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DNA methylation at quantitative trait loci (mQTLs) varies
with cell type and nonheritable factors and may improve breast
cancer risk assessment
Chiara Herzog 1,2, Allison Jones3, Iona Evans 3, Michal Zikan4, David Cibula5, Nadia Harbeck 6, Nicoletta Colombo7,8,
Angelique Flöter Rådestad9, Kristina Gemzell-Danielsson 9, Nora Pashayan 10 and Martin Widschwendter 1,2,3,9✉

To individualise breast cancer (BC) prevention, markers to follow a person’s changing environment and health extending beyond
static genetic risk scores are required. Here, we analysed cervical and breast DNA methylation (n= 1848) and single nucleotide
polymorphisms (n= 1442) and demonstrate that a linear combination of methylation levels at 104 BC-associated methylation
quantitative trait loci (mQTL) CpGs, termed the WID™-qtBC index, can identify women with breast cancer in hormone-sensitive
tissues (AUC= 0.71 [95% CI: 0.65–0.77] in cervical samples). Women in the highest combined risk group (high polygenic risk score
and WID™-qtBC) had a 9.6-fold increased risk for BC [95% CI: 4.7–21] compared to the low-risk group and tended to present at more
advanced stages. Importantly, the WID™-qtBC is influenced by non-genetic BC risk factors, including age and body mass index, and
can be modified by a preventive pharmacological intervention, indicating an interaction between genome and environment
recorded at the level of the epigenome. Our findings indicate that methylation levels at mQTLs in relevant surrogate tissues could
enable integration of heritable and non-heritable factors for improved disease risk stratification.
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INTRODUCTION
Reliable tools to risk-stratify women for primary and secondary
breast cancer preventive measures are urgently needed1,2. Since
20073, genome-wide association studies (GWAS) have identified
hundreds of single nucleotide polymorphisms (SNPs) associated
with breast cancer risk. A combination of 313 SNPs (polygenic risk
score, PRS313) has previously been reported to achieve an area
under the receiver-operator curve (AUC) of 0.630 (95%CI:
0.628–0.651) overall, and 0.641 and 0.601 for estrogen receptor
(ER) positive (ER+) and negative (ER-) cancers, respectively4. This
PRS313 improves discrimination over age and clinical risk factors in
initial analyses5, and is being implemented in primary and
secondary breast cancer preventive strategies1,2,6,7. While PRSs
have been suggested to offer promise in improving clinical risk
stratification, they suffer from several shortcomings. First, PRSs
often show varying performance in non-European-ancestry
populations8,9 due to being derived from GWAS in populations
of largely European descent, although limited portability can be
overcome by including more diverse populations and improved
technology, deriving arrays to cover diverse variants, and efforts
are underway to recalibrate PRSs for all ancestries10. Second, a
major limitation of PRSs is that they only reflect static genetic risk
and do not account for environmental, socioeconomic, or lifestyle
risk factors, or their interplay with genetic risk factors, which
constitute important modifiable factors and targets for disease
prevention11. For instance, childhood postcode as an indicator of
socioeconomic inequalities has been found to perform equally

well as a predictor of risk for most common diseases as most
polygenic risk scores12. The PRS can subsequently also not be
used to monitor changes in risk over time11. Even the most
predictive PRSs have been suggested to explain only a low
proportion of the overall variance for a trait in each population13,
and a recent study raised concern about the potential applicability
of PRSs11,14. Biomarkers and risk scores capable of capturing and
integrating both genetic and modifiable risk factors, for instance
DNA methylation (DNAme), may therefore be suitable to extend
risk prediction beyond the limitations of PRSs.
DNAme changes have been observed in histologically normal

breast tissue adjacent to breast cancers15. This ‘epigenetic field
defect’ may be elicited by both genetic and non-genetic factors
including lifestyle, reproductive, and environmental exposures
contributing to breast cancer development16, and could be
exploited for risk stratification, yet breast samples require invasive
biopsies and are therefore not feasible for routine clinical
screening. Several proof of principle studies, almost exclusively
performed in blood, have demonstrated that certain DNAme
changes in a non-invasively collected ‘surrogate’ tissue could also
be associated with breast cancer predisposition17–22. Steroid
hormones play an essential role in breast cancer formation, as
prolonged23 or higher than average24 exposure to progesterone
are strongly associated with the formation of poor prognostic
breast cancer23–28, and the progesterone receptor antagonist
mifepristone effectively prevents breast cancer formation in
mice29. To record steroid hormone exposure and possible other
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factors contributing to breast cancer formation, the surrogate
sample in which DNAme is measured for risk detection should
ideally resemble the cell of origin for the cancer, i.e., a hormone-
sensitive epithelial cell. It has recently been shown that trait-linked
methylation quantitative trait loci (mQTLs) exhibit molecular
regulatory pleiotropy and enrichment in trait-relevant tissues30,
and in previous work we demonstrated that DNAme patterns in
cervical samples can indicate current or future women’s cancers,
including anatomically distant breast and ovarian cancers31,32.
Cervical samples are possibly suitable surrogate samples for
women’s cancer detection as they contain hormone-sensitive
epithelial cells similar to the tissue at risk (breast, ovary), and can
be obtained without a tissue biopsy, but it has not been
systematically assessed whether cervical samples are better suited
for breast/ovarian cancer risk prediction than other promising
non-invasive surrogate samples such as buccal samples or blood.
Here, we compare the suitability of three surrogate sample

types - cervical, buccal, and blood - to reflect breast DNAme
variability, develop a new mQTL-based predictor for breast cancer
risk, and investigate the interplay of genetic and non-genetic
factors using CpG sites whose DNAme levels are strongly
associated with breast cancer SNPs (mQTLs)33.

RESULTS
Identification of the most informative surrogate sample to
reflect breast DNAme variability
We initially analysed DNAme variability at 772,955 CpG sites in 50
normal breast tissue samples and, using a matched set of three
less-invasive potential ‘surrogate’ samples – cervical, buccal, and
blood – from 222 healthy volunteers (n= 113 BRCA1/2 wild type
and n= 109 BRCA1/2 mutant), assessed which surrogate tissue
best represents the breast tissue DNAme variability, accounting for
cell type heterogeneity (see Methods section) (Fig. 1a). The top
breast-variable CpGs showed higher variability in epithelial
fractions of cervical and buccal samples compared to immune
fractions or blood samples (Fig. 1b), indicating samples containing
hormone-sensitive epithelial cells might be a better suitable proxy
for breast tissue than immune-based samples. mQTLs are
potentially best identified in tissues with low variability and low
susceptibility to non-genetic risk factors like hormones (i.e., blood)
and then assessed in surrogate tissues whose variability is closest
to the tissue at risk and which can capture the impact of non-
genetic factors at these mQTLs. Utilising peripheral blood, Ho
et al.33 identified 822 mQTLs for 235 of the 313 breast cancer PRS
variants with minor allele frequencies > 5%. Amongst 822 mQTL
CpGs, 704 were available in our datasets after quality control. We
assessed whether the variability of these 704 mQTL CpGs followed
the same pattern as the breast-variable CpGs. Indeed, these mQTL
CpGs were generally more variable than average variability across
all tissues but showed the highest variability in cervical samples
(Fig. 1c). Variability across cervical and buccal samples decreased
with increasing immune cell content, again highlighting higher
variability in epithelial than immune samples (Fig. 1c).

Utilisation of DNAme in cervical samples to develop an mQTL-
based breast cancer risk predictor
We evaluated whether a cervical sample mQTL-based predictor
could be used to identify breast cancer cases (Fig. 2a). To enrich
for clinically significant breast cancer cases, we only included
samples from cases (n= 442, for n= 423 SNP data were available)
that had at least one poor prognostic feature (tumour >2 cm, node
positive, grade 3, or ER negative; detailed characteristics shown in
Supplementary Table 2). We used ridge or lasso regression to
develop a breast cancer classifier based on 704 mQTLs or an
informative subset thereof, respectively, in a training dataset of
572 cancer-free controls and 217 breast cancer cases. This training

set was based on two thirds of samples in the discovery set (see
Supplementary Fig. 1, Supplementary Table 1). The remaining
samples in the discovery set were used as an internal validation
set (297 controls, 112 cases) to determine the optimal number of
CpGs used to construct the index. Lasso regression, resulting in
104 non-zero CpG coefficients, achieved in slightly higher
discriminatory performance than ridge regression which used all
704 CpGs (AUC: 0.68, 95% CI: 0.62–0.73, versus 0.66, 95% CI:
0.60–0.72, respectively). The parameter-optimised final version of
the index, the Women’s cancer risk IDentification – quantitative
trait Breast Cancer (WID™-qtBC) index is a linear combination of
the 104 CpGs based on lasso regression that was finalised by
training on the entire discovery set (n= 869 cancer-free controls,
n= 329 cancer cases) and validated in an independent validation
dataset consisting of cervical samples from 225 controls and 113
breast cancer cases (Supplementary Fig. 1). The full list of CpGs
including coefficients is presented in Supplementary Table 3.
In the validation dataset, we observed a significantly higher

WID™-qtBC in women with breast cancer compared to controls
(Fig. 2b, p= 1.2e-07, two-tailed Student’s t-test). The WID™-qtBC
obtained an AUC of 0.71 (Fig. 2c; 95% CI: 0.65–0.77), and was not
strongly dependent on ER status (ER-negative [n= 17]: 0.72 [95%
CI: 0.58–0.87], ER-positive [n= 94]: 0.70 [95% CI: 0.64–0.76])
(Fig. 2c). To assess the specificity of the index we performed
10,000 permutations to randomly select 704 non-mQTL CpGs out
of all IlluminaMethylationEPIC CpGs and allowing lasso regression
to select informative CpGs for each permutation. The median AUC
across the 10,000 permutations was 0.62 (Fig. 2d), demonstrating
that although other non-mQTL CpGs retain some information
indicative of case and control status ( ~ 14% of all CpGs on the
array are significantly associated with BC status before adjustment
for multiplicity31), the WID™-qtBC AUC in the external validation
set is higher than expected by chance.

Cervical mQTL predictor WID™-qtBC distinguishes normal
breast tissue from breast tissue adjacent to a cancer
We were next interested whether the cervical classifier would be
able to distinguish normal breast tissue from breast tissue
adjacent to a cancer. The WID™-qtBC was elevated in normal
tissue surrounding breast cancer compared to normal tissue from
unaffected women (Fig. 2e) and could discriminate normal tissue
adjacent to cancer from normal breast tissue with an AUC of 0.69
(95% CI:0.49–0.87) (Fig. 2f).

Investigating the interaction between WID™-qtBC and PRS313
for enhanced risk stratification
We evaluated the association between genetic predisposition,
based on the PRS313, and the mQTL-based classifier. Surprisingly,
although mQTLs were identified based on genetic variants in the
PRS313, the WID™-qtBC exhibited limited correlation with PRS313
(Fig. 3a). Nonetheless, the WID™-qtBC performed better in
individuals with a higher PRS313 score compared to a lower
PRS313 score (stratifying by median PRS313) (Fig. 3b), indicating a
potential interaction between the two.
When comparing risk stratification efficacy based on median

values of either the PRS313 or WID™-qtBC, the higher risk groups
exhibited odds ratios of 2.7 (95% CI: 1.7–4.4) (PRS313, Supplemen-
tary Table 4) or 3.9 (95% CI: 2.4–6.5) (WID™-qtBC, Supplementary
Table 5) compared to the lower risk groups, indicating that the
WID™-qtBC may offer a small benefit in risk stratification
compared to the PRS313, although this was not significant.
We next assessed whether combination of the WID™-qtBC and

the PRS313 might enhance risk stratification (Table 1). Individuals
with both a high PRS313 and high WID™-qtBC index, as defined by
values higher than the median, had a significantly increased odds
ratio for being diagnosed with breast cancer in both the discovery
and validation sets (Table 1; discovery set OR (high PRS, high

C Herzog et al.

2

npj Precision Oncology (2023)    99 Published in partnership with The Hormel Institute, University of Minnesota

1
2
3
4
5
6
7
8
9
0
()
:,;



WID™-qtBC)= 26, 95% CI: 15–47; validation set OR (high PRS, high
WID™-qtBC)= 9.6, 95% CI: 4.7–21). The higher OR in the discovery
set is likely a reflection of the fact that the WID™-qtBC was trained
in this set and is thus not representative, while values in the
validation set may be more representative.

Comparing the PRS313, WID™-qtBC, or a combination thereof
across different risk quartiles, the WID™-qtBC either alone or in
combination with the PRS313 exhibited an increased OR compared
to the PRS313 in the highest risk quartile, suggesting enhanced risk
stratification (Fig. 3c); we did not see an improved performance

Fig. 1 Identification of the most informative surrogate sample for breast-variable DNA methylation indicates that cervical samples
exhibit higher variability in the top-variable breast CpGs compared to matched buccal and blood samples. a Higher variability indicates
the potential presence of more information, opposed to CpGs which are homogeneously methylated or unmethylated across samples. We
explored this by identifying variability of CpGs in tissue at risk of breast cancer (= breast tissue) and assessing variability of these top breast-
variable CpGs in three non-invasive surrogate tissues, utilising matched buccal, blood, and cervical samples from the same individuals
(n= 222 per tissue). b Standard deviation of the top variable breast CpGs (1, 2, 5, 10, 15, and 20 percentiles, respectively) in matched cervical,
buccal, and blood samples (all and separated by inferred immune cell composition). c Variability of all CpGs versus mQTL CpGs in the three
matched tissues (all or separated by inferred immune cell composition). The dashed line shows median variability of all CpGs in all cervical
samples while the dotted line shows median variability of mQTLs in cervical samples with an immune cell composition (ic) < 25%. Boxplot
boxes indicate median (centre line), interquartile range (bounds of box), and 95% confidence interval (whiskers). DNAme DNA methylation,
mQTL methylation quantitative trait locus, SNP single nucleotide polymorphism, ic immune cell (proportion).
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Fig. 2 The WID™-qtBC index distinguishes breast cancer cases and controls in cervical and breast samples. a Outline of classifier
development and validation strategy. b The WID™-qtBC index is increased in cervical samples from current breast cancer cases compared to
controls in the validation set (p= 1.2e-07 in two-tailed Student’s t-test). c The WID™-qtBC has an AUC of 0.71 and is unaffected by estrogen
receptor (ER) status. d Permutation analysis of index training featuring randomly selected CpGs indicates that the WID™-qtBC AUC in the
validation set is higher than expected by chance. Shaded area indicates 95% confidence interval from permutation testing. e The WID™-qtBC
index is increased in normal tissue adjacent to breast cancer compared to normal breast tissue. f ROC curve for discrimination of normal to
normal-adjacent tissue based on the WID™-qtBC index. Boxplot boxes indicate median (centre line), interquartile range (bounds of box), and
95% confidence interval (whiskers). AUC area under the receiver operating characteristic curve, ER- estrogen receptor negative breast cancer,
ER+ estrogen receptor positive breast cancer.
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when combining the WID™-qtBC with the PRS313 compared to the
WID™-qtBC alone in this set, although sample numbers were small
(Fig. 3c).

Association of combined WID™-qtBC and PRS313 risk groups
with clinical features
The highest risk scores (both high PRS313 and high WID™-qtBC)
were associated with higher tumour stages and grades (Fig. 3d,
p= 0.0349 and p= 0.0167 for stage and grade, respectively,
derived from logistic regression model using ER status, PR status,
HER2 status, nodal stage, tumour stage, and tumour grade as
independent variables and risk group as the dependent variable).
Of note, the proportion of patients with a low PRS and a low
WID™-qtBC appeared higher in the ER- than in the ER+ group,
which would not clinically be expected. In a logistic regression
model, either accounting or not accounting for additional receptor
status and stage/grade, ER status was associated with an increase
in risk group, but this was not significant. We therefore believe this
to reflect the relatively small sample size rather than a clinically
significant effect. Due to the case/control design our study

population is not entirely reflective of the general population, and
a prospective collection of cohort samples will be required to
further evaluate the use of the WID™-qtBC.

Malleability of WID™-qtBC by external factors
Whereas the PRS313 captures the genetic heritable risk, the WID™-
qtBC could be modified by non-heritable factors as it is based on
DNA methylation, which is known to be influenced by ageing and
external exposures34. This might make it amenable to dynamic risk
monitoring. Inhibition of the action of progesterone, a key risk
driver of breast cancer development, has been suggested to
reduce breast cancer risk35. Two-month exposure to mifepristone
reduced the WID™-qtBC in breast tissues of 7/9 individuals
compared to a reduction in only 3/11 women in a control group
treated with vitamins (Fig. 4a), although this was not significant
using paired Wilcoxon tests (p= 0.31 and p= 0.43 for mifepris-
tone and vitamin use, respectively). Interestingly, the WID™-qtBC
also was significantly positively associated with age, body mass
index, and age at menopause (the latter two only in breast cancer
cases) (Fig. 4b-e) in cervical samples of the validation set,

R = 0.054, p = 0.43
R = 0.18, p = 0.062
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Fig. 3 Association of the WIDTM-qtBC with the 313 SNP polygenic risk score and cancer characteristics. a Pearson correlation of the WIDTM-
qtBC index with the polygenic risk score (PRS313) in the Validation set. b ROC curve analysis of the WIDTM-qtBC index stratified by median PRS
group (higher or lower than median) in the Validation set. c Odds ratio of the PRS313, WIDTM-qtBC, or their combination, across different percentile
categories for the risk scores. Shading indicates 95% confidence intervals. d Assessment of estrogen receptor (ER), progesterone receptor (PR), and
human epidermal growth factor receptor 2 (HER2 status), nodal and tumour stage, and tumour grade amongst cases in the Validation set,
comparing different risk groups defined in Table 1. Numbers in bars indicate n for each group. p= 0.0349 for an association of T2-4 tumours with
increasing PRS313 and WID™-qtBC, p= 0.0167 for increasing Grade III tumours with increasing PRS313 and WID™-qtBC. P values were derived from
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indicating an interaction between genetic (mQTLs) with non-
genetic risk factors. A high PRS313 appeared to drive higher WID™-
qtBC levels particularly in younger women that were aged below
the median age in the validation set (p= 0.017 compared with
lowest PRS313 quartile in Wilcoxon test, Supplementary Figure 2).

DISCUSSION
Our study demonstrates that a combination of 104 mQTL CpGs
can identify women with breast cancer using hormone-sensitive
surrogate samples (cervical sample; Fig. 2b, c) or breast tissue
(Fig. 2e, f). A recent clinical trial showed that breast magnetic
resonance imaging (MRI) detected cancers at earlier stages
(smaller and less likely node-positive) in women aged 30–55
years with a cumulative lifetime breast cancer risk of at least 20%
than mammography36, and that MRI screening is preferred in
high-risk women37. Hence, taking the distribution of controls in
the validation set as a proxy for the general population, offering
the 13.8% of women within the high PRS313/high WID™-qtBC
group screening will result in identification of 50.4% of all breast
cancers, and these will likely be cancers which might benefit most
from earlier detection, e.g., using MRI or Digital Breast
Tomosynthesis.
Our results indicate that mQTL sites may be sensitive to

environmental impacts and cancer driving mechanisms in a cell-
type specific manner (Figs. 1b and 4), and could thereby act as a
proxy for the cumulative exposure to steroid sex hormones and
other risk factors that are essential for the development of both ER+
(evidenced by the primary preventive effects of tamoxifen and
aromatase inhibitors38,39) and ER- breast cancers (evidenced by the
numerous observational and experimental studies40).
Additional studies will be required to assess whether conve-

nience and acceptability of obtaining a WID™-qtBC index can be
further increased by utilising a self-collected cervicovaginal
sample, a strategy well-accepted for cervical screening41. A side-
by-side comparison of WID™-qtBC with the PRS313 and study of
their benefits – individually or in a combined score – across
different risk grouping strategies in prospectively collected
samples from diverse ethnic populations will be required to
motivate the use of the WID™-qtBC in a clinical setting. Moreover,
samples predating diagnosis will be required to assess how long
in advance of breast cancer onset the WID™-qtBC index could
identify at-risk women and whether it would be suitable for
implementation into primary preventive strategies – both as a risk
indicator and a tool to monitor the efficacy of primary preventive

measures due to its dynamic nature. Further studies will also need
to evaluate the real-world sensitivity and specificity to avoid
overdiagnosis, a common shortfall of PRS screening that can cause
negative emotions for patients and substantial financial burden
for healthcare providers11.
The significance of our findings should also encourage other

groups to assess mQTLs for other diseases in surrogate tissues
which are histologically and biologically more closely connected
to the organ at risk.

METHODS
Study overview
An overview of samples used in this study is shown in
Supplementary Table 1. We initially identified the top variable
CpGs in N= 50 breast samples (“breast variability set”) from
healthy volunteers (n= 14), BRCA1/2 mutation carriers under-
going risk-reducing surgery (n= 14) or normal tissue adjacent to
triple negative cancers (n= 22), and evaluated them in
n= 666 samples from 222 women for which matched cervical,
buccal, and blood samples were collected (“matched surrogate
samples”). To derive a new classifier index based on mQTL loci,
samples from the FORECEE case-control study31 were utilised:
“discovery set” samples were collected with the intent of index
development, while the “validation set” was only used for index
validation. The WID™-qtBC was evaluated in n= 40 normal breast
tissue samples before and after vitamin or mifepristone treatment
(“breast treatment set”), as well as normal breast samples (n= 14)
and normal breast samples adjacent to triple negative cancers
(n= 22) (subset of the “breast variability set”). Of note, the “breast
variability set” did not influence the risk score development or
training, it was solely used to highlight differential variability of
CpGs in different tissues.

Breast tissue samples
Breast variability set (n= 50). Breast variability set samples were
derived from two sources. The first set contained a total of 42
breast samples from premenopausal women aged 19–54 years:
normal breast tissue from 14 women who underwent cosmetic
breast operations, normal breast tissue from women who under-
went prophylactic mastectomies due to a BRCA1 (n= 10) or a
BRCA2 (n= 4) mutation, and 14 normal samples from women who
underwent surgery for triple-negative breast cancer (normal tissue
adjacent to the cancer was collected). All samples were collected
fresh from theatre and processed within 1 h of surgical excision.

Table 1. Significantly increased risk of breast cancer for individuals with both a high PRS313 and high WID™-qtBC index.

Risk group Cases (n) Controls (n) Odds ratio 95% CI P value

Discovery set

low PRS313, low WID™-qtBC 16 301 1 (Reference) – –

high PRS313, low WID™-qtBC 23 221 1.9 1–3.9 p= 4.61e-02

low PRS313, high WID™-qtBC 89 155 11 6.2–19 p= 7.26e-22

high PRS313, high WID™-qtBC 184 132 26 15–47 p= 3.04e-52

Validation set

low PRS313, low WID™-qtBC 14 70 1 (Reference) – –

high PRS313, low WID™-qtBC 18 59 1.5 0.69–3.4 p= 3.26e-01

low PRS313, high WID™-qtBC 24 53 2.2 1.1–4.9 p= 4.06e-02

high PRS313, high WID™-qtBC 55 28 9.6 4.7–21 p= 4.80e-11

Cut-offs were defined based on the median PRS313 and WID™-qtBC (high scores were above the median). P values and odds ratios were estimated using
median-unbiased estimation. Statistically significant values are shown in bold.
Low and high grouping was defined on median values of the respective risk score in each set. High scores were above the median, while low scores were
defined as equal to or below the median.
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Fresh samples were rapidly frozen in Liquid Nitrogen and stored at
−80° C. Ethical approval was obtained from the NRES Committee
East of England (reference number 15/EE/0192). The second set
contained an additional n= 8 normal-adjacent samples (‘ipsilat-
eral-normal’) from Gene Expression Omnibus dataset GSE133985.

Breast validation set (n= 36). The breast validation set was a
subset of the breast variability set and comprised normal (n= 14)
and normal tissue adjacent to a triple-negative breast cancer
(n= 14) from the breast variability set plus an additional n= 8
normal-adjacent samples (‘ipsilateral-normal’) from Gene Expres-
sion Omnibus dataset GSE133985.

Breast treatment set (n= 40). Normal breast tissue samples
before and after two months of Vitamin (n= 22 samples at two
timepoints) or anti-progestine Mifepristone (50 mg every other
day, n= 18 samples from two timepoints)) from the trial
“Mifepristone treatment prior to insertion of a levonorgestrel
releasing intrauterine system for improved bleeding control – a
randomised controlled trial” (EudraCT number: 2009-009014-40)
were obtained as previously described in ref. 35.

Matched surrogate samples
Matched cervical, buccal, and blood samples from 222 healthy
volunteers were part of the FORECEE programme (Female cancer
prediction using cervical omics to individualise screening and

prevention - 4 C)42, a multi-centre study involving several
recruitment sites in five European countries (the UK, Czech
Republic, Italy, Norway, and Germany). The FORECEE programme
had ethical approval from the UK Health Research Authority (REC
14/LO/1633) and all other contributing centres42. Participants
were aged >18 years and <86 years. After signing an informed
consent, participants completed a pre- and post-enrolment
questionnaire.
Cervical liquid-based cytology samples were collected at

appropriate clinical venues by trained staff using the ThinPrep
system (Hologic Inc., cat #70098-002). Cervical cells were sampled
from the cervix using a cervix brush (Rovers Medical Devices, cat
#70671-001), which was rotated 5 times through 360 degrees
whilst in contact with the cervix to maximise cell sampling. The
brush was removed from the vagina and immersed in a ThinPrep
vial containing Preserve-cyt fluid and then pushed against the
bottom of the vial 10 times to facilitate release of the cells from
the brush into the solution. The sample vial was sealed and stored
locally at room temperature. Buccal cells were collected using two
Copan 4N6FLOQ Buccal Swabs (Copan Medical Diagnostics, cat
#4504 C) by firmly brushing the swab head 5-6 times against the
buccal mucosa of each cheek. The swabs were re-capped and left
to dry out at room temperature within the sampling tube which
contains a drying desiccant. 2.5 ml of venous whole blood was
collected in PAX gene blood DNA tubes (BD Biosciences #761165)
and stored locally at 4 °C. All samples were shipped to University
College London (UCL) at ambient temperature. Biological samples
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Fig. 4 Dynamic changes of the WIDTM-qtBC and association with non-genetic characteristics. a Matched breast biopsy samples in healthy
women before and after two months of vitamin or mifepristone treatment. 7/9 (77.8%) women in the mifepristone group showed a reduction
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were given an anonymous Participant ID Number, which was
assigned to the person’s name in a securely stored link file.

Discovery and validation sets
Samples from the case-control study (442 breast cancer cases and
1094 matched cancer-free controls, Supplementary Figure 1) were
part of the FORECEE programme (described above), and all
abovementioned criteria applied. Women diagnosed with breast
cancer (case) or a non-malignant benign gynaecological condition
(control) were recruited from outpatient hospital clinics in the five
study sites, while the healthy volunteers were recruited through
outreach public engagement campaigns in the UK. Women with a
current diagnosis of (a) primary breast cancer with poor prognosis
features (Grade III and/or T2/3 and/or N1/2 and/or hormone
receptor positive) were recruited prior to receiving any systemic
treatment (chemo- or endocrine or trastuzumab, etc.) or surgery or
radiotherapy. Details of cancer histologies are outlined in
Supplementary Table 2.
The discovery set controls were initially matched one-to-one

with cases based on menopausal status, age (5-year age ranges
where possible), and recruitment centre/country. However, due to
an imbalance in recruitment of cases and controls at some centres,
a number of cases were matched on age and menopausal status
alone. Cancer histological data was collected post-recruitment
either by clinicians directly involved in the diagnosis/treatment of
the cancer cases or by a nominated data manager with access to
the in-house hospital systems.

Sample processing and DNA extraction
When preparing for sample storage in the laboratory, cervical
samples were poured into 50ml Falcon tubes and left to sediment
at room temperature for 2 h. 1 mL wide bore tips were then used
to transfer the enriched cellular sediment into a 2mL vial. The
cervical sediments were washed twice with PBS, lysed, and stored
temporarily at −20 °C ahead of extraction. The Copan 4N6FLOQ
Buccal Swabs were cut and lysed sequentially in the same aliquot
of lysis buffer prior to temporary storage at −20 °C ahead of
extraction. Whole blood samples were simply held transiently at
−20 °C until DNA extraction. DNA was extracted from whole
blood, cervical, and buccal tissue lysates on a Hamilton Star liquid
handling platform using the Nucleo-Mag Blood 200 µl kit
(Macherey Nagel, cat #744501.4) with prior modifications for
optimal lysis of cervical cell pellets and paired buccal swabs. For
breast tissues, DNA was extracted from up to 40mg of tissue using
the Lipid Tissue kit from Macherey Nagel (cat # 740471.50), and
the manufacturer’s instructions were followed. DNA concentration
and quality absorbance ratios were measured using Nanodrop-
8000, Thermoscientific Inc. Extracted DNA was stored at −80 °C
until further analysis.

DNA methylation analysis
Cervical, buccal, and breast tissue DNA were normalised to 25 ng/µL
and 500 ng total DNA was bisulfite modified using the EZ-96 DNA
Methylation-Lightning kit (Zymo Research Corp, cat #D5047) on the
Hamilton Star Liquid handling platform. 8 µL of modified DNA was
subjected to methylation analysis on the Illumina InfiniumMethyla-
tion EPIC BeadChip (Illumina, CA, USA) at UCL Genomics according
to the manufacturer’s standard protocol.
All methylation microarray data were processed through the

same standardised pipeline running in R version 4.0.2. Raw data
were loaded using the R package minfi, version 1.36.0. Any samples
with median methylated and unmethylated intensities < 9.5 were
removed. Any probes with a detection p-value > 0.01 were
regarded as having failed. Any samples with >10% failed probes,
and any probes with >10% failure rate were removed from the
dataset. Beta values from failed probes (approximately 0.001% of

the dataset) were imputed using the impute.knn function as part of
the impute R package, version 1.62.0. Non-CpG probes (2932), SNP-
related probes as identified by Zhou et al.43 (82,108), and chrY
probes were removed from the dataset. An additional 6102
previously identified probes that followed a trimodal methylation
pattern characteristic of an underlying SNP were removed.
Background intensity correction and dye bias correction were

performed using the minfi single sample preprocessNoob func-
tion. Probe bias correction was performed using the beta mixture
quantile normalisation (BMIQ) algorithm of the ChAMP package,
version 2.18.3.
The fraction of immune cell contamination, and the relative

proportions of different immune cell subtypes in each sample,
were estimated using the EpiDISH algorithm utilising the
epithelial, fibroblast and immune cell reference dataset, version
2.6.1. The top 1000 most variable probes (ranked by standard
deviation) were used in a principal component analysis. Statistical
tests were performed in order to identify any anomalous
associations between plate, sentrix position, date of array
processing, date of DNA creation, study centre, immune
contamination fraction, age, type (case versus control), and the
top ten principal components. Finally, two-thirds of the discovery
dataset was randomly selected for use as the training dataset and
the remaining third was allocated to the internal validation
dataset.

Statistical analyses for classifier development
mQTL data was obtained from Supplementary Table 5 of the
supplementary information of a recent publication by Ho et al.33.
The 822 probes at loci associated with breast cancer risk were
extracted, of which 704 unique CpGs were present in the EPIC
array datasets after QC and filtering. The Discovery set was
randomly split 70–30% into a training and internal validation set.
The R package glmnet, version 4.1.3, was used to train L1 or L2
regularised classifiers (lasso or ridge regression) based on these
704 mQTL-associated CpGs in the training set. Ten-fold cross-
validation was used in the training set via the cv.glmnet function
in order to determine the optimal value of the regularisation
parameter lambda. The AUC in the internal validation set,
computed using the pROC package, version 1.18.0, was used as
a metric of classifier performance. The final classifier was selected
based on the highest AUC obtained in the internal validation
dataset. The training and internal validation datasets were then
combined, and the classifier was refitted using the entire
discovery dataset using lasso regularisation. This finalised classifier
was then applied to the external validation dataset and the
corresponding AUC was computed.
Denoting the 104 selected mQTL CpGs as β1; ¼ ; βn and the

regression coefficients from the trained classifier as w1; ¼ ;wn,
then WID™-qtBC index is (Eq. 1)

Xn

i¼1

ðwiβi � μÞ=σ (1)

where μ and σ are defined as the mean and standard deviation of
the quantity

Pn
i¼1wiβi in the Discovery dataset (that is, the index

is scaled to have zero mean and unit standard deviation in the
Discovery dataset). The included CpGs and coefficients are
displayed in Supplementary Table 4.

SNP genotyping, QC, and computation of the polygenic risk
score
Genotyping of 318 breast cancer cases and 850 controls from the
discovery set and 113 breast cancer cases and 225 controls in the
validation set was conducted using the Illumina 650k Infinium
Global Screening Array. Whole blood DNA was normalised to
75 ng/µL and Global Screening Array (GSA). Whole blood DNA was
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normalised to 75 ng/µL and a total of 300 ng applied to the
Infinium Global Screening Array – 24 V2 (Illumina, CA, USA) at UCL
Genomics according to the manufacturer’s standard protocol.
Genotype calling was performed using GenomeStudio, with
genetic variants found to be clustering poorly being removed
from further analyses. One control subject from the Discovery set
failed to genotype. For duplicate genetic variant pairs, the variant
within each pair with the lowest calling and clustering score was
excluded. Autosomal SNPs were used in subsequent QC and
PRS313 analyses (except for checks for sex mismatches, where the
X chromosome was used to infer sex).
General subject and single nucleotide polymorphism (SNP)

quality control (QC) was performed using PLINK version 1.944. In
the Discovery set, three breast cancer cases and eight controls
with a call rate less than 95% were excluded, and one breast
cancer and three controls were further removed due to genetically
inferred sex not being female. No subjects failed QC in the
Validation set. Genetic variants with missing genotype rate greater
than 5%, minor allele frequency (MAF) less than 1%, or a
significant departure from Hardy-Weinberg equilibrium
(p < 5 × 10−6) were excluded. KING45, a relatedness inference
algorithm, was next used to identify duplicate/monozygotic twin
or first-degree relative pairs. In the Discovery set, one control
subject pair was identified as being a duplicate/monozygotic twin
pair, and nine control pairs were inferred to be first-degree
relatives. In the Validation set, one control pair was inferred to be
first-degree relatives. The subject in each related pair with the
lower call rate was excluded. In the Discovery set, 314 breast
cancer subjects and 816 controls, and 479,105 variants were
retained after SNP QC, of which 809 and 312 overlapped with
samples that passed QC for methylation. In the Validation set, 113
breast cancer cases and 224 controls, and 501,209 variants passed
QC, of which 210 and 111 overlapped with samples that passed
QC for methylation.
Non-European subjects were identified by plotting the top two

principal components, generated using GTCA version 1.93.2, for
the Discovery or Validation set, respectively, and 270 HapMap
phase II release 23 samples (CEU, YRI, JPT, and CHB individuals),
downloaded in PLINK-formatted binary files from http://
zzz.bwh.harvard.edu/plink/res.shtml. Subjects not found to cluster
around HapMap European samples were excluded from further
analysis. After excluding non-European subjects, 312 breast cancer
cases and 809 controls were retained in the Discovery set, while
111 breast cancer cases and 210 controls were retained in the
Validation set.
Using the Michigan Imputation Server46 and the 1000 Genomes

Phase 3 reference panel, the SNP discovery dataset went through
further QC before being phased (Eagle2) and imputed. Variants
were strand, allele, genetic position, or allele frequencies were not
concordant with the 1000 Genomes Phase 3 reference panel were
removed before phasing and imputation using Strand Tools. After
imputation, exclusion of variants with imputation R2 < 0.5 and
removal of variants with 3 or more alleles, both the Discovery and
Validation set contained 303 of the 313 SNPs used by Mavaddat
et al.4 to develop a 313 SNP breast cancer polygenic risk score
(PRS313) were imputed. Of note, only 293 SNPs of the 303 SNPs in
each set were overlapping between the Discovery and Validation
set. We constructed the breast cancer PRS313 for each subject as
follows (Eq. 2):

PRSj ¼
X303

i¼1

β̂ixij (2)

where, β̂i is the log odds ratio for the i-th SNP taken from publicly
available Oncoarray summary association results (combined
Oncoarray, iCOGs and BCAC overall breast cancer beta values) in
the publication by Mavaddat et al. and xij is the number of copies

of the effect allele present in each discovery cohort subject. Scores
were generated using PLINK version 1.9.

High and low risk stratification
Stratification into high and low PRS313 or WID™-qtBC values was
conducted by computing the median PRS313 or WID™-qtBC across
all samples in a given set. High PRS313 or WID™-qtBC scores were
defined as above the median, while low PRS313 or WID™-qtBC
scores were equal to or below the median. For risk stratification
using both PRS313 and WID™-qtBC, the groupings (high/low) as
described above were combined.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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