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Disturbance rejection into the optimisation. Unlike most existing tracking MPC setups, a new and unique formulation is
Disturbance observer adopted by taking the pseudo steady disturbance as an optimisation decision variable, rather than

Offset-free tracking

1 o . directly driven by the disturbance estimate. This new setup is able to decouple estimation error
Aerial physical interaction

dynamics, significantly contributing to the guarantee of recursive feasibility, even if the disturbance
or its estimate changes rapidly. Moreover, towards optimal coexistence with disturbances, offset-free
tracking of a compromised reference can be achieved, if rejecting the disturbance conflicts with safety-
critical specifications. Finally, the benefits of the proposed method have been demonstrated by both

numerical simulations and experiments on aerial physical interaction.
© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
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1. Introduction occurrence of the strong wind, staying at such a critical point can
be regarded as an acceptable compromise informed by the safety
1.1. Motivation guarantee.

Motivated by this example, it may be too ambitious for the

Embedding safety constraints into the control design would safety-critical systems to reject all the disturbances to reach the
benefit many robotic systems operated in uncertain environ-  Predefined specifications. An alternative way is to first guarantee
ments, ranging from manipulators to mobile platforms (Ferraguti ~ Safety under all possible disturbance realisations but take the
et al., 2022). However, it is recognised that safety-critical control ~ OPPortunity to achieve the given objective if the disturbance can
for robotics is susceptible to disturbances, either in the high-leve] ~ De safely rejected. Following this thinking, a unified framework
decision-making or in the low-level control performance (Hew- is presented here for the tracking problem of constrained, linear,

ing, Wabersich, Menner, & Zeilinger, 2020). An example of aerial dynarplc systems in the presence of bouF‘F‘Ed dlstu'rbances, which
physical interaction, as illustrated by Fig. 1, implies that unex- contains not only several sufficient conditions on disturbance sur-

pected disturbances may result in catastrophic behaviour. Since v1yal and rejection but also ? new optl_rr.llsatlon—based controller
. . . s . s with the guarantee of safety’ and stability.
it could be risky to continue the original landing decision in the

1.2. Related work
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Fig. 1. A motivating example: Aerial physical interaction. (a) Without wind. (b) With wind. (c) Forces under the hover mode. In Fig. 1(a) and (b), A is the initial
position, B is the target position, and C is the critical point. Suppose that the operator plans to let the drone safely move from points A to B, following an optimal
trajectory given in Fig. 1(a), but the unexpected strong wind exists. Physically, the drone should face the wind and generate suitable thrust to compensate for the
wind (drag) and gravity, as shown in Fig. 1(c). Note that the attitude (roll) and thrust should be kept within safe ranges. However, once the drone begins to descend,
its thrust vector should be decreased and tilted, but there could not be enough force to compensate for the wind, which implies that the drone may be blown away
or even crashed, as shown by Fig. 1(b). Hence, the “best performance” that can be achieved with the heavy wind is to stay in a critical point C, which may be far
away from the target position B, with the suitable attitude and thrust to just compensate for the wind and gravity.

still an open problem to provide solutions without being too con-
servative. The first category is to further enhance a pre-designed
nominal controller whose performance is robust against certain
uncertainties. Methods under this category generally have the
attractive property of an add-on patch, i.e., still keeping the well-
tuned nominal controller but with an additional mechanism to
modify the control input once any constraint becomes active. One
classical approach under this category is the reference governor
(RG, see Garone, Di Cairano, and Kolmanovsky (2017) and Kol-
manovsky, Garone, and Di Cairano (2014) for detailed surveys
and recent successful applications in safe human-robot coexis-
tence (Merckaert et al., 2020) and legged robots control (Bratta
et al.,, 2022)). In the framework of RG, a low-level controller is
designed to robustly stabilise the system and an add-on filter
for reference is designed to ensure constraint satisfaction. The
recursive feasibility of RG can be guaranteed due to the robust
invariance of the admissible set, however, the fact that only one-
step prediction in the future is required to satisfy constraints
may lead to poor performance (Rossiter & Kouvaritakis, 1998).
Although RG is promising in safety-critical systems, it may be
not suitable for the scenario where disturbances make a signif-
icant impact on the performance, e.g., see Fig. 1. As its name
suggested, RG often assumes that constraint violations are caused
by the change from the reference, and hence, its output admis-
sible set is calculated for all the possible disturbances in a given
set (Kolmanovsky et al., 2014, Sec. 2), which fails to fully exploit
disturbances.

Another prominent method belongs to the first category is
based on the control barrier function (CBF) (Ames, Xu, Grizzle,
& Tabuada, 2016), which has been widely applied in robotics
(Farzan, Azimi, Hu, & Rogers, 2022; Ferraguti et al., 2022). The
safety condition described by the CBF with a well-defined relative
degree, together with the stability condition described by the
control Lyapunov function (CLF), are both regarded as the add-
on constraints on the pre-designed nominal controller (Ames
et al, 2019). The CBF-CLF-based safety framework is flexible
as it can incorporate both the box constraints and the state-
function ones, which, however, may bring considerable difficul-
ties in guaranteeing the feasibility. Only a few works have been
proposed to explore the feasibility, even for the pure CBF con-
straints, e.g., Xu (2018) and Xiao, Belta, and Cassandras (2022).
The conditions on the feasibility-guaranteed CLF constraints re-
main unsolved mainly due to the lack of a general CLF con-
struction method. The practical approach to the feasibility of CLF
is to introduce a relaxation variable during optimisation (Ames
et al,, 2019; Ames et al.,, 2016), which may be unavoidably large
and break the performance of the pre-designed convergence.

Recent works considering the safety problem under the unknown
environment have been focused on modifying either the nominal
controller (Yan, Liu, Oh, & Chen, 2021) or the CBF using the
disturbance estimate (Das & Murray, 2022; Wang & Xu, 2022).
Different from the first kind of method, the second category
directly formulates the control problem into a constrained opti-
misation without any hidden nominal controller. Among those,
a widely-used method is model predictive control (MPC); this
method has seen significant success in recent decades from the
conventional process control to robotics (Corsini et al.,, 2022;
Incremona, Ferrara, & Magni, 2017; Lindqvist, Mansouri, Agha-
mohammadi, & Nikolakopoulos, 2020), and has established itself
as the primary control method for handling system constraints
with several promising properties, e.g., guarantee of recursive
feasibility and asymptomatic stability (Rawlings, Mayne, & Diehl,
2017). Due to its explosive growth, readers are directed to Mayne
(2014) and Mayne, Rawlings, Rao, and Scokaert (2000) for de-
tailed surveys; here we only focus on MPC design with the re-
quirement of reference tracking while explicitly considering dis-
turbance rejection. In order to obtain the offset-free tracking,
appropriately embedding the model of the reference and the
disturbance is necessary based on the well-known internal model
principle (Isidori, 1995). Several early works have established a
popular setup, generally named as the disturbance model formu-
lation (Maeder, Borrelli, & Morari, 2009; Pannocchia & Bemporad,
2007; Pannocchia & Rawlings, 2003). This setup regards the cur-
rent disturbance estimate as an initial state in the prediction
model and lets the predicted disturbance in the horizon fol-
low a given model. Several variants of offset-free MPC exist,
e.g., the disturbance observer approach (Tatjewski, 2014) and
the velocity form approach (Betti, Farina, & Scattolini, 2013),
but they all show strong similarities with the disturbance model
formulation (Pannocchia, 2015; Pannocchia, Gabiccini, & Artoni,
2015). Recent years have witnessed the wide adaptation of this
setup in robotics applications which require high-precision track-
ing (Carron et al., 2019; Huang, Hofer, & D’Andrea, 2021; Liu,
Chen, & Andrews, 2012). However, establishing theoretical con-
ditions for this setup is very challenging because of the combined
presence of state/disturbance observer, target calculation and
receding-horizon optimisation. Indeed, almost all available meth-
ods for offset-free MPC follow a static analysis, i.e., assuming
that the system can reach an asymptotically stable equilibrium,
and then proving that offset-free control is attained at such
an equilibrium (Maeder et al., 2009; Pannocchia, 2015; Pannoc-
chia & Bemporad, 2007; Pannocchia et al., 2015; Pannocchia &
Rawlings, 2003; Tatjewski, 2014). However, this static analy-
sis cannot well guarantee the dynamic convergence, and easily
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loses the recursive feasibility when the reference or disturbance
changes (Rawlings et al., 2017; Rossiter, 2006). Towards the fea-
sibility issue of the changing reference, a sensible way to increase
the optimisation dimensions by involving artificial state and input
as additional decision variables is proposed in Rossiter (2006).
Following this contribution, some works have been done in other
similar contexts, e.g., Betti et al. (2013), Limon, Alvarado, Alamo,
and Camacho (2008), Limon, Ferramosca, Alvarado, and Alamo
(2018) and Simon, Lofberg, and Glad (2014), where Limon et al.
(2008) creatively use a special algebraic equation to parame-
terise the steady state and input, which could further save the
computing resources.

The challenge in guaranteeing the recursive feasibility of MPC
under disturbances lies in the time-varying estimation errors and
unpredictable disturbances. An intuitive idea is to take robust-
ness into account for MPC design, for example using tube-based
MPC (Chisci, Rossiter, & Zappa, 2001; Mayne, Seron, & Rakovic,
2005). This kind of MPC develops a connection between the
above-mentioned two categories in the sense that the system is
optimised around a pre-designed nominal trajectory with tight-
ened constraints. Since the tube-based MPC design is analogous to
the nominal one, there are only a few works on reference tracking
or disturbance rejection. In Limon, Alvarado, Alamo, and Camacho
(2010), the tracking MPC is designed based on a nominal model,
where all the disturbances in the original system are ignored.
This approach is relatively conservative in the tube design as it
has to cover all the possible realisation of the disturbance. In Xie,
Dai, Lu, and Xia (2021), a feed-forward component is designed
first based on the disturbance estimate in order to compensate
for the external disturbance as much as possible; a stabilising
MPC is then designed with the tube, which is only needed to
cover the uncompensated disturbance and disturbance estima-
tion error. Although recursive feasibility can be guaranteed by
these methods, disturbances are all regarded as deleterious things
to the control performance, and hence, are rejected intuitively,
rather than being fully exploited.

1.3. Contributions

In this paper, we propose a novel optimal safety-critical con-
trol strategy for disturbed dynamic systems with the guarantee
of safety and stability. The proposed method follows a natural
and intuitive idea: Primarily keep the system in a static and
safe equilibrium, and then cautiously drive the equilibrium to
the given target as close as possible. To realise the first half
of the idea, learning from disturbances will be required. The
disturbance observer provides an estimation approach for the
unknown disturbance. Here, we adopt only an original version of
disturbance observer (DOB) (Chen, Ballance, Gawthrop, & O'Reilly,
2000), which can achieve asymptotic estimation when the distur-
bance is constant, but pay more attention to fully exploiting the
disturbance estimate.

The contributions of this paper are threefold. As the main
contribution, this paper provides a unified framework of safety-
critical control design with the intervention from disturbances.
From a high-level view, the proposed framework fully exploits
the opportunities raised by disturbances. Disturbance estimate is
not only used to improve the tracking accuracy as the conven-
tional compensation-based approaches (Chen, Yang, Guo, & Li,
2015; Sariyildiz, Oboe, & Ohnishi, 2019) but also acts as a monitor
to examine whether the current disturbance can be fully rejected.
To obtain the condition on disturbance rejection of safety-critical
systems, this paper shifts the focus from the disturbance side
to the output reachability by defining a disturbance estimate-
based output admissible (DEOA) set. Once the given reference
exceeds the DEOA set (which implies that rejecting the current
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Fig. 2. Different setups in the tracking MPC. (a) The proposed method: A
pseudo steady disturbance-based prediction. (b) The conventional method: A
disturbance estimate-based prediction.

disturbance is a risky decision), the proposed method will transfer
the objective of fully rejecting the disturbance into optimally
coexisting with the disturbance.

Another contribution is that this paper guarantees recursive
feasibility for the first time when the disturbance estimate is
involved in online optimisation, with the mild assumption that
the external disturbance and its changing rate are bounded. To
well demonstrate this contribution, we illustrate the setups of
tracking MPC in Fig. 2, explicitly compared with the conventional
offset-free MPC (Rawlings et al., 2017, Chaps. 1.5 and 5.5). In this
paper, the recursive feasibility is guaranteed by embedding the
quartet of pseudo steady input, output, state, and disturbance
(IOSD) into optimisation. Note that as shown in Fig. 2(a), the pre-
diction model here is online optimised and driven by a decision
variable, the pseudo steady disturbance, rather than the distur-
bance estimate as in the conventional offset-free MPC. Hence,
we are able to decouple the prediction model from the rapid
change of disturbance estimates, which significantly contributes
to the guarantee of recursive feasibility or safety. In contrast to
the proposed method, as clearly stated in Rawlings et al. (2017,
Page 356, Chap. 5.5.3), recursive feasibility of the conventional
offset-free MPC can only be guaranteed in fairly limited scenarios,
i.e.,, when the changing rate of estimation dynamics is sufficiently
slow.

As a by-product, the last contribution lies in that this paper
establishes a separation principle between the estimation and
state feedback designs. In the context of the proposed MPC de-
sign, only the robustly asymptotic stability (RAS) set of estimation
error would affect the tube computation, which implies that the
proposed method not only copes with the peak phenomenon
of high-gain observer (El Yaagoubi, El Assoudi, & Hammouri,
2004; Wang, Zuo, Wang, Yang, & Hu, 2022), but also renders
the freedom of using a variety of estimation approaches. Besides,
due to the reduced-order DOB and disturbance error-based tube
design, the proposed method is initialisation-free, i.e., it works
for any possible initial state of disturbance estimate, which may
not be achieved by most existing methods. In the conventional
output MPC, the initial estimation error is required to be within a
pre-designed tube (Rawlings et al., 2017, Chap. 5); however, since
that disturbance is unknown, this initial guess on the disturbance
is generally difficult in practice or has to be quite conservative to
be satisfied, otherwise an inappropriate initial guess may make
the optimisation problem infeasible at the beginning.
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Table 1
The frequently used sets and variables.

X, U State and input constraints, (1)

X, U Tightened state and input constraints, (16)

Xe(+) Terminal (state) set, (16)

Xs, Ug Steady state and input set, (21)

Y(+) Disturbance estimate-based output admissible set, (9)

Dy, Dy Disturbance and its changing rate sets, (2)

D Robustly asymptomatic stability set of disturbance estimation
error, (5)

Sk Robustly positive invariant set of disturbance error, (15)

Ds Steady disturbance (estimate) set, (6)

Py Optimisation problems, e.g., P4 in (7), P; in (10), Py in (14),
and Ps in (24)

(+)s Pseudo steady variables, e.g., us, ys, X5, ds in (14)

8 Estimated variables, e.g., d in (4)

ey or () Constants, e.g., ¢, in (11) and d,, r. in Theorem 18

(P Optimal variables for static optimisation problem, e.g., d}’ in
(7) and r{ in (10)

() Optimal variables for MPC optimisation problem, e.g., x* and
u* in (14)

1.4. Organisation, notation and common definitions

The remainder of this paper is organised as follows. In Sec-
tion 2, the control objective is first presented and followed by
sufficient conditions on disturbance survival and rejection, which
provide preliminaries for the proposed MPC framework in Sec-
tion 3. The theoretical analysis on recursive feasibility and stabil-
ity, and the numerical example are also provided in Section 3. The
method developed in the paper is illustrated by an aerial physical
interaction problem with experiments reported in Section 4. Fi-
nally, conclusions are provided in Section 5 and main proofs are
located in Appendix A and Appendix B for the sake of readability.

Notation: T and R are integers and real numbers, respectively,
where superscripts or subscripts may be added to give specific
ranges. A C-set is a convex, compact set containing the origin.
Consider a € R" and b € R™, then col(a, b) := [a”, bT]"; for a set
I' C R™™ the projection of I" onto a is defined as Proj,(I") :=
{fa € R" | 3b € R™, col(a,b) € I'}. Given two sets A C R"
and B C R", several basic set algebra operators are defined by
A®B:={a+blacAbeB},ASB:={a|a®B C A} and
KA = {Ka | a € A} where K € R™", Given a set X C R", we
define its complement as X’ := R™\ X. The matrices O, € R™™
and I, € R™" denote a zero matrix and an identity matrix,
respectively. For any matrix A € R™", p(A) denotes the spectral
radius. For any vector x € R", |x| denotes the 2-norm and |x|,2,
is defined by |x|,2, = x'Px, where P € R™" is a symmetric
matrix. For readability, the frequently used sets and variables in
this paper are listed in Table 1.

The following definitions on robustly positive invariant (RPI)
set (Rawlings et al, 2017, Page 217, Defin. 3.7) and robustly
asymptotic stable (RAS) set (Rawlings et al., 2017, Page 230, Defin.
3.11) are useful in the design and analysis of this paper.

Definition 1. A set S is robustly positive invariant for system
xT =f(x,w), we W if, for every x € S, f(x, W) C S.

Definition 2. Suppose the sets S; and S,, S; C S, are robustly
positive invariant for system x* = f(x, w), w € W. The set S, is
robustly asymptotic stable for x* = f(x, w) in S; if there exists
a K£ function B(-) such that every solution ¢(-; x, w) of x* =
f(x, w) with initial state x € S; and any disturbance sequence
w e W satisfies H(¢(i; x, w), Sp) < B(H(x,Sy),1i), Vi € I,
where i is the time index and H(x, S;) := infcs, [x — y|.
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2. Problem formulation
2.1. System model

Consider a discrete-time system of the form:
x(k + 1) = Ax(k) + Bu(k) + Byd(k)
y(k) = Cx(k)

where x(k) € R" is the state; u(k) € R™ is the control; y(k) € RP
is the output; and d(k) € R™ is the unknown disturbance; k €
I is the current time, which may be skipped without causing
ambiguity. The full state is measurable and the state and input
trajectories are subject to the constraint (x(k), u(k)) € X x U,
where both X and U are known C-sets, representing the state and
input constraints, respectively. The initial state satisfies x(0) € X.
The disturbance is assumed to satisfy the following assumption.

(1)

Assumption 3.
bounded by:

d(k) € Dy, Ad(k) € Dy, Vk €159 (2)
where Ad(k) .= d(k + 1) — d(k); Dy and D, are known C-sets.

The disturbance and its changing rate are

The objective of this paper is to design a composite controller
u(k) = rn(x(k), d(k), r(k)) with a well-designed disturbance es-
timate d(k) and a given reference r(k) such that the controlled
plant:

x(k + 1) = Ax(k) + Bkn (x(k), d(k), r(k)) + Byd(k) (3)

survives all disturbances satisfying Assumption 3. Furthermore,
for any specific disturbance, the proposed controller will take
every opportunity to fully reject it. To make the control objective
clearer, we describe three different levels of interaction between
the plant and the disturbance, whose definitions are given as
follows.

Definition 4. Consider system (1) under the disturbance satis-
fying Assumption 3.

(1) Disturbance Survival: For a given disturbance d(k), if the
safety constraint (x(k), u(k)) € X x U, k € I is always
fulfilled, system (1) is said to survive disturbance d(k). If
system (1) survives all possible disturbance realisations
satisfying Assumption 3, system (1) is said to survive all
disturbances.

Disturbance Rejection: For a given disturbance d(k), if the
proposed controller is able to steer the output y(k) to the
given reference r(k) and system (1) survives disturbance
d(k), disturbance d(k) is said to be fully rejected.
Disturbance Optimal Coexistence: For a given disturbance
d(k), if the proposed controller is able to steer the output
y(k) to an optimal solution corresponding to a predefined
performance index, but fails to fully reject disturbance d(k),
and system (1) survives disturbance d(k), system (1) is said
to optimally coexist with disturbance d(k).

2

~—

(3

=

Here, reference r(k) is assumed to be unknown in advance,
representing an input from human operator or a high-level de-
cision making.

Remark 5. Disturbance survival, rejection, and optimal coexis-
tence are all important aspects of safety-critical control systems,
with emphasis on the intervention from disturbance. Disturbance
survival refers to the satisfaction of safety constraints throughout
the entire duration of system operation under all possible dis-
turbance realisations. On the other hand, disturbance rejection
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further requires the objective to be achieved eventually, such
as offset-free tracking to the given reference under the specific
disturbance. Optimal coexistence is a compromised status when
disturbance rejection cannot be safely achieved.

2.2. Disturbance estimation filter

Since disturbance d(k) is unknown, it is necessary to estimate
it first. Although multiple types of disturbance observers exist
with different features (Chen et al., 2015; Sariyildiz et al., 2019),
we follow only an original version (Chen et al., 2000) but focus
more on the approach of embedding the disturbance estimate
into optimisation. The DOB is designed as follows:

z(k + 1) = (In, — LBg)z(k) + (L — LA — LBgL)x(k) — LBu(k) (4a)
d(k) = z(k) + Lx(k) (4b)

where L € R">" is the observer gain; z(k) € R™ is the auxiliary
variable; d(k) € R" is the disturbance estimate. Given that
the asymptotic estimation in (4) is only applicable to constant
disturbances, it is reasonable to expect that effective disturbance
rejection can only be achieved under the same condition.

Define the disturbance estimation error as d(k) := d(k) — d(k).
Taking DOB (4) into plant (1) yields the following estimation error
system:

d(k + 1) = Aid(k) + Ad(k) (5)

where A;, := I, — LBy. Suppose that there exists an observer gain
L such that A; is stable, i.e., p(A;) < 1, system (5) is input-to-state
stable (ISS) with respect to Ad(k) € . Then robustly asymptotic
stability (RAS) set ID; exists for the estimation error d(k). That is,
there exists a time instant k; such that d(k) € D holds for all
k > k1. In other words, d(k) will be captured by its steady set

Dy := Dy & (—Dy), (6)

i.e., d(k) € D holds for all k > k;. )

It is worth noting that even a small initial error d(0) may
lead to a large estimation error due to the pursuit of faster
estimation performance. If the disturbance estimate is directly
into the closed-loop system, then it will yield a peak error on
the system or even break the safety (ElI Yaagoubi et al., 2004;
Wang et al.,, 2022). To avoid this peak phenomenon, we design
the following optimisation problem:

A

Py (El) . d} =argmin |d; —d (7)

df SN

The optimisation problem Py(d) generally acts as a saturation
function for the disturbance estimate: Once the disturbance es-
timate is out of the steady disturbance set Dy, it will return the
closest one on the boundary of Dj.

Remark 6. A common way to construct the RAS set D; for
the estimation error dynamics is using the sub-level set of the
Lyapunov function of system (5). Readers can refer to Jiang and
Wang (2001, Lemma 3.5) for the detailed construction approach.

2.3. Interactions with disturbances

With the filtered disturbance estimate, we are now able to
give several sufficient conditions on surviving and rejecting dis-
turbances, which are based on the steady state and input sets,
Xs; € X and Us; C U. These two sets, X; and Us, are defined as
the ranges of the current state x and input u that guarantee the
system exhibits a static behaviour for all possible disturbances
d € D, which facilitate the construction of trackable reference
and stability analysis. Here, the steady disturbance set Dy is used
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instead of the real disturbance set D in order to capture the effect
of disturbance estimation error. The steady sets X; and U will be
specifically constructed in Section 3.3.

2.3.1. Disturbance survival

The condition of surviving disturbances is inspired by the
aerial physical interaction scenario in Fig. 1, especially the drone
stays statically in the critical point under the strong wind. Hence,
the system is desired to reach a dynamic equilibrium under all
possible realisations of disturbances. It is also quite necessary,
since if the steady state and input are not able to survive all
disturbances, the system will be either oscillating within the
safety region or “blown away” and break the safety requirement,
as seeing the drone crash case in Fig. 1(b). Both consequences are
not acceptable in practice. Such a consideration can be geometri-
cally formulated by Assumption 7, which is proved to be sufficient
for surviving all disturbances in Lemma 8.

Assumption 7. The steady state, input and disturbance sets
satisfy the following relation:
(A - In)Xs ©® BUS 2 _Bst~ (8)

Lemma 8.
holds.

System (1) survives all disturbances, if condition (8)

Proof. Noting that D, is a C-set, we have that D; contains the
origin, which implies that D; D D;. Suppose that (8) holds, then
for any disturbance d € Dy = —Byd € —ByD; < —ByD,
there exists a pair of (x,u) € X; x Us € X x U such that
(A—I))x + Bu = —Byd. Thus, x™ = x € X; C X. Hence, the
safety constraint (x(k), u(k)) € X x U, k € I is always fulfilled
for all possible disturbance realisations satisfying Assumption 3,
which completes the proof. [ ]

Remark 9. Assumption 7 is consistent with the feasibility re-
quirement of the target calculation in offset-free MPC (Rawlings
et al,, 2017, Chap. 5.5) when the disturbance estimate is bounded
within a given set 5. However, it is important to note that
Assumption 7 provides a pre-design verification criterion that
establishes a safe operating envelope. As demonstrated later in
Theorem 16, this assumption is critical for achieving recursive
feasibility (safety). Besides, the verification process is straightfor-
ward since the construction of the steady constraints X; and Us is
completely independent of any disturbance-related variables, as
explained in Section 3.3. Additionally, based on the definition of
disturbance steady set Dy, Assumption 7 implicitly includes the
requirements on disturbance sets Dy and Dj.

2.3.2. Disturbance rejection and towards optimal coexistence

By Definition 4, a disturbance can be fully rejected if the
reference can be tracked, which implies that the reachability of
output is significant for examining disturbance rejection. We first
define the output admissible set, which is named as disturbance
estimate-based output admissible (DEOA) set to emphasise that
we take full use of the disturbance information and distinguish it
from the definition in reference governor (RG)-based methods.

Supposing that Assumption 7 holds, for any given disturbance
ds € Dy, there must exist at least a pair of (xs, ug) satisfying that
(A — I,)xs + Bug = —Bgyd,. Then, we can define the DEOA set as
follows:

Ys(ds) :={YS = (x5 | (A — In)Xs + Bug = —Byd,
9)
Xs € X, ug € Ug }g CX.

With the DEOA set (9), we can deduce a sufficient condition for
rejecting disturbance.
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Lemma 10. Disturbance d is fully rejected, if condition r € Y,(d)
holds.

Proof. Suppose that r € Y(d), then there exists a pair of (x, u) €
Xs x Us € X x U such that both (A — I,)x + Bu = —Byd and
y = Cx = r hold. Similarly, we have x™ = x and y* = y = r. This
completes the proof. |

Towards optimal coexistence with disturbances, once the ref-
erence is out of DEOA, a cautious way is to generate a reachable or
trackable reference for the system to follow, which is the closest
admissible target under the current disturbance estimate. We
then design the following optimisation problem:

P, (df,r): rf :=arg min | — r|2. (10)
rFEYs d?

It is worth noting that the approach to determine the reachable
reference is extendable to consider the changing rate of reachable
reference to avoid oscillation.

Assumption 11. For a given reference r, there exists a constant
¢, > 0 such that

iy = rfa| < ¢ |dy — dfy| (1

holds, if d}’l € D5 and d})z € Dy are arbitrarily close, where
s .amd'rfo2 are the optimal solutions of P,(df;,r) and P,(dp,, ),
respectively.

Remark 12. Noting that the DEOA set Y,(-) in (10) is the function
of d? and if the difference between d?, and dp, is arbitrarily small,

the difference between the boundaries of Ys(dj?l) and Ys(d})z)

would also be arbitrarily small, so will be the difference between
rj91 and rfoz. This geometric interpretation is depicted in Fig. 3,
where a first-order example is considered. Assumption 11 is a
mathematical expression on the above-mentioned observation
and is in the form of local Lipschitz continuity for convenience
in the subsequent stability analysis. Besides, it is worth noting
that we only assume the existence of the Lipschitz constant c;,
but without any limitation on its size; the Lipschitz constant ¢, is
independent of the following design process, which only affects
the construction of the Lyapunov function W(k). Furthermore,
if polyhedral sets are considered here, (10) can be transformed
into a multi-parametric quadratic programming (mp-QP) prob-
lem with the parameter d}’ appearing only on the right-hand side
of the constraints. Under mild conditions, rf0 is continuous and
piecewise affine with respect to d? (Bemporad, Morari, Dua, &
Pistikopoulos, 2002, Sec. 4), which also naturally verifies Assump-
tion 11. The detailed process using the mp-QP formulation has
been provided in Appendix C.

3. Augmented predictive control framework

To obtain the control objective, surviving all disturbances but
taking every opportunity to reject them, a new tracking MPC frame-
work is proposed under the name augmented predictive control
(APC), which emphasises not only the hierarchical structure but
also the augmented dimensions of optimisation. Before present-
ing the detailed design, the overall control scheme is given by
Fig. 4, where the control input applied to the system (1) is still
following a classical format, that is:

u(k) := K (x(k) — X* (0; k)) + u* (0; k) (12)

where K is the controller gain, which needs to let Ay := A + BK
be stable, i.e., p(Ax) < 1; the given reference and disturbance
estimate are in-explicitly contained in the optimal nominal state
x*(0; k) and input u*(0; k).
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Ug (A—-1I,)zs + Bus = —de%

) ’

i
(A= I,z + Bug, = —Bydy,

Fig. 3. A geometric interpretation of Assumption 11, where A= —1, B=B; =
C =1and U; = X; = [—1, 1]. Two auxiliary lines are drawn, corresponding
to different disturbances d})] and d})z, respectively. To verify the validity of

Assumption 11, three cases need to be considered: (1) r € Ys(d})l) N Ys(dj‘?2 ),
2)re Yf(d}’l)ﬂ YE(d}’Z ),and (3) r € Yf(d}’l)ﬂ Ys(d}’z) orre Ys(d}’l)ﬁYE(dfz ).

3.1. Main results

We are now in a position to specify the new optimisation
problem, whose solution yields the optimal steady input, output,
state, disturbance (IOSD), and nominal state and input. The pro-
posed cost function is given as follows, which is a combination
of the cost function from the conventional tracking MPC and the
penalties on the error between pseudo disturbance and distur-
bance estimate, and that between pseudo output and reference:

Vi (10SD(k), u(k), X(0: k), d(k), r{ (k)
N-1

= Z € (X(i; k) — x5(k), (i k) — us(k)) + Vr(X(N; k) — x5(k))
i=0

+ Vi (dP(k) — ds(k)) + Vy (P (k) — ys(k))
(13)
where
LX(i; k) — x5(k), U(i; k) — ug(k))
= IX(i; k) — xs(K)[3 + [0(E; k) — u(k)[7
Vr(X(N; k) — x5(K)) := |X(N; k) — x5(K)|3
Va(dP(k) — ds(k)) = |d(k) — ds(k)|12)d

Vy("fo(k) —ys(k)) = |r19(k) o yS(k)liy;

X(i; k) denotes the prediction obtained by iterating model i times
from the initial state x(0; k); IOSD(k) denotes the pseudo steady
sequence (us(k), ys(k), xs(k), ds(k)); u(k) denotes the control se-
quence (u(0; k), u(1; k), ..., u(N—1; k)); N denotes the prediction
horizon; Q, R, P, Py, P, are the positive definite weightings, and
the terminal weighting P is designed to cover the cost-to-go and
guarantee the stability.

The proposed APC is derived from the following optimisation
problem:

0 .0\ . : )
Ew (X’ dr rf) ’ lOSD(k{E\E%,&(O;k) U6 (14)
s.t.

x(0; k) € {x(k)} & (—Sk) (14a)
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Controller u = sy (x,d,r)

Fig. 4. Schematic of the proposed method.

X(i + 1; k) = AR(i; k) + Bii(i; k) + Bads(k) (14b)

X(i: k) e X, Ui k) € U, i € Ton_1 (14c)

X(N; k) € Xp(x5(k)) (14d)
A—I, B J[x()] _ [—Bad(k)

[ c opxm} [us(k)] = [ (k) ] (14e)

xs(k) € Xs, ug(k) € Us, dg(k) € Dy (14f)

where Sg denotes the uncertainty set containing all possible
realisations of estimation errors; X and U denote the tightened
constraints for state and input; Xf(xs(k)) denotes the terminal
constant, which depends on the current pseudo steady state; X;
and Us are the steady sets of state and input. Several undefined
sets will be specified subsequently.

3.2. Disturbance error-based tube design

In this section, we will focus on the specific design for the tube
Sk in (14a) and the tightened constraints X and U in (14c).

The motivation to use the tube here is mainly due to the
difference between the real disturbance and the pseudo steady
disturbance during the optimisation. Although we can expect
that the error between these two would converge to zero under
the mild assumption, the initial error is unpredictable due to
the unknown disturbance. Hence, a worst-case design has to be
considered. Let e(0; k) := x(k) — x(0; k) and e(1; k) := x(k + 1) —
X(1; k). Subtracting (1) from (14b) will yield:

e(1; k) = Axe(0; k) + By (d(k) — ds(k)) . (15)

Noting that d(k) — ds(k) € Dy & (—Ds) = D1 ® (—D4) b Dy, we
define W| := By4(D; & (—D1)@ Dy). Let Sk be the robustly positive
invariant (RPI) set for (15), i.e., AxSx ® W, C Sk, whose existence
is guaranteed if Ay is stable (see Gilbert and Tan (1991, Sec.1) for
further details). Then, we can define the tightened constraints as
the conventional tube-based MPC:

X;:X@SK, [[_J::UGKSK‘ (16)

In the optimisation problem Py(x, d?, rf), the constraint (14a)
forces the initial error e(0; k) to be within the tube and due to the
RPI property, we have e(1; k) € S, i.e., X(1; k) € {x(k+1)}&(—Sk).

3.3. Steady and terminal constraints design

In this section, we will focus on the specific design for the
terminal and steady state constraints Xf, X; and Us in (14d) and
(14f).

The terminal condition designed here follows the spirit of the
stabilising condition in the conventional MPC (Rawlings et al.,
2017, Chap. 2.4). We first fix the format of the terminal controller
as follows:

i(N; k) = K(X(N; k) — x5(k)) + us(k) (17)
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where K is the terminal controller gain. Taking (17) into the (14b)
and keeping (14e) in mind will give:

X(N + 1; k) = Ag(X(N; k) — x5(k)) + x5(k) (18)

where Ag := A+ BK. It is worth noting that no disturbance infor-
mation is involved in (18). Let x,(N; k) := col(x(N; k), xs(k), us(k))
€ R¥™™ The dynamics of the augmented system and the termi-
nal controller are both obtained from (18), as follows:

Xo(N + 1; k) = Agxa(N: k), @(N; k) = [K, =K, In]xq (19)
where
Ag In —Ag  Onxm
Ag = | Onxn I Onxm | -
Omxn Omxn Im

An admissible invariant set ®j for system (19) can be defined by:
A0 C Op X, (20)
where

Xg = {xa € R¥"™ | x, € X x AX x A, [K, =K, In]xq € U}

and A € (0, 1) can be chosen arbitrarily close to 1.The introduc-
tion of A in X, is to obtain a finitely-determined approximation
of the maximal admissible invariant set, which hence is con-
vex (Gilbert & Tan, 1991). Besides, noting the identity matrices
in the main diagonal of A, the invariant sets for steady state and
input can be specified using the projection operation while the
terminal set is related to the steady state and can be specified
using a similar operation, as follows:

X; = Proj, (0g) € AX C X
U := Proj, (@) CAU CU

_ ° _ _ (21)
Xp(x) = {Xy € R" | Yus € Us, col(Ry, X5, us) € O } € X,
Vx; € X.
With (21), it is geometrical to conclude that:
O = | Xr(x) x Xs x Us (22)

Xs€Xs

which can also be proved using the set contain relationship.
Besides, X and Us are both convex (Boyd, Boyd, & Vandenberghe,
2004, Chap. 2.3.2).

In the meantime, the terminal weighting P and its controller
gain K can be easily obtained from the discrete algebraic Riccati
inequality:

ALPA; —P+Q + K'RK < 0. (23)
3.4. Optimisation-based steady I0SD discussion

In this section, we will discuss the optimisation-based ap-
proach to compute the steady I0SD in (14e) and show the dif-
ferences with that in the conventional offset-free MPC.

To simplify the analysis, we consider a steady-state scenario
where the tracking items in (13) are all set to zeros. Hence,
Py(x, d?, ) will be simplified to the following optimisation prob-

lem:
Py (dp.r7) © min Vo (dF — ds) + Vy (f — ys) (24)
A—1I, B |[x —Byds
.t = 24
ot Ao 1 ] I
xs € Xs, us € Us, dg € Ds. (24b)

The proposed approach is meaningful in the sense that the op-
timal steady disturbance and output are exactly the same as the
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given ones, i.e., d? and r?. This inference is proved by Lemma 13
and will play a significant role in the stability analysis. On the
other hand, it is worth noting that during the transition process,
the optimised I0SD obtained from (13) only can serve as pseudo
steady sequences.

Lemma 13. Suppose that Assumption 7 holds, then the value
function of Ps(dy, r7) is 0 and its partial optimal solutions are dJ =
a, y =rp.

Proof. By the definition of Pr(d}. 1), ie., rf € Y(dp), there exist
Xs € X; and U € Us such that (A — I)Xs + Bil; = —Byds, CX; =
s where d; = d? and ys = rp. Since that (iis, Js, X, @i;) is a
feasible solution of the optimisation problem Py(d?, r?), taking the
corresponding disturbance and output, ds and Js, into the cost
function will get Vy(d — ds) + V(17 — J5) = 0. And hence, the
value function of ]P’s(d}), rfo) is 0. It also implies that the partial
optimal solutions should satisfy that d? = d?, y? = r7 due to the
optimality, which completes the proof. |

Remark 14. It is worth noting that the external signals d and r{
are only involved in the cost function, rather than the constraints
of the optimisation problem (24). This approach is completely dif-
ferent from the conventional offset-free MPC design, e.g., Maeder
et al. (2009) and Rawlings et al. (2017, Chap. 5.5), where the dis-
turbance and reference items are directly involved in the equation
constraint. Once the disturbance (estimate) or the given reference
is rapidly changed, the feasibility of the conventional offset-free
MPC cannot be easily guaranteed, which would break the safety
requirement (Limon et al., 2008, 2018; Simon et al., 2014).

Remark 15. Lemma 13 also implies the necessity of introducing
the optimisation problem Pr(d}), r). If one directly puts the ref-
erence r into the optimisation problem Py(d?, r7), i.e., replacing
the optimal reference r)9 by the given one r, the value function
of Py(d?, ) cannot be zero if r ¢ Y(d?). This will lead to the
optimal steady disturbance d° may not be the target one, d}),
which is desired to converge to the external disturbance d. Once
the optimal steady disturbance cannot converge to the external
disturbance, the optimal state and input will lose their physical
meaning as they are not matched with the real ones under the
current environment.

3.5. Algorithm implementation

Now, the proposed control algorithm can be formally stated
as Algorithm 1. To clarify the algorithm, the signal flow is started
from the disturbance estimate, which also corresponds to the
control scheme shown in Fig. 4.

3.6. Theoretical analysis

The following theorems present the results on recursive feasi-
bility and stability, whose proofs are located in Appendix A and
Appendix B for the sake of readability.

Theorem 16. Suppose that Assumptions 3 and 7 hold. Then, system
(1) controlled by (12) always fulfils the safety constraints throughout
the time, if the optimisation problem Py(x(k), d})(k), r}’(k)) in(14)is
feasible at the time k = 0.

Assumption 17. The matrix

A—I, B
C  Opm

is nonsingular.
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Algorithm 1 Augmented Predictive Control

1: Offline: Specify the weightings Q, R, P, P, and Pg, prediction
horizon N, controller and observer gains K and L, and con-
straints X, U, Xy, X, Us, and Ds. > See Sec. 3.2 and Sec.
3.3.

2: Initialise: Set the time k = 0 and specify the observer state
z(0).

3: Step One-Estimation Filter:

a) Measure the current state x(k) and receive the observer
state z(k) to compute the disturbance estimate a(k)
from (4b).

b) Solve the static optimisation problem Pd(a(k)) in (7) to
obtain d?(k). > See Sec. 2.2.

4: Step Two-Reachable Reference: Receive the current refer-
ence r(k). Solve the static optimisation problem ]Pr(d})(k), r(k))
in (10) to obtain r}’(k). > See Sec. 2.3.
5: Step Three-Nominal State/Input: Solve the nominal optimi-
sation control problem Py(x(k), df(k), P (k)) in (14) to obtain
Xx*(0; k) and u* (0; k). > See Sec. 3.1.
6: Step Four-Controller/Observer:

a) Compute the current controller u(k) from (12) and ap-
ply it into system (1) to generate the successor state
x(k+ 1).

b) Compute the successor estimate z(k + 1) from (4a).

c) Set k < k+ 1 and go to Step One.

Theorem 18. Suppose that Assumptions 3, 7, and 11 hold, the
optimisation problem Py(x(k), d}’(k), r})(k)) in (14) is feasible at the
time k = 0, and the disturbance and reference are constants in the
steady state, i.e., d(k) = d;, r(k) = r. hold for all k > k;. Then,

(1) If o € Y(d.), the control output y(k) asymptotically con-
verges to the set {r.} & CSk.

(2) If rc ¢ Ys(d.), the control output y(k) asymptotically con-
verges to the set {r‘g} @ CSk, where

rp = arg_min =1

rreYs(de)
Further, suppose that Assumption 17 holds, then

(3) If rc € Ys(d.), the control output y(k) asymptotically con-
verges to T.

(4) If o ¢ Y(d.), the control output y(k) asymptotically con-
verges to 1.

Remark 19. Assumption 17 is quite general since it is the
necessary and sufficient condition on existence of the feasible
target (Rawlings et al., 2017, Lemma 1.14) once the dimensions of
input are the same with that of output. Besides, if Assumption 17
holds, by using its inversion, the decision variable I0SD(k) in
Pn(x, d!9, r}9) could be reduced to IS(k) or OD(k), which is the
pseudo steady sequence of (us(k), xs(k)) or (ys(k), ds(k)).

3.7. Numerical example

In this section, a numerical example is given to illustrate
the effectiveness of the proposed method, especially when the
disturbance cannot be fully rejected.

Consider a linear system given by:

05 1 0 1 11
A=[1 1]’B=[1 0]’3‘1:[0 1]C=’2
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Fig. 6. Evolution of the DEOA set at the interval of 10 samples. (a) 3D view. (b)
Front view.

with the state and input constraints X = [—5, 4]?, U = [—6, 8],
and the disturbance range I; = [—0.4, 0.8]%. The disturbance
and reference are both piece-wise constants, as follows:

(10.0.8]",[0,0.5]") , k € In.19
(0.4, —0.41",[-1,11") , k € Ix:30
(10.8,0.8]", [—1, 11") , k € I0:60

The weightings are chosen as Q = R = P, = Py = I, and
the terminal weighting and terminal controller gain are both
calculated from the discrete-time Riccati inequality:

p_[196 117] o _[-074 -080
=117 254 ° T |-043 —074|

The prediction horizon N is chosen as 3. The controller and
observer gains are chosen as:
C— [—0.72 —0.80:| L [0.5 —0.5}

—1-044 —-0721°"7| O 0.5
such that p(Agx) = 0.418 and p(A;) = 0.5. The initial system and
observer states are x(0) = [—2, 1]7, z(0) = [5, —5]".

To realise the proposed APC algorithm, several respective op-
timisation toolboxes have to be considered. Here, we perform set
computation using the MPT3 toolbox (Herceg, Kvasnica, Jones, &
Morari, 2013) and solve MPC optimisation using the YALMIP (Lof-
berg, 2004). The RPI set Sk is computed by the outer approxi-
mation in Rakovic, Kerrigan, Kouramas, and Mayne (2005). The

(d(k), (k) =
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Fig. 7. Trajectories for the numerical example. (a) State-related variables. (b)
Input-related variables. (c) Disturbance-related variables.

simulation results are given in Figs. 5-7. Fig. 5(a) and (b) demon-
strate the validity of the tightened state and input constraints,
which are both non-empty; while Fig. 5(c) presents the calculated
steady state and input constraints. Fig. 5(d) geometrically shows
the physical meaning of Assumption 7, that is the computed
steady state and input constraints are able to provide enough
power to survive all the external disturbances. Besides, it is worth
noting that the area of the relative complement of —ByDs in
(A—I,)X;®BU; provides a quantification of the system operability,
which can be further maximised through parameter optimisation.
Fig. 6 shows the evolution of the proposed DEOA set, which varies
with the disturbance estimate in the shape. Moreover, Fig. 6
offers geometric interpretations for the optimisation problems
P4(d) and ]P’r(d)?, 1), which seek the closest point in D; (or Y;)

relative to d (or r), respectively. It is worth noting that in the
reference governor, the output admissible set is constant and
conservative since it should cover all the disturbances in a given
set. Fig. 7 shows the convergence of the disturbance estimate
to the disturbance and the system IOSD to the optimal steady
10SD. As shown in Figs. 6 and 7, during the periods of k € .39
and k € I40.60, the given references are hold the same but the
external disturbances are changed. Consequently, the tracking
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performance is different, i.e., the offset-free tracking can only
be achieved during k € I,g.39. This is because when the given
reference is out of the DEOA set, the proposed APC will drive the
system to the closest position in a safe way. Due to the unknown
disturbance, the initial guess on the d(0) or z(0) has a large effect
on the estimation performance, as shown in Fig. 7(c), which leads
large overshoot in the state tracking during the period of k € I.10;
however, all the states are still kept in the given safe region.

4. Aerial physical interaction

Aerial robotics, i.e., drones, have been widely used in en-
vironment monitoring (Coombes, Fletcher, Chen, & Liu, 2020),
infrastructure inspection (Jimenez-Cano, Sanchez-Cuevas, Grau,
Ollero, & Heredia, 2019) and aerial manipulation tasks (Ollero,
Tognon, Suarez, Lee, & Franchi, 2021; Ruggiero, Lippiello, & Ollero,
2018). Their deployment often requires physical interactions with
the environment, which in turn poses significant challenges to
the safety-critical control design of the drone. The motivating
example in Fig. 1 has already revealed the influence of the aero-
dynamic force, let alone that from the physical contact with the
environment. Although pioneers provide solutions at the design
level (Rashad et al, 2022; Tognon, Alami, & Siciliano, 2021),
the aerial robotics community would still benefit from a unified
control framework to deal with those interactions and guaran-
tee safety. In fact, by acknowledging that the disturbance from
the environmental contact may not be fully rejected, the pro-
posed APC framework provides an avenue for developing safety-
critical control systems operating in unknown environments. This
is illustrated in the following case study.?

4.1. Control design

The kinematic motion of an aerial robot can be modelled as
follows (Beard & McLain, 2012):
p=Rv
v =gRn; — 1n3 +ag (25)

m

where p = [py,py,p.]7 € R3 is the position in the inertial
frame; v [V, Uy, U]T € R3 is the velocity in the body
frame; R = [Cng, SpSeCy — CpSy, CngCg) + SySe; CoSy» SySeSy +
CyCp, CpSeSy —S¢Cy s —Sg, CoSe, CoCyp] € R *3 is the rotation matrix
from the body frame to the inertial one and ¢y := cos(x) and
sy = sin(x), x € {¢,0,v}; ¢ € R, 0 € R and ¥ € R are the
roll, pitch, and yaw angles, respectively; g € R is the gravitational
acceleration; m € R is the mass; T € R is the total thrust created
by the four propellers; n; := [0, 0, 1]7 € R? is the basis vector;
aq = [ay, a,,a,]" € R3 is the acceleration disturbance, which
contains the influence from the environment. Here, we use the
proposed APC for the positions p, and p, and leave the position
px by using a proportional-integral-derivative (PID) controller.
For simplicity, we consider only the outer-loop dynamics of the
flight control system and assume that the tracking performance
of the inner loop is desirable; the attitude tracking error can be
regarded as a disturbance on the outer-loop dynamics. To strictly
follow the design approach in this paper, system (25) has to be
linearised and discretised first. It is straightforward to obtain the
system matrices in the case of zero yaw command, as follows:

A— |:12><2 t512x2] B
Lo

02x2
2 Video available at https://youtube.com/playlist?list=PLpeqs1]7TGI2TBLFEa95
V-tHL8rarK8TY.

| 022

= Bi=1I4,C=[lys Oy
2 | b=t e = [ 0s]
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Data Protocol
Attitude Sensor
Commands Data
User Input ¥ Pixhawk
ixhaw!|
—_— Serial UART |~
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P - - - -~ | Motors
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Fig. 8. Configuration of the flight test platform.

where t; > 0 is the sample time in the prediction horizon. The
I0SD of drone are denoted by u(k) = col(¢.(k), 1 — Tc(k)/mg) €
R?, y(k) = col(py(k), p.(k)) € R?, x(k) = col(py(k), p(k), v,(k),
vu(k)) € R* and d(k) = col(d,(k), dy(k)) € R*, where T.(k)
and ¢(k) are the thrust and roll commands to the inner loop,
respectively; dy(k) € R? and d,(k) € R? are the disturbances
in the position and velocity channels, respectively, which also
encompass the modelling error caused by linearisation and back-
ward Euler discretisation, tracking error of the inner loop, and
external acceleration disturbance.

The parameters for the drone and controller are given as
follows. For the drone, the mass is m = 1.87 kg and the gravity
isg 9.8 m/s%. For the observer part, the observer gain is
L = diag(0.2, 0.2, 0.2, 0.2) and the corresponding p(A;) = 0.8 <
1. For the controller part, the sample time is t; 1/30 s, the
prediction horizon is N 3, and the weightings are Q
diag(1, 1, 10, 10), R = diag(1, 10), Py = P, = 10°l,. The terminal
weighting P and control gain K (or K) are computed by the
discrete-time Riccati inequality:

969.54 0.00 50.53  0.00
p_ | 000 989.24 0.0 114.49
~15053 000 161.62 0.00
0.00 11449 0.00 373.71
Rk |:—O.61 0.00 —1.96 0.00 ]
0.00 -0.27 0.00 —0.88

and the corresponding p(A;) = p(Ax) = 0.9895 < 1.

4.2. Experiment results

To implement the proposed APC controller on an onboard
computer, we first transfer the constrained optimisation problem
(14) into a standard quadratic programming (QP) problem and

then use the MATLAB® Coder™ to generate the deployable C
code of active-set algorithm for such a QP problem. In the ex-
perimental test, we use a Hexsoon 450 quadcopter as a platform.
This quadcopter uses a Pixhawk Black 2.1 as a flight controller
and a 7th generation Intel i7 NUC to run the proposed control
algorithm with the commands generated at 30 Hz. Communica-
tion links of the quadcopter are based on the MAVLINK protocol.
The configuration of the platform is given by Fig. 8. In the control
architecture of PX4 Autopilot, the throttle (within [0,1]) rather
than the thrust command is sent to the inner loop. The mapping
from the throttle to thrust is nonlinear, and also affected by the
battery percentage, but this has been captured in the modelling
stage.

As for the quantitative disturbance tests, we use the desk
fan and the resistance band as two typical interactions with
disturbances. The experimental results are given as follows.
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Fig. 9. Snapshots of wind test. (D Ascend; @ Hover at Ref A; 3 Descend; @
Hover at Ref B; @ Move right; ® Hover at Ref C.

4.2.1. Wind test—Disturbance rejection

A desk fan is used to test the performance of disturbance
rejection in a contact-free environment. The desk fan is aligned in
the same plane as the reference, whose tests are named as wind
test. The tests are conducted without the desk fan and at different
settings of the fan, representing the cases of no, small, middle and
large winds. The pair of reference (p,,, —p;,) is set as
(—Tm,2m) > (—1m,1Tm) - (1 m,1m)

Ref A 30s Ref B 50's Ref C
which commands the drone to fly towards the desk fan, and
hence, the influences from winds are gradually increasing at each
test.

The results are given by Figs. 9-11, where the detailed system
states and inputs are illustrated in Fig. 11. To show the accuracy
improvement, we also compare the proposed method with a
simplified version by setting all the disturbance estimates as
zeros, which is then in a similar format with Limon et al. (2008,
2010, 2018) and Simon et al. (2014). Although the drone can
work in the safe region, large offset tracking errors exist even
without any wind disturbances, as shown by the green dotted line
in Figs. 10 and 11. This phenomenon can be explained using the
analysis of RPI set given in Limon et al. (2010). By contrast, with
the appropriate compensation for external disturbance, as shown
in Fig. 11(c), the proposed method realises offset-free tracking
under different degrees of winds. In other words, these kinds of
wind disturbances are fully rejected by the proposed method.

4.2.2. Bungee test—Disturbance coexistence

A resistance band is used to test the performance of dis-
turbance optimal coexistence under the physical environment
contact. The resistance band is connected between the drone and
anchor on the ground, whose tests are named as bungee test. The
anchor is located at the origin and the nominal length of the
resistance band is Ic = 1.7 m. The pair of reference (p,,, —p;,)
is set as

(0,2m) » (=0.5m,2m) —> (—0.5m, 1.5 m)
Ref D 50s Ref E 70 s Ref F

which commands the drone to fly towards the limit of the resis-
tance band and recover from that limit. It is also worth noting that
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Fig. 10. Tracking performance of wind test in the phase plane. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 11. Wind test. (a) Outputs. (b) Inputs. (c) Disturbance estimates under the
large wind. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

the disturbance force from the resistance band is closely related
to the drone’s position. Following Hooke’s law, once the distance
between the two ends is longer than the nominal length, the tight
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Fig. 12. Snapshots of bungee test. (D Ascend; @ Hover at limit w.r.t. Ref D; Q)
Move left; @ Hover at limit w.r.t. Ref E; @ Descend; & Hover at Ref F.

resistance band would generate internal force F. = k.(|p| — L),
where k. is the elastic coefficient; and if the distance is not longer
than the nominal length, the resistance band would be slack and
generate zero internal force.

To show the consistency of the proposed controller, the
bungee tests are repeated three times, where the first test started
slightly left of the anchor and the rest two tests started directly
above the anchor. The results are given by Figs. 12-14. In Fig. 13,
Refs D and E are obvious in the tight region of the resistance band
and are quite difficult to be tracked. All these tests show that
the proposed controller drives the drone to the optimal positions
in the sense that the drone statically stays in the best direction
between the unreachable references and the origin, as shown in
Fig. 13 and the throttle commands reach the given maximum
70%, as shown in Fig. 14(b). In Fig. 13, although the limit w.r.t
Ref E or D at each test is slightly different (mainly due to the
decreasing battery percentages), the drone can always find this
optimal point and stay in it by using the real-time disturbance
estimates. Generally, the disturbances when the drone is tried
to track Refs D and E are unable to be fully rejected due to
the physical limitations and these three tests all show that the
proposed method can make the drone optimally coexist with such
disturbances. As for the Ref F, offset-free tracking can be achieved
as shown in Figs. 13 and 14(a). It is also interesting to note that
the disturbance estimates at the end of the bungee test are higher
than that in the wind test, which is mainly caused by the weight
of the resistance band itself.

4.2.3. Computation resource

Real-time computation is critical for the proposed method,
not only because the constrained optimisation-based control,
Py(x, d0 rO) needs to be solved online, but also due to the mon-
itor_ mechamsm to choose disturbance rejection or coexistence,
IP’d(d) and Pr(do r). Fortunately, with the linear formulation, all
the optlmlsatlon modules can be straightforwardly rewritten as
QP problems and multiple well-developed toolkits are available.
The computation time of each optimisation module by using the
default QP of Matlab is given by Fig. 15, where the observer
module contalns the DOB itself (4) and the optimisation problem
]P’d(d) in (7); the reference module contains the optimisation
problem IP’r(dO r) in (10); the controller module contains the
exp11c1t controller (12) and the optimisation problem Py(x, do

n (14). It is worth noting that the observer module takes tl(Ie
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Fig. 13. Tracking performance of bungee test in phase plane.
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Fig. 14. Bungee test. (a) Outputs. (b) Inputs. (c) Disturbance estimates of Test I.

least computation time, which has to be enlarged 100 times for
clear visualisation. The total computation time of all these three
modules is given by the grey columns in Fig. 15, which is much
smaller than the sample time t; = 33.33 ms and proves the
real-time computation property of the proposed method.
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Fig. 15. Computation time of each optimisation module.

5. Conclusions

In this paper, we have built a unified framework to achieve
safety-critical control for dynamic systems under disturbances.
Different from most existing tracking designs, the proposed
framework has provided an alternative but safer way, starting
from surviving all disturbances but taking every opportunity to
reject them. To realise this goal, a new optimisation-based con-
troller with an augmented setup has been proposed, not only in
the additional penalties on the disturbance rejection and output
tracking in the modified cost function but also in the pseudo
steady disturbance-driven prediction model. Moreover, this more
flexible setup has been proven to guarantee the recursive feasibil-
ity of constrained dynamic optimisation and offset-free tracking
to an optimal reachable target. Numerical simulation and aerial
physical interaction tests have been both carried out to show
the features and effectiveness of the proposed method. Future
work will focus on optimising design parameters to maximise
operability.
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Appendix

The appendix collects the detailed proofs on recursive fea-
sibility and stability, and the verification of Assumption 11. On
the proof of recursive feasible, although it looks like to follow
the standard way in the conventional MPC literature, the explicit
embedding of a pseudo steady disturbance dy(k) as a decision
variable makes it possible to keep the prediction model un-
changeable, even when the disturbance or its estimate changes
rapidly. This means that such a design way is the key point
to guarantee recursive feasibility, which cannot be strictly sat-
isfied in the conventional offset-free MPC as the disturbance
estimate is directly involved in its prediction model. Furthermore,
to guarantee the stability of the proposed robust tracking MPC
framework, a novel non-quadratic Lyapunov function consists of
the value function from APC and the disturbance estimation error
is constructed, which is different from Lyapunov construction of
the conventional MPC. In addition, a contradiction method is used
to prove that the optimal pseudo steady output and disturbance
can converge to the desirable ones.

13

Automatica 158 (2023) 111238

Appendix A. Proof of Theorem 16

Proof. The optimal nominal state and control at time k are
denoted by:

u*(k) = (a*(0; k), u*(1; k), ..., u*(N — 1; k)
X (k) = (X*(0; k), X*(1; k), ..., X*(N — 1; k), X*(N; k))

and the optimal steady 10SD are uj(k), yi(k), xi(k), and d; (k).
We first construct the following sequences (A.1), which will
be proved to be feasible at time k + 1:

ak+1) :=< T(1: k), ..., (N = 1: k),
R (N: k) — x5(K)) + (k) )

X(k+1) :=(>‘<*(1; k), ..., % (N — 1; k), Z*(N; k), (A1)

Ag(®(N; k) — x:(K)) + x*(K) )
Xs(k + 1) == x7(k), us(k+ 1) := uj(k)
Vs(k 4+ 1) := Y5 (k), ds(k+ 1) == d(k).

In (A.1), constraint (14a) holds for time k + 1 due to the positive
invariance of Sk. By choosing dy(k+-1) = d(k), the nominal model
(14b) is the same with that at time k. Hence, the last N—1 terms of
the optimal state/input trajectory at time k, i.e., X*(k) and u*(k),
are admissible at time k + 1, and hence, are used to construct
the feasible sequence (A.1), which implies constraints (14b) and
(14c) both hold for time k + 1. Constraint (14d) holds due to the
positive invariance of ®. Constraints (14e) and (14f) hold since
the feasible steady IOSD at time k+ 1 are chosen the same as the
optimal ones at time k. Hence, the sequence (A.1) is feasible for
time k + 1, which completes the proof. [ ]

Appendix B. Proof of Theorem 18

Before presenting the proof of Theorem 18, we will first give
one lemma to reveal the relationships among the optimal 10SD.

Lemma 20. Suppose that the optimal solutions of Py(x, d}’, rf° )in
(14) satisfy X*(0; k) = x{(k) and u*(0; k) = u}(k). Then, the rest of
the optimal solutions are d;(k) = d((k) and y¥(k) = r{(k) and the
value function V3i(x*(0; k) — x3(k), d2(k) — di(k), rP(k) — yi(k)) = O.

Proof. It will be proved by contradiction. Assume that x*(0; k)
x(k) and u*(0; k) = uj(k), but yi(k) # yg(k) or di(k) # d?(k
Recalling the conclusion of d)(k) = dJ(k) and r(k) = yJ(k) i
Lemma 13, we will have V3i(k) = V4(d2(k) — di(k)) + V,(y2(k) —
yi(k)) > 0, where V3 (x*(0; k) — x3(k), d})(k) —di(k), rfo(k) —yi(k))
is denoted as Vj(k) for the notation simplification.

Consider a perturbation of x}(k) towards x‘s)(k), given by:

N

=}

xs(k) = yxi(k) + (1 — ¥y x2(k), v € [0, 1]. (B.1)

Similarly, tis(k), ds(k) and y,(k) can be defined in this way. Due to
the convexity, we have x;(k) € X, iis(k) € Us, and d4(k) € Ds.
It is quite straightforward to have that the quartet (iis(k), ys(k),
Xs(k), dg(k)) is also the steady 10SD, i.e., Xs(k) = Axs(k) + Biis(k) +
Bqds(k). Next, starting at x(0; k) = x}(k) and applying a constant
input u(i; k) = us(k), i € I1.y_1 will obtain the following predicted
states:

X(i; k) = (1 — y)A (x5 (k) — x0(K)) + Xs(k) (B.2)
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where i € Iy.n. Then, we can construct the following sequences
(B.3):

1=y A (00— x200) + %K) )
x5(k) —xs( ), us(k) := us(k)
ys(k) = s(k), ds(k) == ds(k).

With the similar analysis in Alvarado (2007, Proof of Lemma 3.2),
the sequences in (B.3) are feasible if y is sufficiently close to
1. The stage, terminal, disturbance rejection and output tracking
costs can be easily computed as follows:

(B.3)

£ (x(i; k) — x5(k), u(i; k) — ug(k)) = (1 — ‘x (k) — x (k)

‘A’TQA’
V(X(N; k) — x5(k)) = (1 — y) |x (k) — x2(k)
Vi (dP(k) — dy(k)) = y* |di (k) — |Pd
Vy (k) = ys(l) = ¥ [y (k) —y?(k>|iy
and the total cost is given by:

Vn(k) = (1

|ANT PAN

— ]x k)—x (k) ’q/

0 - (B.4)
—ds(k)|,,d+)/ s (k)

2
+ 92 |dx k) =Yl

where ¥y := Z:V: _01 ATQAI+ANT QAN . Taking the differential Vy(k)
in (B.4) with respect to the y and evaluating it at y = 1 gives
that:

aV(k)
ay

—2 (]dj(k) — d%(K)[;, + |yi) —y2(1<)|f,y> >0 (B5)
y=1
which implies that by decreasing y from 1 to any value suffi-
ciently close to 1, Vy(k) can be decreased. It will cause a con-
tradiction with the fact of V(k) = Vn(k)|,=1. Hence, we have
di(k) = d?(k) and y;(k) = r7(k).

By choosing u(i; k) = ug(k), i € I1.y_1, which leads x(i; k) =
xs(k), i € Iy.y, we obtain Vi(k) = Vg(d2(k) — dz(k)) + Vy(y2(k) —
yi(k)) = 0. Thus, the conclusions of Lemma 20 follow. [ ]

To make the reader easily understand the proof of Theorem 18,
we will first prove the first part (points (i) and (ii)), then the
second part (points (iii) and (iv)).

Proof of the first part of Theorem 18. Due to the recursive
feasibility, the safety of the closed-loop system can be guaranteed.
Hence, in the theoretical analysis of the stability, we only need to
consider the time k > k;, i.e., Ei(k) will be captured by D;. Then,
d}’(k) = a(k) holds for all k > ky. If the disturbance is a constant
at the steady state, the proposed DOB is asymptotically stable,
i.e., limy_.o d(k) = 0, then limy_. o df(k) = d..

To clearly show the proof of the first part, we divide the proof
of this part into the following two steps:

(1) Step One: Prove the convergence of the nominal state and
input to the optimal pseudo steady ones;

(2) Step Two: Prove the convergence of the optimal pseudo
steady output and disturbance to the target ones.

Step One:

Using the standard procedures in MPC proof, we first compare
the value function of Py(x, d}’, r0) at time k with the cost under
the feasible sequences (A.1) at time k + 1. The value function at
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time k is given by:

*(k)

= Zz
+ vf (X*(N; k) — x¢ (k)

+ Va (d(k) — di(k)) + Vy (rP(k) — yi(k))

and the cost function under the feasible sequences (A.1) at time
k + 1 is given by:

VN k+ 1)

_Zg
+e( *(N; k) — X3 (k), K (X*(N; k)
+ Vs (Ag (X*(N; ) x:(K)))
+ Vg (dP(k + 1) — d3 (k)
+V, (rf(k—i-l)—ys(k)).

To clearly compare Vyj(k) with Vy(k + 1), the differences in the
disturbance rejection cost Vy(-) and output tracking cost Vy(-)
need to be computed first. It follows from (5) that:

Vi (dP(k + 1) — di(k)) — Vg (dP(k) — di(k))

< ¢ [(dP(k + 1) — di (k) — (dP(k) — di (k)|

= o1 |d2k+ 1) — d2(k)| = ¢ |dlk+ 1) — a(k)\
=c ‘(AL — I, )a(k)]

and by Assumption 11, similarly, we have:

Vy (Pl + 1) = y5 () = Vy (rP (k) — y5(K)

< & |2k + 1) = (k)| < e |tk + 1) — 8(k)‘

(i k) — X2 (k). @i k) — uZ (k) (B6)

(i k) — x5 (k), (i k) — ui(k))

—x:(k)))

(B.7)

(B.8)

(B.9)

for some Lipschitz constants ¢y, c; > 0. Subtracting (B.6) from
(B.7) and keeping (23), (B.8) and (B.9) in mind gives that:

Vitk+ 1) — Vi(k) < Va(k+ 1) — Vii(k)

B.10
Mo — [°(0; k) — ux (k)| (B10)

< — |%*(0: k) — x(k +e ‘E’(")‘

where ¢ := (¢; + ¢26;)IA — I, | > 0.

Define W(k) := V;i(k) + u|d(k)|, where 11 := c/(1— |AL]) > 0
Using (5) and (B.10), we obtain:

W(k+ 1) — W(k)
< u(Al = D[d(k)] + ¢ [dCk)

B.11
— [R°(0: k) — x: ()|, — [7°(0: k) — uE (k) .
< — [®4(0: k) — X000, — [4(0: k) — wX(K) -

which implies that W(k) is non-increasing. Noting W (k) > 0 and
using the monotone convergence theorem, we have that the limit
of W(k) exists, denoted as W(00) := limy_. o W(k). The existence
of W(oo) implies that the items on the right-hand side of (B.11)
converge to zero, that is
lim x*(0; k) — xi(k) = 0, lim u*(0; k) — ui(k) =
k—o00 k— 00
B.12
= lim y*(0; k) — y5(k) = 0. ( )
k— o0
Step Two:
In what follows, we will prove that once the nominal state/
input goes to the optimal steady state/input, the nominal output
will go to the target output.
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From Lemma 20, we know that if x*(0; k) xi(k) and
u*(0; k) ui(k), Vy(k) 0 holds. Noting that W(k)
W(x*(0; k) — x3(k), d}’(k) —di(k), (k) —yi(k), a(k)) is continuous
with respect to each element and its limit exists, we have:

lim X*(0; k) — x:(k), d2(k) — dZ (k).

k— o0

W(oo) = lim W (

k—o00
() — yi(k), lim d(k) )
H * 0 % 0 *
= lim vy (0. dP(k) — di (k). (k) — yi(k)) =0,
which implies that:
lim 3*(0; k) = lim y}(k) = lim y2(k) = r}
k— 00 k—o00 k—o00 (313)
lim di(k) = lim dY(k) = lim d{(k) = d..
k—o0 k—o0 k— o0

Thus, from the invariance of the tube Si, we can conclude that
the real output will tend to {rf(g} @ CSk, which completes the
proof. |

Proof of the second part of Theorem 18. By Assumption 17, we
have that the limits of x?(k) and u?(k) exist:

A—1, B 7 '[—Bud.
L€ Opum ol

(B.14)

From (B.13), we have that the limits of x}(k) and uj(k) exist and
are the same with (B.14), as follows:

p [t

ul(oo)] | lim ul(k)

xitoo)] _ | AR oo (B.15)
ui(oo)| T klim uik) | Lu(o0)]” '
Taking the controller (12) into system (1) gives:
ex(k + 1) = Agex(k) + w(k) (B.16)

where ey(k) = x(k) — xi(k) and w(k) = —(xj(k + 1) — x}(k)) +
B(u* (0; k) — u(k)) + Ba(d(k) — d;(k)). According to the previous
analysis of (B.12) and (B.13), w(k) will go to zero as time goes to
the infinity. Applying the property of ISS yields:

lim e, (k) = 0 = lim x(k) = x{(c0) (B.17)
k—o00 k— 00

and then we obtain:

lengoy(k) = klingo Cx(k) = 1, (B.18)
which completes the proof. |

Appendix C. Verification of Assumption 11

Transforming the optimisation problem (10) ]P’r(d)?, r) into a
multi-parametric quadratic program (mp-QP) problem depends
on the solution sets of Ax = b, where A := [A — I,,B], x =
col(xs, us), and b := —Byd,. Hence, a systematic analysis would
make the process unnecessarily complicated. As a result, we have
chosen to focus solely on two examples in this paper for the sake
of clarity and simplicity.

The following definition on the piecewise affine function (Be-
mporad et al., 2002, Defin. 1) and the fundamental theorem on
the solution of mp-QP (Bemporad et al., 2002, Thm. 4) are used
in the verification of Assumption 11.

Definition 21. A function z(x) : X — R°, where X C R" is a
polyhedral set, is piecewise affine if it is possible to partition X
into convex polyhedral regions, CR;, i € I>q, and z(x) = Hix +
ki, Vx € CR;.
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Lemma 22. Consider the following mp-QP:

Z%(x) := arg min 1zTHz
’ z 2 (C.1)

s.t.Gz <W + Sx

and let H > 0 and X convex, where X is the set of feasible
parameters. Then the optimiser z°(x) : X — R® is continuous and
piecewise affine.

We assume that X, Us and Ds can be represented by polyhe-
dral sets, i.e.,
X, = {x; € R" | Axxs < by}
Us = {us € R™ | Ayus < by}
Dy == {ds € R" | Agds < by} .

C.1. Numerical Example in Section 3.7

In this example, noting that A — I, is invertable, y; = —C(A —
L)~ '(Bus + Byd). Hence, the optimisation problem (10) can be
transformed as follows:

ud(d?) = arg min | —C(A — L)~ "(Bus + Byd?) — r|2
s.t. Ayug < by,
- AX(A - 12)71(3115 + de?) = bx

and r{(d?) = —C(A—L)"(Bu(d?)+Bad?). By completing squares,
we can obtain the standard format in (C.1) where H = 2(C(A —
I,)7'B)'(C(A — I,)"'B) > 0. The fact that r{(d?) is continuous and
piecewise affine, follows trivially.

C.2. Physical Example in Section 4

In this example, [A — I4, B] [04x2, diag(ts, ts, t:g, t:;g)],
which implies X, 3, x; 4, Us 1, Us 2 can all be constructed by x; 1, X; 2.
Hence, the optimisation problem (10) can be transformed into an
mp-QP with 2-dimensional decision variables. The same fact on
H > 0 and r)(d?), follows trivially.
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