••`+p•j̄•`, p•jk•−p••k`+p•j̄•`, pi•k•−p••k`+pī••`)

}]
,

so that we may take F = 3× 4 + 2× 16 + 3× 16 = 92. From the above expression it also
follows that

R(PS)≤max
{
R(P 124

S ),R(P 134
S ),R(P 234

S )
}

+ 2 max
i,j,k,`∈[2]

(−p̃ijk`)+.
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(v) When S =
{
{1,2,3},{1,2,4},{1,3,4},{2,3,4}

}
the marginal polytope P0

S has 32 es-
sential facets. Indeed, writing SJ := S \ ([4] \ {J}), we have that PS is compatible if and
only if PSJ |xJ is compatible for all J ∈ [4] and xJ ∈ [2]. Moreover,

R(PS) =
1

2
max
J∈[4]

max
xJ∈[2]

{
3pJ(xJ)R(PSJ |xJ ) + pJ(x̄J)R(PSJ |x̄J )

}
≤ 2 max

J∈[4]
max
xJ∈[2]

pJ(xJ)R(PSJ |xJ ),

and F = 4× 2× 4× 4 = 128. To see where these numbers come from, consider J = 1 and
xJ = 1, and note that
1

2
{3p1(1)R(PS1|1) + p1(2)R(PS1|2)}

=−min
{

0,3 min
j,k∈[2]

(p1jk•+p1,j̄•1−p1•k1)
}
−min

{
0, min
j′,k′∈[2]

(p2j′k′•+p2,j̄′•2−p2•k′2)
}
.

This is the maximum of 5 × 5 linear functionals of PSJ , but all those where 0 is chosen
in the first term are redundant in the final expression for R(PS), as are all those where
(j′, k′) = (j̄, k̄). Thus, for each value of (J,xJ), there are 4× 4 non-redundant essential
facets.

4. Mixed discrete and continuous variables. In this section, we consider a setting of
mixed discrete and continuous variables, where there exist positive integers d0 ≤ d such that
X = [0,1)d0 ×

∏d
j=d0+1[mj ], with m1, . . . ,md ∈ N ∪ {∞}. The case where the continuous

components take values in other spaces, e.g. R, can be handled using similar techniques. We
assume that we observe independent random variables (XS,i : S ∈ S, i ∈ [nS ]), with XS,i ∼
PS taking values in XS := [0,1)S∩[d0] ×

∏
j∈S∩([d]\[d0])[mj ]. Given a vector of bandwidths

h= (h1, . . . , hd0) ∈ (0,∞)d0 , we partition [0,1)d0 ×
∏
j∈[d]\[d0][mj ] as

[0,1)d0 ×
∏

j∈[d]\[d0]

[mj ] =
⋃

(k1,...,kd)∈Kh

( d0∏
j=1

Ihj ,kj ×
∏

j∈[d]\[d0]

{kj}
)
,

where Kh := [d1/h1e]× · · · × [d1/hd0e]×
∏
j∈[d]\[d0][mj ] and

Ihj ,kj :=
[
(kj − 1)hj , (kjhj)∧ 1

)
.

Let G+
S,h denote the set of sequences of functions (fS : S ∈ S) where each fS :XS→ [−1,∞)

is piecewise constant on all sets of the form
∏
j∈S∩[d0] Ihj ,kj ×

∏
j∈S∩([d]\[d0]){kj} and where

the sequence satisfies

inf
x∈X

∑
S∈S

fS(xS)≥ 0.

We further define

Rh(PS) := sup
fS∈G+

S,h

R(PS, fS).

Recalling our definition of Cmin
α from Section 3.2, in this mixed continuous and discrete

setting, we reject the null hypothesis that PS = (PS : S ∈ S) ∈ P0
S at the level α ∈ (0,1) if

Rh(P̂S)≥Cmin
α

(
d1/h1e, . . . , d1/hd0e,md0+1, . . . ,md,S, (nS : S ∈ S)

)
=:C∗α,

where P̂S is the empirical distribution of XS,1, . . . ,XS,nS for S ∈ S, and P̂S = (P̂S : S ∈ S).
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For d′ ∈ N, r = (r1, . . . , rd′) ∈ (0,1]d
′

and L > 0, let Hd′(r,L) denote the class of func-
tions that are (r,L)-Hölder on [0,1)d

′
, i.e. the set of functions p : [0,1)d

′→R satisfying

|p(z1, . . . , zd′)− p(z′1, . . . , z′d′)| ≤ L
d′∑
j=1

|zj − z′j |rj

for all (z1, . . . , zd′), (z
′
1, . . . , z

′
d′) ∈ [0,1)d

′
. Now let PS,r,L denote the set of sequences of

distributions (PS : S ∈ S) where PS is a distribution on XS having density pS with re-
spect to the Cartesian product of Lebesgue measure on [0,1)S∩[d0] and counting mea-
sure on

∏
j∈S∩([d]\[d0])[mj ] satisfying the condition that the conditional density xS∩[d0] 7→

pS(xS∩[d0]|xS∩([d]\[d0])) belongs to H|S∩[d0]|(r,L) for all xS∩([d]\[d0]) ∈
∏
j∈S∩([d]\[d0])[mj ].

THEOREM 15. In the above setting, let α,β ∈ (0,1) and suppose that PS ∈ PS,r,L. Then
the probability of a Type I error for our test is at most α. Moreover, if

R(PS)≥ L(|S| − 1)

d0∑
j=1

h
rj
j +C∗α +C∗β,

then the probability of a Type II error is at most β.

We now specialise the upper bound of Theorem 15 to our main three-dimensional example.
When S =

{
{1,2},{2,3},{1,3}

}
and X = [0,1)2 × {1,2} we have for h1, h2 ∈ (0,1) that

L(|S| − 1)(hr11 + hr22 ) +C∗α +C∗β .L,|S|,α,β h
r1
1 + hr22 +

(1/h1 + 1/h2

minS∈S nS

)1/2
,

and we can choose h1, h2 to minimise this right-hand side. We can take h1 = h2 =

(minS∈S nS)
− 1

1+2(r1∧r2) and α= β = 1/4 to deduce the minimax upper bound

ρ∗(nS) .L,|S|

(
min
S∈S

nS

)− r1∧r2
1+2(r1∧r2)

.

5. Numerical studies. The tests introduced in Section 3 provide finite-sample Type I
error control over the entire null hypothesis parameter space P0

S . However, this may lead
to conservative tests in particular examples, so we first present an alternative, Monte Carlo-
based approach to constructing the critical value for our test. The first part of Proposition 6
and the dual formulation (3) mean that we can write

P̂S = {1−R(P̂S)}Q̂S +R(P̂S)T̂S,

where Q̂S ∈ P0
S and T̂S ∈ PS. Here Q̂S can be thought of as a closest compatible sequence of

marginal distributions to P̂S (in particular, if P̂S ∈ P0
S , then Q̂S = P̂S). Moreover, Q̂S can be

computed straightforwardly at the same time as our test statistic R(P̂S). In particular, recall
from the proof of Theorem 8 that

R(P̂S) = 1−max
{

1TX p : p ∈ [0,∞)X ,Ap≤ p̂S
}
,

where p̂S := (p̂S : S ∈ S) is the sequence of mass functions associated with P̂S. Writing p̂ for
an optimal solution to this linear program, and assuming initially that 1TX p̂ 6= 0, the closest
compatible sequence Q̂S is the sequence of distributions associated with the sequence of
probability mass functions Ap̂/(1TX p̂). If 1TX p̂= 0, so R(P̂S) = 1, then we simply take Q̂S to
be the sequence of discrete uniform distributions on XS.
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It is therefore natural to generate a critical value by drawing B bootstrap samples from
Q̂S, computing the corresponding empirical distributions Q̂(1)

S , . . . , Q̂
(B)
S and test statistics

R(Q̂
(1)
S ), . . . ,R(Q̂

(B)
S ), and rejecting H ′0 at significance level α ∈ (0,1) if and only if

1 +

B∑
b=1

1{R(Q̂
(b)

S )≥R(P̂S)} ≤ α(B + 1).

We are to give both theoretical and numerical backing for this test. Given PS ∈ PS and
ε > 0, define

Bε(PS) :=

{
P ′S ∈ PS :

∑
S∈S

dTV(PS , P
′
S)≤ ε

}
and (P0

S )−ε :=
{
PS ∈ P0

S :Bε(PS)⊆P0
S
}
.

The following result shows that our Monte–Carlo test is uniformly valid over expanding
subsets of P0

S , and uniformly powerful over alternatives separated from the null.

PROPOSITION 16. Recall the definition of Cα from Section 3.1. We have

sup
PS∈(P0

S )−Cα
PPS

(
1 +

B∑
b=1

1{R(Q̂
(b)

S )≥R(P̂S)} ≤ α(B + 1)

)
≤ α.

Moreover, if B ≥ 2(1− α)/α and R(PS)≥ 2
√

2(Cα +Cβ), then

PPS

(
1 +

B∑
b=1

1{R(Q̂
(b)

S )≥R(P̂S)} >α(B + 1)

)
≤ β.

In our first experiments, we took S =
{
{1,2},{2,3},{1,3}

}
with X = [r] × [2]2 and

r ∈ {2,4,6}; we fix PS ∈ Pcons
S by setting, for each i ∈ [r],

(16) pi•• =
1

r
, p•1• = p••1 =

1

2
, pi•1 =

1

2r
, pi1• =

1 + (−1)i

2r

and varying p•21 to adjust the incompatibility index. Indeed, with these choices, we have
R(PS) = 2(p•21 − 1/4)+ by Theorem 8. Our Monte Carlo test was applied with nS =
(200,200,200), B = 99 and α= 0.05, and we repeated our experiments 5000 times in each
setting.

In this setting where we do not have complete cases available and PS is consistent, we
are not aware of alternative methods that would have non-trivial power. Nevertheless, in
order to provide some comparison, we can furnish the tests of Fuchs (1982) and Spohn et al.
(2021) with an additional n{1,2,3} = 200 observations from the distribution on X having
mass function pijk = {1 + (−1)i+j}/(4r) for i ∈ [r] and j, k ∈ [2], which ensures that Ap is
a closest compatible sequence to PS, in our terminology above. In particular, Ap satisfies all
equalities in (16), as well as (Ap)•21 = 1/4. We emphasise that these complete cases were
not accessed by our method. The Fuchs (1982) test was of similar speed to our approach, so
it was again possible to repeat each experiment 5000 times and we compare the power curves
with those of our test in Figure 3. However, the PKLM test of Spohn et al. (2021) (applied
with the default choices of tuning parameters) was considerably slower, so we only studied
its performance under the extreme values of R(PS) (i.e. R(PS) = 0 and R(PS) = 0.25), and
we only conducted 200 repetitions for each setting; see Table 2.

From Figure 3 and Table 2, we see that all three tests have good control of the size of
the test, and in fact the Fuchs and PKLM tests are slightly conservative. Despite the extra

imsart-aos ver. 2020/08/06 file: output.tex date: May 19, 2023



OPTIMAL MCAR TESTING 21

P
o
w

e
r

P
o
w

e
r

P
o
w

e
r

000 0.050.050.05 0.10.10.1 0.150.150.15 0.20.20.2 0.250.250.25

000

0.20.20.2

0.40.40.4

0.60.60.6

0.80.80.8

111

R(PS)R(PS)R(PS)

Fig 3: Power curves for our Monte Carlo test (black) and Fuchs’s test (red). Error bars show three
standard errors. Here, S =

{
{1,2},{2,3},{1,3}

}
with X = [r]× [2]2 and r = 2 (left), r = 4 (middle)

and r = 6 (right).

p•21 = 0.25 p•21 = 0.375

r = 2 0.01 0.50
r = 4 0.02 0.485
r = 6 0.035 0.395

TABLE 2
Rejection rates for PKLM over 200 repetitions. Here p•21 = 0.25 corresponds to R(PS) = 0 and p•21 = 0.375

corresponds to R(PS) = 0.25.

complete cases that are available to the alternative methods, though, our test is significantly
more powerful, with the difference in power increasing as r increases.

In our second set of experiments, we took d= 5, nS = (500,500,500,500,500), X = [2]5

and S =
{
{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5}

}
. For ε ∈ [0.2,0.35] and

i, j, k, `,m ∈ [2], we set

pijk`• =
1 + ε(−1)i+j+k+`

16
, pijk•m =

1 + ε(−1)i+j+k+m

16
, pij•`m =

1 + ε(−1)i+j+`+m

16

pi•k`m =
1 + ε(−1)i+k+`+m

16
, p•jk`m =

1− ε(−1)j+k+`+m

16
,

for which R(PS) = (5ε − 1)+/4. In this case, we applied the Fuchs test for several differ-
ent choices of the number of complete cases, namely n{1,2,3,4,5} ∈ {25,50,100,200}. The
complete case distribution p was chosen so that Ap was a closest compatible sequence to PS.
Figure 4 shows the corresponding power curves, along with that of our test. In this example,
our test is the only one that controls the Type I error at the nominal level, so none of the
Fuchs tests are reliable here. We also see that the additional complete cases are crucial for
the power of the Fuchs test, and that the power of our test remains competitive even without
these observations.

Finally, we present in Figure 5 the results of investigations into the computational run time
of our methodology. The majority of the time taken is to define the matrix A, which can grow
quickly in the problem parameters, and the need to store this matrix in memory limits the
dimensionality of the problems we consider. However, this only needs to be done once to
conduct the test, and the computation of R(·) on the bootstrap samples is parallelisable, so
we simply report the time taken for a single computation of R(·), including defining A. The
linear programming was carried out using the R package lpSolve (Berkelaar et al., 2004),
which does not currently support sparse matrices; it is likely that further work on this aspect
of the implementation will allow for computation in much larger problems.
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Fig 4: Power curves for our Monte Carlo test (black) and Fuchs’s test with the lat-
ter test being applied with an additional n{1,2,3,4,5} = 25 (magenta), 50 (cyan), 100
(red) and 200 (blue) complete cases. Error bars show three standard errors. Here, S ={
{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5}

}
, with X = [2]5.

For d ≥ 3,m ∈ [d− 1] and r ≥ 2 we consider the collection of observation patterns S ={
{1, . . . ,m},{2, . . . ,m+1}, . . . ,{d,1, . . . ,m−1}

}
and set X = [r]d. We generate inputs PS

randomly as empirical distributions associated with discrete uniform distributions, with each
sample size being 10000. The number of constraints in the linear program here is rd + drm

and the number of variables is drm. In our first set of examples, shown in the left panel of
Figure 5 we consider d= 3,4,5, take m= 2 and vary r. When d= 3 the largest value of r
we could use was r = 42 and the time taken was approximately 113 seconds; when d= 5 our
largest value was r = 13 and the time taken was approximately 142 seconds. In our second
set of examples, given in the right panel of Figure 5 we consider m= 2,3 and r = 2,3 and
vary d. The plot shows that the value of m had little effect on the computational time, though
this increased quickly with d. When r =m= 2, we were able to take d= 20, and compute
R(PS) in approximately 2050 seconds; when r = 3, m = 2 and d = 13, the time taken was
approximately 1450 seconds.

SUPPLEMENTARY MATERIAL

Supplementary material: Optimal nonparametric testing of Missing Completely At
Random, and its connections to compatibility
(doi: 10.1214/00-AOSXXXXSUPP; .pdf). The supplement contains proofs of our main re-
sults, as well as some auxiliary results.
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