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Abstract

Waves that propagate in stellar interiors are essential to stellar physics for two reasons. First,
the interiors of stars are studied by detection of global modes of oscillations resulting from
wave interference. Secondly, waves are involved in various transport phenomena. In stars,
there are two main types of waves: acoustic and gravity. This duality of waves as observational
tools and physical processes impacting stellar structure makes them a crucial field of study in
astrophysics.

In this thesis, we focus on internal gravity waves (IGWs), which are well known for trans-
porting angular momentum, energy and chemical elements in stably stratified media. Despite
observations of very high precision, detection of IGWs is still challenging and their properties
in stellar interiors remain poorly understood and/or constrained. This is mostly because IGWs
are inherently 3D, non-linear and anisotropic phenomena. Consequently, multidimensional
modelling is a great tool to study these waves. However, stellar hydrodynamics faces important
challenges such as numerical stability and thermal relaxation. To face them, an artificial in-
crease of the stellar luminosity and of the thermal diffusivity by several orders of magnitudes is
a commonly used tactic. Using two-dimensional simulations of a solar-like model, we quantify
the impact of such a technique on IGWs. Our results suggest that this technique affect the
excitation of IGWs, because of an impact on convective motions and overshooting, but also
their damping.

Main-sequence intermediate-mass stars, with M ≳ 2M⊙, possess a convective core and a
radiative envelope. It remains unclear if waves generated at the edge of the convective core
should be able to propagate up to the stellar surface. In this context, we have carried out an
analysis of IGWs in simulations of 5 M⊙ star model. Our results show that low frequency
waves excited by core convection are strongly impacted by radiative effects as they propagate.
In the upper layers of the simulation domain, we observe an increase of the temperature, likely
due to heat added in these layers by IGWs damped by radiative diffusion. We show that non-
linear effects linked to large amplitude IGWs may be relevant just above the convective core.
Both these effects are intensified by the artificial enhancement of the luminosity and radiative
diffusivity. Our results also highlight that direct comparison between numerical simulations
with enhanced luminosity and observations must be made with caution.
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Chapter 1

Introduction

A star may be defined in simple terms as a self-gravitating plasma that radiates a large amount
of energy generated in its core by thermonuclear reactions. Despite its apparent simplicity,
this definition is relatively recent and has been difficult to establish since we can only observe
the surface of stars. For decades, stellar interiors have thus only been studied theoretically,
because very few observational constraints have been available. However, the study of stars is
essential as it benefits most areas of astrophysical research. Most, if not all, stars host planetary
systems whose properties are highly dependent on those of the host star, such as its mass, radius
and evolutionary state (e.g. Huber et al., 2013). Massive stars produce the heaviest chemical
elements in the universe and die in huge explosions that disperse these elements and feed the
surrounding interstellar medium (e.g. Thielemann et al., 1996). This will influence and drive
the evolution and dynamics of galaxies (e.g. Kennicutt and Evans, 2012; Nomoto et al., 2006).
There is still much to be learned about the stars, and each step forward raises new questions.
Among these questions, those concerning the structure and dynamics of stellar interiors are
among the most complex. What we do know for sure is that the internal structure changes as the
star evolves (e.g. Kippenhahn and Weigert, 1990). These changes are described by the theory
of stellar structure and evolution, which is briefly introduced in Chapt. 2. However, we know
from observations that many details about the structure and dynamics of stellar interiors remain
unexplained by this theory. In stellar physics, many complex phenomena linked to rotation,
magnetism and mixing remain poorly understood and/or constrained. Among these phenomena
that current theories fail to explain, we can cite the following examples: the solid rotation of
the solar core (Thompson et al., 2003), the observed surface abundance of Lithium in low-mass
stars (Baraffe et al., 2017) and in Red Clump stars (Kumar et al., 2020), the slow rotation rate
of the core of evolved stars (e.g. Marques et al., 2013), the lifetime of hydrogen-burning stars
which require additional mixing at the edge of convective region (e.g. Castro et al., 2014) or the
enhanced mass loss measured in progenitors of supernovae (e.g. Quataert and Shiode, 2012).
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And these are just a few of them.

The discovery of waves propagating in the stellar interiors seems to be a promising way to
solve these mysteries. These waves make stars oscillate in normal modes, causing variations in
the volume of a given star that can be observed as periodic variations in its luminosity. This
discovery marked a turning point in stellar physics because the properties of an oscillation
mode depend on the structure of the star. Consequently, the analysis of these modes offer an
incredible insight into stellar internal structure and dynamics (Aerts et al., 2010). The science
that studies the interior of stars thanks to their oscillations is called asteroseismology. This is
the subject of Chapt. 3. The study of stellar oscillations, in the the case of the Sun, is called
helioseismology. In the late 20th century, development of new methods based on observations
of solar oscillations have allowed to get a good understanding of the structure of the Sun (see
the reviews by Basu, 2016; Christensen-Dalsgaard, 2002). In 2006, when the CoRoT satellite
(Auvergne et al., 2009) was launched, asteroseismology underwent a revolution. For the first
time, it was possible to have accurate photometric data on thousands of stars at different stages
of evolution. This allowed to test stellar evolution theory with many more constraints. Since
then, the satellites Kepler (Borucki et al., 2010) and TESS (Ricker et al., 2015) have provided
observations of many more stars.

Interpreting correctly the observations of oscillations modes requires a good understanding
of the physics of the associated waves. This is essential to analyse the data already available
but also to prepare for future missions such as PLATO, an ESA project scheduled for the end of
2026 (Rauer et al., 2014). Furthermore, most of the unexplained phenomena that occur inside
stars suggest the need for additional transport mechanisms, and waves could be one of them.
This makes two essential reasons to study waves that propagate in stellar interiors. The first
obvious way to understand the physics of these waves is from a theoretical point of view. To do
this, astrophysicists draw on the geoscience community. Indeed, it has long been known that
waves propagate in the Earth’s atmosphere and in oceans (e.g. Nansen and Sverdrup, 1897).
In such media, two main types of waves exist and are studied. First, there are acoustic waves
whose restoring force is the pressure gradient. Second, there are internal gravity waves (IGWs)
whose restoring force is buoyancy. The latter are suggested to play a role in the transport of
energy, chemical elements and angular momentum. The main properties of IGWs are described
in Chapt. 4. In the Earth’s atmosphere, they can change the temperature, wind direction or the
movement and concentration of particles (see the book of Sutherland, 2010, for a complete
review on the subject). For instance, they are suggested as the driving mechanism of the
Quasi-Biennal Oscillation, a 28-month periodic reversal of the wind direction occurring in the
stratosphere near the equator (e.g. Baldwin et al., 2001). In the oceans, they are involved in vari-
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ous mixing phenomena, which may, for example, be responsible for the thermohaline circulation
(e.g. Nikurashin and Ferrari, 2013). These waves are most likely present in the atmosphere of
other planets or moons in the solar system. Characteristic signatures of their presence have been
observed in the atmospheres of Venus (e.g. Peralta et al., 2008), Saturn (e.g. Fuller et al., 2014),
Jupiter (e.g. Young et al., 1997) and Titan (e.g. Lorenz et al., 2014). In addition, they are also
often invoked to explain observed phenomena in planetary atmospheres. For instance, in Venus
atmosphere, they could explain the zonal wind profile measured by Venera and Pioneer Venus
probes (Lebonnois et al., 2019, 2016). They have also been suggested as a possible origin of the
temperature variability observed in Neptune’s stratosphere (Uckert et al., 2014). The presence
of these waves in such a wide range of systems suggests that they could also be present in the
atmospheres of exoplanets. This could have important impacts on the atmospheric dynamics of
hot exoplanets, i.e. gaseous giant planets with short orbital period (e.g. Watkins and Cho, 2010).

Internal gravity waves can also be modelled in experimental set-ups (e.g. Le Bars et al., 2015;
Townsend, 1966). In their remarkable study, Plumb and McEwan (1978) managed to model
experimentally an analogue of the QBO in an annulus of salt-stratified water. Furthermore, such
experiments with a controlled configuration allow for a parameterisation study. Thus, although
the configuration is generally simplified compared to real natural phenomena, it provides a very
good understanding of the physics underlying the phenomena being modelled.

Another interesting way of studying these waves, and the internal structure of stars in
general, is through hydrodynamical simulations. It consists of numerically solving the equations
of hydrodynamics to predict the behaviour of the internal dynamics of stars. This allows the
theory to be tested directly and is an effective tool to guide observations. Simulations can also
be used to get new information on phenomena that are too complex to be modelled analytically,
such the differential rotation of the Sun (e.g Hotta and Kusano, 2021). The last decades have
shown that it is possible to model realistic IGWs in multidimensional simulations of stellar
interiors, allowing to get new insights on their physics (e.g. Alvan et al., 2014; Rogers and
Glatzmaier, 2005a). However, stellar hydrodynamical simulations are extremely complex due
to the wide range of time and lengths scales characterising stellar interiors. They must deal
with physical and numerical challenges that make them computationally expensive. Therefore,
they are performed using simplifying assumptions and/or numerical artefacts that could have
an impact on physical processes, as explained in Chapt. 5.

In this context, the work presented in this thesis has two main objectives. The first one aims
at improving our understanding of the physics of IGWs, and their impact on stellar interiors.
The interest of these results may go beyond stellar physics. As mentioned, IGWs are present
in a wide variety of systems, and testing their properties in different conditions will help to
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improve their understanding in general. The second objective is to improve the efficiency of
the interpretation of results from hydrodynamical simulations. In particular, it is important to
be able to differentiate between effects resulting from physical phenomena and those resulting
from numerical effects. We will see that running a simulation, although very complicated, is not
the only challenge. The analysis that follows also requires a lot of investment. To achieve these
objectives, we have run two sets of two-dimensional simulations using the fully compressible
time implicit code MUSIC (Geroux et al., 2016; Goffrey et al., 2017; Viallet et al., 2013). The
first one is composed of four simulations of a solar-like model, and its analysis is presented in
Chapt. 6. The second one is a set of four simulations of a 5 solar mass star model and is the
subject of Chapt. 7. Finally, after presenting in Chapt. 8 current projects that follow on from
the work presented in this thesis, we conclude and discuss our results in Chapt. 9.



Chapter 2

An overview of stellar structure and
evolution

The theory of stellar structure and evolution is now generally accepted, and new observations
help either confirming it or improving it. This first chapter will only give a brief overview of
it to set up the context of this thesis. Over the last century, a lot of textbooks have presented
this theory in great details, and we refer the reader to them if needed. Some of these books
have become classics such as Chandrasekhar (1939), Schwarzschild (1958) or Kippenhahn and
Weigert (1990). This first section is mostly based on Kippenhahn and Weigert (1990).

2.1 Characteristic timescales

Before getting to the stellar structure and evolution theory, let’s first introduce the timescales
associated with a star of mass M⋆, radius R⋆ and luminosity L⋆. This will give a first insight
on the complexity of stellar modelling.

The shortest timescale is the time needed for the star to collapse under gravity if all pressure
forces are removed. The equation of motion in that case will be

∂2r
∂t2
= −

Gm
r2 , (2.1)

with r the radial coordinate, t the time, G the gravitational constant 1 and m = m(r) the mass
enclose in a sphere of radius r. We can then define a dynamical timescale τdyn associated with

1G = 6.67430×10−11 m3kg−1s−2
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the collapse as
R⋆
τ2dyn

≃
∂2r
∂t2
. (2.2)

Then, using Eq. (2.1) we obtain an expression for the dynamical timescale

τdyn ≃

 R3
⋆

GM⋆

1/2

≃

(
1

Gρ̄

)1/2

, (2.3)

with ρ̄ the mean density in the star. For a star in hydrostatic equilibrium, this is the typical time
on which the star reacts to a slight perturbation of hydrostatic equilibrium. A typical value for
this timescale is τdyn ∼ 27 min in the case of the Sun2. 3

In the case of stars, the timescale needed to reach a thermal equilibrium can be estimated
using the Kelvin-Helmholtz timescale. It is defined as the ratio of gravitational energy available
in the star, Eg, and the energy that is radiated away per unit of time, which is the luminosity
of the star, L. This is the time a star would survive if its only energy source was its available
gravitational energy. Then, this timescale τKH is written as

τKH =
|Eg|

L⋆
. (2.4)

The gravitational energy can be expressed as

|Eg| ≃
GM2

⋆

2R⋆
. (2.5)

Consequently, the Kelvin-Helmholtz timescale is defined as

τKH ≃
GM2

⋆

2R⋆L⋆
. (2.6)

A typical value for this timescale is τKH ∼ 1.6×107 years for the Sun.
The last timescale that needs to be introduced is the nuclear timescale τnuc. This is the

characteristic lifetime for a star and correspond to the time to consume the energy available in
the nuclear fusion reactions of hydrogen into helium, En. It is defined as

τnuc =
En

L⋆
. (2.7)

2In the case of the Sun we have 1M⊙ = 1.989×1030 kg, with the subscript ⊙ indicating solar reference value.
3with 1R⊙ = 6.957×1010 cm and 1L⊙ = 3.828×1033 erg.s−1.
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For the Sun, its typical value is τnuc ∼ 1010 years.
From the estimation computed for the Sun it appears that these three timescales compare as

τnuc≫ τKH≫ τdyn (2.8)

which is actually valid for most of the life of stars. These inequalities will be really useful to
simplify equations when looking at a given phenomenon. Also, it is because the dynamical
timescale is much smaller than the two others that it is possible to assume hydrostatic equilib-
rium for a star. However, these inequalities are not valid throughout the entire life of a star;
particularly as the star evolves the three timescales become comparable.

2.2 Internal structure of stars

According to the theory of stellar structure, stars are self-gravitating objects made of ionised
gas. Their structure is modelled with the description of spatial and temporal variations of
thermodynamics variables such as density ρ, temperature T or pressure p, and of its fractional
composition in hydrogen X, helium Y and heavier elements Z. In this chapter we neglect
rotation, mass loss, interactions with another star and magnetism, so spherical symmetry may
be assumed. Therefore, in this section, all functions depend only on two independent variables:
radius r and time t.

2.2.1 Equations of stellar structure

The equations of stellar structure consist of three conservation equations, which are conservation
of mass, momentum and energy. These equations need to be completed with conditions
required for thermal equilibrium, a description of the energy generation mechanism and of
energy transport phenomena. The three main transport mechanisms are radiation, convection
and conduction. Finally, it is possible to add the evolution of chemical abundances, which
determines stellar evolution.

Mass conservation

Let’s introduce m(r, t) the mass contained in a sphere of radius r at a given time t. The
conservation of mass in that sphere can be expressed by the equation

dm = 4πr2ρdr−4πr2ρvdt, (2.9)
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where v is the radial velocity of the mass flow coming out of the sphere. The first term on the
right-hand side represents a variation of mass induced by a variation in radius of the sphere,
and the second term takes into account mass exchanges with the surrounding.

Momentum conservation

The equation expressing momentum conservation is basically resulting from Newton’s second
law. Due to our assumptions to neglect for now all external forces, the only forces acting inside
the stars are the pressure gradient (towards the surface) and gravity (towards the centre). If we
consider that these two forces are in balance, the conservation of momentum is given by the
condition of hydrostatic equilibrium, and it is expressed as

∂p
∂r
= −ρg = −

Gm
r2 ρ, (2.10)

with g the acceleration due to gravity.

Energy conservation

As mentioned, the main source of energy in stars is nuclear reactions that occur in the innermost
part of a star. These are quantified by the nuclear energy released per unit mass per unit time
ϵnuc, which depend on chemical composition, temperature and density. We can define the net
energy Lr flowing through a shell of radius r

∂Lr

∂m
= ϵnuc− ϵν+ ϵg, (2.11)

where ϵν represents the energy lost in the form of neutrinos and ϵg is the gravo-thermal energy,
which is a source term in case of compression and a sink term in case of expansion of the star.
It can be defined using the specific entropy s as

ϵg = −T
∂s
∂t
. (2.12)

This term is computed using an equation of state (EoS), i.e. an equation that links thermo-
dynamic variables to each other, the opacities and nuclear reactions rates. The conditions in
stellar interiors make it complex and expensive to compute this term, so we use interpolation
from precomputed tables. In the context of this thesis, we use the Opacity Project at Livermore
(OPAL) EOS from Rogers and Nayfonov (2002).
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To complete these equations, efficient energy transport processes are needed. Three mecha-
nisms share the transport in stellar interiors: radiation, conduction and convection. Which one
dominates depend on the value of temperature gradient, as we will see in the next section.

2.2.2 Energy transport in stellar interiors

It has been known for a long time that the structure of stars depends on the transport of energy
(Eddington, 1916). The energy generated by nuclear reactions near the centre of the star
has to travel all the way to the surface to be radiated and to balance gravity. Transport by
conduction is the result of collisions between particles. Generally, these particles are much
slower than photons, making conduction an inefficient transport process in stars (see Chapter 5
of Kippenhahn and Weigert, 1990, for more details). Therefore, it is common to consider that
there are two dominant transfers of energy in stellar interiors: radiation and convection. The
relative efficiency of these two transport processes depends on the temperature gradient and
can be expressed by the Schwarzschild criterion (Schwarzschild, 1958), which is expressed as

∇ad =

(
dlnT
dlnp

)
ad
<

(
dlnT
dlnp

)
= ∇. (2.13)

This means that if the local temperature gradient become larger than the adiabatic temperature
gradient, the region is dynamically unstable and convective motions start. In most cases, this
is caused either by a too high energy flux that has to be transported or by a large value of the
opacities in a given region. Indeed, these induce an increase of the local temperature gradient.

The Schwarzschild criterion can also be expressed with the Brunt-Väisälä, or buoyancy,
frequency N. This frequency characterise the maximum frequency for vertical oscillations
under gravity of a fluid parcel around its equilibrium position (Lighthill, 1978). It is defined as

N2 B g
(

1
Γ1

dlnp
dr
−

dlnρ
dr

)
, (2.14)

with Γ1 the first adiabatic exponent defined by

Γ1 B

(
∂lnρ
∂lnp

)
ad
. (2.15)

The Brunt-Väisälä frequency can also be expressed as

N2 =
gδ
Hp

(∇ad−∇) , (2.16)
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where we have introduced δ = −
(
∂lnρ
∂lnT

)
ad

and the pressure scale height in the case of hydrostatic
equilibrium 4

Hp =
p0

ρ0g0
, (2.17)

where p0, ρ0 and g0 are the reference state pressure, density and acceleration of gravity. The
expression given by Eq. (2.16) makes it easier to relate the Brunt-Väisälä frequency to the
Schwarzschild criterion. Indeed, if N2 < 0 we can infer that N is imaginary and then instead of
oscillating the fluid parcel will move away exponentially 5, i.e. the convective instability arises.
On the other hand, when N2 > 0, that particle oscillates around its equilibrium position and the
region is stably stratified. Then the fluid motions are mainly horizontal, and the buoyancy force
always act in the opposite direction to a vertical displacement of a fluid particle.

Before describing these two zones, convective and radiative, it is important to specify for
this work that stellar interiors are stratified. This means the pressure, density and temperature
vary with depth. Consequently, a given mass element of fluid will need some energy to move
radially against the direction of gravity.

Transport by radiation

The first mechanism that transport efficiently energy is radiation. Consequently, a given stellar
layer is called a radiative region if the dominant process that transport energy is radiation.
Under this mechanism, heat is transferred by emission, absorption and scattering of photons.
Between emission and absorption, a photon mean free path is estimated by

lph =
1
κρ
, (2.18)

where κ is the mean absorption coefficient, which we consider to be the Rosseland mean
opacities in this work (see Sect. 5.1.3 of Kippenhahn et al., 2013, for more details). If we
estimate its value for the Sun, as in Kippenhahn and Weigert (1990), using κ ≃ 1 cm2g−1 and
the mean density of the Sun ρ⊙ ≃ 1.4gcm−3, we find that lph ≃ 2 cm. This distance is tiny
compare to the radius of the Sun that is approximately R⊙ = 6.957×1010 cm. This means that
the distance over which one particle will transport energy is very small compare to the total
distance over which the energy has to be transported. Moreover, the temperature change over 2
cm is only of the order of 3×10−4 K (Kupka and Muthsam, 2017). In this case the diffusion
approximation is justified, and the radiative energy flux may be expressed as a heat conduction

4The general definition of the pressure scale height is Hp B −
( dln p

dr

)−1
.

5This is because the displacement of a fluid particle is of the form ξ = ξ0eiωt, as it will be explained in Chapt. 3.
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equation by
Frad = −χ∇T, (2.19)

where is introduced the radiative conductivity

χ =
4ac
3

T 3

κρ
(2.20)

with c is the velocity of light and a = 7.57×10−15 erg cm−3K−4 is the radiation density constant.
Note that the diffusion approximation is no longer valid close to the surface of the star, as

the photon mean free path becomes comparable to the remaining distance to the surface.

Transport by convection

Convective transport, the second mechanism, is characterised by an exchange of energy between
different layers within a star by macroscopic motions of matter from hot regions to cold ones.
Even today, the theoretical description of convective motions and the related energy transport
remain very complex, particularly because the medium is turbulent. This is why many models
are using the Mixing Length Theory (MLT) of Prandtl (1925) and its expansion to stellar
convection (Böhm-Vitense, 1958; Gough, 1977; Spiegel, 1963). According to this theory, hot
‘bubbles’ of matter will move upward into cold regions and cold ones move downward into hot
regions, allowing heat transfer between different layers of the star.

The MLT assumes only one size of convective element that travels at an average velocity
over an average distance called the mixing length, Λ, defined as a fraction of the pressure scale
height.

Λ = αMLTHp, (2.21)

with αMLT a free parameter and Hp the pressure scale height, as defined in equation (2.17).
Thus, ‘bubbles’ of matter will move radially over distance Λ before mixing the transported heat
and material with the surrounding and then lose their identity.

We will see that MLT is not enough for the purposes of this work because we need to
consider different sizes of convective elements that travel on different distances. Particularly,
MLT neglects all the contributions from small convective elements. However, even if MLT
can not allow the study of convective element dynamics, it can give a good approximation of
the convective flux and the total energy transport. This is because of its free parameter αMLT,
which can be adjusted to match predictions and observations. However, this free parameter is
also a weakness of the theory, as it can compensate for inaccuracies or missing physics in the
theory of stellar convection.
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Usually, the local convective flux is estimated by (Kippenhahn and Weigert, 1990)

Fconv = ρvconvcPDT (2.22)

where vconv is typical velocity of convective motions, cP is the specific heat capacity at con-
stant pressure and DT the excess temperature of the considered ‘bubbles’ of matter over its
surroundings.

2.3 Stellar evolution

Stellar evolution is the science that focuses on the life of stars, from birth to death, including
all their major stages of evolution. This evolution may be graphically summarized on a
Hertzsprung-Russell diagram, which presents the luminosity of the star L⋆ as a function of its
effective temperature6 Teff . In Fig. 2.1 is presented the Hertzsprung-Russell diagrams for a
1M⊙ and a 5M⊙ stellar models. The evolution of these two stellar models were computed using
the MESA stellar evolution code (version mesa-r15140) (Paxton et al., 2011, 2013, 2015, 2018,
2019). This two kind of stars will be studied in Chapt. 6 and 7. On this plot, the main stages of
stellar evolution can be identified, as we will show in the next paragraphs.

Fig. 2.1 Evolutionary path of a 1M⊙ (left) and a 5M⊙ (right) models computed with the MESA
stellar evolution code. The main stages of their evolution are indicated on the plots.

6The effective temperature of a star of radius R is the temperature that would have a black body with the same
luminosity L as the star and is given by the Stefan-Boltzmann law L = 4πR2σT 4

eff , with σ = 5.67×108 W m−2K−4

the Stefan-Boltzmann constant.
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Stars form within large molecular gas clouds that collapse on themselves due to a gravita-
tional instability. This instability appears when the gravity overcomes pressure. This results in
an adiabatic contraction phase, during which the densest area accretes matter from the surround-
ing. At this stage, the object is a protostar. During this contraction, part of the gravitational
energy is converted to internal energy, causing the gas to heat up, and some is radiated away as
luminosity.

Once the accretion stops, the object becomes a pre-main-sequence star, whose main source
of energy is still the gravitational contraction. On the Hertzsprung-Russell diagram, this stage is
characterised by an almost vertical line known as the Hayashi track (Hayashi, 1961) (not shown
in Fig. 2.1). The luminosity of the star decreases rapidly because it becomes fully convective.
The convection increases the transport rate of energy and consequently the loss of energy is
more important. However, in the meantime the star is still contracting, such that its central
density and temperature keep increasing. At some point, radiation becomes more efficient
to transport energy than convection and a radiative core starts developing. When this core is
large enough, stars more massive than 0.5 M⊙ enter the Henyey track (Henyey et al., 1955),
which is horizontal on the Hertzsprung-Russell diagram (not represented in Fig. 2.1). The
effective temperature of the star increases, whereas its luminosity remains almost constant. This
formation stage lasts about one Kelvin-Helmoltz timescale, τKH (see Eq. 2.6 for its definition)
and it ends with the ignition of nuclear reactions in the core of the star.

This step is called the Zero-Age Main-Sequence (ZAMS in Fig. 2.1) and indicate the
beginning of the main-sequence. The main-sequence is defined as the phase when the star
burns hydrogen in its core and is in hydrostatic equilibrium. Indeed, during this period, the
nuclear fusion of hydrogen into helium makes it possible to counterbalance the contraction due
to gravity. This stable phase is the longest in the life of a star and lasts for approximately one
nuclear timescale, the duration of which depends strongly on the mass of the star, as highlighted
by Eq. (2.7). The more massive a star is, the faster it will consume its hydrogen and the shorter
its lifetime on the main-sequence. Stars leave the main-sequence when they have consumed
almost all their central hydrogen supply. For a 1 M⊙ star, this step lasts approximately τnuc ∼ 10
billion years.

As explained in Sect. 2.2.2, convective and radiative zones are distinct in stellar interiors.
Stars like the Sun, i.e. low-mass stars, have a radiative core and convective envelope. It is
the opposite for more massive stars (M ≳ 2 M⊙), which have a convective core and a radiative
envelope. This mass limit between these two types of stars is not clearly defined. Indeed, stars
with mass between 1.2 and 2 M⊙ may already present a convective core but also still have
a relatively thick convective envelope, with a radiative zone separating the two. This is for
instance the case of F type stars.
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Following the main-sequence, the star enters the subgiant phase and hydrogen burning in
the core of the star stops. With no nuclear reaction in the core, the internal pressure of the
core decreases sharply and gravity no longer encounters any obstacles. The core of the star
contracts and heats up, while the envelope expands due to the layered fusion of the hydrogen
and its temperature decreases. This phenomenon causes the stars to turn red because the lower
temperature induces a red shift in their colour. During the beginning of this phase, the star
consists of an inert core of helium (the result of hydrogen fusion during the main sequence)
surrounded by a layer of burning hydrogen that will increase the mass of the core. This is the
Red Giant Branch (RGB in Fig. 2.1) phase. During the RGB, the star will lose some of its
mass. For stars with mass M > 0.5M⊙, once the core is sufficiently massive, i.e. when the
temperature and pressure become sufficiently high, helium can start burning. There are two
different cases for this ignition. In stars with mass M < ≲ 2.3M⊙, the ignition of helium is
rather short and explosive. This is the Helium flash which leads the star to settle in the Red
Clump (see Fig. 2.1). In this phase, convective transport remains the dominant energy transport.
In stars with M ≳ 2.3M⊙, the helium fusion is stable and the surface temperature of the star
will increase, causing its colour to tend towards blue. This is called the Blue Loop (see Fig.
2.1) because of its path on the Hertzsprung-Russell diagram. This stage is followed by the
Asymptotic Giant Branch phase, which marks the end of helium fusion. The core, composed of
carbon and oxygen (C-O), contracts and heats up, while the envelope expands and cools.

After the star runs out of helium in its core, it will end its life as a white dwarf, neutron star
or black hole depending on its mass. However, despite being very interesting, these late stages
of evolution are not relevant for the work presented in this thesis, thus we will not describe
them. These are detailed in the book of Kippenhahn and Weigert (1990).



Chapter 3

Theory of stellar oscillations

Stellar oscillations can be observed as variability in their luminosity. The first observation of
such stellar variability goes back to the 16th century, when David Fabricius reported the fading
and reappearance of a star (e.g. Catelan and Smith, 2015). This star was later named Mira by
Hevelius and Horrocks (1662), which gave its name to the stars that pulsate in the same way.
In the centuries that followed, other types of variable stars were observed, such as the Cepheids
discovered in 1784 by John Goodricke (e.g. Leavitt and Pickering, 1912) or δ-Scuti in 1935 by
Edward Fath (Fath, 1935). The pulsations of these types of stars are of large amplitude, which
is why they were observed so early. They are part of a group of stars known today as classical
pulsators. The pulsations of these stars originate from a readjustment of their internal structure,
and each type of pulsation characterise a particular type of stars. In this thesis, we are interested
in a different type of oscillations excited by turbulent convection discovered in the second half
of the last century. These turbulent motions generate acoustic and gravity waves that propagate
in the interior of stars and may become stationary due to the interference phenomenon. These
stationary waves are global oscillations modes of stars. The properties of these modes and
associated waves are described in this chapter.

3.1 Stellar seismology

In their pioneering paper, Leighton et al. (1962) reported the detection of vertical motions with
a striking repetitive time correlation, with a period T = 296±3 sec in the solar atmosphere. This
detection was confirmed a few months later by Evans and Michard (1962) and interpreted as
global mode of oscillations of the Sun by Ulrich (1970) and Leibacher and Stein (1971). First,
these global modes of oscillations were observed as bright ridges in frequency-wavenumber
diagram by Deubner (1975) and Rhodes et al. (1977). A few years later, Claverie et al. (1979)
clearly identified individual peaks equally spaced in frequency in the power spectrum of the
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Sun, corresponding to actual low degree global modes of oscillations. These modes were
rapidly identified as stable standing acoustic waves (e.g. Ando and Osaki, 1975). In these
studies, the excitation mechanism responsible for these modes was not clearly identified. It is
Goldreich and Keeley (1977), who first showed that turbulent convection could generate them.

In the last decades, analysis of these modes of oscillations has proven to be very powerful
to study the solar interior. For instance, we got very strong constraints on the sound speed
and density profile of the Sun (e.g. Antia and Basu, 1994), the rotation profile down to 25%
of the solar radius (e.g. Brown and Morrow, 1987; García et al., 2007; Thompson et al.,
2003) or the neutrino flux emanating from the Sun (e.g. Couvidat et al., 2003). Two main
methods exist to get information on solar interior. The first one is seismic modelling, also
called "forward modelling", which consist in building evolutionary models of the Sun and
compare their properties with current observations. The idea is to tune these numerical models
until there is good match with the observed properties such as radius, luminosity, effective
temperature, surface abundances, age and pulsation frequencies. With this method, we thus
also have information on the evolutionary path of the solar model. A limitation of this method
is that it is restricted to the parameters space chosen to tune the model. Consequently, solutions
depends strongly on the assumptions used. The second method is seismic inversion and consist
in building static models of the Sun based on its observed oscillations frequencies. When
comparing these frequencies to eigenfrequencies of a one-dimensional numerical model, the
overall agreement is relatively good, but there are some discrepancies. This is a hint that the
modelled structure of the Sun is incorrect, at least in details. We know from the theory of stellar
oscillations that the oscillations frequencies of a star depends on its internal structure (see Sect.
3.3). Therefore, using the discrepancies between the observed and modelled frequencies, we
can determine the structure of the Sun. The main advantage of this method is that it does
not depend on a restricted set of parameters (details on inversion methods are given in Sect.
8.1). This will highlight the incorrectly modelled or missing physics of the initial model. In
the last decades, inversion methods have been intensively applied to the Sun, revealing many
features of the solar interiors. For instance, they allowed to probe the location of the interface
between the radiative and convective zones (Christensen-Dalsgaard et al., 1991), the helium
abundance if the convective envelope (Däppen et al., 1991), the efficiency of chemical diffusion
(Christensen-Dalsgaard et al., 1993) and the rotation profile of the solar interior (Howe, 2009).
More details on global helioseismology may be found in the reviews by Basu (2016); Buldgen
et al. (2019); Christensen-Dalsgaard (2002); Kosovichev (2011)

Asteroseismology started much later due to the technical challenge to observe stars other
than the Sun with high precision photometry, even if it was suspected from long time that
other stars should oscillate in a solar-like way (e.g. Christensen-Dalsgaard, 1984). The first
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confirmed detection of solar-like oscillations in a star other than the Sun goes back to Martić
et al. (1999) and was rapidly followed by others (e.g. Bedding et al., 2001; Bouchy and Carrier,
2001; Buzasi et al., 2000). These detections were rapidly limited by technical constraints,
such the impact of Earth rotation on ground-based observations. With the arrival of CoRoT
in 2006 (Auvergne et al., 2009) and Kepler in 2009 (Borucki et al., 2010), some of these
technical constraints were lifted and asteroseismology underwent a revolution. Thanks to the
precision of the observations of these satellites, it was then possible to probe the interior of
stars other than the Sun. The number of these observations is continuously increasing thanks
to NASA’s TESS satellite (Ricker et al., 2015), which has been operating since April 2018,
and will continue to increase with the launch of the PLATO mission from ESA, scheduled for
late 2026 (Rauer et al., 2014). Those observations include both main-sequence and red giant
stars. As the oscillations observed in these stars are similar to the ones of the Sun, methods of
forward and inverse modelling may also be applied to them. This would be extremely valuable
to get information on stars at different evolutionary stages. However, in practice this is much
more difficult because only low angular degrees modes of oscillations are observed for stars
other than the Sun. Therefore, there are way less constraints to apply these methods. Current
inverse methods have been applied to main-sequence solar-like stars (e.g. Bellinger et al., 2017)
but are still failing when applied to evolved stars. This will be the subject of Sect. 8.1.

Similarly, as those stars oscillate due to standing acoustic waves, we should expect them
to oscillate due to standing gravity waves. However, there is still no confirm detections of
such oscillations modes in stars. In the Sun, the search for these gravity modes has been a
long-standing quest (see Belkacem et al., 2022, for a recent review). The main difficulty lies in
the fact that gravity waves propagate in the radiative interior of the Sun, and are evanescent in
its convective envelope. Consequently, the resulting oscillations modes are expected to have
very low amplitude at the surface of the Sun. Therefore, higher mass stars with convective cores
and radiative envelopes should be more suitable targets for observing gravity waves excited
by turbulent convection. But today, there is no confirmed detection in this type of stars either.
Therefore, additional constraints on the properties of gravity waves, such as their amplitude
and excitation spectrum, are needed to contribute to this quest. This motivates us to study the
properties of these waves with hydrodynamical simulations.

3.2 Equations of hydrodynamics

The gas that makes up stars is predicted to be stratified, both in temperature and densities.
Densities range from ∼ 100−102 gcm−3 near the centre of the star and fall to ∼ 10−8 gcm−3

close the surface. Similarly, temperature ranges from ∼ 107 K in the central regions, down to
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∼ 103−104 K at the surface. These values are typical for main-sequence stars and can evolve
during stellar evolution. With these temperatures and densities, the mean-free-path of particles
is much smaller than the characteristic scales on which thermodynamic quantities vary (of
the order of the radius of stars). Thus, it is possible to consider stellar matter as fluid and to
describe it using the equations of hydrodynamics. In the work presented in this thesis, rotation
and magnetic fields are not considered. We can thus assume stars as spherically symmetric.

First, let us introduce some properties of the stellar medium: the local pressure p(r, t),
the local density ρ(r, t) and the velocity v(r, t), with r the position vector. These quantities
are linked by the hydrodynamic equations, which, as for the equations of stellar structure
introduced in Sect. 2.2.1, express the conservation of mass, momentum and energy.

In the case assumed here of spherical symmetry, the conservation of mass may be expressed
by differentiating the first term on the right-hand-side (RHS) of Eq. (2.9) with respect to r, the
second term with respect to t and equating the two

∂ρ

∂t
+

1
r2
∂ρvr

∂r
= 0. (3.1)

This equation is called the continuity equation and is expressed in the general case as

∂ρ

∂t
+∇ · (ρv) = 0, (3.2)

with ∇· the divergence operator.
The second conservation law expresses the conservation of momentum. In Sect. 2.2.1

we considered only a static case with two forces: gravity and pressure gradient. For a fluid
in motion with velocity v(r, t), we need to consider how particles of fluids interact. These
interactions can be modelled by the viscous stress tensor σ defined as

σ = µ

(
∇v+ (∇v)T −

2
3
∇ ·vI

)
+ ζ∇ ·vI, (3.3)

with the superscript T that denotes the transpose, µ is the dynamic viscosity, ζ the bulk viscosity
and I is the identity matrix. In this case the momentum equation is

ρ

(
∂v
∂t
+v · ∇v

)
= −∇p+ρf +∇ ·σ−ρg, (3.4)

where f are the external body forces per unit mass. This equation is also called the Navier-Stokes
equation.
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The last conservation equation, the one for energy expresses the first principle of thermody-
namics for a fluid particle and is given in its local form by

∂ρE
∂t
+∇ ·

[
(ρE+ p)v

]
= Q−ρv ·g+∇ · (σv)−∇ ·F+ρv · f, (3.5)

where E = 1
2v2+ e is the total specific energy, sum of kinetic and internal specific energies, Q

represents the sources and sinks of heat and corresponds to the RHS of Eq. (2.11) and F is the
surface density of heat flux. Equation (3.5) expresses the conservation of total energy, with
contribution from the kinetic and internal energies. The evolution of kinetic energy is governed
by the momentum equation, by taking the scalar product of the Eq. (3.4) with the velocity v.
Then, if we subtract the evolution of kinetic energy from Eq. (3.5), we can obtain an equation
that only described the evolution of internal energy (Rieutord, 2015)

∂ρe
∂t
+∇ · (ρev) = Q+σ · ∇v−∇ ·F− p∇ ·v. (3.6)

An alternative that has proven to be useful is to work with the entropy s instead of the internal
energy e. These two quantities are linked with the thermodynamic relation

de = Tds− pdV, (3.7)

withV the volume. Using the continuity equation Eq. (3.2) and the relation Eq. (3.7), we can
rewrite the internal energy conservation as

ρT
(
∂

∂t
+v · ∇

)
s = Q+σ · ∇v−∇ ·F. (3.8)

The equations introduced above are the general equations of hydrodynamics. In the context
of oscillations in stellar interiors, a few approximations can be made to simplify these equations.
First, all terms involving viscosity are supposed to be small and may be neglected. The surface
density of heat flux F is reduced in our case to the radiative flux Frad given by Eq. (2.19) as
the diffusion approximation is valid in stellar interiors. As we neglect all external body forces,
such as the ones linked to magnetic field or rotation, we can consider f = 0. Finally, we will
work with the equations of hydrodynamics written in the form

∂ρ

∂t
+∇ · (ρv) = 0, (3.9)

ρ

(
∂

∂t
+v · ∇

)
v = −∇p−ρg, (3.10)
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ρT
(
∂

∂t
+v · ∇

)
s = Q−∇ ·Frad. (3.11)

In order to form a complete set, supplementary equations are needed to close the system. First,
the acceleration due to gravity is defined as g = −∇Φ, with Φ the gravitational potential that
satisfy Poisson’s equation

∇2Φ = 4πGρ, (3.12)

where ∇2 is the Laplacian operator. Second, the other equations that are needed are an equation
of state which link pressure p, entropy s, density ρ and temperature T together and an equation
for the opacity κ(ρ,T ) for a given chemical composition. To describe stellar interior these two
types of equations are complex and most of the time the solutions are interpolated from already
computed tables such as the OPAL (Iglesias and Rogers, 1996) and OPAL EOS (Rogers and
Nayfonov, 2002) tables, which are mostly valid for main-sequence stars. Finally, we need to
specify the source term Qcan be assumed to have only one component that is relevant for our
work, which is the nuclear energy generation rate ϵN(ρ,T ).

3.3 Linear adiabatic non-radial oscillations equations

3.3.1 Perturbations in spherical coordinates system

A usual practice to study stellar oscillations is to consider them as small perturbations around a
static equilibrium state. For a variable f , we denote the corresponding equilibrium state with
the subscript 0, i.e. f0. There are two kinds of perturbations: the Eulerian and Lagrangian
perturbations. The former is defined as a perturbation at a given location r and denoted by the
subscript f1 and the latter as the perturbation of a given fluid element, denoted by δ f . Therefore,
a thermodynamic quantity f may be written as:

f (r, t) = f0(r)+ f1(r, t), (3.13)

or
f (r, t) = f0(r0)+δ f (r, t), (3.14)

The two kinds of perturbations are linked by the relation

δ f (r, t) = f1(r, t)+ ξ · ∇ f0(r), (3.15)

where ξ = r− r0 is the displacement of the fluid induced by the perturbation. Note that in this
work we do not consider rotation or any other mean flow, thus we have for the velocity field
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v = v0+v1 = v1. From Eq. (3.15) it appears that in this case the two velocity perturbations are
equal δv = v1. For simplicity, in the following the subscript 1 is not used for the velocity field.

Assuming the spherical symmetry of the equilibrium model, we will expand the Eulerian
perturbation in the form

f1(r, θ,ϕ, t) =
∑
ℓ,m

aℓ,m f1(r)Ym
ℓ (θ,ϕ)eiωt, (3.16)

whereω is the angular frequency of the oscillation, Ym
ℓ

is a spherical harmonic function and aℓ,m
a normalization factor. The spherical harmonics form an orthonormal basis of eigenfunctions of
the Laplacian operator on the unit sphere (more details on the spherical harmonics can be found
in Cohen-Tannoudji et al., 1986; Courant and Hilbert, 1966). A spherical harmonic function is
defined as

Ym
ℓ (θ,ϕ) = (−1)mcℓmPm

ℓ (cosθ)eimϕ , (3.17)

where Pm
ℓ

(cosθ) is a Legendre polynomial and cℓm is a normalization coefficient. In this thesis,
we chose it such that the integral of |Ym

ℓ
|2 over the unit sphere is 1. We thus have,∫

S

Yℓ,m(θ,ϕ)Yℓ′,m′(θ,ϕ) sinθdθdϕ = δℓ,ℓ′δm,m′ (3.18)

A spherical harmonic is defined by its angular degree ℓ ≥ 0 and azimuthal order m with
−ℓ ≤ m ≤ ℓ. For vector fields, it is usually more convenient to use the vectorial spherical
harmonics basis

(
Rℓ,m,Sℓ,m,Tℓ,m

)
defined in the spherical basis (er,eθ,eϕ) as (Rieutord, 1987)

Rℓ,m(θ,ϕ) = Yℓ,mer

Sℓ,m(θ,ϕ) = ∇hYℓ,m = ∂∂θYℓ,meθ + 1
sinθ

∂
∂ϕYℓ,meϕ

Tℓ,m(θ,ϕ) = ∇h×Rℓ,m = 1
sinθ

∂
∂ϕYℓ,meθ − ∂∂θYℓ,meϕ

. (3.19)

The displacement vector associated with a wave can thus be written as

ξ(r, θ,ϕ, t) =
∑
ℓ,m

[
ξR;ℓ,m(r)Rℓ,m(θ,ϕ)+ ξS ;ℓ,m(r)Sℓ,m(θ,ϕ)+ ξT ;ℓ,m(r)Tℓ,m(θ,ϕ)

]
eiωt. (3.20)

Using this decomposition and the momentum equation Eq. (3.4), we obtain that ξT ;ℓ,m(r) = 0
(see for example Alvan, 2014). Finally, the displacement vector may be expressed as

ξ(r, θ,ϕ, t) =
[
ξr(r);ξh(r)

∂

∂θ
;ξh(r)

1
sinθ

∂

∂ϕ

]
Ym
ℓ (θ,ϕ)eiωt, (3.21)
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where we have changed the notation ξr = ξR;ℓ,m and ξh = ξS ;ℓ,m for simplicity. We can then
identify the former as the radial component and the latter as the horizontal component of the
displacement vector. The horizontal one can be expressed as (Unno et al., 1989)

ξh =
1
ω2r

(
p1

ρ
+Φ1

)
(3.22)

Using these expansions, the equations of hydrodynamics given by Eq. (3.9) - (3.11), and the
Poisson’s equation, Eq. (3.12) are linearised by expanding them in perturbations and retaining
only terms of order 0 and 1. For clarity, the subscript 0 will dropped for equilibrium quantity,
unless if there is an ambiguity. We intentionally omit the details of the calculations here, but
one can refer to the chapter 3 of Unno et al. (1989) for more details. In the case of adiabatic
oscillations, the specific entropy is conserved during oscillations and the linearised equations
reduce to

1
ρ

dp1

dr
+

g
ρc2

s
p1+

(
N2−ω2

)
ξr = −

dΦ1

dr
, (3.23)

1
r2

d
dr

(
r2ξr

)
−

g
c2

s
ξr +

1− L2
ℓ

ω2

 p1

ρc2
s
=
ℓ(ℓ+1)
ω2r2 Φ1, (3.24)

1
r2

d
dr

(
r2 dΦ1

dr

)
−
ℓ(ℓ+1)

r2 Φ1 = 4πGρ
(

p1

ρc2
s
+

N2

g
ξr

)
. (3.25)

where cs = (Γ1 p/ρ)1/2 is the sound velocity. We have also introduced two characteristic
frequencies, the Brunt-Väisälä frequency N and the Lamb frequency Lℓ. The former has
already been defined in Eq. (2.14) and the latter is defined by

L2
ℓ B
ℓ(ℓ+1)c2

s

r2 . (3.26)

with ℓ the angular harmonic degree. The evolution of the Lamb S l and Brunt-Väisälä N
frequencies as functions of normalised radius is presented in Fig. 3.1 in the cases of a solar and
a 5M⊙ star models.

The system formed by Eq. (3.23) - (3.25) is still difficult to solve analytically. In order
to simplify it, let us introduce the Cowling approximation (Cowling, 1941) that neglect any
perturbations to gravitational potential Φ1 = 0. This approximation supposes that the contribu-
tion of one part of the medium to the gravitational potential perturbation is largely cancelled in
non-radial oscillations by the contribution of another part of the medium (Unno et al., 1989).
This is justified for modes with large radial order n and/ or angular degree ℓ. This approximation
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allows us to neglect Eq. (3.25). Using the change of variable, ξ̃r B r2ξr exp
(
−
∫ r

0
g
c2

s
dr

)
η̃B

p1
ρ exp

(
−
∫ r

0
N2

g dr
) , (3.27)

we can write Eq. (3.23) and (3.24) into a canonical form,

dξ̃r
dr
= h(r)

r2

ρc2
s

 L2
l

ω2 −1

 η̃, (3.28)

dη̃
dr
=

1
r2h(r)

(ω2−N2)ξ̃r. (3.29)

where

h(r)B exp
[∫ r

0

(
N2

g
−

g
c2

s

)
dr

]
> 0. (3.30)

The two equations given by Eq. (3.28) and (3.29) are called the linear adiabatic non-radial
oscillations equations.

3.3.2 Local solution

For oscillations of high radial order n, the eigenfunctions ξr and ξh vary much more rapidly than
the equilibrium quantities (Aerts et al., 2010). Therefore, it allows us to neglect the coefficients
of ξr in Eq. (3.23) and the coefficients of p1 in Eq. (3.24). In this context, our calculations
are restricted to a local analysis. By deriving Eq. (3.28) with respect to r and eliminating
p1 from the resulting equation, we obtain the following equation for non-radial oscillations
(Christensen-Dalsgaard, 2014)

d2ξ̃r

dr2 +K(r)ξ̃r = 0 , (3.31)

where K(r) is:

K(r) =
ω2

c2
s

(
N2

ω2 −1
) L2

l

ω2 −1

 . (3.32)

We identify K with the square of the radial component kr of the wave vector, K = k2
r . Thus,

Eq. (3.32) is a dispersion relation, i.e. a relation that links the wavenumber and the frequency.
The nature of the solutions of Eq. (3.31) will depend on the sign of K and thus on the two
characteristic frequencies Lℓ and N. We can distinguish two cases:
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• ω2 > N2, L2
ℓ

or ω2 < N2, L2
ℓ
: in this case K > 0 thus kr is real and ξr is locally an

oscillating function of r
ξr ∝ exp

(
±i
√

Kdr
)
, (3.33)

• N2 > ω2 > L2
ℓ

or L2
ℓ
> ω2 > N2: in that case K < 0 thus kr is purely imaginary and ξr is

evanescent in the corresponding region

ξr ∝ exp
(
±

√
|K|dr

)
, (3.34)

These conditions restrict the radial propagation of a given wave to specific regions, which will
depends on the angular degree ℓ and the frequency ω of the wave. This is illustrated by the
blue and red shaded area on Fig. 3.1. The two shaded areas indicate the regions where the
solutions to the wave equation are oscillatory for the considered wave (ω, ℓ). There is a clear
distinction between low frequency waves satisfying ω2 < N2, L2

ℓ
(blue area) and high frequency

waves satisfying ω2 > N2, L2
ℓ

(red area). The former are gravity waves and the latter acoustic
waves. In regions where waves oscillates, they propagate back and forth in the cavity to form
standing waves, which are non-radial global modes of oscillations. Modes associated with
internal gravity waves are gravity, or g, modes and the ones associated with acoustic waves are
acoustic, or p, modes. These two types of modes are described in the next section.

Fig. 3.1 Evolution of the Brunt-Väisälä N (blue line) and the Lamb frequencies for ℓ = 1, 5, 10,
25 and 100 (red lines) for solar (left panel) and a 5 M⊙ (right panel) model. The containment
regions are shown for g modes (blue shaded area) and p modes (red shaded area). For the solar
model, these cavities are plotted for g modes and p modes of angular degree ℓ = 1 and ℓ = 10
respectively. For the 5 M⊙ model, they are plotted for g modes and p modes with angular
degree ℓ = 5.
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3.4 General solution to the oscillation equations

3.4.1 Asymptotic method

The local method introduced in the previous section present the advantage of giving a simple
understanding of modes trapping in stellar interiors. However, it can not be used to compute the
eigenfunctions of the oscillations equations. In this section we present an asymptotic method
to globally study modes of oscillations, i.e. without considering equilibrium quantities as
constant. We will intentionally give only the main steps of the calculation, but more details
are given in Unno et al. (1989) or Christensen-Dalsgaard (2014). Note that this method is only
valid for high radial orders1 n. In this limit, we can still work in the context of the Cowling
approximation. First, Eq. (3.28) - (3.29) can be combined into

d2ξ̃r

dr2 −
dln |P|

dr
dξ̃r
dr
− k2

r ξ̃r = 0, (3.35)

where

P(r) =
r2

c2
s

 L2
ℓ

ω2 −1

h(r). (3.36)

and h(r) was introduced in Eq. (3.30).
The second order equation given by Eq. (3.35) can be rewritten in a form without the first

derivative in ξ̃r with the following change of variable

Ξ = ξ̃r|P|−1/2ρ1/2
c = ρ1/2csr

|1− L2
ℓ

ω2 |

−1/2

ξr, (3.37)

with ρc the density at the centre of the star. Then,

d2Ξ

dr2 +
[
k2

r − f (P)
]
Ξ = 0 (3.38)

where we have introduced the function,

f (x)B |x|1/2
d2|x|−1/2

dr2 . (3.39)

Note that this function f is generally small compared to k2
r (Christensen-Dalsgaard, 2014),

thus it is neglected in the following. In that case, Eq. (3.38) is equivalent to Eq. (3.31),
except that the equilibrium quantities are not considered constant any more. As shown by

1For low radial orders numerical methods should be used.
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Shibahashi (1979), solutions to Eq. (3.38) can be obtained with the JWKB method, which is
commonly used in quantum mechanics to solve the Schrödinger equation (see for example
Cohen-Tannoudji et al., 1986). This method assumes that the solutions varies rapidly compare
to the equilibrium quantities. In this context the solutions may be expressed in the form

Ξ = a(r)exp[iΨ(r)] , (3.40)

with a(r) the amplitude which is a function slowly varying with radius whereas Ψ(r) is rapidly
varying such as

kr =
dΨ
dr
. (3.41)

Injecting Eq. (3.40) in Eq. (3.38) and from what has been shown in Sect. 3.3.2, it is
straightforward that the solutions will take two different forms depending on the sign of k2

r .
If k2

r > 0 the solution is oscillatory and if k2
r < 0 the solution is exponentially decaying with

radius. Assuming that k2
r > 0 for radii r between r1 and r2, with r1 < r2 and that k2

r < 0 if r < r1

or r >r2, the solutions are (Unno et al., 1989)

Ξ(r) =


A√
π

1√
kr

exp
(
−
∫ r

r1
|kr|dr

)
, if r≪ r1

A√
π

1√
kr

cos
(∫ r

r1
krdr− π4

)
, if r1≪ r≪ r2

A√
π

(−1)n
√

kr
exp

(
−
∫ r2

r |kr|dr
)
, if r≫ r2.

(3.42)

with A a constant. The two radii r1 and r2 are the inner and outer turning points respectively.
They correspond to locations where kr = 0. At a turning point, a propagating wave is reflected.
The solutions given by Eq. (3.42) must fulfil the quantization condition∫ r2

r1

krdr =
(
n−

1
2

)
π (3.43)

with n the radial order of the corresponding oscillation mode.
We will now consider two cases: low frequencies corresponding to g modes and high

frequencies to p modes.

3.4.2 Gravity modes

Gravity modes, or g modes, results from the interference of propagating internal gravity waves
trapped in radiative zones. For these waves we usually have ω≪ Lℓ therefore we can use for
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Eq. (3.32) the approximation

k2
r ≃

(
N2

ω2 −1
)

l(l+1)
r2 . (3.44)

A mode is trapped between its two turning points r1 and r2, which in this case are defined as
the location where ω = N. Considering Eq. (3.43), we can express the eigenfrequencies of g
modes of low degree and high radial order as (Tassoul, 1980)

ωn,ℓ =

√
ℓ(ℓ+1)

∫ r2

r1
N dr

r

π(n+ ℓ/2+αg)
, (3.45)

where αg is a phase constant, depending on the inner and outer turning point of the mode
(Christensen-Dalsgaard, 2014). The values of these eigenfrequencies as a function of angular
degree computed for the Sun are presented on Fig. 3.2. In this figure is also presented the f
mode, or fundamental mode, which is a surface gravity mode, but we will not consider it in the
present work.

We can see from Eq. (3.45) that the frequencies of g modes are inversely proportional to
their radial order n. This is an important property of g modes, which is equivalent to stating that
modes of consecutive radial orders are equally spaced in period. This will help us to identify g
modes in hydrodynamical simulations. This period spacing ∆Π is given by

∆Π =
1
ωn,ℓ
−

1
ωn+1,ℓ

=
π

√
ℓ(ℓ+1)

∫ r2

r1

N
r dr

(3.46)

Indeed this equation is independent of n, implying the constant period spacing of modes of
a given angular degree ℓ. From Eq. (3.37) and (3.42), we can express the eigenfunction of a
given g mode (n, ℓ), i.e. the radial displacement associated with this mode in the region where
it is oscillating

ξr(r) ≃ B
( √
ℓ(ℓ+1)
ω

)1/2

ρ−1/2r−3/2|
N2

ω2 −1|−1/4 cos

∫ r

r1

(
N2

ω2 −1
)1/2 dr′

r′
−
π

4

 (3.47)

with B a constant that fixes the amplitude. In order to get the eigenfunctions ξr;n,ℓ and eigen-
frequencies ωn,ℓ, we will solve the associated system numerically with the oscillations code
GYRE (Townsend et al., 2018; Townsend and Teitler, 2013). We will then be able to compare
their theoretical predictions to measurements made in hydrodynamical simulations presented in
Chapt. 6 and 7.
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Fig. 3.2 Adiabatic oscillation frequencies for a normal model of the present Sun, as functions of
angular degree ℓ. For clarity, points corresponding to modes with a given radial order have been
connected by straight lines. Only g modes with radial order less than 40 have been included.
Credits:Christensen-Dalsgaard (1988)

.

3.4.3 Acoustic modes

Acoustic modes, or p modes, are formed by superposition of progressive acoustic waves for
which the restoring force is the pressure gradient. These waves propagate between an inner r1

and an outer r2 turning points. In this case, the inner turning point is reached when the wave
frequency is equal to the local Lamb frequency, ω = Lℓ(rt). The outer one is generally close to
the photosphere (Unno et al., 1989) so we set r2 ≃ Rstar. This is the reason why global acoustic
modes can be easily observed as 5 minutes oscillations, as it was initially done for the Sun by
Leighton et al. (1962). As already mentioned in Sect. 3.3.2, the frequency of p modes is larger
than the Lamb and Brunt-Väisälä frequencies. We can assume that ω≫ N and therefore reduce
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Eq. (3.32) to

k2
r ≃

1
c2

s

(
L2
ℓ −ω

2
)
. (3.48)

As for g modes, we can thus determine an expression for the eigenfrequencies of high order
p modes. However, Eq. (3.43) can not be used directly because the formulation given by
Eq. (3.38) fails at ω = Lℓ. As detailed in Sect 7.5 of Christensen-Dalsgaard (2014), a similar
expression may be derived for p modes with the same method, but we will not derive it here for
simplicity. The eigenfrequencies of p modes are given by (Tassoul, 1980)

ωn,ℓ =

(
n+ ℓ/2+1/4+αp

)
π∫ Rstar

0
dr
cs

(3.49)

with αp a phase constant. The values of these eigenfrequencies as a function of angular
degree computed for the Sun are presented on Fig. 3.2. This expression highlights that the
eigenfrequencies of p modes of consecutive radial order are equally spaced in frequency. This
frequency spacing is given by

∆ωℓ = ωn+1,ℓ −ωn,ℓ = π

[∫ Rstar

0

dr
cs

]−1

. (3.50)

For the radial mode ℓ = 0, the frequency spacing is usually called the large frequency separation
and is written ∆ν. Note that a maximal frequency for p modes exists and is defined as the
cut-off frequency νac ∝ g/

√
Teff above which the atmosphere is not able to trap the modes and

propagating waves are not reflected and keep travelling in the stellar atmosphere (Hekker and
Mazumdar, 2014).

With this asymptotic method, we can also infer an asymptotic expression for the eigenfunc-
tions of high order p modes when assuming ω2≫ L2

ℓ

ξr ≃Cρ−1/2c−1/2r−1 cos
[
ω

∫ Rstar

r

dr′

cs
− (

1
4
+α)π

]
(3.51)

with C a constant fixing the amplitude. Interestingly, we can see from this expression that
the eigenfunctions of p modes are independent of their angular degree ℓ in the approximation
ω2≫ L2

ℓ
.

3.4.4 Mixed modes

Mixed modes are formed by coupling between acoustic and gravity modes. Therefore, a mixed
mode with frequency ω will present properties of a g mode in regions where ω2 < N2,L2

ℓ
, and
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the ones of a p mode in regions where ω2 > N2,L2
ℓ
. For this coupling to happen requires two

conditions: p and g modes should have similar frequencies and the evanescent region between
their respective resonant cavities should not be too large, allowing the oscillations to reach the
other cavity before being damped out. In that case, p and g modes with similar frequencies and
angular degrees will interact. This will affect their frequencies by a process known as avoided
crossing (e.g. Aizenman et al., 1977). This phenomenon is well known in atomic physics (von
Neuman and Wigner, 1929). It has been suggested by Christensen-Dalsgaard (2014) that it may
be understood as the coupling of two oscillators y1(t) and y2(t). In this formalism, the system is
described by the equations (Deheuvels and Michel, 2010)

d2y1

dt2
+ω2

1y1−α1,2y2 = 0 (3.52)

d2y2

dt2
+ω2

2y2−α1,2y1 = 0 (3.53)

where ω1 and ω2 are the eigenfrequencies of each oscillator respectively and α1,2 represents
the coupling between the two oscillators. When uncoupled (α1,2 = 0), the oscillators cross at
ω1 = ω2 = ω0. When coupled, the eigenfrequencies of the system formed by Eq. (3.52) and
(3.53) are given by

ω± =
ω2

1+ω
2
2

2
±

[(
ω2

1−ω
2
2)
)2
+4α2

1,2

]1/2
(3.54)

In the case when the coupling factor is small compared to the difference between the eigenfre-
quencies, α1,2≪ |ω

2
1−ω

2
2|, the eigenfrequencies of the system are close to ω1 and ω2. On the

other hand, if it is large, α1,2≫ |ω
2
1−ω

2
2|, the eigenfrequencies are estimated by ω2

± ≃ ω
2
0±α1,2.

In that case, the two oscillators "avoid" the frequency ω0 and the eigenmodes are mixed modes,
one with dominant properties from ω1 and the other one from ω2 (Hekker and Mazumdar,
2014).

The above method gives a good understanding of what are mixed modes, but we can use an
asymptotic method as in Sect. 3.4.1 to obtain the actual eigenfunctions and eigenfrequencies
corresponding to mixed modes. An important difference is that mixed modes have four turning
points, which are basically two from the g mode component, r1 and r2, and two for the p mode
one, r3 and r4. This is illustrated on the propagation diagram of a 1.3 M⊙ red giant star in Fig.
3.3.
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Fig. 3.3 Evolution of the Brunt-Väisälä N (blue line) and the Lamb frequencies for ℓ = 1, 5, 10,
25 and 100 (red lines) for a 1.3 M⊙ Red Giant star model. The containment regions are also
shown for g modes (blue shaded area) and p modes (red shaded area) of angular degree ℓ = 1
and frequency ω = 320 µHz.

The eigenfunctions are given by (Unno et al., 1989)

ξr(r) =



A1

csr
√
πρkr

(
|1−

L2
ℓ

ω2 |

)1/2
cos

(∫ r
r1

krdr− π4
)
, if r1≪ r≪ r2

A1

csr
√
πρkr

(
|1−

L2
ℓ

ω2 |

)1/2
[ 1√

2
sin

(∫ r2

r1
krdr

)
exp

(
−
∫ r

r2
|kr|dr

)
+ cos

(∫ r2

r1
krdr

)
exp

(∫ r
r2
|kr|dr

)
], if r2≪ r≪ r3

A2

csr
√
πρkr

(
|1−

L2
ℓ

ω2 |

)1/2
cos

(∫ r4

r krdr− π4
)
, if r3≪ r≪ r4.

(3.55)

where A1 and A2 are constants. For radii smaller than r1 or larger than r4, the eigenfunctions
are exponentially decaying with distance, i.e. waves are evanescent. The solution given by Eq.
(3.55) imply a condition for the eigenvalues that can be express as (Mosser et al., 2012)

tanθp = q tanθg (3.56)

where tanθp and tanθg are the acoustic and gravity waves phases. The dimensionless coefficient
q is called coupling factor and quantify the level of coupling between p and g modes. It is
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equivalent to the coefficient α1,2 mentioned in the simple analogy with the two oscillators. This
factor q is supposed to have values in the range [0,1/4] (Unno et al., 1989). Its actual value
depends on the properties of the g and p modes cavities, and particularly on the thickness of the
evanescent region between the two cavities (Takata, 2016). Finally, the condition Eq. (3.56)
gives the asymptotic expression for eigenfrequencies (Bugnet, 2020)

ωn,ℓ = ωp+
∆ωp

π
arctan

[
q tan

(
π

[
1
ω∆Πℓ

−
1

ωg∆Πℓ

])]
. (3.57)

with ωp and ωg the frequencies of the associated p and g modes and ∆ωp and ∆Πℓ are the
frequencies and periods spacing given by Eq. (3.50) and (3.46) respectively.



Chapter 4

Properties of internal gravity waves

In stably stratified fluids, it is now generally accepted that internal gravity waves (IGW)
can transport energy, chemical elements and angular momentum between distant regions.
Those waves have been well studied and observed in the Earth’s oceans and atmosphere (see
Sutherland (2010) for a complete review). It is in the oceans that they were first observed,
although indirectly, through the dead-water phenomenon by Nansen and Sverdrup (1897). This
phenomenon arises when a boat sailing over a stratified fluid is slowed down in comparison
to a homogeneous case (Fourdrinoy et al., 2020). In his PhD thesis, Ekman (1904) explained
that IGWs generated by the boat and propagating at the interface between saline and fresh
water could produce this effect. In the atmosphere, IGWs were observed later, but they are
now invoked to explain various phenomena. For instance, they are proposed as the mechanism
driving the Quasi Biennial Oscillation (QBO) by transporting angular momentum upward (see
for example Baldwin et al., 2001). The QBO is a reversal of the direction of the winds in the
stratosphere, with a period of approximately two years. These waves have also been studied
and/ or observed in the atmospheres of other planets of the solar system such as Mars, Venus,
Jupiter and Titan1. Compared to the Earth’s atmosphere and oceans, the study of IGWs in stars
is relatively recent, where they have been first studied theoretically in the solar atmosphere
(Stein, 1967) and then its interior. Nowadays, they are assumed to play a role in almost every
star, particularly related to angular momentum transport and chemical mixing. Consequently,
there is a lot to learn from the atmospheric science community.

1Titan is actually a moon of Saturn, but its atmospheric dynamics is similar to the one of rocky planets.
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4.1 Propagation

Internal gravity waves’ restoring force is buoyancy i.e. gravity, this is the reason why they
can only propagate in stably stratified media. In literature, it is common to find a distinction
between two types of gravity waves: surface and internal gravity waves. In this work, we will
focus on internal gravity waves, but the surface ones are just a particular case of internal waves
propagating at a discontinuity of density in the medium (Vallis, 2017).

In Sect. 3.3.2 we have identified the radial component kr of the wave vector k = (kr,kθ,kϕ).
A common practice when studying waves is to group together the two components perpendicular
to the radial one to define a horizontal wave vector kh = (kθ,kϕ). The norm of these vectors are
defined as k2 = k2

r +k2
θ +k2

ϕ and k2
h = k2

θ +k2
ϕ. Assuming the local plane wave approximation, we

can express the horizontal wavenumber kh as a function of spherical harmonic degree ℓ and
radius r with the relation

kh =

√
ℓ(ℓ+1)

r
. (4.1)

Then we can rewrite the dispersion relation Eq. (3.44) for IGWs as

ω2

N2 =
k2

h

k2 . (4.2)

Alternatively we can also express the frequency ω of an IGW in terms of the angle α between
the 3D wave vector k and the horizontal one kh

ω = ±N cosα, (4.3)

with cosα = ±kh/k. According to Eq. (4.3), the frequency of an IGW is only a function of N
and α. Therefore, if these quantities are given, the frequency of a wave does not depend on its
wavelength (Holton, 2004). The angle α is represented on Fig. 4.1. In this two-dimensional
schematic, we do not consider the ϕ-direction, therefore kh = kθ. This angle α can help to
estimate the frequency of dominant waves when looking at a snapshot from a hydrodynamical
simulation. This dispersion relation imposes the condition already mentioned in Sect. 6.4.3 on
the frequency of an IGW

ω ≤ N (4.4)

The maximal frequency of an IGW, ω = N corresponds to a wave propagating vertically, i.e.
radially in our case.

Using the dispersion relation given by Eq. (4.3), we can now retrieve the expressions of the
phase velocity up and the group velocity ug associated with an IGW. For the phase velocity we
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have
up =

ω

k
k
k
=

Nkh

k3 (kr,kh). (4.5)

From this relation it appears that the phase velocity depends on the wave vector, therefore
IGWs are dispersive waves. The group velocity is given by

ug =
∂ω

∂k
=

Nkr

k2

(
−

kh

k
,
kθkr

khk
,
kϕkr

khk

)
. (4.6)

Then the magnitude of the group velocity is

|ug| =
N
k

sinα. (4.7)

In Chapt. 6 and 7, using the group velocity, we will be able to estimate how fast energy is
transported radially by IGWs via measurement of the wave energy flux in simulations.

An interesting property of IGWs is that their group velocity and wave vector are perpendic-
ular

ug.k = 0. (4.8)

The group velocity is therefore parallel to the motions of the fluid parcels, i.e. IGWs are
transverse waves, as illustrated on Fig. 4.1. In addition, this also implies that the group velocity,
which corresponds to the velocity and direction of transport of energy, is perpendicular to the
phase velocity, i.e. to the direction of phase propagation. Particularly, we can see from Eq.
(4.5) and (4.6) that the phase and group velocities have opposite signs in the radial direction.
This implies that if the wave crests move outward, the energy moves inward, and vice versa
(see Sect. 7.3.4 in Vallis, 2017).

From the dispersion relation Eq. (4.3) and Eq. (4.8) it appears that the group velocity,
which describes the propagation of energy, is radial when the phase propagation is horizontal.
In other words, the closer the frequency ω of the wave is to the Brunt-Väisälä frequency N, the
more radially the energy propagates.

4.2 Damping by radiative diffusion

As they propagate, IGWs are dissipated by radiative and viscous effects. Both can be considered
as diffusive damping. In order to determine which one is dominant, we use the Prandtl number
Pr that compares the intensity of these two effects. It is expressed as

Pr =
ν

κrad
, (4.9)
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Fig. 4.1 An internal wave propagating in the direction k. For the wave shown kr is negative
and kθ is positive. The solid coloured lines show crests and troughs of the perturbation due to
an IGW. The motion of the fluid parcels is along the lines of constant phase, as shown, and is
parallel to the group velocity and perpendicular to the phase speed. Figure adapted from Vallis
(2017)

.

with ν the kinetic viscosity and κrad the radiative diffusivity defined as

κrad =
χ

cpρ
(4.10)

with χ the radiative conductivity already introduced in Sect. 2.2.2 in Eq. (2.20). In stars,
radiative effects largely dominate over viscous ones, therefore the Prandtl number is usually
very small, typically Pr ∼ 10−7. We will thus consider that in stellar interiors, radiative diffusion
is the main dissipative effect for IGWs. This is of major interest as it is through damping that
waves can transport angular momentum, energy and chemical elements. As we will see in
Chapt. 6, modelling a realistic radiative diffusion is not trivial in hydrodynamical simulations.
Therefore, these transport properties of IGWs should be studied with caution.

In order to take into account damping by radiative diffusion, we need to rewrite Eq. (3.38)
to consider non-adiabatic effects. To avoid long calculation, we will introduce a new form of
this equation, which is derived by Press (1981) for a perfect gas in a Boussinesq case with a
plane parallel symmetry. The Boussinesq approximation neglects all density variations, except
in the buoyancy term ρg of the momentum equation. Note that within this approximation, the
diffusion coefficients are assumed constant (Rieutord, 2015). This non-adiabatic wave equation



4.2 Damping by radiative diffusion 37

reads
∂2Ψ

∂r2 +

(
N2

ω2 −1
)
k2

hΨ+
iκrad

ω

(
∂2

∂r2 − k2
h

)2

Ψ = 0 (4.11)

with i is the imaginary unit and
ΨB ρ1/2

0 k−2
h vr, (4.12)

where ρ0 is assumed to be constant. To derive Eq. (4.11), the dispersion relation for IGWs
given by Eq. (3.44) has been used.

In Eq. (4.11) the last term corresponds to the non-adiabatic effects. As in Sect. 3.4, we
can use the JWKB method to solve this equation and obtain for the vertical component of the
velocity

vr =Ck3/2
h ρ

−1/2
0

(
N2

ω2 −1
)−1/4

exp
(
i
∫

krdr− iωt
)
exp(−τ/2) (4.13)

where C is a constant fixing the amplitude and the last exponential term represents the effect of
radiative damping. The parameter τ is defined as

τ(r, ℓ,ω) = [ℓ(ℓ+1)]3/2
∫ r

re

κrad
N3

ω4

(
N2

N2−ω2

)1/2 dr
r3 , (4.14)

where re is the radius at which the waves are excited.
In presence of a gradient of chemical composition, Zahn et al. (1997) have shown that this

parameter τ is slightly modified to

τ(r, ℓ,ω) = [ℓ(ℓ+1)]3/2
∫ r

re

κrad
NN2

t

ω4

(
N2

N2−ω2

)1/2 dr
r3 , (4.15)

with Nt the thermal part of the Brunt-Väisälä frequency. Indeed, due to the chemical gradient,
the expression of the Brunt-Väisälä frequency is slightly modified compared to Eq. (2.16). In
that case it is given by

N2 = N2
t +N2

µ =
gδ
Hp

(
∇ad −∇+

ϕ

δ
∇µ

)
, (4.16)

with ∇µ the compositional gradient and ϕ defined as

ϕB

(
∂ lnρ
∂ lnµ

)
. (4.17)

In absence of a gradient of composition ∇µ = 0 and N = Nt as in Eq. (2.16).
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4.3 Generation mechanisms

Generally speaking, any perturbation to a stably stratified radiative region can generate IGWs.
In this work, we consider that the main waves’ excitation mechanism is turbulent convection.
There are other mechanisms that could generate oscillations (κ and ϵ mechanisms, linked
respectively to opacities and nuclear reactions, or also excitation by tidal forces) but we are
not interested in them in the context of this thesis. Excitation by turbulent convection allows
generating IGWs in, or at the edge of, a convective region that will propagate in an adjacent
radiative zone. To date, the actual wave spectrum generated by this mechanism in stars remains
uncertain. There are some predictions from analytical models, as we will see, but none has
been observationally confirmed and hydrodynamical simulations do not always agree on this
(see for example Couston et al., 2018; Rogers et al., 2013). However, it is generally admitted
that this excitation mechanism has two distinct components:

• excitation by turbulent eddies, usually called Reynold’s stress, which generates waves by
turbulence in the bulk of convective zones.

• excitation by penetrative convection, when convective motions cross the convective
boundary and penetrate into the adjacent radiative region. These convective motions,
often referred to as plumes, produce a mechanical and thermal perturbations of the stable
zone.

These two generation mechanisms are described in the next sections.

4.3.1 Excitation by turbulent eddies

Convective regions are composed of chaotic, unsteady motions described as turbulence. This
produces pressure and density perturbations that can generate waves.

Inhomogeneous wave equation

To analytically predict the wave spectrum, a common method is to derive an inhomogeneous
wave equation from the momentum and the mass conservation equations. Once more, we
consider oscillations as small perturbations around a static equilibrium state, but unlike in
Chapt. 3, we keep the quadratic terms in eulerian perturbations. These non-linear terms are
considered as source terms in the inhomogeneous wave equation, which will take the form of a
forced oscillation’s equation

∂2ξ

∂t2
+L(ξ) = S (4.18)
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where L is a linear operator and S the considered non-linear source term. This method applied
to wave excitation by turbulence was initially developed by Lighthill (1952). In this pioneering
work, the authors study the sound generated by fluid motions in a turbulent homogeneous
medium.

The study by Lighthill (1952) was then extended to an isothermal stratified fluid by Stein
(1967), which allows considering the excitation of gravity waves. The main conclusion from
this work is that the excitation results from two source terms: turbulent Reynolds stress
and turbulent entropy fluctuations. The authors also show that the gravity waves emission
is proportional to the size of the largest eddies, the ones which bear the bulk of the energy.
Assuming a Kolmogorov spectrum for the turbulent flow (Kolmogorov, 1941) and an isothermal
stratified atmosphere, the total upward gravity waves flux is given by

Fwave ≃ 102ρ0v3
conv

H

(
H
Hp

)5

(4.19)

where vconv is the turbulent convective velocity scale, H is the characteristic length scale of
the largest eddies and Hp is the pressure scale height already introduce with Eq. (2.17). The
term ρ0v3

conv is a good approximation for the convective flux that can be derived from MLT
arguments (Biermann, 1932). The authors finally highlight that gravity waves emission is very
efficient, as the ratio H/Hp comes close to 1.

Twenty years later, Goldreich and Kumar (1990) get back to the study of waves generation
by turbulent convection using a similar methodology but more suited to a stellar case. In
this work, the authors solve the fully compressible inhomogeneous wave equation with the
divergence of the turbulent Reynold’s stress as the source term. Their aim is to estimate the
efficiency of the transfer of energy from the turbulent medium into the trapped modes and
the propagating waves. In this study also, the turbulence spectrum is approximated with a
Kolmogorov spectrum. They conclude that the amount of energy transferred from the turbulent
medium to propagating gravity waves scales as

Fwave ∝ ρ0v3
convMt, (4.20)

whereMt is the turbulent Mach number defined as

Mt =
vconv

cs
, (4.21)

and we usually haveMt ≪ 1 for stellar convective region. It appears that this result quan-
titatively differs from Stein (1967). This can be explained by different assumptions in the
model used. In Stein (1967), the authors considered an isothermal atmosphere, whereas in
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Goldreich and Kumar (1990) they considered a two-layer atmosphere, the upper one also
isothermal, but the lower one adiabatic with the turbulent convection confined in it. They also
explained that the excitation mainly occurs in the upper part of the convection zone, where the
turbulent Mach numberMt is maximal. Here, it is worth mentioning a remark from Lecoanet
and Quataert (2013): it looks like there are some ambiguities in the derivation of the wave
amplitude equation of Goldreich and Kumar (1990). The latter seem to assume that the pressure
perturbation terms, p1 are orthogonal under the weighting function 1/c2

s and they used the
normalization

∫
dzρc−2

s |p1|
2 ∼ 1. These two assumptions are true for acoustic waves, but not

for gravity waves. For internal gravity waves, the pressure perturbations are orthogonal under
the weighting function 1 and

∫
dzρc−2

s |p1|
2 ∼Mt.

Based on the work for the p modes excitation by Reynold’s stress from Goldreich et al.
(1994), Kumar et al. (1999) derive an expression for the wave flux per unit frequency in waves
just below the convective envelope of the Sun which is

Fwave =
ω2

4π

∫
dr
ρ2

r

(∂ξr∂r
)2

+ ℓ(ℓ+1)
(
∂ξh
∂r

)2exp
[
−

h2
ωℓ(ℓ+1)

2r2

]
v3L4

1+ (ωτL)15/2 , (4.22)

where L is the radial size of an energy bearing turbulent eddy, τL ≃ L/v is the characteristic
convective time, and hω is the size of the largest convective eddy of frequency ω at the radius r.
Once integrated over frequency and horizontal wavenumber they obtain the same expression
for the gravity waves flux as Goldreich and Kumar (1990) (see Eq. (4.20)). However, they
seem to use different assumptions than Goldreich et al. (1994) to model the correlation function
of convective eddies and waves, but they do not say it explicitly. In Kumar et al. (1999), it is
the Gaussian function in Eq. (4.22) that models the spatial correlation of waves and convective
eddies. In Goldreich et al. (1994), this correlation is modelled by a parameter of order unity
that describes the ratio of the horizontal to vertical correlation lengths of turbulent eddies.
Concerning the time correlation, Goldreich et al. (1994) interpolate between the contributions
of eddies with different sizes using the function

χk(ω) =
1+ (ωH/vconv)p

1+ (ωH/vconv)15/2+p
, (4.23)

with p a free parameter. Goldreich et al. (1994) set its value to 10 to get a good agreement with
observations whereas Kumar et al. (1999) fix it to 0, but the reason for this is not clear.

This method of solving an inhomogeneous wave equation was extended in a more complete
way by Belkacem et al. (2009) for IGWs. It is based on a work on p modes excitation by
Samadi and Goupil (2001) which generalised the contribution from Reynolds stress and entropy
fluctuations for any kind of energy spectrum, and not only the Kolmogorov one as assumed in
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previous works. In particular, it allows using an energy spectrum generated with hydrodynamic
simulations. The other main focus of that paper is to consider two different contributions in the
entropy fluctuations. The first one is the Lagrangian entropy fluctuations, and the second is
the one due to the advection of entropy by the turbulent velocity field. In the case of IGWs,
Belkacem et al. (2009) show that the entropy source term may be neglected as it is small
compared to the Reynolds stress one, whereas it is the opposite for acoustic modes (Goldreich
et al., 1994). The final expression for the excitation rate P of g modes, as derived by Belkacem
et al. (2009), is

P =
π3

2I

∫ M

0
dmρ0R(r)

∫ +∞

0
dkSk, (4.24)

with

Sk =
1
k2

∫ +∞

−∞

dωE2(k)χk(ω+ω0)χk(ω), (4.25)

where m is the local mass of fluid, E(k) the spatial kinetic energy spectrum, χk(ω) the eddy-
time correlation function. R(r) depends on the eigenfunction and is not given for simplicity.
However, the main benefit of Eq. (4.24) is that it remains very general. With some well-chosen
assumptions, it is possible to retrieve an equivalent formulation of previous works for the
excitation rate. This also implies that it is possible to use any energy spectrum E(k) and time
correlation function χk(ω) as input. Belkacem et al. (2009) suggest that it is better to use a
Lorentzian function for χk(ω) instead of the Gaussian function usually considered.

All the studies presented above did not consider different possibilities for the shape of the
temperature gradient at the convective-radiative interface. This problem was addressed for the
first time by Lecoanet and Quataert (2013) as they focused particularly on this transition region.
The authors derived an expression for the IGW flux spectrum using a different approach to
solve the inhomogeneous wave equation. Instead of the mode projection formalism commonly
used, they solved their equation using a Green’s function approach. The source term they
consider is the Reynold’s stress that they split into three components: a convection-convection
interaction term, as well as wave-convection and wave-wave interaction terms. They assume
that the convection-convection term, ∇ · (vconvvconv), is dominant compared to the other two.
They characterise the transition region between the convective and radiative zones by its width
d and the vertical (or radial) profile of the buoyancy frequency N2, or equivalently of the
temperature gradient, in this region. If d is small, the waves see a discontinuous transition. In
this case, Lecoanet and Quataert (2013) predict for the wave flux

dFD
wave

dlnωdlnkh
∝ ρv3

convMt (Hkh)4
(
ω

ωconv

)−13/2

, (4.26)
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with H the size of the largest convective eddies. If d is large, the waves see a smooth convective-
radiative transition and their flux depends on the profile of N2 in the transition region. Lecoanet
and Quataert (2013) consider two smooth cases: first, an abrupt but continuous transition
described by a piecewise linear profile for N2, which yields the scaling relation

dFL
wave

dlnωdlnkh
∼ ρv3

conv (Hkh)4
(
ω

ωconv

)−41/6

(khd)1/3. (4.27)

They also consider a smoother transition given by a tanh profile for N2, which yields

dFT
wave

dlnωdlnkh
∼ ρv3

conv

(
Hpkh

)4
(
ω

ωconv

)−15/2

(khd). (4.28)

In these three cases the IGWs spectrum is predicted to follow a power law whose steepness vary
with the shape of the temperature gradient at the interface. Once integrated over frequency and
horizontal wavenumber, the spectrum in the discontinuous case predicts a wave flux equivalent
to Eq. (4.20) from Goldreich and Kumar (1990) but they are different for the two smooth cases.
In the linear case it is

FL
wave ∼ ρv

3
convM

2/3
t

(
d

Hp

)1/3

, (4.29)

and in the tanh profile, it is

FT
wave ∼ ρv

3
conv

(
d

Hp

)
. (4.30)

Finally, this model predicts that the wave flux increase as the transition gets smoother. They
conclude that the real interface in the Sun should be intermediate between the smooth ones
considered, and thus predict a larger wave flux than previous estimations. This work implies
that waves of different frequency, i.e. with more or less large wavelength, will not see the
transition with the same steepness. Consequently, the IGWs spectrum in radiative zones of
stars does not only depend on the source but also on that transition region. To take into account
both these effects, we will compare the results of our hydrodynamical simulations with the
three cases of Lecoanet and Quataert (2013).

Other methods

Press (1981) developed an alternative method to determine the wave flux generated by con-
vective eddies. This model is based on the assumption of continuity of pressure perturbations
at the interface between the radiative and convective zones. In the case of an incompressible
medium, which is valid for low frequency IGWs, i.e. ω≪ N, it is possible to assume for an
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IGW that vh≫ vr. Then using the dispersion relation for IGWs, Press (1981) assume that

vh ≃
N
ω

vr. (4.31)

Assuming an equipartition of the energy of an IGW between its kinetic Ek and potential Ep

components, they estimate the total energy density E of an internal waves with

E = ρ
(N
ω

)2
v2

r . (4.32)

Multiplying this expression by the group velocity given by Eq. (4.6), they obtain an expression
for the radial energy flux of a single wave (ω, ℓ)

Fwave =
ρ(N2−ω2)−1/2

kh
v2

r . (4.33)

In this model, Press (1981) consider that waves are excited by eddies with only one frequency
ωconv and horizontal wavenumber kh,conv. Then, by matching the pressure perturbation on both
sides of the convective interface, they obtain

vr ∼
ω

kr
. (4.34)

The velocity associated with convective eddies is vconv = ωconv/kh,conv. Then the wave flux
becomes

Fwave ∼ ρv3
conv

ω

(N2−ω2)1/2 (4.35)

A decade later, Garcia Lopez and Spruit (1991) used a similar method but instead of
assuming the continuity of turbulent pressure at the interface, they consider that the turbulent
pressure fluctuations linked to convective eddies matches the waves density energy at the
interface between the convective and radiative regions. Another difference with Press (1981) is
that they consider convective eddies of different sizes for which the associated velocities veddies

are related with a Kolmogorov type law,

veddies(λ) = vconv

(
λ

H

)1/3
(4.36)

with λ the size of an eddy and H the size of the energy bearing eddies. The authors also consider
the decay of the flux amplitude resulting from the damping of waves by radiative diffusion as
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they propagate. Their expression for the wave flux is written

Fwave =
ρ

2π
(N2−ω2)1/2

N2
v2ω2

kh
exp

[
−

r− re

Ld(ω,kh)

]
(4.37)

with re the radius at which waves are excited and Ld(ω,kh) is the damping length of a wave
characterised by (ω, ℓ). It is defined as

Ld(ω,kh) =
ug,r

k2
r κrad

(4.38)

with ug,r the radial component of the group velocity defined in Eq. (4.6).

4.3.2 Excitation by penetrative convection

Wave generation by convective plumes that penetrate into the radiative region has received
less attention for the moment. Nevertheless, this excitation mechanism is more studied in
atmospheric sciences (see for example Townsend, 1966) and had already been observed in
simulations (see for example Dintrans et al., 2005). A first model was derived by Montalbán
and Schatzman (2000), based on the turbulent plume model of Rieutord and Zahn (1995).
For this model, Montalbán and Schatzman (2000) consider that the plumes penetrating in the
radiative zone create a turbulent shear flow just below the convective boundary. They derive an
expression for the velocity field in that layer based on the turbulent plume model of Rieutord
and Zahn (1995). The IGWs spectrum they obtain present a Gaussian dependence in frequency
and horizontal wavenumber

Fwave ∝ exp
(
−ℓ2b2−ω2τ2p

)
(4.39)

with b the width of a plume and τp the timescale associated with a plume in the penetration
region.

This model was then revisited by Pinçon et al. (2016), who consider plumes as having their
own identity in time and space and that they are independent of one another. They derive the
velocity field associated with one plume and first consider the excitation of waves by a single
plume. Once again, their method is based on solving an inhomogeneous wave equation like Eq.
(4.18) where the source term takes a form similar to a Reynold’s stress term

S = ∇ ·
(
Vp⊗Vp

)
, (4.40)

where Vp(r) is the velocity associated with a convective plume. Assuming that a plume is
localised in space and time, they use the velocity field proposed by Townsend (1966) for a
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single plume

Vp(r) = V0(r)exp

− S 2
h

2b2

exp

− t2

τ2p

er, (4.41)

with er the unit radial vector and S h the distance on the sphere from the centre of the plume.The
characteristic radius b and radial velocity field in the penetration zone V0(r) are derived from
the Rieutord and Zahn (1995) model of turbulent plumes. The expression for the radius is

b =
z0
√

2

3αE (Γ1−1)
2Γ1−1

, (4.42)

with z0 the thickness of the convective zone and αE = 0.083 an entrainment coefficient whose
value is taken from Turner (1986). From Zahn (1991), the vertical plume velocity is

V0(r) = Vb

1− (
z

Lp

)21/3

(4.43)

where z = rconv− r with rconv the radius of convective boundary defined by the Schwarzschild’s
criterion (see Eq. (2.13)) and Vb the initial vertical velocity field of the plume in the penetration
region defined as

Vb =

(
2Lstar

πρconvr2
conv

)1/3

, (4.44)

with ρconv the mean density at the base of the convective zone. In Eq. (4.43), the parameter Lp

is the penetration length or overshooting distance. In their model, Pinçon et al. (2016) consider
it as a free parameter, because its value is not well-defined. Indeed, theoretical estimation
(Zahn, 1991) and observations (Basu, 1997; Christensen-Dalsgaard et al., 2011) do not agree
on its value. However, they show that wave excitation is more efficient for smaller Lp.

Finally, considering a total of N independent plumes, the expression for the wave energy
flux per unit frequency is

Fwave(r,ω,ℓ,m) ∼
1

4πr2

ASp

2

ρconvV3
b

2
FR,ℓ

e−ω
2/4ν2p

νp
e−k2

h,convb2/2, (4.45)

where S p = πb2 is the area occupied by a single plume, kh,conv =
√
ℓ(ℓ+1)/r2

b is the horizontal
wavenumber at the convective boundary and νp = 1/τp is the frequency associated with a plume
lifetime. The Froude number at the base of the convective zone FR,ℓ is defined as

FR,ℓ =
Vbkh,conv

N0
, (4.46)
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where N0 is the value of the Brunt-Väisälä frequency at the bottom of the transition region,
in the sense of Zahn (1991), i.e. the region just below the penetration zone where thermal
diffusion dominates advection.

In their study, Pinçon et al. (2016) compare their prediction for the wave flux, Eq. (4.45) to
the model of Kumar et al. (1999), Eq. (4.22). Figure 4.2 shows this comparison. It appears
that the two mechanisms present a similar efficiency at exciting IGWs in terms of amplitude of
the wave flux. However, the plumes’ excitation seems to be more efficient at low frequency
between 1 and 5.5 ×10−6rad s−1, whereas the excitation by convective eddies takes over at
higher frequencies ω > 5.5×10−6rad s−1. At very low frequencies, ω < 10−6rad s−1 ∼ 0.16µHz,

Fig. 4.2 Mean radial wave energy flux per unit of frequency at the top of the radiative zone as
a function of the radian frequency, for any azimuthal number m and angular degrees ℓ = 1; 2
and 3, in the case of the plume-induced waves (solid lines) and the one of turbulence-induced
waves from the formalism of Kumar et al. (1999) (dashed lines). Credits: Pinçon et al. (2016)

.

it is unclear which process dominates, but in this thesis we will not study such low frequency
waves as it would require very high resolution simulation (see Sect. 6.7 for more details on the
problem of spatial resolution of IGWs). We will use these different models to compare their
predictions to results from hydrodynamical simulations (see Chapt. 6 and 7).



Chapter 5

Numerical modelling of stellar interiors

Observations of global modes of oscillations of stars allow us to probe their internal structure,
but also to get information about their mass, radius and age.In order to interpret correctly and
accurately these observations, we need to have a correct and precise description of the properties
of these modes and associated waves. Thanks to these observations, it is possible to confirm or
refute theoretical predictions concerning the internal structure and dynamics of stars. However,
a lot of phenomena occurring in stellar interiors are inherently three-dimensional, non-linear
and anisotropic, making them very difficult to model analytically. It is thus necessary to use
assumptions to develop theoretical models, which will then described physical phenomena in a
simplified way. Hydrodynamical simulations thus offer a great intermediate solution between
the unknown physics occurring in actual stars and the simplified description of theoretical
models. In the last decades, multidimensional simulations have proven to be very efficient to test
theoretical models and guide observations. However, as it will be explained in Chapt. 7, direct
comparison between multidimensional simulations and observations is not straightforward.
To ease this comparison, we can adapt results from two- and three-dimensional simulations
into one-dimensional parametrisation to implement them into evolutionary one-dimensional
models.

5.1 One-dimensional model

One dimensional modelling is the most common way of studying numerically stellar internal
structure and evolution. Its strength lies in the fact that it can model a star through almost
its entire evolution. This type of numerical modelling is not only used in the stellar physics
community, but also for the study of galaxies evolution or exoplanets atmospheres, for instance.

To model a star on evolutionary time scales, one dimensional models solve the equations of
stellar structure given in Sect. 2.2.1. The first stellar evolution codes were developed in the
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1960s (e.g. Kippenhahn et al., 1967). Today the method remains broadly the same, but it has
greatly benefitted from an increased precision in computation of opacities and equations of
state tables as well as nuclear reaction rates. In addition, parametrisation describing dynamical
processes linked to rotation, magnetism and some mixing processes have been clearly improved.
As a result, one-dimensional modelling combined with observations of high precision has
allowed to build realistic models of the Sun, known as standard or seismic models depending on
the type of observations used as described in Sect. 3.1 (see also Christensen-Dalsgaard, 2021,
for a recent review on solar modelling.). Figure 5.1 shows the relative difference in squared
sound speed c2

s (left panel) and density ρ (right panel) between model S and observations. The
Standard Solar Model known as model S is described in Christensen-Dalsgaard et al. (1996)
and is considered as a reference solar model. The relative differences are tiny, less than 0.5%
for the squared sound speed and less than 2% for the density. This highlights the success of
one-dimensional modelling, but also the quality of the observation we can get for the Sun.

Fig. 5.1 Relative difference in sound speed (left panel) and density (right panel) between
observational data of the Sun and Model S. Figure adapted from Basu et al. (2009).

However, Fig. 5.1 also reflects the limitations of one-dimensional modelling. Indeed,
one-dimensional models can not give any insight on the physical phenomena responsible
for the remaining discrepancies. The main reason for that is because this type of modelling
require assumptions that limit the complexity of the physics that could be involved. Particularly,
one-dimensional models are assumed quasi-static and dot no consider dynamical processes.
For instance, convection is modelled with the Mixing Length Theory, which only consider
eddies of one size and do not take into account convective penetration. Stars are assumed
spherically symmetric, which do not allow modelling fast rotators. The impact of waves,
rotation and magnetic fields on the stellar structure is only parametrised, forcing users to
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make crude approximations and to use free parameters. For instance, the transport of angular
momentum and the chemical mixing induced by IGWs is described using the JWKB method
introduced in Sect. 3.4 (see for example Talon and Charbonnel, 2005), which we know to
present limitations. In order to study and explain these discrepancies, it is necessary to develop a
new theory or to improve an existing one. A complementary method is to use multidimensional
(magneto-)hydrodynamical ((M)HD) modelling. We will present it in the next sections.

5.2 Multidimensional simulations and their challenges

5.2.1 Hydrodynamical simulations

Numerical simulations in two and three dimensions are used to solve the equations of (M)HD.
This makes it possible to study and analyse non-linear dynamical processes in a wide range
of astrophysical contexts. Indeed, these simulations are run to model stellar interiors and
atmospheres but also accretion disks, galaxy formations or (exo-)planetary atmospheres for
instance. The main differences between these applications are the temporal and spatial scales
characterising the modelled system, as well as the physical characteristics of the flows involved.

In the context of this thesis, we are only interested in hydrodynamical processes, so magnetic
field is neglected. Thus, the equations we would like to solve are the ones given by Eq. (3.9)
- (3.11). Unfortunately, there are no known general analytical solutions to these non-linear
equations, and we don’t even know if such a solution exists. This is why numerical simulations
are valuable tools, they can give approximate solutions to the equations of hydrodynamics. A
method to do this numerically consists in spatially discretizing the equations on a grid and to
evolve an initial solution over a given time in discrete time steps.

However, it is not that simple, solving numerically these equations is computationally very
expensive. A certain number of approximations are needed in order to run simulations and get
the results in a reasonable amount of time. The nature and number of these approximations
depends on the problem studied. First, it is possible to make assumptions about the spatial
scales that will be resolved. This is the distinction between Direct Numerical Simulations
(DNS) and Large Eddy Simulations (LES). In DNS, all scales of motions are resolved, from
the largest structure, which is typically the size of the system, down to the dissipation scale
lD. This implies that the size of a unit grid cell should be at most half the dissipation scale. In
stellar interiors, this dissipation scale is typically lD ∼ 1 cm in the convection zone (Canuto,
2009). Thus, running a DNS of the whole solar convective zone would require almost 1033

grid points (Kupka and Muthsam, 2017). This is far from possible with current computational
resources.
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The second approach, LES, aims to ignore the smallest scales, and can be viewed as a
kind of averaging of the hydrodynamical equations over a certain volume. Typically, most
of the inertial range associated with flow is resolved. This scale is much smaller than the
largest structure, at least one order of magnitude smaller. The inertial range is typically the
scale at which the non-linear advection dominates over everything. The LES approach allows
modelling the properties of the equations of hydrodynamics on grids with moderate resolutions.
This type of simulation needs a model for the small scales that are not resolved by the grid.
The model can be explicit, by adding extra terms to the equations that are solved. Or it can
be implicit, and the numerical viscosity has the role of representing the physical dissipation
happening at scales smaller than the grid. In that case, there is no need to add any extra terms in
the equations. The latter case is known as Implicit LES, or ILES and is the kind of simulations
we are using for the work presented in this thesis.

5.2.2 Spatial resolution

To have an idea of what can be achieved in terms of resolution with an LES, Kupka and
Muthsam (2017) states that at that time the highest resolution LES has been run by Muthsam
et al. (2011) and has a resolution of ∼ 3 km. This is more than 5 orders of magnitude larger
than the viscous dissipation scale lD. Nevertheless, this is still well below the driving scale,
which is typically the largest convective eddies in stars, generally assumed to be the size of
the convective zone. For a given simulation, the required spatial resolution depends on the
system studied. In the context of stellar hydrodynamical simulations, the wide range of length
scales involved is a major challenge. Indeed, the largest length scale correspond to the size of
the system, i.e. the radius of the star. The reference stellar radius is the one of the Sun. The
value adopted by the International Astronomical Union is R⊙ ≃ 6.957×108 m and has been
measured by (Haberreiter et al., 2008). In theory, the smallest scales that should be resolved are
the viscous dissipation scale and the photon mean-free-path, both of the order of the centimetre.
There is more than 10 orders of magnitude difference between these largest and smallest scales.
In addition, the characteristic length scale associated with a given thermodynamic quantity can
vary by order of magnitudes depending on the location within a star where it is measured.

Figure 5.2 presents the radial profile of the density in model S (Christensen-Dalsgaard et al.,
1996). The value of the density at the centre of the Sun is close to 102 gcm−3 and decrease
to almost 10−6 gcm−3 at the solar surface. Consequently, in order to model the whole Sun, it
would be necessary to consider variations in density of approximately 8 orders of magnitude.
This drop in density is particularly important close to the surface of the Sun. This is one of the
main reason why extension of the numerical domain to the photosphere is an open challenge
for stellar hydrodynamical simulations.
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Fig. 5.2 Radial profile of the density for the reference solar Model S. Credits: solar-
science.msfc.nasa.gov

.

5.2.3 The problem of timescales

Similar issues exist with the time scales involved. As described in Sect. 2.1, the lifetime of a
star on the main sequence is set by the nuclear timescale τnuc, given by Eq. (2.7), for which
a typical order of magnitude is 1010 years for low-mass stars. In the case of the Sun, other
relevant time scales for multidimensional simulations are the thermal timescale set by the
Kelvin-Helmholtz time τKH, see Eq. (2.6), which is about 107 years, the magnetic cycle period
τcycle ≃ 11 years, the rotation period of about 1 month, the convective timescale τconv which of
the order of ten days or time scales associated with waves τwaves which range from five minutes
to a few days. This is illustrated on Fig. 5.3. The difference between the longest, τnuc, and
the shortest, τwaves, is more than 15 orders of magnitude! It is clear that all of them can not
be studied at the same time. Therefore, we distinguish two types of numerical models. On
the one hand, evolutionary timescale, of the order of τnuc, are studied with one-dimensional
modelling, which neglect all dynamical processes (see Sect. 5.1). On the other hand, all
time scales of the order of a few years or shorter (in blue on Fig. 5.3), which are in principle
related to dynamical processes, are studied with (magneto-)hydrodynamical simulations. In
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Fig. 5.3 Schematic visualisation of the timescales relevant to stellar interiors. Adapted from
Käpylä et al. (2013).

.

this context, it is possible to consider that nuclear reactions are stationary and thus neglect the
nuclear timescale (in grey on Fig. 5.3).

The thermal timescale τKH, in red in Fig. 5.3, deserves a special discussion. Although much
larger than a year, it is relevant and even very important for multidimensional simulations. It is
the time required for the system to reach a thermally relaxed state. Rigorously, all simulations
should be run for at least a few thermal times before starting any analysis. In practice, this is far
beyond reach. The time step ∆tstep of a simulation is usually set by the Courant-Friedrichs-Lewy
(CFL) limit (Courant et al., 1928). It defines an upper limit for the time step with the criterion

∆tstep =C min(∆x)/max(|u|), (5.1)

with C a constant depending on the temporal and spatial discretisation scheme used (Kupka and
Muthsam, 2017) and ∆x the vector representing a unit grid cell. Thus, min∆x is the minimal
length associated with a grid cell in a given direction. At the denominator, the velocity u can
be any velocity involved in the simulation, such as the velocity of the flows v or the sound
speed cs. The CFL criterion ensures that any perturbation in the simulation can not cross
more than one cell in a one time step. To give an order of magnitude, the resulting typical
time step in a simulation of stellar interiors is usually several seconds. It would thus require
to run a simulation of the Sun for at least 1014 time steps to achieve thermal relaxation. The
computational cost needed to evolve the model for that long is too expensive. This issue of
thermal relaxation is actually an open problem for stellar hydrodynamical simulations (see
Chapt. 6).
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5.3 Modelling waves with multidimensional simulations

5.3.1 Time integration

As mentioned in the previous section, solving numerically the equations of hydrodynamics
require discretising them, both spatially and temporally. Concerning the temporal discretisation,
computing the solution from one time step to the next one require to integrate all the terms
involved in the equations. The method to do that is called a time integration scheme. In this
work, we consider low-Mach flows, i.e. velocity associated with fluid flows v are much smaller
than the sound speed cs. The Mach number Ma is defined as

Ma =
v
cs

(5.2)

with v a velocity associated with the flow, which in the convective zone we can assume to be
v = vconv. Then in the convective zone we have Ma =Mt, the turbulent Mach number defined
by Eq. (4.21). Generally, in the simulations considered in this work, we have Ma ≲ 10−3.
For such flow, the efficiency of the time integration method is a challenge. In most of the
existing codes, the equations of hydrodynamics are solved with an explicit time integration
scheme. This means that the solver uses the information at the current and previous time steps
to compute the value of a variable at the next time step. For instance, let’s consider the equation

∂u
∂t
= F(u), (5.3)

with u any variable and F an arbitrary function of u. An explicit method will compute the value
of u at the step n+1 with

un+1 = un+∆tF(un) (5.4)

with ∆t the computational time step and ui the value of u at step i = n,n+1. This kind of time
integration offers the main advantage of being relatively simple to implement, but it adds a
more severe constraint on the size of the time step (Glatzmaier, 2013). With explicit methods,
all relevant velocities involved in the simulations have to be taken into account in the CFL limit,
which is a condition for numerical stability (see Eq. 5.1). In the case of low-Mach flows, the
largest velocity is the sound speed, therefore in Eq. (5.1) we have u = cs This new limit really
imposes a very short computational time step as in that case cs≫ v .

One possible solution to avoid this strong constraint is to use an implicit time integration
scheme. For this method, the solver uses the information of current and next time steps to
update the value of a variable. To make this possible, the idea is to define a function G that
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depends on both the current and next values of the variable, such as

G(un+1,un) =
un+1−un

∆t
−F(un+1), (5.5)

and then to solve
G(un+1,un) = 0. (5.6)

These functions are generally complex to define and computationally expensive to solve. How-
ever, with this method, the numerical time step is not limited by numerical stability. It is limited
by the relevant physical phenomena in the simulations. For convenience, it is usual to also use
the CFL criterion, but the velocity at the denominator may be chosen by the user depending on
the desired accuracy. For instance, in simulations of convection, we can use the CFL criterion
for advection (see Eq. (5.1)), which is significantly larger than the one limited by the sound
speed in the case of low-Mach flows. Using explicit or implicit method or the other depends on
the problem studied. The hydrodynamical code used in this thesis is based on a time implicit
method (see Sect. 6.2.1).

5.3.2 Waves in hydrodynamical simulations

In the context of stellar hydrodynamics, the two types of waves described in Chapt. 3, i.e.
acoustic and internal gravity waves, can be modelled numerically. In order to accurately model
a given wave, it is essential to use a numerical time step ∆tstep much smaller than the period T
of this wave, i.e. ∆tstep≪ T . Acoustic waves are high frequency waves and thus require a very
short computational time step. Another issue related to the high frequency of acoustic waves is
the precision of the time integration, which arise in both explicit and implicit time integration.
This is different from the CFL limit, as it does not depend on the spatial grid. When temporally
resolving a wave with a period comparable to the time step, this will lead to integration errors
when solving the non-linear terms of the equations. With an explicit scheme the errors will
grow exponentially and with an implicit one the wave will be numerically damped out.

Internal gravity waves have received much more attention from the stellar hydrodynamical
community. The main reason for that is because the computational cost to model IGWs is less
than for acoustic waves. Indeed, to study IGWs it is possible to use the anelastic approximation,
which only allows subsonic flows. In order for anelastic approximation to be valid, perturbations
in density and temperature need to be small (Gough, 1969). This allows to rewrite the equations
of hydrodynamics in such a way that there is no acoustic wave solution (see Rieutord, 2015,
for more details on this approximation) The anelastic approximation is less restrictive than the
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Boussinesq one mentioned in Sect. 4.2, which is only valid for shallow motions. Then, it allows
including IGWs while filtering out the acoustic waves. One advantage from this approximation
is that it allows to use the CFL limit for advection given by Eq. (5.1). It is then computationally
less expensive to study phenomena over longer timescale.

The first observation of IGWs in hydrodynamical simulations goes back to Hurlburt et al.
(1986). Their two-dimensional simulations were run to study convective penetration, so they
do not analyse waves properties in many details. They at least confirm with a numerical experi-
ment that convection excites a broad spectrum of IGWs in stellar interiors. Shortly thereafter,
studies focusing specifically on the analysis of IGWs were published by Andersen (1994).
Using simulations with a cartesian geometry in two dimensions, they measure a spectrum for
IGWs excited by convection. Two years later, Andersen (1996) use similar simulations to
estimate the amplitude of g modes at the solar surface. In the early 2000s, Kiraga et al. (2003,
2005) compare the wave energy flux measured in two and three dimensions. They conclude
that two-dimensional simulations overestimate the wave energy flux compared to analytical
predictions. In a series of papers, Rogers and Glatzmaier (2005a,b, 2006); Rogers et al. (2006)
present simulations of an equatorial slice of the Sun with a more realistic stratification of
the radiative region which allows studying the interactions of waves with their environment,
particularly the transport of angular momentum through radiative damping. The degree of
realism has been further increased in the three-dimensional spherical simulations of Alvan
et al. (2014, 2015). In Alvan et al. (2014), the authors study the amplitude of waves in their
model and found a relatively good agreement with theoretical predictions. They emphasise the
relevance of using simulations as complement to observations. Alvan et al. (2015) isolate and
study individual waves to highlight the importance of running three-dimensional simulations to
study IGWs. All these studies presented above were focusing on solar model with the hope to
get new insights in the quest of solar g modes. However, there is still no confirmed detection
yet (Belkacem et al., 2022).

Stars more massive than approximately 2M⊙ possess a convective core and a radiative
envelope. Internal gravity waves are thus excited near the centre of the star and propagate
toward the surface. In principle, this should offer a better opportunity to observe IGWs and
then get constraints on the internal structure and dynamics of these stars, which are not very
well known. Interestingly, in these stars internal gravity waves propagate towards the surface
through a medium of decreasing density, which tend to increase their amplitude. These waves
are also damped by radiative diffusion as they travel, and are suggested to transport energy and
angular momentum and mix chemical elements through this mechanism (Schatzman, 1993).
Thus, the evolution of IGWs amplitude will depend on the interplay between growth due to
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decreasing density and decay due to radiative damping. It remains unclear if these waves should
be able to propagate up to the surface.

Ten years ago, Rogers et al. (2013) started to run simulations of these more massive stars
with the aim of focusing on IGWs. In their work, the authors focus on the relation between
rotation and IGWs using two-dimensional simulations of an equatorial slice of 3M⊙ star model.
They show that such waves are efficient at transporting angular momentum over large distance
on relatively short timescales. A few years later, Rogers and McElwaine (2017) use Lagrangian
particle tracers in similar simulations to study the transport of chemical elements by IGWs.
They show that in their simulations such mixing can be treated as a diffusive process, as was
already suggested in the literature (see for example Montalbán and Schatzman, 2000). The
generation and propagation of IGWs in radiative envelopes are studied in three-dimensional
simulations by Edelmann et al. (2019). As already suggested by Rogers et al. (2013), they
describe the spectrum of IGWs as a double power law, relatively flat at low frequencies and
steeper at larger ones. They conclude that their IGWs spectrum is significantly flatter than
the analytical predictions of Lecoanet and Quataert (2013), and could be compatible with the
plumes’ excitation model of Pinçon et al. (2016). The authors also suggest that IGWs could be
able to propagate up to the surface of the star and thus be observed by photometry.

Most of the studies presented above ran simulations with anelastic codes. Recently, Horst
et al. (2020) presented a fully compressible two-dimensional simulation of a 3M⊙ star model,
which makes it possible to observe acoustic waves. They show that a time-implicit fully
compressible set up allows to model IGWs of much lower frequencies than it is possible with
time-explicit anelastic simulations. The IGWs spectra they observe is relatively flat, like the
one described by Edelmann et al. (2019).

All the simulations presented until here are global stellar simulations, i.e. a large portion of
a star is modelled. However, it is also possible to run simulations with different set-up to study
IGWs. Indeed, as mentioned in Chapt. 4, these waves may be present in all stratified medium.
Recently, Couston et al. (2018) and Lecoanet et al. (2021) run simulations in cartesian geometry
to study IGWs generation by turbulent convection from a general fluid dynamics perspective,
not only in stellar interiors. In Couston et al. (2018), they are modelling this phenomenon using
a three-dimensional cartesian DNS. In these simulations, the convective layer is beneath the
radiative zone. On top of this radiative zone is added an absorption layer that damp IGWs to
avoid reflection. Therefore, they do not observe g modes. The authors distinguish two energy
quantities. There is the kinetic energy per unit surface area and unit (thermal) time K defined as

K(z) =
∫
|v|
2

dxdydt
L2Ts

(5.7)
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where L is the size of the box in the x and y directions and Ts is the period over which results
are integrated in time. This quantity is used to characterize the convection zone. Then there is
the z-dependent vertical energy flux F expressed as

F(z) =
∫

vr p
dxdydt
L2Ts

(5.8)

This expression is usually called the acoustic flux and is often used to quantify the energy flux
associated with IGWs in fluid dynamics (Lighthill, 1978). When measuring the vertical energy
flux F in their simulations, they obtain a similar dependence on frequency and wavenumber
than the wave flux given by Eq. (4.26) from Lecoanet and Quataert (2013). Because of the
presence of overshooting plumes near the convective boundary, they measure the wave flux in
their DNS results away from the interface and then interpolate it to have an expression of the
spectrum at the boundary. The wave flux then reads

dF
d logω d logkh

∼ FcMt(khH)4
(
ω

ωc

)−13/2

e−2γ(z−zi) , (5.9)

where zi is the vertical coordinate of the interface and γ = k3
hN3ω−4 is a damping coefficient that

could result either from viscous or radiative effects, as the Prandtl number is set to 1 in these
simulations. We can notice that the two expressions (4.26) and (5.9) are equal at the interface.
Lecoanet et al. (2021) run simulations with the same configurations but in two dimensions and
obtain similar results. They particularly insist on the point that it is surprising to find such a
good agreement in two dimensions. Indeed, the theory from Lecoanet and Quataert (2013) is
not supposed to be applicable for their two-dimensional simulations. They suggest there may
be an alternative explanation for this, but do not investigate further.





Chapter 6

Artificial luminosity enhancement in
hydrodynamical simulations of a solar-like
model

Thermal relaxation of simulations is one of the greatest open challenge in multidimensional
hydrodynamical modelling. The reasons for this were outlined in Sect. 5.2. The main physical
reason is that stars are very massive systems and consequently their thermal relaxation time,
given by Eq. (2.6) is extremely long compare to dynamical processes. It is thus computationally
impossible to reach thermal relaxation for a global simulation of a star just by running it one
time step after another. Several methods have been developed to face this problem (see Anders
et al., 2018, and reference there in) but all have their flaws. One tactic is to artificially increase
the stellar luminosity by several orders of magnitude. The aim of the work presented in this
chapter is to study the impact of such a technique on the internal structure and dynamics of
a stellar model. To do this, we performed two-dimensional fully compressible time-implicit
simulations of a solar-like model with different luminosities. We particularly focus on internal
gravity waves.

6.1 Facing the problem of thermal relaxation with a boost

To overcome numerical difficulties inherent to stellar hydrodynamics, particularly thermal
relaxation, an artificial increase in the stellar luminosity by several orders of magnitude is a
commonly used tactic. The reason for this is that the Kelvin-Helmholtz timescale is inversely
proportional to the luminosity of the star (see Eq. (2.6)). This technique, known as boosting
a stellar model, is widely use in the community (see for examples Brun et al., 2011, 2017;
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Cristini et al., 2017; Horst et al., 2020; Meakin and Arnett, 2007; Rogers and Glatzmaier,
2005a, 2006; Rogers et al., 2013; Tian et al., 2009). The enhancement factors take values
starting at 10 and going up to 107 for stars with a radiative zone (Edelmann et al., 2019) and
even 109 for the less luminous stars which are fully convective (Käpylä, 2021). An important
condition, when artificially increasing the luminosity of a simulation, is to also increase the
thermal diffusivity by the same amount. This is in order to preserve the structure of the star.
Indeed, the structure of the radiative zone depends on the temperature gradient, which can be
written using Eq. (2.19)

∇T ∝ −
Lstar

χ
(6.1)

with Lstar the luminosity of the star which we can assume to be given by Lstar = 4πr2Frad in the
radiative zone.

Another reason sometimes mentioned to defend the usage of this method is related to
numerical stability. The extra input of energy in the model makes it is possible to reach higher
convective velocities and thus to increase the Mach number of the simulations. Indeed, running
simulations with low Mach number is still a challenge for fully compressible set up (e.g. Miczek
et al., 2015).

At first glance, this tactic may seem justified: enhancing the luminosity adds more energy
to the simulation, and enhancing the thermal diffusivity increases the rate at which this energy
is transported. However, to our knowledge, no studies have been carried out to ensure that this
does not have an impact on the internal structure and dynamics of the stellar model. Recently,
Käpylä (2019) showed that an artificial modification of the heat conductivity in the radiative
and overshooting regions could impact the overshooting process. The question concerning the
impact on the properties of IGWs was raised by Lecoanet et al. (2019), but they did not study it.

6.2 Numerical simulations

6.2.1 The MUSIC code

To run simulations, we use the Multidimensional Stellar Implicit Code (MUSIC). A detailed
description of the code and of the time implicit integration method is available in Goffrey
et al. (2017); Viallet et al. (2011, 2016). Here, we provide a brief description of its main
characteristics. MUSIC solves the inviscid Euler equations in the presence of external gravity
and thermal diffusion. In other words, it solves the continuity and momentum equations given
by Eq. (3.9) and (3.10) respectively. Concerning the energy equations, MUSIC works with the
internal energy e so it solves Eq. (3.6). For the stellar simulations considered in this work, the
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major heat transport that contributes to thermal conductivity is radiative transfer characterised
by the radiative flux Frad, given within the diffusion approximation by Eq. (2.19). MUSIC uses
five variable that are the three components of the velocity field v (or two components in two
dimensions), the density ρ and the internal energy e.

The opacities are interpolated from the OPAL tables (Iglesias and Rogers, 1996) for solar
metallicity and the equation of state is based on the OPAL tables of (Rogers and Nayfonov,
2002), which are appropriate for the description of main-sequence stars interior structures.

MUSIC offers the possibility to run simulations in two and three dimensions, either in
cartesian and spherical geometry. In order to provide the initial structures for the multidi-
mensional simulations, MUSIC needs an initial radial profile of density and internal energy
computed with a 1D evolutionary model. In this work, we use the 1D Lyon stellar evolution
code (Baraffe et al., 1998; Baraffe and El Eid, 1991), using the same opacities and equation of
state as MUSIC. Different boundary conditions can be defined, but we will use the following
unless otherwise stated. The radial boundary conditions for the density correspond to a constant
radial derivative of the density (Pratt et al., 2016). The energy flux at the inner and outer radial
boundaries are set to the value of the energy flux at that radius in the 1D stellar evolution model.
At the boundaries in θ, because of the extension of the angular domain to the poles, reflective
boundary conditions for the density and the energy are used (i.e. the values are mirrored at the
boundary). For the velocity, we impose reflective conditions at the radial and polar boundaries,
corresponding to

• vr = 0 and ∂vθ∂r = 0 at rin and rout,

• ∂vr
∂θ = 0 and vθ = 0 at θ = 0 and θ = π.

6.2.2 Reference model

To initiate MUSIC simulations we use a radial profile structure close to the one of the Sun,
that is a solar mass star on the main-sequence with a convective envelope covering ∼ 30% of
the stellar radius. The motivation is to use an initial structure as close as possible to a realistic
stellar interior structure, as has been done in previous studies using MUSIC (see Pratt et al.,
2017, 2016). However, care should be taken, as the aim is to build a model that can be boosted.
Indeed, in the Sun the convection zone is not exactly adiabatic but slightly superadiabatic.
The superadiabaticity is defined as ∇ - ∇ad, the difference between the temperature gradient
and the adiabatic gradient, which are defined in Eq. (2.13). In the bulk of the convective
region the superadiabaticity is very small, typically smaller than 10−4 but at its outer edge
the superadiabaticity can be larger than 10−2. The outer structure is thus very sensitive to any
change of the opacity (and thus of the thermal diffusivity) and of the luminosity, as such changes
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will modify the superadiabaticity and thus the temperature stratification. Therefore, in order to
avoid a readjustment of the model structure when starting a hydrodynamical simulation using
MUSIC with enhanced luminosity and thermal diffusivity, the profile of the stellar structure
model must be adiabatic. We have thus constructed an artificial solar-like model, with our stellar
evolution code enforcing a very small superadiabaticity (<10−8) throughout the convective
zone. In this case, an increase in the luminosity and of the radiative diffusivity (or a decrease
of the opacity by the same factor) has no impact on the model structure (in terms of density
and temperature radial profiles). This yields a reference initial model slightly more compact
and hotter than a Standard Solar Model calculated with the MLT using αMLT = 1.9 (see Eq.
2.21), an initial helium abundance Y = 0.28 and metallicity Z = 0.02. Our adiabatic solar-like
model thus have a radius Rstar = 0.798R⊙ and luminosity Lstar = 1.074L⊙. The model is build
to ensure Mstar = 1M⊙. The left panel of Fig. 6.1 shows how these structural modifications
impact the density and radiative diffusivity profiles in the adiabatic model. These two quantities
are relevant for the study of IGWs as they drive the evolution of their amplitude (see Eq.
4.13). In addition to these changes, a shift of the Schwarzschild boundary towards smaller

Fig. 6.1 Radial profiles of the density ρ [gcm−3] and radiative diffusivity κrad [cm2s−1] (left
panel) and of the Brunt-Väisälä frequency [µHz](right panel) for our solar model (blue) and
adiabatic model (orange). Vertical dashed lines with the same colour code on the left panel
indicates the interface between convective and radiative zones as defined by the Schwarzschild
criterion. The hatched regions are not considered in the two-dimensional simulations.

radii happens in the adiabatic model. It is shifted from rconv = 0.728Rstar in the solar model
to rconv = 0.6734Rstar in the adiabatic model. The criterion for convective stability is based
on the temperature gradient (see Eq. 2.13) thus its modification near the interface probably
result in this shift of the convective boundary. This is also the reason why the model is more
compact and luminous. The shape of the profile away from the boundary is different in the
two models, resulting in the modification of the region where a given monochromatic wave
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can propagate. However, more importantly, the shape of N close to the boundary appears to be
conserved. Indeed, the radial profile of N in this region plays an important role for the excitation
of IGWs, as shown by the analytical work of Lecoanet and Quataert (2013) who found that
the IGW flux at the interface can vary by orders of magnitude depending on the steepness of
the Brunt-Väisälä profile at the boundary (see Sect. 4.3.1). This effect was also suggested by
Rogers (2015) and confirmed by the numerical simulations of Couston et al. (2017) showing
that increasing the stiffness of the interface (i.e. stronger stratification) decreases the IGW flux.

Using this adiabatic model, we can set up MUSIC simulations. Our reference simulations
for this study, named model ref, is a two-dimensional simulation of this adiabatic solar-like
model in a spherical shell using spherical coordinates, namely the radius r and the colatitude
θ, and assuming azimuthal symmetry in the ϕ-direction. In multidimensional simulations
of stellar interiors, it is usual to refer to a direction perpendicular to the radial one as the
horizontal direction. In the following, we identify the horizontal direction as corresponding
to the co-latitude (θ). The radial domain extends from rin = 0.4Rstar to rout = 0.9Rstar, and the
one in the co-latitudinal direction ranges from 0 to π, including the full hemisphere. We use a
uniform grid resolution of Nr ×Nθ = 512×512 cells. This provides a good resolution of the
pressure scale height at the Schwarzschild boundary Hp,conv/∆r ∼ 92, with ∆r = 550 km the
radial grid spacing. In the θ-direction, the typical size of a grid cell is 2300 km. The choice of
the resolution in the θ-direction is set by the requirement to preserve a good aspect ratio of the
grid cells on the whole domain on a spherical grid.

6.2.3 Boosted simulations

To artificially boost simulations, we use the following method. The energy flux, and equivalently
the luminosity, at the radial boundaries is multiplied by an enhancement factor, and the
Rosseland mean opacities κ in MUSIC are decreased by the same factor. In this work we
analyse the impact of enhancing the luminosity and thermal diffusivity by factors 10, 102 and
104. These three simulations are named boost1d1, boost1d2 and boost1d4 respectively. As
already mentioned, larger values of the boosting factor have been used in the literature, but our
range is sufficiently large to quantify the impact of the boost on penetrative convection and
IGWs. In order to quantify a dynamical timescale associated with a simulation, we define the
convective turnover time τconv as

τconv =

〈∫ rout

rconv

dr
vrms(r, t)

〉
t
= ω−1

conv, (6.2)
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Table 6.1 Summary of the two-dimensional simulations.

Simulation L/Lstar τ(a)
conv (s) N(b)

conv ω(c)
conv (µHz)

ref 1 8 ×105 565 1.25
boost1d1 101 3.6 ×105 375 2.78
boost1d2 102 1.7 ×105 450 5.88
boost1d4 104 3.5 ×104 530 28.57
a Convective turnover time (see Eq. (4.14) for its definition),
measured from our simulations.
b Number of convective turnover times used for this work.
c Convective turnover frequency associated with τconv

with vrms the root-mean-square velocity. The brackets ⟨.⟩t denote a time average, and it is
defined in Eq. (A.1). In Eq. (6.2) we also define the convective turnover frequency ωconv by the
frequency associated with the characteristic timescale τconv. We identify this frequency with
the characteristic frequency associated with convective eddies used in the various theoretical
models introduced in Sect. 4.3. The values of τconv and ωconv for our four simulations are
summarised in Table 6.1.

6.3 Velocities

6.3.1 Root-mean-square velocity

One of the main effects of artificially enhancing the luminosity of a numerical model is to
increase the fluid velocities. This is readily seen by looking at the root-mean-square (rms)
velocities, which we compute in this work as a mass-weighted squared velocity defined by Eq.
(A.3). We are using this definition for the vrms as it is the most relevant for comparison with
analytical models (see details in Appendix A).

Figure 6.2 shows the radial profile of the rms velocity (left panel) and of the rms velocity
normalised by the luminosity enhancement factor to a power 1/3 (right panel). For each
simulation the profile is computed over ∼ 375τconv and the corresponding value of τconv is
given in Table 6.1. Our numerical simulations reproduce the expected scaling of vrms in the
convective zone with the luminosity

vrms ∝ L1/3. (6.3)

This relation is expected from theoretical arguments based on the MLT (Biermann, 1932) and
confirmed by many hydrodynamical simulations (Andrassy et al., 2020; Edelmann et al., 2019;
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Fig. 6.2 Radial evolution of the rms velocity for the four simulations ref, boost1d1, boost1d2,
and boost1d4. The convective boundary corresponding to the Schwarzschild criterion from the
one-dimensional initial model is indicated by the vertical dashed line.

Porter and Woodward, 2000; Viallet et al., 2013, e.g.). The rms velocities observed in the
radiative zone are mainly due to the propagation of internal waves. The left panel of Fig. 6.2
shows that the rms velocity amplitude of the oscillatory motions increases with the luminosity
enhancement factor.

Figure 6.2 also shows deeper penetration of the convective motions below the convective
boundary and larger overshooting depth with increasing luminosity (see Baraffe et al., 2021,
for a detailed study of penetrative convection in these simulations.). The extension of the
overshooting length with increasing luminosity is expected from theory (Rempel, 2004; Zahn,
1991) and has also been reported in previous numerical simulations (see for example Hotta,
2017; Käpylä, 2019). Larger velocities in the convective zone and in the overshooting layer
with enhanced luminosity factor will impact IGWs as they are excited by turbulent convection
in the convective zone and by penetrating flows across the convective boundary. This will be
studied in Sect. 6.5.

6.3.2 Radial velocity

The excitation of waves at the convective boundary and their propagation in the stably stratified
region is well illustrated in Fig. 6.3, which displays the normalised radial velocity in the
two-dimensional plane for the four simulations. The radial velocity vr is normalised by the rms
radial velocity, vr,rms(r), for better visualisation, as the amplitude of the velocity in the radiative
zone can be several orders of magnitude smaller than its typical value in the convective zone
(see Fig. 6.2). In the convective envelope, we can clearly see upward (red) and downward
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Fig. 6.3 Visualisation of the radial velocity for the four stellar simulations ref, boost1d1,
boost1d2, and boost1d4 as a function of radius r and co-latitude θ. The radial velocity is
normalised by the rms radial velocity.

(blue) flows characterising the convective motions, and these patterns are quite similar in the
four simulations. Whereas in the radiative region (r < 0.6734Rstar) the patterns are different
with different luminosity enhancement factors. In model ref, the thin concentric circles are
characteristics of IGW wavefronts. These circular wavefronts are in fact spirals, and their
inclination with respect to the convective boundary reflects the frequency of the wave (Stein,
1967). This is a consequence of the dispersion relation for IGWs given by Eq. (4.3). Therefore,
the higher the frequency, the smaller the angle α and the less horizontal the wavefront. This is
known as the St. Andrews cross (Sutherland, 2010).

For boost1d1 and boost1d2, it can be seen in Fig. 6.3 that the inclination of the wavefronts
increases compared to ref. This suggests that the dominant waves have higher frequencies. We
confirm this pattern in Sect. 6.5. For the most boosted simulation boost1d4, the characteristic
spiral structures in the radiative zone are not visible any more.

6.4 Radial kinetic energy spectra

Given that IGWs result from the dynamical interaction between the convective and radiative
zones, the radial kinetic energy spectra in both regions are useful diagnostics to analyse the
properties of waves. Since waves are periodic phenomena in space and time, our analysis is
performed in the spectral domain, both spatially and temporally. In the following, we use a
temporal Fourier transform of the radial velocity vr(r, θ, t) to obtain a dependence in frequency
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ω, ṽr(r, θ,ω). We then perform a projection on the spherical harmonics basis to obtain v̂r(r, ℓ,ω),
where ℓ is the spherical harmonic degree. The definition we are using for spherical harmonics
and Fourier transform are given in Appendix B.

6.4.1 Convective zone

We first analyse the power spectrum of the radial velocity in the convective zone for all
simulations. An important quantity in this context is the convective turnover timescale, τconv

(see Eq. (4.14)), which defines a characteristic frequency ωconv associated with the convection.
Equations (4.14) and (6.3) imply the scaling relation ωconv ∝ L1/3. The values of ωconv for
each simulation are provided in Table 6.1. As we will see in the following, the characteristic
convective turnover frequency is particularly relevant for present analysis.

Figure 6.4 shows the power spectrum of the radial velocity P[v̂2
r ] (see Eq. (B.5) for its

definition), at a radius r = 0.762Rtot, which is located in the bulk of the convective envelope for
the four numerical models. We note that the power spectrum barely depends on the location
r within the convection zone, as long as r is far enough from the top and bottom boundaries.
Based on the scaling relations for the velocities and the convective frequency with the luminosity
enhancement factor, the power spectra displayed in Fig. 6.4 are calculated with the velocity
divided by (L/Lstar)1/3. For all simulations, the power spectrum values range between 10−5

and 102 cm2s−2. By also dividing the frequency ω by ωconv, providing the same range of
normalised frequency for all four simulations between 0 to ∼ 35 (see right y-axis in Fig. 6.4),
one obtains very similar spectra for all simulations. All numerical models show a significant
amount of energy for frequencies up to ω/ωconv ∼ 5 and for harmonic degree ℓ between 0 and
100. It is thus interesting to find that a proper rescaling can provide similar power spectra
independently of the luminosity enhancement factor. But the actual frequency range is very
different for each simulation, with an increase of power in high frequencies for larger luminosity
enhancement factors. The normalised frequency value ω/ωconv ∼ 5 corresponds to ∼ 6µHz for
the ref simulation, ∼ 14µHz for boost1d1, ∼ 30µHz for boost1d2 and ∼ 145µHz for boost1d4.
Thus, the higher the boost, the larger the energy in convective eddies of high frequencies.

6.4.2 Radiative zone

We now analyse the power spectra of the radial velocity in the radiative zone. Figure 6.5 shows
the power spectra of the radial velocity at radius r = 0.494Rtot, which is approximately at two
pressure scale heights Hp,conv from the convective boundary.

At such a depth, located far away from the convective boundary, one can reasonably assume
that the waves are the main contributor to the velocity and that the contribution from penetrative
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Fig. 6.4 Power spectra of the radial velocity for the four stellar simulations ref, boost1d1,
boost1d2, and boost1d4, respectively, in the convective zone at depth r = 0.762Rtot. The spectra
were obtained via mode projection on the spherical harmonics basis and a temporal Fourier
transform of the radial velocity. The radial velocities are normalised by (L/Lstar)1/3 (see text
Sect. 6.4.1).

plumes is negligible. Velocities are not rescaled, and the magnitudes represented by the colour
bar are different for each simulation in Fig. 6.5.

A pattern of bright ridges of high energy is present in the four panels of Fig. 6.5. This
structure is similar to the one obtained by linear theory, see Fig. 3.2, and by other numerical
simulations of solar-like stars (Alvan et al., 2014, 2015) and of more massive stars with a
convective core (Horst et al., 2020). These bright ridges present a discrete nature, and the
observed bright dots correspond to g modes that form in the radiative zone. The g mode patterns
have similar structures for the four numerical models, even if they are only visible at low ℓ in
boost1d4. As will be shown in Sect. 6.4.3, the eigenfrequencies of the g modes are not affected
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Fig. 6.5 Power spectra of the radial velocity for the four stellar simulations ref (top
left), boost1d1 (top right), boost1d2 (bottom left), and boost1d4 (bottom right) at depth
r = 0.494Rstar ≃ rconv − 2Hp,conv. They were obtained via mode projection on the spherical
harmonics basis and a temporal Fourier transform of the radial velocity. Velocities are not
rescaled, and the magnitudes represented by the colour bar are different for each simulation.
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by the artificial enhancement of the luminosity over the simulated time. These frequencies
depend only on the stratification and the geometry of the resonant cavity limited by the inner
boundary, located at rin = 0.4Rstar in present simulations, and by the radiative/convective
boundary rconv.

The power spectra in Fig. 6.5 are displayed for frequencies ranging from 0 to 500µHz
and for degrees ℓ from 0 to 200. In order to reach such high frequencies, the simulation data
need to be sampled at a fixed time interval that is short enough (≤ 103s) to capture the full
spectrum of the waves up to the Brunt-Väisälä frequency. According to the right panel of Fig.
6.1, the maximal frequency for IGWs propagating at radius r = 0.494Rtot is ≃ 370µHz. We
thus identify the modes observed at low degrees, ℓ ≃ 1,2 or 3, and at frequencies of ∼ 400µHz
or above as standing acoustic waves, or p-modes. The study of p-modes is beyond the scope
of this work. Figure 6.5 clearly shows that the larger the luminosity enhancement factor, the
higher the energy of high frequency waves. This trend is consistent with theoretical models. For
waves excited by turbulent Reynolds stress, Lecoanet and Quataert (2013) predict a peak of the
IGW flux for waves with frequencies close to the convective turnover frequency, ωconv, which
increases with the luminosity enhancement factor. For waves generated by penetrative plumes,
Pinçon et al. (2016) suggest that when the frequency associated with the lifetime of the plumes
increases, there is a redistribution of the wave energy from low frequencies towards higher
frequencies. The lifetime of the plumes can be linked to their velocities in the overshooting
layer, which significantly increase with the luminosity enhancement factor (see Sect. 6.3.1 and
Baraffe et al. (2021)).

In terms of length scales, Fig. 6.5 shows that most of the energy tends to be concentrated
in waves of lower degree ℓ for increasing luminosity enhancement factors. The higher the
enhancement factor is, the lower the energy in waves of small length scales (high ℓ) compared to
the larger ones (low ℓ). This can also be expected from theory, eddies with characteristic degree
ℓeddy will excite waves of degree ℓ ≤ ℓeddy (Lecoanet and Quataert, 2013). This assumption
comes from the statistical properties of stellar convection using Kolmogorov turbulence and is
often used to model convection in the context of IGW excitation (Goldreich and Keeley, 1977;
Goldreich and Kumar, 1990; Stein, 1967; Zahn et al., 1997). It can be expressed as

ℓeddy ∼ H
(
ω

ωconv

)3/2

, (6.4)

where H corresponds to the size of the largest convective eddies. Based on a comparison of the
flow for all simulations, we assume that H is the same for the four numerical models; thus, the
value of ℓeddy for a given frequency is smaller for a more boosted simulation.
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The results presented in this section highlight that the waves that bear most of the energy
have different frequency and spatial ranges for each simulation. In the ref simulation most of
the energy is below ∼ 30µHz and spread over all ℓ (up to 200) while it is above ∼ 50µHz and
for 0 ≤ ℓ ≤ 100 for the boost1d4 simulation. In addition to Sect. 6.4.1, these results confirm
the theoretical expectations that convective eddies with higher frequencies excite IGWs with
higher frequencies (Kumar et al., 1999; Lecoanet and Quataert, 2013). This should be kept in
mind when studying IGWs, and particularly energy and angular momentum transport, as they
strongly depend on the frequencies and angular degrees of the waves that can be excited (see
for example Zahn et al., 1997).

6.4.3 g modes

In order to confirm that the bright dots patterns of Fig. 6.5 are indeed g modes, we compare their
frequencies along ℓ slices to the results of a linear stability analysis using the stellar oscillation
code GYRE (Version 6.0)1 (Goldstein and Townsend, 2020; Townsend et al., 2018; Townsend
and Teitler, 2013). This code solves the oscillation equations given by Eq. (3.23) - (3.25),
and provides the eigenfrequencies and eigenfunctions characteristic of a one-dimensional
stellar structure model. As an input to GYRE, we used the initial one-dimensional radial
profile common to all four simulations, with a domain geometry corresponding to the radially
truncated domain of our simulations.

Figure 6.6 shows slices of the spectra of Fig. 6.5 for harmonic degree ℓ = 5. The peaks
in the spectra correspond to the bright dots of Fig. 6.5. Those peaks obtained from the four
MUSIC simulations closely match the predictions of GYRE (vertical dashed lines) for the
g-mode frequencies. For better visibility, we do not plot the GYRE predictions for modes with
frequency lower than 12 µHz. The degree ℓ = 5 is chosen arbitrarily; we also found a good
match for the other angular degree we tested, such as ℓ = 1, 2, and 10. For each numerical
model, the energy spectrum peaks at a different frequency. For the ref simulation, the peak
is visually identified at ≃ 2µHz, for boost1d1 at ≃ 3.5µHz, for boost1d2 at ≃ 6µHz and for
boost1d4 at ≃ 25µHz. These frequencies are rather close to the convective turnover frequency
of the corresponding simulation (see Table 6.1). The location of the maximum power is linked
to the excitation of IGWs as analysed in the next section.

1https://gyre.readthedocs.io/
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Fig. 6.6 Power spectrum of the radial velocity as a function of frequency at degree ℓ = 5 for the
four simulations ref, boost1d1, boost1d2, and boost1d4 at depth r = 0.494 Rstar ≃ rconv−2Hp,conv.
The vertical dashed blue lines correspond to g-mode frequencies predicted by GYRE.

6.5 Excitation and damping of internal gravity waves

6.5.1 Radial evolution of power spectra

Next, the aim is to understand the impact of the luminosity enhancement on the excitation
of IGWs and their propagation in the radiative zone. To do so, we analyse in this section the
evolution with depth of the power spectral density (PSD) of the radial velocity summed over the
harmonic degree ℓ, which determines which frequencies contribute the most to the energy. The
relation between the power spectrum, P[v̂2

r ], and the PSD, PSD[v̂2
r ], is given in our conventions

by

P[v̂2
r ] =

PSD[v̂2
r ]

Ts
, (6.5)

with Ts the sampling time that corresponds to the total time span used for the computations of
the spectra. In order to compare the amount of power in log-sized, non-uniform frequency bins,
we look at PSDlnω, the PSD in terms of lnω, defined by

PSDlnωdlnω = PSDdω. (6.6)
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Figure 6.7 shows
PSDlnω[v̂2

r ](r,ω) =
∑
ℓ

ωPSD[v̂2
r ](r, ℓ,ω) (6.7)

at selected radii in the convective and radiative zones for the four simulations. The spectra
are computed over a simulated time of 200×τconv for ref, boost1d1 and boost1d2 and 500×
τconv for boost1d4. This is because τconv is short for simulation boost1d4 compared to other
simulations (see Table 6.1). For each simulation the frequency range covered by the spectra are
different as we focus on the range that bears most of the energy (see Sect. 6.4.2). Moreover, the
flattening of the slope of the spectra close to the maximal frequency for each simulation results
from numerical aliasing. This does not impact our analysis, as we focus on frequencies below
the affected range.

Fig. 6.7 PSD of the radial velocity as a function of frequency for the four simulations ref (top
left), boost1d1 (top right), boost1d2 (bottom left), and boost1d4 (bottom right) at different
depths. The vertical grey line indicates the convective frequency for each simulation. The
spectra are obtained via mode projection on the spherical harmonics basis and a temporal
Fourier transform of the radial velocity.
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Table 6.2 Characteristics lengths lbulk and lmax derived in Baraffe et al. (2021).

Simulation lbulk/Rstar lbulk/Hp,conv lmax/Rstar lmax/Hp,conv
ref 2.35×10−3 2.62×10−2 1.12×10−2 0.124
boost1d1 4.72×10−3 5.24×10−2 1.45×10−2 0.161
boost1d2 1.04×10−2 0.115 2.47×10−2 0.275
boost1d4 2.82×10−2 0.313 7.1×10−2 0.787
Values of lbulk and lmax based on the vertical heat flux.

We show in Fig. 6.7 that in the bulk of the convective zone, at r = 0.717Rstar ≃ rconv +

Hp,conv (brown curve), the energy of all four simulations is increasing with frequency up to
approximately the convective frequency, ωconv, which is indicated by the vertical grey line.
Then, the energy decreases towards higher frequencies, consistent with the results presented in
Sect. 6.4.1. Just below the convective boundary, velocities are the result of a mix of convective
penetration and waves.

In Baraffe et al. (2021), we define a layer of characteristic length lbulk as the distance that
convective plumes typically penetrate, and a larger penetration length lmax characterised by the
most vigorous convective plumes. These lengths are estimated using an approach developed by
Pratt et al. (2017) based on a statistical analysis of the depth reached by all convective plumes
that penetrate in the radiative region. They use two different criteria to compute lbulk and lmax

but the method is identical for both. The depth reach by a penetrative plume r0 at a given
angle θ and time t is defined as the first zero below the convective boundary of an energy flux.
The first criterion uses the vertical kinetic energy flux fk(r, θ, t) = 1

2ρv
2vr, and the second one

considers instead the vertical heat flux fδT (r, θ, t) = ρcp(δT )vr. In this work, we consider the
criterion based on the vertical heat flux. Therefore, the penetration length l0 is defined as

l0(θ, t) = rconv− r0(θ, t). (6.8)

We then define characteristic length lbulk where convective plumes frequently penetrate as

lbulk = ⟨l0(θ, t)⟩S,t , (6.9)

and the maximal length of penetration of plumes lmax as

lmax =

〈
max
θ

(l0(θ, t))
〉

t
. (6.10)

The values of lbulk and lmax derived in Baraffe et al. (2021) and used in this work are given in
Table 6.2.
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Figure 6.7 shows spectra in the radiative - convective transition region, at r = 0.673Rstar

(red curve), and at r = rconv− lbulk (yellow curve) for all simulations.
We first discuss simulations ref, boost1d1 and boost1d2. Compared to spectra above the

convective boundary, the energy increases up to some characteristic frequency and sharply
drops beyond. As the luminosity enhancement factor increases, the knee of the spectrum shifts
to higher frequencies; in addition, the spectra above and just below the convective boundary
(brown, red, yellow curves) become closer to each other, indicating that vigorous convection
increasingly dominates at the top of the penetration region.

Finally, at even deeper layers inside the radiative zone, the PSDs are dominated by waves,
excited from above and propagating in the radiative zone of the star while also undergoing
damping (Press, 1981), which we analyse in Sect. 6.6.2. The deepest spectra displayed in
Fig. 6.7 correspond to the depths r = 0.583Rstar ≃ rconv −Hp,conv (blue) and r = 0.494Rstar ≃

rconv−2Hp,conv (purple curve). In this region, the spectra present high-amplitude narrow peaks
corresponding to g modes. The amplitude of these spectra is also decreasing towards low
frequencies, reaching a peak for some ω, which corresponds approximately to the frequency at
which the spectra computed just below the convective boundary (red and yellow curves) reach
their maxima. However, at low frequency we can observe a modification of the aspect of the
spectra. In this range there are no more g modes, due to the stronger damping of low-ω waves
(see Sect. 6.6.2).

The PSD computed at a distance lmax from the convective boundary (green curve) is a mix
of the spectra just below the convective boundary (red and yellow) and the ones deeper in
the radiative zone (blue and purple). Indeed, very little of the convective motions penetrate
that deep in the radiative zone, and below a depth of lmax, the wave signal dominates the spectra.

In Fig. 6.7, the most boosted numerical model boost1d4 is qualitatively different and
deserves special discussion. Firstly, its spectra just below the convective boundary (red, yellow)
are very similar to the spectrum in the convection zone (brown). This could result from the layer
becoming very close to convective below the boundary: as noted in Baraffe et al. (2021), the
thermal background in the overshooting layer of this model is significantly modified during the
course of the simulation, with the temperature profile getting steeper and closer to the adiabatic
gradient. Secondly, in the region r ≤ rconv− lmax of the radiative zone where only waves remain,
the spectra are monotonically increasing, compared to their less boosted counterparts, up until
the Brunt-Väisälä frequency (N ≃ 370µHz at r = 0.494Rstar), after which the energy drops
suddenly, since IGWs are evanescent above this frequency. The energy spectra are therefore
‘clipped’ at high frequencies ω ≥ N, resulting in a significant redistribution of wave energies.
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6.5.2 Amplitude of oscillatory motions across the convective boundary

In this subsection, we analyse the decrease in the radial velocity amplitude between the
convective zone and the radiative zone. To this end, we study the IGWs wave luminosity as a
function of depth. The luminosity associated with a monochromatic IGW is defined as

Lwave(r, ℓ,ω) = 4πr2Fwave(r, ℓ,ω), (6.11)

with Fwave the wave energy flux for the considered wave. In order to calculate wave fluxes from
our numerical simulations and compare them to theoretical predictions, we estimate the wave
energy flux for a monochromatic IGW (ω, ℓ) as (Lecoanet and Quataert, 2013; Press, 1981)

Fwave ∼ ρ|v̂h|
2ug,r, (6.12)

where we have assumed that vh ≫ vr in the radiative zone, which is true for low frequency
waves. We recall that in our two-dimensional case, we identify vh = vθ. The radial component
of the group velocity has been derived in Eq. (4.6) and using the dispersion relation of IGWs
Eq. (4.2) we can rewrite as (Unno et al., 1989)

ug,r ≃
ω2

Nkh
, (6.13)

where it is assumed that ω≪ N. Moreover, from Press (1981), we have (see Eq. 4.31

vh ≃
N
ω

v̂r. (6.14)

The wave flux is thus
Fwave ∼ ρ

N
kh
|vr|

2. (6.15)

Following our definition Eq. (B.5) of the power spectrum

|vr|
2 ∼

P[v̂2
r ]

2
, (6.16)

our final expression for the flux for an individual IGW mode (ω, ℓ) at radius r is

Fwave(r, ℓ,ω) ∼
1
2
ρ

N
kh

P[v̂2
r ](r, ℓ,ω). (6.17)
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This expression is equivalent to the one from (Press, 1981) given by Eq. (4.33) in the low
frequency limit. The horizontally averaged luminosity of a superposition of modes, Eq. (6.11),
is therefore given, through Eq. (6.17), by the total power summed across all ℓ.

Figure 6.8 shows the radial evolution of the horizontally averaged IGW luminosity at six
different frequencies for the four simulations. The luminosities are normalised by their value
at the convective boundary (horizontal solid black line), allowing us to compare the depth
dependence across the different frequencies. In the absence of damping effects, the wave
luminosity of propagating IGWs is conserved, making it a useful quantity for studying the
decay of the wave amplitudes as they travel inwards, away from the convective boundary.

All four numerical models show a peak of the wave luminosity at r ∼ rconv− lbulk (horizontal
green dashed line), which is located deeper towards the centre as the luminosity of the simulation
increases. We suggest that the peaks indicate the region where the excitation of the waves is
maximum. Below r ∼ rconv− lbulk, there is a strong decrease in energy towards the centre of the
star. This drop is the result of the transition from convective motions to waves, in which the
majority of the convective kinetic energy is not transferred to IGWs but rather to horizontal
flows and to local heating (see Baraffe et al., 2021).

After reaching approximately r ∼ rconv − lmax (horizontal dotted blue line), the energy is
still decreasing but at slower rate over some distance for ref and boost1d1. Below this radius,
the wave luminosity is approximately constant. In the case of boost1d2 and boost1d4, the
wave luminosity is constant from r ∼ rconv− lmax. The behaviour of the wave luminosity just
below the convective boundary shows that the larger the model luminosity enhancement factor,
the more energy is transmitted to the waves. The two expected wave excitation mechanisms,
namely turbulent Reynolds stress at the convective boundary and penetrating plumes below the
boundary, directly depend on the model luminosity enhancement factor because of the increase
in the convective and penetrating plume velocities (see Sect. 6.3.1 and Baraffe et al. (2021)).
Trying to disentangle the impact of one mechanism from the other or to determine if one is
dominating over the other is a difficult task, since both are enhanced with the luminosity of the
simulation. But the changes of behaviour of the spectra (see Fig. 6.7) and of the rate of energy
decrease (see Fig. 6.8) linked to the positions of lbulk, where the bulk of the plumes penetrate,
and of lmax reached by the most vigorous plumes, suggest that convective penetration plays a
non-negligible role on the energy spectra of IGWs in the radiative zone.

We also note that the efficiency of the decay of the wave luminosity just below r ∼ rconv− lbulk

depends on the frequency of the waves. For a given simulation, the decrease in amplitude of
lower frequency waves is larger compared to higher frequency waves. Compared to their initial
amount of energy at the convective boundary, low frequency motions thus have less energy as
they propagate towards the centre of the star.
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Fig. 6.8 Radial profile of the horizontally averaged luminosity associated with the waves for
the four simulations ref (top left), boost1d1 (top right), boost1d2 (bottom left), and boost1d4
(bottom right) at six different frequencies. The power spectra are normalised by their value at
the convective boundary Lwave(rconv). The horizontal solid black line indicates the radiative–
convective boundary as defined by the Schwarzschild criterion for the initial model. The
horizontal dashed green and dotted blue lines indicate the radii r = rconv− lbulk and r = rconv−

lmax, respectively. The horizontal average ⟨.⟩S is defined in Eq. (A.2).
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From theory, it is expected that the amplitude of the waves, represented by P[v̂2
r ], decreases

as they propagate towards the centre of the star, see Eq. (7.2), due to damping and geometrical
effects. One of the benefits of working with the wave luminosity is that it is supposed to be
constant in the absence of damping effects. As we can see on Fig. 6.8, the wave luminosity at
a distance larger than lmax from the convective boundary is approximately constant and thus
there is no frequency-dependent variations of the luminosity, i.e. we do not see the impact
of radiative damping. We suggest that the horizontal averaging masks the effect of radiative
damping, with non-damped waves that dominate in the average.

The situation for boost1d4 is less clear. Because of the very vigorous convection in this
model, waves in the radiative zone reach very large amplitudes shifted towards larger ω (see
Fig. 6.5), resulting in significant reflections at the bottom boundary with almost no visible
damping; the problem is further aggravated by the larger overshooting depth of this model.
Waves can also reach strongly non-linear regimes where linear theory breaks down. The
comparison to the other models highlights the limitations of strongly boosted simulations for
the analysis of IGW properties.

6.6 Comparison with theory

6.6.1 Radial wave energy flux

The wave energy flux is central to determining the efficiency of angular momentum transport
in stellar interiors, and can be used to predict the detectability of IGWs in stars. Based on the
pioneering work of Stein (1967), several models have been developed for the calculation of
the wave energy flux, assuming that the excitation mechanism is due to Reynolds stresses, but
these models result in differences in the predicted flux; this is the subject of Sect. 4.3.1.

For our simulations, we estimate the total wave energy flux F using a method similar to the
one of Couston et al. (2018). The total flux F is obtained by summing the fluxes Fwave of all
individual IGW modes:

F(r) ≃
∑
ω,kh

Fwave

δωδkh
δωδkh, (6.18)

where δω and δkh are the spacing of modes in spectral space, which are defined as

δω =
1
Ts

; δkh =
1
r
, (6.19)
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where Ts is the sampling time. Then replacing Fwave by its expression given by Eq. (6.17), we
have

F(r) ≃
∑
ω,kh

1
2ρ

N
kh

P[v̂2
r ](r,ω,ℓ)

δωδkh
δωδkh. (6.20)

We can now introduce the discrete version of the wave energy flux:

∑
ω,kh

1
2ρ

N
kh

P[v̂2
r ](r,ω,ℓ)

δωδkh
δωδkh B

∑
ω,kh

δF
δωδkh

δωδkh. (6.21)

This last form can be related to a continuous form of the differential wave energy flux:∑
ω,kh

δF
δωδkh

δωδkh ≃

∫
dF

dωdkh
dωdkh. (6.22)

In order to compare our estimation to the analytical expressions introduced above, we identify
from Eqs. (6.21) and (6.22)

dF
dωdkh

=
1
2
ρ

N
kh

P[v̂2
r ]

δωδkh
. (6.23)

Then, using the expressions introduced in Eq. (6.19) we finally obtain

dF
dlnωdlnkh

= ωkh
dF

dωdkh
∼

1
2
ρTsrNωP[v̂2

r ]. (6.24)

The fluxes are calculated at a radius far away from the convective boundary (r ∼ rconv− lmax)
to ensure that v̂r only captures the wave motions and not additional motions due to convective
penetration. These fluxes extracted from the numerical data can then be compared to the
theoretical spectra predicted for excitation by turbulent convective eddies and penetrative
convection. For the former we use the model of Reynold’s stress excitation by Lecoanet
and Quataert (2013) and consider the three different cases for the temperature gradient at the
convective boundary: discontinuous Eq. (4.26), piecewise linear Eq. (4.27) and hyperbolic
tangent Eq. (4.28). Note that the theory used to derive Eqs. (4.26)–(4.28) relies on three-
dimensional assumptions, for example on the counting of modes and the turbulence spectrum.
Even though we should not expect these results to hold in two-dimensions, they were still found
to provide a good match to numerical spectra from two-dimensional simulations (Lecoanet
et al., 2021). For the penetrative convection excitation mechanism, we use the model from
Pinçon et al. (2016) described by Eq. (4.45). For both models, we only compare the frequency
dependence of the spectra. The results are shown in Fig. 6.9 for ℓ = 10. We recall that the
relation between kh and ℓ is defined by Eq. (4.1).
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Fig. 6.9 Wave energy flux (light purple line) for the four simulations ref (top left), boost1d1
(top right), boost1d2 (bottom left), and boost1d4 (bottom right). The spectra are computed at
r = rconv− lmax (i.e. at a distance lmax from the convective boundary) and for angular degree
ℓ = 10. The grey vertical lines indicate the convective turnover frequency, ωconv, and the
blue, red, and orange lines correspond to functions with slope ω−13/2, ω−41/6, and ω−15/2,
respectively. The dashed curves represent two Gaussian spectra with characteristic frequencies
ωconv (cyan) and

√
2ωconv (black). The dark purple line is a running 25th percentile of the flux

over 100 frequency bins.
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The four spectra present similar shapes, with a flat part at low frequencies and a peak
that is shifted towards higher frequencies with increasing luminosity enhancement factor.
The peak follows the convective turnover frequency, which is indicated by the vertical grey
line. For a better visual comparison with theoretical predictions, we also compute and plot a
running median on the 25th percentile of the flux with a window of 100 frequency bins (dark
purple line). According to Lecoanet and Quataert (2013), the scaling relationships Eqs. (4.26)–
(4.28) are only valid for frequencies ω ≥ ωconv. In the high frequency part, the baseline of
the spectra approximately follows a scaling between ω−13/2 and ω−15/2, broadly consistent
with the theoretical predictions; however, determining the precise slope is difficult because
of the presence of strong g modes, which appear as ‘combs’ of high-energy peaks. We find
similar behaviours for other values of ℓ. Following the arguments of Lecoanet and Quataert
(2013) and given the increase in the overshooting length characterising the convective-radiative
transition with the luminosity enhancement factor, one would expect the high-ω slope to evolve
as luminosity increases, from the discontinuous case of Eq. (4.26) to the smoother case of
Eq. (4.28). However, given that the theoretical slopes are quite close to each other, it is difficult
to determine the exact slope of the calculated spectra beyond ωconv from such a comparison.

In Fig. 6.9, we have also plotted part of the theoretical spectrum predicted by Pinçon et al.
(2016), taking νp = ωconv. To observe the effect of varying this characteristic frequency, we
have also plotted a spectrum with νp =

√
2ωconv; as expected, increasing νp increases the width

of the spectrum. The spectrum of Pinçon et al. (2016) is consistent with the shape of our
simulated spectra in the vicinity of ωconv. The agreement seems to improve as the luminosity
enhancement factor is increased and could thus suggest that excitation by plumes slightly takes
over in boosted simulations

This result suggests that both Reynolds stresses and plume penetration play a role in IGW
generation. Moreover, the excitation by penetrative convection at low frequencies and by
Reynolds stress at higher frequencies agree with the predictions from Pinçon et al. (2016)
presented in Fig. 4.2.

We note that the larger the luminosity enhancement factor of the stellar model, the closer
the peak of the spectrum lies to the Brunt-Väisälä frequency. The luminosity enhancement thus
limits the range of frequencies over which numerical models can be compared to theoretical
predictions. As noted in Baraffe et al. (2021), very large enhancement factors for the luminosity,
with factors > 106, will produce unrealistic results because of convective velocities in the outer
part of the domain that could become close to the speed of sound. In addition, that paper
highlights that for such large factors the convective turnover frequencies, which scale as L1/3,
would become higher than the Brunt-Väisälä frequency.
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We also analyse the horizontal wavenumber dependence of the wave flux derived from
the simulations. In Fig. 6.10, the wave energy flux of Eq. (6.24) is displayed for the four
simulations as a function of kh at a frequency ω = 10ωconv for the relevant simulation. This
allows a meaningful comparison between the different simulations. Figure 6.10 shows that the
four numerical models present similar features.

Fig. 6.10 Wave energy flux as a function of the horizontal wavenumber for the four simulations
at depth r = rconv− lmax. The frequency is fixed at ω = 10ωconv. The dashed lines represent the
three theoretical scaling laws, Eqs. (4.26)–(4.28), from Lecoanet and Quataert (2013).

The scaling relationships Eqs. (4.26)–(4.28) from Lecoanet and Quataert (2013) are also
displayed in Fig. 6.10. The derivation of their expressions is valid for kh ≲ kh,max ∝ ω

−3/2
conv

(see Eq. (6.4)). The low-ω slope of the simulated spectra is roughly consistent with these
theoretical scalings, even though the large statistical variance of the spectra prevents an accurate
comparison without running over very long simulation times, or averaging over many ensemble
simulations.

In this section, we have showed that the wave fluxes in the radiative zone obtained from
present simulations obey scaling laws with frequency and wavenumber that are broadly consis-
tent with the ones predicted by theoretical models. However, discriminating or constraining the
theoretical models with precise measurement of slopes from simulations remains challenging.
In particular, even though our simulations are consistent with theoretical predictions, we caution



84 Artificial luminosity enhancement in 2D simulations of a solar-like model

Fig. 6.11 Power spectra of the radial velocity for the simulation ref obtained from MUSIC
(top left) and the theoretical prediction using Eq. (4.14) with the dependence on frequency,
ω−n, which varies: n = 4 (top right), n = 3 (bottom left), and n = 5 (bottom right). The angular
degree is fixed at ℓ = 5. For the theoretical spectra, a minimal threshold is set at a value of 10−7

for better visibility.

that these simulations are not fully turbulent and that the two-dimensional geometry does not
allow us to resolve realistic plumes.

6.6.2 Spatial damping of IGWs

Internal gravity waves propagating in stably stratified stellar interiors are expected to be damped
by radiative diffusion. Their amplitude exponentially decays with a factor exp(−τ), with τ
given by (4.14).

In order to verify that the damping of the waves in the simulations is consistent with the
theoretical expectations, in Fig. 6.11 we use a similar method as Alvan et al. (2014) to compare
the evolution of the computed power spectrum of the radial velocity, P[v̂2

r ] (see Eq. (B.5)), to
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the one predicted theoretically Ptheory[v̂2
r ], for a fixed harmonic degree ℓ0 = 5, which is defined

as
Ptheory[v̂2

r ](r, ℓ0,ω) = P[v̂2
r ](rconv− lmax, ℓ0,ω)× e−τ(r,ℓ0,ω). (6.25)

The depth r = rconv − lmax is chosen in order to avoid any contribution to the radial velocity
from convective penetration. In the integral (4.14), the upper bound re is thus set to rconv− lmax.

To visually compare the spectral density plots, we set an identical colour scale for all panels
of Fig. 6.11, adjusted to the noise floor of the simulation. The simulation (top left panel) and
theoretical ω−4 scaling (top right panel) spectra in Fig. 6.11 show similar patterns, with g
modes (vertical bright lines) formed in the radiative zone for frequencies ≳ 1µHz, as well as
the absence of modes below ∼ 0.5µHz. To form g modes, propagating IGWs generated by
convection travel towards the centre of the star until they reflect at their inner turning point or
at the bottom of the simulation domain. A turning point is defined as the radius where k2

r = 0,
or equivalently ω = N, from Eq.(4.2). Travelling back towards the surface, they again reflect at
their outer turning point. Travelling back and forth, propagating waves of a given frequency
and angular degree interfere with themselves and form standing waves.

The radial profile of the spectra between ∼ 0.5µHz and ∼ 10µHz are also similar in both
top panels of Fig. 6.11, with waves propagating deeper as the frequency increases; in addition,
both spectra reach the noise floor (darkest colour) at comparable frequencies for each given
radius in both top panels. As expected from the radiative damping formulation given by Eq.
(4.14), the damping is stronger for low frequency waves. In the MUSIC spectrum, the nodes of
the g modes are visible as dark spots of low energy spaced in radius along a given mode; they
are not visible on the theoretical reconstructions, as expected from our definition of Ptheory[v̂2

r ].
In previous studies of IGWs using hydrodynamical simulations, the radiative damping of

the waves was found to have a scaling with frequency closer to ω−3, instead of ω−4 (Alvan et al.,
2014; Rogers et al., 2013). In order to directly compare our results with Alvan et al. (2014);
Rogers et al. (2013) and to keep τ dimensionless when changing only the exponent of ω, we
replace N3ω−4 in (4.14) with N3ω−q× (1 Hz)q−4 for q = 3,4,5. We plot in Fig. 6.11 the theoret-
ical spectra calculated using a dependence of ω−3 and ω−5. We can exclude these scaling laws
for the MUSIC spectrum, which has a dependence inω closer toω−4, as predicted by Eq. (4.14).

Figure 6.12 shows that Eq.(4.14) also holds for the three boosted simulations, provided
that radiative diffusivity is increased with the same enhancement factor as the luminosity. In
addition to simulation ref, we also checked for these boosted simulations that damping laws
scaling as ω−3 and ω−5 can be excluded. The MUSIC spectra thus provide a good agreement
with the theoretical predictions of radiative damping.
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Fig. 6.12 Power spectra of the radial velocity for simulations boost1d1 (left), boost1d2 (middle),
and boost1d4 (right) obtained from MUSIC (top row) and the theoretical prediction using Eq.
(4.14) with the dependence on frequency, ω−4 (bottom row). The angular degree is fixed at ℓ =
5. For the theoretical spectra, a minimal threshold is set for better visibility.

These results show that if both the luminosity and the radiative diffusivity are enhanced by
the same factor, the damping of the waves follows similar scaling for all enhancement factors,
and is in agreement with the theoretical prediction for radiative damping. The boosting factor
will have an important effect on the spectrum of surviving g modes. Since g modes can only
appear with waves propagating in the whole domain, they can only be observed when waves are
able to travel down to the inner boundary without being fully damped. Because increasing the
luminosity enhancement factor shifts the IGW excitation spectrum towards higher frequencies,
the frequency of waves surviving at the inner boundary will increase with the boosting factor.
Indeed, for ref in Fig. 6.11, the lowest frequency g modes that are formed have a frequency of
ω ∼ 1.0µHz. In Fig. 6.12, we can see that for boost1d1, boost1d2, and boost1d4, the minimum
frequency of the surviving g modes is ω ∼ 2.0µHz, ω ∼ 3.0µHz, and ω ∼ 8.0µHz, respectively,
for the harmonic degree ℓ = 5. Below these frequencies, waves are either damped before being
able to propagate back and forth in the radiative zone or not excited, and thus are unable to
form g modes.

6.7 Numerical resolution of IGWs

Finally, we would like to draw attention to a numerical resolution issue related to the study
of IGW damping in simulations. The condition of propagation of IGWs in a stably stratified
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Fig. 6.13 Power spectra of the radial velocity for the simulation boost1d1 with double resolution
(1024x1024) obtained from MUSIC (top) and the theoretical prediction using Eq. (4.14) with
the dependence on frequency, ω−4 (bottom). The angular degree is fixed at ℓ = 5. For the
theoretical spectra, a minimal threshold is set for better visibility.

medium is set by their dispersion relation given by Eq.(4.2). It predicts that the radial wave-
length becomes small as ω→ 0. For a given spatial grid, there is a maximal radial wavenumber,
or equivalently a minimal wavelength, that can be resolved on the grid. As the wavelength
approaches the grid resolution, numerical dissipation of the numerical scheme is expected to
increase; ultimately, as the radial wavelength approaches twice the length of a grid cell, it
becomes impossible to represent the wave on the grid, and aliasing occurs. This is potentially
problematic for the study of IGW damping, which requires looking at very low frequencies.

Using the dispersion relation Eq. (4.2) and considering a given spatial resolution of the
mesh, we can define a corresponding minimal frequency, given in the limit ω≪ N

ωmin =

√
ℓ(ℓ+1)

r
λr,min

2π
N, (6.26)

with λr,min the minimal radial wavelength that can be resolved with a given radial resolution. In
order to give an idea of the minimal frequency that we can resolve we arbitrarily set λr,min ∼ 5∆r,
where ∆r is the radial resolution. It means that we consider a minimum of five radial grid cells
per radial wavelength. As mentioned in Sect. 6.2.2 the radial resolution of our simulations is
constant with ∆r ≃ 5.5×107 cm. This gives a minimal frequency for IGW of 0.62 µHz at low
degree ℓ but it is even larger as ℓ increases.
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For our simulations, we can see in Figs. 6.11 and 6.12 that some aliasing is present in the g
modes around 1µHz, which is close to our estimation ωmin. In order to confirm our results, we
performed a test with a simulation identical to boost1d1 but with double resolution Nr ×Nθ =
1024×1024. Figure 6.13 shows the power spectrum from MUSIC together with the theoretically
predicted one. There is no more aliasing at low frequencies, and more importantly, the spectrum
is still very similar to the one shown in Fig. 6.12 for simulation boost1d1 with lower resolution.
This gives us thus some confidence that the damping we observe in our simulations is indeed
radiative damping.

Finally, we draw attention to a maximum frequency that also exists because of the mesh
size. Since we are working in spherical geometry, the size of the grid cells in the θ-direction is
not constant, it depends on radius as

∆θ(r) =
rπ
Nθ
. (6.27)

In the whole domain considered in our simulations we have ∆θ > ∆r. Consequently, even if
the horizontal wavelength is larger than the radial one, the horizontal direction could also be a
limiting factor for the resolution of IGWs via the condition

ωmax(r) =
N√

a2
θπ

2r2

N2
θ λ

2
r
+1

(6.28)

with aθ an integer that is the number of grid cells per horizontal wavelength we want to set as
minimal resolution, λh,min ∼ aθ∆θ. In the limit aθπr/(Nθλr)→ 0, we obtain the classical condi-
tion ωmax = N. This latter condition is then fulfilled for large radial wavelength, simulations
with very high resolution and near the centre of the star. It is interesting to note that also in this
case the limiting wavelength is the radial one. For most of the waves in our simulations, we
found that ωmax(r) ≥ 0.9N(r). However, for a wave with radial wavelength close to λr,min, the
maximal frequency ωmax(r) can be close to half the Brunt-Väisälä frequency.

6.8 Discussion & Outlook

In this chapter, we have focused on the impact of enhanced luminosity and thermal diffusivity
on IGWs excited by convection in hydrodynamical simulations of stellar interiors. Our main
results are listed below.

• Increasing the luminosity of a simulation decreases the convective turnover time, τconv,
and thus increases the convective turnover frequency, ωconv. The larger the luminosity,
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the higherωconv. Typical dynamical quantities such as velocities scale with the luminosity
in the convective zone.

• We show that an appropriate rescaling of the frequencies with ωconv and of the velocities
with L1/3 provides a kinetic energy spectrum in the convective zone that is independent
of the luminosity enhancement factor. But firstly, such rescaling does not hold in the
radiative zone. Secondly, our results highlight that the relevant frequency range of IGWs
that are excited and propagating strongly depends on the luminosity enhancement factor.
The waves that bear most of the energy are not in the same frequency and spatial ranges
for simulations with different luminosities. As the luminosity increases, the frequency
distribution is shifted towards higher ω, whereas the angular degree distribution is shifted
towards lower ℓ (larger wavelengths).

• Our simulated energy flux spectra are broadly consistent with IGWs being generated
from a combination of two excitation mechanisms: Reynolds stresses and penetrative
convection. At high ω, we observe scaling laws for the flux that are compatible with
the Reynolds stress excitation models from Lecoanet and Quataert (2013). While those
authors predict different expressions for the wave energy flux depending on the stratifica-
tion at the radiative–convective boundary, it is difficult to compare the slopes obtained
from the simulations with the ones predicted by theoretical models given the variance
of the spectra and the presence of high-amplitude g modes. As ω decreases, the ra-
dial energy flux departs from a power law and reaches a maximum for ω ≃ ωconv. In
this range, the flux is more consistent with the predictions from Pinçon et al. (2016)
from penetrative convection. However, we are aware that with global two-dimensional
simulations of stellar interiors, flows cannot present a real state of turbulence, feature
well-identified plumes, or finely resolve penetrating convection. Therefore, we cannot
expect the analytical models of Lecoanet and Quataert (2013) and Pinçon et al. (2016)
to apply precisely and quantitatively. Nevertheless, our results qualitatively support a
picture where IGWs are simultaneously excited by Reynolds-like stresses at high ω and
by penetrating convection around ωconv.

• Our work therefore suggests an important consequence for boosted luminosity simula-
tions: as the luminosity enhancement factor increases, the wave flux is shifted towards
higher ω. This also implies that the peak of the wave flux will be closer to the Brunt-
Väisälä frequency, limiting the extent of the frequency range of excited IGWs. Further-
more, larger enhancement factors could impact the local stratification (see Baraffe et al.,
2021, for more details), further interfering with wave excitation processes. Consequently,
while it is difficult with present simulations to conclude on the impact of the luminosity
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enhancement factor on the detailed shape of the wave flux spectrum, our results highlight
that the artificial boosting of a simulation has a noticeable impact on the wave flux by
changing the location of the peak of the spectra in terms of frequency and horizontal
wavenumber.

• For radiative damping at low frequencies, in contrast to results reported by other groups,
our simulations present a decay in the amplitude of waves in the radiative zone, which
closely decreases as ∝ exp

(
−ω−4

)
as predicted by theory (Press, 1981). This dependence

of the damping on frequency holds in the boosted simulations on the condition that the
radiative diffusivity is increased by the same amount as the luminosity. We also show
that the waves that reach the inner boundary of the domain are affected by the boost as
a result of a change in the wave excitation spectrum and with fewer g modes surviving
with higher luminosity enhancement factors. This could have some importance when
studying angular momentum transport in stellar interiors. We want to stress that radiative
damping is difficult to study numerically because it is more efficient at low frequencies,
at which the radial wavelength of the IGWs becomes close to the radial grid resolution
due to the dispersion relation. Our test simulation at double resolution strengthens our
confidence that we are actually observing radiative damping.

In summary, our analysis shows that artificially increasing the luminosity of a stellar model
can be a useful technique. It can be justified in particular for studies restricted to the dynamics
in a convective zone, since appropriate rescaling laws can apply. However, it has to be used
with great caution to predict the spectra of IGWs and g modes in stars. These spectra will
define how waves interact with the dynamics and internal structure of stars. Consequently,
making predictions for more realistic systems, in particular when related to mixing and angular
momentum transport, is not straightforward when using simulations with artificially enhanced
luminosity.



Chapter 7

Waves analysis in a
zero-age-main-sequence 5 M⊙ star model

Unlike main sequence low-mass stars, such as the model studied in the Chapt. 6, where
the radiative zone is located in the inner part of the star, more massive main sequence stars
with M ≳ 2M⊙ present a radiative envelope. Internal gravity waves generated at the edge of
the convective core propagate towards the surface through a medium of decreasing density,
which tend to increase their amplitude. These waves are also damped by radiative diffusion as
they travel, and are suggested to transport energy and angular momentum and mix chemical
elements through this mechanism (Schatzman, 1993). Thus, the evolution of IGWs amplitude
will depend on the interplay between growth due to decreasing density and decay due to
radiative damping. It remains unclear if these waves should be able to propagate up to the
surface. More than a decade ago, Blomme et al. (2011) observed a low frequency power excess
in the spectra of O type stars observed by the CoRoT (Auvergne et al., 2009) mission. They
concluded that the physical origin of this power excess was unclear but give three possible
explanations: granulation, stellar wind and subsurface convective zone. In recent studies,
Bowman et al. (2019, 2020) claim that a similar low frequency power excess in the spectrum of
O and B type stars observed by the CoRoT and TESS (Ricker et al., 2015) satellites is due to
IGWs excited by turbulent core convection. This hypothesis is supported by hydrodynamical
simulations in three (Edelmann et al., 2019) and two dimensions (Ratnasingam et al., 2020).
However, theoretical work by Lecoanet et al. (2019) and numerical simulations by Lecoanet
et al. (2021) do not agree with this conclusion and state that the origin of this power excess is
more probably due to a near surface convection zone (Cantiello et al., 2021). This question will
remain difficult to answer while the properties of IGWs in such stars remain poorly known.

Hydrodynamical simulations offer a great opportunity to test theoretical models and guide
observations. In particular, numerical modelling of internal waves, is a good way to get
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Table 7.1 Properties of the initial stellar model used for the 2D hydrodynamical simulations.

M/M⊙ Lstar/L
(a)
⊙ Rstar (cm) rconv/Rstar HP,conv (cm)

5 523 1.8424 ×1011 0.1814 1.828 ×1010

With mass M, luminosity Lstar, radius Rstar, size of the convective
core rconv and pressure scale height at the convective boundary Hp,conv.
a We use L⊙ = 3.839×1033 erg/s.

constraints on the spectrum generated by convection, their amplitude and damping rate within
the star. This has already proven to be efficient in simulations of solar-like stars (see for example
Alvan et al., 2014; Rogers and Glatzmaier, 2005a) as well as stars with convective cores (see
for example Horst et al., 2020; Rogers et al., 2013). In this chapter, we present two-dimensional
simulations of a 5 solar mass star with different enhancement factors for the luminosity and the
radiative diffusivity. We focus mainly on the damping of IGWs and the impact of boosting on
these waves, but we neglect the effect of rotation, even though most OB stars may be moderate
to fast rotators.

7.1 Numerical simulations

We performed two-dimensional simulations of the interior of a 5M⊙ star model at zero-age-
main-sequence (ZAMS) with the MUSIC code (see Sect. 6.2.1).

7.1.1 Initial stellar model

The initial one-dimensional model has an initial helium abundance in mass fraction Y=0.28
and solar metallicity Z=0.02 and is evolved through the pre-main-sequence and the early
main-sequence. The initial structure of the simulations have burnt 1% of their hydrogen since
the ZAMS. An analysis of a similar 5M⊙ star model but at later stages of evolution with a
steeper gradient of molecular weight at the core boundary is currently underway (Morison
et al. [incl. Le Saux], in prep). There is no overshooting or diffusion considered during the
computation of the one-dimensional model. In the MUSIC simulations, the energy generated
by nuclear reactions are taken into account in the energy equation as a source term and the
nuclear energy profile is the one from the one-dimensional model. As the nuclear timescale is
orders of magnitude larger than the time scales considered in the simulations (see Sect. 2.1),
the nuclear energy is assumed to remain constant during the run of the MUSIC simulations.
The properties of the initial one-dimensional model are summarised in Table 7.1.
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Table 7.2 Summary of the two-dimensional simulations.

Simulation L/Lstar τ(a)
conv (s) N(b)

conv ω(c)
conv (µHz)

ref 1 1.5 ×106 52 0.7
boost1d1 101 6.0 ×105 35 1.7
boost1d2 102 3.0 ×105 58 3.4
boost1d4 104 6.5 ×104 54 15.4
a Convective turnover time (see Eq. (4.14) for its definition),
measured from our simulations.
b Number of convective turnover times used for this work.
c Convective turnover frequency associated with τconv

7.1.2 Spherical-shell geometry and boundary conditions

Two-dimensional simulations are performed in a spherical shell using spherical coordinates,
namely r the radius and the polar angle θ, and assuming azimuthal symmetry in the ϕ-direction.
For all simulations, the inner radius rin is set at 0.02 Rstar and the outer radius rout at 0.91 Rstar.
Note that extension of the numerical domain to the photosphere (r = Rstar) is an open challenge
for stellar hydrodynamical simulations, given the sharp decrease of the pressure scale height
with increasing radius. The domain in the co-latitudinal direction ranges from 0 to π. We use
a uniform grid resolution of Nr ×Nθ = 1322 × 668 cells. This provides a good resolution of
the pressure scale height at the convective boundary Hp,conv/∆r ∼ 147, with ∆r = 1242 km, the
size of a radial grid cell.

The boundary conditions used and the method to boost a model are the same as the ones
described in Sect. 6.2.1 and Sect. 6.2.3 respectively. The characteristics of the four numerical
models used for this study are presented in Table 7.2. The definition we use for the convective
turnover time τconv and associated frequency ωconv are given by Eq. (6.2). Aerts et al. (2021)
provide observed values of the convective turnover frequency for Slowly-Pulsating B (SPB)
stars with mass approximately between 3M⊙ and 9M⊙. They found typical values of ωconv in
the range 0.2 to 0.5 µHz, which is close to the value of 0.7 µHz in our reference model. We
consider the stellar model studied in this chapter to be a template of intermediate-mass stars
with a convective core, with mass between 3 and 20 M⊙. Therefore, our conclusions regarding
wave damping and propagation could be applied, at least qualitatively, to other stellar masses
in this range.
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Fig. 7.1 Radial profile of the Brunt-Väisälä frequency in the radiative zone (left panel) and of
radiative diffusivity κrad (red, left y-axis) and density ρ (green right x-axis) (right panel) for the
initial 1D model. The hatched regions are not considered in the two-dimensional simulations.

7.1.3 Stratification and radiative diffusivity

Internal gravity waves are able to propagate in radiative zones and are evanescent in convective
zones. As explained in Chapt. 3, this means they can travel in region where N2 > 0, with the
condition on their frequency ω < N.

The left panel of Fig. 7.1 shows the radial profile of the Brunt-Väisälä frequency (left y-axis,
blue curve) and the helium mass fraction Y (right y-axis, brown dashed curve) in the initial
one-dimensional model. The peak of the Brunt-Väisälä frequency just above the convective
core is a result of the small gradient of Y in this region. In our simulations, the hatched regions
are excluded. From this plot, we can see that an IGW of frequency ω might not propagate in
the whole radiative envelope. For instance, in the considered model, a wave with a frequency
of 150 µHz may only propagate between r ∼ 0.25Rstar and r ∼ 0.6Rstar.

As explained in Sect. 4.2, radiative diffusivity is of major importance in stellar interiors,
as it is supposed to be the main mechanism that damps internal waves. In our reference
simulation, model ref, we use a realistic profile of radiative diffusivity for a 5M⊙ model. This
allows modelling of a realistic damping of IGWs, as we showed in Sect. 6.6.2. This profile
is displayed in the right panel of Fig. 7.1 (red, left y-axis). This figure also shows the radial
profile of the density in our model (green, right y-axis). Note that the profiles displayed in Fig.
7.1 left panel are the ones used in our simulation ref. This is important as these two quantities
define the propagation properties of IGWs.

Indeed, as they propagate towards the surface, IGWs amplitudes grow due to decreasing
density and decay due to radiative damping. The variation of both the radiative diffusivity and
the density is very large in a star, by 9 orders of magnitude between the centre and the surface.
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Fig. 7.2 Visualisation of the radial velocity for the four stellar simulations ref, boost1d1,
boost1d2, and boost1d4 as a function of radius r and co-latitude θ. The radial velocity is
normalised by the rms radial velocity. Positive values of the radial velocity (ref) are outward
and negative (blue) are inward.

This is one of the main challenges that hydrodynamical simulations have to deal with (see
Sect. 5.2). In our simulations, that exclude the 9% outer layers, these variations are restricted
to approximately 5 orders of magnitude. These variations have to be taken into account in
hydrodynamical simulations because they significantly impact propagation of IGWs as we will
see in the next sections

7.2 Velocities

Internal gravity waves manifest themselves as perturbations in density, temperature, luminosity
or velocity. In this section, we focus on the radial velocity amplitude to study IGWs properties.

7.2.1 Radial velocity pattern

Figure 7.2 shows snapshots of the radial velocity vr for the four simulations. For better
visualisation, the radial velocity is normalised by the root-mean-square value of the radial
velocity vr,rms. The convective core extends from the centre up to rconv = 0.1814Rstar. In this
region, the structure of the flows is similar in the four snapshots, with large coherent upflows
(red) and downflows (blue).

The three simulations ref, boost1d1 and boost1d2 present similar patterns in the radiative
envelope with the classical spiral structure corresponding to wavefronts of IGWs. Figure 7.2
suggests that the angle α between the total and the horizontal wave vectors (see Eq. (4.3))
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decreases with the boosting factor. Therefore, waves of higher frequencies dominate in the
radiative zone when the luminosity is increased. This was also observed in Fig. 6.3 for the
solar-like star simulations presented in Chapt. 6. The structure of the radiative envelope of
boost1d4 does not present the classical spiral IGWs wavefronts pattern. The structure in this
most boosted case is larger scale and not periodic any more. Similar patterns are observed in
other simulations of intermediate-mass stars using the same or larger artificial boosting factors
for the luminosity and the radiative diffusivity (see for example Edelmann et al., 2019; Horst
et al., 2020).

7.2.2 Radial evolution of the velocity amplitude

According to linear theory, the evolution of the amplitude of an IGW is expected to depend on
the stratification of the supporting medium and on spatial damping due to radiative effects as
well as on the frequency and wavelength of the wave. The analytical formula that expresses these
dependences is given by Eq. (4.13). It is important to keep in mind that in boosted simulations,
the radiative diffusivity is enhanced by the same amount as the luminosity. Consequently, wave
damping by radiative diffusion is enhanced in a boosted simulation, as shown in Sect. 6.6.2. In
Eq. (4.13), we have introduced a constant C that fixes the amplitude. In this work, we chose to
fix it such as the analytical velocity amplitude of a wave at r = re matches the amplitude of the
velocity in the simulations, i.e. v0(ℓ,ω) = vr(re, ℓ,ω). We recall that re is the radius at which
waves are excited. Therefore, we obtain

C = v0(ℓ,ω)ρ1/2
0 k−3/2

h,0

N2
0 −ω

2

ω2

1/4

, (7.1)

with kh,0 =
√
ℓ(ℓ+1)/re, ρ0 = ρ(re), N0 = N(re) and by definition τ(re, ℓ,ω) = 0 (see Eq. (4.14)).

Finally, we can write the analytical expression of the norm of the radial velocity as

|vr|(r, ℓ,ω) = v0(ℓ,ω)
(
ρ

ρ0

)−1/2 (
kh

kh,0

)3/2 N2−ω2

N2
0 −ω

2

−1/4

e−τ/2. (7.2)

In the following we will drop the norm notation |.| and will refer to vr as the norm of the radial
velocity. Equation (7.2) is similar to the one obtained by Ratnasingam et al. (2019) (see their
Eq. (13)). In our simulations, we determine the amplitude of the radial velocity at a given
frequency ω and angular degree ℓ using a temporal Fourier transform and a decomposition on
the spherical harmonic basis of the velocities computed by MUSIC. The definition we are using
for spherical harmonics and Fourier transform are defined in Appendix B. We obtain the power
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spectrum of the radial velocity P[v̂2
r ](r, ℓ,ω), which scales as the amplitude squared of a given

wave (ℓ, ω).
Figure 7.3 compares the analytical expression from Eq. (7.2) (dotted lines) to the cor-

responding wave velocity amplitude from MUSIC simulations,
√

P[v̂2
r ] (solid lines), as a

function of normalised radius for the four numerical models. We have also included the ana-
lytical velocity amplitude without the damping term (dashed lines), i.e. we are neglecting the
term e−τ/2 in Eq. (7.2). The spatial boundaries of the simulation domain at rin = 0.02Rstar and
rout = 0.91Rstar are specified by the vertical black dashed lines, and the convective boundary
rconv = 0.1814Rstar is indicated by the vertical blue dashed line. For the analytical expressions,
we need to set the initial velocity amplitude of the waves in the excitation region, i.e. close
to the convective boundary. We arbitrarily chose for v0, the value of the radial velocity in the
simulations at re = 0.183Rstar, just above the convective core. This to avoid having a component
of the velocity due to penetrative convection.

Figure 7.3 presents the velocity amplitude of a wave with angular degree ℓ = 5 and frequency
ω = 45.2 µHz. In the four simulations, the wave amplitude shows a similar oscillatory pattern,
where the troughs are the radial nodes of the corresponding g mode. For the mode observed in
Fig. 7.3, the oscillation code GYRE predicts a radial order 1 n = −9, which is also the number
of nodes observed in the simulations. This confirms that we see g modes in Fig. 7.3.

Compared with the analytical predictions from Eq. (7.2) (dotted lines in Fig. 7.3), the
simulation velocities present a very similar global evolution of their amplitude from the
convective boundary up to the top of the simulation domain. Except for the oscillations but
these are not taken into account in the linear analytical expression of the velocity amplitude.
However, there are notable differences between the four numerical models. Firstly, as expected,
the velocity amplitude of the waves increases with the enhancement of the luminosity. Secondly,
the analytical amplitudes predict a sharp drop at a given radius close to the surface, which
corresponds to the location where the wave is totally damped out, i.e. the location where the
wave will deposit most of its energy. This abrupt drop is indeed due to radiative damping, as
it is not present in the case with no damping (dashed lines). For models ref, boost1d1 and
boost1d2 this abrupt drop is approximately at r ≃ Rstar, but for model boost1d4 it is located
around r ≃ 0.91Rstar. By looking at Eq. (7.2) we can see the radiative diffusivity, which is
enhanced by the same amount as the luminosity, is included in the expression of τ. As a result,
damping of waves by radiative diffusion increases in a boosted model. This is why the sharp
drop of the dotted lines is not located at the same radius for the four cases. However, for the
waves considered, with ℓ = 5 and ω = 45.2 µHz, this sharp drop is located at radii r ≥ 0.91Rstar,
thus they are able to reach the top of the simulation domain.

1By convention, the radial order n is negative for a g mode and positive for a p mode (standing acoustic waves).
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Fig. 7.3 Wave amplitude as a function of normalised radius for the four simulations ref (orange),
boost1d1 (indigo), boost1d2 (yellow), and boost1d4 (green) for angular degree ℓ = 5 and
frequencies ω = 45.2 µHz. The vertical black lines indicate the boundaries of the simulation
domain and the vertical blue line indicate the convective boundary. The solid lines are the
velocity measured in the simulations. Dotted and dashed lines are the theoretical velocity
amplitudes computed with Eq. (7.2) with and without the damping term, respectively.
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Fig. 7.4 Same as Fig. 7.3 but for waves with ℓ = 10 and ω = 31.0 µHz (left panel) and with
ℓ = 10 and ω = 8.3 µHz (right panel)

7.2.3 Influence of the boost

From Eqs. (4.14) and (7.2), it is clear that when the angular degree ℓ and the frequency ω are
changed, the amplitude and the damping of the corresponding wave are impacted. Indeed, Eq.
(7.2) shows that wave amplitude depends on ℓ and ω and Eq. (4.14) shows that waves with
higher ℓ and smaller ω will be damped more efficiently. The radial velocity amplitude for a
wave with ℓ = 10 and ω = 31.0 µHz is plotted on the left panel of Fig. 7.4. As expected, the
damping is more important than for the wave with ℓ = 5 and ω = 45.2 µHz (see Fig. 7.3). This
is highlighted by the abrupt drop of the theoretical amplitude (dotted lines) which is shifted
towards smaller radii in the three boosted models. Indeed, for this wave the drop is located
at r ≃ 0.95Rstar in model boost1d1, r ≃ 0.91Rstar in model boost1d2 and r ≃ 0.8Rstar in model
boost1d4. However, for model ref the location of the drop is not changed, meaning that the
effect of radiative damping remains weak for this wave with ℓ = 10 and ω = 31.0 µHz. Note
that for the four simulations, the agreement with theory is still relatively good. The case with
no damping (dashed lines) is now clearly different from the other two (solid and dotted lines).
In that case, the shape of the curves remains the same as in Fig. 7.3. Neglecting the damping
for these waves would imply that they would be able to propagate up to the surface for all
models, yielding an erroneous prediction.

On the right panel of Fig. 7.4, the angular degree and frequency are set to ℓ = 10 and ω =
8.3 µHz respectively, implying more efficient damping. Model boost1d4 is not plotted here,
as we do not expect such low frequency IGWs to be excited in this simulation. Indeed, the
frequency ω = 8.3 µHz is smaller than the convective frequency, ωconv = 15.4 µHz, for this
simulation (see Table 7.2). A convective region with associated frequency ωconv is expected to
generate waves with frequencies ω ≥ ωconv (Lecoanet and Quataert, 2013). On this plot, the
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abrupt drop of the analytically predicted velocity amplitude (dotted lines) for models boost1d1
and boost1d2 is located at r ≃ 0.9Rstar and r ≃ 0.85Rstar, respectively. We thus observe a similar
phenomenon as for model boost1d4 in the left panel of Fig. 7.4. Namely, that the waves in the
simulations are damped before the top of the numerical domain and do not form g modes.

Our results highlight that the artificial enhancement of the luminosity and the radiative
diffusivity of a numerical model impacts not only the amplitude of the waves, but also their
spatial damping. This is particularly important at low frequencies, as expected from Eq. (4.14).
This enhanced damping of waves in the low frequency regime in boosted simulations was
already suggested by Horst et al. (2020). When the luminosity is boosted, the increased
damping means that waves over a smaller range of frequencies reach the top of the cavity.
Particularly, low frequency g modes are fully damped in boosted simulations compared to the
one with realistic luminosity. In addition, waves of given frequency and angular degree will be
damped out in different locations in boosted simulations, therefore depositing their energy in
different regions. In a case where the luminosity is artificially enhanced but not the radiative
diffusivity, as in the simulation of Horst et al. (2020), the location where IGWs are damped out
is not modified. However, because of the higher luminosity, the dominant frequency range of
excited waves will be different from in a non boosted case (Sect. 6.4 and 7.3). Therefore, in
simulations with different enhancement factors for the luminosity and radiative diffusivity, we
do not expect the propagation of IGWs to be identical as in a model with realistic luminosity.

Finally, comparison between the two analytical cases with and without damping also
highlights that running simulations with unrealistic radiative diffusivity may not capture the
proper propagation properties of IGWs. Particularly for low frequency waves, which are the
ones more impacted by radiative diffusion. In these simulations, transport by IGWs should be
studied with caution, as well as their ability to propagate up to the surface or not.

7.2.4 Radial kinetic energy density

Figure 7.5 presents the power spectrum of the radial velocity P[v̂2
r ], as a function of normalised

radius and frequency, for an angular degree ℓ = 20. This quantity P[v̂2
r ] is equivalent to the

radial kinetic energy density. This plot offers a general overview on the dependence of radiative
damping of IGWs on frequency and radius. In the convective core, between the bottom of the
plot and rconv, the spectrum is relatively homogeneous at all frequencies and characteristic of a
convective zone. The bright ridges observed in the radiative zone, at r ≥ 0.1814Rstar, are high
amplitude g modes. The dark knots observed in the bright ridges are the radial nodes of the
considered mode. The number of nodes for a given mode defines the radial order n of the mode,
and it increases as the frequency decreases. This is an important characteristic of g modes
(Aerts et al., 2010).
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Fig. 7.5 Power spectrum of the radial velocity for the simulation ref. The angular degree is
fixed at ℓ= 20. The power spectrum is obtained via mode projection on the spherical harmonics
basis and a temporal Fourier transform of the radial velocity.

The properties displayed in Fig. 7.5 for model ref are common to the three boosted
simulations. We find that IGWs are dampened by radiative effects and more importantly that
the damping strength depends on the location in radius, as can be expected from the radiative
diffusivity profile showed in the right panel of Fig. 7.1. The damping rate seems relatively
constant between the convective boundary and r ≃ 0.8Rstar, but above this radius, wave damping
appears to be strengthened. This means that waves deposit their energy in the radiative cavity,
but there are regions where this deposition will be more important, particularly close to the top
of the simulation domain. This will be further investigated in Sect. 7.5.

7.3 Wave energy flux

In this section, we study the radial wave energy flux in its differential form as given by Eq.
(6.24) in order to compare with theoretical predictions (see Sect. 6.6.1 for details).

Figure 7.6 presents the dependence of the differential wave energy flux given by Eq.
(6.24) with frequency at two radii, r = rconv + 0.5Hp,conv ≃ 0.231Rstar (purple curves) and
r = rconv + 6Hp,conv ≃ 0.777Rstar (green curves). The two vertical dashed lines indicate the
Brunt-Väisälä frequencies at the radii with the same colour code. The wave fluxes are plotted
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Fig. 7.6 Wave energy flux as a function of frequency for an angular degree ℓ = 10 for the four
simulations ref (top left), boost1d1 (top right), boost1d2 (bottom left), and boost1d4 (bottom
right) at two radii, r = rconv+0.5Hp,conv ≃ 0.231Rstar (purple curves) and r = rconv+6Hp,conv ≃

0.777Rstar (green curves). The vertical dashed lines indicate the values of the Brunt-Väisälä
at r ≃ 0.231Rstar (purple curves) and r ≃ 0.777Rstar (green curves). The spectra are obtained
via mode projection on the spherical harmonics basis and a temporal Fourier transform of the
radial velocity.



7.3 Wave energy flux 103

for an angular degree ℓ = 10. Note that for each simulation, Fig. 7.6 shows a different frequency
range as we focus on the range that bears most of the energy. The spectra present a relatively
flat structure at low frequencies, then peak around a given frequency ωpeak and finally decrease
towards higher frequencies. As in Sect. 6.6.1, these fluxes are compared with theoretical
predictions for waves generation by Reynolds stress (blue, red and orange straight lines) and
penetrative convection (cyan and black dashed curves). The analytical model used for Reynolds
stress excitation is the one from Lecoanet and Quataert (2013) and for penetrative convection
excitation it is the one from Pinçon et al. (2016). These models are described in details in Sect.
4.3. For both models, the excitation mechanism is expected to generate waves with frequencies
larger than the convective frequencies, ω ≥ ωconv. This is why we compare the wave flux from
MUSIC to these analytical models in the range of frequencies ω ≥ ωpeak. For a better visual
comparison with theoretical predictions, we also compute and plot a running median on the
25th percentile of the fluxes with a window of 100 frequency bins (dark purple and green lines
superimposed on the corresponding flux).

After IGWs are excited at the boundary by convection in the core at frequencies ω ≥ ωconv,
they propagate away towards the surface. At the radius where they are excited, the excitation is
more efficient at ω = ωconv, i.e. the wave flux peaks at ωpeak = ωconv. During their propagation,
low frequency waves are damped much more rapidly than their higher-frequency counterparts.
Indeed, as explained in Sect. 4.2 radiative damping of IGWs is modelled by Eq. (4.14) which
scales as ω−4. At a given radius r, IGWs with frequencies in the range [ωconv,ωpeak(r)] are
already damped. Consequently, the peak of the flux is shifted towards higher frequencies
at larger radii. This is illustrated in Fig. 7.6, when comparing the fluxes at two locations.
For model ref the peak is located at ωpeak ∼ 2.5 µHz at r = 0.231Rstar (purple curve) and at
ωpeak ∼ 5 µHz at r = 0.777Rstar (green curve). Waves with frequencies between 2.5 and 5 µHz
have been damped before being able to reach r = 0.777Rstar. For models boost1d1, boost1d2
and boost1d4 the shift is from 4 to 7 µHz, 7 to 10 µHz and 11 to 13 µHz respectively.

For frequencies larger than ωpeak, the fluxes of the four simulations are decreasing towards
higher frequencies up to the Brunt-Väisälä frequency (vertical dashed lines in Fig. 7.6). Because
of the high amplitude g modes, it is not possible to precisely measure the slope of the spectra.
However, for models ref, boost1d1 and boost1d2 the wave flux measured in MUSIC is broadly
consistent with analytical prediction for Reynolds stress excitation from Lecoanet and Quataert
(2013) and for plumes excitation from Pinçon et al. (2016), but in different frequency ranges.
Close to the peak the excitation seems to be dominated by penetrative convection, whereas
the Reynolds stress takes over at larger frequencies. This result was already suggested by the
theoretical work of Pinçon et al. (2016) as illustrated by Fig. 4.2 and by the simulations of the
solar-like model presented in Chapt. 6. In addition, it seems that the fit is better when using
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νp = 2ωconv. However, it is difficult to disentangle the two mechanisms since Reynolds stress
and penetrative convection act simultaneously to excite waves in the same frequency range,
namely between ωconv and N. However, our results suggest that the excitation efficiency of
each mechanism is not homogeneous in this whole frequency range.

Model boost1d4 shows a different behaviour. The MUSIC flux has a Gaussian shape that
is broadly consistent with the plumes excitation, but the proximity of the peak of the flux to
the Brunt-Väisälä frequency makes the comparison difficult. Nevertheless, it seems that for
this simulation the excitation by penetrative convection is more efficient on a larger frequency
range. The shape of the curve is no longer consistent with any of the three predictions from
Lecoanet and Quataert (2013) in any frequency range. This suggests that the excitation of
IGWs by penetrative flows is strengthened when the luminosity is increased, and seems to
dominate over Reynolds stress excitation in the most boosted simulation. Interestingly, this
shape of spectrum is similar to results from other multidimensional simulations, such as the
ones from Rogers et al. (2013) or Edelmann et al. (2019). In both these studies, it is sug-
gested that the excitations of IGWs is dominated by penetrative convection. Note that the
authors artificially increase the luminosity of their models by factors up to 107. This suggests
that enhancing the luminosity by large factors tend to increase the efficiency of plume excitation.

Finally, for the three models ref, boost1d1 and boost1d2 the slope of the wave flux remains
similar close to the convective boundary (purple curve) and at the top of the domain (green
curve). However, it is difficult to draw conclusions about the slope up to the stellar surface
because of the wave damping that is significantly increasing from r ≃ 0.8Rstar as shown in
Fig. 7.5 and also because of the complexity of the near surface layers that will affect the
waves. Moreover, when analysing hydrodynamical simulations with different values for the
luminosity enhancement factor, waves of different frequencies would be able to reach the stellar
surface. As we have shown, higher frequencies waves will be excited with a larger amplitude
and low frequencies waves are more strongly damped, when a larger enhancement factor is
used. Comparing results from luminosity enhanced models with observations requires caution,
since the former predict the wrong range of frequencies for waves that could reach the stellar
surface. Extrapolation of spectra measured in the interior of the stellar model to the surface
of the star may not be straightforward due to the strong impact of the near surface layers on
waves propagation. Indeed, there is a very important increase of the radiative diffusivity and
the Brunt-Väisälä frequency in this region. Consequently, we suggest that quantitative direct
comparison between observations and simulations would require to run simulations as close
as possible to the stellar surface. Moreover, observations of stellar oscillations do not resolve
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Fig. 7.7 Power spectrum of the radial velocity (blue) and of the temperature (red) for simulation
ref. The angular degree and radius are fixed at ℓ= 15 and r = 0.777Rstar. The power spectrum is
obtained via mode projection on the spherical harmonics basis and a temporal Fourier transform
of the radial velocity.

the surface of stars and consequently the signal is averaged in a way that makes it difficult to
compare to simulations.

In our work, we use radial velocity spectra. Lecoanet et al. (2021) suggest that it should
be equivalent to use any local wave perturbation variable. We have checked this suggestion
by computing the temperature perturbations spectra and find a very good agreement with the
one computed with the radial velocity. This is illustrated on Fig. 7.7 for model ref at given
angular degree ℓ = 15 and radius r = 0.777Rstar. The two spectra differ only in amplitude. From
an observational perspective, it can be interesting to estimate the ratio of horizontal to radial
velocities. At a location r = 0.85Rstar in model ref, we calculate vh/vr ∼ 270 for ω = 10 µHz
and vh/vr ∼ 13 for ω = 40 µHz. This decrease with frequency is expected from the dispersion
relation of IGWs, which predicts that the ratio vh/vr varies as N/ω, with the Brunt-Väisälä
frequency N which is fixed at a given radius. The values we obtain for the ratio of the velocities
are in agreement with the ones determined in the simulations of Horst et al. (2020) in the same
frequency range. At lower frequency, the value of the ratio keeps increasing, and for ω = 2 µHz
we obtain vh/vr ∼ 7800. This value is larger than the ones calculated by Horst et al. (2020) at
similar frequency. We suspect that this discrepancy is the result of the lack of independent data
points from their simulations for the temporal Fourier transform, as suggested by the authors.
Such high value of vh/vr is in agreement with the value calculated from the two-dimensional
simulations of Aerts and Rogers (2015). In their simulations of rotating intermediate-mass stars,
Aerts and Rogers (2015) obtain ratio up to 104 at r = 0.99Rstar. In the observational community,
this ratio is known as the K value which is approximated by K ≃ GM/4π2ν2R3, with ν the
observed intrinsic frequency of a given star and G is the gravitational constant. In their study,



106 Waves analysis in a zero-age-main-sequence 5 M⊙ star model

De Cat and Aerts (2002) measure this K value for SPB stars, which are mid-B type stars
pulsating in high-order g modes. They obtain typical values between ∼10 and ∼100. However,
note that this approximated K value is only defined at the stellar surface. Consequently, direct
comparison with simulated velocity amplitudes determined deeper in the stellar interior should
be taken very cautiously.

In their study, Bowman et al. (2019) are using luminosity perturbations, which is equivalent
to look at the perturbations of the effective temperature T 4

eff as we have the relation L ∝ T 4
eff .

First, in both spectra, observed and modelled, we note the presence of g modes, appearing as
high amplitude narrow peaks. In the observed spectra, these peaks are present at frequencies
larger than the so-called low-frequency power excess. We suggest that if this low-frequency
power excess results from IGWs excited by core convection, we should expect to see g modes
(i.e. narrow peaks in the spectra) in this low-frequency range. Indeed, in the spectrum of model
ref, there are g modes starting to appear from 10 µHz. As we will see in Sect. 7.4, in this
simulation, waves with frequencies lower than 10 µHz are damped before being able to reach
the stellar surface. However, as suggested by Edelmann et al. (2019) and Horst et al. (2020) it
is also possible that the small frequency spacing between modes of different radial order and
different angular degree "hides" these individual narrow peaks. To confirm this suggestion
would require simulations with a radial domain extending to layers close to the stellar surface.
Note that the radial extent in Edelmann et al. (2019) and Horst et al. (2020) is at 90% and 91%
of the stellar radius, respectively. Second, the simulation spectrum shape peaks around ωpeak

and decreases towards lower frequencies. This feature is not observed, and the spectra inferred
from observations remains mostly flat at low frequencies. This difference was already reported
by Edelmann et al. (2019) and Lecoanet et al. (2021). In their study, Horst et al. (2020) state
that this drop towards low frequencies is not present in the spectra measured in their simulations.
They suggest that this could be attributed to the low viscosity and thermal diffusivity used in
their simulations. However, our results show that this feature should be present even for non
boosted simulations. We suggest that this drop is still present in the simulation of Horst et al.
(2020) but it has a very low amplitude (see their Fig. 16). This is a consequence of boosting
only the luminosity and not the radiative diffusivity, which will results in less damping in the
frequency range close to ωpeak. Concerning the observed spectra from Bowman et al. (2019,
2020), this drop at low frequency is not observed. This could be the result of rotational effects
that could shift wave frequency to lower values. In this case, rotation could help reconcile
our simulations and observations. Rogers et al. (2013) indeed suggest an important impact of
differential rotation for frequencies below 10 µHz, based on simulations which initially impose
some differential rotation. Further work including rotation and an appropriate modelling of
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the radiative damping of waves as close as possible to the surface layers would be required to
confirm this effect of rotation.

7.4 Non-linear effects of IGWs

Linear theory for wave propagation is based on the assumption that the displacement amplitude
of a wave is small compared to its wavelength. As the amplitude increases, non-linear effects
can arise, such that the advection terms in the material derivative of the momentum equation
start to play an important role (Sutherland, 2010). These non-linear effects can modify wave
properties and evolution. To quantify the impact of non-linear effects, we use a non-linear
parameter ϵ, defined as (Press, 1981)

ϵ B ξhkh = ξrkr, (7.3)

where ξh (resp. ξr) is the horizontal (resp. radial) displacement of a fluid particle associated
with an IGW. This definition is basically the ratio of the horizontal (resp. radial) amplitude of a
wave to its horizontal (resp. radial) wavelength. According to Press (1981), the displacement
may be approximated as ξi = vi/ω where i = r,h. We thus have for the non-linearity parameter

ϵ =
vh

ω
kh =

vr

ω
kr. (7.4)

From this definition, an IGW is non-linear if ϵ ≥ 1. In the following, we compute ϵ using the
definition based on the radial component of velocity and wavenumber. Using Eq. (7.2), an
analytical expression for ϵ can be inferred

ϵ = v0(ℓ,ω)ω−1
(
ρ

ρ0

)−1/2 (
kh

kh,0

)3/2 N2−ω2

N2
0 −ω

2

−1/4

e−τ/2kr. (7.5)

Using the dispersion relation Eq. (4.2) for IGWs, we also have an expression for the radial
wavenumber

kr = kh

(
N2

ω2 −1
)1/2

. (7.6)

Figure 7.8 presents the dependence of this non-linear parameter ϵ on frequency and radius
for an angular degree ℓ = 4, calculated from the MUSIC simulations (left column) and as
predicted from theory (right column) using Eq. (7.5). We chose to analyse the angular degree ℓ
= 4 as it is for this degree that Horst et al. (2020) predict that the non-linear effects should be
most important. We have performed the same analysis for angular degrees ℓ = 1, 2, 5, 10 and
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Fig. 7.8 Dependence of the non-linear parameter ϵ on frequency and normalised radius for the
four simulations ref (top row), boost1d1 (second row), boost1d2 (third row), and boost1d4
(bottom row). The angular degree is fixed ℓ = 4. The left column presents ϵ as measured
in MUSIC and the right column comes from the analytical expression given by Eq. (7.5),
normalised with the value of the velocity in the simulations at r = rN , where rN is the smallest
radius such as ω = N(rN). The vertical white line in the analytical plots indicates the top of the
numerical domain. The horizontal grey dashed line indicates the convective frequency ωconv
for each simulation.
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20, and we obtained similar results. Note that the radial range (x-axis) is different in the two
columns, in the left one it extends to the top of the numerical domain rout = 0.91Rstar and in the
right one it extends up to the surface r = Rstar. For the theoretical plots, the value of v0 needed
to normalise the amplitude of the velocity is the value of the radial velocity v(rN , ℓ,ω) where
rN is the smallest radius, such as ω = N(rN) for a given frequency ω. For frequencies up to
∼ 50 µHz, rN ≃ 0.183Rstar, as in Sect. 7.2.2. For frequency between ∼ 50 µHz and the maximal
value of the Brunt-Väisälä, Nmax ∼ 220 µHz, this radius rN increases with frequency (see Fig.
7.1 left panel). We introduce rN because of the condition for IGWs propagation ω < N, this
allows ϵ to only take real values (see Eq. (7.5)). Note also that the frequency range (x-axis)
available for each simulation is different. The lower frequency is set to 0.6 µHz for the four
simulations whereas the maximal frequencies are 50, 100, 200 and 200 µHz for ref, boost1d1,
boost1d2 and boost1d4 respectively. This is because we focus on the frequency range that bears
most of the energy in each simulation. We have also set a minimum threshold for ϵ at 10−10 as
the actual value can become very small due to the exponential damping term.

All plots present a similar general aspect, with horizontal ridges corresponding to waves of
a given frequency and for which the value of ϵ varies with radius. For each simulation, there
is a clearly defined range of frequencies above the convective frequency (horizontal dashed
grey line) with ϵ ≥ 10−3. This occurs in different frequency ranges for each simulation. These
ranges are approximately [0.7,5.0] µHz, [1.2,10.0] µHz, [3.0,20.0] µHz and [10.0,60.0] µHz
for models ref, boost1d1, boost1d2 and boost1d4 respectively. Most of these waves seem to
conserve their structure in the whole envelope, suggesting that no non-linear effects occur (no
energy transfer, mode coupling, etc...).

This is not the case for the lowest frequencies in the bottom region of the radiative envelope,
just above the convective core. Indeed, in this region for frequencies close to the convective
frequency, we can see that ϵ ≥ 10−2, and even ϵ ≥ 10−1 for some frequencies, both in the
simulations and the theoretical plots. Ratnasingam et al. (2019) suggested that we can observe
non-linear effects when ϵ ∼ 0.1. Therefore, we may expect non-linear effects to be relevant just
above the convective core. It is possible that some IGWs generated at these frequencies have
too large amplitudes and break close to the boundary.

However, if we compare the simulations and theoretical plots, there is a major difference at
very low frequencies ω ≤ ωconv. The simulations plots indicate high values of ϵ in the whole
radiative zone for this frequency range, which do not appear on the theoretical plots and do not
present the structure of horizontal ridges as at higher frequencies. This signal with large values
of ϵ is difficult to analyse as it is localised at very low frequencies, for which the wavelengths of
IGWs approach the spatial resolution of our grid. Indeed, as the radial wavelength approaches
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twice the length of a grid cell, it is not possible any more to represent the wave on the grid.
Refer to Sect. 6.7 for more discussion on this topic.

If we compare the four simulations, ϵ is larger as the luminosity enhancement factor is
increased. This is expected as the amplitude of the waves increase with the boost. Consequently,
we should expect non-linear effects to be more relevant in boosted simulations. This could
result in more mixing (see for example Jermyn, 2022), angular momentum transport (see for
example Gervais et al., 2018) and/or wave-wave interactions.

Finally, by looking at the analytical predictions for ϵ up to r = Rstar, we can see that non-
linear effects are not expected close to the surface of the star. Most of the waves in the range
of frequencies with values of ϵ ≥ 10−3 are damped before even reaching r = 0.91Rstar, the top
of the MUSIC radial domain. For waves that can propagate further, the maximal values of
the non-linear parameter close to the surface are smaller than 10−5. This is consistent with
the results of Ratnasingam et al. (2019) who computed a non-linearity parameter from the
analytical spectra of Kumar et al. (1999) and Lecoanet and Quataert (2013) for Reynolds
stress excitation of IGWs and found that ϵ < 10−2 in a 3M⊙ star for the angular degree ℓ = 10.
According to the theoretical plots, some waves may reach the surface of the star, but these are
relatively high frequency waves compared to the excitation frequency ωconv. The predictions,
however, are based on linear theory, which neglects the interaction with a possible subsurface
convection zone (see for example Cantiello and Braithwaite, 2019) and near-surface layers that
are difficult to accurately model (see for example Basu and Chaplin, 2017).

7.5 Wave heating in the upper layers

Often overlooked, thermal effects of IGWs can be significant. In the Earth atmosphere, they are
known to irreversibly convert kinetic energy into internal energy (see for example Medvedev
and Klaassen, 2003). Through this mechanism, they can heat up the thermosphere (Yiğit and
Medvedev, 2009). Almost always neglected in main sequence stars, these thermal effects of
acoustic and internal gravity waves have recently been accounted for in evolved stars in order
to explain outbursts in supernova progenitors (Fuller, 2017; Wu and Fuller, 2022) and in an
attempt to explain the lithium enhancement of clump stars (Jermyn and Fuller, 2022). In these
studies, waves deposit heat through radiative diffusion.
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Fig. 7.9 Spatially average temperature profile in the four simulations ref (orange), boost1d1
(indigo), boost1d2 (yellow), boost1d4 (green). The dashed curves are the temperature profiles
obtained at time t0, and the plain curves at t0+∆t, where ∆t is different for each simulation (see
text for values). The temperature profile from the 1D initial model is represented by the plain
blue curve. The outer boundary of the MUSIC numerical domain is indicated by the vertical
dashed black line. The right axis corresponds to the term kradN3 (blue dotted curve) computed
from the 1D model.

7.5.1 Temperature increase in the simulations

In our simulations, we observe a significant increase of the temperature in the upper layers of
the model. Figure 7.9 presents the evolution of the radial profile of the average temperature in
our four simulations ref (orange), boost1d1 (indigo), boost1d2 (yellow), boost1d4 (green). The
average is performed horizontally, as defined by Eq. (A.2). A first average is performed at time
t0 (dashed curves) and a second one on t0+∆t (solid curves), with ∆t = 7.0×107 s, 1.6×107

s, 1.2× 107 s and 1.8× 106 s for models ref, boost1d1, boost1d2 and boost1d4 respectively.
We can clearly see an increase of the temperature close to the top of the domain in the four
simulations, from r ≃ 0.75Rtot up to r = 0.91Rtot. The heated region corresponds to the one with
strong wave damping observed in Fig. 7.5 and 7.8. The temperature increase is more important
when the enhancement factor of the luminosity is larger. The term kradN3 (blue dotted curve)
computed from the one-dimensional model is also plotted in Fig. 7.9. In the heated region, this
term increases sharply. By looking at Eq. (4.14) it is clear that this term drives the radiative
damping of a wave at fixed ω and ℓ. Therefore, IGWs are strongly damped in this region and
will deposit a significant amount of energy. We suggest that the observed heating results from
this damping by radiative diffusion.
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7.5.2 Theoretical estimate of heat added by waves

In order to test this hypothesis, we analytically estimate the amount of heat ϵheat added by
waves in these layers in model ref through radiative damping. Following Fuller (2017), an
IGW is damped by radiative diffusion at a rate γ given by

γ ≃ k2
r κrad. (7.7)

Using Eq. (7.7), we can define a damping length for a given wave

ldamp =
ug,r

γ
, (7.8)

As in Sect. 6.5.2 we rewrite the radial group velocity given by Eq. (4.6) as

ug,r ≃
ω2

N2kh

(
N2−ω2

)1/2
. (7.9)

but here we do not assume the low frequency limit, i.e. we do not consider that ω is negligible
in front of N. Using Eq. (7.7) and (7.9) and the dispersion relation of IGWs given by Eq. (4.2),
the damping length expression becomes

ldamp =
ω3

N2k3
hκrad

(
N2

ω2 −1
)−1/2

. (7.10)

The amount of heat deposited per unit mass per unit time by a single wave (ℓ, ω) is given by

ϵheat = −
dLwave(ℓ,ω)

dM
=

Lwave

Mdamp
, (7.11)

with Lwave the wave luminosity and Mdamp = 4πr2ρldamp the mass through which the waves
pass before being damped. The wave luminosity in Eq. (7.11) corresponds to the luminosity
initially injected by convection in a given wave, i.e. it corresponds to the initial amplitude of
the wave when it is excited. Finally, radiative damping of IGWs produces a heating by unit
time and unit mass for a single wave (ℓ, ω) estimated by

ϵheat(r, ℓ,ω) =
N2k3

hκrad

4πr2ρω3

(
N2

ω2 −1
)1/2

Lwave(r, ℓ,ω) (7.12)

Using Eq. (7.12) we can thus estimate an order of magnitude for the amount of heat theoretically
added to the region between r = 0.75Rstar and r = 0.91Rstar. To do this, we estimate the wave
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luminosity Lwave for a wave (ℓ, ω) as

Lwave(r, ℓ,ω) = Lwave(re, ℓ,ω)e−τ(r,ℓ,ω). (7.13)

with Lwave(re, ℓ,ω) measured in our simulation ref using

Lwave(re, ℓ,ω) = 4πr2Fwave(re, ℓ,ω) (7.14)

where re is the radius at which waves are excited and Fwave has been defined in Eq. (6.17),
except here we do not assume the low frequency limit. In addition, as we are interested
quantitatively in the amplitude of the flux, we multiply Fwave by a 3.28/4π to compensate
for the loss of power due to FFT windowing and normalisation of the spherical harmonics.
We chose re ≃ 0.183Rstar as in Sect. 7.2.2 and 7.4. We consider contribution of waves with
frequency ω in the range [ωconv;ωmax], with ωmax = 50 µHz being the maximal frequency
available for the simulation. The minimal frequency is set to ωconv as we do not expect waves
with lower frequencies to be excited (Lecoanet and Quataert, 2013). Similarly, we consider in
the estimation the contribution of waves with angular degree ℓ from 1 to 200.

Finally, the total amount of heat Qtheory added in the region between r = 0.75Rstar and
r = 0.91Rstar during the time ∆t is

Qtheory =
∑

Nr1,r2

qth(r), (7.15)

where Nr1,r2 is the number of radial grid cells in our simulation between r1 = 0.75Rstar and
r2 = 0.91Rstar and qth(r) is the amount of heat added in each radial grid cell, which is defined as

qth(r) =
200∑
ℓ=0

Nmax∑
ω=ωconv

ρϵheat(r, ℓ,ω)Vshell∆t, (7.16)

withVshell the volume of the shell between radii r and r+∆r where ∆r is the size of a numerical
grid cell in the radial direction. In Eq. (7.15), ∆t is the same time interval as the one used in
Fig. 7.9, which is ∆t = 7.0×107 s for model ref. We obtain Qtheory = 3.3×1041 erg.

Now, in order to compare with the results from the simulations, we measure the total added
heat QMUSIC at the top of the numerical domain using the expression

QMUSIC =
∑

Nr1,r2

ρcp∆TVshell (7.17)



114 Waves analysis in a zero-age-main-sequence 5 M⊙ star model

Fig. 7.10 Cumulative sum of the theoretical estimate of the heat deposited by waves, S heat, as a
function of normalised radius. The horizontal dashed line indicate the value S heat = 1.0.

with cp the specific heat capacity at constant pressure and ∆T the temperature difference after
the same interval of time ∆t. The total added heat in model ref is QMUSIC = 1.0× 1043 erg.
This value is larger than Qtheory, but this can be expected. In the simulations, the top boundary
rout = 0.91Rstar is reflecting IGWs, therefore waves that would be damped in the region between
rout and the stellar surface in an actual star are damped in the region between r1 = 0.75Rtot

and rout in our simulation. Therefore, this heating could be strengthened due to boundary
conditions. The issue of the impact of boundary conditions on hydrodynamical simulations is
an open challenge that affects all stellar simulations (see for example Vlaykov et al., 2022). We
thus consider that the value of QMUSIC is in relatively good agreement with the value estimated
from linear theory Qtheory. This strengthens our confidence that the heating observed in the
simulations results from the damping of IGWs by radiative diffusion.

The estimation of Qtheory is performed between r1 = 0.75Rstar and r2 = 0.91Rstar. However,
the location of the inner boundary of this domain has a limited influence on the computation
of Qtheory. This is highlighted in Fig. 7.10. This figure presents the radial cumulative sum of
added heat by IGWs, S heat, estimated with the analytical expression given by Eq. (7.15). It is
defined as

S heat(r) =

∑
Nr0,r

qth(r)∑
Nr0,rmax

qth(r)
(7.18)

where Nr0,r is the number of radial grid cells between r0 = 0.2Rstar and a given radius r, and
rmax = r2. We can see that most of the heat that waves can deposit is at radii r ≥ 0.7Rstar. This
corresponds to the region where we observe an increase of the temperature in Fig. 7.9 for
model ref.
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In this section, our results show an increase of the temperature in the upper layers of the
star. The amount of heating is comparable to the theoretical predictions of heat added by IGWs
damped by radiative diffusion. This thermal impact of IGWs may thus be relevant in main
sequence stars and is currently under investigation.

7.6 Discussion & Outlook

This chapter presents an analysis of the properties of IGWs excited by convection in a two-
dimensional fully compressible simulation of a 5 solar mass star model at zero-age-main-
sequence. Our reference simulation is run with a luminosity that is not artificially enhanced
and with a realistic radiative diffusivity profile. The simulation radial domain extends from
rin = 0.02Rstar to rout = 0.91Rstar.

• A key highlight from this analysis is the importance of including radiative diffusion in
stellar hydrodynamical simulations. Indeed, we have shown that waves propagating in
the radiative envelope of such stars are strongly damped due to radiative diffusion. In
our truncated model, the radiative diffusivity varies radially by 5 orders of magnitude.
In the region not modelled in this work, between rout and Rstar, we expect the effect of
radiative damping to be enhanced, since the radiative diffusivity varies by more than 4
orders of magnitude in this region. This is particularly important if the goal is to analyse
the waves that can reach the stellar surface and to establish a link with observations or to
study their transport properties.

• A limitation of our work is that we do not include rotation in our simulations, since
the primary goal is to analyse the effect of radiative damping with realistic radiative
diffusivity profiles. A relevant comparison of simulated spectra with observations is a
challenge as it would require a proper description of the surface layers and including
rotation. Indeed, many OB stars observed showing photometric variability are rotating
(e.g. Pedersen et al., 2021; Szewczuk et al., 2021). In addition to the dynamical effects of
rotation on convection (e.g. impacting ωconv and the plume dynamics) and thus on wave
excitation, rotation may produce a shift in the wave frequencies. As already mentioned,
Rogers et al. (2013) suggest a large impact of differential rotation on the low frequency
power spectrum. But these conclusions are based on an imposed differential rotation
profile and would need confirmation with further numerical simulations. Interestingly,
the shape and structure of the power excess observed in these stars(e.g. Bowman et al.,
2019; Szewczuk et al., 2021) is very similar for most stars in their sample. Since the
rotation rates of B dwarfs vary by more than one order of magnitude, it is compelling to
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observe such similarity, since the expected frequency shift would depend on the rotation
rate.

• In the simulations presented in this chapter, we observe an increase of the temperature
close to the top of the numerical domain. In this region, the damping of IGWs is strong,
due to the simultaneous increase of stratification and radiative diffusivity. Using the
linear theory of IGWs, we have estimated an order of magnitude for the amount of heat
that could be added by waves in these upper layers. This value is comparable to the value
inferred from the MUSIC simulations, suggesting that IGWs may be at the origin of
the observed heating. Since the radiative diffusivity can vary steeply with radius, wave
damping is not uniform throughout the star and waves will deposit different amounts of
energy at different radii. Once again, this highlights the importance of using a realistic
radiative diffusivity profile. However, this heating induced by waves is, to our knowledge,
always neglected in main-sequence stars. This may not be always justified and thermal
effects of IGWs may be relevant in some cases, particularly as this occurs in the outer
part of the star.

• We have also studied non-linear effects linked to IGWs propagating in the radiative
envelope of intermediate mass stars. Our results suggest that non-linear effects may be
relevant only above the convective core, close to where waves are excited. In this region,
waves with frequencies close to the convective frequency appear to be strongly damped or
to break in MUSIC simulations. More precisely, these waves have a non-linear parameter
ϵ close to 1, meaning that they may be highly non-linear. A possible explanation could
be that these waves are generated with a very large amplitude and that they likely break
almost immediately due to non-linear effects, just above the convective core. This could
result in mode coupling and/or generation of lower frequency waves. However, we cannot
exclude that the signal in this very low frequency range results from aliasing, as the
associated wavelengths may not be resolved properly on the numerical grid of our model.
This is a common issue in hydrodynamical simulations that is difficult to quantify.

• The results obtained for our reference model are compared with three simulations for
which the luminosity has been increased by factors 10, 102 and 104. As in Chapt. 6,
this comparison highlights the impact of this artefact on the generation and propagation
of IGWs. In our simulation with realistic luminosity and radiative diffusivity, the wave
flux measured is broadly consistent with excitation by penetrative convection at low
frequency and with Reynolds stress at higher frequencies. This is similar in the two
less boosted models, but not in the most boosted one. In the latter, the wave energy
flux is approximately consistent with an excitation by penetrative convection but not by
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Reynolds stress. This suggests that the efficiency of these two excitation mechanisms is
also impacted by an enhancement of the luminosity and radiative diffusivity. We have
also shown that the heating close to the top of the domain and non-linear effects are
more important when the luminosity is artificially increased. In addition, this should also
impact the transport of angular momentum, which depends on the radiative damping of
IGWs and on their amplitude. Results are thus quantitatively modified by an enhancement
of the luminosity, and any prediction based on simulations using this artefact should be
taken with caution.

• Concerning the surface manifestation of IGWs excited by core convection, our main
conclusion is that extrapolating simulated spectra determined at an internal radius to the
surface in order to compare to observations is likely meaningless. Such a comparison
would require numerical simulations extending up to the surface layers, to properly
describe the radiative damping in these layers, which is a formidable challenge for stellar
hydrodynamics simulations. Finally, we can identify two additional challenges regarding
the comparison between observations and numerical simulations. First, simulations
require physical simplifications and are thus far from realistic stellar conditions. As shown
in this work, these assumptions can impact the physics of waves. Second, observations
do not resolve stellar surface and thus only consider global variations of luminosity.
Further efforts are thus needed in order to improve the reliability of comparisons between
observations and the predictions of numerical simulations.





Chapter 8

Perspectives: looking for the missing
physics in stellar evolution

One of the overall objectives of this thesis is to demonstrate how we can use numerical mod-
elling to understand physical processes occurring in stellar interiors. This is a complementary
approach to observations, which will reveal what phenomenon we can not explain with current
theories. In this context, I am currently working on an asteroseismology project to look for the
missing physics in stellar evolution and structure theory. This project was initiated during the
Kavli Summer Program 2021, in collaboration with Dr. Earl Bellinger (Max Planck Institute
for Astrophysics, Germany) and Prof. Sarbani Basu (Yale University, USA). We are aiming to
develop an innovative tool to perform non-linear inversions of stellar structure. This project is
presented in Sect. 8.1 and will be the subject of a publication (Le Saux, Bellinger & Basu, in
prep.)

In addition, all hydrodynamical simulations used for the work presented in this thesis
are two-dimensional. A natural next step will then be to move towards three-dimensional
simulations. This will allow a more realistic modelling of stellar interiors and thus a better
comparison with observations. However, this presents a challenge when the objective is to
study waves in the spectral domain. Indeed, with MUSIC full three-dimensional spheres are too
expensive to run, so we are running pieces of spheres, called wedges. This makes it impossible
to use the spherical harmonics basis to describe waves. We are therefore developing a new
basis, called wedge harmonics, which is adapted to our geometry. This is the subject of Sect.
8.2.
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8.1 Non-linear inversions for stellar structure

Seismic inversion methods aim to build a model of the internal structure of a given star
constrained by all available observational data, seismic or not. In general, it is based on the
effects, i.e. observations, to determine the causes, i.e. stellar structure. From a mathematical
perspective, an inversion consists of solving the equations of the stellar structure taking into
account all available observational constraints (Buldgen et al., 2022). The challenge of inversion
problems comes in part from the fact that they are ill-posed, i.e. in particular that the solution
is not unique. Consequently, the resulting solution is uncertain and degenerate. Physical
arguments are therefore needed to choose the most likely solution.

8.1.1 Linear methods and their limitations

As mentioned in Sect. 3.1, we know that theory of stellar evolution is still missing or at least
incorrectly modelling some physics. In the solar case, it has been highlighted that Standard
Models of the Sun (see Sect. 3.1) are significantly discrepant with the helioseismic observations
of the Sun (see for example Basu, 2016; Christensen-Dalsgaard, 2021). For instance, there
are still some unexplained discrepancies between the helioseismic sound speed and density
profiles and the modelled one as shown on Fig. 5.1. It has also been shown that diffusion
and gravitational settling of all elements heavier than hydrogen play a very important role
when building solar models (Basu, 2016; Christensen-Dalsgaard et al., 1993). These results
were obtained thanks to helioseismic structure inversion methods, which consist in inferring an
internal structure of the Sun using the observed frequencies of its modes of oscillation (see Sect.
3.1). As illustrated on Fig. 8.1 left panel, the oscillation frequencies of the Sun and the ones
of a Standard Solar Model such as model S do not match. The discrepancies between the two
can be large, particularly at high frequencies. The main reason for this frequency dependent
discrepancy is that we currently do not know how to model accurately the near surface layers of
the Sun (e.g. Basu and Chaplin, 2017; Houdek et al., 2017). Higher frequency acoustic waves
have their lower turning point that is more shallow, so they propagate less in the deeper layers.
Consequently, these effects are more important for those waves. In order to compensate for
these surface effects, empirical methods have been developed (see for example Gruberbauer
et al., 2012; Kjeldsen et al., 2008; Roxburgh and Vorontsov, 2003). However, these corrections
do not solve the whole problem. Despite the fact that they improve the agreement with the
observations, there are still discrepancies. These differences result from uncertainties in the
physics of stellar interiors, as we will see.

In this work, we use the more recent correction introduced by Ball and Gizon (2014)
because it has been shown to be the (so far) most favourable treatment of the surface term
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Fig. 8.1 Left panel: Frequency differences between the Sun (mode set BiSON-13 of Basu
et al. (2009)) and Model S of Christensen-Dalsgaard et al. (1996) as a function of frequency.
(Credits Schmitt and Basu, 2015). Right panel: Uncorrected (black symbols) and corrected
(white symbols) frequency differences between observed frequencies for the BiSON solar data
and MESA models. Error bars that correspond to the observed uncertainties are also showed.
The shaded regions show the spread of the modelled frequencies. i.e. taken from the 100 fits to
random realizations of the observations (see Ball and Gizon, 2014, for details)

(Ong et al., 2021; Schmitt and Basu, 2015). It suggests adding to the modelled frequencies the
following parametrization

δω =
(
a−1(ν/νac)−1+a3(ν/νac)3

)
/I (8.1)

with a−1 and a3 being coefficients that are fit for a given stellar model (hence the dependence of
the frequency shift on the model), νac is the acoustic cut-off frequency, and I is the normalized
mode inertia. The results of this correction are presented on the right panel of Fig. 8.1. We
can see that there are no remaining trends in the corrected data. However, there are still some
discrepancies which are larger than the error bars. These remaining differences between the
Sun and the standard solar model do not belong to the surface effects. The discrepancies
suggest that solar models are not totally right and are still missing or incorrectly modelling
some physics. They are thus used to perform inversions of the internal structure of the Sun.
Indeed, as mentioned, the frequencies of normal modes of oscillations depends on this internal
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structure. These methods have been proven powerful as they give deep insight into the solar
interior (see Buldgen et al., 2022, for a recent review).

Current and past spatial telescopes have already provided data on hundreds of thousands of
stars, and millions more are expected in the coming years. The diversity of the observed stars
offer a unique laboratory to determine precisely the stellar structure of a wide variety of stars.
We are no longer limited to one star, but now have access to many stars at almost every step of
stellar evolution. This presents an incredible opportunity to test stellar evolution theory.

To date, most methods used to perform inversions have been linear. This type of inversion
methods are based on the variational principle of adiabatic stellar oscillations. This principle
links perturbations of oscillation frequencies to perturbations of the internal structure. Starting
from the perturbed equations of hydrodynamics (see Eq. (3.23)-(3.25)) we can obtain an
eigenvalue equation of the form

L(ξn,ℓ) = −ω2
n,ℓξn,ℓ, (8.2)

with L a linear differential operator (see Eq. (3.111) in Basu and Chaplin, 2017, for its
definition). This eigenvalue value problem is Hermitian under the boundary conditions ρ =
P = 0 (Chandrasekhar, 1964). This allows us to apply a variational principle to compute the
eigenfrequencies ω2

n,ℓ corresponding to a given eigenfunction ξn,ℓ, as

−ω2
n,ℓ =

< ξn,ℓ,L(ξn,ℓ) >
< ξn,ℓ, ξn,ℓ >

, (8.3)

with < . > the inner product operator defined over the functional space of the solutions of the
adiabatic oscillation equations (Buldgen et al., 2022). Frequencies calculated using Eq. 8.3
are usually called variational frequencies. Next, we consider a small perturbation around a
reference model. Then the linear operator, eigenfunctions and eigenfrequencies can be written
as L+ δL, ξn,ℓ + δξn,ℓ and ωn,ℓ + δωn,ℓ respectively, with δ the variational perturbation. This
is the linearisation step responsible for the name of this method. Finally, we can express the
relative perturbation to the eigenfrequencies as a function of relative perturbation of the inner
structure of the star (Basu and Chaplin, 2017), as

δωn,ℓ

ω2
n,ℓ

=

∫
Kn,ℓ

f1, f2

δ f1
f1

dx+
∫

Kn,ℓ
f2, f1

δ f2
f2

dx+
Fsurf(ωn,ℓ)
In,ℓ

+O(δ2), (8.4)

with f1 and f2 two structural variable (e.g. density, sound speed, pressure...), Kn,ℓ
f1, f2

and Kn,ℓ
f2, f1

are two inversions kernels which are functions of the reference model. The term before the last
on the RHS takes into account the surface term correction Fsurf , which we define using Eq. 8.1.
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Finally, the inversion kernels, are computed using the reference unperturbed model (see
Chapt. 10 of Basu and Chaplin, 2017, for a detail description). Recently Bellinger et al. (2020,
2021) pointed out that these linear methods could introduce errors, especially for more evolved
stars that change on relatively short timescales. Indeed, by definition, in the linearisation
introduce to derive Eq. 8.4, all terms of order larger than one are neglected, which may not be
justified in some cases. In these cases the last term of Eq. 8.4, which takes into account terms
of higher order than one, might not be negligible. This will introduce errors in the relation
between the eigenfrequencies and the stellar structure. In the case of evolved stars, it is known
that mode coupling from mixed oscillation modes introduces errors in the inversions results
(Ong et al., 2021). In addition, linear methods also require a manual adjustment for numerous
free parameters. This motivates us to study and develop a non-linear inversion technique, i.e.
a method that will solve the full system of oscillations equations. This will allow applying
seismic inversions to subgiant and red giant stars.

8.1.2 A new self-consistent inversion method

The goal of this ongoing project is to obtain better constraints on stellar interiors by developing
a non-linear inversion technique. The objective is to build static stellar models with a flexible
composition profile and to use the MESA stellar evolution code (Jermyn et al., 2022; Paxton
et al., 2011, 2013, 2015, 2018, 2019) to relax these models, i.e. to solve the full non-linear
equations of stellar structure. In MESA, a snapshot of the composition profile is set with the
radial evolution of 3 variables: the hydrogen mass fraction X, the helium mass fraction Y and
the heavy elements mass fraction Z. The elements contained in Z depend on which network is
chosen. In this work, we are using two different networks: ‘basic.net’ and ’pp_cno_extras.net’.
The former contains 8 chemical species, and the latter 25. Using one or the other depends on
the information we have on the star we aim to model. Particularly, stars more massive than the
Sun and stars at later phases of evolution need more detailed nuclear networks. The relative
abundance of each element is taken from the solar photospheric composition, as determined
by Magg et al. (2022). Because of the constraint X+Y+Z=1, we only need to parametrize
2 of these 3 variables. Due to the burning of hydrogen in the core of the star during the
main sequence, the X profile is strictly increasing from the centre toward the surface in main
sequence stars. Thus, to ensure this constraint, we chose X as our first independent variable.
The second one can either be Y or Z. In this work, we will use Z, unless stated otherwise. We
chose to parametrise the perturbation to the composition profile, δA, instead of the composition
profile itself, A. Then the new profile will be A′ = A+δA, with A = X, Yor Z. This is to avoid
any problem with discontinuities, particularly the one at the convective-radiative boundary.
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In MESA models, the composition profile is usually discretised in 1500–2000 points. This
is way too much to parametrise the compositions profiles using all of them. Indeed, in our
method we would like to perturb the composition profile to build a model with a structure
that allows to get oscillations frequencies as close as possible to the observational data. If
we keep these 1500–2000 points for the composition profile, it means that the algorithm will
need to work with two times much input parameters. Consequently, in order to reduce this
dimensionality, we use a P-splines representation of the composition profile. P-splines, or
Penalized B-splines, were developed by Eilers and Marx (1996). The concept is based on
B-splines, but with addition of a parameter to control the smoothness of the representation.
This smoothness parameter, λ, is optimized using the equation:

Q =
∑

i

(oi−bi)2+λ
∑

i

(bi−bi−1)2 (8.5)

where oi is the value of X, Y or Z at a given point i in radius in the initial MESA model and bi

is the build value from the P-splines method. The main advantage of the technique is that it
allows to obtain a faithful representation of the composition profile with only a limited number
of parameters. These parameters, also called knots, will be regularly spaced in terms of acoustic
depth, which is defined as (Gough, 1990)

τd(r) =
∫ Rstar

r

dr
cs

(8.6)

By definition acoustic waves travel at the sound speed. We determined the optimal number
of knots as 65 by analysing the convergence of the cumulative error on the rebuild profile
compare to the initial. This value was already used in Basu and Chaplin (2017). We are going
to consider that the value of the perturbation of all the knots in a given convective zone is
equal. This means we consider a very efficient chemical mixing by convection, which is true
on evolutionary time scales. Then, the number of parameters used to parametrise a profile will
be reduced to 25, as there is 40 knots in the convection zone.

This method gives us a total of 50 parameters to perturb the composition profile. We use an
extra parameter to build our static models, which is the mixing length parameter αMLT, already
introduced in Eq. (2.21). Indeed, this parameter influence strongly the value of the radius Rstar

and luminosity Lstar of the star, as showed on Fig. 8.2 for a solar model.
Now that we are able to build flexible static models of stars, the next step is to determine

which structure allows the best fit to observations. This step will be automated using a Basin-
Hopping optimisation algorithm (Wales and Doye, 1997). The main benefit of this algorithm is
that it has been designed to find the global minimum of a non-linear function with multiple
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Fig. 8.2 Evolution of radius, R, and luminosity, L, with the mixing length parameter αMLT for
our Standard Solar Model built with MESA.

minima. The optimiser has then to minimise a likelihood for a given combination of parameters.
The likelihood we chose is a χ2 function. Thus, we have

χ2(αMLT,X1, . . . ,XN ,Z1, . . . ,ZN) =
∑

j

(O j−M j)2

σ2
j

. (8.7)

with O j and M j that are respectively the observed and modelled values of oscillation frequencies
νi, radius Rstar, luminosity Lstar, and metal abundance at the surface [Z/X]. The σ j are the
uncertainties on the observed values.

8.1.3 Preliminary results

As the Sun is the best known star, we have chosen to develop our method using an analysis
of this star. This allows for precise comparison not only with observations but with previous
studies that used different methods to get similar results (e.g., linear inversion techniques).
Indeed, for low-mass main-sequence stars linear inversion methods appear to be mostly valid,
thus we should expect both linear and non-linear methods to give similar results. The full
potential of our new self-consistent method lies in applying inversions to evolved or massive
stars.

The main observational characteristics of the Sun we are using are summarised in Table 8.1.
These values are taken from Prša et al. (2016), except for the surface abundances that are from
Magg et al. (2022). The estimation of the mass of the Sun is done by measuring its product
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Table 8.1 Observed characteristics of the Sun.

Variables Sun Uncertainties
Age (Gyr) 4.59 ±0.006

M⊙ (g) 1.988×1033 −

R⊙ (cm) 6.957×1010 0.00140×1010

L⊙ (erg.s−1) 3.828×1033 0.0014×1033

[Z/X]⊙ 0.0225 ±0.0014
Teff,⊙ (K) 5772.0 ±0.8

Table 8.2 Characteristics of solar numerical models.

Model M (M⊙) R (R⊙) L (L⊙) [Z/X] ([Z/X]⊙)
Evolutionary 1.0 0.99767 1.00236 0.97

Non-evolutionary 1.0 1.00023 1.00003 1.10

with the gravitational constant, which is known with very high accuracy. Therefore, we keep its
value fixed at the one given in Table 8.1. The observational oscillations frequencies for the Sun
used in this project are from the Birmingham Solar Oscillations Network (BiSON) (Broomhall
et al., 2009; Davies et al., 2014; Hale et al., 2016).

To initiate our non-linear method, we need to start from an initial 1D model of the considered
star. This model can be build using non asteroseismic observational data such as its radius, age,
surface abundances and luminosity. Then, we build a Standard Solar Model using MESA. The
characteristic of this model, called evolutionary model, are given in Table 8.2. In order to test
the feasibility of our idea, we are first performing a test of our algorithm with only 5 parameters:
αMLT, δXRZ, δZRZ, δXCZ and δZCZ, which are respectively the mixing length parameter, the
value of the perturbations to the X and Z profiles in the radiative zone, and the perturbations
to the X and Z profiles in the convective zone. As an initial guess for the parameters, we use
a random number generator following a normal distribution around the mean value 2.0 and
variance 0.3 for αMLT and with mean value 0.0 and variance 0.09 for the perturbations. We
recall that the function that is then minimised by the algorithm is given by Eq. (8.7).

The characteristics of the resulting optimised static solar model, which we call non-
evolutionary model in the following, are given in Table 8.2. We can see that the radius
and luminosity are in better agreement with the observed values. However, the agreement of
the surface abundance of heavy elements is less good, as it is now 10% too high. This is an
indication that we need more flexibility, i.e. more knots, to parametrise the composition profile.

Next, we can compare the oscillations frequencies of the initial and the optimised models
to the observed values for the Sun. This is presented on the left panel of Fig. 8.3. This plot
presents the oscillations frequencies as a function of frequency modulo the large frequency
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Fig. 8.3 Left panel: Echelle diagrams comparing the frequencies of the initial model (grey filled
circle) and the optimised model (blue filled circles), with observations (green empty circles) of
harmonic degrees ℓ = 0,1,2 and 3. Right panel: Comparison of the sound speed radial profiles
between the initial (grey) and optimised (blue) 1D model of the Sun.

separation ∆ν (see Eq. (3.50) for definition). This kind of representation is called an echelle
diagram and is convenient to quickly identify low degree oscillation modes. Indeed, each dot
corresponds to an eigenfrequency and each ‘column’ of dots to an angular degree. On this plot,
from left to right, we have the angular degrees ℓ = 2,0,3,1. Echelle diagrams are widely used
by observers, as they are convenient to visually compare the eigenfrequencies of the Sun to our
different one-dimensional models. We can see that our non-evolutionary model (blue dots) is in
better agreement with the solar observations (green circles), compare to the initial evolutionary
model (grey dots).

Thanks to the optimisation process, the values of all the parameters used to compute the
cost function are now in better agreement with the observed values. This confirms the efficiency
of our algorithm. However, the right panel of Fig. 8.3 shows the limitations we are currently
facing. This plot shows the radial profile of the relative difference in sound speed between one-
dimensional models and observations from Basu et al. (2009). We can see that the agreement is
worse for our non-evolutionary model. This is most probably due to the fact that we use only 5
parameters instead of the 51 required for an ideal optimisation.

8.1.4 Futur work

As mentioned, the final objective of this work is to perform non-linear inversion of the structure
of massive and evolved stars, for which the linear methods fail. The motivation is that thanks to
observational data, I am getting information on physical processes occurring in specific location
within a star which remain poorly described by current theories. It allows me to determine which
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regions to focus on when I run simulations. For instance, by inferring the compositional profile
of a star, I can infer information about mixing. This will help to understand the discrepancies
between theoretical predictions and observations in terms of life-time of stars in their different
evolutionary stages or surface abundances of chemical elements, for instance.

In this Sect. 8.1, we present an innovative method which allow performing non-linear
inversion of stellar structure. Despite that we only run the optimisation with 5 parameters for
the moment, instead of the 51 required, our algorithm gives promising results. Indeed, the
frequencies, radius and luminosity of the evolutionary model are in better agreement with
observations. The next step is thus to confirm the efficiency of our method with more parameters
to constrain composition profiles. The main obstacle we are currently facing is the time required
for computation. Indeed, when increasing the number of parameters, the time required to run
the optimisation increases importantly. Reducing the computation time is not simple, as most of
it is due to MESA and GYRE computations. However, a solution we are currently investigating
is to parametrise the composition profiles with polynomial functions instead of P-splines. This
could reduce the number of parameters down to ∼ 21.

8.2 Towards three-dimensional simulations

From observations, we know that all stars rotate and are magnetised, event though the amplitude
of these two phenomena may vary by orders of magnitude from one star to another. For some
stars, neglecting one, or both, of these physical processes may not be justified. For instance,
most of F type stars are known to rotate quite rapidly, typically 5 times the rotation rate of the
Sun (Santos et al., 2021), and there is a particular class of A type stars that are particularly
magnetic, the roAp stars. To model such physical phenomena, three spatial dimensions are
needed. Concerning waves modelling in stellar interiors, the addition of rotation and magnetic
field to simulation is important for two main reasons. First, waves could impact physically
these two phenomena through transport of angular momentum, energy and chemical elements.
For instance, they are supposed to transport angular momentum (e.g. Zahn et al., 1997), which
would impact the rotational profile and could possibly affect a dynamo generated magnetic
field. Second, waves can be used as probes of these two phenomena thanks to asteroseismology.
As mentioned in Sect. 8.1, very good constraints on stellar rotational profile have been obtained
thanks to inverse methods. Very recently, Li et al. (2022) have presented the first detection of
internal magnetic fields in red giants thanks to mixed modes.

Therefore, a logical continuation of this work is to carry out three-dimensional simulations
of stellar interiors that include rotation and magnetic fields. This present two major challenge:
computation is way more expensive and spherical geometry creates singularities at the poles.
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Fig. 8.4 Visualisation of the radial velocity in a three-dimensional solar model run with MUSIC.
Credits: D. G. Vlaykov (University of Exeter).

As mentioned earlier, with MUSIC we are consequently running simulations with a wedge
geometry. The wedge geometry reduces the size of the numerical domain and therefore the
computational cost of the simulation. It also avoids the singularity at the poles. An illustration
of three-dimensional simulations of a solar model run using a wedge geometry with MUSIC
is presented in Fig. 8.4. To perform spectral analysis of waves in simulations with a wedge
geometry, we developed the wedge harmonics basis. This basis allows a decomposition of
any variable using an effective angular degree ℓeff , which takes real values, unlike the usual
integer angular degree ℓ from the spherical harmonics basis. The decomposition corresponding
to the ϕ component is performed using the same azimuthal order m as the spherical harmonics.
Appendix C describes how we constructed this wedge harmonics basis.



130 Perspectives: looking for the missing physics in stellar evolution

8.2.1 Numerical simulations

In order to test our new wedge harmonics basis, I have run three different simulations of a
solar model in two dimensions with different co-latitudinal range. In this chapter we consider
a realistic solar model, i.e. we do not enforce a fully adiabatic convection as is the case in
Chapt. 6. The initial one dimensional model is the same as the solar model introduced in
Sect. 6.2.2. The first model, wide, is a full hemisphere ranging from 0 to π, similar to the
simulations presented in Chapt. 6 and 7. The two others are wedges with a co-latitudinal extent
ranging from π/12 to 11π/12. These two simulations differs in their boundary conditions in the
θ-direction. One has periodic boundary conditions, model wedge-P, and the other one reflective
boundary conditions, model wedge-R. The reflective boundary conditions are described in Sect.
6.2.1 and the periodic ones are defined as

• vr(θmin) = vr(θmax),

• vθ(θmin) = vθ(θmax),

with the co-latitudinal domain ranging from θmin = π/12 to θmax = 11π/12 in our case. Thanks
to this study, we will thus also be able to test the influence of boundary conditions in the
θ-direction. In these three simulations, the radial extent is the same, ranging from rin = 0.4Rstar

to rout = 0.9Rstar.
Figure 8.5 presents snapshots of the radial velocity vr for the three simulations. The values

of the radial velocities have been normalised by the rms of the radial velocity vr,rms to allow
better visualisation. Values of vr in the radiative zone are indeed orders of magnitude smaller
than in the convective zone (see Chapt. 6). In the three models, the envelope structure is very
similar, with large up flows (red) and down flows (blue) characteristic of convection. The
radiative interior present a structure in concentric circles characteristic of IGWs wavefronts. At
first glance, the three simulations looks very similar. Let us study that in more details in the
next section.

8.2.2 Preliminary results

As already well-used in Chapt. 6 and 7, the spectral space is very convenient for waves analysis.
In the present section, it will also allow testing our wedge harmonics basis. Figure 8.6 presents
the power spectrum of the radial velocity as a function of frequency and angular degree for
the three simulations. In the following, we will indifferently call ℓ and ℓeff angular degree. We
will therefore only use one common notation ℓ. For model wide we are using a decomposition
on the spherical harmonics basis, whereas for model wedge-R and wedge-P we use the wedge
harmonics basis. The structure of the power spectra is similar to the one presented in Fig.
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Fig. 8.5 Visualisation of the radial velocity, vr for the three solar simulations wide, wedge-R
and wedge-P as a function of radius r and co-latitude θ. The radial velocity is normalised by
the rms value of the radial velocity. Positive values of the radial velocity (red) are outward and
negative (blue) are inward.

6.5 for a solar-like model, with the discrete bright ridges corresponding to g modes. The fact
that we observe the same g mode patterns for the three models confirms the validity of our
wedge harmonics decomposition. However, one main difference between spherical and wedge
harmonics is that the eigenvalues are different (see Appendix C for details). In the spherical
harmonics case, the angular degree ℓ values are integer. However, for wedge harmonics we can
only estimate an equivalent of the angular degree, whose values are real and not equally spaced.
The value of this equivalent angular degree depends on the numerical grid in the θ-direction.
This is part of the reason why the "resolution" in ℓ on Fig. 8.6 looks different.

This is further illustrated on Fig. 8.7. This figure presents the power spectra of the radial
velocity as a function of radius and frequency. As indicated in the title of each panel, the angular
degree is not the same for model wide and the other two. For the former, the angular degree
is ℓ = 9, whereas for the two wedge simulations, the angular degree is the closest to 9 that is
available, ℓ = 9.14. The three spectra present a very similar structure, with a monotonically
decreasing amplitude with increasing frequency in the convective zone (r ≥ 0.72Rstar) and
bright ridges corresponding to g modes in the radiative zone (r ≤ 0.72Rstar). On these high
amplitude ridges, the low amplitude dots correspond to the knots of the modes. On the three
plots, we can see that the number of knots is increasing with decreasing frequency, which is a
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Fig. 8.6 Power spectra of the radial velocity for the three solar simulations wide (top), wedge-R
(middle), wedge-P (bottom) as a function of frequency and angular degree at depth r = 0.5Rstar
in the middle of the radiative zone. They were obtained via mode projection on the spherical
and wedge harmonics basis and a temporal Fourier transform of the radial velocity.
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Fig. 8.7 Power spectra of the radial velocity for the three solar simulations wide (top), wedge-R
(middle), wedge-P (bottom) as a function of frequency and radius. The spectra are computed for
angular degree ℓ = 9 for mode wide and effective angular degree elleff the closet to 9 for model
wedge-R and wedge-P. They were obtained via mode projection on the spherical harmonics
and wedge basis and a temporal Fourier transform of the radial velocity.

property of g modes (Aerts et al., 2010). The structure of these modes, particularly the position
of the knots, and their frequency do not appear to be affected by the change in co-latitudinal
extent or in the boundary conditions in the θ-direction. From Eq. (3.45) and (3.47) we can see
that the eigenfrequencies and eigenfunctions of g modes depends mostly on quantities that
only vary with radius. Nevertheless, we need to confirm that by comparing more precisely the
frequencies with the predictions from oscillations code GYRE.

8.2.3 Futur work

Running three-dimensional simulations is a natural follow-up to the work presented in this
thesis. We have showed that the MUSIC code is well suited to model internal gravity waves
with realistic properties, particularly related to their excitation and damping by radiative
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diffusion. These two mechanisms remains poorly constrained in stellar interiors, therefore
hydrodynamical simulations give valuable information to describe them. Next, to model
more realistic IGWs, rotation and magnetism need to be added in the simulations as they will
both affect the excitation and propagation of the waves. This will help to guide and analyse
observations, as well as studying the role played by IGWs in angular momentum and energy
transport in stellar interiors.

The work presented in Sect. 8.2 is a first step towards three-dimensional simulations
with MUSIC. As mentioned, running simulations of the full three-dimensional sphere is
computationally too expensive with MUSIC at the moment. Thus, we are running simulations
on portions of a sphere called wedge (see Fig. 8.4). As the spherical harmonics basis can
not be used in this case, we developed a new basis called wedge harmonics, which allow
studying waves in the spectral domain. We showed that this basis works and is adapted to a
two-dimensional wedge geometry.

The next step is to test it with a three-dimensional simulation. Note that the validity
of the wedge harmonics basis in three dimensions is almost straightforward. Indeed, the
decomposition in ϕ-direction, which corresponds to the m component in the spectral space, is
the same as for the spherical harmonics basis as explained in Appendix C. We already have two
sets of simulations running with a three-dimensional geometry that we will be able to analyse
soon. We have a set of solar models with different rotation rates and a set of 20 M⊙ star model,
also with different rotation rates. The addition of magnetic field is currently in development by
the MUSIC team.

Finally, the three simulations presented in this section are also interesting to study the
influence of boundary conditions in the θ-direction and the co-latitudinal extent of the numerical
grid. This work will be complementary to the study presented in Vlaykov et al. (2022), which
analyses the impact of radial truncations on two-dimensional simulations of a solar model.
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Conclusion

This thesis has explored the properties of internal gravity waves (IGWs) in stellar interiors
using hydrodynamical simulations. On the one hand, we have highlighted that it is possible to
model realistic IGWs with a fully compressible hydrodynamical code. On the other hand, we
have showed that numerical simulations set up can impact the properties of IGWs, thus one
has to be careful when interpreting the results from these simulations. In addition, theoretical
and numerical models can present a good agreement in the linear regime, which will help to
constrain observations in the quest for IGWs or g modes in stars. After some introductory
chapters (Chapt. 2 - Chapt. 5) on the general context of the study, this thesis is divided in
two parts presenting the results. The first part focuses on IGWs properties in two-dimensional
simulations of a solar-like model, and particularly on the impact of an artificial enhancement of
the luminosity of the numerical model (Chapt. 6). The second part is devoted to intermediate-
mass stars which possess a convective core, and where IGWs propagate towards the surface of
the star (Chapt. 7).

The first problem we are interested in is related to the challenge of thermal relaxation
in hydrodynamical simulations. This open challenge is a consequence of the length of the
thermal timescale compared to the other timescales relevant to the simulations. In the context of
hydrodynamical simulations, this timescale represents the characteristic time to reach thermal
equilibrium. The thermal timescale is estimated with the Kelvin-Helmholtz time, which
corresponds to the time for the star to radiate away all its gravitational energy in absence of
any energy source (see Eq. (2.6)). For the Sun, it is approximately 20 Myr, and for a 5M⊙ star
0.4 Myr. With computational time step of the order of several seconds (see Sect. 5.2), it is not
possible to run simulations for that long with current computational resources. One common
solution to deal with this issue, known as boosting, is to artificially increase the luminosity of
the stellar model by several orders of magnitude. As showed in Eq. (2.6), the thermal timescale
is inversely proportional to the stellar luminosity. The enhancement factor can take value up to



136 Conclusion

107 (e.g. Edelmann et al., 2019), thus decreasing equivalently the thermal timescale and making
it computationally reachable. However, despite being used for almost two decades (e.g. Rogers
and Glatzmaier, 2005a), the impact of this artificial technique on physical processes has never
been quantified. Consequently, the first question we wanted to address was to quantify the
impact of the artificial enhancement of the luminosity in hydrodynamical simulations of
stellar interiors on internal gravity waves. Our results, presented in Chapt. 6 and published
in Le Saux et al. (2022), highlight that

• the enhancement of the luminosity increases the convective velocity and therefore the
characteristic frequency ωconv associated with convection. From theory, we know that a
given excitation mechanism will generate waves with frequencies ω ≥ ωconv. Therefore,
the lowest frequency waves are "lost" in boosted simulations.

• eigenfrequencies of g modes in a given stellar model are not impacted by the luminosity
enhancement for boosting factors up to 104. This is because the frequency of g modes
depends on the stratification and the geometry of the stellar model, which are not modified
in boosted simulations. However, there is a dependence on the enhancement factor with
a redistribution of most of the energy in high frequency modes. This is a result of the
increase of the convective frequency ωconv.

• the two previous points imply, and explain why we observe, a shift of the wave flux
towards higher frequencies in boosted simulations. Nevertheless, an important conse-
quence of this is the reduction of the size of the range of frequencies excited. This is
because the Brunt-Väisälä frequency N is fixed, and therefore the interval between ωconv

and N is smaller.

• there is an impact of the boost on radiative damping of IGWs. In boosted simulations,
radiative diffusivity is increased by the same amount as the luminosity to be consistent
and to keep the stellar structure identical as in the reference model. Therefore, damping
by radiative diffusion is increased in boosted simulations compared to non-boosted ones.
This can have important consequences on angular momentum transport.

These results do not rule out the boosting method, they are a warning about their use and
the interpretation of boosted simulation results. In a companion paper, Baraffe et al. (2021)
we also study the impact of this technique on convective penetration. The analysis of these
two-dimensional simulations have also highlighted that we can model realistic IGWs with the
MUSIC code. Indeed, we have showed that
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• the wave flux computed in our hydrodynamical simulations are broadly consistent with
theoretical predictions for waves excitation by Reynolds stress (Lecoanet and Quataert,
2013) and by penetrative convection (Pinçon et al., 2016).

• the eigenfrequencies of g modes observed in MUSIC simulations compare very well
with the analytical predictions from the oscillation code GYRE (Townsend et al., 2018;
Townsend and Teitler, 2013).

• damping of IGWs measured in simulations follow the predictions from damping by
radiative diffusion predicted by Press (1981).

This encourages us towards three-dimensional modelling to study the transport properties of
IGWs, linked to transport of angular momentum, chemical elements and energy.

The second problem we focus on concerns the properties of IGWs in intermediate-mass
stars. In these stars, IGWs are excited near the convective core and propagate in the radiative
envelope towards the stellar surface. This should offer a better opportunity to detect convectively
excited IGWs and associated g modes, and therefore to get information on the inner part of these
stars. The inner structure of this type of stars remain poorly known at the moment, and having
new constraints will thus help to test stellar evolution theory. However, there are no confirmed
detection of IGWs excited by core convection in intermediate-mass stars. More than a decade
ago, Blomme et al. (2011) reported the detection of a low-frequency power excess in the
observed power spectra of O type stars whose origin was unknown. The authors speculate on
three possible explanations for this origin: sub-surface convection, granulation, or stellar wind
inhomogeneities. However, they did not conclude on the more probable one. More recently,
Bowman et al. (2019, 2020) found a similar power excess at low-frequency in power spectra of
OB stars observed by CoRoT (Auvergne et al., 2009) and TESS (Ricker et al., 2015). In these
studies, the authors conclude that this power excess results from propagating IGWs excited by
core convection that reach the surface of the stars. To draw such a conclusion, they measure the
slopes of the observed spectra and obtain a dependence on frequency between ω−1 and ω−3.5

for a majority of stars. The authors state that these values are relatively close to the slopes
measured in the hydrodynamical simulations of Edelmann et al. (2019); Horst et al. (2020);
Ratnasingam et al. (2020); Rogers et al. (2013). However, these findings have been challenged
by the theoretical work of Lecoanet et al. (2019) and the simulations from Couston et al. (2018);
Lecoanet et al. (2021). In these studies, the authors show that if the observed spectra were
resulting from IGWs generated by core convection we should observe high amplitude g modes
in the frequency range of the power excess, and a decrease in power towards lower frequencies.
They conclude that the likely origin of this power excess is a sub-surface convection zone
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(Cantiello et al., 2021). To date, the actual physical origin of this low-frequency power excess is
still a matter of debate. It will remain difficult to answer this question as long as the properties
of IGWs in intermediate-mass stars are not well known. In this context, the second challenge
we want to face is to bring new constraints on the properties of IGWs propagating in the
radiative envelope of intermediate-mass stars. Our findings are presented in Chapt. 7 and
published in Le Saux et al. (2023). Using two-dimensional simulations of a 5 M⊙ stellar model
at Zero-Age Main-Sequence (ZAMS), we have highlighted the following properties of IGWs.

• To model realistic IGWs propagating in radiative zone of stars, it is crucial to include
a realistic profile of radiative diffusion in hydrodynamical simulations. Indeed, the
propagation of IGWs, and thus the evolution of their amplitude, depends strongly on
the density and radiative diffusivity profiles. In our 5 M⊙ stellar model, the latter varies
by 9 order of magnitudes between the centre and the surface of the star. This strongly
impacts the waves amplitude as they propagate, and will determine whether it can reach
the surface or not. In addition, it is through damping by radiative diffusion that waves
can transport energy and angular momentum. Therefore, to model a realistic transport, it
requires a realistic damping mechanism.

• Non-linear effects resulting from high amplitude IGWs may be relevant only above the
convective core. In this region, where waves are excited, it appears that IGWs with
frequency close to the convective frequency, are excited with amplitude large enough
for non-linear effects to occur. In our simulations, these waves seem to be damped
very efficiently. Another possible explanation is that these IGWs are generated with a
very large amplitude and thus break almost immediately. This could result in additional
mixing and/or wave-wave interactions.

• Thermal effects linked to IGWs may be relevant in stellar interiors. Indeed, through
damping by radiative diffusion, IGWs can add heat into a given region, but this is
almost always neglected in main-sequence stars. In our simulations, we observe an
increase of the temperature in the upper layers in a region where radiative damping is
particularly efficient. We suggest that IGWs damped by radiative diffusion could explain
the temperature increase. Using linear theory, we show that IGWs can explain the amount
of heat added in this region during the time of the simulation. This highlights again the
importance of using a realistic radiative diffusivity profile in hydrodynamical simulations.

• The actual IGWs spectrum in stellar interiors is still unknown. This is part of the reason
why their detection is challenging. Theoretical predictions predict different spectra
depending on the excitation mechanism, i.e. penetrative convection or Reynolds stress.
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Our results suggest that both mechanisms are present, with the former being more efficient
at low frequencies, close to the excitation frequency, and the latter becoming more
efficient at higher frequencies. However, in simulations run with artificially enhanced
luminosity, the IGWs spectrum is impacted by the boost. Particularly, the efficiency of
both mechanisms is affected. In our most boosted simulations, with an enhancement
factor of 104, the excitation by penetrative convection totally dominates. This casts
doubts on the comparison of Bowman et al. (2020) between observed spectra and the
ones computed from the boosted simulations.

• Direct comparison between observations and hydrodynamical simulations is not straight-
forward. Particularly, we cannot easily extrapolate spectra from an internal radius to the
surface of the star. In order to compare with observations, one would have to simulate as
close as possible to the stellar surface (r > 0.99Rstar). Indeed, the upper layers of a star
will strongly impact the propagation of IGWs. There are also two additional obstacles to
this comparison. First, hydrodynamical simulations require physical simplifications that
could impact IGWs as we have seen in the work presented in this thesis. Second, during
observations, the surface of a star is not resolved. The light received from a star is only
collected by a couple of pixels. This will average the signal in such a way that only large
scale oscillations are detected.

The results presented in this second part of the thesis have highlighted the complexity of
modelling IGWs with hydrodynamical simulations. These waves are particularly sensitive
to the physical simplifications needed to run hydrodynamical simulations of stellar interiors.
Consequently, making predictions on the ability of IGWs to reach the stellar surface and/or
making comparison with observations require caution.

The work presented in this thesis offers several perspectives. I have identified at least three
major direction to continue this work.

First, the more evident development is to run more realistic simulations with the MUSIC
code. As shown in this thesis, this code is particularly well suited to model IGWs. Their
excitation and damping properties are consistent with theoretical predictions. The next step
is thus to study their transport properties in further details. In Chapt. 7 we have started to
determine the ability of IGWs to transport heat, i.e. energy. This needs to be confirmed with
more simulations, both extending closer to the stellar surface and of stellar model with different
masses. To analyse the transport of chemical species, two-dimensional simulations are still very
efficient. A powerful method for this analysis is to run simulations with Lagrangian particle
tracers. A post-processing study including such particles is currently under way using the 5M⊙
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model presented in Chapt. 7 and simulations of a 20M⊙ star model. This work is done in
collaboration J. Morton, new PhD student in Exeter who will work on waves modelling using
MUSIC, I. Baraffe, T. Guillet and the MUSIC team. Then, studying the transport properties of
angular momentum by IGWs require three-dimensional simulations including rotation. Several
simulations are currently running for a solar model (see Fig. 8.4) and a 20M⊙ star model with
different rotation rates. Waves analysis in the spectral domain in three-dimensional simulations
required the development of a new basis, similar to the spherical harmonics but adapted to
our wedge geometry, i.e. portions of spheres (see Sect. 8.2). This is the wedge harmonics
basis (see Appendix C). The analysis of these rotating simulations will be started in the next
couple of months. The last development towards more realistic and complex simulations will
be to include magnetic fields to run magneto-hydrodynamical simulations. This development is
currently tested and benchmarked by the MUSIC team.

Second, a very interesting perspective is to run simulations of stellar models at different
stages of evolution. Indeed, all the models presented in this thesis are at ZAMS. This is a bit
restrictive to generalise the properties of IGWs in stellar interiors, as the internal structure of
stars evolve a lot during its life. In this context, in collaboration with A. Morison, postdoctoral
researcher in Exeter, we are analysing IGWs in evolved 5M⊙ star models. The set of simulations
used for this study is composed of a reference model, similar to the model ref introduced in
Chapt. 7, and two evolved models. The reference model has a helium central mass fraction
Yc = 0.28, and the two evolved have Yc = 0.56 and Yc = 0.70. The main interest of these evolved
models lies in the fact that they present a strongly stratified zone just above the convective core.
This phenomenon is due to the retreat of the convective core during the evolution of the star
on the main-sequence. Another ongoing analysis focuses on a two-dimensional simulation of
a 1.3M⊙ subgiant star model. This model is similar to the model M0 presented in Belkacem
et al. (2015). Besides the analysis of IGWs, the other main motivation for this study is to model
mixed modes. These modes result from the coupling between p and g modes (see Sect. 3.4.4).
This work fully exploits the potential of the MUSIC code. Indeed, MUSIC solves the fully
compressible equations of hydrodynamics and thus offers the possibility to model acoustic
waves, and consequently mixed modes. To my knowledge, this has never been done with
hydrodynamical simulations. We have already been able to model and identify one mixed mode
in this simulation, as presented in Fig. 9.1. To identify this mode I have used the oscillations
code GYRE, which can predict the eigenfrequencies and eigenfunctions of normal modes of a
one-dimensional model, but also the nature of these normal mode (acoustic, gravity or mixed
mode). However, mixed modes are particularly complex to model. The g mode part, located in
the core of the star, has a very short radial wavelength (see inset in Fig. 9.1). Consequently,
to model most of the mixed modes of this star will require a very thin mesh in this region. A
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Fig. 9.1 Identification of a mixed mode in a MUSIC simulation of 1.3M⊙ subgiant star model
(blue curve). Using the oscillations code GYRE it has been possible to identify the nodes
corresponding to the g mode part (green curve) and of the p mode part (red curve). The plot
present the wave amplitude as a function of normalised radius. The inset is a zoom on the
central region of the star.

major issue with this is that such a fine grid close to the centre of the stellar model would imply
a too large number of grid points in the radial directions to model a large portion of the star. A
solution to this problem is currently developed by T. Guillet, and consists in using static mesh
refinement. With this, we will be able to create spatial mesh with a non-uniform spacing.

The third perspective I have identified is to make additional efforts to develop a synergy
between observations and simulations. As showed in Chapt. 7, this is challenging mostly
because of the physical simplifications used in hydrodynamical simulations and of the unknown
physics present in actual stars. However, it will be of major interest for the stellar physics
community, and therefore for most astrophysics research fields. This development axis can be
divided in two complementary projects. On the one hand, it is possible to use observations to
get information on the missing, or incorrectly modelled, physics from stellar evolution and
structure theories. An ongoing project with this objective is presented in Sect. 8.1. The aim
is to develop a non-linear inversion method for stellar structure. It will help me determine on
which region to focus on when setting up and running new hydrodynamical simulations in order
to explain observations. On the other hand, it is also possible to use simulations to interpret
observations. This is not straightforward, as showed in Chapt. 7. Particularly, hydrodynamical
simulations run with radial truncation below r = 0.99Rstar are not well suited for this purpose.
Extrapolation of IGWs’ amplitude from an internal radius to the stellar surface can not be
done easily due to the complexity of the near-surface layers. Moreover, new comparison
methods are required to take into account the spatial average of the stellar surface resulting
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from observational acquisition in photometry. These two projects will undoubtedly strengthen
the synergy between observations and simulations. We believe that this will become more
and more essential with the continuously increasing amount of data received from present and
future space telescopes.

I will conclude by pointing out that the results of this thesis could have a wider application
than stellar physics. The properties of IGWs presented in this work are not specific to stellar
interiors, in the sense that they can be studied as the properties of waves in a fluid, to echo the
famous book by Lighthill (1978). Indeed, any fluid, including the plasma inside stars, may be
characterised by several fluid dynamics dimensionless parameters, describing the dominant
effects or forces. The values taken by these parameters can also give an idea of the dominant
properties of IGWs. For instance, the value of Prandtl number, quantifying the effects of
viscosity to radiative diffusion, is an indication of the dominant damping mechanism of IGWs.
If it becomes larger than one, unlike in stellar interiors, viscous effects dominate and dampen
the waves rather than radiative diffusion. Furthermore, the value taken by the Prandtl number
is the main difference between geophysical and stellar fluids. On Earth, it is of the order of
unity, whereas in stars it is much smaller, typically 10−5 or lower. Despite this, geophysical
and stellar fluids share a lot of common properties. Both are rotating spheroids that contain
stably stratified and convective regions. In addition, stellar and geophysical fluid dynamics are
facing similar problems, such as wave-induced transport or convective boundary mixing.

In any case, a generic definition of IGWs is that they are perturbations to a stably stratified
fluid, which can transport angular momentum, energy and chemical elements. Therefore, the
results obtained in this thesis can be applied and/or tested in multidimensional simulations of
planetary atmospheres. This could have multiple benefits such as extending our knowledge of
IGWs properties in a general way, helping to understand physical phenomena in these planetary
atmospheres, but also give new insights on the interpretation of the results presented in this
thesis. This is one of the objectives that I will aim for during my postdoctoral position at
the Laboratoire de Métérologie Dynamique (Sorbonne Université, Paris, France). For the
next two years, I will be studying the atmospheric dynamics of Neptune and Uranus using a
General Circulation Model, which is a kind of hydrodynamical simulations applied to planetary
atmospheres. The initial objectives are to test a gravity wave parametrization and study its
impact on stratospheric thermal structure and dynamics, and to account for convective plumes
and study their impact on the general circulation of the atmospheres of these two planets. These
are phenomena that are also present in stellar interiors. I believe that working on both, stellar
interiors and planetary atmospheric dynamics, will be valuable for both communities.



Appendix A

Calculation of the root-mean-square
velocity

This appendix presents different definitions of the root-mean-square (rms) velocity, vrms that
can be found in the literature. In principle, all those definitions are identical, but in practice
some differences may arise. Consequently, one should be careful on which definition to use in
a specific application. It is not always clear what is the meaning behind each definition, and the
purpose of this section is to try to clarify this a little.

A.1 Averages

In hydrodynamic systems, variables are functions of position (r, θ,ϕ) in spherical coordinates,
and time t. In the context of multidimensional simulations of a stratified system, it makes sense
to look at the radial profile of rms velocity. It is thus necessary to perform angular, i.e. spatial,
and temporal averages of the relevant variables. Different averages can be used, depending
on whether one is working in the real or spectral domain. Moreover, the order in which these
averages are performed is not insignificant.

The general definition for averaging is to perform a statistical averaging. To do so the same
experiment need to be repeated many times providing independent realisations (see e.g. Bailly
and Comte-Bellot, 2015). In our case, this would mean running a large ensemble of simulations
with different initial conditions. Because simulations are computationally very expensive, this
not achievable. Hence, two other methods are used to perform averages. First, assuming that
the system is stationary, one can use a temporal average. Once a steady-state is achieved,
trajectories in phase space quickly forget about their past, and all trajectories wander around a
same steady-state configuration. This is the hypothesis of ergodicity. Under this assumption,
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the integration become independent of the initial conditions, and we do not need to repeat the
same simulation many times! Then, if the time of integration, T , is large enough, the temporal
average will be close enough to the statistical one. Temporal average is defined as

⟨ f (t)⟩t B
1
T

∫ T

0
f (t)dt . (A.1)

The lower limit of the integral t = 0 corresponds to the time from which convection is in steady
state. After a relaxation phase characterised by the propagation of strong acoustic waves and
the onset of convection reaches a plateau which characterises the steady state for the convection
(see Baraffe et al., 2021, for more details). Secondly, assuming a homogeneous system one
can use a spatial, or angular, averaging. In order to have the spatial average to be equivalent
to the statistical one, we need some sort of ergodicity across space points. This property is
used in simulations where far-away locations in the simulation domain are uncorrelated, and
are effectively close to independently probing phase space. One condition for that is that the
volumeV of the system has to be large compare to any length scale. Angular average over the
whole unit sphere is defined as

⟨g(θ,ϕ)⟩S B
1

4π

∫
S

g(θ,ϕ) sinθdθdϕ, (A.2)

with S the surface of the sphere.

A.2 Mass-weighted squared velocity

First, let’s introduce a definition of the rms velocity through the kinetic energy density, ek,

v2
rms B

〈
ρv2

〉
S,t

⟨ρ⟩S,t
=

2 ⟨ek⟩S,t

⟨ρ⟩S,t
. (A.3)

This definition is the most relevant for comparison with analytical models which define a vrms

and a kinetic energy density base on mass-weighted quantities (see e.g. eq. (47) in Goldreich
and Keeley, 1977). In this definition ρv2dV is an energy, and ρdV is a mass, so the volume-
weighted integrands are all extensive quantities. This metric is a physically motivated measure
of the central tendency of the kinetic energy content at radius r. That is, it measures what
⟨ek(r)⟩S we’d expect to find in a typical star.

In this work, we chose to use this first definition (A.3).
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A.3 Spatial average first

Secondly, here is a definition with the vrms calculated in real space with the spatial average
performed first

v2
rms,S (r)B

∑
i

〈〈
v2

i (r, θ,ϕ, t)
〉
S
−⟨vi(r, θ,ϕ, t)⟩2S

〉
t
, (A.4)

where i = r, θ,ϕ and vr, vθ and vϕ being the radial, co-latitudinal and longitudinal velocity
components respectively. This definition can be found for example in Samadi et al. (2003) and
in Beeck et al. (2012).

Note that in (A.4), the term ⟨·⟩2 reminds us that this type of formula measures the dispersion
of a distribution around its mean; the distribution in question is related to uncertainty about
(or ignorance of) what we’re averaging over. In this particular definition, we’re measuring the
dispersion of the distribution of velocities, where the distribution is over θ,ϕ. This tells us the
ensemble-averaged uncertainty on v caused by ignorance of θ,ϕ.

We can define an equivalent vrms expression using a decomposition on the Spherical
Harmonics (SH) only

v2
rms,S H1 =

1
4π

∑
i

∑
ℓ,m,(0,0)

〈
v2

i,ℓ,m

〉
t

(A.5)

or combined with a temporal Fourier transform

v2
rms,FS 1(r) =

1
4π

1
N

∑
i,ω

∑
ℓ,m,(0,0)

v̂2
i,ℓ,m(ω,r) (A.6)

where i = r, θ,ϕ and we have introduced ℓ ≥ 0 the spherical harmonic degree, m the azimuthal
order with −ℓ ≤ m ≤ ℓ, ω the frequency and N the number of frequency bins. Note that in this
method, the sum over SH coefficient play the role of angular averaging and sum over frequency
of time averaging. Moreover, neglecting the term associated with (ℓ,m) = (0,0) is equivalent to
subtracting the spatial average of the velocity. Indeed, we have ⟨vi(r, θ,ϕ, t)⟩2S = v2

i,ℓ=0,m=0(t,r).
This variance only tells us about how homogeneous on average the velocity field is in

the angular directions. Angular averages could make sense as an approximation to ensemble
averages, in a context where we also have some form of ergodicity across space points. This is
not the case for IGW low-ℓ modes, which have dominant energy, induce spatial correlations
over the whole domain. Consequently, the second term in Eq. (A.4) may not be negligible.
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A.4 Temporal average first

In this third definition, we perform the temporal average first. The definition in real space is

v2
rms,T (r) =

∑
i

〈〈
v2

i (r, θ,ϕ, t)
〉

t
−⟨vi(r, θ,ϕ, t)⟩2t

〉
S
, (A.7)

where i = r, θ,ϕ. Just as in the previous section, this expression has equivalents in the spectral
domain, using a decomposition on SH only

v2
rms,S H2 =

1
4π

∑
i,ℓ,m

(〈
v2

i,ℓ,m

〉
t
−

〈
vi,ℓ,m

〉2
t

)
(A.8)

or combining it with a temporal Fourier transform

v2
rms,FS 2(r) =

1
4π

1
N

∑
i,ℓ,m

∑
ω,0

v̂2
i,ℓ,m(ω,r) . (A.9)

Note that neglecting the term associated with ω = 0 is equivalent to subtracting the time average.
Indeed, we have ûi,ℓ,m(ω = 0,r) =

〈
vi,ℓ,m

〉
t. These two equations (A.8) and (A.9) are similar to

the definitions given in Belkacem et al. (2009). Here, we compute the ensemble dispersion of
the velocity for each space point, and average this dispersion over spherical shells. However,
in our case the time average of the velocity is close to zero, particularly in the radiative zone
where velocities due to waves tend to cancel out over long periods of time.

A.5 Raw second moment of the velocity

Alternative definitions for Eqs. (A.4) and (A.7) that can be found in the literature are the cases
where the

〈
vi,ℓ,m

〉2 term is omitted. Then the averages can commute so the definitions given in
the Sect. A.4 and A.3 are equivalent

v2
rms,R B

〈〈
v2

〉
S

〉
t
=

〈〈
v2

〉
t

〉
S
B

〈
v2

〉
S,t
. (A.10)

In our case, we expect that
〈
v2

i,ℓ,m

〉
≫

〈
vi,ℓ,m

〉2, so this definition is supposed to be equivalent to
Eqs. (A.4) and (A.7). Nevertheless, the physical meaning is not the same. In this case, we are
looking at the rms of the total velocity (raw output of the simulation) and in the previous two
we were looking at the rms of the fluctuations of the velocity.

However, this last definition, although better than the two previous ones, is still not great
because it does not make physical sense to compute volume-weighted averages of v2: v2dV is
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not an extensive quantity (it has units of energy per unit of mass), so it does not make sense to
add up their contributions in an integral over a shell or volume.

A.6 Comparison

Figure A.1 compares the four methods introduced in this appendix, i.e. Eqs. (A.4), (A.7),
(A.10) and (A.3). The radial profiles plotted are for the simulation ref of the solar-like model
introduced in Chapt. 6, but the comparison results are similar for the other simulations used
in this thesis. It can be highlighted that the second term on the RHS of Eqs. (A.4) and (A.7)
are not negligible. It is the case in the convection zone with the definition (A.7) but not in
the radiative zone. And vice versa with the definition given by Eq. (A.4), the second term on
the RHS in the radiative region but not in the convective one. Thus, it is important to define
precisely how rms values are computed in order to allow comparison of different results.

Fig. A.1 Comparison of the rms velocity profile for ref using the four definitions (A.3), (A.4),
(A.7) and (A.10). The convective boundary corresponding to the Schwarzschild boundary from
the 1D initial model is indicated by the vertical dashed line.

Finally, the two other definitions, Eqs. (A.10) and (A.3), are equivalent. Following the
arguments presented in Sect. A.2, we chose to work with the corresponding rms velocity
definition, i.e. Eq. (A.3).





Appendix B

Spherical harmonics and Fourier
amplitudes for simulations

In two-dimensional spherical geometry, on the unit axisymmetric sphere S parameterised by
the polar angle θ, we define the spherical harmonics coefficients f̂ℓ of a function f (θ) from the
expansion

f (θ) =
∑
ℓ≥0

f̂ℓ Y0
ℓ (θ), (B.1)

Y0
ℓ (θ) =

√
2ℓ+1

4π
Pℓ(cosθ), (B.2)

where Pℓ is the ℓ-th Legendre polynomial. This expansion is identical to the usual spherical
harmonics on the sphere, but restricted to the axisymmetric mode m = 0. The choice of
normalisation makes the Y0

ℓ
an orthonormal basis for the L2 inner product on S∫
S

Y0∗
ℓ Y0

ℓ′ dΩ = 2π
∫ π

0
Y0
ℓ Y0
ℓ′ sinθ dθ = δℓℓ′ . (B.3)

The Fourier coefficients f̃k of a temporal signal f (t) over a period T are defined from the
expansion

f (t)W(t/T ) =
∑

k

f̃k e2iπkt/T . (B.4)

where W is the Blackman window function, used for apodisation of the spectra of non-periodic
signals f . In the above formula, mode k corresponds to a physical frequency ωk = 2π|k|/T .
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The corresponding Fourier power spectrum P[ f ]n is defined from the f̃k for all non-negative
frequency mode integers n as

P[ f ]n =
∑
|k|=n

| f̃k|2 =

| f̃0|
2 if n = 0,

| f̃n|2+ | f̃−n|
2 if n > 0.

(B.5)

We note that for a real-valued signal f , ∀k, | f̃k|2 = | f̃−k|
2.



Appendix C

Wedge Harmonics

A natural follow-up to the work presented in this thesis is to run three-dimensional simulations.
With MUSIC, we can not (for now) run simulations of a full sphere. Therefore, we model
a portion of a sphere, which we call a wedge. As explained in Chapt. 8, a challenge for
waves analysis in this geometry is that the usual spherical harmonics basis cannot be used to
expand variables. Therefore, in collaboration with Thomas Guillet and Mathieu Sylvain, former
summer student in Exeter, we have developed a new basis, called the wedge harmonics basis,
which is the basis of eigenfunctions of the Laplacian on the wedge (much like the spherical
harmonics are the eigenfunctions of the Laplacian on the sphere). This allows to perform
analysis in spectral space when analysing waves in a wedge simulation. The objective is to
solve on the wedge the eigenvalue problem

∆u+λu = 0, (C.1)

with ∆ = ∇2 the Laplacian operator, u the eigenfunctions associated to the eigenvalues λ.

C.1 Wedge domain

Consider a spherical system of coordinates on the surface of the unit sphere S, with colatitude
θ and longitude ϕ. We define the wedge Wα,β as the region of the sphere delimited by
α ≤ θ ≤ π−α and −β ≤ ϕ ≤ β.

Wα,β = {x ∈ S| (θ(x),ϕ(x)) ∈ [α,π−α]× [−β,β]} , (C.2)

with 0 < α < π/2 and 0 < β < π. Concerning boundary conditions for the wedge, we will always
assume periodic domain in the ϕ-direction. In the θ-direction, the domain can be either periodic
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or reflective. An example of a wedge domain is illustrated on Fig. C.1 for α = π/6 and β = π/6.
Furthermore, we assume that the wedge inherits the metric from a sphere

Fig. C.1 Wedge domain for α = π/6 and β = π/6, discretized in uniform cells of angular
extension 5 degrees in both the θ and ϕ directions. Credits: T. Guillet (University of Exeter).

dΩ = sinθdϕdθ (C.3)

C.2 Eigenfunctions of the Laplacian operator on a wedge

On the unit sphere, and therefore on a wedgeWα,β of unit radius, the Laplacian operator is
given by

∆u =
1

sinθ

[
∂

∂θ

(
sinθ
∂u
∂θ

)
+
∂

∂ϕ

(
1

sinθ
∂u
∂ϕ

)]
(C.4)

In our case, the geometry of the domain permits the use of separation of variable to look for
solutions of Eq. (C.1), which may be written

u(θ,ϕ) = f (θ)g(ϕ). (C.5)

Substituting this decomposition in Eq. (C.1), we can obtain

∆u+λu =
1

sinθ

[
∂

∂ϕ

(
1

sinθ
∂u
∂ϕ

)
+
∂

∂θ

(
∂u
∂θ

sinθ
)]
+λu = 0, (C.6)

and u has a continuous solution of the wedge surface. Therefore, this solution must be periodic
in ϕ and regular at boundaries in θ, i.e. at these points the solution must approach a limit
independent of ϕ (Courant and Hilbert, 1966). In the case of the spherical harmonics, the
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solutions are the spherical harmonics functions Yℓm(θ,ϕ) and λ = ℓ(ℓ+1). These solutions are
not directly applicable in the case of a wedge, but by adapting the method used for the spherical
case we can obtain the wedge solutions. With the considered separation of variables Eq. (C.5),
the eigenvalue problem is

sinθ
f

[
d
dθ

(
sinθ

d f
dθ

)]
+λsin2 θ = −

1
g

d2g
dϕ2 . (C.7)

By the usual argument of separation of variables, since the left-hand side of Eq. (C.7) depends
only on θ and the right-hand side only on ϕ, both must be equal to some common constant,
which we write as B2, with B ∈ C.

From Eq. (C.7), we have
d2g
dϕ2 = −B2g (C.8)

and therefore the solution takes the form g ∝ eiBϕ. Enforcing the periodicity of g on the wedge
in the ϕ direction, we find that B must be of the form

B = ηm, m ∈ Z, ηB
2π
2β
, (C.9)

to ensure 2β-periodicity along ϕ. Therefore, the solutions are the modes defined by

gm(ϕ) =
1√
2β

eiηmϕ, m ∈ Z, (C.10)

where the normalisation is chosen so that the gm are orthonormal for the inner product

〈
g,g′

〉
ϕ B

∫ β

−β
g∗g′dϕ, (C.11)

where the superscript ∗ denotes the complex conjugate.
Going back to Eq. (C.7) and using results for g(ϕ), we find for f

sinθ
f

[
d
dθ

(
sinθ

d f
dθ

)]
+λsin2 θ = η2m2, (C.12)

which may be rewritten as

1
sinθ

d
dθ

(
sinθ

d f
dθ

)
−
η2m2

sin2 θ
f = −λ f . (C.13)
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This is very similar to the eigenproblem appearing in the derivation of the spherical harmonics,
for which the solutions for f are the associated Legendre polynomials in cosθ. Unfortunately,
in our case, there is a major difference: we have the η , 1 factor.

We have chosen to solve this eigenproblem in the θ-direction numerically. In order to do so,
it is useful to formulate the problem in a weak form that is manifestly symmetric. Let E be the
vector space of (complex-valued) functions of θ that satisfy the chosen boundary conditions
(either periodic, zero value, or zero derivative). We use the inner product of the sphere, which
for functions of E writes:

∀ f , f ′ ∈ E,
〈

f , f ′
〉
θ B

∫ π−α

α
sinθdθ f ∗ f ′. (C.14)

To establish the weak formulation of the eigenproblem given by Eq. (C.13), we take the inner
product of this equation with an arbitrary test function f’, and require that the identity holds for
all f ′

∀ f ′ ∈ E,
〈

f ′,
1

sinθ
d
dθ

(
sinθ

d f
dθ

)〉
θ

−

〈
f ′,
η2m2

sin2 θ
f
〉
θ

= −λ
〈

f ′, f
〉
θ . (C.15)

Using integration by parts, one can easily obtain〈
f ′,

1
sinθ

d
dθ

(
sinθ

d f
dθ

)〉
θ

= −

〈
d f ′

dθ
,
d f
dθ

〉
θ

(C.16)

where we have used the fact that, for all the boundary conditions we consider (periodic, zero
value, zero derivative), the boundary terms vanish. Equation (C.15) therefore writes

∀ f ′ ∈ E,
〈

d f ′

dθ
,
d f
dθ

〉
θ

+

〈
ηm

sinθ
f ′,
ηm

sinθ
f
〉
θ
= λ

〈
f ′, f

〉
θ . (C.17)

In this form, the problem can be directly discretized into matrix form:

∀F′, (DF′)†B(DF)+η2m2(S −1F′)†B(S −1F) = λF′†BF (C.18)

where M† denotes the conjugate transpose of the matrix M, and where:

• F,F′ are the column vectors formed by the discrete values of f , f ′ at the points of the
simulation θ grid,

• B is the (real) matrix corresponding to a discrete approximation of the inner product, i.e.:
⟨ f ′, f ⟩θ ≈ F′†BF. We derive B by approximating the integral of the inner product using a
second-order midpoint rule with the point-wise values stored F and F′, accounting for
the metric term sinθ,



C.3 Angular scales with the wedge and spherical harmonics 155

• The D matrix represents the derivation operator on functions of θ. To ensure that D
is anti-Hermitian, we derive D by taking the matrix square root of a finite difference
discretization of the Laplacian D2. The chosen discretization for D2 accounts for the
desired boundary conditions in θ (periodic, zero value, or zero derivative),

• S is the matrix corresponding to a point-wise multiplication by sinθ.

The problem above amounts to solving the generalized eigenvalue problem:(
D†BD+η2m2(S −1)†B(S −1)

)
F = λBF (C.19)

which we solve numerically for eigenvalues λ and eigenvectors F, using solvers making use of
the Hermitian character of the formulation. For a fixed given m, each of the λ,F are labelled
with an integer q, so the modes are indexed by (m,q).

C.3 Angular scales with the wedge and spherical harmonics

In the case of spherical harmonics, i.e. α = 0 and β = π, the eigenvalues are λSH
|m|,q = (|m|+

q)(|m|+q+1) and depend only on |m|+q, so we can index them alternatively with

ℓ = |m|+q (C.20)

and use (ℓ,m) to index the corresponding eigenfunctions Ym,ℓ. In this case, the constraints
|m| ≥ 0 and q ≥ 0 translates to the usual ℓ ≥ 0 and |m| ≤ ℓ. For many physical applications where
quantities on the sphere are expanded into spherical harmonics, the spectrum dependence on
ℓ provides rich information about the angular scales present in the signal, because the modes

with eigenvalue λSH
ℓ

probe angular scales ∼ π/
√
λSH
ℓ
≃ π/ℓ.

For wedge harmonics, the angular scales probed by given modes (m,q) will depend on
the extent of the wedge, i.e. on α and β. In addition, the wedge eigenvalues now cannot be
expressed as a function of only ℓ = |m|+q. However, by analogy with spherical harmonics, we
can define an "effective" ℓ|m|,q which informs about the angular scales probed by wedge modes
(±m,q) by equating the eigenvalues of the spherical and wedge harmonics, which indicate what
angular scale is being probed by a given mode:

λSH
ℓ = ℓ̃(ℓ̃+1) = λ|m|,q, (C.21)

with

ℓ̃|m|,q =

√
λ|m|,q+

1
4
−

1
2
. (C.22)
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