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Abstract
Text-based speech editing systems are developed to enable users
to modify speech based on the transcript. Existing state-of-
the-art editing systems based on neural networks do partial in-
ferences with no exception, that is, only generate new words
that need to be replaced or inserted. This manner usually leads
to the prosody of the edited part being inconsistent with the
surrounding speech and a failure to handle the alteration of into-
nation. To address these problems, we propose a cross-utterance
conditioned coherent speech editing system, that first does the
entire reasoning at the inference time. Our proposed system
can generate speech by utilizing speaker information, context,
acoustic features, and the mel-spectrogram from the original
audio. Experiments conducted on subjective and objective met-
rics demonstrate that our approach outperforms the baseline on
various editing operations regarding naturalness and prosody
consistency.
Index Terms: speech editing, variational autoencoder

1. Introduction
Speech editing can be applied to a variety of areas with person-
alized voice needs and higher demands for speech naturalness,
including video creation for social media, games, and movie
dubbing. A promising neural-network-based audio editing tech-
nology is to synthesize speech according to text transcription and
original audio. This system can synthesize speech that matches
the tone and timbre of the original audio, according to the aligned
transcription altered by content authors. As a result, editors could
perhaps lessen their burden by modifying the text transcription
rather than editing the original audio. Previous work [1, 2, 3]
based on digital signal processing (DSP) has partially overcome
the problem of prosody mismatch created by directly concatenat-
ing the audio in different scenarios. Morrison et al. [4] utilizes
the neural network to predict prosodic information and integrates
the TD-PSOLA algorithm, denoising, and de-reverberation [5]
approaches to realize prosodic modification. Although the above
systems support cut, copy, and paste operations, they cannot
insert or replace a new word that doesn’t exist in the voice data
of the same speaker.

More recent research has applied text-to-speech (TTS) sys-
tems to synthesize the missing inserted word. VoCo [6] syn-
thesizes the inserted word using a comparable TTS voice, then
transforms it using the voice conversion (VC) model to fit the
target speaker. EditSpeech [7] proposes the partial inference
and bidirectional fusion method to achieve smooth transitions
at edit boundaries. CampNet [8] conducts mask-training on
a context-aware neural network based on Transformer to im-
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(a) Partial inference (b) Entire inference

Figure 1: Illustrations for different inference ways of the speech
editing system.

prove the quality of the edited voice. Bai et al.[9] suggests an
alignment-aware acoustic and text pretraining method, which can
be directly applied to speech editing by reconstructing masked
acoustic signals through text input and acoustic text alignment.
What’s more, SpeechPainter[10] leverages an auxiliary textual
input to fill in gaps of up to one second in speech samples and
generalize it to unseen speakers.

However, when applied to speech editing, all the existing
methods [6, 7, 8, 9] based on neural networks do partial inference
instead of entire inference, as shown in Figure 1(a). Specifically,
the input of existing systems is the waveform or mel-spectrogram
of the segments that do not need editing. Although the direct
output of the editing module is the complete waveform or mel-
spectrogram corresponding to the edited transcripts, in order
to improve the similarity with the original audio, the existing
methods select only the segments that must be modified and then
insert them back into the original waveform or mel-spectrogram.
Although retaining the original audio as much as possible ad-
heres to our intuition, it will also lead to the following potential
problems,

1. Since partial inference artificially inserts the predicted
acoustic characteristics of the editing area into the corresponding
positions of the original waveform, the discontinuity near the
boundary of the editing area is almost inevitable to a certain
extent. Meanwhile, the output of the existing speech synthesis
system based on partial inference is still the whole audio, includ-
ing the context. Therefore, it will not spare time or resources
compared with the entire inference.

2. When the transcript is modified, the tone and prosody
could also change accordingly. That is, the audio corresponding
to the altered text might not be intended to sound exactly like
the original audio. A special example is when a general question
sentence can be modified into a declarative sentence, partial
inference will be difficult to deal with the mood change.

To address the above-mentioned issues, we propose a cross-
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utterance conditioned coherent speech editing system. This
text-based speech editing system applies the variational autoen-
coder with masked training to reconstruct the unmodified area
of the original waveform with high fidelity. Therefore, the entire
inference can replace partial inference, so as to avoid the incoher-
ence of the junctions caused by splicing. Also, compared with
the existing partial reasoning editing system, our method does
not consume additional resources. This point can be intuitively
accepted through Figure 1, where the framework of the entire
inference is more concise than partial inference.

Moreover, to ensure that the generated audio conforms to
both the original audio features and the context after the edition,
the variational autoencoder is conditioned on the semantic in-
formation of the context and audio features extracted from the
original waveform. The subjective and objective results on a
challenging dataset show that our proposed model can ensure a
high degree of similarity with real audio, while the coherency
of the entire inference is significantly better than that of partial
inference.

The rest of this paper is organized as follows. Section 2
illustrates our proposed speech editing system. The experimental
setup, results, and conclusion are presented in Sections 3, 4 and 5,
respectively.

2. Our System
Our proposed text-based speech editing system aims to synthe-
size the new audio that is consistent with the original audio
rhythm and to truly restore the unmodified part of the audio,
by virtue of the reconstruction ability of a variational autoen-
coder conditioned on context information. Figure 2(a) describes
the model architecture, which takes the mel-spectrogram xi ex-
tracted from the original waveform, current utterance ui, and l
utterances before and after ui as the input. Using an additional
G2P conversion tool, the utterance ui is translated into phonemes
pi. Following Li et al. [11], the 2l+1 neighboring utterances are
paired into 2l pairs, i.e. [(ui−l,ui−l+1), · · · , (ui+l−1,ui+l)].
Then the pretrained BERT is used to capture the cross-utterance
information, yielding 2l embeddings [b−l, · · · , bl−1]. Also, the
start and end times of each phoneme can be extracted by Mon-
treal forced alignment [12]. The following part details the design
of our system and biased training.

2.1. Mask CU-Enhanced CVAE

The mask CU-Enhanced CVAE module, as shown in Figure 2(b),
is proposed to overcome the limitation that existing speech edit-
ing systems cannot restore the unmodified portion of the au-
dio and must splice the modified portion with the original mel-
spectrogram or audio.

2.1.1. Implementation of Text-based Speech Editing Operations

To start with, a text-based speech editing system supports the
operations of deletion, insertion, and replacement. Without loss
of generality, we can divide the original utterance transcript
of the original speech as [ua,ub,uc] and the modified utter-
ance to be [ua,ub′ ,uc], where ub′ is the modified segment and
ua,uc remain the same. Correspondingly, the phonemes trans-
lated by G2P can be denoted as pi = [pa,pb,pc], with orig-
inal speech’s mel-spectrogram denoted as xi = [xa,xb,xc].
For i ∈ {a, b, c}, xi contains a sequence of frame-level mel-
spectrogram. Since the replacement operation in editing can be
regarded as deletion before addition, we can use two flags instead
of three to indicate the place to delete and add the corresponding

content, i.e., Flagdel and Flagadd.
Deletion The deletion procedure enables the user to elimi-

nate a segment of the speech waveform which is associated with
a set of certain words. The target utterance to be synthesized
after deletion is [ua,uc], where ub is the part to be deleted. By
comparing the utterance before and after editing, we can get
the corresponding deletion indicator, which is further used to
instruct the editing of mel-spectrogram

Flagdel = [0a,1b,0c].

Insertion and Replacement Different from the deletion
operation, the target synthesized speech after insertion or re-
placement is based on the edited utterance [ua,ub′ ,uc], where
ub′ is the content to replace ub. Noted that the insertion process
can be considered as the special case where ub = pb = xb = ∅.
Correspond to the deletion operation, we have the addition indi-
cator

Flagadd = [0a,1b′ ,0c].

Based on Flagdel, the reference mel-spectrogram [xa,xc]
is sent into the Mask CU-Enhanced CVAE module since xb′

is to be generated. The mean µ and variance σ are learned
from two one-dimensional convolutions. Referring to Flagadd,
0 and 1s are added to the corresponding position of µ and σ,
that is, µ̂ = [µa,0b′ ,µc] and σ̂ = [σa,1b′ ,σc]. This allows
the speech generated by the editing area to be sampled from the
utterance-specific prior, while the audio of the area that has no
modification is sampled from the real audio and the utterance-
specific prior. During the training process, the edited real audio
is unavailable, so we can only mask specific audio segments and
restore the same content to simulate the editing scenario, that is
b′ = b.

2.1.2. Enhancement of Coherence and Prosody

We have introduced more mechanisms to ensure that the output
of the mask CU-CVAE module can further synthesize coher-
ent and contextual audio. In order to make the editing bound-
ary more fluent, µ′ and σ′ are further generated through one-
dimensional convolution from µ̂ and σ̂. At this time, the module
can sample from the estimated prior and can be re-parameterized
as

z = µ′ ⊕ σ′ ⊗ zprior

where ⊕,⊗ are element-wise addition and multiplication
operations, and zprior is sampled from the learned utterance-
specific prior, corresponding to Li et al. [11]. The re-
parameterization is as follows,

zprior = µprior ⊕ σprior ⊗ ϵ

where µprior,σprior are learned from the utterance-specific
prior, and ϵ is sampled from the standard Gaussian distribu-
tion N (0, 1). Hi is the output of CU-Embedding, as shown in
Figur 2(c). The CU-embedding module is proposed to create
phoneme-level embeddings from nearby utterances to enhance
prosody modeling. It uses a pretended BERT to capture contex-
tual information from 2l utterances surrounding the current one.
The phoneme sequence is encoded using a transformer encoder,
and contextual data is collected using a multi-head attention
layer. Also, an additional duration predictor takes Hi as inputs
and predicts the duration of each phoneme. In addition, in order
to effectively utilize the duration information extracted from the
original audio, similar to the method in [7, 9], we further adjust
the phoneme duration of the edited area by multiplying it with
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(a) Our system (b) Mask CU-CVAE encoder (c) CU-embedding module

Figure 2: The overall architecture of our system, consisting of the mask cross-utterance enhanced CVAE and cross-utterance embedding
module. ⊕ and ⊗ are element-wise addition and multiplication operations. cat⃝ is the concatenate operation.

the ratio of the original audio and the predicted audio duration of
the unedited area to get D′

i. The estimated duration is rounded
after the duration predictor and the adjustor.

3. Experimental Setup
3.1. Dataset

We conducted experiments on a multi-speaker dataset,
LibriTTS[13]. Both the train-clean-100 and train-clean-360
subsets were used, containing 245 hours of English audiobooks
from 1151 speakers (553 female speakers and 598 male speak-
ers). We randomly select 90%,5%,5% data from datasets for
train, valid and test set, respectively.

3.2. Configuration Detail

The proposed Mask CU-CVAE TTS system was based on the
framework of FastSpeech 2. In the CU-embedding module, we
used the “BERT BASE” configuration. Additionally, informa-
tion about different speakers learned from a 256-dim lookup
table was added to the Transformer output.

Four 1D-convolutional layers with 1 kernel size were utilized
in the Mask CU-enhanced CVAE module to predict the mean
and variance of 2-dim latent features. Meanwhile, an additional
upsampling layer was applied to make the predicted sequence
length consistent with the phoneme sequence length after editing,
and also promote the naturalness of synthesized audio. We
randomly select the part to be masked by taking a word instead
of a phoneme as a unit to faithfully recreate the actual editing
scenario. In addition, to balance the system’s ability to learn
and predict audio information, we set the shielding rate to 50%,
which has been proven effective in Bai et al. [9]. The decoder,
optimizer, and other hyperparameters are the same as that used
in FastSpeech2.

The length regulator in FastSpeech 2 was modified to ac-
commodate the outputs of the CU-embedding module and the
vocoder HifiGAN [14] was finetuned for 1200 steps on an open-
sourced, pre-trained version of ”UNIVERSAL V1” to synthesize
a waveform from the predicted mel-spectrogram.

3.3. Evaluation Metrics

Both subjective and objective tests were conducted in order
to measure the performance of our proposed method. First of

all, using a 5-scale mean opinion score (MOS) evaluation, 20
volunteers participated in a subjective listening test over 15
synthesized audios in which they were asked to assess the level
of naturalness and similarity of speech samples. 95% confidence
intervals and p-value were provided with the MOS results.

For the objective evaluation, FFE [15] and MCD [16] were
utilized to test the reconstruction performance of different VAEs
and different settings of loss weights. FFE was used to assess
the accuracy of the F0 track reconstruction. Besides, MCD
estimated timbral distortion from the first 13 MFCCs.

Moreover, WER from an automatic speech recognition
model was also reported. Complementary to naturalness, the
WER metric demonstrated the degree of intelligibility and con-
sistency between synthetic and real speech. The attention-based
encoder-decoder model utilized in this study was trained on
Librispeech 960-hour data.

4. Results
This section presents a series of experiments for our proposed
speech editing system. First, the naturalness and similarity of
synthesized audio generated by EditSpeech [7] and our system
via both partial and entire inference were evaluated. Next, an
ablation study was performed to progressively show the influence
of restrictions on context information in our system, based on
MOS and reconstruction performance. At last, the effect of the
degree of biased training on reconstruction performance was
also investigated. Our audio examples are available on the demo
page 1.

4.1. Partial vs. Entire Inference

To investigate the performance of partial inference versus entire
inference, experiments were conducted on the following systems:
1) GT, the ground truth audio; 2) GT (Mel+HifiGAN), first con-
vert the ground truth audio to the ground truth mel-spectrogram,
and then convert it back to audio using HifiGAN vocoder; 3)
Wave cut, manually cut the modified region from the generated
waveform, and insert it back into the original waveform; 4) Ed-
itSpeech [7], using partial inference and bidirectional fusion to
improve the prosody near boundaries; 5) Our system (Mel cut),
cut the modified region from the generated mel-spectrogram,

1http://bitly.ws/uMFd
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Method Insert Replace Delete Reconstruct

Nat. Sim. Nat. Sim. Nat. Sim. Nat. Sim.
Our system vs. Mel cut 0.0662 0.793 0.0294 0.771 0.0168 0.298 0.0525 0.691

Our system vs. Wave cut 0.0219 0.135 0.0163 0.287 0.369 0.310 0.0564 0.143

Table 1: The significance analysis of our system using entire inference vs. “Mel cut” and “Wave cut” on naturalness and similarity
MOS scores.

and insert it back to the original mel-spectrogram with a forced
aligner; 6) Our system, regenerate a complete mel-spectrogram
from the whole sentence to be edited, and then use HifiGAN
vocoder to generate the complete waveform;

Method Insert Replace Delete

Nat. Sim. Nat. Sim. Nat. Sim.
Wave cut 2.93 3.76 2.82 3.50 3.25 3.82

EditSpeech (Mel cut) 2.35 3.21 2.47 3.36 2.82 3.81
Our system (Mel cut) 3.11 3.57 2.97 3.41 2.82 3.81

Our system 3.37 3.56 3.39 3.43 3.37 3.67

Table 2: Subjective naturalness and similarity results on Edit-
Speech and our system using partial and entire inference. Note
that since the deletion operation of EditSpeech, which can only
do partial inference, is to combine segments of the real mel-
spectrogram, there is no difference in the results of different
editing systems using partial inference.

According to the MOS scores on naturalness shown in Ta-
ble 2, our model with entire inference achieved the highest score
on all the editing operations. The gap in replacement was no-
ticeable, as the speech editing models based on partial reasoning
have difficulty dealing with intonation conversion. The score
of “Mel cut” in deletion was relatively low since “Mel Cut” is
highly dependent on the accuracy of MFA. Especially when
short words were deleted, its performance could be worse than
manually careful deletion based on waveform. “Wave cut” had a
relatively lower naturalness MOS score in insertion and replace-
ment since it involves the insertion of new words, and there is
disharmony between the original audio and the generated audio.

MOS scores on similarity suggested that the performance
of our system based on entire inference was close to partial
inference “Mel cut” and surpassed EditSpeech in insertion and
replacement. It was also close to “Wave cut”, which served
as an upper bound indicator of similarity, with the maximum
difference around 0.2.

Method Nat. Sim. FFE MCD WER
GT 4.56 - - - 3.124

GT (Mel+HifiGAN) 4.39 4.68 0.170 4.651 3.887
EditSpeech 3.14 3.80 0.372 6.345 6.702

Our system (Mel cut) 3.66 3.91 0.326 5.957 5.174
Our system 3.90 3.83 0.327 6.657 5.377

Table 3: EditSpeech and our system’s reconstruction perfor-
mance using partial and entire inference. Lower objective results
imply better similarity to the original audio.

The p-value in Table 1 presented that the naturalness of our
model using entire inference was obviously superior to “Mel cut”
and “Wave cut”, while there was no significant difference in
similarity between entire and the two partial inference methods.
The only exception was in the case of deletion, where the natu-
ralness of our model using entire inference was not significantly
different from that of the “Wave cut”. Table 3 also demonstrated
the capability of our mask CU-enhanced CVAE module to re-
construct the mel-spectrogram. Since partial inference directly
copied the real mel-spectrogram of the unedited area, it is reason-

able that partial inference had better reconstruction performance
on similarity and MCD(Mel-cepstral distortion). Nevertheless,
our system using entire inference still surpassed EditSpeech on
FFE and WER.

4.2. Ablation Study

In this section, we investigate the performance impact of using
different VAEs in our system. We compare the reconstruction
performance and MOS scores of the synthesized audio among the
following systems: 1-2) same as the above experimental settings;
3) Baseline1, use a fine-grained VAE instead of CU-CVAE; 4)
Baseline2, use a CVAE without the context embeddings, i.e.l =
0; 5) Baseline2, use CU-CVAE with 2 neighbouring utterances,
i.e.l = 2; 6) Our system, use CU-CVAE with 5 neighbouring
utterances, i.e.l = 5.

Method FFE MCD WER
GT - - 3.124

GT (Mel+HifiGAN) 0.170 4.651 3.887
Baseline1 0.371 6.919 7.404
Baseline2 0.333 6.750 5.503
Baseline3 0.332 6.697 5.392

Our system 0.327 6.657 5.377
Table 4: Objective metrics of the reconstruction performance of
our system with different VAEs.

The reconstruction metrics in Table 4 suggest that using
more cross-utterances can improve the reconstruction capability.
These results indicated that the CU-embedding and mask CU-
CVAE module played a crucial role in generating more coherent
audio.

5. Conclusion
In this paper, we propose a cross-utterance conditioned coher-
ent speech editing system, which is the first text-based speech
editing system that can entirely generate audio corresponding to
the edited transcript. A variational autoencoder conditioned on
speaker information, context, and audio prior is integrated into
a high-quality text-to-speech model to ensure both the restora-
tion and generation quality of audio. Experiments show that
our proposed system has the ability to reconstruct the acoustic
characteristics of original audio with high fidelity and that the
prosody of the synthesized speech conforms to the context of the
edited transcript.

6. Limitations
The experiments in this paper focused on seen speakers. When
it is transferred to unseen speakers, it will need additional com-
ponents, such as GST [17], to better extract speaker features.
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