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ABSTRACT2

With the global rise of cardiovascular disease including atherosclerosis, there is a high demand3
for accurate diagnostic tools that can be used during a short consultation. In view of pathology,4
abnormal blood flow patterns have been demonstrated to be strong predictors of atherosclerotic5
lesion incidence, location, progression, and rupture. Prediction of patient-specific blood flow6
patterns can hence enable fast clinical diagnosis. However, the current state of art for the7
technique is by employing 3D-imaging-based Computational Fluid Dynamics (CFD). The high8
computational cost renders these methods impractical. In this work, we present a novel method9
to expedite the reconstruction of 3D pressure and shear stress fields using a combination of10
a reduced-order CFD modelling technique together with non-linear regression tools from the11
Machine Learning (ML) paradigm. Specifically, we develop a proof-of-concept automated pipeline12
that uses randomised perturbations of an atherosclerotic pig coronary artery to produce a large13
dataset of unique mesh geometries with variable blood flow. A total of 1407 geometries were14
generated from seven reference arteries and were used to simulate blood flow using the CFD15
solver Abaqus. This CFD dataset was then post-processed using the mesh-domain common-16
base Proper Orthogonal Decomposition (cPOD) method to obtain Eigen functions and principal17
coefficients, the latter of which is a product of the individual mesh flow solutions with the POD18
Eigenvectors. Being a data-reduction method, the POD enables the data to be represented using19
only the ten most significant modes, which captures cumulatively greater than 95% of variance20
of flow features due to mesh variations. Next, the node coordinate data of the meshes were21
embedded in a two-dimensional coordinate system using the t-distributed Stochastic Neighbor22
Embedding (t-SNE) algorithm. The reduced dataset for t-SNE coordinates and corresponding23
vector of POD coefficients were then used to train a Random Forest Regressor (RFR) model.24
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The same methodology was applied to both the volumetric pressure solution and the wall shear25
stress. The predicted pattern of blood pressure, and shear stress in unseen arterial geometries26
were compared with the ground truth CFD solutions on ‘unseen’ meshes. The new method was27
able to reliably reproduce the 3D coronary artery haemodynamics in less than 10 seconds.28

Keywords: Arterial Blood Flow, Shear stress, Pressure drop, Reduced Order Modelling, Machine Learning29

1 INTRODUCTION

Atherosclerosis is the leading cause of death in the developed world, accounting for more than 40% of30
total mortalities per year. While it has been accepted that risk factors like hypertension, high cholesterol31
and diabetes play a pivotal role in the progression of the disease, they do not explain the prediliction of32
atherosclerotic plaque formation near sites of arterial bifurcation, side branching and curvature (Wentzel33
et al., 2005). These predilection sites have been associated with disturbed blood flow and endothelial shear34
stress patterns (Siasos et al., 2018). Numerous experimental and clinical studies in the last few decades have35
posited an essential role for disturbed shear stress in initiating atherosclerosis, in progression from simple36
to advanced plaques, and in rupture of advanced, vulnerable plaques (Siasos et al., 2018). Furthermore,37
disturbed shear stress patterns are also associated with in-stent restenosis and atherosclerosis (Chiu and38
Chien, 2011). Despite the overwhelming number of studies demonstrating the decisive role of blood flow in39
clinical atherosclerosis, disturbed shear stress patterns have not yet been considered whilst making clinical40
decisions during catheterization or surgery. This is mainly due to the high computational cost and long41
convergence times required for sufficiently accurate numerical solutions. Several propositions have been42
made to reduce time requirements, of which one of the earliest attempts was by applying supercomputers43
to the numerical solvers (Krievins et al., 2020). While this reduced convergence time from a full day44
to a few hours, a condition now met by standard modern computers, this is still not sufficient to aid in45
diagnostics. Clinical decisions depend on data which can be reliably obtained within minutes, preferably46
seconds. Hence, newer statistical modelling methods were used to further reduce convergence time of47
Computational Fluid Dynamics (CFD) simulations based on machine learning (Arzani et al., 2022). These48
can roughly be divided into two categories, the classical machine learning methods and physics-based49
machine learning methods. Classical machine learning methods use the power of deep learning to estimate50
wall shear stress profiles (Arzani et al., 2022). The advantage of these methods is the flexibility of the51
feature space to predict these wall shear profiles primarily due to the high expressivity of Deep Neural52
Networks (DNN) and their ability to identify high dimensional features. However, such methods are not53
based on capturing the inherent physical conservation laws of the governing fluid flow. Consequently, any54
change in feature space will necessitate a DNN recalibration cycle.55

To overcome the above, physics-based machine learning technologies have raised interest recently.56
These methods are predicated on capturing the underlying physics either via incorporation of the actual57
conservation laws (Raissi et al., 2018) or by data-driven extraction of physically interpretable flow58
characteristics (Wolf and Lele, 2012) as features for regression. For instance, Reduced-order modelling59
of CFD simulations are motivated by the presence of coherent structures, identified from their statistical60
moments in the datasets available from short duration simulations (Sieber et al., 2016; Towne et al., 2018).61
By applying orthogonal decomposition theory, it is possible to identify high energy Eigenvectors, also62
known as modes, of these coherent structures using essential information of the flow solution field (e.g. 3D63
velocity and pressure) while reducing dimensionality of the data. Initial studies used both temporal and64
spatial information of the velocity field to reduce its dimensions in non-health related areas (Wolf and Lele,65
2012). The first health applications used these methods to study coherent structures in the velocity field of66
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idealised phantoms of bifurcations, saccular and aortic aneurysm (Pegolotti et al., 2021). Patient-specific67
applications, which are noisier, have been successfully studied by accounting for such noise in the signal68
(Girfoglio et al., 2022). In order to apply these reduced order flow solution fields to novel objects, an69
interpolation needs to be carried out.70

In light of these advances in closely related fields of research, this paper establishes the foundation of our71
novel method amalgamating these techniques and applies it to a well-characterised experimental dataset of72
atherosclerotic pig coronary arteries (Pedrigi et al., 2015). We will show how to modify classical POD,73
introduce a shape optimizer for blood vessels, and present a suitable Random Forest Regressor (RFR)74
model to predict flow fields in novel arteries.75

2 OUTLINE OF METHODOLOGY

We have developed an automatic pipeline which generates synthetic data from existing 3D reconstructed76
blood vessels (Pedrigi et al., 2015), performs proper orthogonal decomposition (POD) on the shear stress77
and pressure field solutions, and t-distributed Stochastic Neighbour Embedding (t-SNE) on the mesh78
coordinate data to enable feature reduction. The reduced mesh and flow parameter fields are then used79
to train, validate and test a RFR model to perform interpolation; thereby enabling a fast reconstruction80
of CFD solution in a given geometry. In the case of an unseen geometry as test input, the position of81
the corresponding geometry in the t-SNE space is calculated analytically, and the mode coefficients are82
predicted using RFR. Recombination of the previously extracted mesh-wise modes along with the newly83
predicted POD mode coefficients is then used to produce the flow field solutions for the new geometry. The84
pipeline is summarised in the form of a flowchart as shown in Figure 1, and the methods are described in85
sections 3, 4, 5 and 6.86

3 CREATING A WELL-ANNOTATED SYNTHETIC DATA REPOSITORY

Synthetic data has been proposed to meet the huge data requirement of artificial intelligence (AI) (Savage,87
2023). Here, we developed a hybrid technique which uses a combination of realistic and synthetic data.88
The realistic data was obtained from a validated 3D reconstruction method of coronary arteries based89
upon a pullback of OCT images and angiography (Figure 2). This 3D vessel anatomy was then used as a90
seed to generate synthetic data by applying random spatial perturbations to the original mesh. To prevent91
unnatural, discontinuous geometric differences within each mesh phantom, the perturbations are based92
on the amplitude of a sinusoid, which distributed the perturbation lengthwise. The sinusoid components93
have independently randomised amplitude, frequency, phase and vertical offset. With this method, 20094
phantom meshes per each of the 7 unique blood vessels available were generated. Including the 7 natural95
artery shapes, this results in a total of 1407 3D meshes in this preliminary dataset. These geometries were96
then input to the CFD solver Abaqus (v16.2) to obtain the pressure and shear stress field by solving the97
governing steady-state incompressible Navier-Stokes equations. In the solver, the governing equations98
were discretised on ∼100,000 mixed hexahedral and triangular prismatic elements in accordance with99
the second order of approximation. The advection term in the momentum equation was discretised using100
second-order least squares. To accelerate convergence of the steady solution with imposing the divergence101
free velocity field, the pressure-correction method (SIMPLE) was used with an efficient solution of the102
Poisson pressure equation. Boundary conditions were imposed as constant inflow (100 cm/s), and zero103
pressure outflow. On all vessel walls, a zero velocity and logarithmic wall function boundary condition was104
specified. Blood rheology was modelled as a non-Newtonian fluid following the Carreau-Yasuda model,105
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ν∞,m2/s× 106 ν0,m
2/s× 106 τ, s α n

3.45 56 3.313 2 0.3568

Table 1. Parameters of the Carreau-Yasuda model

which at high strain rates incorporates the effect of shear thinning in the definition of kinematic viscosity106
as:107

ν = ν∞ + (ν0 − ν∞) (1 + (τ γ̇)α)
n−1
α ,

where γ̇ = ∂u
∂y is the flow shear gradient near the wall, and the model coefficients are summarised in108

Table 1. For turbulence modelling, the standard k- ε RANS (Reynolds Averaged Navier Stokes) model was109
used. All calculations were performed using APOCRITA, the HPC cluster of Queen Mary University of110
London (King et al., 2017).111

4 DATA REDUCTION OF THE CFD SOLUTION FIELDS USING PROPER
ORTHOGONAL DECOMPOSITION

POD is a tool in CFD post processing and is derived from the Singular Value Decomposition (SVD) method112
for matrix factorisation commonly used in statistical analysis. The method finds correlations in the vector113
flow solution field, which contains small linear perturbations, to obtain an Eigenbasis onto which the114
mesh flow data can be projected. In classical POD, the correlations are obtained in the time domain to115
identify flow structures that are most dynamically important in time during the evolution of turbulence.116
The same methodology is also extended to varying flow cases based on different experimental setups (e.g.117
considering a number of unsteady flow experiments performed on the same CFD mesh), this is known118
as common base POD (cPOD) (Kriegseis et al., 2010). In our methodology for obtaining common mode119
functions underlying multiple meshes, the time domain is replaced with the domain of the mesh geometries.120
It is assumed that a few smoothly varying variables can be used to represent the mesh cases. The goal121
is to obtain the hidden common modes in the stationary solutions, on multiple meshes, while the mesh122
is smoothly varied. To obtain the modes underlying the variations in pressure and shear stress fields, we123
use the method of SVD. We begin with a dataset of CFD simulated steady-state flow solutions. For one124
simulation, the chosen output variable (e.g. pressure and wall shear) is organised into a N-length vector,125
where N is the number of nodes in the mesh. These vectors are oriented horizontally and then stacked126
vertically. With M meshes, the resulting 2D solution matrix A has the dimensions M x N. Our application127
of SVD follows the theory of snapshots (Weiss, 2019), similar to other use cases. However, each snapshot128
(stacked vector) in our solution matrix is not a different time frame of the same simulation, but rather a129
steady state solution ran with identical conditions on a different, uniquely shaped mesh. SVD factors the130
matrix into a product of three matrices A = UDV T , where the columns of U and V are orthonormal (V131
is transpose), and the singular matrix D is diagonal with positive real numbers, organised by magnitude132
in descending order. The sum of the singular values represents the total amount of information in the133
system. They are analogous to the Eigenvalues of the Eigen decomposition, and represent the magnitude,134
or significance, of each Eigenvector, or POD mode. The singular values can then be used to estimate the135
number of modes needed to reconstruct the flow solutions without significant loss of information (Weiss,136
2019). Both vector matrices U and V are organised in terms of the singular values, from most to least137
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significant. The summed energy of each leading mode, being their corresponding singular values, are then138
used to define a tolerance threshold for information loss. Due to spatial coherence of particular modes of139
variation of the flow with respect to the mesh shape, the number of modes that capture the majority of140
useful information are the first few, as compared to the full dataset. Modes that fall outside of a chosen141
threshold in terms of correlative significance can be truncated from the dataset, drastically reducing the142
dimensionality of the data whilst incurring a tolerable underestimation of the concerned node-wise flow143
parameter. Additionally, although not implemented in the current case, explicit smoothing can also be144
applied in the correlation matrix space to enhance numerical properties of the meh-wise POD coefficients145
(Sieber et al., 2016). In this case, the leading 10 modes were found to capture >95% of total information146
about both the pressure and wall shear stress, and thus were deemed sufficient for accurate reconstruction.147

5 DATA REDUCTION OF THE SYNTHETIC MESHES OF CORONARY BLOOD
VESSELS.

Several shape optimizers have been proposed in the literature, of which t-SNE has acquired a lot of attention148
(Hao et al., 2022). The t-SNE is a statistical method for visualising high-dimensional data by embedding149
each N-dimensional data point in a reduced space, typically of two or three dimensions. A higher number150
of embedding dimensions will retain a greater accuracy of clustering, but also increase the sparsity of151
data within the space. More specifically, t-SNE generates the joint Gaussian distribution of the conditional152
chance that a nearby mesh coordinate is sufficiently close in terms of Euclidean distance to an initial mesh153
coordinate. The unknown variance of the Gaussian distribution is obtained from the Shannon entropy. This154
step creates a matrix of each mesh coordinate with all other mesh coordinates where a chance is provided155
on the basis of distance.156

As a next step, a reduced order mapping is obtained by minimizing the Kullback-Leibler divergence157
between the Gaussian distribution of the original points and a Student’s t-distribution of points in a reduced158
dimensional space. The resulting vectors are then used to fill the feature space. In a sense, the space is159
“seeded” with the meshes produced from the natural OCT images. The space around each image is then160
populated with the synthetic mesh vectors, which have a small but significant geometrical difference from161
the parent mesh. The goal being to fill the feature space and bridge the empty regions between the clusters.162
Given that the principal coefficients are physics-based, they should maintain a causal link to the values of163
the embedding coordinates, which represent variability in mesh shape. A filled feature space with an intact164
causal link will aid an interpolative machine learning model to make accurate coefficient predictions for165
an unseen geometry (figures 5 and 6). It is worth noting that what constitutes a “filled” feature space is166
highly dependent on the chosen t-SNE parameters and the natural limits of the data that is being reduced.167
The “natural limit” is in reference to the fact that a hypothetical dataset containing all possible natural168
variations of the artery shape will produce a “filled” feature space, and the regions that are not populated169
will represent shapes that do not occur naturally, and thus may not be useful for a diagnostic tool. Hence,170
we aim to produce synthetic data, which is not so different from the natural data as to have its shape fall171
outside of this hypothetical set. It is for this same reason that it is better to bolster the dataset with natural172
shapes wherever possible, with synthetic data playing a supplemental role. Integration of human OCT173
patient data is forthcoming in future research.174
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6 RANDOM FOREST REGRESSOR AND REGRESSOR CHAIN

SVD re-organizes the modes based on their energy level content and the number of modes are truncated175
when >95% of the variance of the field is preserved. This resulted in the first 10 modes for the pressure176
field and the shear stress field for the dataset we use for this study, which when used for reconstructing the177
solution leads to a root mean squared error less than 5%. In order to interpolate the POD principal coefficient178
field that enables predictions of future objects, simple feed-forward neural networks and classical machine179
learning methods were compared. It was found that the RFR algorithm combined with the Regressor Chain180
algorithm were best suited for this task.181

The RFR algorithm is a supervised machine learning technique that integrates multiple independent182
decision trees on a training data set: the obtained results are ensembled to obtain a more robust single183
model compared to the results of each tree separately (Breiman, 2001). RFR is a supervised learning184
method in the sense that during training it identifies mappings between inputs and outputs. In our setup,185
the t-SNE coordinates of the meshes are the input and the cPOD principal coefficients are the output. In186
our approach, an independent RFR regressor is employed for each of the 10 coefficients. The Random187
Forest Regression algorithm utilised in our work is obtained from the popular Machine Learning library188
Scikit-learn. Scikit-learn is built to facilitate the use of Artificial Intelligence and Machine Learning189
algorithms, and is used in regression, classification, and clustering tasks. The model is imported as190
“sklearn.ensemble.RandomForestRegressor”. Additionally, a Regressor Chain architecture is used to obtain191
a multiple output model that organises the regression of individual modes in a chained fashion. Thus, RFR192
creates a regression model for each pressure coefficient, where each model makes a prediction for its193
coefficient specified by the chain by using all the t-SNE features provided to the model and the predictions194
of previous outputs in the chain. This ensures that the correlation between the features are taken into195
account to enhance the regression.196

7 RESULTS

An automatic pipeline was implemented to perform highly accurate 3D reconstruction from biplane197
angiograms and an OCT pullback (Panda et al., 2022), to automatically generate a mesh and on basis198
thereof, and to generate small perturbations in the topology of meshes. The latter was then used to generate199
a full stationary solution of the shear stress and pressure fields using the Navier-Stokes solver in Abaqus.200
The perturbation parameters were bounded to induce small but significant changes in the accompanying201
geometry of the meshes (Figure 2). This also resulted in appreciable changes to the pressure and wall shear202
fields (Figure 3). The cumulative wall shear stress and pressure fields were then further analysed with the203
cPOD procedure. The first 10 modes of the pressure and shear stress fields were sufficient to reproduce204
>95% of the variance of both fields, leading to modest errors in the reproduction of the original fields of205
<1% (Figures 4 and 5).206

Next was a reduction in the dimensions of the mesh topology using t-SNE (Figures 6 and 7) for utilisation207
in a low-dimensional regression task. The t-SNE algorithm enables control over the clustering behaviour208
based on similarity through its perplexity parameter. This was fine tuned to obtain an approximately209
homogeneous distribution of the mesh cases, whilst preserving noticeable clustering features. This allows210
for a smooth geometrical representation suitable for regression. As can be observed, the t-SNE features211
resolve to seven clusters corresponding to seven natural artery shapes. To which, random perturbations are212
introduced to generate quantitatively distinct synthetic datapoints. Additionally, within each of the t-SNE213
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clusters, the variation of the principal coefficients are also smooth and continuous since their values are214
correlated with variation in mesh shape.215

The 1407 t-SNE data points with their respective pressure and shear stress modes were shuffled and216
divided into a training data set (80% of the overall data) and a validation data set (remaining 20%). The217
training dataset was used for ten iterations to train the RFR model, where the best maximum tree depth was218
found to be 20, and the best maximum number of trees for the model was found to be 70. The machine219
learning model was applied for the test data set as well. Figures 8 and 9 show the results for shear stress and220
pressure for the two most significant POD modes respectively. The mean Root Mean Square Error (RMSE)221
of the prediction of the dominant mode coefficient was 15.2% for pressure and 19.7% for shear stress.222

With the regression for cPOD principal coefficients completed, the mesh-wise modes previously generated223
by the cPOD method together with the newly predicted coefficients are used to reconstruct the flow field.224
Results of the 3D reconstruction of the shear stress and pressure fields for the CFD method (“ground truth”)225
the cPOD reconstruction alone, and the RFR prediction are shown in Figure 10. These were used for226
further error quantification of the flow solution in the physical space, relative L1 and L2 norm errors, which227
are analogues to the normalised mean absolute errors (NMAE) and normalised root mean square errors228
(NRMSE), respectively, considered in other studies (Liang et al., 2020). The errors were calculated using229
the dominant 10 POD modes for the test dataset of 20% of the meshes in accordance with the following230
definitions:231

NMAE(i = 1, . . . , imeshmax ) =

∑j= jnodemax
j=1

∣∣∣fML
ij − fGT

ij

∣∣∣
jnodemax · (max(f)−min(f))

· 100%
232

NRMSE(i = 1, . . . , imeshmax ) =

√∑j= jnodemax
j=1

(
fML
ij − fGT

ij

)2

jnodemax · (max(f)−min(f))
· 100%

where jnodemax is the total number of CFD data points in the considered volumetric/surface distributions,233
imeshmax is the number of meshes in the test dataset, ML and GT denote the machine learning and234
the ground truth (CFD) solutions respectively, and f stands for the pressure or wall shear stress solution235
component. The mean values and the corresponding standard deviations of computed errors are summarised236
in Tables 2 and 3. It should be noted that the range of NMAE and NRMSE for pressure is within the237
accuracy reported for the machine learning models of pressure in aortic flows based on autoencoders and238
Deep Neural Networks (DNNs) (Liang et al., 2020). It can also be noticed that the standard deviation and239
the mean error values are of the same order of magnitude in all cases, which suggests that the populated240
parameter space for the considered coronary artery problem is relatively sparse. The latter is in agreement241
with sparsity of the t-SNE maps (Figures 6 and 7). The error variation is particularly large for the shear242
stresses, which can be explained by a much smaller statistical ensemble of the wall shear surface points in243
comparison with the volume points where pressure was computed. This is supported by an estimate based244
on the central limit theorem (Montgomery and Runger, 2010), which suggests that the ratio of statistical245
errors of the pressure and wall shear stresses should scale as a square root of the ratio of the number of246
surface points to that of the volume points, and which is about 1:4.5 for all considered meshes.247
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NMAE, % NRMSE, %

2.96± 2.84 3.51± 3.2

NMAE, % NRMSE, %

11.2± 11.8 11.2± 11.8

Table 2. Mean errors and standard deviations of reconstructed pressure solution (Left), and of the
reconstructed shear stress solution (Right).

8 DISCUSSION

Rheological theories of Atherosclerosis have been shown to successfully predict plaque location, plaque248
progression, and plaque rupture (Zhou et al., 2023). They have not been used to infer clinical decisions.249
Current developments in physics-based artificial intelligence allow us to accelerate these methods so that250
clinical interventions in the cath lab can be evaluated on novel parameters such as shear stress, pressure251
drop, and/or velocity field. The main findings of the current paper are that a) synthetic perturbation is an252
effective way to generate additional surrogate data, which can help satisfy the large volumes required by253
AI algorithms, b) cPOD, a time-independent variation of POD, can be used to substantially reduce the254
dimensions of pressure and shear stress field data in simulated blood vessels, c) metrics for quantifying the255
shape of a blood vessel mesh, such as t-SNE, are effective schemes to drastically reduce the degrees of256
freedom corresponding to variations in vessel geometry, and d) an interpolative method based on a RFR257
model was able to predict new pressure fields within seconds, with mean relative L1 and L2 errors (NMAE258
and NRMSE) of 2.96% and 3.51% respectively. The errors of the wall shear stress reconstruction show an259
approximately 4 times larger scatter in comparison with the pressure calculation, in statistical agreement260
with the smaller number of mesh surface points in comparison with the volume points.261

Synthetic manipulations have recently been introduced to Machine Learning to overcome the excessive262
requirement of well annotated data for AI algorithms (Savage, 2023). We have developed a hybrid263
approach which took into account the natural variation between blood vessels and applied random synthetic264
perturbations to produce variants of this original data, with the aim of populating the t-SNE feature space265
(Figure 2). It was noted that full feature space homogenisation would require significantly more drastic and266
exotic synthetic manipulation of the OCT data, which would likely negatively impact the ability of the267
data to represent reality. A better balance between number of real data versus synthetic data is required to268
bring this technique closer to real-world application. In future, a systematic procedure can be adapted to269
generate the synthetic meshes in an optimal way by exploiting sensitivity of the coronary flow response to270
perturbations of the baseline vessel geometry, similar to the deformation matrix method recently developed271
for aortic flow simulations (Pajaziti et al., 2023).272

In unsteady fluid mechanics problems on a fixed mesh, a 1D time coordinate is typically used as an273
evolutionary variable to characterise the snapshots of the POD method. Here, this approach is generalised274
to a set of 2D t-SNE coordinates, which are cognate with time for the purpose of POD snapshots and275
were found sufficient to reconstruct the pressure and wall shear stress fields in any specified blood vessel276
shape. The t-SNE technique was applied to reduce the complexity of each mesh whilst preserving their277
characteristic features. In doing so, their relative similarity necessarily remains intact (Hinton and Roweis,278
2002) due to the fact that, prior to the embedding step, t-SNE computes the difference between the input279
meshes based on Euclidean distance between the node coordinates. Therefore, the clustering of the variable280
phantom meshes around their respective reference shapes arises naturally. Notably, the entire process of281
meshing the OCT contour domain, embedding this geometry in 2D t-SNE space, predicting the coefficients282
and constructing the pressure and wall shear stress fields cumulatively takes no more than 2 minutes, which283
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underpins the success of this method. Furthermore, the applicability of 2D t-SNE coordinates to describe284
∼100,000 degrees of freedom corresponding to the number of CFD mesh elements implies a factor of 105285
dimensionality reduction. In the future, to model multiple solution components in space and time, use of a286
higher dimensional t-SNE space instead of 2D t-SNE may be reconsidered, and the relationship between287
clustering accuracy and data sparsity will be investigated.288

The standard RFR algorithm was found to be a suitable option for non-linear regression to reconstruct the289
POD signals from the t-SNE space. Despite the simplicity of the RFR model, the accuracy of predictions290
was encouraging. Essentially, the model uses the calculated t-SNE co-ordinates and their associated291
principal coefficients to interpolate the coefficient values over the whole embedding space. The RFR292
segregates feature data into groups before interpolating within each group, which is particularly suitable293
for the clustered t-SNE features. Notably, the distribution of mode coefficients in the t-SNE space (Figure294
6 and 7) demonstrates smooth variations due to the inherent correlation between the shape of a mesh and295
the major flow patterns captured by the dominant POD modes.296

9 LIMITATIONS OF THE METHOD AND CONCLUSION

To translate the current method to clinical applications, several limitations must be addressed. First, the297
current implementation assumes that shape variations are the most important factor affecting velocity fields298
and their derived parameters. This is corroborated by theoretical arguments, as well as observations that299
velocity, shear stress and pressure drop strongly scale with diameter. However, the artery flow field also300
scales with the inflow velocity, which changes throughout the cardiac cycle. To systematically account301
for the unsteady velocity variation, future developments include extending the scope of the AI model by302
re-adding the time evolution input. In the meantime, the current simplified steady model may already303
be sufficient if the flow features of interest are slow compared to the viscous effects, i.e. the flow in the304
coronary vessel is quasi-steady. In this case, the time history of inflow velocity variation can be decoupled305
into a series of time frames, where each frame may be represented by a steady process at a different inlet306
velocity scale. In turn, the shear stress and pressure fields at each frame can be rapidly reconstructed from307
the inflow velocity and the shear stress and pressure fields of a baseline dataset using the scaling law308
introduced by Taylor et al. (2022).309

A more serious limitation of the current study is the neglect of the natural flexibility and heterogeneity310
of vessel walls in the flow modelling process. Whilst the rigid wall assumption significantly accelerates311
the solution of the governing Navier-Stokes equations, modelling of the Fluid Structure Interaction (FSI)312
is essential to correctly capture the coronary artery flow behaviour (Fogell et al., 2023). Hence, future313
developments will incorporate the FSI model into the simulation driven dataset of the suggested cPOD-tSNE314
framework.315

Despite the overall salutary results of the RFR method, to further refine accuracy of the machine learning316
model predictions in future, the RFR algorithm may be replaced by more advanced methods such as those317
based on Gaussian processes; one advantage of which being uncertainty quantification to provide an overall318
error estimate for the user. Such estimations would be an invaluable addition to a model that is intended for319
use as a diagnostic tool for clinicians.320

Finally, in line with many recent works devoted to the proof-of-concept data-driven modelling of cardio-321
vascular flows (Liang et al., 2020), we simplified the model by considering the vessel without side branches.322
However, it is known that bifurcations occur in the main stem of the left coronary artery, which might323
affect the inflow conditions. Hence, to reduce the effect of the bifurcation in the current study, the starting324
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site of the 7 catheterised segments was deliberately located 5 vessel diameters downstream of the main325
stem. Nevertheless, to account for general topology of coronary vessels, which may be of practical interest,326
the suggested reduced order modelling approach will be extended to side branches in future work.327

Despite the above-mentioned limitations of the current work, it can be concluded, using t-SNE and cPOD328
to perform interpolation by Machine Learning was very successful for the proof-of-concept modelling329
of coronary artery flows. The speed and accuracy obtained were highly motivating and were able to330
calculate the pressure and shear stress fields of an unknown vessel within seconds. Rheological theories of331
Atherosclerosis have been shown to successfully predict plaque location, plaque progression, and plaque332
rupture (Zhou et al., 2023), but they have not been used to infer clinical decisions. Current developments in333
physics-based AI allow us to accelerate these methods such that clinical interventions in the cath lab can be334
evaluated on novel parameters such as shear stress, pressure drop and 3D velocity field.335

To conclude, we developed a method to produce a very fast solution to the Navier-Stokes equations, as336
we aimed to focus on applying this method in a clinical environment with high demand for rapid solutions.337
We are currently working towards newer methods enabling time dependent flows that incorporate solid338
state interactions, as well as higher accuracy AI modelling functions with corresponding error estimates.339
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FIGURE CAPTIONS

Figure 1. The data processing pipeline is summarized in this flowchart. OCT images are obtained in the
cath. lab. and used to extrapolate a 3D contour. Mesh generation and Computational Fluid Dynamics are
done through an automatic pipeline. The velocity profiles obtained from CFD will act as the ground truth.
Synthetic data generation (n=1407) is done by random, but continuous purturbation of the length-wise
diameter of each independent blood vessel (n=7). Data reduction is performed on the shear stress, and
pressure fields obtained from CFD, via POD (see text for details), and on the input meshes through t-SNE
(see text for details). These reduced data sets are used to train (90%) and validate (10%) the machine
learning learning module.
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Figure 2. 10 randomly selected phantom geometries from the dataset are visualised. All phantoms shown
were generated from the same OCT image. Variation in shape is due to random synthetic perturbations
applied to the artery diameter. The function of which is a composite of two sinusoids with randomised
amplitude, frequency, phase and vertical displacement. This ensures smooth, continuous variation along
the length of the artery regardless of input parameters.
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Figure 3. A collection of meshes generated using various OCT images and perturbation parameters,
coloured by the pressure (left) and wall shear (right) solutions from CFD simulations. The mesh dimensions
are normalised for the sake of visualisation

Figure 4. (left) Root-mean-squared error for the reconstruction of the original mesh-wise pressure solution
from a truncated set of 10 principal coefficients per mesh. The error is normalised against the range of
pressure values across all meshes. (right) Singular values for the decomposition of the pressure solution,
normalised against the largest value. These singular values are ordered by magnitude and represent the
relative contribution of each POD mode to the energy of the overall pressure solution. Subsequent values
quickly decay to <1% of the highest value, as the first several modes represent the overwhelming majority
of the information in the pressure field. This indicates that many of these trailing modes can be safely
discarded from the dataset without losing a significant amount of information.
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Figure 5. The mesh-wise reconstruction error for wall shear (left) is much lower than pressure
reconstruction using the same number of coefficients. Additionally, the singular values (right) decay
to 0 in a fewer number of modes compared to the pressure decomposition. These factors are indicative of
the wall shear solution being easier for the POD method to decompose than static pressure, possibly due to
the fewer number CFD nodes for which it is computed.

Figure 6. The distribution of all meshes in the database embedded in 2D t-SNE space with colours
representing the principal coefficients of the static pressure solutions for the first (left) and second (right)
mesh wise POD modes.
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Figure 7. The distribution of all meshes in the database embedded in 2D t-SNE space with colours
representing the principal coefficients of the wall shear solutions for the first (left) and second (right) mesh
wise POD modes.

Figure 8. Predictions of POD principal coefficients of shear stress for first two modes using the proposed
framework, compared to the ground truth for the test data set. The first part of the same data set was used
for training via the RFR. The regression was performed on the 2D t-SNE representation of the meshes
against the principal coefficients.
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Figure 9. Predictions of POD principal coefficients of pressure for first two modes using the proposed
framework, compared to the ground truth for the test data set. Training and testing of the RFR model for
pressure utiised the same algorithm, configuration, and optimization as shear stress.
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Figure 10. A visualisation of the flow field solution for pressure (left) and wall shear (right) of two test
meshes. Shown is the ground truth CFD simulation data (top), the reconstructed POD solution using the 10
most dominant coefficients calculated from the CFD solution (middle) and the reconstruction using the
RFR predicted coefficients (bottom).
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