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Abstract
In Bayesian inverse problems, one aims at characterizing the posterior distribution of a set of unknowns, given indirect mea-
surements. For non-linear/non-Gaussian problems, analytic solutions are seldom available: Sequential Monte Carlo samplers
offer a powerful tool for approximating complex posteriors, by constructing an auxiliary sequence of densities that smoothly
reaches the posterior. Often the posterior depends on a scalar hyper-parameter, for which limited prior information is available.
In this work, we show that properly designed Sequential Monte Carlo (SMC) samplers naturally provide an approximation
of the marginal likelihood associated with this hyper-parameter for free, i.e. at a negligible additional computational cost.
The proposed method proceeds by constructing the auxiliary sequence of distributions in such a way that each of them can
be interpreted as a posterior distribution corresponding to a different value of the hyper-parameter. This can be exploited
to perform selection of the hyper-parameter in Empirical Bayes (EB) approaches, as well as averaging across values of the
hyper-parameter according to some hyper-prior distribution in Fully Bayesian (FB) approaches. For FB approaches, the pro-
posed method has the further benefit of allowing prior sensitivity analysis at a negligible computational cost. In addition, the
proposed method exploits particles at all the (relevant) iterations, thus alleviating one of the known limitations of SMC sam-
plers, i.e. the fact that all samples at intermediate iterations are typically discarded. We show numerical results for two distinct
cases where the hyper-parameter affects only the likelihood: a toy example, where an SMC sampler is used to approximate
the full posterior distribution; and a brain imaging example, where a Rao-Blackwellized SMC sampler is used to approximate
the posterior distribution of a subset of parameters in a conditionally linear Gaussian model.

Keywords Bayesian inverse problems · Hyper-parameter estimation · Sequential Monte Carlo samplers ·
Rao-Blackwellization · Empirical Bayes · Fully Bayesian

1 Introduction

In Bayesian inverse problems, one is interested in approx-
imating the posterior distribution of a set of unobservable
quantities, x , conditioned on indirect measurements, y (Stu-
art 2010). Often the posterior distribution depends on a
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scalar hyper-parameter, θ ∈ � ⊆ R, e.g. the noise vari-
ance: one can either perform hyper-parameter selection with
an Empirical Bayes (EB) approach targeting the condi-
tional posterior pθ�

(x | y) with the hyper-parameter set to
the value which maximizes the marginal likelihood, θ� :=
arg maxθ∈�{pθ (y)}, sometimes termed type-II maximum
likelihood (Good 1965), or else marginalize out the hyper-
parameter through a Fully Bayesian (FB) approach, targeting
the posterior p(x | y). However, both approaches often result
in costly procedures.

One relatively common tool for approximating poste-
rior distributions arising in Bayesian inverse problems are
Sequential Monte Carlo (SMC) samplers (Del Moral et al.
2006). SMC samplers construct an artificial sequence of dis-
tributions such that the first one can be readily sampled from
and the last one coincides with the distribution of interest; a
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set of particles is drawn from the first density, and evolves
gradually to approximate each distribution in the sequence.

Compared to standard alternatives, SMCsamplers provide
distinct advantages that make them a suitable choice when
analytical solutions are not available. In contrast to Varia-
tional Bayesian inference (Fox and Roberts 2012), they need
not approximate the posterior distribution with a member of
a specific class of functions, often chosen for computational
convenience, thus avoiding the problem of misspecification.
In comparison to MCMC (Gilks et al. 1995), they feature
simultaneous exploration of multiple areas of the state space
through the multiple particles, thus improving the chances of
fully exploring multi-modal posterior distributions and have
often been found to give better performance at given com-
putational cost—see, for example, (Del Moral et al. 2006,
Section 4.2) and references therein.

In most implementations of SMC samplers for Bayesian
inverse problems, the samples obtained at intermediate itera-
tions are discarded, because intermediate iterations are only
used to facilitate the approximation of the target distribu-
tion. Not directly using these samples, except perhaps to
estimate a normalizing constant, seemingly results in a sub-
stantial waste of computational resources. Indeed, we have
recently witnessed a growing number of studies that attempt
to exploit/recycle particles from previous iterations in the
final estimates (Gramacy et al. 2010; Drovandi et al. 2019; Le
Thu et al. 2016;Dau andChopin 2022).Gramacy et al. (2010)
propose to recycle particles at different iterations by consid-
ering a weighted sum of all the approximated distributions
in order to maximise the Effective Sample Size (ESS). Alter-
natively, Le Thu et al. (2016) propose to combine particles
from past SMC samplers iterations considering the so called
Deterministic Mixture Weight estimator; a solution derived
to combine weighted particles drawn from different proposal
distributions. Recently Drovandi et al. (2019) developed a
method which allows the samples from each generation of
the algorithm to be used to approximate integrals over a part
of the state space.

In this work we show that, for a large class of hierar-
chical Bayesian inverse problems featuring scalar hyper-
parameters, the intermediate iterations of properly designed
SMC samplers can be used to perform selection of the hyper-
parameter and/or averaging with respect to it, making EB/FB
approaches feasible. All of this has only a negligible addi-
tional computational cost and, in the case of averaging, it also
entails recycling of the particles at intermediate iterations,
thus reducing the typical waste of computational resources.

The key idea underlying the proposed method is to define
the auxiliary sequence of distributions in such a way that
each distribution is a posterior distribution conditioned on
a different value of the hyper-parameter. Such construction
turns out to be extremely simple under certain conditions,
for instance when the hyper-parameter appears only in the

likelihood and the likelihood belongs to the natural expo-
nential family; under other circumstances, finding the right
sequence can be more challenging. Given the sequence, the
estimate of the normalizing constant, naturally produced by
SMCsamplers, corresponds to an estimate of the evidence for
the specific value of the hyper-parameter, which then allows
maximum likelihood or Bayesian inference on the hyper-
parameter.

We provide the right tempering sequence for two different
models largely used in inverse problems:

• when the likelihood belongs to the Natural Exponential
Family (NEF): here the tempering sequence obtained by
raising the likelihood to a growing power between zero
and one results in a proper sequence of densities that can
be interpreted as posterior distributions;

• when the conditional posterior for a subset of variables
x1 can be analytically computed, and an SMC sampler is
used only to approximate the posterior on the remaining
variables x2. For this class of models, which includes
among others Conditionally Linear Gaussian (CLG)
models, the auxiliary distribution sequence devised for
the first case does not, in general, have the desired prop-
erties, therefore we devise alternative sequences that can
be used fruitfully in two special sub-cases.

The most straightforward application of the proposed
method is the context of additiveGaussian noise inverse prob-
lems; here the interest is in the estimationof the joint posterior
distribution for the state variables and the noise variance or
the posterior distribution for the state variables conditioned
on the estimated value for the noise variance.

As a first examples we consider the problem of recovering
the mean of a Gaussian distribution from noisy observa-
tions, showing that the proposed approach performs as well
as alternative approaches but with significant advantages
in computational time. Then we show numerical results
for a real world problem encountered in source analysis
of Magneto/Electro-Encephalography data, in this case we
show that the proposed approach provides reliable results and
a substantial reduction of computational cost with respect to
alternative approaches.

2 Motivating example: source estimation in
magneto/ electro-encephalography

Magneto-/Electro-EncephaloGraphy (M/E-EG) are two non-
invasive medical imaging techniques that record the mag-
netic/electric field on the scalp; from these recordings, it is
possible to estimate the underlying neural currents (Hämäläi-
nen et al. 1993). Using the dipolar assumption, this problem
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consists of estimating an unknown number of point sources,
called dipoles, each one defined by two quantities:

• a location in the brain volume, conveniently represented
as the index r of a cell of a discretized brain (or voxel);
dipole location is assumed to be fixed in time;

• a 3-D vector q representing orientation and intensity of
the neural current at the specified voxel, and changing
dynamically in time.

The inference problem can be formalized as

y(t) =
d∑

i=1

G(ri )qi (t) + ε(t) (1a)

ε(t) ∼ N
(
0, θ2�

)
(1b)

where: t = 1, . . . , T is a time index; y(t) is an array contain-
ing the data recorded by allM/E-EG sensors at time t ; d is the
(unknown)number of dipoles;G(ri ) is the so called lead-field
matrix, representing the magnetic/electric field generated by
a unitary dipole located at ri ; ε(t) is additive Gaussian noise
whose (spatial) covariance matrix � is known up to a scale
factor θ . We observe that the lead-field matrix entries are
non-linear functions of the source locations ri , therefore lin-
ear inversionmodels are not directly applicable to this inverse
problem.

This model was originally adopted in Sorrentino et al.
(2013, 2014), where all unknown parameters were sampled
with an SMC sampler, leading to high computational cost
for long time series; in Sommariva and Sorrentino (2014)
a Rao-Blackwellized version was presented that imposed a
Gaussian prior on the q variables and exploited the CLG
structure, allowing to treat long time series with reduced
computational cost. Finally, in Viani et al. (2021) a hierar-
chical model was presented that overcomes the limitations
of the Gaussian prior by using a hyper-prior on the prior
variance, thus substantially reducing the dependence on
this hyper-parameter. Defining y := (y(1), . . . , y(T )) and
q1:d := (q1:d(1), . . . , q1:d(T )), the posterior distribution
decomposes as:

pθ (d, r1:d ,q1:d , λ | y)
= pθ (q1:d | y, d, r1:d , λ)pθ (d, r1:d , λ | y) (2)

where the conditional posterior pθ (q1:d | y, d, r1:d , λ) can
be computed analytically, and only the second factor on the
right hand side of (2) has to be approximated via Monte
Carlo. Importantly, there remains a dependence on the hyper-
parameter θ , namely the overall noise level, whose value has
to be estimated.

3 SMC samplers for Bayesian inverse
problems

In this section we provide a brief summary of a class of SMC
samplers that are often used for the approximation of pos-
terior distributions in Bayesian inference problems. Notice
that SMC samplers can be applied inmore general situations,
not analyzed in this paper; for further details on general SMC
samplers algorithms the reader is referred to Del Moral et al.
(2006, 2007).

Consider a Bayesian inference problem where the aim is
to approximate the posterior distribution

p(x | y) = p(x)p(y | x)
p(y)

(3)

where y represents the data and x the unknown parameters.
The posterior distribution is often a complex distribution in
a possibly high-dimensional space and is typically difficult
to sample from directly.

SMC samplers provide an effective way to sample such
complex distributions, and can be briefly summarized as fol-
lows.

The first step is to define a sequence of intermediate den-
sities:

{
pt (x | y)}Tt=0, (4a)

pT (x | y) = p(x | y), (4b)

pt (x | y) � pt+1(x | y), (4c)

that “smoothly” transition from an easy-to-sample initial
density p0 to the posterior density pT . Condition (4c) is
required in order to guarantee a smooth transition toward
the target density and hence to allow a good approximation
of pt+1 to be obtained from the corresponding approximation
of pt .

A natural, but not mandatory, choice in Bayesian infer-
ence is to reach the posterior density by starting from the
prior and increasing the power of the likelihood using the so
called geometric bridge, or tempering path (Syed et al. 2021;
Chopin and Papaspiliopoulos 2020; Bernton et al. 2019; Neal
2001):

pt (x | y) ∝ p(x)p(y | x)αt , (5a)

0 = α0 < α1 < ... < αT = 1. (5b)

Once the sequence of distributions has been selected, SMC
samplers work as follows (for convenience we assume that
the prior can be sampled from directly although this is not
necessary):

• sample a set of N weighted particles {x(0);W(0)} from
the initial distribution p0 withW(0) ≡ 1/N .
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• for t = 1, . . . , T :

1. perform one, or more, Markov Chain Monte Carlo
(MCMC) step/s; such as Metropolis Hastings step/s

2. perform an Importance Sampling (IS) step from the
current distribution pt−1 to the next distribution pt
updating the un-normalized importance weights and
normalizing them using the relations

w(t)
i = w(t−1)

i

γt (x
(t−1)
i | y)

γt−1(x
(t−1)
i | y)

, (6a)

W(t)
i := w(t)

i∑N
n=1w

(t)
n

, (6b)

for i = 1, . . . , N ; where γt represents the un-
normalized t-th distribution of the sequence (4a); in
the case of (5a), for example, γt (x | y) = p(x)p(y |
x)αt .
At this point one obtains an approximation of the t-th
distribution of the sequence as:

p̂t (x | y) =
N∑

n=1

W(t)
n δ

x (t)
n

(x). (7)

In this step one also obtains an estimator of the
normalizing constant of the distribution pt , crucial
for model selection in general and for the proposed
method in particular. It can be easily evaluated; for
simplicity, assuming that resampling occurs at every
step, as the product over time of the average of the
un-normalized importance weights at each time:

p̂t (y) =
t∏

s=1

1

N

N∑

n=1

w(s)
n . (8)

the expression in the case that resampling is con-
ducted adaptively is the corresponding product over
resampling times of the average of the weights accu-
mulated since the last resampling time (see, e.g.,
(Guarniero et al. 2017, p. 1641) for an explicit expres-
sion).

3. perform a resampling step to avoid degeneracy of the
importance weights (Douc et al. 2005; Gerber et al.
2019). A widely used strategy is to perform resam-
plingwhenever the Effective Sample Size (ESS) (see,
e.g, Liu 2008) is under afixed threshold. If resampling
is performed, replace {x(t)} with the collection of
resampled particles and setw(t)

i = 1 andW(t)
i = 1/N

for each i .

One important property of SMC samplers comes from
Eqs. (6a)–(6b) which allow the evaluation of the importance

weights at time t using only the particles at the previous
step. This allows the sequence of steps described in the algo-
rithm to be carried out in a different order, with step 2 and 3
being carried out pre-emptively. By conducting resampling
in this way before the mutation step, a more diverse collec-
tion of particle values is obtained at no additional cost. This
modification further allows an adaptive choice of the actual
sequence of densities, as defined in (4a), through an online
selection of the next exponent (Del Moral et al. 2012; Sor-
rentino et al. 2014).

4 Selection/averaging of the
hyper-parameter

Let� ⊆ R and consider a Bayesian inverse problem depend-
ing on a hyper-parameter θ ∈ �. We are now going to show
how an SMC sampler can be used both to select a specific
value for the hyper-parameter and/or to approximate the joint
posterior distribution p(x, θ | y) at no additional cost with
respect to theSMCsampler that approximates the conditional
posterior pθ (x | y).

The key idea underlying the proposed method is to con-
struct an SMCsamplerwhose target distribution is pθ�

(x | y)
for some value θ� ∈ �, and whose intermediate distributions
are posterior distributions corresponding to different values
of the hyper-parameter for a set of values �0:T := {θ ∈ � :
θ = θ(t); t = 0, · · · , T }

pθ∗
t (x | y) = pθ(t)(x | y) = pθ(t)(y | x)pθ(t)(x)

pθ(t)(y)
. (9)

Given the sequence above, one can estimate pointwise
the evidence for the hyper-parameter pθ (y) for θ ∈ �0:T
through the Importance Sampling step within SMC sampler
(8). Under regularity assumptions for pθ (y) w.r.t. θ one can
interpolate this finite set of values to obtain a smooth approx-
imation of the evidence and, assuming the availability of a
hyper-prior p(θ), that we assume to be negligible outside a
compact set [θmin, θmax], an approximation of the marginal
posterior p̂(θ | y).

For an EB approach, one can first find the mode of the
interpolating function properly weighted

θ̄ = arg maxθ∈[θmin,θmax]{ p̂(θ | y)}, (10)

wherewe assume that the range of�0:T contains θ∗, θmin and
θmax. This can be done numerically by binary search, using
importance sampling to estimate the marginal likelihood of
values of θ between those in�0:T . We can then apply impor-
tance sampling to obtain an approximation of pθ̄ (x | y).

In order to avoid degeneration of importance weights, one
should do importance sampling from pθ(t̄)(x | y), where
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θ(t̄) is the closest value to θ̄ such that the support and tails of
pθ(t̄)(x | y) are larger and heavier, respectively, than those
of pθ̄ (x | y); for instance, assuming that {θ(t)}t=0,...,T is a
decreasing sequence, and that the distributions tails become
lighter as θ becomes smaller, we shall select the iteration

t̄ == max{t : θ(t) > θ̄}. (11)

For a FB approach one obtains an approximation of the
posterior

p(θ | y) ∝ pθ (y)p(θ) (12)

for θ ∈ �0:T , allowing to compute estimates such as the
posterior mean or mode for the hyper-parameter.

In addition, it is possible to approximate the marginal pos-
terior of the parameters

p(x | y) =
∫

p(x, θ | y)dθ

=
∫

pθ (x | y)p(θ | y)dθ

∝
∫

pθ (x | y)pθ (y)p(θ)dθ.

(13)

taking into account uncertainty on parameters deriving from
uncertainty on the hyper-parameter. This can be done by con-
sidering all particles at all iterations and re-weighting them

p̂(x | y) =
T∑

t=0

N∑

n=1

{
W(t)

n δx (x
(t)
n ) p̂θ(t)(y)

× p(θ(t))g(t)(�0:T )

} (14)

where g(t) is a function representing the interpolation
weights.

For example, in the case of a standard quadrature method
such as the trapezoidal rule we get

gt (�0:T ) =
⎧
⎨

⎩

‖θ1 − θ0‖/2 t = 0
‖θt+1 − θt−1‖/2 1 < t < T
‖θT − θT−1‖/2 t = T

(15)

but of course more sophisticated options are available (Zhou
et al. 2016).

The additional computational cost required for calculating
(12)–(14) is negligible compared to that of the approxima-
tion of pθ�

(x | y) directly with an SMC sampler employing
likelihood tempering.

Moreover, the proposed FB approach has the advantage
of making use of particles at all iterations, thus avoiding the
usual waste of computational resources.

As a last point we remark that, in the FB case, it is possible
to modify the hyper-prior without re-running the SMC sam-
pler, provided that its support does not increase, by simply
re-weighting the contributions of each generation of sam-
ples: this allows cheap prior sensitivity analysis, an important
aspect to consider in applied Bayesian analyses, at a very
small computational cost.

The construction of sequence (9) is not always straight-
forward. In the following, we consider an inverse problem
whose likelihood belongs to the NEF and the prior does not
depend on the hyper-parameter, deriving sequence (9) for
two distinct cases:

1. the case where SMC samplers are used to approximate
the full posterior distribution;

2. the case where the conditional posterior for a subset of
variables x1 can be analytically computed, and a Rao-
Blackwellized SMC sampler is used to approximate the
posterior on the remaining variables x2.

4.1 Case 1: vanilla SMC samplers for the full
posterior distribution

As the likelihood belongs to the Natural Exponential Family
(NEF) with natural scalar hyper-parameter θ ∈ � ⊆ R, it
has the following density

pθ (y | x) = exp(θT (y | x) − Aθ ) (16)

where T (y | x) is a sufficient statistic and Aθ represents the
log-normalizing constant.

Proposition 1 Let pθ ∈ NEF with sufficient statistic T and
canonical parameter θ s.t. pθ (x) = exp(θT (x) − Aθ ) and
α 
= 0, then:

[pθ (x)]α = exp(Aαθ − αAθ )p
αθ (x)

By the previous proposition, whose trivial proof is pro-
vided in Appendix A, it is straightforward to show that
the sequence (5a) naturally provides an evaluation of the
joint posterior distribution p(x, θ | y) for the set of values
�1:T = {θ ∈ � : θ = θαt ; t = 1, · · · , T }.

As an example, in the case of an inverse problemwith addi-
tive Gaussian noise of unknown variance, the distributions
of the sequence are posterior distributions corresponding to
a decreasing variance σ(t) = σ(T )/

√
αt where σ(T ) repre-

sents the noise standard deviation at the very last iteration of
the SMC samplers.

The Gaussian distribution with unknown standard devia-
tion is one of themost common distribution for the likelihood
in the models for which we envisage this method being most
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useful. It is not the case that every distribution that is a
member NEF family will exhibit decreasing dispersion as
α increases like the Gaussian does. This underlies the dif-
ficulties with so-called fractionated priors in the Consensus
Monte Carlo algorithm (Scott et al. 2016) as discussed in
(Rendell et al. 2021, Section 2.4). However, there are many
distributions in the NEF family for which this diminishing
dispersion property holds, which are suitable for the temper-
ing sequence (5a), for example:

Exponential distribution with natural parameter θ = λ,
with density

p(x) = λ exp(−λx)

for x ≥ 0;
Laplace distribution with natural parameter θ = λ, with
density:

p(x) = λ

2
exp (−λ|x − μ|) ,

for known location μ;
Lognormal distribution with natural parameter θ =
1/2σ 2 and density

p(x) = 1

xσ
√
2π

exp

(
− (log(x))2

2σ 2

)
.

Pareto distribution with known minimum value, xm , and
rate λ for which the natural parameter is −(λ + 1) and
the density:

λxλ
m

xλ+1 ,

for x ≥ xm .

4.2 Case 2: Rao-Blackwellized SMC samplers

We now consider the case where the unknown variable x can
be decomposed into a pair of components x = (x1, x2), and:

• the prior on x1 belongs to the NEF with respect to a
hyper-parameter λ

p(x1 | λ) = exp(λS(x1) − Aλ) (17)

where S(x1) is a sufficient statistic and Aλ is the log-
normalization constant;

• the conditional posterior pθ (x1 | x2, λ, y) can be com-
puted analytically.

Under these assumptions, in the natural decomposition of the
joint posterior density

pθ (x1, x2, λ | y) = pθ (x1 | x2, λ, y)pθ (x2, λ | y), (18)

only the second factor of the right hand side needs to be
approximated by an SMC sampler, thus reducing the vari-
ance of the importance weights and improving the quality of
the approximation. This class of models is widely used and
appreciated in applications; in particular, an SMC sampler
targeting the marginal posterior pθ (x2, λ | y) typically leads
to more accurate estimates than an SMC sampler targeting
the full posterior and using the same computational resources
(Murphy and Russell 2001).

As a consequence of the hypothesis that both the likeli-
hood (16) and the prior on the Rao-Blackwellized variable
(17) belong to the NEF, the marginal likelihood turns out to
be

pθ (y | x2, λ) =
∫

pθ (y | x1, x2, λ)pλ(x1)dx1

=
∫

exp

(〈[
θ

λ

]
,

[
T (y | x1, x2)

S(x1)

] 〉

− (Aθ + Aλ)

)
dx1.

(19)

In most cases, the marginal likelihood in equation (19)
does not have a closed form solution; below we show two
special cases in which it does.

4.2.1 Additive statistic for the likelihood

If the statistic T (y | x1, x2) of the full likelihood (16) is
the sum of two statistics T (y | x1) and T (y | x2), then the
marginal likelihood also belongs to the NEF with respect to
the same parameter

pθ (y | x2, λ) =
∫

exp

(
θ
(
T (y | x1) + T (y | x2)

)

+ λS(x1) − (A(1)
θ + A(2)

θ + Aλ)

)
dx1

∝ exp
(
θT (y | x2) − A(2)

θ

)
.

(20)

For this particular subclass ofmodels, the natural sequence
(5a) is still valid, as themarginal likelihood is still in theNEF.

From the practical viewpoint, this case corresponds to a
Bayesian inverse problem with multiple unknown parame-
ters, where both the prior and the posterior for two distinct
subsets of parameters factorize. One can perform inference
analytically for one collection of parameters and resort to
Monte Carlo only for the remainder.
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4.2.2 Conditionally linear gaussian model

If both the full likelihood and the prior on x1 have normal
distribution

pθ (y | x1, x2) ∼N (μ(x2)x1, θ
2�) (21a)

p(x1 | λ) ∼N (η, �λ). (21b)

it is well known that both the marginal likelihood (2) and the
conditional posterior (Sommariva and Sorrentino 2014) are
Gaussian with known mean and variance

pθ (y | x2, λ)

∼ N
(
μ(x2)η, μ(x2)

t�λμ(x2) + θ2�
)

(22a)

pθ (x1 | x2, λ, y) ∼ N (
μ̄, �̄

); (22b)

where

μ̄ := �λμ(x2)
t (μ(x2)�λμ(x2)

t + θ2�)−1y;
�̄ := �λ − �λμ(x2)

t (μ(x2)�λμ(x2)
t )−1μ(x2)�λ.

In this case, the marginal likelihood is not in the NEFwith
respect to the parameter θ and the natural sequence (5a) does
not work. Indeed, by applying to the CLG model the same
sequence constructed in the general case, one would get

pθ
t (x2, λ | y) ∝ p(x2, λ)pθ (y | x2, λ)αt (23a)

pθ (y | x2, λ)αt

∝ N
(
y; ημ(x2),

1

αt

(
μ(x2)

t�λμ(x2) + θ2�
))

,

(23b)

since the marginal likelihood also embodies the prior on the
marginalized variable x1, the exponent also affects the prior
for x1; therefore, as already observed in Sommariva and Sor-
rentino (2014), the distributions of this sequence cannot be
considered as (marginals of) posterior distributions under the
same prior.

Alternatively, one could consider the sequenceofmarginals
of the natural sequence for the approximation of the complete
posterior density:

pθ
t (x2, λ | y) :=

∫
pθ
t (x1, x2, λ | y)dx1 (24)

However, also this choice leads to a sequence of distri-
butions that cannot be interpreted as posterior distributions
under different values of θ ; this happens because, as shown
in Appendix A (Corollary 1 and Proposition 2), the integral
in (24) is

pθ
t (x2, λ | y) ∝

∫
p(x1, x2, λ)pθ (y | x1, x2, λ)αt dx1

= p(x2, λ)

∫
p(x1 | x2, λ)pθ (y | x1, x2, λ)αt dx1

= p(x2, λ)�t (λ)N
(
y; ημ(x2), μ(x2)

t�λμ(x2) + θ2

αt
�

)
,

(25)

where the Gaussian distribution can be interpreted as the
marginal likelihood of the CLGmodel, with a different value
of θ , but the normalization constant �t (λ), defined as inCorol-
lary 1 in Appendix A, depends on the hyper-parameter λ and
thus actually modifies the distribution.

However, it is not difficult to devise a proper sequence
of intermediate distributions for the case of a CLG model.
In fact, it is sufficient to explicitly remove the λ-dependent
normalization factor from (25) and construct the sequence
as:

pθ
t (x2, λ | y) ∝ pθ (x2, λ)

× N
(
y; ημ(x2), μ(x2)

t�λμ(x2) + θ2

αt
�

)
.

(26)

With this definition we can apply the proposed approach
to a CLGmodel while also exploiting Rao-Blackwellization.

5 Toy example

We proceed with a numerical validation of the proposed
approach by first using a toy example1; following the argu-
ments in Sect. 4, we compare the results with natural
alternatives for Fully Bayesian (FB) and Empirical Bayes
(EB) approaches. In the following, particularly in the pic-
tures, we denote by PropEB and PropFB the results obtained
by the proposed method performing Empirical Bayes and
Fully Bayesian approaches, respectively.

5.1 Setup

Consider an inverse problem where the aim is to reconstruct
the mean of a Gaussian waveform of known variance σ 2,
given noisy measurements y(t), i.e.

y(t) = N (t; μ, σ 2) + ε(t) (27a)

ε(t) ∼ N (0, θ2). (27b)

where N (t; μ, σ 2) is the probability density function of a
Gaussian of mean μ and standard deviation σ , evaluated at
t .

1 Code available at:https://github.com/alessandro-viani/2023_cost_
free_examples/tree/main/toy_example.

123

https://github.com/alessandro-viani/2023_cost_free_examples/tree/main/toy_example
https://github.com/alessandro-viani/2023_cost_free_examples/tree/main/toy_example


  126 Page 8 of 15 Statistics and Computing           (2023) 33:126 

Fig. 1 The figure shows in the first row an example of data without
noise while in the second row the same data with the addition of noise

We assumeobservations are available at I points separated
by unit intervals {ti }Ii=1 and we want to make inference on
the Gaussian mean.

5.2 Data generation

Data y = (y(t1), . . . , y(tI )) are generated considering I =
100 measurements in the interval [−5, 5] obtained by
perturbing the Gaussian density at each observation time
independently with additive Gaussian noise of zero mean
and standard deviation θtrue ∼ U[0.1, 0.2].

With these settings, we generate 100 independent realiza-
tions of the dataset in order to test the proposed algorithm.

5.3 Prior and likelihood

• We assume p(μ) ∼ U ([−5, 5]) as a truncation of the
Jeffrey’s prior to the convex hull of the measurements;

• we assume p(θ) ∼ �(2, 4θ�), where θ� is an estimated
value for the hyper-parameter;

• we assume conditional independence between observa-
tions given the parameter, obtaining a simple factoriza-
tion for the likelihood

pθ (y | μ) =
T∏

t=1

pθ (y(t) | μ). (28)

5.4 Algorithm settings

For each of the 100 generated datasets, we compare the
results obtained with the proposed method with those
obtained with a FB approach and an EB approach.

Each SMC sampler used has the following settings:

• number of particles set to 100 as a compromise between
performances and quality of the approximation;

• θ� = min{θtrue}/2; this allows the true value θtrue to
be within the range of values explored by the proposed
method during SMC sampler iterations;

• number of iterations set to 500, with the sequence of
exponents from 0 to 1 evenly spaced on a logarithmic
scale in order to guarantee a smooth transition between
intermediate distributions;

• resampling step performed by means of systematic
resampling (Douc et al. 2005) whenever the effective
sample size is lower than half of the number of particles;

• Gaussian proposal kernel for the MCMC step.

5.5 Comparison with alternative approaches

We compare the performances of the proposed method with
those of two alternatives, one performing an Empirical Bayes
approach and the other one performing a Fully Bayesian
approach.

5.5.1 Empirical Bayes approach

For the EB approach we first obtain a maximum a posteriori
estimate for the hyper-parameter:

θ̂MAP = arg maxθ { p̂(θ | y)}; (29)

where p̂(θ | y) is obtained by considering M = 100 evenly
spaced samples in the interval [−5, 5] for the mean μ:

p̂(θ | y) = 1

M

M∑

i=1

p(μi , θ | y)

and then selecting the maximum value obtained over an
evenly spaced grid of 500 points for θ ∈ [θ�, 50 · θtrue]

Once an estimate for the hyper-parameter is obtained, we
consider an SMC sampler targeting the posterior distribution

pθ̂MAP(μ | y).

5.5.2 Fully Bayesian approach

For the FB approach we consider an SMC sampler target-
ing the posterior distribution p(μ, θ | y), i.e. the hyper-
parameter is sampled by the SMC sampler like all other
parameters; the posterior distribution for the hyper-parameter
is then obtained by marginalizing the joint distribution. The
SMC sampler sequence chosen for the implementation is the
tempering sequence given by Eqs. (5a) (5b).

5.6 Results

We analyze the performances in terms of selection of the
parameter and hyper-parameter considering the Posterior
Mean (PM) and the maximum a posteriori (MAP) estima-
tors, and compute the estimation error as the Euclidean
distance between the true and the estimated value of the
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Fig. 2 Estimation error for the hyper-parameter θ (top row) and for the parameter μ (second row). Fully Bayesian, Proposed Fully Bayesian,
Empirical Bayes and Proposed Empirical Bayes are shown in red, blue, yellow and green, respectively

Fig. 3 Computational time for the different utilizedmethods. The com-
putational time is referred to a MacBook Pro (13-inch, M1, 2020) with
8 GB of memory

hyper-parameter and parameter. In Fig. 2 we report the cor-
responding boxplots.

We notice that the proposed approach features similar per-
formances as the alternative approaches, either the EB and
the FB, in terms of estimation error, while keeping a sub-
stantially lower computational cost (Fig. 3). In the case of
the FB approach, the proposed method also features a larger
ESS (Fig. 4).

5.6.1 Sample result

For illustrative purposes, in this section we show results from
one specific dataset taken from the 100 simulations used in
the previous section.

Fig. 4 Effective Sample size for the four different approaches

In Fig. 5 we show the output obtained by the proposed
method and by the two alternative approaches, specifically
by showing:

• the approximated posterior distribution for the hyper-
parameter;

• the approximated posterior distribution for the parameter
obtained in a FB approach;

• the approximated posterior distribution for the parameter
in an EB approach.

As far as the approximation of the marginal posterior of
the hyper-parameter is concerned, both approximations peak
around the correct value, i.e. θtrue = 0.24. Regarding the
approximations for the posterior of the parameter,we observe
that all the approximated distributions peak at a value close
to the true value (zero) well within their support.
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Fig. 5 Illustrative example of the posterior for the hyper-parameter (first row), the marginal of the joint posterior for the parameter (second row)
and the conditional posterior for the parameter (third row); the dotted green line specify the true value.

Fig. 6 Example of noise-free (top panel) and noisy (bottom panel)
simulated data. Red vertical lines delimit the portion of data actually
used for inference

6 Application to source imaging in
magneto/electro-encephaloGraphy

In this Sectionwe present the results2obtainedwith the appli-
cation of the Rao-Blackwellized SMC samplers with the
proposed method described in Sect. 4.2 for the resolution
of the M/E-EG inverse problem (Sommariva and Sorrentino
2014) introduced as a motivating example in Sect. 2.

2 Code available at:https://github.com/alessandro-viani/2023_cost_
free_examples/tree/main/meg_example.

6.1 Data generation

Data y = (y(1), . . . , y(T )) are generated with the following
configuration:

• brain discretization � with 8193 voxels;
• number of EEG channels: 59;
• number of dipoles: d = 4;
• dipole position ri : randomly drawn, with uniform dis-
tribution among the voxels, with the constraint that the
distance between the two dipoles is larger than 3cm; the
constraint was set in order to allow for identifiability of
the four dipoles;

• dipole moment qi : orientation chosen among the three
orthogonal directions, as the one that maximizes signal
strength; unit dipole strength;

• noise standard deviation: θtrue ∼ U[1, 10].

With these settings,wegenerate 100 independent realizations
of the dataset in order to test the proposed algorithm; Fig. 6
shows one example of the obtained data.
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Fig. 7 Estimation error for the hyper-parameter θ (top row), for the
parameter μ, computational time and number of likelihood evaluations
(second row). Fully Bayesian, Proposed Fully Bayesian and Proposed

Empirical Bayes are shown in red, blue and green, respectively. The
computational time is referred to a MacBook Pro (13-inch, M1, 2020)
with 8 GB of memory

6.2 Prior and likelihood

Weassume that all parameters are a priori independent, being
x = (d, λ, r1:d), the prior density is therefore

p(x) = p(d)p(λ)

d∏

i=1

p(ri ), (30)

where we specify:

p(d) = Poisson(d; 1);
p (log(λ)) = U (λ; [−8, −5]) ;
p(ri ) = U (r;�) .

We recall that the variables qi can bemarginalized out thanks
to a Gaussian prior assumption, and therefore are not con-
sidered in the SMC algorithm.

We assume that noise is not correlated in time, correspond-
ing to conditional independence between data recorded at
different time points; the likelihood thus factorizes

pθ (y | x) =
T∏

t=1

pθ (y(t) | d, λ, r1:d). (31)

6.3 Algorithm settings

Each SMC sampler was applied with the following settings:

• analysis window corresponding to the interval [40, 60],
as shown in Fig. 6, i.e. analysis windows centered in the
peak of the signal;

• number of particles set to 200, as a compromise between
performances and quality of the approximation;

• θ� = min{θtrue}/2; this allows the true value θtrue to
be within the range of values explored by the Proposed
method during SMC sampler iterations; the order ofmag-
nitude of noise is typically known in this kind of data,
therefore it would not be difficult to apply a similar rea-
soning to experimental data;

• number of iterations set to 200, with the sequence of
exponents from 0 to 1 evenly spaced on a logarithmic
scale;

• resampling step performed by means of systematic
resampling (Douc et al. 2005) whenever the effective
sample size is lower than half of the number of particles;

• MCMC kernels as described in Sommariva and Sor-
rentino (2014).

6.4 Performancemetrics

We consider the performances in terms of selection of the
hyper-parameter and in terms of localization of current
dipoles.

The estimates considered for the hyper-parameter are the
MAP and the PM of the marginal posterior p(θ | y), while
the estimates for the number and the localization are defined
as:
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Fig. 8 Posterior probability maps for source localization obtained with
the Fully Bayesian (left panel), the Proposed Fully Bayesian (central
panel) and Proposed Empirical Bayes(right panel) approaches. Results

are visualized on a discretized brain as black dots, the blue dots repre-
sent the probability regions higher than 10%, the purple stars are the
estimated dipoles while the green cross are the true ones

• estimator for number of dipoles: d̂ = arg maxd∈N
(p(d | y))

• estimator for dipole location: we construct d̂ clusters
and then obtain r̂i , for i = 1, . . . , d̂ , as the peak of the
marginal posterior p(r | y, d̂) in the i-th cluster.

We note that the location estimates are a little-nonstandard in
the statistics literature, but this strategy is widespread in the
mutiple-object tracking literature (see, e.g., Sorrentino et al.
2013) as a natural solution to the label-switching problem in
this context.

As the number of dipoles is estimated from the data, the
true and estimated number of dipoles might differ; for this
reason, in order to evaluate the localization error we consider
the Optimal Sub-Pattern Assignment (OSPA) metric (Ristic
et al. 2011), defined as follows:

OSPA(r̂1:d̂ , r1:d) = min
φ

min{d̂,d}∑

i=1

‖r̂i − rφ(i)‖ (32)

where the minimum is taken over all possible permutations,
φ, of {1, . . . , d}.

6.5 Results

In Fig. 7 we report the boxplots for the performance metrics
and the computational costs of the tested algorithms.

Our results indicate that the proposed approach performs
slightly better than the alternative in terms of parameter and
hyper-parameter estimation. The computational cost of the
proposed approach is considerably lower than the one of the
alternative approach; the difference is less evident than in
the case of the toy example. This difference can be explained
by the combined effect of the variable dimension model, i.e.
the SMC sampler exploring spaces with different number of
sources, and the sampling of the hyper-parameter: when the
sampled hyper-parameter is large, the SMC sampler tends

Fig. 9 The figure shows the posterior for the parameter θ approximated
with the Fully Bayesian approach (red) and with the Proposed Fully
Bayesian (blue). The green dotted line represents the true value for the
hyper-parameter θ = 10

to prefer configurations with fewer sources whose likelihood
calculation is less expensive.

6.5.1 Sample result

For illustrative purposes, in this Sectionwe show results from
one specific dataset taken from the 100 simulations used in
the previous Section.

In Fig. 8 we show the posterior distribution for the source
location p(r | y, d̂) approximated respectively by the FB,
PropFB and the PropEB approaches. All the three poste-
rior are reciprocally similar and both methods estimate four
sources in the brain with similar supports.

In Fig. 9 we show the approximated posterior distribu-
tions for the hyper-parameter provided by the two algorithms.
Againwe can observe that the two approximations are similar
to each other and peaked around the correct value θtrue = 10.
We remark that the set of possible values for the hyper-
parameter visited during the SMC iterations for the proposed
method goes from 153 to 0.5; the plot focusses on a subset
of this range in order to better illustrate the posterior density.
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7 Conclusions

We presented a method that allows us to simultaneously con-
duct Fully Bayesian and Empirical Bayes estimation for a
class of problems with a scalar hyperparameter at negligible
additional cost.

Experiments show that themethodperforms slightly better
than the natural alternatives, but with important differences.
The proposed approach is more versatile in several ways:
it allows to compute maximum likelihood/a posteriori esti-
mates of the hyper-parameter; it allows to recycle the SMC
samples for a different hyper-prior; it allows hyper-parameter
selection via marginal maximum likelihood, and to provide
estimates of the unknown parameters for a specific value of
the hyper-parameter. In addition, when it comes to averaging
across different values of the hyper-parameter, it provides
substantially more Monte Carlo samples, potentially allow-
ing better approximations of the posterior and resulting in
better estimates of the unknowns.

Importantly, all these advantages are obtained essentially
for free, i.e. at no additional computational cost; in addition,
the proposed approach exploits samples at all iterations, thus
simultaneously overcoming one of the known limitations of
SMC samplers, i.e. the fact that intermediate samples are
usually discarded.

Finally, although this article is dedicated to exploiting
the particular structure present in a class of problems with
scalar hyper-parameters in a way which yields both stan-
dard and empirical Bayesian estimates simultaneously with
little overhead, it also suggests a path to efficiently per-
forming empirical Bayesian estimation in a broader class
of models. Estimating the gradient of the marginal likeli-
hood with respect to the hyper-parameter using the current
particle set would in principle allow the adaptive specifi-
cation of a sequence of hyper-parameter values (and hence
posterior distributions) which converges towards that which
maximises the marginal likelihood. Such an approach is in
the spirit of the SOUL (De Bortoli et al. 2021) and PGD-type
(Kuntz et al. 2023) algorithms but would employ sequen-
tial Monte Carlo in order to provide sample approximations
rather than Langevin-type dynamics. There are twoways one
could view such an algorithm: as a Monte Carlo approxima-
tion of a gradient-based optimizer for the hyperparameter;
or as an adaptive SMC sampler in which the sequence of
distributions is specified by following an approximate gradi-
ent direction in the space of parameters. Such an approach
would provide a natural strategy for performing empirical
Bayes in settings with multivariate hyper-parameters; how-
ever, outside the scalar setting explored in this article one
would lose the option to extract Fully Bayesian results from
the same simulation. Exploring this rather different approach
is beyond the scope of this manuscript but provides an inter-
esting avenue for future exploration.
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Appendix A Proofs

A.1 Proof of Proposition 1

Proof This is direct:

[pθ (x)]α = exp(αθT (x) − αAθ ) = exp(Aαθ − αAθ )p
αθ (x)

�
Corollary 1 Let p(x | σ) = N (x; μ, σ 2�) be an m-
dimensional Gaussian density, then for any α 
= 0:

p(x | σ)α =
√(

(2π)m det(σ 2�)
)1−α

α−m p

(
x | σ√

α

)
.

Proof The proof follows by the consideration that the family
of the considered densities is a NEF with:

• θ = 1
σ 2

• T (x) = − 1
2 (x − μ)t�−1(x − μ)

• exp(Aθ ) = (
(2π)m det

( 1
θ
�

)) 1
2

Therefore the previous result guarantees the thesis because
the normalizing constant is given by
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exp(Aαθ − αAθ )

=
√(

(2π)m det

(
1

αθ
�

)) (
(2π)m det

(
1

θ
�

))−α

=
√(

(2π)m det

(
1

θ
�

))1−α

α−m =
√(

(2π)m det(σ 2�)
)1−α

α−m

�

A.2 Gaussianmarginalisation

Proposition 2 Let p(x1 | λ) ∼ N (η, �λ) be an m-
dimensional Gaussian density and consider a k-dimensional
Gaussian density pθ (y | x1, x2, λ) ∼ N (μ(x2)x1, �θ ),
assuming that x1 is independent of x2:

p(x1 | λ)pθ (y | x1, x2, λ) =
N

([
x1
y

]
;

[
η

ημ(x2)

]
,

[
�λ �λμ(x2)t

μ(x2)�λ �θ + μ(x2)�λμ(x2)t

])
,

pθ (y | x2, λ) ∼ N (
y; ημ(x2),�θ + μ(x2)�λμ(x2)

t) .

Proof Without loss of generality we assume that η = 0,
therefore the product of the Gaussian densities turns out to
be

p(x1 | λ)pθ (y | x1, x2, λ)

∝ exp
(
(y − μ(x2)x1)

N�−1
θ (y − μ(x2)x1) + xt1�

−1
λ x1

)

= exp
(
yt�−1

θ y − xt1μ(x2)
t�−1

θ y + xt1μ(x2)
t�−1

θ μ(x2)x1

− yt�−1
θ μ(x2)x1 + xt1�

−1
λ �θ

)

= exp
(
yt�−1

θ y − xt1μ(x2)
t�−1

θ y + xt1(μ(x2)
t�−1

θ μ(x2)

+ �−1
λ )x1 − yt�−1

θ μ(x2)x1
)

= exp

([
x1
y

]N

[
�−1

λ + μ(x2)t�
−1
θ μ(x2) −μ(x2)t�

−1
θ

−�−1
θ μ(x2) �−1

θ

] [
x1
y

] )

with the normalizing constant

(
(2π)m det(�θ )(2π)k det(�λ)

)− 1
2

=
(
(2π)m+k det(�θ ) det(�λ)

)− 1
2

. (A1)

If we consider the multivariate normal density

N
([

x1
y

]
;

[
0
0

]
,

[
�λ �λμ(x2)t

μ(x2)�λ �θ + μ(x2)�λμ(x2)t

])
(A2)

then the inverse of the covariancematrix, thanks to a classical
result of block-matrix inversion, turns out to be
[

�λ �λμ(x2)t

μ(x2)�λ �θ + μ(x2)�λμ(x2)t

]−1

=
[

�λ �λμ(x2)t

μ(x2)�λ �θ + μ(x2)�λμ(x2)t

]−1

=
[
�−1

λ (I + �λμ(x2)t�
−1
θ μ(x2)�λ�

−1
λ ) −�−1

λ �λμ(x2)t�
−1
θ

−�−1
θ μ(x2)�λ�

−1
λ �−1

θ

]

=
[
�−1

λ (I + �λμ(x2)t�
−1
θ μ(x2)) −μ(x2)t�

−1
θ

−�−1
θ μ(x2) �−1

θ

]

=
[
�−1

λ + μ(x2)t�
−1
θ μ(x2) −μ(x2)t�

−1
θ

−�−1
θ μ(x2) �−1

θ

]
,

Where the normalizing constant is

(
(2π)

m+k
2 det

([
�λ �λμ(x2)t

μ(x2)�λ �θ + μ(x2)�λμ(x2)t

]))− 1
2

.

where the determinant of the covariance matrix is equal to

det
(
�θ + μ(x2)�λμ(x2)

t )

det
(
�λ − �λμ(x2)

t (�θ + μ(x2)�λμ(x2)
t )−1μ(x2)�λ

)

= det
(
�θ(I + �−1

θ μ(x2)�λμ(x2)
t )

)
det(�λ)

det
(
I − μ(x2)

t (�θ + μ(x2)�λμ(x2)
t )−1μ(x2)�λ

)

= det(�θ ) det
(
I + �−1

θ μ(x2)�λμ(x2)
t
)

det(�λ) det
(
(I + μ(x2)

t�−1
θ μ(x2)�λ)

−1
)

= det(�θ ) det
(
I + �−1

θ μ(x2)�λμ(x2)
t
)
det(�λ)

det
(
I + �−1

θ μ(x2)�λμ(x2)
t
)−1

= det(�θ ) det(�λ).

Therefore, from a well known result on Gaussian densities,
we obtain the thesis

pθ (y | x2, λ) =
∫

pθ (y, x1 | x2, λ)dx1

=
∫

pθ (y | x1, x2, λ)p(x1 | x2, λ)dx1

= N (
y; 0, �θ + μ(x2)�λμ(x2)

t ) .

�
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