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Abstract

In the context of social dilemmas, it has been demonstrated that establishing pre-commitments
of future actions is an evolutionary viable mechanism, ensuring high levels of mutual
cooperation among self-interested individuals. Coordination is one of the numerous group
behaviours that can be accomplished through pre-commitments. There may be multiple
desirable collective outcomes and players might have distinct, incompatible preferences in
terms of which outcome should be agreed upon, thus leading to a larger behavioural space,
making coordination difficult to attain.

In this thesis, we develop mathematical and computational formulations to explore the
evolutionary dynamics of technology adoption decision making and competition amongst
firms. Using methods from Evolutionary Game Theory (EGT), we first explored how
pre-commitments can be adopted as a tool for enhancing coordination when its outcomes
exhibit an asymmetric payoff structure, in pairwise interaction and thereafter expanded the
interaction to accommodate a multiplayer interaction. We further explored how to resolve
difficult coordination when there is a need for a group mixture or diversity of group choices.

We then extend our study from the well-mixed population to spatial networked population
settings, to investigate the impact of different population structures including square lattice
and scale-free (SF) networks on our technology adoption model.

We find, through an in-depth mathematical analysis and comprehensive numerical sim-
ulation, that pre-commitment would be a viable evolutionary mechanism for enhancing
coordination and the overall population social welfare but this strongly depends on (i) the
collective benefit of coordination, (ii) how asymmetric benefits are resolved in a commitment
deal, (iii) severity of competition and (iv) the cost of arranging a pre-commitment in relation
to the benefit derived from coordinating the interactions. Additionally, results from our
multiplayer interactions show that pre-commitments prove to be crucial when a high level
of group diversity is required for optimal coordination. The results are robust for different
selection intensities.

Similarly to well-mixed analyses, our study of different network settings has shown
that pre-commitments enhance coordination and the overall population payoff in structured
populations, especially when the cost of commitment is justified against the benefit of
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coordination, and when the technology market is highly competitive. When commitments
are absent, slightly higher levels of coordination and population welfare are obtained in SF
than lattice. In the presence of commitments and when the market is very competitive, the
overall population welfare is similar in both lattice and heterogeneous networks; though
it is slightly lower in SF when the market competition is low. Overall, we observe that
commitments can improve coordination and population welfare in both well-mixed and
structured populations. The outcome of evolutionary dynamics is, interestingly, not sensitive
to changes in the network structure.

Overall, the analyses and findings from this thesis provide new insights into the com-
plexity and beauty of behavioral evolution driven by humans’ capacity for commitment, as
well as for the design of self-organised and distributed multi-agent systems for ensuring
coordination among autonomous agents.
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Chapter 1

Introduction

The study of collective behaviour among self-interested individuals in an evolving population
has been of significant interest in different fields of study in recent time. The issue of
collective actions, that is, the potential for group members to give up their immediate self-
interest in favour of the long-term good of the group has been extensively investigated. In
the first chapter of this thesis, we first describe issues related to social dilemmas research,
dynamics and evolution of collective behaviour, and mechanisms underlying them. We look
at games of particular interest, namely, coordination and anti-coordination games. We further
explore how pre-commitments can be used as a viable strategy for promoting collective
behaviours. Also, we introduce the use of methods from evolutionary game theory to model
technology adoption decision making. We propose to study the dynamics of technology
adoption using these methods to understand the strategic interactions and decision making
amongst firms adopting technology. We also explore how pre-commitments can be utilised in
promoting high levels of coordination in this technology adoption decision making problem.
Our aims and objectives, main contributions and outline of the thesis are also covered in this
chapter.

1.1 Social Dilemmas

Social dilemmas can be described as situations in which collective interest conflicts with
individual interest. In these situations, the selfish and rational behaviour would return an
outcome worse than the one the individual would obtain if they acted collectively (Capraro,
2013; Nowak, 2006b; Sigmund, 2010). However, humans are often faced with a dilemma
between group interest and their personal interest, which results to failure in achieving the
collectively preferred behaviour (e.g. cooperation or coordination). With a social dilemma,
there is tension between collective interest, selfishness and cooperation. A result that the
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outcome completely relies on the choice of others, with many individuals having diverse and
conflicting interests possibly resulting in a cacophony of conflicts. In his Leviathan from
1651, Hobbes claimed that selfish urgings lead to “such a war as is every man against every
man” (Hobbes, 2009; Sigmund, 2010). In the absence of a central authority suppressing
these conflicts, human life is “solitary, nasty, brutish, and short.” His French contemporary
Pascal held an equally pessimistic view: “We are born unfair; for everyone inclines towards
himself. The tendency towards oneself is the origin of every disorder in war, polity, economy
etc.” Selfishness was depicted as the root of all evil (Sigmund, 2010).

Our study is in the context of strategic interactions within a population of agents that
have conflicting interests. This collective action is a problem commonly referred to as a
social dilemma and it has been an interesting subject of study for decades. Many of the
world’s most pressing problems represent social dilemmas. These include problems such as
overpopulation, over-harvesting of fishes, build-up of greenhouse gasses due to over-reliance
on cars and many others (Dawes, 1980). These are presented as problems because acting on
one’s selfish interest is tempting to all parties involved, even though everyone benefits from
acting in the longer-term collective interest. As such, a broad knowledge of social dilemmas
will help us understand not only the theoretical puzzles of why people cooperate, but also to
investigate the ways in which cooperation in groups and organisations can be maintained or
promoted (Dawes and Messick, 2000; Pletzer et al., 2018; Van Lange et al., 2013).

1.1.1 Cooperation and Punishment

Cooperation has had a major role in the success of almost all species in nature (Szathmáry and
Smith, 1995). Despite individual’s having their own self-interest, cooperation has provided a
long-term success to the social success of the species. Cooperation is abundant across all
scales of biological life (Maynard Smith et al., 1998), from the emergence of genomes, cells,
multi-cellular organisms, social insects and human society, they are all based on cooperation
(West et al., 2007). In his theory of natural selection, Darwin portrayed the eusocial insects
as a “special difficulty, which at first appeared to [him] insuperable and actually fatal to
[his] theory”. Indeed, eusociality presents an apparent paradox: if adaptive evolution is
mediated by differential reproduction of individuals on which natural selection acts, how can
individuals who are incapable of passing on their genes evolve and persist? (Legendre and
Condamine, 2018).

Evolution is based on a fierce competition between individuals which should only reward
selfish behaviour. Which means every gene, cell and organism should be designed to promote
its own evolutionary success at the expense of its competitors (Nowak, 2006b). Yet, there
has been cooperation on different levels of biological organizations, with humans as the
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champions of cooperation; from hunter gatherer societies to nation states, cooperation is the
decisive organizing principle of human society (Perc, 2016; Szathmáry and Smith, 1995).
Building a high or more complex organism requires cooperation for the evolutionary success
of one species against a severe existential competition from its competitor from the same or
another species. Cooperation will mean that the selfish individuals will forgo some of their
reproductive potential to assist one another, however, natural selection involves competition
and so resists cooperation unless a defined mechanism is put in place (Nowak, 2006b).

Cooperation is a converging topic in evolution and explains why individual act in a way
that benefits others especially if such an action has a cost to the individual. Hence the question
of how natural selection can lead to cooperative behaviour has fascinated evolutionary
biologists for several decades. Biologists have shown great interest in cooperation as it seems
to be the opposition to the competition that is fundamental to natural selection. Exploring
the emergence of cooperative behaviour amongst a group of selfish individuals is one of the
crucial problems of evolutionary game theory (Hofbauer and Sigmund, 1998). In the New
Year 2000 edition of Science, the editors listed “The Evolution of Cooperation” as one of
the ten most challenging problems of the century (Sigmund, 2010). Hence, it is essential for
understanding the origins of successive levels of evolutionary biological organization. This
understanding has been substantiated with the development of the Prisoner’s Dilemma and
other cooperation dilemmas, using methods from (evolutionary) game theory. Game theory
in turn has justified how numerous other examples of cooperation can be explained and better
understood (Laird, 2018).

Recognising how cooperation has worked over the decades and having an insight of the
evolution of cooperation would enable the designing of complex models that can be used
to study human interactions and understand the world (Paiva et al., 2018). The complex
evolutionary dynamics behind cooperation can bring major solutions on how to tackle issues
in various facets of life such as climate change (Góis et al., 2019; Van Lange et al., 2018) and
even corruption (Huang et al., 2018). Again, although an individual is selfish, cooperation
benefits the individual in many ways, albeit there is trade-off that motivates the individual
to be cooperative. There are many mechanisms that motivate this trade-off. The trade-off
is often called a cost, but it is essentially any utility function, e.g. a fitness measure that is
generally defined as a larger-the-better metric. In cooperation, a cooperator is an agent who
pays a cost (c) for another individual to benefit (b). A defector incurs no loss nor expends no
benefit. During reproduction, a mutation might cause defection.

For cooperation there are at least two players, each of which has a set of at least 2 choices.
When each player makes their choice, there is an outcome, a utility measure that is jointly
determined by the players’ choices. The outcome is represented as a payoff matrix. In the
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case of the one-shot pairwise Prisoner’s Dilemma, the choice of the players is to remain
silent or betray. Silent in this payoff matrix corresponds to cooperation, whilst betray to
defect. Thus, there are four outcomes as shown in Table 1.1.

Table 1.1 Possible Outcomes in a 2×2 Game Model

No. Alice Brian
1 Silent Silent
2 Silent Betray
3 Betray Silent
4 Betray Betray

The choices are silent or betray, resulting in four possible outcomes. The possible
payoffs are the reward for mutual cooperation, R, which is greater than the punishment
for mutual defection, P. The dilemma is caused by the fact that the temptation payoff for
unilateral defection T , is greater than the defector’s payoff for unilateral cooperation, S. The
Prisoner’s Dilemma is characterised by the ordering T > R > P > S. A second condition is
usually added so that mutual cooperation is better than coordinated alternation of cooperation:
R > (S+T )/2 (Axelrod, 2000).

Table 1.2 Payoff for 2 Prisoners

Brian
Cooperate Defect

Alice
Cooperate (3,3) (0,4)

Defect (4,0) (2,2)

For a one-shot Prisoner’s Dilemma, their payoffs can just be like 4 greater than 2 greater
than 1 greater than 0. The best strategy in a Prisoner’s Dilemma would be to always defect.
In a one-off game, defecting has no consequence and always gives a higher payoff as shown
in the payoff matrix. In an iterated game the same is not true because the players can change
their strategy at the next move. When a player can change a move depending on the other
player, defecting always is not the best strategy.

Trivers (1971) further explains how cooperation can evolve when individuals can target
their beneficence preferentially towards cooperators and away from free riders who take
the benefits of others cooperating without paying the cost of reciprocating. The tit for tat
conditional cooperation (Axelrod, 1984) can also thwart free riders in very small groups but
not in larger groups of non relatives, such as in the provision of public goods, because one
cannot selectively punish free riders by refusing further cooperation when such withholding
hurts cooperators and free riders alike (Boyd and Richerson, 1988).



1.1 Social Dilemmas 5

Cooperation among individuals can also be stable when the individuals have a reputation
for helping and if others are more likely to help those who have performed helping (Nowak
and Sigmund, 1998; Panchanathan and Boyd, 2004), but this also relies on people being able
to help specific individuals and refuse help to non-cooperators (i.e. defectors).

1.1.2 Evolution of Coordination

A considerable amount of research on social interactions has centred around social dilemmas
where there is a conflict between personal and collective interests. In our everyday life, there
is often the need to engage in interactions which requires us to coordinate our behaviour
with others. This implies that we may have to consider the actions of others in an interactive
situation before deciding on our own actions in order to reach a successful outcome. Achiev-
ing a joint venture among individuals with their own self-interest is a significant social and
economic challenge in various societies (Barrett, 2016; Hardin, 1968; Ostrom, 1990a; Pitt
et al., 2012; Sigmund, 2010). From the coordination of a set of employees working together
to sustaining cooperative and trust-based relationship among organisations and nations, its
success is often jeopardised by individuals’ self-interest (Andras et al., 2018; Barrett et al.,
2007; Han et al., 2021; Perc et al., 2017). Generally, the issue of coordination emerges when
two or more individuals can achieve some mutually desired outcome or avoid some mutually
undesired outcome, only by joining their actions in a particular way, where there is more
than one possible combination.

Coordination games also describe incentive structures that reward conformity, any de-
viation from a player would lead to a lower payoff for the entire population (Bayer et al.,
2022). With its characteristics of having multiple pure strategy Nash equilibria, a problem of
equilibrium selection arises in a coordination game. A pure-strategy Nash equilibrium is an
action profile with the property that no single player i can obtain a higher payoff by choosing
an action different from ai, given every other player j adheres to a j (Jin et al., 2012).

Pure coordination, a subclass of coordination, portrays a game where positive payoffs
are only achieved if all the individuals involved in a game choose the same strategy and gets
zero payoffs for any other strategy combination.

Where the rewards of coordination are identical, the game is ascribed to as choosing
sides. A typical example of this game is driving on either side of the road. If participants all
adhere to driving on the same side, the traffic flows and payoffs are positive, otherwise chaos
ensues and payoffs are zero. A less stringent class in terms of punishing discoordination is
the stag hunt game.

The stag hunt game was first proposed by Rousseau as a representation of the possibility
of two participants coordinating their actions when trying to hunt for their survival. The game
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has received more attention after being reviewed by Skyrms (2003). In the stag hunt, one
strategy offers low rewards but does not require coordination, the other offers high rewards
that can only be attained by coordination. Thus, putting players in a position where they rely
on the cooperation of others to successfully hunt a stag.

While our research work is closely related to a coordination problem, let’s look at an
anti-coordination game. Anti-coordination games can be illustrated by an example from
street traffic. Where two cars meet, crossing at a street intersection. Each of them has two
strategies: to wait or to go. If both stop, they simply reproduce the problem, for payoffs of
zero; but if both go, they will crash, for payoffs of −100. If one goes and the other waits,
the one who goes “wins” getting through the intersection first, for 5, while the other goes
through the intersection second (but safely) for a payoff of 1.

In this game, there are two Nash equilibria, each of the strategy pairs at which one car
waits and the other goes. It is also necessary in the game for the players to choose different
strategies in a coordinated way, in order to realise a Nash equilibrium, and while they are not
equally well off at the equilibrium, both are better off than they will be at a non-equilibrium
strategy pair. The decision-makers involved in the game will need some level of information
from outside the game in order to appropriately coordinate their strategies, it is necessary
that in an anti-coordination game, that each player gets a different bit of information, that
can signal one to go and the other to stop (McCain and Hamilton, 2014).

In the real world, coordination and anti-coordination games are more complex than a
two-player cooperate or defect game (Prisoner’s Dilemma game). People, companies and
even countries engage in this type of multi-party games simultaneously with one another.
Another way to model this game is with a graph, whose vertices correspond to agents and
whose edges capture their pairwise interactions. A vertex then chooses one of K strategies,
trying to anti-coordinate with all its neighbours simultaneously. The payoff of a vertex is
the sum of the payoffs of its games with its neighbours, namely the number of neighbours
with which it has successfully anti-coordinated. Coordination issues can be resolved in both
games if players are allowed to communicate prior to engaging in the game (Jones et al.,
2021).

1.1.3 Pre-Commitment

Different mechanisms responsible for the emergence and stability of collective behaviours
among individuals have been proposed, which include kin and group selection, direct and
indirect reciprocity, spatial networks, reward and punishment (Nowak, 2006a; Okada, 2020;
Perc et al., 2017; Skyrms, 1996; West et al., 2007). These mechanisms may be relevant in
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tackling collective behaviours, but are they sufficient? There may be other alternatives to
promoting pro-social behaviours that have been neglected.

Recently, significant attention has been given to the introduction of pre-commitment as
an evolutionary viable strategy that promotes cooperative behaviour in both pairwise and
multi-player cooperation dilemma (Arvanitis et al., 2019; Cohen and Levesque, 1990; Frank,
1988; Han et al., 2015a; Han, 2016; Han et al., 2017a,b; Nesse, 2001a,b; Ohtsuki, 2018;
Sasaki et al., 2015b) namely, the Prisoner’s Dilemma (PD) (Han et al., 2013a; Hasan and
Raja, 2013) and the Public Goods Game (PGG) (Han et al., 2015c, 2017a; Kurzban et al.,
2001). Commitments, which allows the expression of an intention prior to an interaction
rather than having it recognised stands as another alternative to resolve cooperation problems.
Agents make commitments towards others when they give up options in order to influence
others (Arvanitis et al., 2019; Han, 2013; Nesse, 2001a). Incentives are utilised in most
commitments to ensure that the action is in the agent’s interest and thus will be carried out,
knowing that there is penalty for default (Nesse, 2001a). A commitment deal also involves
paying a small cost of arranging the commitment to make it credible and entice those to accept
to commit. More recently, Han (2022) studied explicitly how institutional incentives such as
reward of commitment compliance and punishment of dishonest commitment behaviours, can
be utilised to promote high levels of cooperation. Han (2022) showed that with a sufficient
budget for providing incentives, rewarding of commitment compliant behaviours better
promotes cooperation than punishment of non-compliant ones.

The introduction of pre-commitments has also provided an improvement to different types
of punishment against inappropriate behaviours and of rewards to stimulate the appropriate
ones (Chen et al., 2014; Martinez-Vaquero et al., 2015, 2017; Powers et al., 2012; Sasaki et al.,
2015b; Szolnoki and Perc, 2012; Wang et al., 2019), allowing one to efficiently avoid free-
riders (Han et al., 2015b; Han and Lenaerts, 2016b) and resolve the antisocial punishment
problem (Han, 2016). These works have primarily focused on modelling pre-commitments
for improving mutual cooperation among self-interested agents.

In the context of cooperation dilemma games (i.e. PD and PGG), mutual cooperation
is the only desirable collective outcome to which all parties are required to commit if an
agreement is to be formed. The same argument is applied to other pairwise and multi-player
social dilemmas such as the stag hunt and chicken games, since although the nature of the
games is different from the PD and PGG, mutual cooperation is the only desirable outcome
to be achieved (Pacheco et al., 2009; Santos et al., 2006a; Skyrms, 2003). In our technology
adoption game, there are multiple optimal or desirable collective outcomes such as in stag
hunt and chicken games and players might have distinct, incompatible preferences regarding
which outcome a mutual agreement should aim to achieve (e.g. due to asymmetric benefits).
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Such (anti-)coordination problems are abundant in nature, ranging from collective hunting
and foraging to international climate change actions and multi-sector coordination (Barrett,
2016; Bianca and Han, 2019; Ohtsuki, 2018; Ostrom, 1990a; Santos et al., 2016; Santos and
Pacheco, 2011; Skyrms, 1996).

Studies have also shown that in order to improve cooperation, commitments will need
to be adequately enforced among the players in a game and the cost of setting up the
commitments is justified with respect to the benefit resulting from the interactions among
players, which has been confirmed both in theoretical analysis and behavioural experiments
(Arvanitis et al., 2019; Chen and Komorita, 1994; Cherry and McEvoy, 2013; Kurzban
et al., 2001; Ostrom, 1990a). Although several studies have utilised the mechanism of pre-
commitment in solving cooperation dilemmas, there is a research gap in the application of pre-
commitment in resolving (anti-)coordination problems. Setting up the use of commitments
for improving coordination is more complex, exhibiting a larger behavioural space and
furthermore their outcomes are asymmetric (Bianca and Han, 2019).

It is worth reiterating that models that have been implemented in the past to demonstrate
the evolution of cooperation or population structure in social dilemmas focused on using
repeated interactions or long-term relationships (Back and Flache, 2008; de Vos et al., 2001;
Trivers, 1971). For instance, conditions in direct reciprocity theory, which assumes that
individuals who help a recipient get direct returns from a recipient, may play a role to
foster cooperation. Axelrod (1984) further used two-person repeated prisoner’s dilemma
game to show that reciprocity based on the so-called ‘Tit-for-Tat’ strategy results in a stably
cooperative society. His work assumes that each player repeatedly interacts many times with
every other player. Likewise, the model of indirect reciprocity, see e.g, a study by Nowak and
Sigmund (2005), which involves evaluating the reputation of players in a group. Their study
demonstrated indirectly reciprocal cooperation based on a discriminating strategy, which
only allows cooperation with an individual that has good reputation (Suzuki and Akiyama,
2005).

In our research, we took a different dimension, exploring how the mechanism of pre-
commitment can be utilised to promote cooperation in a complex situation like a coordination
problem, without using repeated interactions, nor assuming kin relationships nor considering
a reputation effect, which are the major factors of cooperation (Axelrod and Hamilton, 1981;
Martinez-Vaquero et al., 2017; Nowak, 2006b; Panchanathan and Boyd, 2004; West et al.,
2002).
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1.1.4 Collective Dynamics

Individually, a single agent can exert only a very small influence on its environment. However,
through large numbers, and the expression of cooperative behaviour, the same individual can
exert enormous impact over their environment. Hence, while simple cooperative individual
appears to abound everywhere (e.g. microbes, bacteria, plants, animals, humans, etc.),
but explaining their evolution is challenging because they are often subject to exploitation
by rapidly growing non-cooperative individuals. Consequently, the population structure
may be critical for this problem because it influences the extent of interaction between
cooperative and non-cooperative individuals. That is, it is not enough that cooperative
behaviour exists in some individuals but that these individuals must somehow aggregate.
Otherwise, it is difficult for cooperative individuals to succeed in competition if they become
mixed with non-cooperative ones which can exploit the public good without themselves
paying a cost. However, if cooperative individuals are segregated in space and preferentially
interact with each other, they may prevail as a collective dynamic that emerges from the
collective behaviour (Nadell et al., 2010).

Many advances in the body of knowledge enable the study of collective dynamics partic-
ularly as evolutionary dynamics in structured populations. When the fitness of individuals
depends on the relative abundance (i.e. frequency-dependent) of the trait in the population,
the situation is within the realms of evolutionary game theory (EGT) (Hofbauer and Sigmund,
1998; Sigmund, 2010). EGT is a broad concept that can be used to understand species
rivalry in an ecosystem, interactions between hosts and parasites, viruses and cells, and the
spread of ideas and behaviours among humans. With this perspective, there are many recent
advances that foster the study of fundamental laws particularly stochastic approaches in finite
populations. In our research, the EGT method is adopted to study the evolutionary dynamics
and interactions among individuals in a finite population (Hauert et al., 2007; Imhof et al.,
2005; Nowak et al., 2004). In this type of setting, an individual’s payoff represents their
fitness or social success (Hofbauer and Sigmund, 1998; Sigmund, 2010). The most successful
individuals are imitated more often by other individuals. In each time step, an individual A
with fitness fA adopts the strategy of another individual B with fitness fB using the pairwise
comparison rule, a popular and standard approach to implementing social learning in EGT
(Traulsen et al., 2006). Namely, the probability p is given by the Fermi function:

pA,B =
(

1+ e−β ( fB− fA)
)−1

. (1.1)

The parameter β represents the ‘imitation strength’ or ‘intensity of selection’, i.e., how
strongly the individuals base their decision to imitate on fitness difference between themselves
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and the opponents. For β = 0, we obtain the limit of neutral drift – the imitation decision is
random. For large β , imitation becomes increasingly deterministic.

1.2 Technology Adoption and Evolutionary Game Theory

In recent years, rapid technological progress, especially in information and computer tech-
nologies, has heightened the strategic importance of new technologies in a competitive
marketplace (Huggins and Izushi, 2011). Innovation continues to transform global market
and the modern workplace, providing solutions to the challenges that organisations and the
society at large encounters and enabling significant competitive advantage to businesses.
Sometimes, it is technology adoption that differentiates a firm and without which it could
not be present in the market (Zhu and Weyant, 2003). With the emergence of the Covid
19 pandemic, technology has played a major role in all industries, for instance technology
aiding employees to work remotely with the innovation of future work, automating various
business processes with artificial intelligence (AI) (Roberts et al., 2021). Technology was
also used in Covid 19 containment and mitigation strategies (Whitelaw et al., 2020). Up until
now, new technology products are still developed at lighting speed in a fiercely competitive
and rapidly changing digital world. Yet these innovations are only successful if they are
adopted (Frambach and Schillewaert, 2002).

Adopting new technologies allows businesses to offer what no one is offering, boosting
revenue streams while providing value to customers. It also presents them as innovators and
risk-takers in front of their customers and investors, opening new doors to a wider market
and more investment. However, the decision to adopt or invest on a technology arises with
challenges. Reluctance of organisations to adopt or invest on a new technology can result
in significant costs, such as through loss of competitive advantage and potential revenue
(Makkonen et al., 2016).

A vast percentage of changes that occurs in organizations are primarily triggered by
globalization, technology innovation acceptance and even the emergence of AI and the global
pandemic. Hence, this has spurred a good number of organizations facing the challenge
of technology adoption decision-making. The problem is which technologies should be
adopted? Managers are constantly faced with the decision-making dilemma of technology
adoption or investment. Often, companies might choose to invest in new technologies in
order to gain a competitive advantage over their peers (Clemons, 1991; Parsons, 1983; Zhu
and Weyant, 2003). These selfish executive priorities may lead to a coordination problem.
Ensuring a higher social welfare by providing several technological solutions is ignored if
newer technology promises larger profits (Sachs, 2000; Zhu and Weyant, 2003).
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In this thesis, we will explore a scenario where two investment firms have a contract to
adopt or invest in either a high (benefit) technology or a low (benefit) technology. Investing
in a high technology will result in a greater return of investment for the firm, than investing in
a low technology. However, there is a need for investment of both low and high technologies
for the benefit of the society. In this type of situation where what is invested in determines
the outcome, clearly none of the firms would want to invest in a low technology which yields
a smaller benefit for the firm. This leads to a dilemma between the investment firms adopting
technology. Using methods from evolutionary game theory, we will explore strategies and
other supporting mechanisms that would help to achieve efficient coordination amongst the
firms adopting technology. We model a coordination game using the technology adoption
scenario to show the strategic interactions and decision making amongst firms adopting
technology. Using mathematical models, we will explore how arranging pre-commitment
can be used as a mechanism to enhance coordination and the overall population welfare
in a well-mixed and structured populations for both pairwise and multi-player interaction
settings. The study of cooperative actions and pre-commitment in cooperative games for two
players and many players is closely related to our research (Han et al., 2013a,b, 2017a; Hasan
and Raja, 2013; Sasaki et al., 2015b). Differently, we investigate how pre-commitment can
be utilised in promoting cooperation in a coordination problem using technology adoption
decision making scenario.

It is noteworthy to state that although our approach is applicable for a wide range of
coordination problems (e.g single market product investments), we will frame our models
within the technology investment strategic decision-making problem, allowing us to show
clarity of our model description. Namely, we describe technology adoption games capturing
the competitive market and decision-making process among firms adopting new technologies
(Bardhan et al., 2004; Zhu and Weyant, 2003). This research work will perform both
theoretical analysis and numerical simulations using stochastic EGT methods as well as
agent-based simulations on complex networks (Hofbauer and Sigmund, 1998; Perc et al.,
2017; Santos and Pacheco, 2005; Sigmund et al., 2010; Szabó and Fáth, 2007) to model
technology adoption decision making behaviours among firms competing to invest in a
technology product market.
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1.3 Aim and Scope

The focus of this thesis is to study the interactions among firms investing in a competitive
technology market. In order to achieve this aim, we will achieve the following objectives:

1. To explore evolutionary game theory methods to model firms’ strategic interactions
and study the dynamics and evolutionary outcomes of their interactions.

2. To explore mechanisms that allow us to improve coordination.

3. To design a mathematical model that studies human behaviours with respect to tech-
nology adoption.

1.4 Thesis Contribution

This section provides a summary of the main contributions of the thesis and highlight the
significance of our work. Namely, three major contributions have been achieved, as listed
below

1. We provide a novel mechanism that allows pre-commitments to be adopted as a tool
for enhancing coordination when its outcomes exhibit an asymmetric payoff structure.
Our approach is applicable to addressing complex social dilemma problems such as
a (anti-)coordination problem, which is more complex to achieve since there might
be several desirable collective outcomes or players might have distinct, incompatible
preferences regarding which outcome a mutual agreement should aim to achieve (as a
result of asymmetric benefits). Compared to cooperation dilemma games (i.e PD and
PGG), where mutual cooperation is the only desirable collective outcome to which
all parties are required to commit if an agreement is to be formed (Han et al., 2013a,
2017a; Sasaki et al., 2015b).

Different works in the past have studied the evolution of coordination, using the so-
called Stag Hunt game, see e.g. (Pacheco et al., 2009; Santos et al., 2006a; Sigmund,
2010; Skyrms, 2003), however, to the best of our knowledge, no research has been
done on how pre-commitments can be modelled and applied to enhance the outcome
of the evolution of coordination.

2. We have proposed a model for a pairwise technology adoption coordination game, then
extended and generalized the model to a multi-player interaction, capturing the strategic
interaction among any number of players (i.e. firms). The generalised multi-player



1.5 Outline of the Thesis 13

game is more complex as more players are involved in the interaction. We further
investigated how coordination and cooperation can be enhanced with the application
of pre-commitment deal when there are multiple players involved and also when there
is a particular market demand.

3. Finally, we have examined the impact of different population structures, capturing ho-
mogeneous and heterogeneous network structures on the dynamics of decision-making
in the context of a coordination problem. Santos et al. (2006c)’s work on investigating
the effect of population structures on different types of two-player social dilemmas
including the Prisoner’s Dilemma, Stag Hunt and Snowdrift games is closely related to
this our contribution. Also Cimpeanu et al. (2022) research explored how safety adop-
tion in the development of AI technology can be enhanced by heterogeneous network
structures. And also (Di Stefano et al., 2015, 2020) work on how highly heterogeneous
networks, such as SF, constitute the most suitable network topology for the emergence
and sustainability of cooperation in a multilayer network. However, these models are
different from our coordination game as their works focus on symmetric games. Our
work explored an asymmetric coordination game.

Despite the fact that we have described our model in terms of technology adoption
decision making, it is generally relevant to many other coordination issues, such as
whenever there are strategic investment decisions to be made (in competitive markets
of any products) (Chevalier-Roignant et al., 2011; Zhu and Weyant, 2003).

1.5 Outline of the Thesis

Below we provide a brief summery of the six chapters in the thesis.

1. Introduction: The introduction chapter is the first chapter which gives an overview of
this thesis. We first commence this chapter by exploring the issues of social dilemma
and collective behaviour. We studied cooperation and punishment, the evolution of
coordination and anti-coordination games. We explored already existing mechanisms
responsible for the emergence of collective behaviours and studied commitment. Fur-
thermore, we looked at technology adoption and evolutionary game theory, exploring
the rationale and motivation of this thesis.

2. Background and Methods: The second chapter describes the background and meth-
ods used in the thesis. We provide some valuable technical detail which we believed
to be helpful in understanding the contents of this thesis. We present an overview
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of relevant definitions of Game Theory, Evolutionary Game Theory, Well-mixed and
Structured Populations. We also provide an extensive literature review that shows past
relevant works closely related to our work. We explored here, other mechanisms that
have been proposed in the past to promote the emergence and stability of cooperative
behaviours among selfish individuals. We looked at relevant contributions, which allow
for a better understanding of the thesis. We therefore identified some research gaps
and raised some research questions which our work seeks to find answers to.

The next three chapters are the main contributions of this thesis. Each of these chapters
corresponds to an already peer-reviewed published and presented worked.

3. Technology Adoption Model (Two-player Game): In this chapter we proposed
a computational model using evolutionary game theory, that describes a pairwise
technology adoption decision making, where two investment firms (or players) compete
to make a strategic decision on which technology to adopt. We have first present our
model without a pre-commitment or agreement deal, allowing us to see the need
and complexity of achieving coordination without any extra mechanism. We further
explored the use of commitment in this chapter and showed when commitment is a
viable evolutionary mechanism for enhancing coordination among firms.

4. Multi-Player Technology Adoption Game: Here, we expanded our two-player
technology adoption game in the previous chapter to accommodate multiple players
competing for technology adoption. We proposed a new model to investigate how
pre-commitments can be applied to improve coordination when its results reveal an
asymmetric reward structure, in multiplayer interactions, by utilising methods from
evolutionary game theory (EGT). We further explored here how to resolve difficult
coordination when there is a need for a group mixture or diversity of group choices.

5. Structured Population: Previous chapters focused on well-mixed population setting,
however, this chapter investigates on the impact of different population structures,
including square lattice and scale-free (SF) networks, capturing typical homogeneous
and heterogeneous network structures, on the dynamics of decision-making in the
context of coordinating technology adoption. Similar to well-mixed population, we
explored here, whether pre-commitments can enhance coordination in structured
populations.

6. Conclusions and General Discussions: In this chapter, we summarise our work and
draw conclusions. We critically review our findings and gave some useful recommen-
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dations on how our work can be applied to other domains. We finally propose different
areas for future research.

1.6 List of Publications

Here we provide a list of the publications directly related to this thesis. I was the main author,
providing the core contributions for each publication. Also, conference abstracts are listed.
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Commitments (Ndidi Bianca Ogbo, Aiman Elgarig and The Anh Han)
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doi:10.1177/1059712321993166

Peer-reviewed Conference Paper and Abstract

1. Emergence of Coordination with Asymmetric Benefits via Prior Commitment
(Ogbo Ndidi Bianca and The Anh Han)
In Artificial Life 2019 Conference, pages 163-170, MIT Press, 2019.
doi.org/10.1162/isal_a_00157

2. Shake on it: The role of Commitments and the Evolution of Coordination in
Networks of Technology Firms (Ndidi Bianca Ogbo, Theodor Cimpeanu, Alessandro
Di Stefano, The Anh Han)
In Artificial life 2022 Conference , doi.org/10.1162/isal_a_00524

3. Evolution of Coordination in Pairwise and Multi-player Interactions via Prior
Commitments (Ndidi Bianca Ogbo, Aiman Elgarig and The Anh Han)
In Complex Systems Society Conference, 2020. (Abstract).

4. Arranging Pre-commitment to Enhance Coordination Among Firms Adopting
Technology (Ndidi Bianca Ogbo)
In Mathematical Model in Ecology and Evolution Conference, 2022. (Abstract)





Chapter 2

Background and Methods

We begin this chapter by first describing the background and methods used in the thesis,
including (evolutionary) game theory and agent-based simulations on complex networks. We
then review relevant literature on evolutionary dynamics, complex networks, mechanisms that
promote cooperation and coordination, in order to frame the thesis contributions. We look
at existing models which have been used to study cooperation and coordination problems,
which allowed us to identify gaps in the literature and research questions that the thesis aims
to address.

2.1 Game Theory

Game theory, used in the modelling of conflict and cooperation, was first introduced as a
field by John von Neumann and Oskar Moregenstern in their publication of Theory of Games
and Economic Behaviour in 1944 (Von Neumann and Morgenstern, 1994). Ever since then,
the logic behind game theoretic thinking continues to be explored. The choice of strategies
and the interdependence of people’s actions associated with game theoretic reasoning has
influenced all social sciences. Game theory is described as the rigorous analysis of situations
of strategic interdependence. In this type of situations, a payoff structure faced by a player
relies on the decisions or actions made by other parties (i.e. co-players) in the interaction.
Hence it leads to a situation Emile Borel called ‘psychological uncertainty’ (Dimand and
Dimand, 1996). The problem of information scarcity and uncertainty is closely connected in
this type of game theoretic analysis. Players are faced with uncertainty as they are unaware
of the moves taken by their co-players, or actions their co-players are planning to take. Due
to this, every player must perform some inference about the moves of others to rationally
choose among his or her own potential moves (Dimand and Dimand, 1996).
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Game theory studies how players should rationally play games or make a decision. Every
player involved in a game would like the game to finish in an outcome that is favorable
to them, that is they obtain a large payoff. For instance, a player has influence over the
outcome, as his choice of strategy will influence it. However, the outcome is not determined
by his choice alone, but also depends upon the choices of all the other players involved in
the game. This might result in a situation of conflict versus cooperation. The ability to deal
with a tactical interaction among players is what makes game theory an interesting field of
study. Players involved in such an interaction might try to predict their opponent’s strategy
before they make any move. Several real-world games have been captured using game theory
interactions, such as football, basketball, chess, checker, war, and politics which are spheres
of life that involves people trying to outsmart their rivals (Sarkar, 2016).

Game theory has found successful applications in myriad fields and disciplines, for the
analyses of strategic and tactical interactions. Businesses can utilise game theory to out-think
competition from rivals. Companies pursuing cooperative strategies are playing a game,
likewise political candidates seeking to win an election, members of congress trying to pass
or defeat a bill and nations striving to compete in international arena. The application of
game theory in many important circumstances has continued to offer solutions right from the
early days. Many of the theoretical applications in the 1980s resolved issues in industrial
organisation, for instance, the application of commitment and timing in patent races and
pre-emptive investment (Fudenberg and Levine, 2016). Milgrom and Roberts (1982) utilised
the logic of game theory to limit pricing and many of Tirole (1988)’s influential industrial
organisation books majorly applied game theory to his work. Other applications of game
theory have continued to follow, including resolving issues ranging from auctions to market
organisation, and to monetary, fiscal and even environmental issues (Fudenberg and Levine,
2016). According to Sarkar (2016), the description of a game needs to specify the following:

1. Players: A player may be an individual, but it may also be a more general entity like
a company, an organisation, a nation, or a biological species. They are players of a
game if they are involved in strategic interaction where their decisions affect each
other’s well-being or happiness. Game theory assumes that players are self-interested
individuals. Self-interested behaviour among players does not avert cooperation,
however, cooperation happens when there will be benefits obtained from cooperation
rather than from competing. Players do not act without self-interest, it could be even a
‘warm glow’, which is still seen as feeling fulfilled from enhancing the well-being of
another. This means that an action that may appear to be altruistic may also involve
some form of self-interest.
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2. Strategies: Strategies are actions or plans of actions available to the players. The
strategy set or space defines the scope of what the players can do in the game. Each
player has some possible strategies, that is courses of action which he or she may
choose to follow.

3. Outcome: The preferred strategies chosen by each player in the game would determine
the outcome of the game.

4. Payoffs: All the outcomes of the strategic interactions of a game are numerical payoffs,
one to each player. Payoffs are what the players obtain from the game subject to
realization of each of the outcomes. A player’s payoff reflects the player’s stake in
the game. The assumption of self-interested players implies that the players strive to
maximize their own payoffs.

2.2 Evolutionary Game Theory

Evolutionary game theory, briefly discussed in Chapter 1, is a mathematical framework
conceived by John Maynard Smith and George Robert Price in their seminal work on the
logic of animal behaviour (Smith and Price, 1973). It is an extension of game theory to
evolving populations in biology that helps us understand the effects of selective pressures on
the population dynamics of interacting agents in a population (Bukkuri and Brown, 2021).
Agents or players may have different strategies that affect their interactions with one another,
where the strategies could be anything from behavior traits such as aggression to body size
or cell transporter expression. Evolutionary game theory allows us to derive mathematical
examination of population dynamics of agents’ behaviours over time.

Before embarking on analysing evolutionary game theory, it is worth noting the key
difference between game theory and evolutionary game theory. Game theory was originally
developed to provide a framework for determining a player’s optimal strategies when an
individual’s success depends on their choice of strategy and that of other players. This is most
apparent in zero sum games in which one player’s winnings necessarily becomes another
player’s losses. However, in a less extreme sense, this conflict is also present in non-zero sum
games since what maximizes payoffs for one player does not necessarily do so for another. In
a classical game theory, players have the option of selecting their strategies and it is assumed
that players act rationally, in their own self-interest (Basu, 1994; Colman, 2003). A common
question asked by classical game theorists is “in a situation, what should a rational player
do?”, that is which strategy or which frequencies of mixed strategies will grant the player
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with the higher payoff, assuming that the competitors are rational players as well? In this
setting, both ecological and evolutionary dynamics are absent (Bukkuri and Brown, 2021).

To integrate these dynamics, evolutionary game theory built upon the framework of game
theory by replacing the assumptions of rationality and self-interest with population dynamics
and stability associated with Darwinian fitness. Darwin considered strategic interactions
where fitness is dependent on the frequency of a type within a population, which became
a major theme of evolutionary game theory (Hodgson and Huang, 2012; Hofbauer and
Sigmund, 1998; Sigmund, 2010). The central question asked by evolutionary game theorists
is “given a population with interacting phenotypes, how will their population dynamics
change over time?” (Bukkuri and Brown, 2021). The table below displays the difference
between a classical game theory and evolutionary game theory.

Table 2.1 Classical game theory and evolutionary game theory

Attributes Classical Game Theory Evolutionary Game Theory
Emphasis Players Strategies

Payoffs
No Dynamical Link with

Strategy Frequency
Dynamical Link with
Strategy Frequency

Players Fixed Dynamic
Population Static Dynamic
Choices Rationality Teleonomy

Evolutionary game theory (EGT) takes a different route to the classic analysis of games.
Here, the population of players using different strategies are simulated and a process similar
to natural selection is used to determine how the population evolves.

Let us consider an n-player game with the i-th player has strategy space denoted by Si.
An EGT approach would be to model each agent by a population of players. The population
for the i-th agent would then be partitioned into groups Ei1 , Ei2 , . . . , Eik (k might be different
for each population). Individuals in group Ei j would all play the same (possibly mixed)
strategy from Si. The next step, then, would be to randomly play members of the populations
against each other. The sub-populations that performed most successfully would grow, and
those that did not do so would shrink. The process of playing members of the populations
randomly and refining the populations based on performance would be repeated indefinitely.
Ideally the evolution would converge to some stable state for each population, which would
represent a (possibly mixed) strategy best response for each agent. A special case is the
symmetric two-player game. In a symmetric game payoff matrices and actions are identical
for both agents. These games can be modelled by a single population of individuals playing
against each other. When the game being played is asymmetric, a different population of
players must be used to simulate each agent.
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2.3 Evolutionary Dynamics

In this thesis work, we perform theoretical analysis and numerical simulations using EGT
methods for finite, well-mixed populations (Hauert et al., 2007; Imhof et al., 2005; Nowak
et al., 2004). In populations of a finite size, the dynamics of evolution are stochastic
rather than deterministic. If two mutants are equally fit, one of them will eventually seize
control while the other might go extinct. An advantageous mutation has a certain chance of
succeeding.

Let Z be the size of the population. In such a setting, individuals’ payoff accumulated
from their interactions represents their fitness or social success, and evolutionary dynamics
is shaped by social learning (Hofbauer and Sigmund, 1998; Sigmund, 2010), whereby the
most successful individuals will tend to be imitated more often by the other individuals. In
the current work, social learning is modelled using the so-called pairwise comparison rule
(Traulsen et al., 2006), a standard approach in EGT, assuming that an individual A with
fitness fA adopts the strategy of another individual B with fitness fB with probability p given
by the Fermi function,

pA,B =
(

1+ e−β ( fB− fA)
)−1

.

The parameter β represents the ‘imitation strength’ or ‘intensity of selection’, i.e., how
strongly the individuals base their decision to imitate on fitness difference between themselves
and the opponents. For β = 0, we obtain the limit of neutral drift – the imitation decision is
random. For large β , imitation becomes increasingly deterministic.

In the absence of mutations or exploration, the end states of evolution are inevitably
monomorphic: once such a state is reached, it cannot be escaped through imitation. We thus
further assume that, with a certain mutation probability, an individual switches randomly
to a different strategy without imitating another individual. In the limit of small mutation
rates, the dynamics will proceed with, at most, two strategies in the population, such that
the behavioural dynamics can be conveniently described by a Markov Chain, where each
state represents a monomorphic population, whereas the transition probabilities are given by
the fixation probability of a single mutant (Hauert et al., 2007; Imhof et al., 2005; Nowak
et al., 2004). The resulting Markov Chain has a stationary distribution, which characterises
the average time the population spends in each of these monomorphic end states. It has been
shown to have a range of applicability which goes well beyond the strict limit of very small
mutation (or exploration) rates (Han et al., 2012a; Hauert et al., 2007; Rand et al., 2013b;
Sigmund et al., 2010; Sigmund, 2010; Zisis et al., 2015).

Now, for both two-player and N-player settings, the probability to change the number x
of individuals using strategy A by ± one in each time step can be written as (Traulsen et al.,



22 Background and Methods

2006)

T±(k) =
Z − x

Z
x
Z

[
1+ e∓β [Πi(x)−Π j(x)]

]−1
. (2.1)

The fixation probability of a single mutant with a strategy i in a population of (Z − 1)
individuals using j is given by (Nowak et al., 2004; Traulsen et al., 2006)

ρ j,i =

(
1+

Z−1

∑
i=1

i

∏
j=1

T−( j)
T+( j)

)−1

. (2.2)

Considering a set {1, ...,q} of different strategies, these fixation probabilities determine a
transition matrix M = {Ti j}q

i, j=1, with Ti j, j ̸=i = ρ ji/(q− 1) and Tii = 1−∑
q
j=1, j ̸=i Ti j, of a

Markov Chain. The normalised eigenvector associated with the eigenvalue 1 of the transposed
of M provides the stationary distribution described above (Imhof et al., 2005), describing the
relative time the population spends adopting each of the strategies.

2.3.1 Risk-dominance conditions (pairwise ad multi-player games)

An important measure to determine the evolutionary dynamic of a given strategy is its
risk-dominance against others. For the two strategies i and j, risk-dominance is a criterion
which determine which selection direction is more probable: an i mutant is able to fixate
in a homogeneous population of agents using j or a j mutant fixating in a homogeneous
population of individuals playing i. In this case, for instance, comparing the two strategies i
and j, to know which direction the transition is stronger or more probable, an i mutant fixating
in a population of individuals using j, or a j mutant fixating in the population of individuals
using i. If the first was more probable than the latter then we say that i is risk-dominant
against j (Nowak et al., 2004; Sigmund, 2010), which holds for any intensity of selection
and in the limit for large population size Z when

N

∑
k=1

Πi, j(k)≥
N−1

∑
k=0

Π j,i(k) (2.3)

This condition is applicable for both two-player games, N = 2, and when N-player games
with N > 2 (Gokhale and Traulsen, 2010; Sigmund, 2010). It will allow us to derive analytical
conditions such as when commitment proposing is an evolutionarily viable strategy, being
risk-dominant against all other strategies in the population.
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2.4 Structured Population

2.4.1 Well-Mixed Population (Complete Graph)

The classic foundation of evolutionary game theory is based on differential equations, which
define deterministic dynamics in well-mixed and indefinitely large populations (Hofbauer
and Sigmund, 1998; Nowak et al., 2010; Sigmund, 2010). Infinitely large, well-mixed
populations are an idealised version of the real world, though they are a useful simplification
in the world of differential equations which are utilised in many evolutionary game theory
models (Axelrod, 1984; Maynard-Smith, 1982).

For well-mixed populations, any two individuals interact with the same probability
and is the reference point for any analysis of how a population structure affects evolution.
Evolutionary dynamics depends on the population’s structure that underlies interactions
of individuals. The state of a population and its environment would affect the pattern
of interactions amongst individuals in that population. Evolutionary dynamics have been
traditionally studied in the context of a homogeneous, well-mixed population.

However, it is usually not the case that any interaction between any two individuals
has the same probability to take place. For instance, a population’s spatial distribution
makes interactions between neighbours more likely than interactions between people who
are farther apart. A population’s spatial distribution makes connections between neighbours
more feasible than connections between people who are farther apart. Friends will likely
connect more frequently than strangers in human societies due to social network. These
insights produced spatial methods for evolutionary game dynamics (Barabasi, 2014; Nowak
and May, 1992, 1993) and later to evolutionary graph theory (Lieberman et al., 2005; Ohtsuki
and Nowak, 2006; Ohtsuki et al., 2006).

2.4.2 Lattice Network

Interactions among evolutionary game players are important in studying their evolutionary
behavior. Evolutionary dynamics of group interactions are often assumed on well mixed pop-
ulations of structured populations. However, the study of the dynamics of group interactions
is often not entirely in equilibrium but dynamic processes, e.g. biological, economical and
social sciences.

If there is a departure from the assumptions of well-mixed populations, then there are
some issues to be considered. Notably,

1. Which criterion determines how group configurations are sampled?
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2. What kind of population sampling is used to implement replication competition among
strategies?

In this regard, lattice networks represent simple topologies which are very useful to game
theoretical models. Although they appear different to actual social networks, they provide
rather useful considerations for exploring the consequences of a structure on the evolution
of cooperation. The lattice network is identified as a uniform field for all competitive
strategies when the network reciprocity is known. Network reciprocity, one of the five
essential mechanisms for resolving social dilemmas according to Nowak (2006b), has drawn
significant interest because, despite its basic premise (that is, "playing with neighbours on an
underlying network and copying a strategy from them"), the model nonetheless appears to
offer a workable explanation for how cooperation promotes survival in any practical situation
(Tanimoto, 2017).

Spatial distribution of a population makes the interaction among neighbors more frequent
than interactions between distant individuals. For spatial models, the fixed interaction network
is defined by the points of a lattice and the edges between those points whose distance does
not exceed a given value. Additionally, many variations of lattices corresponding to different
interaction behaviour can be studied because of the availability of several lattices with specific
properties of group interactions, see figure 2.1. This feature allows different interaction roles
in the evolutionary roles to be tested (Perc et al., 2013b).

(a) Represents a square lattice where each player has 4 immediate neighbors so there is a
group size of 5. The square lattice is the most popular structure with von Neumann
neighborhood with four closest neighbors. There is a larger square lattice, the Moore
neighborhood, where each player has 8 immediate neighbors so the group size is 9.

(b) Represents a honeycomb lattice with 3 immediate neighbors so there is a group size of
4.

(c) Represents a Kagome lattice with 4 immediate neighbors so there is a group size of
5. The Kagome lattice has overlapping triangle shapes which makes it more robust
against group interactions.

(d) Represents a triangular lattice with 6 immediate neighbors so there is a group size of
7. The triangular lattice has overlapping triangles which makes it more robust against
group interactions.
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Fig. 2.1 Schematic of different types of lattices (Perc et al., 2013a)

Simulations on a square lattice with agents that imitate the behavior of their neighbor
with the highest payoff demonstrated a significant level of cooperation in the prisoner’s
dilemma (Nowak and Sigmund, 1992). Since their work, evolutionary game has been studied
on lattices and complex networks which show that lattice networks significantly promote
collective cooperation among individuals (Shu et al., 2017).
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2.4.3 Scale-Free Networks

In reality, populations are often heterogeneous where some individuals have more interactions
(i.e. contacts) than others (Santos et al., 2006c). The connectivity can range from small
degrees of association exhibiting Gaussian distribution, to large heterogeneity with degree
distributions exhibiting a power-law behavior. Power-law networks include several significant
characteristics, including the presence of hubs, a significant number of nodes with minimal
connections, and a typical small-world behaviour (Artico et al., 2020). It is observed that
for all cooperation dilemmas, increasing heterogeneity favors the emergence of cooperation
(Santos et al., 2006c), such that long-term cooperative behavior easily resists short-term
non-cooperative behavior. Therefore, it may be beneficial to extend the study to other forms
of interconnection that conform to a network structure referred to as scale-free network
(Perc et al., 2013b; Zhang et al., 2015). Networks in the real world are dynamic and
heterogeneous. The evolving of networks occurs with new nodes (i.e. individuals) enter and
create connections (i.e. interactions) to nodes that already exist. A network is a collection of
connected objects such as individuals in a population. Objects are referred to as nodes (or
vertices) and drawn as points and the connections between points are called edges.

Fig. 2.2 A simple network

In reality, most nodes have a relatively small degree, but a few nodes will have very
large degree (being connected to many other nodes)(Barabasi and Albert, 1999). Nodes with
degree feature as hubs connections to many other nodes. Scale free networks are represented
by the presence of large hubs. A hub is a node that is highly interconnected to other nodes in
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Fig. 2.3 Network with ten nodes and eleven edges

the network. With nodes in the network, the degree distribution will exhibit a long tail, which
means the presence of nodes carrying a greater degree than the rest of the nodes present.

One of these models is the Barabasi and Albert (BA) model which is among the most
well-known models used to explore extremely complicated, diverse networks. One of the
BA model’s key characteristics is that it adheres to a preferential attachment rule, has a
low clustering coefficient and a power law degree distribution (Barabasi and Albert, 1999;
Barabasi, 2014). A scale free network is one with a power-law degree distribution.

Despite the computation inconvenience, it is desirable to define networks with power-law
because the distribution has the same function at all scales and so is referred to as scale
free. The study of scale-free networks is prevalent in network science, which explores how
scale-free structure shapes dynamic running over a network. Scale-free networks are also
extensively used as a substrate for network based numerical simulations and experiments,
which has been framed for providing a common basis for understanding all networks. Various
researchers have carried out significant work on how network structural heterogeneity can
affect the evolution of cooperation (Broido and Clauset, 2019; Cimpeanu et al., 2019a; Santos
et al., 2008; Serafino et al., 2021).

The application of the power law is contested that it is difficult to decide if real-world
networks are indeed scale free (Broido and Clauset, 2019). There are some controversies
about the power law and how prevalent it is in empirical network. Early analyses resulted in
the widespread acceptance that power law degree distribution being scale free are ubiqui-
tous. Recently, more statistical techniques have emerged that doubt the extent of scale-free
universality. Broido and Clauset (2019) argue that scale-free networks are rare after they
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fitted a power law model to the degree distribution of a variety of networks. It is clear that
there exists a great deal of structural diversity between real world networks which is worth
exploring since the approach of using scale-free structures has many advantages.

1. It provides a systematic procedure applicable to any network and treats all data sets
equivalently.

2. It provides a method of assessing different networks by characterizing their empirical
ubiquity.

2.5 Overview of Related Work

The problem of promoting the evolution of cooperative behaviour amongst populations
of self-interested individuals has been studied across diverse fields of behavioural, social
and computational sciences (Han, 2013; Nowak, 2006a; Perc et al., 2017; Sigmund, 2010;
West et al., 2007). Numerous mechanisms that can promote the emergence and stability of
cooperative behaviours among these selfish individuals have been proposed and analysed.
They include kin and group selection (Hamilton, 1964; Traulsen et al., 2006), direct and
indirect reciprocities(Han et al., 2012c; Krellner and Han, 2020; Ohtsuki and Iwasa, 2006;
Okada, 2020; Sigmund and Nowak, 2005) spatial networks (Perc et al., 2013b; Santos
et al., 2006b) reward and punishment (Boyd et al., 2003, 2010; Fehr and Gachter, 2000;
Hauert et al., 2007; Sigmund et al., 2001b) and pre-commitments (Han et al., 2013a, 2016;
Martinez-Vaquero et al., 2017; Nesse, 2001a; Sasaki et al., 2015b).

A highly relevant mechanism to this thesis work that has been utilised to promote cooper-
ation is costly (peer) punishment in a one-shot interaction. In this mechanism, a punisher
will pay a cost to punish another player who defects (Boyd et al., 2003; Egas and Riedl,
2008; Fehr and Gachter, 2000, 2002; Guala, 2012; Hauert et al., 2007). Differently from
the application of commitment, costly punishment does not demand for a prior agreement
deal from co-players before the interaction. Rather, players will reactively punish players
that defect (if they can be identified) after the interaction has commenced. Costly punishers
can evolve in a well-mixed population only if punishment is cost effective, i.e. the punished
agent will incur a sufficiently large cost compared to that of the punisher, as shown by both
theoretical and experimental studies (Anderson and Putterman, 2006; Boyd et al., 2003;
Carpenter, 2007; Egas and Riedl, 2008; Han, 2016; Nikiforakis and Normann, 2008; Sigmund
et al., 2001b; Wu et al., 2009). The effectiveness of punishment is, however, diminished by
second-order free riders who do not cover the cost of punishment (Hauert et al., 2007; Ozono
et al., 2016, 2017; Sigmund et al., 2010).
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The public goods game is a popular framework numerous researchers have used to
study human behaviour, where agents make a decision to contribute to a public account, the
higher an agent’s contribution to the public account the higher the group payoff. However,
every agent also has an incentive to free ride and not contribute, hence the social dilemma
(Nikiforakis and Normann, 2008). Results from studies show that the issue of free riding in a
public goods game is pervasive and leads to the under provision of the public goods (Ledyard,
1994; Lerat et al., 2013; Ostrom, 1990a). To resolve free riding, various solutions have been
experimented by researchers, one of such solutions which has gained significant attention is
the use of a decentralized or peer punishments (this means individuals can punish each other
without the intervention of a central authority) to discipline free riders in social dilemma
experiments (Han and Lenaerts, 2016a; Powers et al., 2012; Sigmund et al., 2010). The
use of such a punishment opportunity in a public goods games have increased cooperation
amongst appropriators significantly.

Here, we tackle the coordination of agents to achieve a collective goal despite their
individual preference. A Coordination game describes an incentive structure that rewards
conformity, as such any player that does deviate would lead to a lower payoff for the whole
population (Bayer et al., 2022). In the past different works have been explicitly carried out on
coordination games. In a two-player game, the competition between a payoff-dominant and
risk-dominant gained a lot of attention. With two equilibrium in a game, the selection issue
is problematic. The selection problem in a coordination game relies on the payoff dominance
and risk dominance (Harsanyi and Selten, 1990; Raducha and San Miguel, 2022).

On solving the issue of coordination, Cooper et al. (1992) carried out some experimental
work on nonbinding and pre-play communication in a coordination game. Results from the
experiment have shown that in the absence of prior communication between agents in a
game, coordination failure is likely to occur, since there is no cooperative strategy. The result
further shows that when players are given the chance to communicate before selecting an
action, coordination failure will be reduced as prior communication would enable players
to choose a desired outcome. This aligns with the previous work of DeJong et al. (1989),
where experimental evidence shows that pre-play communication tackles coordination issues
in a battle of the sexes game. In both the theoretical and analytical studies carried out, the
issue of coordinating agents was reduced with pre-play communication but not completely
eliminated as there is no binding agreement. Rabin’s model of behaviour also analysed the
results of pre-play communication in two-person games with complete information, in which
players have the opportunity to communicate how they should play a game. That is, players
create a new game where the sender (one player) can send a free message to the receiver (the
other player) before engaging in the game. The issue is whether the chance to communicate
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affects results (Sobel, 2017). His key findings are that even copious communication cannot
guarantee equilibrium results in the underlying game, as there is no binding agreement among
players (Costa-Gomes, 2002; Rabin, 1994).

Less attention has been given to coordination in interactive decision-making problems
in the past compared to cooperation in the Prisoner’s Dilemma and Public Goods Games
in which unilateral defection will lead to a better payoff than a mutual cooperation (Balliet
et al., 2011; Colman and Gold, 2017;2018). Thomas et al. (2014) refer to coordination as
mutualistic cooperation and cooperation of social dilemma type as altruistic cooperation.
How agents can coordinate to achieve pay-off dominant outcomes, both in games with multi-
Nash equilibrium and also in common-interest games (a single outcome payoff dominates
all other outcomes)? Some researchers earlier proposed theories that involve alteration of
the game specification for instance by engaging in repetitions (Aumann and Sorin, 1989) or
communication among players as previously stated (Anderlini, 1999; Rabin, 1994) as some
of the measures of reducing the problem of coordination to some extent (Cooper et al., 1992).
Team reasoning is another theory that has been studied to resolve coordination problem.
According to team reasoning theory, coordination issues of Stag Hunt type are resolved by
players when they adopt a distinctive mode of strategic reasoning from preferences to strategy
choices (Colman and Gold, 2017;2018). Common questions asked is: What do I want? and,
what is my basic understanding of the complexity of the game and my expectations of what
co-player’s actions will be? What should I do to achieve this? In team reasoning, the unit of
agency is removed from individuals to the pair, or more generally to the group of players,
where each player is given the opportunity to ask what do we want and what should I do to
play my part in achieving this? In team reasoning, players would first look for an outcome
that would best benefit the pair or group of agents. Where this outcome exists and is unique,
players would then participate and play their component strategies of the jointly optimal
strategy (Colman and Gold, 2017;2018). Team reasoning may not be feasible where there
is no uniquely best outcome for the group. Illustrated here is how team reasoning proffers
solutions to coordination issue. In Aumann’s Stag Hunt game, a team reasoning player notes
that the (C, C) strategy profile is uniquely optimal for the player pair, because it offers the
best possible payoff to both, and no other strategy profile will result in either player having a
payoff as good as the payoff in (C, C). If both players adopt the team reasoning mode, then
both will select and play their C strategies (Colman and Gold, 2017;2018). Team reasoning
is best for resolving any common-interest game with a single payoff dominant outcome.

The Stag Hunt game describes a social interaction like an example of a scenario that
involves a butcher and a baker deciding whether to coordinate their actions and sell hot
dogs (Thomas et al., 2014). In the Stag Hunt game above, the outcome (C, C) is a Nash
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Table 2.2 Payoff matrix for Stag Hunt Game

Player 2
Cooperate Defect

Player 1
Cooperate (9,9) (0,8)

Defect (8,0) (7,7)

Table 2.3 Aumann’s Stag Hunt Game, with R > T > P > S

Player 2
Cooperate Defect

Player 1
Cooperate (R,R) (S,T )

Defect (T,S) (P,P)

equilibrium as the C strategies are best outcomes for each other. Neither player could get a
better payoff by choosing differently against a co-player’s choice of C. Against a C chooser,
a player will get 9 by choosing C but only 8 by choosing D and it follows that neither player
has a reason to regret choosing C if the co-player chooses it too. It is tempting to think that
players who by definition seeks to maximize their own payoffs, will coordinate themselves to
choose C in this game because the (C, C) equilibrium is better for all players than the (D, D)
equilibrium (Colman and Gold, 2017;2018). The problem in this setting is that C is not an
unconditionally best choice for the player, it is best only if the co-player chooses to play C as
well. Coordinating these players to jointly take an action remains the hurdle in this type of
scenarios in which our work seeks to tackle. Utilising team reasoning explains coordination
by allowing groups to act as agents, if individual players would identify with the group
(Lahno and Lahno, 2018). The group can be instrumentally rational and have outcomes
that are good which can be achieved through rational decision-making of the individual
players, given that they identify with the group. This raises the question of whether or not
it is possible for people to identify with a group for instrumental reasons, as well as how
they choose to identify with it (Colman and Gold, 2017;2018). Players first search for an
outcome that would be best for the pair or group of players; if such an outcome exists and is
unique, they then identify and play their component strategies of the jointly optimal strategy
profile, and if there is no uniquely best outcome for the group, then team reasoning may
not be feasible. Team thinking only seems feasible when members have a connection to the
group.
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2.6 Pre-commitment

Commitment, which allows the expression of an intention, has been applied in solving the
issue of cooperation recently (Han et al., 2013a, 2017a; Sasaki et al., 2015b). People engage
in commitment deals with others when they give up options with the aim of influencing
others. Commitments usually rely on some form of incentive that is necessary to ensure
that the action is in the agent’s interest and thus be carried out (Gintis, 2001; Han and
Lenaerts, 2016b; Nesse, 2001a), with some penalty for defaulting. The introduction of
pre-commitment for resolving technology adoption coordination is the centre of this thesis.
We explore how arranging a prior agreement or pre-commitment deal can be used as a
mechanism for enhancing the population social welfare in a complex coordination problem,
in both pairwise and multi-player interaction settings. This is studied both on a well-mixed
and on structured populations. Closely related to our work is the study of pre-commitments
used as mechanisms for the evolution of cooperation and in determining the outcome of
strategic interactions (Han et al., 2017a). Ever since Schelling (1990), commitment has been
a widely adopted concept in economics. Individuals can benefit from the opportunity to
credibly bind themselves to certain actions or alternatively to remain flexible longer than
their opponents (CARUANA and EINAV, 2008). Commitment is typically modelled through
dynamic games in which one of the players is given a chance to make an initial binding
action, allowing him to commit first (Han and Pereira, 2013; Han et al., 2017a).

Pre-commitments have been applied mostly in cooperative dilemmas and shown to
enhance cooperation significantly if they are sufficiently enforced and the cost of setting
up the pre-commitment deal is justified given the benefits derived from the interactions
(Cherry and McEvoy, 2013; Ostrom, 1990a). The use of commitment-based strategies
in understanding social behaviours is important that natural selection may have shaped
specialised signalling capacities to enable this (Back and Flache, 2008; Nesse, 2001a; Santos
et al., 2011; Skyrms, 2010).

The implementation of the pre-commitment strategies in different settings have been
proven to be an antidote to social conflicts (Han et al., 2013a). As earlier stated, one major
goal of this thesis is to explore through Evolutionary Game Theory (Hofbauer and Sigmund,
1998; Sigmund et al., 2010) how pre-commitments can be utilised to enable the emergence
of coordination among technology firms. This will be explored for both a pairwise and
multiplayer interactions with asymmetric benefits. According to Han et al. (2013a), to make a
commitment deal reliable, a commitment proposer pays an arrangement cost. If the co-player
agrees with the deal, then the proposer assumes that the opponent will adopt the agreed
choice, yet there is no guarantee that this will actually be the case. In a situation whereby the
co-player accepts the commitment though later does not honour it, she has to compensate



2.7 Research Questions 33

the honouring co-player at a personal cost. Marriage is an example of a commitment that
is widely recognised. Participants in a marriage contract give up options to leave someone
else, gain security and a chance for a deeper relationship that may be impossible otherwise,
as it may be impossible to ascertain a partner’s intention of remaining faithful without the
commitment of marriage. Arranging a commitment deal would help enhance cooperation
even in situations where agents may not want to be cooperative. Also, an employment
contract e.g. where the employer states the terms and conditions of the job is another form of
a commitment deal. The employee is obligated to work according to the terms of the job or
risk being fired. With these in place, both the employee and employer know what to expect
and actions that can be taken if things go otherwise. A commitment deal helps to ensure that
people bind to an agreement or face penalty depending on how the agreement is defined and
the set rules.

To the best of our knowledge, there had been no work that studied how EGT can be
applied in solving a coordination problem such as our technology adoption model which has
an asymmetric payoff or benefit to be shared among players involved. Past works mostly
utilized EGT to solve mutual cooperation problems where the outcome is symmetric. The
dynamics of our technology adoption game is complex and therefore require some extra form
of coordination among players. Thus we proposed to use pre-commitment in our technology
adoption model to enhance coordination among the players. There is a research gap in this
area which our work hopes to study and bridge.

2.7 Research Questions

From the above described literature review and background, we have identified some gaps in
the literature which will be addressed in our work. Our work seeks to answer these research
questions outlined below:

1. How can pre-commitments be utilised in achieving coordination and how to model
them using an evolutionary game?

2. How can asymmetric benefits that might occur in technology adoption be resolved
through costly commitment formation?

3. Whether and when is it advantageous to arrange and accept to engage in a costly
commitment deal?

4. How does the dynamics and evolutionary outcomes of coordination change when
moving from a pairwise (two-firm) competition to multi-firm one?
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5. How does the population structure (such as homogeneous vs heterogeneous ones)
affect the dynamics and evolutionary outcomes of technology adoption coordination,
in presence or absence of pre-commitments?



Chapter 3

Technology Adoption Model (Two-Player
Game)

In this chapter, we propose an evolutionary game model describing a pairwise technology
adoption decision making, where two investment firms (or players) compete within a same
product market who need to make strategic decision on which technology to adopt. We first
present our model where a pre-commitment (agreement deal) is absent and then extend the
model to explore whether pre-commitments would be a viable evolutionary mechanism for
enhancing coordination among the firms.

3.1 Introduction

The design of mechanisms that can help achieve coordination in populations of self-regarding
agents continues to be recognised as a major challenge within several areas of social, life
and engineering sciences. It is ubiquitous in real-world situations, human organisations,
technological innovations and social networks (Han et al., 2019; Ostrom, 1990a; Pitt et al.,
2012; Sigmund et al., 2001a).

Several mechanisms that can promote the emergence and stability of collective behaviours
among such individuals, have been proposed, see again detailed discussion in the previous
chapter. They include kin and group selection, direct and indirect reciprocities, spatial
networks, reward and punishment (Nowak, 2006b).

Recently, the capacity to create, and commit to, prior agreements (Frank, 1988; Han
et al., 2015c, 2017a; Nesse, 2001c) has been proposed as an evolutionarily viable strategy
inducing cooperative behaviour in the context of cooperation dilemmas; namely, the Pris-
oner’s Dilemma (PD) (Han et al., 2013a) and the Public Goods Game (PGG) (Han et al.,
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2017a). It provides an alternative to different forms of punishment against inappropriate
behaviour and of rewards to stimulate the appropriate one (Martinez-Vaquero et al., 2015;
Powers et al., 2012; Sasaki et al., 2015b). These works have solely focused on the roles of
commitments for enhancing mutual cooperation among self-interested individuals. However,
commitments can be adopted as a tool for enhancing other types of collective behaviour
such as coordination (Barrett, 2016; Nesse, 2001c; Ostrom, 1990a), which our work seeks
to address. In the context of cooperation dilemma games such as the PD and PGG (Nowak,
2006b), mutual cooperation is the only desirable collective outcome to which all parties are
required to commit if an agreement is to be arranged. In contrast, in a coordination problem,
there might be multiple optimal or desirable collective outcomes and players might have
distinct, incompatible preferences regarding which outcome a mutual agreement should aim
to achieve (e.g. due to asymmetric payoffs).

The issue of coordination which our work seeks to address presents a choice between
conflicting preferences of different agents which must be made on some conditions set. Con-
sidering technology adoption decision-making, it is quite a challenge to tackle coordination
among different firms to achieve a common goal for the social welfare of the population.

The research question here is to identify the processes involved in technology adoption
using EGT. To answer the question, this chapter will systematically describe our technology
adoption model, showcasing the players’ strategic interactions.

3.2 Model description

In our work, we consider a situation in which two firms (players) are able to compete against
one another within a common product market. They must first choose which technology to
invest in strategically. A low benefit (L) or high benefit (H) technology might be chosen
as an investment option. The adoption of a high technology will result in a high return on
investment as opposed to adopting a low technology, which would result in the firm obtaining
a low profit on investment.

The outcome of the players’ interaction in this scenario is described in terms of costs
and benefits of investments, using the cost-benefit analysis which measures the benefits of a
decision or taking action minus the costs associated with taking that action. In our model,
we describe both the cost of adopting a high technology and low technology as cH and cL

respectively. Cost here, is the value or money that the firms will spend to adopt or invest
in either a high technology or low technology. We also ascribed α (alpha) to mean the
competitive level of the market. Where two firms adopt the same technology, they both share
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the benefit. Hence, obtaining only a partial benefit. Further description of the notations used
in our model is shown in table 3.1 below.

3.2.1 Notations

For easy representations, different notations are utilised in the design and the development of
our technology adoption model. The table below lists the notations used and further gives a
description of the various notations used in our model.

Table 3.1 Description of Notations

Notations Used Description
H Represents high benefit technology
L Represents low benefit technology
bH Benefit of adopting/investing in a high technology
bL Benefit of adopting/investing in a low technology
cH Cost of adopting/investing in a high technology
cL Cost of adopting/investing in a low technology
α Competitive level of the market

Considering the cost and benefit of investment to this game, the resulting profits to each
firm for the alternative strategies taken are given by the payoff matrix displayed below.
The two strategies of firm A correspond to the two rows and the two strategies of firm B
correspond to the two columns of the matrix. The entries of the matrix represent their payoffs
when they choose their strategies.

( H L

H αbH − cH bH − cH

L bL − cL αbL − cL

)
:=

(H L

H a b
L c d

)
(3.1)

The above matrix satisfies the following conditions:

• H always lead to a higher benefit than L, that is bH > bL and also leads to a greater net
benefit, that is bH - cH > bL – cL

• Also, α < 1 represents the competitiveness level when two firms adopt the same
technology, i.e. they obtain only a partial benefit.

• It satisfies that b > a and c > d whenever α < 1. The payoff matrix corresponds to the
parameters satisfying either of this order (since b > c): b > a > c > d or b > c > a > d.
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The payoff bH – cH above represents the benefit obtained in full when one of the two
firms decides to adopt a high technology and the other a low technology. In this case, the
payoff bH −cH is given to the firm who adopts a high technology. This payoff has the highest
benefit possible among the payoffs.

On the contrary, the payoff α bH – cH , represents a partial benefit obtained from adopting
a high technology. This occurs when both firms A and B adopt a high technology. α here
indicates their competitive level, as they both receive partial benefit or return of investment
for adopting the same technology.

Also, the payoff bL – cL is a full benefit payoff received when one firm adopts a low
technology and the other firm adopts a high technology. This payoff is for the firm that
adopts the low technology which will lead to a lower profit gained. Lastly, the payoff α bL –
cL is obtained when both firms together adopt a low technology. They both receive a partial
benefit for adopting the same technology.

In our work, to illustrate the two different orderings of payoff entries above, we numeri-
cally study two configurations, namely, game 1 and game 2, below.

1. For game 1 (a = 2, b = 5, c = 1, d = 0) i.e, when α = 0.5, cL = cH = 1, bH = 6,
bL = 2.

2. For game 2 (a = 0.5, b = 2, c = 1, d = 0) i.e, when α = 0.5, cL = cH = 1, bH = 3,
bL = 2.

The payoff matrices for these games (game 1 and 2) are given as:

(H L

H 2 5
L 1 0

)
and

( H L

H 0.5 2
L 1 0

)
(3.2)

3.2.2 Without Commitment

It is clear from this scenario that it will always be in their individual interest to outsmart the
other firm by adopting a high-quality technology which will offer them a higher profit. Each
of these firms will want to go for a high-fast quality technology, with the hope that the other
firm goes for a low-slow quality technology. Where both firms adopt same technology, there
will be a partial benefit for both firms, see payoff matrix 3.1.

Given this, we explored how players here can be coordinated to maximise profit. Clearly,
we see from the payoff matrix 3.1 that the players would benefit more when they are
coordinated to adopt different technologies. From the first payoff matrix, both players
choosing strategy H and H, or H and L is the Nash equilibrium. Individually, the players
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may fail to take an action that would be in their collective interest, hence the coordination
problem our work aims to address here.

It is noteworthy to state that although we have designed our model in terms of technology
adoption decision making, it is generally applicable to several other coordination problems,
for instance wherever there are strategic investments decisions to make (in competitive
markets of any products) and even in other interactions that requires strategic decision-
making.

3.2.3 In the Presence of Commitment

The application of commitment deal as we have earlier discussed remains one of the methods
used to promote the emergence of cooperation even in a coordination dilemma such as our
technology adoption game (Han et al., 2013a, 2017b). Although commitment may not have
gained much attention, here we studied both analytically, numerically and also carrying out
simulations on how commitment can help to enhance the coordination of firms in technology
adoption investment.

After our first interactions on a two-player game where firms compete for a particular
technology adoption to adopt and invest in, we have realised that individual interests will
always prevail in this setting. Each of these players (firms) will always think rationally by
putting their investments where they are guaranteed of a huge profit margin than where they
will get a lesser profit, especially as they are aware of the outcome of their choices. Although
they cannot control the choice of their opponent, but they would choose what they consider
as best choice for themselves.

Now, the problem we gather from this setting is that if both players go by their choice of
adopting, they will most likely adopt a high technology with the hope that the other party
adopts a low technology. We see a dilemma here on the choice of adoption or technology to
invest here. This may also result in both players adopting a high technology, since no one
would want to adopt a low technology with a lesser benefit. In a population where there is a
need for the adoption of a high and low technology, all firms choosing to adopt a particular
technology that is, a high technology in this case will not be good for the welfare of the
overall population. Someone will have to adopt a low technology, but the issue is who?
Which of these firms clearly seeing that adopting a higher technology would result to a higher
benefit would intentionally go for adopting a low technology with lower benefit without any
condition, agreement or coercing to do so? Note that, in our technology adoption game, we
have assumed and set our parameters so that when both firms adopt same technology, they
will have a partial benefit as the benefit of adopting the technology will be shared between the
two firms. We have set this because we are modelling a case whereby there are a variety of
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different technologies (high and low technology) in the market. If for instance, we consider a
scenario whereby all firms should adopt same technology (i.e. it is optimal for the population
collectively to adopt high technology), the dynamics of our technology adoption game will
change as we will set the parameters to favour adoption of same technology rather than
different technologies. This scenario occurs when α is sufficiently high.

We hereby see a need to extend our technology adoption model to allow players to
have the option of arranging a prior commitment deal before their interaction (Han et al.,
2013a). We considered a case whereby one of the players in the game would act as a
commitment proposer and ask the co-player to adopt a different technology. That is they
both go into a strategic interaction and agreement, where a strategist intending to adopt a
High quality technology (respectively L) would ask the co-player to adopt a Low quality
technology (respectively H). We denote these commitment proposing strategies as HP and
LP, respectively. Similar to previous models of commitments (for Prisoner’s Dilemma Game
and Public Goods Game) (Han et al., 2013a, 2017b), to ensure that the commitment deal is
reliable, a commitment proposer is required to pay a cost (ε) for arranging the commitment
deal. If the co-player accepts the terms of the commitment deal, then the commitment
proposer assumes that the opponent will adopt the agreed choice, although there is no
guarantee that the co-player will comply with the terms and conditions of the agreement.
However, whenever a co-player refuses to commit, the HP and LP which are the commitment
proposes would play H in the game, that is they chose to adopt a high technology whenever
co-player refuses to accept a commitment proposal. In the case where a co-player accepts a
commitment deal but later fails to honour the deal by keeping to the agreement, the co-player
is required to compensate the honouring co-player at a personal cost δ . In our model, in
line with (Han et al., 2013a, 2017a), we implicitly assumed a third party (e.g. an external
institution) who ensures that the compensation cost δ is paid by dishonouring players. This
compensation cost is set to be higher than the cost of arranging the commitment deal so that
the commitment proposal who pays the cost of arranging a commitment does not entirely
lose out when a co-player dishonours an agreement.

Differently from previous models on Prisoner’s dilemma and public goods game where
an agreed outcome leads to the same payoff for all the parties involved in the agreement
(mutual cooperation benefit), in our current technology adoption model with commitment
such an outcome would result to different payoffs for the parties involved. Therefore, we have
designed in this commitment model that as part of the agreement made between the players,
the HP would compensate after the game an amount θ1 to accepted player that honours the
agreement, while the LP would request a compensation θ2 from such an accepted co-player.
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Besides the HP and LP, we also consider a minimal model with the following basic
strategies in this commitment version:

• We mapped out the non-proposing acceptors namely the HC and LC, who always
commit when being proposed a commitment deal wherein they are willing to adopt any
technology proposed (even when it is different from their intended choice), they always
honour the adopted agreement, but do not propose a commitment deal themselves.
They play their intended choice, i.e H and L, respectively, when there is no agreement
in place.

• The Non-acceptors which are the HN and LN, who do not accept a commitment
deal. They play their intended choice during the game and they also do not propose
commitment deal to others in the game. They generally do not accept commitment nor
propose a commitment deal.

• Another category called the false committers, specifically the HF and LF, who accept
a commitment proposal when approached but make the opposite choice when the
game is actually played. The goal of the HF and LF is to take advantage of players
who offer to make commitments without having to bear the repercussions. Thus, after
accepting a commitment deal from the proposers, they violate it by acting in a way
that is inconsistent with the terms of the agreement.

Similar to the commitment models for the PD game (Han et al., 2013a), it should be
noted that some potential strategies have been left out of the analysis because, in every
possible configuration of the game, at least one of the strategies dominates them. This means
that leaving them out of the analysis would not affect the results. For instance, individuals
who propose a commitment (i.e paying a cost ε), but do not follow through on it (and must
pay the compensation when dealing with acceptors who do so) would be dominated by the
comparable non-proposers.

Bringing everything together, the model is made up of eight strategies that work together
to generate the following payoff matrix, which depicts the typical average payoffs that each
strategy will experience when it interacts with one of the other seven strategies (where we
denote λ = θ1 +θ2, λ1 = b− ε −θ1, λ2 = c− ε +θ2, λ3 = a− ε + δ and λ4 = d − ε + δ ,
purely for the purpose of being represented very clearly).

We first designed a model where the commitment proposer LP plays their default choice
L when co-player refuses their commitment proposal. LP in this instance is a commitment
proposal that asks a co-player to adopt or invest on a High technology (H) while they the
LP’s adopt a low technology (L). The LP’s strategy pays for the cost of the commitment deal
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(if the co-player agrees), adopts a low technology and requests from co-player who adopts a
high technology for share of benefit θ2, as they have adopted a high profit technology which
gives them a higher return of investment than the LP’s. If co-player refuses the commitment
proposal from LP, play here plays their default choice, which is adopting a low technology
(L). The payoff matrix designed for this interaction is given as:



HP LP HN LN HC LC HF LF

HP b+c−ε

2
2b−ε−λ

2 a b λ1 λ1 λ3 λ3

LP 2c−ε+λ

2
b+c−ε

2 c d λ2 λ2 λ4 λ4

HN a a a b a b a b
LN c c c d c d c d
HC c+θ1 b−θ2 a b a b a b
LC c+θ1 b−θ2 c d c d c d
HF a−δ d −δ a b a b a b
LF a−δ d −δ c d c d c d


. (3.3)

Differently from the first payoff, upon exploring, we further designed a model where its
payoff matrix considers when co-player refuses LP commitment proposer. The LP’s plays
their most favourable choice (H) in this game instead of sticking to playing their default
choice (L) as seen in the first payoff matrix. LP is considered to make the smart choice
here compared to the first payoff matrix. This payoff matrix where the LP plays the most
favourable choice (H) when a co-player refuses an agreement deal. This choice is adopted in
our technology adoption model. Adopting this, we have defined our model for the LP’s to
always adopt a high technology (that is, plays H) whenever they encounter rejection from
co-players upon proposing a commitment deal. The payoff matrix for this model where LP’s
plays H when they are refused commitment deal is given as:



HP LP HN LN HC LC HF LF

HP b+c−ε

2
2b−ε−λ

2 a b λ1 λ1 λ3 λ3

LP 2c−ε+λ

2
b+c−ε

2 a b λ2 λ2 λ4 λ4

HN a a a b a b a b
LN c c c d c d c d
HC c+θ1 b−θ2 a b a b a b
LC c+θ1 b−θ2 c d c d c d
HF a−δ d −δ a b a b a b
LF a−δ d −δ c d c d c d


. (3.4)

Here, we will further explain how some of the strategies in the payoff matrix are derived.
Which is given as:
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• HP AND HP

When two commitment proposers interact in a game, they both have a 50% chance of
paying the cost of setting up the agreement. Also, 50% chance of acting as the receiver
in the game. Therefore, 50% of the time the first HP may either be the commitment
proposer or receiver on average. Only one of them need to pay the cost of arranging a
commitment.

50% if the first HP is a proposer, it gets b - ε - θ1

50% if the first HP is a receiver, it gets c + θ1

Therefore, the average payoff of HP when playing with another HP is given as:
1
2(b− ε −θ1 + c+θ1) =

1
2(b+ c− ε).

Note that we considered an an agreement to be fair if both parties obtain the same
benefit when they honour it (after having taken into account the cost of setting up
the agreement). For that, we can show that θ1 and θ2 must satisfy θ1 =

b−c−ε

2 and
θ2 =

b−c+ε

2
1, and thus, both parties obtain b+c−ε

2 .

With these conditions, it also ensures that the payoffs of HP and LP when interacting
with each other are equal.

• LP AND HP

Similar to HP interacting with another HP, when two commitment proposers are
involved in a game they both have a 50% chance of paying the cost of setting up the
agreement, which is acting as the proposer.

50% of the time LP may either be the commitment proposer or receiver

50% if the LP is a proposer it gets c - ε + θ2, while HP gets b – θ2

Therefore, the average payoff when LP is playing with HP is given as:
1
2(c− ε +θ2 +b−θ2) =

1
2(c+b− ε).

• HN AND HN

The payoff matrix for HN if it interacts with another HN in the game is A. This is
achieved as the conditions for HN states that they do not propose nor accept commit-
ment proposal in a game. They play their default choice H.

1These can be obtained for instance by comparing the payoffs of HP and HC when they interact, i.e.
b− c−θ1 = c+θ1. Solving this equation we would obtain θ1 =

b−c−ε

2 . Similarly for θ2.
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• HC AND HP

When HC and HP are involved in a game, the payoff for HC is c + θ1 accepts proposals
from the commitment proposing strategies like the HP’s and LP’s but they do not
propose to co-players .

HC accepts to play L, which the payoff is c and gets θ1 (shared benefit from HP who
proposed). Hence, the payoff of HC when playing with the HP strategy is c + θ1.

• HFAKE AND HP

From the conditions given, the HFAKE strategy accepts a commitment proposal but
dishonours the agreement by playing the opposite.

Therefore, when HFAKE and HP play a game. The HP strategy proposes to HFAKE to
play L. HFAKE accepts but dishonour the agreement by playing H which is the opposite
of what HP proposes and against their agreement. HFAKE pays δ (compensation cost)
for defecting in the game.

Hence, the payoff for HFAKE when played with HP is a – δ .

Note that in our model, in line with previous commitment models (Han et al., 2013a,
2017a), we implicitly assumed a third party (e.g. an external institution) who ensures
that the compensation cost δ is paid by dishonouring players.

3.3 Summary of Methods

Evolution happens in populations of reproducing individuals and the composition of a
population structure can have effect on which traits evolve in that population (Allen et al.,
2017). Evolutionary dynamics remains an important aspect in this study. Thus, we first
start by conducting theoretical analysis and numerical simulations using Evolutionary Game
Theory methods for finite population size (Imhof et al., 2005; Nowak et al., 2004). In this
situation, each person’s payoff corresponds to their level of fitness or social success, and
social learning shapes evolutionary dynamics (Hofbauer and Sigmund, 1998; Rendell et al.,
2010; Sigmund, 2010; Traulsen and Nowak, 2006), whereby the most successful individuals
in the population will tend to be imitated more often by the other individuals. The cumulative
payoff from all encounters imitates an individual’s fitness or social success within the context
of evolutionary game theory (EGT). Any participant in a game has the potential to alter their
approach by adopting the approach of another player with a probability that is determined by
the Fermi probability distribution. A strategy that, for instance, has a greater average reward
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or fitness than another will be more frequently imitated by that strategy. See chapter two,
section 2.3.

• Average Payoff for the Two Player Game
Let N be the size of the population. Denote πA,B the payoff a strategist A obtains in
a pairwise interaction with strategist B (defined in the payoff matrices in equations
(3.2) and (3.4) ). Suppose there are at most two strategies in the population, say, k
individuals using strategy A (0 ≤ k ≤ N) and (N − k) individuals using strategies B.
Thus, the (average) payoff of the individual that uses A and B can be written as follows,
respectively,

ΠA(k) =
(k−1)πA,A +(N − k)πA,B

N −1
,

ΠB(k) =
kπB,A +(N − k−1)πB,B

N −1
.

(3.5)

Now, the probability to change the number k of individuals using strategy A by ± one
in each time step can be written as(Traulsen et al., 2006)

T±(k) =
N − k

N
k
N

[
1+ e∓β [ΠA(k)−ΠB(k)]

]−1
. (3.6)

The fixation probability of a single mutant with a strategy A in a population of (N −1)
individuals using B is given by (Nowak et al., 2004; Traulsen et al., 2006)

ρB,A =

(
1+

N−1

∑
i=1

i

∏
j=1

T−( j)
T+( j)

)−1

. (3.7)

Considering a set {1, ...,q} of different strategies, these fixation probabilities determine
a transition matrix M = {Ti j}q

i, j=1, with Ti j, j ̸=i = ρ ji/(q−1) and Tii = 1−∑
q
j=1, j ̸=i Ti j, of a

Markov Chain. The normalised eigenvector associated with the eigenvalue 1 of the transposed
of M provides the stationary distribution described above (Imhof et al., 2005), describing the
relative time the population spends adopting each of the strategies.

Risk-dominance An important measure to compare the two strategies A and B is which
direction the transition is stronger or more probable, an A mutant fixating in a population of
individuals using B, ρB,A, or a B mutant fixating in the population of individuals using A,
ρA,B. That is, comparing the two strategies A and B, to know which direction the transition is
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?=0.5, bL=2

LH

Fig. 3.1 Effect of bH varied when commitment is absent. In general, we observed that
when bH is significantly low, the population would adopt a low technology and when bH
is sufficiently high, the population would be dominated by the high technology adopters.
Parameters: cH = 1, cL = 1, bL = 2, α = 0.5

stronger or more probable, an A mutant fixating in a population of individuals using B, or a B
mutant fixating in the population of individuals using A. If the first was more probable than
the latter then we say that A is risk-dominant against B (see again Chapter 2, Section 2.3).

πA,A +πA,B > πB,A +πB,B. (3.8)

3.4 Results

3.4.1 When Commitment is Absent

From our analysis and simulations of the technology adoption games 1 and 2, we observe
here how players would make their decision on technology adoption when there is no form
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?=0.5, bH=6

LH

   

?=0.5, bH=3
a b

Fig. 3.2 Effect of bL varied when commitment is not present We varied here the value of
bL in two different game configurations. We observed from the left panel that at all points of
bL, the H strategy has a higher frequency than the L strategy, given that we have a moderate
competitive level at α = 0.5 and a high benefit of adopting bH = 6, the population would
always want to adopt a high technology in this case. We see some difference in our result
from the right panel. Parameters: in all panels cH = 1, cL = 1, α = 0.5; Panel a) bH = 6 (i.e.
b = 5) and panel b) bH = 3 (i.e. b = 2).



48 Technology Adoption Model (Two-Player Game)

   

bH=6, bL=2

LH

   

bH=3, bL=2
a b

Fig. 3.3 Effect of α when commitment is not present. In general, we observed that at all
points of α in both games, the H strategy dominate the population as seen in panel a and b.
This means, whether the market is competitive or not, the H strategy will always dominate
the population. α here shows the level of competitiveness of the market. Parameters: in all
panels cH = 1, cL = 1, bL = 2, α = 0.5; Panel a) bH = 6 (i.e. b = 5) and panel b) bH = 3 (i.e.
b = 2).
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of commitment or agreement deal in place. We see that the default choice for players will
always be to choose the H strategy, which is the adoption of a high technology as it promises
a higher return of investment than adopting a low technology. When both players choose
to adopt a high technology, they get a partial benefit which is represented in panel a and
b in figure 3.3. However, even with the partial benefit obtained, panel a and b shows that
players will still choose to adopt a high technology, which shows a need to coordinate these
players to act collectively and in the overall best interest of the population. The player’s
problem in this game is how to coordinate their choices. Are there any mechanism that
can be utilised to enhance coordination amongst the players? Prior agreements (Frank,
1988; Han et al., 2015c, 2017a; Nesse, 2001c) has been proposed as an evolutionary viable
strategy inducing cooperative behaviour in the context of cooperation dilemmas; namely,
the Prisoner’s Dilemma (PD) (Han et al., 2013a) and the Public Goods Game (PGG) (Han
et al., 2017a). Although their works focused on the roles of commitments for enhancing
mutual cooperation among self-interested individuals. Prior agreement/commitment can also
be utilised for enhancing coordination (Barrett, 2016; Nesse, 2001c; Ostrom, 1990a), as we
further explore in our technology adoption game. We investigate how coordination can be
achieved even in a complex game where all players have their own self-interest but still needs
coordination to achieve a common goal for the social welfare.

3.4.2 Conditions for the viability of commitments

First of all, using pair-wise analysis (using Equation 3.8) it can be shown that if:

θ1 +θ2 < b− c

then HP is preferred (i.e. risk-dominant, see Methods) to LP. Otherwise, LP is risk-dominant
against HP.

We now derive the conditions regarding the commitment parameters for which HP and
LP are viable strategies, i.e. when they are risk-dominant against all other non-proposing
strategies. Namely, using Equation 3.8 we can derive that HP and LP are risk-dominant
against all other six non-proposing strategies, respectively, if and only if
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ε < min{b+ c−2a,3b− c−2d,
3b− c−2a−4θ1

3
,

3b− c−2d −4θ1

3
,
b+ c−2a+4δ

3
,
b+ c−2d +4δ

3
},

ε < min{b+ c−2a,3b− c−2d,
3c−b−2a+4θ2

3
,

3c−b−2d +4θ2

3
,
b+ c−2a+4δ

3
,
b+ c−2d +4δ

3
}.

(3.9)

Note that each element in the min expressions above corresponds to the condition for one of
the six non-proposing strategies HN, LN, HC, LC, HF, LF, respectively.

Thus, we can derive the conditions for θ1, θ2 and δ :

θ1 <
1
4
(3b− c−3ε −2max{a,d}) ,

θ2 >
1
4
(b−3c+3ε +2max{a,d}) ,

δ >
1
4
(3ε −b− c+2max{a,d}) .

(3.10)

In particular, for fair agreements, i.e. θ1 = (b− c− ε)/2 and θ2 = (b− c+ ε)/2, we obtain

ε < min{3b− c−2d,b+ c−2max{a,d}},

δ >
1
4
(3ε −b− c+2max{a,d}) .

(3.11)

Since the first inequality can be simplified further, we obtain

ε < b+ c−2max{a,d},

δ >
1
4
(3ε −b− c+2max{a,d}) .

(3.12)

Note that 3b− c−2d > b+ c−2max{a,d}, which is due to b > c and max{a,d} ≥ d.
In general, these conditions indicate that for commitments to be a viable option for

improving coordination, the cost of arrangement ε must be sufficiently small while the
compensation associated with the contract needs to be sufficiently large (see already Figure
3.8 for numerical validation). Furthermore, for the first condition to hold, it is necessary that
b+c > 2max{a,d}. It means that the total payoff of two players when playing the TD game
is always greater when they can coordinate to choose different technologies, than when they
both choose the same technology.
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Moreover, the conditions in Equation 3.12 can be expressed in terms of α and the costs
and benefits of investment, as follows (see again the payoff matrices in Equation 3.1)

α < 1+min{cH +bL − cL − ε

2bH
,
cL +bH − cH − ε

2bL
},

α < 1+min{cH +bL − cL −3ε +4δ

2bH
,
cL +bH − cH −3ε +4δ

2bL
},

which can be rewritten as

α < 1+min{cH +bL − cL − γ

2bH
,
cL +bH − cH − γ

2bL
}, (3.13)

where γ = max{ε,3ε −4δ}.
This condition indicates under what condition of the market competitiveness and the costs

and benefits of investing in available technologies, commitments can be an evolutionarily
viable mechanism. Intuitively, for given costs and benefits of investment (i.e. fixing cL, cH ,
bL, bH) , a larger cost of arranging a (reliable) agreement, ε , leads to a smaller threshold of
α where commitment is viable. Moreover, given a commitment system (i.e. fixing ε and
δ ), assuming similar costs of investment for the two technologies, then a larger ratio of the
benefits obtained from the two technologies, bH/bL, leads to a smaller upper bound for α for
which commitment is viable.

Remarkably, our numerical analysis below (see already Figure 3.4) shows that the condi-
tion in Equation 3.13 accurately predicts the threshold of α where commitment proposing
strategies (i.e. HP and LP) are highly abundant in the population, leading to improvement in
terms of the average population payoff compared to when commitment is absent (Figure 3.5).
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3.4.3 Numerical Results

We calculate the stationary distribution in a population of eight strategies, HP, LP, HN, LN,
HC, LC, HF and LF, using methods described above. In Figure 3.4, we show the frequency
of these strategies as a function of α , for different values of ε and game configurations. In
general, the commitment proposing strategies HP and LP dominate the population when
α is small while HN and HC dominate when α is sufficiently large. That is, commitment
proposing strategies are viable and successful whenever the market competitiveness is high,
leading to the need of efficient coordination among the competing players/firms to ensure high
benefits. Notably, we observe that the thresholds of α below which HP and LP are dominant,
closely corroborate the analytical condition described in Equation 3.13, in all cases. Namely,
for the parameter values in the first and second rows of Figure 3.4, α ≈ 0.66, 0.58, 0.5 and
α ≈ 0.81, 0.67, 0.5, for α = 0.1,1, 2, respectively. That explains the consistent dominance
of HP and LP when α is small, and that of HN and HC when α is large (see again at the risk
dominant conditions).

This observation is robust for varying commitment parameters, i.e. the cost of arranging
commitment, ε , and the compensation cost associated with commitment, δ , see Figure 3.8.
Namely, we show the total frequency of commitment strategies (i.e. sum of the frequencies of
HP and LP) for varying these parameters and for different values of α . It can be seen that, in
general, the commitment strategies dominate the population whenever ε is sufficiently small
and δ is sufficiently large. This observation is in accordance with previous commitment
modelling works for the cooperation dilemma games (Han et al., 2013a, 2015c, 2017a).
Furthermore, we observe that in the current coordination problem, that the smaller α is, these
commitment strategies dominate the population for wider range of ε and δ . Our additional
results show that these observations are robust with respect to other game configurations.

Now, in order to determine whether and when commitments can actually lead to meaning-
ful improvement, in Figure 3.5, we compare the average population payoff or social welfare
when a commitment is present and when it is absent. In general, it can be seen that when α

is sufficiently small (below a threshold), the smaller it is, the greater improvement of social
welfare is achieved through the presence of a commitment deal. Moreover, the smaller the
cost of arranging commitments, ε , the greater improvement is obtained. On the other hand,
when α is sufficiently large, little improvement can be achieved, especially when bH/bL is
large (which is in accordance with the analytical results above). We can observe that the
thresholds for which a notable improvement can be achieved is the same as the one for the
viability of HP and LP (i.e. as described in Equation 3.13).
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Fig. 3.4 Frequency of the eight strategies, HP, LP, HN, LN, HC, LC, HF and LF, as a
function of α , for different values of ε and game configurations. In general, the commitment
proposing strategies HP and LP dominate the population when α is small while HN and
HC dominate when α is sufficiently large. The thresholds of α for which HP and LP
dominate, in all cases, are in accordance with the analytical condition described in Equation
3.13. Parameters: in all panels cH = 1, cL = 1, bL = 2 (i.e. c = 1); Top row) bH = 6 (i.e.
b = 5) and bottom row) bH = 3 (i.e. b = 2); Other parameters: δ = 6; β = 0.1; population
size N = 100; Fair agreements are used, where θ1 and θ2 are given by θ1 = (b− c− ε)/2
and θ2 = (b− c+ ε)/2. The HN and HC strategies dominate the population when α is
sufficiently large as they play H and do not bear the cost of arranging a commitment deal.
When the market is less competitive, that is α is large, it is more beneficial to not engage in a
commitment deal. Thus, α is a key parameter in determining when players should engage in
a commitment deal or not.
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Fig. 3.5 Average population payoff as a function of α , when commitment is absent and
when it is present, for different values of ε . In general, we observe that when α is small,
significant improvement in terms of the average population payoff can be achieved through
prior commitments, while when α is sufficiently large, little improvement can be achieved,
especially when bH/bL is small (compare panels a and b). Parameters: in all panels cH = 1,
cL = 1, bL = 2 (i.e. c = 1); in panel a) bH = 6 (i.e. b = 5) and in panel b) bH = 3 (i.e. b = 2);
Other parameters: δ = 6; β = 0.1; population size N = 100; Fair agreements are used, where
θ1 and θ2 are given by θ1 = (b− c− ε)/2 and θ2 = (b− c+ ε)/2.
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?1 = 10
?2 =  0
Max = 1.66356
Avg. at Fair Agreement = 1.60627

    ? =0.1    ? =0.5
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Fig. 3.6 Average population payoff as a function of θ1 and θ2 for different values of
α . When α is small (panels a and b), the highest average payoff is achieved when θ1 is
sufficiently small and θ2 is sufficiently large, while for large α (panel c), it is the case when
θ1 is sufficiently large and θ2 is sufficiently small. Parameters: in all panels cH = 1, cL = 1,
bL = 2 (i.e. c = 1), and bH = 6 (i.e. b = 5). Other parameters: δ = 4, ε = 1; β = 0.1;
population size N = 100.

3.4.4 Results for different values of θ1 and θ2

We now consider what would happen if HP and LP can customise the commitment deal they
want to propose, i.e. any θ1 and θ2 can be proposed (instead of always being fair). Namely,
Figure 3.6 shows the average population payoff varying these parameters, for different values
of α . We observe that when α is small, the highest average payoff is achieved when θ1

is sufficiently small and θ2 is sufficiently large, while for large α , it is reverse for the two
parameters. That is, in a highly competitive market (i.e. small α), commitment proposers
should be strict (HP keeps sufficient benefit while LP requests sufficient payment, from their
commitment partners), while when the market is less competitive (i.e. large α), commitment
proposers should be more generous (HP proposes to give a larger benefit while LP requests a
smaller payment, from their commitment partners). Figure 3.7 and figure 3.8 confirms that
this observation is robust for different values of α , ε , δ , β and game configurations.
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Fig. 3.7 Average population payoff as a function of θ1 and θ2, for different values of α

and β (for pairwise TD games). When α is small (panels a and b), the highest average payoff
is achieved when θ1 is sufficiently small and θ2 is sufficiently large, while for large α (panel
c), it is the case when θ1 is sufficiently large and θ2 is sufficiently small. Figure 4 also shows
that for a small value of β , the highest average payoff is achieved when α is very minimal
compared to other panels with higher value of β (compare panel a, d and g). Parameters:
in all panels cH = 1, cL = 1, bL = 2 (i.e. c = 1), and bH = 6 (i.e. b = 5). Other parameters:
δ = 4, ε = 1; β = 0.01, 0.1 and 1; population size Z = 100.
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Fig. 3.8 Total frequency of commitment strategies (i.e. sum of the frequencies of HP
and LP), as a function of ε and δ , for different values of α . In general, the commitment
proposing strategies dominate the population whenever ε is sufficiently small and δ is
sufficiently large. Furthermore, the smaller α , these commitment strategies dominate for
a wider range of ε and δ , especially when α is smaller. Parameters: in all panels cH = 1,
cL = 1, bL = 2 (i.e. c = 1), and bH = 6 (i.e. b = 5). Other parameters: β = 0.1; population
size N = 100; Fair agreements are used, where θ1 and θ2 are given by θ1 = (b− c− ε)/2
and θ2 = (b− c+ ε)/2.

Stationary Distribution: Here we studied the stationary distribution and fixation proba-
bilities that shows the transition direction between the eight strategies. In Figures 3.9 and
3.10, the population spends most of the time with the commitment proposing strategies (HP
and LP), where the competitive level is either very fierce or intermediate, that is α = 0.1 and
α = 0.5 and the cost of arranging the commitment is very minimal (ε = 0.1). We see the
reverse when the competitive level of the market is very low (α = 0.9). In this case, there is
more transition to the non-proposing strategies (HN and HC) as seen in Figure 3.11. Note
that although the cost of arranging the commitment deal is very minimal in Figure 3.11,
there is a stronger transition towards the non-proposing strategies (HN and HC) as a result
of the low competitive level (α = 0.9). It means that if there is no significant competition,
regardless of whether the cost of arranging the commitment deal is sufficiently small, it is
not beneficial to arrange a commitment deal. The results are in line with our risk dominance
analysis.
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HP 18%

0%

50%

0%

0%

0%

0%

0%

50%

?=0.1, ?=0.1

Fig. 3.9 Stationary distribution and transitions directions among the eight strategies.
The arrows displayed show the direction where the transition probability is stronger
for the indicated values of α and ε . In general, when α is small, indicating a fierce market
competition, and the value of ε is small, there is a high transition from the other strategies to
the commitment proposing strategies (HP and LP). This means, it is beneficial for the players
to coordinate themselves in this case. Parameters: α = 0.1, ε = 0.1, θ1 = 0.45, θ2 = 0.55,
cH = 1, cL = 1, bL = 2 (i.e. c = 1), and bH = 3 (i.e. b = 2). Other parameters: β = 0.1;
population size N = 100.
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?=0.5, ?=0.1

61%

0%

0%

11%1%

27%

0%

0%

Fig. 3.10 Stationary distribution and transitions directions among the eight strategies.
The arrows displayed show the direction where the transition probability is stronger
for the indicated values of α and ε . In general, when α is intermediate, that is α = 0.5 and
the value of ε is small, there is a high transition from the other strategies to the commitment
proposing strategies, especially a high transition to the HP strategy at 61% and then to the
LP strategy at 27%. The non-proposing strategy HN has a transition probability of 11% as
there is transition from other strategies to the HN strategy, however, the HP and LP strategies
have a higher transition. This means that at an intermediate market competition with a small
cost of arranging commitment deal, commitment is still beneficial. Parameters: α = 0.5,
ε = 0.1, θ1 = 0.45, θ2 = 0.55, cH = 1, cL = 1, bL = 2 (i.e. c = 1), and bH = 3 (i.e. b = 2).
Other parameters: β = 0.1; population size N = 100.
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?=0.9, ?=0.1

0%

0%

0%

0%

8%

18%

29% 44%

Fig. 3.11 Stationary distribution and fixation probabilities Transitions direction among
the eight strategies, the arrows show the direction where the transition probability is
stronger in all strategies. We observed here that when α is large (α = 0.9, which means
there is no market competition) and the value of ε is small, there is a higher transition from the
other strategies to the non-proposing strategies (HN and HC) compared to the commitment
proposing strategies (HP and LP) as shown above. Parameters: α = 0.9, ε = 0.1, θ1 = 0.45,
θ2 = 0.55, cH = 1, cL = 1, bL = 2 (i.e. c = 1), and bH = 3 (i.e. b = 2). Other parameters:
β = 0.1; population size N = 100.
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3.5 Discussion

In summary, this chapter describes a novel model showing how prior commitments can be
adopted as a tool for enhancing coordination when desirable coordination outcomes exhibit
an asymmetric payoff structure, see results from Figures 3.4 and 3.5. For that, we described
a technology adoption game where technology investment firms would achieve the best
collective outcome if they can coordinate with each other to adopt different technologies,
with a parameter α capturing the competitiveness level of the product market and how
beneficial it is to achieve coordination. In such a context, there are multiple desirable
outcomes and players have distinct preferences in terms of which outcome should be agreed
upon, thus leading to a larger behavioural space than in the context of cooperation dilemmas
(Han et al., 2013a, 2017a). We have shown that whether commitment is a viable mechanism
for promoting the evolution of coordination, strongly depends on α: when α is sufficiently
small, prior commitment is highly abundant leading to significant improvement in terms of
social welfare, compared to when commitment is absent. Importantly, we have derived the
analytical condition for the threshold of α which the success of commitments is guaranteed.

Furthermore, whenever commitment proposers are allowed to freely choose which deal
to propose to their co-players, our results show that, in a highly competitive market (i.e.
small α), commitment proposers should be strict (i.e. sharing less benefits), while when the
market is less competitive, commitment proposers should be more generous. That is, in a
highly competitive market, the commitment proposing strategies can get sufficient benefit for
themselves, while when the market is less competitive, the commitment proposing strategies
can propose to be more liberal in sharing and requesting of benefit from their co-players.
Also, if the cost of arranging a commitment is sufficiently small, better improvement is
achieved. With these results, arranging a pre-commitment has been demonstrated in our
model to be an essential tool in coordinating for payoffs which are asymmetric.

Moreover, we demonstrate that agreements for coordination (with asymmetric benefits)
exhibit more complex decision points than in previous models on cooperation dilemmas,
leading to a larger behavioural space and a larger set of strategies.

Our analytical and numerical results clearly show that pre-commitment is an evolutionar-
ily viable mechanism that can be applied to achieve coordination in complex games like our
technology adoption game. Our analysis has further demonstrated that this mechanism can
be used as a viable tool for promoting the evolution of diverse collective behaviours among
self-interested individuals, beyond the context of cooperation dilemmas where there is only
one desirable collective outcome (Nesse, 2001c).

In the next chapter, we will consider how the mechanism can be extended and generalised
to solve collective problems where there are a large number of desirable outcomes or
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equilibria, when the number of players in an interaction increases (Duong and Han, 2015;
Gokhale and Traulsen, 2010).



Chapter 4

Multi-Player Technology Adoption Game

In this chapter, we took further steps from the previous chapter by proposing a new model to
investigate how pre-commitments can be applied to improve coordination when its results
reveal an asymmetric reward structure, in multiplayer interactions, by utilising methods
from evolutionary game theory (EGT). Our analysis, both analytically and via numerical
simulations, shows that whether pre-commitments would be a viable evolutionary mechanism
for enhancing coordination and the overall population social welfare strongly depends on
the collective benefit and severity of competition, and more importantly, how asymmetric
benefits are resolved in a pre-commitment deal.

4.1 Introduction

From the dynamics of bacterial populations to the development of social behaviour, evolu-
tionary game theory has proven successful in explaining a variety of phenomena. However,
it has frequently concentrated on a two-player game that illustrates how people interact
with one another, numerous intraspecies and interspecies interactions take place between
organisms at the same time (Venkateswaran and Gokhale, 2019). Typically, social dilemmas
are depicted by two-player two-strategy games with each player having the option of coop-
erating or defecting (Macy and Flache, 2002). For example in the pairwise social dilemma
games described in previous chapters, mutual cooperation results to a reward R for each
player, while mutual defection a punishment P; when a cooperator encounters a defector, the
cooperator obtains a sucker’s payoff S and the defector gets the temptation T . Even though
this illustration is straightforward, numerous interactions outside of dyadic settings happen in
the real world and frequently involve more than two individuals. Therefore, there is a need to
move from two-player games to multi-player games. A move from a two-player interaction
to a multi-player game where multiple players are involved yields richer dynamics closer to
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natural settings (Gokhale and Traulsen, 2010; Han et al., 2012b; Venkateswaran and Gokhale,
2019).

There has been extensive research done on the dynamics of evolutionary games involv-
ing two players and two strategies (Hofbauer and Sigmund, 1998; Maynard-Smith, 1982).
However, less attention has been given to evolutionary dynamics of more general multiplayer
games (Broom et al., 1997). Recently, the multiplayer games have begin to gain some interest
(Broom et al., 1997; Gokhale and Traulsen, 2010; Huang et al., 2020), this is likely due to
the abundance of biological and social settings where interactions commonly occur among a
group of persons. A rising number of scholars are now focusing their attention on researching
multi-player games and multi-strategy games as a result of this (Duong and Han, 2016;
Gokhale and Traulsen, 2010; Huang et al., 2019; Peña et al., 2016; Tarnita et al., 2011; Wu
et al., 2013a).

According to Broom et al. (1997), the most general form of multiplayer games, a
straightforward generalization of the payoff matrix concept, leads to a significant increase
in the complexity of the evolutionary dynamics compared to the simplicity of a two-player
model. Although the evolution of cooperation is an important and illustrative example,
typically it does not lead to very complex dynamics. On the other hand, intuitive explanations
for more general games are less straightforward, but only they illustrate the full dynamical
complexity of multiplayer games (Broom et al., 1997). Multiplayer games show a great
dynamical complexity that cannot be captured based on pairwise interactions (Gokhale and
Traulsen, 2010).

4.2 Model description

4.2.1 Multi-player Game Without Commitments

Here, we extend and generalise the two-player technology adoption game described in the
previous chapter (Bianca and Han, 2019) to the multi-player setting. We start by describing
our multi-player model in the absence of pre-commitment and then extend it to allow players
to have an option of arranging a commitment deal before the interaction/game.

In particular, we describe a N-player (N > 2) version of our technology adoption (TD)
model. Again, as before, we will introduce the model in the context of technology investment
market decision making. In a group (of size N) with k players of type H (i.e., N − k players
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of type L), the expected payoffs of playing H and L can be written as follows

ΠH(k) = αH(k)bH − cH ,

ΠL(k) = αL(k)bL − cL,
(4.1)

where αH(k) and αL(k) represent the fraction of the benefit obtained by H and L players,
respectively, which depend on the composition of the group, k. For two-player TD model,
both are equal to α . To generalize for N-player TD interactions, they should also depend on
the demand for high technology (H) in the group, describing what is the maximal number
of players in the group that can adopt H without reducing their benefit due to competition.
Let us denote this number by µ (where 1 ≤ µ ≤ N). For example, intermediate values of µ

indicate a high level of group diversity is needed for optimal coordination. When µ = N, it
means there is a significant market demand of the high benefit technology so that all firms
can adopt it without leading to competition.

Hence, we define

αH(k) =

1, if k ≤ µ,

α1µ

k otherwise,
(4.2)

αL(k) =

1, if k ≥ µ,
α2(N−µ)

N−k otherwise.
(4.3)

The rationale of these definitions is that whenever k ≤ µ , full benefits from adopting H can
be obtained, and moreover, if k > µ , the larger k the stronger the competition is among H
adopters. Similarly for L adopters. The parameters α1 and α2 stand for the intensities of
competition for investing in H and in L, respectively. For simplicity we assume in this paper
α1 = α2 = α . Note that for N = 2 we recover the two-player model given in Equation (3.1)
in the previous chapter, given that the current α is scaled (by 2) compared to the value of α

in the pairwise game, solely for the purpose of a clear presentation.
The optimal group payoff is achieved when there are exactly µ players adopting H and

the rest adopting L, leading to an average payoff for each member given by

A :=
µ(bH − cH)+(N −µ)(bL − cL)

N
.
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4.2.2 Multi-player TD in Presence of Commitments

We can define the N-player game version with prior commitments in a similar fashion as
in the two-player game. Commitment proposing strategists (i.e. HP and LP players) will
propose before an interaction that the group will play the optimal arrangement (so that every
player obtains an average payoff A). For simplicity, we assume that the committed players
adopt the fair agreement, i.e. every member will obtain the same payoff after compensation
is made to those adopting L. As such, we do not need to consider who will adopt H or L,
as all would receive the same payoff at the end. Moreover, whenever a player in the group
refuses to commit, commitment proposers will adopt H.

4.3 Summary of Methods

For convenience, we provide here a summary of the finite population evolutionary dynamics
used for multi-player games. We assume that an individual A with fitness fA adopts the
strategy of another individual B with fitness fB with probability p given by the Fermi function,

pA,B =
(

1+ e−β ( fB− fA)
)−1

.

The parameter β represents the ‘imitation strength’ or ‘intensity of selection’, i.e., how
strongly the individuals base their decision to imitate on fitness difference between themselves
and the opponents.

Below, we describe how payoffs are calculated in a N-player setting
In the case of N-player interactions, suppose the population includes x individuals of

type i and Z − x individuals of type j. The probability to select k individuals of type i and
N −k individuals of type j, in N trials, is given by the hypergeometric distribution as follows
(Gokhale and Traulsen, 2010; Sigmund, 2010)

H(k,N,x,Z) =

(x
k

)(Z−x
N−k

)(Z
N

) .
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Hence, in a population of x i-strategists and (Z − x) j strategists, the average payoff of i and
j are given by

Πi j(x) =
N−1

∑
k=0

H(k,N −1,x−1,Z −1)πi j(k+1) =
N−1

∑
k=0

(x−1
k

)( Z−x
N−1−k

)(Z−1
N−1

) πi j(k+1),

Π ji(x) =
N−1

∑
k=0

H(k,N −1,x−,Z −1)π ji(k) =
N−1

∑
k=0

(x
k

)(Z−1−x
N−1−k

)(Z−1
N−1

) π ji(k).

(4.4)

Now, similar to the two-player setting, in a N-player setting, the probability to change the
number x of individuals using strategy i by ± one in each time step can be written as (Traulsen
et al., 2006)

T±(k) =
Z − x

Z
x
Z

[
1+ e∓β [Πi(x)−Π j(x)]

]−1
. (4.5)

Furthermore, the fixation probability of a single mutant with a strategy i in a population of
(Z −1) individuals using j is given by (Nowak et al., 2004; Traulsen et al., 2006)

ρ j,i =

(
1+

Z−1

∑
i=1

i

∏
j=1

T−( j)
T+( j)

)−1

. (4.6)

Now, considering a set {1, ...,q} of different strategies, these fixation probabilities determine
a transition matrix M = {Ti j}q

i, j=1, with Ti j, j ̸=i = ρ ji/(q−1) and Tii = 1−∑
q
j=1, j ̸=i Ti j, of a

Markov Chain. The normalised eigenvector associated with the eigenvalue 1 of the transposed
of M provides the stationary distribution described above (Imhof et al., 2005; Sigmund, 2010),
describing the relative time the population spends adopting each of the strategies.

Risk-dominance in N-player games. An important measure to determine the evolutionary
dynamic of a given strategy is its risk-dominance against others. For the two strategies i and
j, risk-dominance is a criterion which determine which selection direction is more probable:
an i mutant is able to fixating in a homogeneous population of agents using j or a j mutant
fixating in a homogeneous population of individuals playing i. In the case, for instance, the
first was more probable than the latter then we say that i is risk-dominant against j (Nowak
et al., 2004; Sigmund, 2010) which holds for any intensity of selection and in the limit for
large population size Z when

N

∑
k=1

Πi, j(k)≥
N−1

∑
k=0

Π j,i(k) (4.7)
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Table 4.1 List of parameters in the models.

Parameters description Notation
Cost of investing in high technology, H cH
Cost of investing in low technology, L cL
Benefit of investing in high technology, H bH
Benefit of investing in low technology, L bL
Competitive level of the market α

Group size (in N-player TD games) N
Optimal number of H-adopters in a group of N players µ

Cost of arranging a commitment ε

Compensation paid by dishonouring commitment acceptors δ

Compensation paid by HP to honouring commitment acceptors θ1
Compensation paid to LP by commitment acceptors θ2

4.4 Results

We provide here analytical and numerical simulation results for our N-player version of our
technology adoption model. Table 4.1 summarises the key parameters, for ease of following.

4.4.1 Payoff Derivation in N-player TD game

Compared to cooperation dilemmas such as PD and PGG, fake strategies make less sense
in the context of coordination games since they would not earn the temptation payoff by
adopting a different choice from what being agreed. To focus on the group effect and the
effect of the newly introduced parameter µ , we will consider a population consisting of HP,
LP, HN, LN, HC and LC (i.e. excluding fake strategies). As shown in the two-player game
analysis, the fake strategies (i.e. HF and LF) are not viable options in TD games and can be
ignored. It is equivalent to consider to the full set of strategies with a sufficiently large δ .

First of all, we derive the payoffs received by each strategy when encountering specific
other strategies (see a summary in Table 4.2). Namely, Πi j(k) and Π ji(k) denote the payoffs
of a strategist of type i and j, respectively, in a group consisting of k player of type i and
N −k players of type j. The first column of the table lists all possible strategies which can be
used by player i (focal player), where as the second column shows strategies of co-players
(opponents). The third column shows the payoffs of focal players.
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Table 4.2 Average payoffs of focal strategy i when facing strategy j, in a group of k former
and N − k latter strategists.

Focal Player (i) Opponent ( j) Πi, j(k)

HP, LP HP, LP A− ε/N

HP, LP HC, LC A− ε/k

HP, LP HN ΠH(N) (for k < N)

HP, LP LN ΠH(k) (for k < N)

HN HP, LP, HN, HC ΠH(N)

HN LN, LC ΠH(k)

LN HP, HN, HC ΠL(k)

LN LN, LC ΠL(N)

LN LP ΠL(k)

HC, LC HP, LP A (for k < N)

HC HN, HC ΠH(N)

HC LN, LC ΠH(k)

LC HN, HC ΠL(k)

LC LN, LC ΠL(N)

4.4.2 Analytical conditions for the viability of commitment proposers
in N-player TD game

We now derive the conditions under which HP is risk-dominant against the rest of strategies.
Since we assume fair agreements, the conditions for LP would be equivalent to those for HP
in terms of risk-dominance. For ease of following the derivations below, we recall that A
denotes the optimal group payoff achieved when there are exactly µ players adopting H and
the rest adopting L, that is, A := 1

N (µ(bH − cH)+(N −µ)(bL − cL)).
HP is risk-dominant against HC if

N

∑
k=1

ΠHP,HC(k)≥
N−1

∑
k=0

ΠHC,HP(k),
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which can be written as
N

∑
k=1

(
A− ε

k

)
≥ ΠH(N)+

N−1

∑
k=1

A.

Hence we obtain
ε ≤ A−ΠH(N)

HN
, (4.8)

where HN = ∑
N
k=1

1
k .

Similarly, HP is risk-dominant against LC if

ε ≤ A−ΠL(0)
HN

. (4.9)

For risk-dominance of HP against HN,

N

∑
k=1

ΠHP,HN(k)≥
N−1

∑
k=0

ΠHN,HP(k),

which equivalently can be written as

A− ε

N
≥ ΠH(N),

or,
ε ≤ N

(
A−ΠH(N)

)
. (4.10)

which can be rewritten as

A− ε

N
+

N−1

∑
k=1

ΠH(k)≥
N−1

∑
k=0

ΠL(k),

or

ε ≤ N

(
A+

N−1

∑
k=1

ΠH(k)−
N−1

∑
k=0

ΠL(k)

)
. (4.11)

In short, in order for commitment proposers to be risk-dominant against all other strategies,
it requires that ε is sufficiently small, namely, smaller than minimum of the right hand sides
of Equations (4.8)-(4.11).
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b=5, c=1, ?=2, ?=0.5

a

dc

b

Fig. 4.1 Validation for the analytical conditions under which HP is risk dominant
against strategy HC, LC, HN and LN. In all cases, with a small value of ε , the HP strategy
dominated other players. This result of this figure is in close accordance with our equations
derived above. Namely, the risk-dominance thresholds of ε for HP (LP) playing against HC,
LC, HN and LN, are, 1.05, 1.31, 12.0 and 58.75, respectively. We notice a small difference
between numerical and theoretical results, since the latter ones are approximated for larger
population sizes. Parameters: in all panels, N = 5, cH = 1, cL = 1, bH = 6 (i.e. b = 5),
µ = 2, and α = 0.5.
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e
?=2
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Fig. 4.2 Frequency of the six strategies HP, LP, HN, LN, HC and LC, as a function of ε

in a N-player game with commitment, for different values of µ . In the N-player game,
the new parameter µ describes the market demand for a high technology, which was set to 1
in the pairwise game. HP and LP have a high frequency for sufficiently small ε for µ = 2 in
both games, and also when µ = 1 for the first, easy coordinate situation (first row). When
µ = 5, i.e. when all players can adopt H without benefit reduction, HC always dominates
and commitment strategies are not successful. This means that when there is a need for a
diversity of technology adoption, initiating prior commitments to enhance coordination is
important. Parameters: in panel a, b and c) bH = 6 (i.e. b = 5) with µ = 1,2,5 respectively.
Also, in panel d,e and f) bH = 3 (i.e. b = 2) with µ = 1,2,5 respectively; Other parameters:
N = 5, β = 0.1; α = 0.5; cH = 1, cL = 1, bL = 2 (i.e. c = 1); .
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Fig. 4.3 Frequency of the six strategies HP, LP, HN, LN, HC and LC, as a function of α

in a multiplayer game with commitment, for different values of ε and also two different
game configurations. In general, the commitment proposing strategies (HP and LP) decrease
in frequency for increasing α . They dominate over other strategies for sufficiently small α

and ε . That is, it is more beneficial to engage in a prior commitment deal when the market
competition is fierce and the cost of arranging the commitment is very minimal. Also, in
both games, the commitment proposers (HP and LP) have the same curve. Parameters: in
all panels cH = 1, cL = 1, bL = 2 (i.e. c = 1); in panel a, b and c) bH = 6 (i.e. b = 5) with
ε = 0.1, 1 and 2, respectively. Also, in panel d, e and f: bH = 3 (i.e. b = 2) with ε = 0.1,1
and 2 respectively; Other parameters: N = 5, β = 0.1; µ = 2.



74 Multi-Player Technology Adoption Game

4.4.3 Results for other intensities of selection in the N-player game

Comparing Figure 4.4 to Figure 4.3 above, it is clear that the same findings hold true for
other values of intensity of selection (β ) in the N-player TD game. We have examined
different values of β and observed similar results that shows the commitment proposing
strategies (HP and LP) dominating the population when the values of α and ε are significantly
small in different levels of selection, that is when β = 0.01,0.1and1. This is to say that,
regardless of the intensity of selection, as long as there is a high market competition (α is
small) and the cost of setting up the commitment deal (ε) is likewise small, the commitment
proposing strategies will always dominate the population. In this case, it is more beneficial
for commitment to be arranged by the players.
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Fig. 4.4 Frequency of six strategies HP, LP, HN, LN, HC and LC, as a function of α

and for different values of ε and β . The commitment proposing strategies HP and LP
dominate the population when the values of α and ε are sufficiently small, in all cases
of β . Furthermore, as the value of ε increases, the non-proposing strategies dominate the
population. Parameters: in all panels cH = 1, cL = 1, bL = 2 (i.e. c = 1), bH = 6 (i.e. b = 5);
Other parameters: N = 5, ε = 0.1, 1, 2; β = 0.01, 0.1, 1.
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e
?=0.1

d
?=0.01

 
       b=2, c=1

a
?=0.01

b
?=0.1

b=5, c=1

With Com m itm ent, ?=0.1 
With Com m itm ent, ?=1 

With Com m itm ent,  ?=2 

Without Com m itm ent

c
?=1
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Fig. 4.5 Average population payoff (social welfare) as a function of µ with different
values of ε , showing when commitment is absent against when it is present. We compare
results for different values of β in two game configurations. We observe that whenever µ < 5
(i.e. when there is a need for coordination to avoid competition in the group), arranging a
prior commitment is beneficial to the population social welfare. Parameters: in panel a, b
and c) bH = 6 (i.e. b = 5), in panel d,e and f) bH = 3 (i.e. b = 2). Other parameters: N = 5,
α = 0.5, cH = 1, cL = 1, bL = 2. When µ < N (N = 5), it means that there is a need to
coordinate among the group players to avoid competition that would result in a lower benefit,
prior commitments lead to increase of social welfare. This increase is more significant in
the more difficult coordination situation (i.e. the bottom row, which is a different game
configuration) and when the cost of arranging commitment is low, which is also slightly more
significant for intermediate values of µ and higher values of intensity of selection, β . We
have seen in this figure different transitions when varying µ in the two game configurations.
Our game 2 exhibits a more difficult coordination problem, thus displaying a non-linear
transition compared to game 1.
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  b=5, c=1

   
  b=2, c=1

a b

Fig. 4.6 Total frequency of commitment proposing strategies HP and LP as a function
of µ and ε . In general, the commitment proposing strategies are most successful for interme-
diate values of µ , especially for a sufficiently small cost of arranging prior commitment ε .
Parameters: in all panels, cH = 1, cL = 1 (i.e. c = 1), bL = 2. In panel a), bH = 6 (i.e. b = 5)
and in panel b) bH = 3 (i.e. b = 2). Other parameters: N = 5, β = 0.1; α = 0.5.
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4.4.4 Numerical Results for N-player TD game

We compute stationary distributions in a population of six strategies HP, LP, HN, LN, HC
and LC, for the N-player TD game, using the payoffs in Table 4.2 and the Methods described
above. To begin with, in Figure 4.2 (see also Figure 4.1), we provide numerical validation
for the analytical conditions obtained in the previous section regarding when commitment
proposing strategies are evolutionarily viable strategies (being risk-dominant against others).
Similar to the pairwise TD game (Chapter 3), we observe that there is a threshold for ε below
which it is the case. Moreover, Figure 4.3 shows that the frequencies of these strategies (HP
and LP) decrease for increasing α . They dominate the population whenever ε is sufficiently
small (e.g. when the value of ε = 0.1 and ε = 1). That is, it is more beneficial to engage in a
pre-commitment deal when the market competition is harsher (i.e. small α). These results are
robust for different intensities of selection (see Figure 4.4). In general, our results confirm the
similar observations regarding the effects of ε and α on the evolutionary outcomes obtained
in the pairwise game. However, when the reverse is the case when the cost of arranging
commitment ε is adequately large. Also, when there is lesser market competition (that means
the value of α is high), the non-proposing strategies dominate the population, even with a
very small ε (See figure 4.3, panels a, b, d and e).

We now focus on understanding the effect of the new parameter in the N-player game,
µ , on the evolutionary outcomes. Recall that µ indicates the demand for high technology
(H) in the group, describing what is the maximal number of players in the group that can
adopt H without reducing their benefit due to competition. Figure 4.2 shows the effect of
different values of µ on the frequency or evolutionary success of all strategies as a function
of ε . When µ is small to intermediate, and the cost of arranging pre-commitment is also
small, the commitment proposing strategies are dominant. This suggests that arranging
pre-commitments might be more beneficial in such instances. These results also imply that
µ is very essential in determining when commitment should be initiated. Apparently, the
greater need for a group mixture or market diversity of technologies, indicating a more
difficult coordination situation, the greater need for the utilization of commitment to enhance
coordination among players is. This observation is even more evident in Figure 4.6, where
we examine the success of commitment for varying µ and ε , in regards to two different
game configurations. It can be observed that an intermediate value of µ leads to the highest
frequency of commitment strategies, especially in the more difficult coordination situation
(i.e. the right panel).

We now closely examine the gain in terms of social welfare improvement when using
pre-commitments. As shown in Figure 4.5, whenever µ < N (N = 5), i.e. there is a need
to coordinate among the group players to avoid competition that induces benefit reduction,
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prior commitments lead to increase of social welfare. This increase is more significant in
the more difficult coordination situation (i.e. the lower row) and when the cost of arranging
commitment is low, which is also slightly more significant for intermediate values of µ and
higher values of intensity of selection, β .

4.5 Conclusions and Further Discussion

We have studied in this chapter novel evolutionary game theory models demonstrating how
pre-commitments can be adopted as an efficient mechanism for enhancing coordination, in
multi-player interactions and have compared with previous results from pairwise interaction.
For that, we described technology adoption (TD) games where technology investment firms
would achieve the best collective outcome if they can coordinate with each other to adopt a
mixture of different technologies.

In our two-player game, we have studied a parameter α which captures the competitive-
ness level of the product market and how beneficial it is to achieve coordination while in our
multi-player game, we introduced another parameter µ to capture the optimal coordination
mixture or diversity of technology adopters in a group. α parameter which represents the
competitive level of the market is also studied in our multi-player game. Apart from the
fact that a multi-player game captures more players engaging in an interaction, a significant
difference between our two-player and multi-player games is that, in the two-player game
we assume that the optimal mixture is where two firms adopt different technologies to avoid
conflict. While the µ parameter introduced in the multi-player game captures the optimal
coordination mixture or diversity of technology adopters in a group, thus generalising from
the two-player game that would correspond the specific case of µ = 1. In the multi-player
model, the key parameter µ is ascribed to the market demand of high technology, i.e. what is
the optimal fraction of the firms in a group to adopt H. We analytically examine how players
can be coordinated when there is a market demand for a particular technology. We show
that differently from the two-player game, the newly defined parameter µ leads to a new
kind of complexity when trying to achieve group coordination. When there is a high level of
diversity in demand (i.e. intermediate values of µ), introducing prior commitment can lead
to significant improvement in the levels of coordination and population social welfare.

In the coordination settings, there are multiple desirable outcomes and players have
distinct preferences in terms of which outcome should be agreed upon, thus leading to a
larger behavioural space than in the context of cooperation dilemmas (Han et al., 2013a,
2015c, 2017a; Hasan and Raja, 2013; Sasaki et al., 2015b). We have shown that whether
commitment is a viable mechanism for promoting the evolution of coordination, strongly
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depends on α: when α is sufficiently small, pre-commitment is highly abundant leading to
significant improvement in terms of social welfare (i.e. population average payoff), compared
to when commitment is absent. This answers our fourth research question " Whether and
when is it advantageous to arrange and accept to engage in a costly commitment deal?".
From our analytical and numerical simulations, we see that it is more beneficial for firms to
engage in a pre-commitment deal when the market competition is fierce and when the cost
of arranging the commitment deal is very minimal, which means when the value of α and
ε is sufficiently small. Therefore, when to engage in commitment deal is dependent on the
competitive level of the market and the cost of arranging the commitment deal.

Importantly, we have derived the analytical condition for the threshold of α below which
the success of commitments is guaranteed for multi-player Technology adoption games.
Furthermore, moving from pairwise interaction in our previous chapter to a multi-player
setting, it was shown that µ plays an important role for the success of commitment strategies
as well. In general, when µ is intermediate, equivalent to a high level of diversity in group
choices, arranging pre-commitments proved to be highly important. It led to significant
improvement in terms of social welfare, especially in a harsher coordination situation.

In both pairwise interaction from previous chapter and multi-player coordination set-
tings in this chapter, our analysis has shown that the cost of arranging agreement must be
sufficiently small, to be justified for the cost and benefit of coordination.

This is in line with previous works in the context of PD and PGG (Han et al., 2013a,
2015c, 2017a). It is due to the fact that those who refuse to commit can escape sanction or
compensation. Solutions to this problem have been proposed in the context of PD and PGG,
namely, to combine commitment with peer punishment, intention recognition, apology or
social exclusion to address non-committers (Han and Lenaerts, 2016a; Han et al., 2015a,c;
Martinez-Vaquero et al., 2017; Quillien, 2020) or to delegate the costly process of arranging
commitment to an external party (Cherry and McEvoy, 2013; Cherry et al., 2017; Han,
2022).

In distributed and self-organizing multi-agent systems, pre-commitments and agreements
have been applied to model and construct desirable right behaviour, such as cooperation,
coordination, and fairness. (Chopra and Singh, 2009; Singh, 1991; Winikoff, 2007). These
works however do not consider the dynamical aspects of the systems nor under what condi-
tions for instance regarding the relation between costs and benefits of coordination and those
of arranging a reliable commitment. Thus, our results provide important insights into the
design of such distributed and self-organizing (adaptive) systems to ensure high levels of
coordination, in both pairwise and multi-party interactions (Bonabeau et al., 1999; Pitt et al.,
2012).
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Our next chapter will focus on exploring the impact of different population structures,
including square lattice and scale-free (SF) network on the dynamics of decision-making in
the context of coordinating technology adoption.





Chapter 5

Structured Population

Arranging pre-commitments of future actions has been shown to be an evolutionary viable
strategy in the context of social dilemmas. Previous chapters have focused on the simple well-
mixed population setting. In this chapter, starting from a baseline model of a coordination
game with asymmetric benefits for technology adoption in the well-mixed setting, we examine
the impact of different population structures, including square lattice and scale-free (SF)
networks, capturing typical homogeneous and heterogeneous network structures, on the
dynamics of decision-making in the context of coordinating technology adoption.

We show that, similarly to the well-mixed analyses, pre-commitments enhance coordina-
tion and the overall population payoff in structured populations, especially when the cost of
commitment is justified against the benefit of coordination, and when the technology market
is highly competitive. When commitments are absent, slightly higher levels of coordination
and population welfare are obtained in scale-free than lattice. In the presence of commitments
and when the market is very competitive, the overall population welfare is similar in both
lattice and heterogeneous networks; though it is slightly lower in scale-free when the market
competition is low, while social welfare suffers in a monopolistic setting. Overall, we found
that commitments can improve coordination and population welfare in structured populations,
but in its presence, the outcome of evolutionary dynamics is, interestingly, not sensitive to
changes in the network structure.

5.1 Introduction

Considering today’s technology-driven economy, managers often face challenging decisions
regarding the adoption of innovative technology. Often, companies might choose to invest
in new technologies in order to gain a competitive advantage over their peers (Clemons,
1991; Parsons, 1983; Zhu and Weyant, 2003). These selfish executive priorities may lead to
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a coordination problem. Ensuring higher social welfare by providing several technological
solutions is ignored if newer technology promises larger profits (Sachs, 2000; Zhu and Weyant,
2003). In this setting, commitments have already been shown to promote coordination in the
face of technology adoption in homogeneous (namely, well-mixed) populations (Ogbo et al.,
2022). However, real-world firms and their interactions are far from homogeneous. Some
developers are more influential than others, or can play a more impactful role in the adoption
of innovative technologies. These economies are shaped by complex networks of exchange,
influence and competition where diversity is ubiquitous. Particular networks of contacts have
been shown to promote the evolution of positive behaviours in settings such as cooperation
(Chen et al., 2015; Ohtsuki et al., 2006; Perc and Szolnoki, 2010; Perc et al., 2017; Santos
et al., 2008), fairness (Cimpeanu et al., 2021; Page et al., 2000; Santos et al., 2017; Szolnoki
et al., 2012; Wu et al., 2013b) and trust (Kumar et al., 2020). In the present work, we pay
heed to the divide between the previous research and the diversity observed in real-world
interactions, and ask whether network topology plays an important role in the coordination
of beneficial technology adoption.

Technology innovation and collaboration networks (e.g. among firms and stakeholders)
are highly heterogeneous (Newman, 2004; Schilling and Phelps, 2007). Firms interact more
frequently within their spheres than outside them, forming alliances and networks of followers
and collaborators (Ahuja, 2000; Barabasi, 2014). Developers may compete in numerous
markets, while others might choose only to invest in a few, and their positions in inter-
organisational networks strongly influence not only their behaviours (such as information
and resource sharing), but also innovation outcomes (Ahuja, 2000; Shipilov and Gawer,
2020). Therefore, it is paramount to comprehend the roles that spatiality and diversity in
the network of contacts play in the formation and stability of commitment-based strategies
and the resulting coordination outcome. Therefore, here we depart from well-mixed settings
(Ogbo et al., 2022) and examine how network structures shape the dynamics of adoption
decisions and commitments.

Several attempts have been made to study the effects of population structures on evolu-
tionary and ecological dynamics. Including approaches like the spatial models in ecology,
viscous populations, spatial games and games on graphs (Perc et al., 2017; Santos and
Pacheco, 2005; Tarnita et al., 2009). Among these works, by introducing spatial structures,
the research work has attracted interest from different fields as significant extensions of
traditional evolutionary game theory focusing on well-mixed populations (Su et al., 2019).

Highly relevant to our work, Santos et al. (2006c) investigated the effect of population
structures on different types of two player social dilemmas including the Prisoner’s Dilemma,
Stag Hunt and Snowdrift games. Cooperation is shown to be more prevalent in heterogeneous
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networks than homogeneous ones (such as square lattice and well-mixed populations).
Similarly, Cimpeanu et al. (2022) have shown that safety adoption in the development of
AI technology can be enhanced by heterogeneous network structures. This is also in line
with what is explored in (Di Stefano et al., 2015, 2020) where it has been shown how highly
heterogeneous networks, such as SF, constitute the most suitable network topology for the
emergence and sustainability of cooperation in a multilayer network. This is even more
marked in the presence of homophily (i.e., the tendency to associate and interact more
frequently with similar people), increasing the speed and size of the formation of cooperative
groups, and allowing the network to quickly converge to cooperation. Our coordination
setting is different from the aforementioned models, as they focus on symmetric games,
whereas we address the context in which players need to coordinate to choose different
actions (i.e. an asymmetric game) (Ogbo et al., 2022). Our analysis below shows that,
surprisingly, the outcomes of our model differ from (Cimpeanu et al., 2022; Santos et al.,
2006c) insomuch that heterogeneous networks have little positive impact on, or are even
detrimental to coordination and social welfare, compared to homogeneous settings.

Moreover, this observation is partially coherent with other previous works (Gracia-Lázaro
et al., 2012a,b) in the context of the Prisoner’s Dilemma game, where it has been shown
how the population structure has little relevance as a cooperation promoter, and where the
presence of a structured population does not promote or inhibit cooperation with respect to
well mixed populations. Our results are also in line with (Pena et al., 2009), where authors,
by introducing conformity, namely the tendency of humans to imitate locally common
behaviours, have shown that when fair quantities of conformity are added in the imitation
rules of the players, scale-free networks are no longer powerful amplifiers of cooperation.
Such weakening of the cooperation-promoting abilities of scale-free networks is the result of
a less biased flow of information in SF topologies, making hubs more susceptible to being
influenced by less-connected neighbours.

5.2 Model and Methods

Our technology adoption (TD) game as already described in previous chapters consist of
firms competing in a common market, making a decision on investing in a technology (Ogbo
et al., 2022). These firms either invest in innovative technology which promises the highest
profits (i.e. high technology, denoted by H), or to invest in less sophisticated products,
resulting in a lower potential benefit (i.e. low technology, L). For convenience, recall that the
interaction between these firms is described in terms of costs and benefits of the investments
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by the following payoff matrix (for row player):

( H L

H αbH − cH bH − cH

L bL − cL αbL − cL

)
=

(H L

H a b
L c d

)
, (5.1)

5.2.1 Network Topology

Real-world networks are not static and inherently heterogeneous (Barabási and Albert, 1999;
Dorogovtsev, 2010; Newman, 2003). Networks evolve with new nodes entering and creating
connections to already existing nodes (Dall’Asta et al., 2006). Several works have unveiled
how structural heterogeneity plays a key role in both the evolution of cooperation (Cimpeanu
et al., 2019b; Dercole et al., 2019; Di Stefano et al., 2015, 2020; Poncela et al., 2007) or
emergence of fairness (Cimpeanu et al., 2021; Sinatra et al., 2009). To study the effects of
heterogeneity on the evolution of coordination and prior commitments, we will study spatially
structured populations, as well as a growing network model characterized by preferential
attachment.

Links in the networks describe both proximity for the purposes of interactions (i.e. whom
the agents can interact with), but also for the purposes of social learning (whom the agents
can imitate). Thus, the network of interactions coincides with the network of imitation
(Ohtsuki et al., 2007). Structured populations converge more readily than heterogeneous
populations, and our choice of population sizes and maximum number of generations reflects
on these differences.

We model spatially structured populations using a square lattice graph (SL) of size
Z = L×L with periodic boundary conditions— a widely adopted population structure in
population dynamics and evolutionary games (for a survey, see (Szabó and Fáth, 2007)).
This network adds spatial structure, but each agent can only interact with its four immediate
edge neighbours; thus, we can say it is homogeneous in the number of neighbours, unlike
real-world networks of firms (Newman, 2004; Schilling and Phelps, 2007). For all of our
experiments with this network type, we choose L = 30 (i.e. Z = 900).

In an effort to introduce a more realistic interaction setting, we turn to SF networks,
specifically the popular Barabási and Albert (BA) model (Barabási and Albert, 1999). SF
networks constructed using the BA model follow a preferential attachment rule, leading
to a typical power-law degree distribution. To construct such a network, we start from a
small complete graph of size m0 and gradually introduce new nodes. Each new node selects
m other nodes according to a probability proportional to their degree (how connected they
are in the network), creating a new link with each of these nodes. This procedure repeats
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until a network of size Z is obtained. The resultant network follows a power-law degree
distribution, which is skewed with a long tail. There are few hubs in the network, which
gradually increase in size (number of connections) as the size of the network increases, in
a classic rich-get-richer setting. The obtained network has average degree h = 2m, small
clustering (of order 1/N) and a power-law degree distribution P(k)∼ k−γ , with γ = 3. This
form of P(k) decays slowly as the degree k increases, thus increasing the likelihood of finding
a node with a very large degree.

For all of our experiments with this network type, we seed 10 different networks of size
Z = 1000, with an average connectivity of h = 4. The latter is chosen for ease of comparison
against the square lattice graph.

5.2.2 Population Dynamics

We consider a population of agents distributed on a network (see below for different topolo-
gies), randomly assigning one of the eight strategies. At each time step or generation, each
agent plays the game with its immediate neighbours. The success of each agent (i.e., its
fitness) is the sum of the payoffs in all these encounters. Each individual fitness, as detailed
below, defines the time-evolution of strategies, as successful choices will tend to be imitated
by their peers.

At the end of each generation, a randomly selected agent A with a fitness fA chooses to
copy the strategy of a randomly selected neighbour, agent B, with fitness fB with a probability
p that increases with their fitness difference. As in the well-mixed population settings (in
Chapters 3 and 4), we adopt the well-studied Fermi update or pairwise comparison rule,
where (Traulsen et al., 2006):

p = (1+ eβ ( fA− fB))−1. (5.2)

In this case, β conveniently describes the selection intensity — i.e., the importance of
individual success in the imitations process: β = 0 represents neutral drift while β → ∞

represents increasingly deterministic imitation (Traulsen et al., 2006). Varying β allows
capturing a wide range of update rules and levels of stochasticity, including those used by
humans, as measured in lab experiments (Grujić and Lenaerts, 2020; Rand et al., 2013b;
Zisis et al., 2015). In line with previous network settings and lab experiments, we set
β = 1 in our simulations, ensuring a high intensity of selection (Pinheiro et al., 2012). This
update rule implicitly assumes an asynchronous update rule, where at most one imitation
occurs at each time-step. With a given probability µ , this process is replaced instead by a
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randomly occurring mutation. A mutation is equivalent to behavioural exploration, whereby
the individual makes a stochastic decision switch to one of the eight available strategies.

We simulate this evolutionary process until a stationary state or a cyclic pattern is reached.
As network topology and the number of available strategies affects rates of convergence,
we select different maximum numbers of runs for each network type, for robustness. The
simulations have been conducted for 15000 generations in the case of lattice and the results
are averaged over the final 1000 steps. For BA networks, we run the simulations for 250000
generations (for 8 strategies, with commitment) and 50000 generations (for 2 strategies, no
commitment), averaging over the final 25000 steps. Furthermore, to improve accuracy, for
each set of parameter values and pre-seeded network (in the case of BA networks), the final
results are obtained from averaging 15 independent realizations (replicates), an approach
usually adopted in structured population analyses (Perc and Szolnoki, 2010; Perc et al., 2017;
Santos et al., 2006c). When shown in figures, the error bars represent the standard deviation
of the mean between replicates.

5.3 Results

5.3.1 In absence of pre-commitments

To begin with, we study evolutionary outcomes in the technology adoption (TD) game when
arranging commitments is not available as an option. Figure 5.1 shows that for all values of
α , i.e. regardless of market competition, players dominantly choose to adopt high technology
(i.e. playing H in the TD game). This observation is applied to both lattice and SF networks,
with L having a slightly higher frequency in the SF network than lattice when α is sufficiently
small (i.e., highly competitive markets). To support the understanding of this observation, we
show in Figure 5.2 the evolution of the two strategies H and L over time, for different values
of α . We observe that only in SF and when the market competitiveness is high (α = 0.1), L
players have a chance to survive the dominance of H players, even though they are still in
minority. This observation differs from previous findings in homogeneous networks, but is in
line with previous works studying cooperation dilemmas in structured populations, where
SF networks can lead to higher levels of pro-social behaviours (including cooperation and
fairness) than in lattice counterparts (Cimpeanu et al., 2021; Perc et al., 2017; Santos et al.,
2006c, 2008). Note that no existing works have studied commitment formation dynamics in
the such structured population settings, as in the present work.

In the following, unless stated otherwise, we set α = 0.5. As such, there is a clear need
for arranging prior commitments among players to enhance coordination. Otherwise, this
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Fig. 5.1 In the absence of commitments: Depicted are frequencies of H and L as a
function of α for lattice (left panel) and scale-free (right panel) networks. We have
compared here when there is no commitment involved in both cases of lattice and scale-free
networks. When there is no commitment, we have two strategies where players will either
play H (adopt a high technology) or play L (adopt a low technology). We observe that H
(adopt a high technology) is dominant, irrespective of the market competitiveness α . L is
more frequent in SF than in lattice when α is small. Parameters: in all panels cH = 1, cL = 1,
bL = 2, bH = 6 and β = 1.

would lead to the extinction of firms that would choose to adopt low-benefit technologies
(i.e., L players) in the population.

The time evolution in Figure 5.2 has clearly shown that regardless of the competitive
level of the market i.e α = 0.1,0.5,0.9, indicating α is either highly competitive, moderately
competitive or less competitive, players would always adopt H technology (except that when
α is small, a small number of players would adopt L in SF, compared to none in lattice).
Which means their will be no adopters of L technology in this instance, hence the need for
coordinating players to have a blend of both H and L technologies in the population.

5.3.2 In presence of pre-commitments

We now examine whether arranging pre-commitments can improve coordination outcomes,
and whether these outcomes change for different population structures (homogeneous versus
heterogeneous networks). We analyse evolutionary outcomes in a population with eight
strategies (see Model and Methods), for varying different key factors. Firstly, Figure 5.3
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Fig. 5.2 Time-evolution of frequencies of two strategies H and L in the absence of
commitments, for different levels of competitiveness: high (α = 0.1), medium (α = 0.5)
and low (α = 0.9). Only when the market competitiveness is high (α = 0.1) and in case
of SF (first row), L players have a non-negligible (but still rather small) frequency. Other
parameters’ values are the same as in Figure 1.
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Fig. 5.3 Frequencies for the eight strategies (HP, LP HN, LN, HC, LC, LF, HF) as a
function of α for lattice (left panel) and scale-free (right panel) networks. In both types
of network, we observe that when α is small, indicating a highly competitive market, the
commitment proposing strategies (HP and LP) dominate the population. When α is large,
the non-commitment strategies HN and HC dominate the population. Comparing the two
types of network, commitment proposers have higher frequencies in SF than in lattice when
α is sufficiently large. Parameters: in all panels cH = 1, cL = 1, bL = 2, and bH = 6, β = 1;
µ = 0.001; ε = 0.1; δ = 6. Fair agreements are applied, where θ1 and θ2 are given by
θ1 = (b− c− ε)/2 and θ2 = (b− c+ ε)/2.
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Fig. 5.4 Time-evolution of frequencies of eight strategies (HP, LP HN, LN, HC, LC,
LF, HF) in the presence of commitments, for different levels of competitiveness: High
(α = 0.1), medium (α = 0.5) and low (α = 0.9).Other parameter values are the same as in
Figure 5.3
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shows the frequency of these strategies as a function of α in both lattice and SF networks. In
general, the commitment proposing strategies HP and LP are more frequent in the population
when the market competition is high (i.e. when α is small). When there is less competition
in the market, HN and HC take over the population, leading to a monopolized market. This
result is similar in lattice and SF networks. However, we note a small discrepancy between
them, where commitment proposers have higher frequencies in SF network than in lattice,
if α is sufficiently large. We also observe that the HN strategy has a higher frequency in
lattice networks than in heterogeneous networks. For instance, when α = 1, the fraction of
HN strategists is 0.78 of the total in lattice networks, and 0.4 in SF networks.

Figure 5.5 studies the frequency of the strategies for varying the cost of arranging
commitments, i.e. ε . For commitment proposers to engage in a commitment arrangement,
the cost of arranging such a commitment needs to be sufficiently small. This observation is
in line with previous works on pre-commitments in cooperation (Akdeniz and van Veelen,
2021; Han et al., 2013a, 2015c, 2017a; Sasaki et al., 2015b) and coordination (Ogbo et al.,
2022) games, in the well-mixed population settings. That is, our analysis has again confirmed
that prior commitments can provide a pathway for the evolution of coordination even in the
presence of more complex networks of interaction.

In order to determine when commitments can lead to significant improvement (in terms
of overall population payoff or welfare), in Figure 5.6 we compare the average population
payoff when commitment is present and when it is absent, as a function of α (which is the
competitiveness of the market, left panel) and ε (which is the cost of arranging a commitment,
right panel). We observe here that commitments can lead to significant improvements when
α and ε are sufficiently small. That is, arranging pre-commitments is highly beneficial
whenever the market competitiveness level is high, and when it is not too costly to do so.
We also observe that SF and lattice networks lead to similar population payoffs for all
values of ε and α . One small difference is that SF leads to a slightly higher payoff when
commitment is absent in highly competitive markets (α ⪅ 0.2), while this effect is reversed
when commitments can be initiated. That is, the heterogeneity of SF networks might be
slightly detrimental for population welfare when commitment is present. The main reason
for this effect is that when the competitiveness level is low (i.e. large α), coordination is
not as important as when the competitiveness level is high (a population of H players has
a higher welfare when α increases, see Figure 6), and it is costly to arrange commitments.
The evolution of commitment proposing strategies for large α (see Figures 3 and 4) leads to
higher spending for arranging commitments in the population.

We also measure the effects of varying mutation rates in our work. In particular, we
focus on how increasing mutation rates affect the coordination outcome in the population,
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Fig. 5.5 Frequencies for the eight strategies (HP, LP HN, LN, HC, LC, LF, HF) as a
function of the cost of commitment ε for lattice (left panel) and scale-free (right panel)
networks. In general, we observe that for both lattice and SF networks, when the cost of
arranging a commitment (ε) is sufficiently small (for lattice network when ε = 2 and for SF
network when ε = 1.8, approximately), commitment strategies HP and LP are more abundant
in the population. When ε exceeds these points, the non-proposing strategies HN and HC
who do not pay for the cost of commitment deal dominate the population. Moreover, when ε

is sufficiently large, commitment proposing strategies are more frequent in SF than in lattice.
Parameters: in all panels cH = 1, cL = 1, bL = 2, and bH = 6, β = 1; µ = 0.001; α = 0.5;
δ = 6. Fair agreements are applied, where θ1 and θ2 are given by θ1 = (b− c− ε)/2 and
θ2 = (b− c+ ε)/2.
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Fig. 5.6 Average population payoff (welfare) as a function of α (left panel) and ε

(right panel), in lattice and scale-free networks. We compare these payoffs when
commitment is present (solid lines) vs when it is absent (dashed lines). We observe that
arranging commitments leads to larger population payoffs than when it is not an option
whenever α and ε are sufficiently small (up to around 0.7 and 2.0, respectively). That is,
arranging pre-commitments is highly beneficial whenever the market competitiveness level
is high, and when it is not too costly to do so. We also observe that, SF and lattice lead
to similar population payoffs for all values of ε and α . SF leads to slightly higher payoff
when commitment is absence when α is quite small (up to 0.2), while it is reversed when
commitment is present. Other parameters in all: β = 1; µ = 0.001; δ = 6, θ1 = (b−c−ε)/2,
θ2 = (b− c+ ε)/2. Parameters in panel a; ε = 0.1, and panel b; α = 0.5.
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Fig. 5.7 Frequencies for the eight strategies (HP, LP HN, LN, HC, LC, LF, HF) as
a function of the mutation rate µ (ranging from a small 10−4 = 0.0001 to a high
10−0.5 = 0.316 values) for lattice (left panel) and scale-free (right panel) networks. Larger
mutation leads to greater levels of randomness in agents’ behaviours, leading to strategies’
frequencies being closer. Also, for the whole range of µ , SF leads to higher diversity in
terms of strategic behaviours than in lattice. Parameters: in all panels cH = 1, cL = 1, bL = 2,
and bH = 6. Other parameters: β = 1; ε = 0.1; α = 0.5; δ = 6. Fair agreements are applied,
where θ1 and θ2 are given by θ1 = (b− c− ε)/2 and θ2 = (b− c+ ε)/2.
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differently from previous works which assume a small mutation limit (for convenience of
theoretical and numerical analyses) (Han et al., 2013a; Ogbo et al., 2022). Indeed, Figure
5.7 shows the outcomes for varying mutation rates in both lattice and SF networks. We
observe that a higher mutation leads to a more balanced state of the strategy frequencies
in the population. This effect is more notable in SF networks than in lattice populations.
Behavioural exploration aids in eliminating market monopolies.

Again, we have demonstrated using time evolution the interactions of players at different
competitive level of the market when there is commitment Figure 5.4. Results show that
when it is highly and moderately competitive, i.e α = 0.1,0.5, commitments thrive in the
lattice networks. It is different for the scale-free networks when α = 0.5. Here, the HC who
accepts a commitment deal but never proposes have a higher frequency than the HP who
proposes commitment deal. Furthermore, we see that when α = 0.9 which indicates the
market is less competitive, the commitment proposer (HP) in scale-free network still thrive in
the population and also the HN strategy unlike in the lattice network where only the HN and
HC (who do not propose a commitment deal) dominates the population. Overall, comparing
lattice and SF networks, the commitment proposing strategies have higher frequency in SF
than in lattice network, even when the market is less competitive.

5.4 Conclusions and Future Work

In this work, we have explored and quantified the effects of social diversity on the outcomes
of technology adoption and coordination dynamics amongst firms, using two popular spatial
structures. Specifically, we have studied the use of prior commitments to enhance coor-
dination among agents making decisions to adopt competing technological solutions. We
have discovered that prior commitments enhance coordination and social welfare in both
lattice and scale-free networks, especially when the market is highly competitive or the cost
of arranging commitments is sufficiently small. We have also observed that coordination
is more achievable in the absence of commitments in the case of SF networks, compared
to lattice networks. Correspondingly, the opposite is observed if the market is competitive
and commitments are possible. Our results are in line with the analyses on well-mixed
populations (in Chapter 3) (Ogbo et al., 2022). When commitment is present, the overall
population welfare is similar in SF and lattice networks when the market competition level
is high; it is however slightly lower in SF than lattice when this competition level is low.
Ultimately, we find that commitments can improve population welfare and coordination
in structured populations, and that these results are robust across a wide range of network
structures, unlike the case when commitment is absent.
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Overall, our analysis has provided further confirmation and theoretical evidence showing
that arranging prior commitments can provide a flexible and efficient pathway to achieve
high levels of collective behaviours (beyond social dilemmas settings) (Akdeniz and van
Veelen, 2021; Frank, 1988; Han, 2013; Nesse, 2001a). In the future, we aim to expand
this network analysis to study the effects of commitments in the multi-player version of
the technology adoption game (Ogbo et al., 2022), where multiple firms participate in a
technology market competition. Also as our results so far have shown that commitments
can improve coordination in structured populations and it is not sensitive to changes in
the network structure, further work will be carried out in future to determine if substantial
changes may occur when there is structural (random) perturbations or noise on the network.
For instance, a small mean degree (that is, the number of neighbors that a node has) of the
network tends to induce cooperation (Allen et al., 2017; Nowak et al., 2006). Therefore,
decreasing the weight of an edge or removing an edge is expected to enhance cooperation
(Meng and Masuda, 2022). We aim to investigate this important issue in the future, to
determine if random perturbations or noise on a network would affect the application of
commitments to enhance coordination among players in a structured population.



Chapter 6

Conclusions and General Discussion

In this final chapter, we first summarise the findings and contributions presented throughout
the thesis. We emphasise the possible transferability of our modelling research (on technology
adoption) to other application domains. Through a critical review of our findings and
recommendations, we also take advantage of the chance to discuss some of the shortcomings
of our research. Finally, we propose different areas for future research.

6.1 Summary of Conclusions

In Chapters 1 and 2, we discussed and reviewed relevant issues on collective behaviour
research. We observe that achieving collective behaviours among individuals with their own
personal interest is an important and pressing social challenge in various societies (Ostrom,
1990a; Pitt et al., 2012; Sigmund, 2010). We reviewed the various mechanisms that can
promote the emergence and stability of collective behaviours among such individuals, which
have been proposed. They include kin and group selection, direct and indirect reciprocities,
spatial networks, reward and punishment (Nowak, 2006b; Perc et al., 2017; Rand et al.,
2013a). Moreover, we explored motivations for our main research questions and objectives,
namely, how coordination issue can be resolved when there is asymmetric benefit among
player; and, in particular, how other mechanisms like arranging a pre-commitment deal can
be used to achieve high levels of coordination in a complex situation like our technology
adoption game, as well as the potential impact of network structures on the evolutionary
outcomes in such a game.

Chapters 3, 4 and 5 present our own findings and contributions. Resorting to the tool of
evolutionary game theory, we provided a novel theoretical model to investigate on how firms
can be coordinated to adopt different technologies where there are asymmetric benefits to be
shared amongst them. We carried out our numerical and analytical analysis using various
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different parameter configurations to ensure accuracy and consistency of results. Our findings
provide important insights that can be useful for policy and decision makers in various
settings even though we have modelled our work in the technology innovation market setting
(for clarity of presentation of the findings). Our analytical results and extensive computer
simulations have shown that pre-commitments can be utilised for facilitating coordination
amongst players. Below we summarize our main findings:

Our work has demonstrated that commitment is a viable tool for promoting the evolution
of diverse collective behaviours among self-interested individuals, beyond the context of
cooperation dilemmas where there is only one desirable collective outcome (Barrett et al.,
2007; Han et al., 2013a, 2017a; Skyrms, 1996). It thus provides new insights into the
complexity and beauty of behavioural evolution driven by humans’ capacity for commitment
(Frank, 1988; Nesse, 2001a).

Our analysis, both analytically and via numerical simulations, showed that whether pre-
commitment would be a viable evolutionary mechanism for enhancing coordination and the
overall population social welfare strongly depends on the collective benefit and severity of
competition, and more importantly, how asymmetric benefits are resolved in a commitment
deal. Moreover, in multiparty interactions, prior commitments prove to be crucial when a
high level of group diversity is required for optimal coordination.

In both our pairwise and multiplayer interactions, we observed that the commitment
proposing strategies dominate the population when the market competition is sufficiently
high (leading to the need of efficient coordination among the competing players/firms to
ensure high benefits) and the cost of arranging the commitment deal is low.

In the multi-player game setting, when the demand for high technology (H) in the
group is small to intermediate (which describes the maximal number of players in the
group that can adopt H without reducing their benefit due to competition), and the cost of
arranging pre-commitment is also small, the commitment proposing strategies are dominant.
This suggests that arranging pre-commitments might be more beneficial in such instances.
These results also imply that µ is very essential in determining when commitment should be
initiated. Apparently, the greater need for a group mixture or market diversity of technologies,
indicating a more difficult coordination situation, the greater need for the utilization of
commitment to enhance coordination among players is.

It is important to note that pre-commitments and agreements have been used extensively
in the context of distributed and self-organizing multi-agent systems, for modelling and
engineering a desirable collective behaviour, such as cooperation, coordination and fairness
(Chopra and Singh, 2009; Singh, 1991; Winikoff, 2007). These works however do not
consider the dynamical aspects of the systems nor under what conditions for instance
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regarding the relation between costs and benefits of coordination and those of arranging a
reliable commitment, commitment proposing strategies can actually promote a high level of
desirable system behaviour. Thus, our results provide important insights into the design of
such distributed and self-organizing (adaptive) systems to ensure high levels of coordination,
in both pairwise and multi-party interactions (Bonabeau et al., 1999; Pitt et al., 2012)

We observe that, similarly to previous well-mixed analyses, pre-commitments enhance
coordination and the overall population payoff in structured populations, especially when the
cost of commitment is justified against the benefit of coordination, and when the technology
market is highly competitive. When commitments are absent, slightly higher levels of
coordination and population welfare are obtained in scale-free than lattice network. In the
presence of commitments and when the market is very competitive, the overall population
welfare is similar in both lattice and heterogeneous networks; though it is slightly lower in
scale-free when the market competition is low, while social welfare suffers in a monopolistic
setting. Overall, from our findings we have demonstrated that commitments can improve
coordination and population welfare in structured populations, but in its presence, the
outcome of evolutionary dynamics is, interestingly, not sensitive to changes in the network
structure.

6.2 Applicability

The main goal of this thesis has been to contribute to the literature of the dynamics and
evolution of collective behaviours. Most specifically, we have gone beyond the conventional
cooperation dilemma games, namely the Prisoner’s Dilemma and the Public Goods Game (i.e.
asymmetric games with a single desired collective outcome, which is mutual cooperation by
all parties involved) and studied a more complex scenarios of multi-party coordination with
asymmetric outcomes. Our findings are of significance and can be applicable to different
sectors in the society. We summarise below some of the applicability of our work.

• Digital transformation and Innovation: Many social, political and economic situa-
tions require people to coordinate their behaviour with others in order to realize mutual
gains. Even with the rapid digital transformation and innovation in recent times, it has
become a need for governments and technology industries to determine how best to
encourage collective behaviour amongst themselves for the overall goal of the society.
Our commitment-based evolutionary game models can be applied to any technology
adoption scenarios where coordination is required to achieve a common venture. For
instance, for firms who need to make strategic decisions on which technology to adopt
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(Zhu and Weyant, 2003), our approach can prove beneficial to achieving coordination
amongst these firms.

• AI Innovation Race: With all the impact that AI promises, there is a risk that some
adopters/developers will feel obliged to cut corners on safety precautions, or ignore
societal consequences, in a race for technological supremacy. Prior commitment model
can act as a key role in safety adoption within a race towards transformative AI. Han
et al. (2022) investigated the potential of a regulatory mechanism that combines a
voluntary commitment approach reminiscent of soft law, where technologists have
the freedom of choice between independently pursuing their course of actions or
establishing binding agreements to act safely, with either a peer or governmental
sanctioning system of those that do not abide by what they pledged. Just like Han
et al. (2022)’s voluntary commitment model, our model can also be applied in this
context, which can help to coordinate players against unsafe technology adoption and
even be utilised in government regulation of safe adoption of technology to ensure
beneficial outcome to all parties involved and the society at large. These techniques
can also be applied to other technologies and competitions, such as patent races or the
development of biotechnology, pharmaceuticals, race for creating the first Covid-19
vaccines and even climate change mitigation technology, where institutions need to
coordinate collective action for the larger goal of the society (Burrell and Kelly, 2021;
Callaway, 2020; Campart and Pfister, 2014). People are more likely to invest in high-
risk technology when there is sufficiently alluring potential gain (Andrews et al., 2018),
which suggests that these insights are robust across numerous related fields where risk
and innovation must constantly be balanced. With commitment models, agreements
and regulations for safety and ethics can be enacted by involved parties so as to ensure
their compliance to standards.

• Health Decision-Making and Public Health Policy: The COVID-19 pandemic
represents a particularly notable case of a coordination dilemma (Ojea Quintana et al.,
2021). Wherein, our commitment model can be applied to encourage global compliance
with new social norms that the pandemic presents. In a highly interconnected world,
efforts to mitigate the effects of COVID-19 needs to be coordinated, as an outbreak
anywhere in the world puts all other countries at risk (Caparrós and Finus, 2020). For
instance, if one country relaxes its control measures and provokes an outbreak, all
other countries will be negatively affected. Countries can utilise commitment models
to facilitate coordination amongst themselves to collectively contain and mitigate the
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spread of the pandemic. Our work would be of great interest in this area, applying
commitment to encourage global compliance and governance between countries.

6.3 Future Work

Our future work will investigate how to further use pre-commitment mechanisms to provide
a more adaptive and efficient approach for coordination enhancement in complex systems
such as:

• Multi-player versions: A natural continuation of our research would be to expand
our results from Chapter 5 which covers the impact of different population struc-
tures, including square lattice and scale-free networks, capturing homogeneous and
heterogeneous network structures on the two-player technology adoption game with
asymmetric benefit. We have shown that commitments can improve coordination and
population welfare in structured populations, but in its presence, the outcome of evo-
lutionary dynamics is, interestingly, not sensitive to changes in the network structure.
More investigations will be needed here to consolidate our observations, thus, we
could further expand this network analysis to study the effects of commitments in
the multi-party version of our technology adoption model (Ogbo et al., 2022), where
multiple firms participate in a technology market competition. This expansion can
also be applied in a cross-sector coordination (Santos et al., 2016), where there might
be a large number of desirable outcomes or equilibria, especially when the number
of players in an interaction increases (Duong and Han, 2015; Gokhale and Traulsen,
2010).

• Institutional Incentives: It is in no doubt that the mechanisms we have proposed
so far have advanced previous works on coordination, specifically on the use of pre-
commitment to resolve coordination issue which involves asymmetric benefit. However,
it would be also interesting to explore further on how institutional incentives can be
used to promote commitment compliance (Han, 2022) in our technology adoption
game. Han (2022) recently investigated how to distribute a per capita incentive
budget effectively between enhancing the level of participation in a commitment and
ensuring compliance with any adopted commitment, thereby optimising the overall
level of cooperation. Previous works on institutional incentives (Chen et al., 2015;
Cimpeanu et al., 2021; Sasaki et al., 2012; Sigmund et al., 2010; Wang et al., 2019)
and prior commitment (Akdeniz and van Veelen, 2021; Han et al., 2013a, 2017a;
Sasaki et al., 2015a) have not examined the interplay between different forms of
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incentive and commitment behaviours, including participation in and compliance with
a prior commitment. Han (2022) points out the need for improving participation in a
commitment before the interaction and because commitment usually involves a high
cost and requires the involved parties to follow terms and conditions, participation in
commitment might need to be encouraged which these research lacks. We can adapt
(Han, 2022) mechanism in our future work, to ensure that commitment participation
and compliance are promoted in our technology adoption game, resulting in enhanced
coordination outcomes.

• Cost-efficient institutional Regulation: In future, we could look at having an external
decision maker such as the government/institution as a player in our coordination model,
to encourage adoption in a cost-efficient way and to enable large scale-cooperation
(Duong and Han, 2021a). Most modern societies implement certain forms of insti-
tutions for governing and promoting collective behaviours, including cooperation,
coordination and technology innovation (Ostrom, 1990b; Scotchmer, 2004; Wu et al.,
2014). Collective action often requires determining both the best thing to do and
how to get everyone to do the same thing. In our current work, the evolution of
desired collective behaviour in achieving technology adoption is typically shaped by
the combined actions of individuals within the system. We can now begin to explore
other mechanisms like how an external interference, where the advocating of certain
desired collective behaviour is carried out by an external decision maker, who does
not belong to the system (e.g. external decision makers such as the United Nations
and the European Union) that has a budget to interfere in the population to achieve
a desirable outcome (Cimpeanu et al., 2019a; Duong and Han, 2021b; Han et al.,
2015d; Wang et al., 2019). We plan to incorporate these mechanisms to our technology
adoption model in future work, exploring how an external decision maker can influence
technology adoption amongst multiple interacting agents in a cost efficient way.

• Climate Change Coordination and Mitigation: Our commitment-based approach
can be applied to research on collective risk dilemma problems such as the interactions
in climate change negotiation, which is needed to prevent the hazardous consequences
of climate change (Barrett et al., 2007; Milinski et al., 2008; Santos et al., 2020).
Reducing greenhouse gas emissions stands as a costly action that, if done by a sufficient
number of countries, allows preventing catastrophic outcomes and benefits everyone
(Santos et al., 2020). Our approach could prove useful to deal with this problem,
investigating how the players here can be coordinated to achieve a collective goal,
therefore identifying solutions that are robust across a wider range of social dilemmas.
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• Punishment: In both pairwise and multi-player coordination settings, our analysis has
shown that the cost of arranging agreement must be sufficiently small, to be justified
for the cost and benefit of coordination. This is in line with previous works in the
context of PD and PGG (Han et al., 2013a, 2015c, 2017a). It is due to the fact that those
who refuse to commit can escape sanction or compensation. Solutions to this problem
have been proposed in the context of PD and PGG, namely, to combine commitment
with peer punishment, intention recognition, apology or social exclusion to address
non-committers (Han and Lenaerts, 2016a; Han et al., 2015a,c; Martinez-Vaquero et al.,
2017; Quillien, 2020) or to delegate the costly process of arranging commitment to an
external party (Cherry and McEvoy, 2013; Cherry et al., 2017). Our future work will
investigate how to combine pre-commitments with such mechanisms to provide a more
adaptive and efficient approach for coordination enhancement in complex systems.

• Wealth Inequality: Another area of interest to explore further in our research is
the coordination outcome of when there is wealth inequality amongst firms adopting
technology. A recent effort in this direction by Ngai (2004), suggests relevant barriers
to adopting more productive technologies as an explanation for cross-country income
differences. There are studies that also suggest that inequalities in initial income
distributions have a bearing on the issue of technology adoption. For example, in the
work of Horii et al. (2005), credit market imperfections, in conjunction with inequality
prevent the adoption of more capital intensive technologies.

• Data-driven Approaches and Machine Learning: The models and analyses we
have explored and proposed in this thesis have not considered the use of data-driven
approaches to resolve the issue of coordinating technology adoption as a social dilemma
problem. In the future, it would be worth investigating how data-driven approaches
like machine learning techniques can be applied to our work. The difficulty involved in
its design, calibrating its parameters, and interpretation of results are some of the major
features of Agent based modelling (ABM). However, machine learning algorithms
can complement ABM, given the greater availability of data, computational resources,
and learning algorithms (Lamperti et al., 2018; Platas-Lopez et al., 2023). Using
machine learning techniques, we can explore existing real data to calibrate our model
components (e.g. the cost and benefits of investment in a technology adoption, the
market demand for a certain technology, the network structure in a given market, and
even the intensity of selection). We can also investigate on applying machine learning
techniques to the data produced by the model, either to calibrate the parameters towards
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a state of validation of the results or to analyse the results by identifying which inputs
produce which outputs and so develop a hypothesis of the simulation behaviour.
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Appendix A

Additional Results for Chapter 3

Results for different values of θ1 and θ2

In the main text, we assume that a fair agreement is always arranged. We consider here what
would happen if HP and LP can personalise the commitment deal they want to propose, i.e.
any θ1 and θ2 can be proposed (instead of always being fair). Namely, Figure A.1 shows the
average population payoff varying these parameters, for different values of α . We observe
that when α is small, the highest average payoff is achieved when θ1 is sufficiently small
and θ2 is sufficiently large, while for large α , it is reverse for the two parameters. That is, in
a highly competitive market (i.e. small α), commitment proposers should be strict (HP keeps
sufficient benefit while LP requests sufficient payment, from their commitment partners),
while when the market is less competitive (i.e. large α), commitment proposers should be
more generous (HP proposes to give a larger benefit while LP requests a smaller payment,
from their commitment partners). Our results confirm that this observation is robust for
different values of ε , δ and β .
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Fig. A.1 Average population payoff as a function of θ1 and θ2, for different values of α

and β (for pairwise TD games). When α is small (panels a and b), the highest average payoff
is achieved when θ1 is sufficiently small and θ2 is sufficiently large, while for large α (panel
c), it is the case when θ1 is sufficiently large and θ2 is sufficiently small. Figure 4 also shows
that for a small value of β , the highest average payoff is achieved when α is very minimal
compared to other panels with higher value of β (compare panel a, d and g). Parameters:
in all panels cH = 1, cL = 1, bL = 2 (i.e. c = 1), and bH = 6 (i.e. b = 5). Other parameters:
δ = 4, ε = 1; β = 0.01, 0.1 and 1; population size Z = 100.
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Fig. A.2 Frequency of six strategies, HP, LP, HN, LN, HC and LC, as a function of ε , for
different values of α and game configurations. From observation, when α = 0.1and0.5
and ε is sufficiently small, the commitment proposing strategies have a high frequency. It
is better for the population to engage in commitment. However, when α = 0.9, the non-
proposing strategies have a higher frequency. This means that there is no competition and
commitment will not be needed. Parameters: in all panels cH = 1, cL = 1, bL = 2 (i.e. c = 1);
Top row) bH = 6 (i.e. b = 5) and bottom row) bH = 3 (i.e. b = 2); Other parameters: δ = 6;
β = 0.1; population size N = 100; Fair agreements are used, where θ1 and θ2 are given by
θ1 = (b− c− ε)/2 and θ2 = (b− c+ ε)/2.
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Additional Results for Chapter 4

Numerical confirmation of risk-dominant conditions in the N-player
game

See Figure 4.1 for numerical results confirming the risk-dominant conditions in the N-player
game in the main text.

Results for other intensities of selection in the N-player game

Figure B.1 confirms similar observations for other values of intensity of selection (β ) in the
N-player TD game, as compared to Figure 4.3 in the main text.
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Fig. B.1 Frequency of six strategies HP, LP, HN, LN, HC and LC, as a function of α

and for different values of ε and β . The commitment proposing strategies HP and LP
dominate the population when the values of α and ε are sufficiently small, in all cases
of β . Furthermore, as the value of ε increases, the non-proposing strategies dominate the
population. Parameters: in all panels cH = 1, cL = 1, bL = 2 (i.e. c = 1), bH = 6 (i.e. b = 5);
Other parameters: N = 5, ε = 0.1, 1, 2; β = 0.01, 0.1, 1.
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?=0.1, ?=0.1

Fig. B.2 Stationary distribution and transitions directions among the eight strategies.
The arrows displayed show the direction where the transition probability is stronger
for the indicated values of α and ε . We see here the transition from one strategy to another.
When α is sufficiently small, indicating how strongly competitive the market is, players
should utilise pre-commitment to enhance coordination. Our result shows the transition, with
the HF and LP strategies at 47%, the HN at 5% and HC at 1%/ Parameters: α = 0.1, ε = 0.1,
µ = 2, θ1 = 0.45, θ2 = 0.55, cH = 1, cL = 1, bL = 2 (i.e. c = 1), and bH = 6 (i.e. b = 5).
Other parameters: β = 0.1; population size N = 100.
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?=0.5, ?=0.1

Fig. B.3 Stationary distribution and transitions directions among the eight strategies.
The arrows displayed show the direction where the transition probability is stronger
for the indicated values of α and ε . In general, when the value of α is at intermediate and
the value of ε is small, there is a high transition from the other strategies to the commitment
proposing strategies (HP and LP). This means that in a competitive market and with a very
small cost of arranging a commitment deal, the commitment proposing strategies would
dominate the population. It is more beneficial for players to go into an agreement/commitment
deal in this case. Parameters: α = 0.1, ε = 0.1, µ = 2, θ1 = 0.45, θ2 = 0.55, cH = 1, cL = 1,
bL = 2 (i.e. c = 1), and bH = 6 (i.e. b = 5). Other parameters: β = 0.1; population size
N = 100.
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Fig. B.4 Stationary distribution and transitions directions among the eight strategies.
The arrows displayed show the direction where the transition probability is stronger
for the indicated values of α and ε . In general, we observed here that even when the value
of α is sufficiently large and ε is small, there is still a high transition from other strategies to
the HP and LP strategy. Parameters: α = 0.9, ε = 0.1, µ = 2, θ1 = 0.45, θ2 = 0.55, cH = 1,
cL = 1, bL = 2 (i.e. c = 1), and bH = 6 (i.e. b = 5). Other parameters: β = 0.1; population
size N = 100.
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?=0.1 ?=0.5 ?=0.9

Fig. B.5 Frequency of six strategies HP, LP, HN, LN, HC and LC, as a function of ε and
for different values of α . In general, our result shows that when the competitive level is
very fierce, intermediate and none competitive, in addition to a sufficiently small value of ε ,
the population spends more time in the commitment proposing strategies. As the value of
ε increases, the HC and HN strategies dominate the population. Parameters: in all panels
cH = 1, cL = 1, bH = 6 (i.e. b = 5); Other parameters: N = 5, β = 0.1, µ = 2, population
size N = 100.
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Fig. B.6 Frequency of µ with different values of α , showing when commitment is not
present. We compare results for different values of α . We observe that when the value of
µ is high ( µ indicates the demand for high technology (H) in the group), the H strategy
will dominate the population regardless of the market competitive level (α = 0,0.5and0.9).
In this case, we see here the need for players to be coordinated to achieve a group mixture
of technology adoption, arranging pre-commitment may be more beneficial in enhancing
coordination among the players. Parameters: bH = 6 (i.e. b = 5), cH = 1, cL = 1, bL = 2
Other parameters: N = 5, β = 0.1, population size N = 100.
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