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Trajectory Prediction with Observations of Variable-Length for
Motion Planning in Highway Merging Scenarios™

Sajjad Mozaffari', MReza Alipour Sormoli', Konstantinos Koufos', Graham Lee!, and Mehrdad Dianati?

Abstract— Accurate trajectory prediction of nearby
vehicles is crucial for the safe motion planning of
automated vehicles in dynamic driving scenarios such
as highway merging. Existing methods cannot initiate
prediction for a vehicle unless observed for a fixed du-
ration of two or more seconds. This prevents a fast re-
action by the ego vehicle to vehicles that enter its per-
ception range, thus creating safety concerns. There-
fore, this paper proposes a novel transformer-based
trajectory prediction approach, specifically trained
to handle any observation length larger than one
frame. We perform a comprehensive evaluation of
the proposed method using two large-scale highway
trajectory datasets, namely the highD and exiD.
In addition, we study the impact of the proposed
prediction approach on motion planning and control
tasks using extensive merging scenarios from the exiD
dataset. To the best of our knowledge, this marks
the first instance where such a large-scale highway
merging dataset has been employed for this purpose.
The results demonstrate that the prediction model
achieves state-of-the-art performance on the highD
dataset and maintains lower prediction error w.r.t.
the constant velocity across all observation lengths
in exiD. Moreover, it significantly enhances safety,
comfort, and efficiency in dense traffic scenarios, as
compared to the constant velocity model.

I. INTRODUCTION

The successful development of highly automated driv-
ing systems in interactive driving scenarios requires un-
derstanding the potential evolution of the driving sit-
uation in the immediate future. A prime example of
such a scenario is merging onto highways, particularly
during peak hours. In this context, autonomous vehicles
(AVs) must continually adjust their motion based on
the trajectory predictions of other road users on the
main carriageway. Recent progresses in deep learning
have facilitated the development of advanced interaction-
aware prediction models that exhibit significantly lower
prediction errors and extended prediction horizons [1].
However, there remains a lack of research to investigate
the practical limitations and the impact of these methods
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on downstream motion planning and control in auto-
mated vehicles.

One drawback of existing learning-based prediction
approaches is their reliance on observing the states of
nearby vehicles for a fixed duration, typically two seconds
or more [2], [3], [4]. That delays the availability of
predictions for the first few seconds of the first time when
a vehicle enters the field of view of the AV’s perception
system. These delays in prediction can hinder timely
and safe decision-making by AVs, especially in highly
interactive driving scenarios.

In addition, many existing trajectory prediction ap-
proaches lack a thorough analysis of how the learning-
based prediction impacts downstream motion planning
and control tasks. Even though some studies [5], [6],
[7] offer qualitative analysis of motion planning using
prediction data, they often fall short of providing a
comprehensive comparison between learning-based pre-
dictions and conventional methods like the constant
velocity prediction model. Additionally, these evaluation
methods often neglect to adequately assess the influence
of prediction quality in diverse driving conditions, such
as various traffic densities. To the best of our knowledge,
there is a notable absence of studies evaluating the
impact of learning-based prediction on motion planning
and control for merging onto highways.

To address the aforementioned shortcomings, this pa-
per first proposes a new formulation of vehicle trajec-
tory prediction where a variable-length sequence of past
observations is employed as opposed to the fixed dura-
tion used in existing methods. Then, we design a novel
transformer-based prediction model using a tailored in-
put feature list for highway merging scenarios. The pro-
posed model is specifically trained to handle variable-
length observations. The prediction data is then utilised
in motion planning and control for vehicles merging onto
highways. To this end, the prediction data is encoded into
a potential field and fed to a Model Predictive Control
(MPC)-based motion planning and control algorithm.
We evaluate the performance of the prediction model and
the prediction-based motion planning using a large-scale
highway merging dataset, namely the exiD dataset [8].
Additionally, we separately evaluate the performance of
the prediction model using a benchmark highway driving
dataset, namely the highD dataset [9], to facilitate com-
parison with several state-of-the-art highway trajectory



prediction models. The contributions of this paper can
be summarised as follows:

e A novel formulation for vehicle trajectory prediction
that accommodates variable-length observations.

o A novel transformer-based vehicle trajectory predic-
tion model incorporating interaction and map-aware
features for highway merging scenarios.

o Statistical evaluation of the prediction model and its
impact on downstream motion planning and control
in highway merging scenarios.

II. RELATED WORK

This section reviews the existing studies on trajectory
prediction, particularly focusing on two key aspects:
(1) Learning-based techniques employed for trajectory
prediction, and (2) Studies that analyse the impact
of nearby vehicle trajectory prediction on the motion
planning of the Ego vehicle (EV).

A. Learning-based Trajectory Prediction

Learning-based methods for trajectory prediction have
been recently reviewed based on their input representa-
tion, prediction model and output type in [1]. Recurrent
Neural Networks (RNNs), particularly Long Short-Term
Memories (LSTMs), have been widely utilized for vehicle
trajectory prediction [10], [11], [12], [13]. However, with
the introduction of the attention mechanism [14], RNNs
are gradually being outperformed in many sequence-
to-sequence tasks, such as speech recognition [15] and
natural language processing [14]. Additionally, Convolu-
tional Neural Networks (CNNs) are employed in vehicle
trajectory prediction due to their advantages in spatial
interaction learning [4], [16].

Transformer neural networks have emerged as an al-
ternative to both RNNs and CNNs [17], [18], [19], [20].
Giuliari et al. [17] demonstrated that simple transformer
neural networks outperform state-of-the-art LSTM pre-
diction models in human trajectory prediction tasks.
In [18], the multimodal vehicle trajectory prediction task
was addressed using transformers where each predicted
trajectory is conditioned on a separate attention head.
Gao et al. [19] employed dual transformers to predict
both the intention and the trajectory of a target vehicle
leveraging vehicle interaction features and the history
of the lateral states of the target vehicle. In [21], a
transformer encoder was used to learn latent representa-
tion from a list of interaction-aware, context-aware, and
dynamic-aware input data. That representation was used
to predict multimodal manoeuvres and trajectories for
a target vehicle. Similarly, in this paper, we employ a
transformer neural network using input features specially
designed for merging scenarios. Notably, unlike existing
studies that require a fixed observation length of two
to three seconds, our proposed method can predict a
vehicle’s trajectory with a minimum of two time-step
observations (equivalent to 0.4 seconds in our setting).

B. Trajectory Prediction for Motion Planning

Wang et al. [6] designed an MPC-based motion planner
for risk mitigation leveraging trajectory prediction using
LSTMs. The LSTM model was trained and evaluated on
the highD dataset [9], however, the planning algorithm
was evaluated using two selected scenarios from the
highD dataset. Tang et al. [7] expanded upon this work
by estimating the uncertainty of prediction using a deep
ensemble technique. Then, the effects of uncertainty-
aware prediction on motion planning were evaluated in
a single cut-in and merging scenario. Building upon
these studies, we further extend the research field by
conducting a comprehensive statistical analysis of the
planning algorithm’s performance.

In [5], [22], multimodal joint prediction of nearby
vehicles’ trajectories was used for contingency planning.
Chen et al. in [5] utilised an MPC to plan a trajectory for
each prediction mode, and then the results were discussed
for a specific driving scenario qualitatively. Cui et al. [22]
used a sampling-based planning approach in simulation
with reactive agents. The simulation scenarios were ini-
tialised with real-world urban data. In [23], an LSTM
neural network was used to predict the trajectory of the
EV’s nearby vehicles in a multi-lane turn intersection,
and then the future motion of the EV was planned using
the prediction data and MPC planner. The results of the
planning algorithm were compared with a path follow-
ing and constant turning rate and velocity predictions.
Different from these studies, we target highway merging
scenarios and analyse the impact of trajectory prediction
of other vehicles on joint motion planning and control of
merging vehicles.

III. METHODOLOGY

This section first defines the vehicle trajectory predic-
tion problem and the system model. Then describes the
proposed trajectory Prediction model with Observation
of Variable Length (POVL). Finally, it discusses the
motion planning and control algorithm. Fig. |1|illustrates
an overview of the prediction and planning pipelines
using an exemplary driving scenario.

A. System Model and Problem Definition

We consider a semi- or fully-automated Ego Vehicle
(EV) merging from a single-lane slip road into a main
carriageway with an arbitrary number of lanes. All road-
ways can be straight or curvy. The EV intends to predict
the future trajectory of vehicles along both the main
carriageway and the slip road, and these predictions are
subsequently fed into its motion planning and control
module. The tracking data of these vehicles and the
lane markings are assumed to be available for the EV,
e.g., through onboard perception, V2X communication,
or cloud. Assuming that the future trajectories of vehicles
are independent, the EV predicts the trajectory of one
Target Vehicle (TV) at a time and for all perceived
vehicles in the scene.
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Fig. 1.

An overview of the proposed prediction and motion planning pipelines with an illustrative exemplar scenario. The reference paths

for coordinate conversion are depicted with solid green and red lines. The predicted and planned trajectories are depicted with dashed
red and green lines, respectively. Note that the example output of the Potential Field Generator box is cumulatively drawn over several

prediction steps for illustrative purposes.

The problem of trajectory prediction is defined as
estimating the sequence of TV’s future x-y positions
during Tpreq time-steps of prediction window Y7y =
{1, 91), .- (X100, YT,,0a)} given the states of the TV
and its surrounding environment during 7,5 time-steps
of the observation window. The observation length for a
TV can vary between a minimum and maximum value,
ie., Tobs € [TminaTmax}-

B. Prediction model

Fig. [Tta illustrates the overview of the prediction

framework. The processing steps are summarised below:

1) The TV’s tracking data is converted to the Frenet
coordinate system.

2) The input features are computed using the tracking

and map data.

3) Transformer encoder-decoder neural network is

used to predict the future trajectory of the TV.

4) The prediction data is converted back to the Carte-

sian coordinate system.

1) Coordinate Conversion: The prediction is con-
ducted in the Frenet coordinate system, which describes
the movement of vehicles in terms of along-track () and
cross-track ((f) components. As the curvature of the slip
road may differ from that of the main carriageway, two
distinct reference paths are considered for vehicles on
each road segment, as illustrated in Fig. [l The crossing
point of the reference paths serves as the origin of the
new coordinate system. A vehicle is first associated either
with the slip road or the main carriageway reference
patlﬂ Afterwards, its cross-track component is deter-
mined by calculating the distance of the orthogonal pro-
jection between the vehicle’s centre and the associated

1Note that it is assumed vehicles do not deviate from the road
boundaries.
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Fig. 2.
a target vehicle and different lane types (best seen in colour).

Illustration of the maximum ten surrounding vehicles for

reference path. The along-track component is calculated
as the arc length along the reference path from the origin
to the orthogonal projection point of the vehicle’s centre.
Similarly, the prediction data is converted back from
Frenet to Cartesian coordinate system.

2) Input Features: The input to the prediction model
consists of a sequence of feature lists with a maximum
observation length of T,,,, time steps. If there are less
than T,,.,. observations available for a vehicle, the rest
of the sequence is padded with zero values.

The observation at each time step is represented by
a list of 28 features, categorised into three groups. The
first group describes the motion of the TV, encompass-
ing features including the TV’s lateral position in the
lane, longitudinal velocity, and lateral and longitudinal
acceleration. The second group characterises the TV’s
interaction with surrounding vehicles (SVs), considering
the lateral and longitudinal distance between the TV
and each SV. A maximum of 10 SVs are considered
including the preceding/following vehicles on the TV’s



lane (1/2), the right close preceding/following vehicles
(3/4), right far preceding/following vehicles (5/6), left
close preceding/following vehicles(7/8), and left far pre-
ceding/following vehicles(9/10). A ghost vehicle at far
distances replaces the feature list of each SV that doesn’t
exist or is not in the perception range of the EV. Fig.
shows the numbered labelling of SVs for an example
merging scenario. Finally, the third group of features
pertains to the driving environment, including lane width
and the types of right and left lanes relative to the TV.
This study defines four lane types: (0) no lane, (1) normal
lanes (where crossings are anticipated into and from
them), (2) expect merging lanes (where crossings are
expected into them), and (3) merge lane (where crossings
are expected from them). Fig. |2 provides an illustration
of the surrounding vehicles and the various lane types.

3) Transformer Model: The prediction model includes
a transformer encoder and decoder components, initially
introduced in [14]. Transformer neural networks utilise
multi-head self-attention and cross-attention mecha-
nisms to identify and focus on the informative segment
of the input sequence in alignment with the underlying
training objectives. Interested readers are referred to [14]
for further details about transformers.

The transformer encoder is used to encode the variable
length observation into a sequence of latent representa-
tions capturing the spatiotemporal dependencies of the
input sequence. The transformer decoder then utilises the
latent representations to predict the displacement of the
TV at each time step during the prediction window. The
masking mechanism in transformers is used to filter out
the padded sequence of input data.

The encoder and decoder models consist of two trans-
former layers each with eight attention heads, a model
dimension of 512, and a feed-forward hidden layer di-
mension of 128. To represent the uncertainties in the
prediction output, the model estimates the parameters
of a bivariate Gaussian distribution of displacement in
along-track and cross-track dimensions for each predic-
tion step.

Fig. 3. Kinematic variables and parameters of the bicycle model
used in the equation of motion.

C. Motion Planning Algorithm

This section describes the Model Predictive Control
(MPC a.k.a receding horizon control) motion planning
algorithm for an EV merging into the highway. Given
the predicted future trajectories of dynamic objects in
the driving environment, MPC calculates the optimised
trajectory for the EV by minimising a given cost func-
tion [24]. Specifically, the optimisation cost at a time step
t is a function of the EV dynamics/constraints (U°?), the
perceived environment represented by a potential field
(U*™), and a reference signal (U"¢f) over the planning
horizon p (p < Tpreq). One may write

P
Co=y Ui + Uiy + UL (1)
i=0

Each term of the cost function is further explained in
the subsequent sections.

1) Vehicle Dynamics: The (dynamic) bicycle model
has been adopted for modelling the dynamic motion of
the EV. Accordingly, the EV motion is governed by a set
of nonlinear equations [24]:

i:f(a?,uc)
z=[ u0,9,9,(X,Y)
Ue = [ Fuaéf ]Ta

]T

(2)

where x and u. are the state vector and control inputs
respectively, and f (-) represents a set of six nonlinear
functions. The state vector z represents the EV’s state
including its longitudinal and lateral velocities (u and
v ), the heading and yaw rate (1) and ), and the
Cartesian location of its centre of mass (X and Y).
Fig. |3|illustrates these parameters on the bicycle model
of the EV. Moreover, the input vector u. consists of
throttle/brake force (F,) and the front wheel steering
angle (d¢).

The state equations are adaptively linearised around
their operating point to facilitate the optimisation pro-
cess yielding the following simplified form of state equa-
tions: © = Ax+ Bu,, where A and B are the Jacobians of
f (z,u.;) with respect to z and wu,, respectively. Finally,
the term U®" in Eq.[I]is defined as the quadratic weighted
sum of the control inputs and their rate of change

Ue = uleuc + ﬂngdc, (3)

where Q7 and Q- are constant square diagonal matrices
to tune the contribution of the control input and its rate
in the overall cost.

2) Potential field representation of driving environ-
ment: Repulsive potential fields have been widely
adopted in path planning of autonomous vehicles (AVs)
for modelling the interactions between the EV and other
elements in the driving scene such as obstacles and
boundaries. A repulsive potential field guides the EV



away from the associated obstacle/boundary. A well-
engineered repulsive potential field enables differentia-
tion between diverse types of obstacles, further enhanc-
ing driving safety. In a highway merging scenario, the
main obstacles that should be avoided can be broadly
categorised into three types: Moving/static objects such
as other vehicles and road boundaries as non-crossable
obstacles and lane markings as crossable obstacles. A
repulsive potential is designed for each category of ob-
stacles which contributes to the overall potential field
representing the driving context.

The potential field for each of the other vehicles, V,,
can be defined based on its distance to the EV, after it
is appropriately weighted in the lateral and longitudinal
directions.

Qo
[ Cy?
L—=ZTobs + Y—Yobs
X, Ye

where (Zops, Yobs) are the obstacle location, a, is the
obstacle vehicle potential field magnitude, X., Y. are
constants determining the rate of change for the potential
field in x and y directions, and c,,c, is another set of
weights allowing to model every vehicle in the 2d plane by
an ellipse instead of a circle. One can find in Fig. 4 (top),
an example illustration.

The potential field associated with road boundaries,
V., is defined according to the EV’s distance to the
boundary, d,.. In that case, the potential should be high
when the EV approaches near the boundary but can be
degenerated to zero when the distance d, becomes larger
than a threshold, D,.. Specifically,

V, = (4)

- Dr)27 dr S Dr
0, d. > Dy, (5)

with a, > 0 being the maximum of the potential field V..

Finally, the lane-marking potential, V;, may have a
concave shape with its magnitude a; being lower than
the other two categories, i.e., a; < a, and a; < a, as
can also be seen in Fig. 4, since lane crossing should be
permitted for overtaking.

Vi =ajexp (—bd}), (6)

where d; is the distance to the lane marks and b; > 0
determines the rate of change.

The environment cost for each time step in Eq. [I] is
obtained by adding up the terms calculated in Eq. (4) -

(©):

U =Vt Vit ) Vo, (7)

where the summation is over all obstacle vehicles. Note
that obstacle vehicles’ positions at each future timestep
are obtained from their corresponding predicted trajec-
tory.
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Fig. 4. Potential field for modelling semantic information in the

driving environment such as other vehicles, road boundaries and
lane markings (the axes have been scaled).

3) Reference signals: Two reference signals are defined
for the EV to follow, namely the distance from the
centre-line of the desired merging lane (yg4es) and the
nominal speed of that lane (ug4es). This is to guarantee
progress in the EV’s trajectory, otherwise, the EV may
stop moving to minimise the other terms in the cost
function. Accordingly, the contribution of the reference
signals in the overall cost is:

Y = [ Ydes, Udes }Ta (8)

where Q3 is a constant square diagonal matrix to tune
the contribution of the reference signal error in the final
cost.

Ul = ¥TQy,

IV. PERFORMANCE EVALUATION

This section offers a performance evaluation of the
proposed prediction model and analyses its impact on
motion planning and control. To this end, it first presents
the datasets used for evaluation, followed by the imple-
mentation details. Then, we provide the selected predic-
tion and planning metrics. Subsequently, the results of
prediction and planning models are discussed.

A. Dataset

1) exiD Dataset: We utilise the exiD dataset [8] for
both trajectory prediction and motion planning evalu-
ation in highway merging scenarios. This dataset com-
prises a large-scale collection of naturalistic vehicle tra-
jectories (69,172 vehicles) at highway entries and exits,
recorded by drones in Germany in 2022. Among seven
different locations reported in the dataset, the merging
data of four locations are used in this study which
matches with the system model defined in section [[IT]
|§| (i.e., a single-lane slip road merging into two- or
three-lane main roads). The selected data contains 49



recordings from which 45 are used for training and 4
for evaluation of the prediction model, one per location.
Recording number 39, from the prediction test set, is
used for evaluating the planning algorithm.

2) highD Dataset:: The prediction model is also sep-
arately trained and evaluated on the highD dataset [9],
which is a benchmark highway trajectory dataset used
in several trajectory prediction studies [13], [19], [1]. The
highD dataset contains 110,000 vehicle tracks from six
different highways in Germany. The dataset is recorded
using a drone from mainly straight highways and includes
different levels of traffic densities. The vehicle tracks in
highD are exclusively divided into the train, validation,
and test set with the ratio of 70%, 10%, and 20%, fol-
lowing the experimental protocol of existing studies [25],
[20].Both highD and exiD datasets are reported with
25 frames per second which are reduced to 5 in the
prediction task.

B. Implementation Details

The prediction model is trained using Adam opti-
miser [26] with a learning rate of 0.0001 for a max-
imum of 10° batches, each with a size of 2000 sam-
ples. Observations ranging from a minimum of two
(0.4 seconds) to a maximum of 15 timesteps (3 sec-
onds) are used to predict the next 25 timesteps (5
seconds). The prediction model is implemented using
PyTorch library [27] and is run on GeForce RTX 2080
TI GPU. The source code of this study is available at
https://github.com/SajjadMz{/TrajPred

The planning algorithm is evaluated for large-scale
highway merging scenarios with realistic data obtained
from the exiD dataset. Each scenario is initialised with a
merging vehicle at various merging statuses (i.e., different
distances to the merging point). Motion planning is
performed for the next five seconds during which the
corresponding prediction data of other vehicles are being
used. In total 97 merging vehicles are used for motion
planning evaluation. Sequential quadratic programming
is used to optimise the planning cost function (Eq.
over the planning horizon. The planning algorithm is
implemented in MATLAB.

C. Evaluation Metrics

1) Prediction Metric: The Root Mean Square Error
(RMSE) between the predicted trajectory of vehicles and
their ground truth is used to evaluate the accuracy of the
prediction model:

RMSE:\/J{,i

where (z;,w;) are the predicted (Cartesian) coordi-
nates at the i-th sample, out of N total samples, and
(2i,gt, Wi g¢) is the associated ground truth.

M=z

[(Zi - Zi,gt)2 + (wi — wi,gt)2 . 9

1

TABLE I
COMPARISION OF BASELINE STUDIES USING RMSE(M) AT
DIFFERENT PREDICTION HORIZONS EVALUATED ON HIGHD AND EXID
DATASET. THE BEST AND SECOND BEST ERRORS ARE MARKED AS
bold AND UNDERLINED.

Model 1s 2s 3s 4s 5s
(A% 0.10 033 069 117 1.76
CS-LSTM [4] 0.19 057 1.16 1.96 2.96
S MHA-LSTM [13] 0.06 0.09 0.24 0.59 118
%D Dual Trans. [19] 041 079 111 140 -
MMnTP [19] 0.19 0.36 0.56 0.82 1.19
POVL (ours) 0.12 0.18 0.22 0.53 1.15
a Cv 0.25 063 1.19 1.92 282
8 POVL (ours) 0.17 041 0.76 1.21 1.75
28 .—.—.—.—.—.—H—H—H+‘ PO\"L
2.6 —o— Cv

X 2.2
=20
18
1.6
2 3 4 5 6 7 8 9 10 11 12 13 14 15
Observeration Time-Steps (0.2 sec)
Fig. 5. RMSE of the proposed prediction model in different

observation lengths on exiD dataset.

2) Planning Metrics: The motion planning algorithm
is evaluated based on three criteria, namely, safety, com-
fort, and efficiency. The inverse of the average Time-
To-Collision, :TTC, is reported to evaluate the safety
of the planned trajectories, the average Jerk represents
the comfort, and the average force is reported for fuel
efficiency.

D. Prediction Results

1) Comparison with baselines: Table [I| compares the
performance of the proposed model, some state-of-the-
art highway trajectory prediction models, and Con-
stant Velocity (CV) prediction evaluated on highD and
exiD datasets. To the best of our knowledge, no tra-
jectory prediction studies have been conducted using
the exiD dataset. The selected state-of-the-art models
include LSTM-based models such as MHA-LSTM [13],
CNN-LSTM-based models such as CS-LSTM [4], and
Transformer-based models such as [19], [1]. The results
show that the proposed prediction model outperforms
SOTA and CV models on both datasets specifically in
longer prediction horizons. The CV predictor has a rela-
tively low error and even outperforms one of the baseline
learning-based models (e.g., CS-LSTM). We argue that
this is because vehicles tend to keep their velocity in
highway driving, therefore on average a CV prediction
approach can achieve comparable results to learning-
based methods on distance-based metrics such as RMSE.
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Fig. 6. Trajectory prediction and motion planning for a merging scenario extracted from exiD dataset (top: CV prediction, bottom: POVL
prediction). The green line shows the planned trajectory of the EV (green bounding box) with green diamonds representing one-second
intervals for the next five seconds (planning horizon). The dark red bounding box with black borders shows the current location of the
TV on the main carriageway. The transparent bounding boxes with black borders show the ground-truth position of the TV in the next
five seconds. The red bounding boxes with increasing levels of fading show the predicted location of the TV in the next five seconds.
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Fig. 7. Control input signal (top: force, and bottom: steering angle)
in motion planning using CV and POVL prediction methods for the
scenario in Fig. [B] Sharper steering and more force magnitude are
observed in motion planning using CV.

2) Performance in different observation lengths: Fig.
shows the performance of the proposed prediction model
evaluated on the exiD dataset for different observation
lengths. The results show that the proposed method even
with 0.4 seconds (i.e., 2-time steps) outperforms the CV
model. Note that most existing learning-based prediction
studies do not provide a prediction for observations less
than 2-3 seconds.

E. Prediction Impact on Planning

1) Statistical Analysis: Table [LI] shows the statistical
analysis for the impact of trajectory prediction accuracy
on motion planning and control metrics. We separately
run motion planning algorithm with Ground-Truth (GT)
futures of the vehicles as well as the CV and the proposed
POVL models. The safety, comfort, and efficiency are
reported for different traffic densities from the EV’s per-
spective. To this end, the relevant metrics are calculated
in seven sets, based on the max distance of the nearby
vehicles to the EV’s planned trajectory in each time
step of the five-second simulation. The results show that
using the proposed prediction model instead of CV can
lead to a significant 9.15% improvement in driving safety
(i.e., ¢TTC) in total. However, the impact on the ride
comfort (i.e., jerk) and fuel efficiency (i.e., Force) is

TABLE II
COMPARISON OF DIFFERENT PREDICTION APPROACHES ON
COMFORT, EFFICIENCY, AND SAFETY OF MOTION PLANNING

Distance from other vehicles to the EV (m)

'é Pred.
< Model <3 <5 <7 <10 <20 <30 <50
__ GT 1171 17.13 16.59 16.74 16.83 17.64 18.54
Ei CV 1496 21.12 19.96 18.60 18.63 19.51 20.42
NS POVL 1200 17.95 16.86 16.66 16.86 17.72 18.55
* Rel.%* 19.18 15.00 1553 1043 9.50 9.17 9.15
GT 432 441 449 476 457 4.64 4.80
g@ CV 561 523 505 493 4.65 469 487
= £ POVL 450 450 455 4.77 457 4.63 4.82
Rel.%* 19.78 13.95 9.90 324 172 127 1.02
GT 1095 885 888 882 877 889 897
go CV 1265 1025 961 882 884 890 9.3
2< POVL 10.98 887 9.01 881 880 892 899
Rel.%* 13.20 13.46 6.24 0.11 045 -02 1.53

* The percentage of relative improvement of POVL compared to
CV: (CV-POVL)/CV.

lower with values of 1.02% and 4.80%, respectively. In
denser traffic from EV’s perspective (e.g., distance from
other vehicles to EV less than 3 meters), the impact
significantly increases to 19.18%, 19.78%, and 13.20 %
for safety, comfort, and efficiency, respectively. We argue
that this is because although the average improvement in
prediction accuracy of other vehicles is around 1 meter
with POVL compared to CV, this improvement becomes
relatively smaller in longer distances of the vehicle to the
EV compared to shorter distances. Also, note that the
magnitude of the potential field component of obstacle
vehicles (i.e., V) in the motion planning cost function is
negligible for far vehicles.

2) Qualitative results: Fig. |§| shows the trajectory
prediction and motion planning results for an exemplary
driving scenario in two cases i.e., the CV and the POVL
(proposed) prediction model. Also, Fig. [7| depicts the
corresponding planned control signals for both prediction
approaches. In this scenario, the EV is merging behind a



vehicle. The CV model prediction contains a significant
longitudinal error and a deviation to the right lane, which
consequently results in sharper merging behaviour com-
pared to a more accurate POVL prediction. In addition,
the EV has to apply more negative force to avoid collision
with the predicted vehicle in case of CV compared to
POVL.

V. CONCLUSION

This paper presents a novel transformer-based predic-
tion model with a variable-length observation window
that enhances the accuracy of trajectory prediction in
the highway driving scenario. Through statistical anal-
ysis conducted on 97 merges, it is illustrated that the
improved trajectory prediction accuracy, as compared
to conventional prediction methods, can significantly
enhance the performance of a model predictive motion
planner and improve safety, comfort, and fuel efficiency
specifically in dense driving scenarios. Future research
endeavours will concentrate on implementing prediction
and motion planning algorithms on sensory-equipped
vehicles and addressing challenges related to real-world
implementation, such as real-time performance and noisy
sensor measurements.
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