
Automatica 158 (2023) 111238

W
a

b

c

b
m
e
f
d
i
p
p
i

(
j

h
0
n

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Surviving disturbances: A predictive control frameworkwith
guaranteed safety✩

Yunda Yan a,∗, Xue-Fang Wang b, Benjamin James Marshall c, Cunjia Liu c, Jun Yang c,
en-Hua Chen c

Department of Computer Science, University College London, London, WC1E 6BT, UK
School of Engineering, University of Leicester, Leicestershire, LE1 7RH, UK
Department of Aeronautical and Automotive Engineering, Loughborough University, Leicestershire, LE11 3TU, UK

a r t i c l e i n f o

Article history:
Received 29 August 2022
Received in revised form 4 April 2023
Accepted 5 July 2023
Available online xxxx

Keywords:
Model predictive control
Disturbance rejection
Disturbance observer
Offset-free tracking
Aerial physical interaction

a b s t r a c t

Rejecting all disturbances is an extravagant hope in safety-critical control systems, hence surviving
them where possible is a sensible objective a controller can deliver. In order to build a theoretical
framework starting from surviving all disturbances but taking the appropriate opportunity to reject
them, a sufficient condition on surviving disturbances is first established by exploring the relation
among steady sets of state, input, and disturbance, followed by an output reachability condition on
rejecting disturbances. A new robust safety-critical model prediction control (MPC) framework is then
developed by embedding the quartet of pseudo steady input, output, state, and disturbance (IOSD)
into the optimisation. Unlike most existing tracking MPC setups, a new and unique formulation is
adopted by taking the pseudo steady disturbance as an optimisation decision variable, rather than
directly driven by the disturbance estimate. This new setup is able to decouple estimation error
dynamics, significantly contributing to the guarantee of recursive feasibility, even if the disturbance
or its estimate changes rapidly. Moreover, towards optimal coexistence with disturbances, offset-free
tracking of a compromised reference can be achieved, if rejecting the disturbance conflicts with safety-
critical specifications. Finally, the benefits of the proposed method have been demonstrated by both
numerical simulations and experiments on aerial physical interaction.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Motivation

Embedding safety constraints into the control design would
enefit many robotic systems operated in uncertain environ-
ents, ranging from manipulators to mobile platforms (Ferraguti
t al., 2022). However, it is recognised that safety-critical control
or robotics is susceptible to disturbances, either in the high-level
ecision-making or in the low-level control performance (Hew-
ng, Wabersich, Menner, & Zeilinger, 2020). An example of aerial
hysical interaction, as illustrated by Fig. 1, implies that unex-
ected disturbances may result in catastrophic behaviour. Since
t could be risky to continue the original landing decision in the
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occurrence of the strong wind, staying at such a critical point can
be regarded as an acceptable compromise informed by the safety
guarantee.

Motivated by this example, it may be too ambitious for the
safety-critical systems to reject all the disturbances to reach the
predefined specifications. An alternative way is to first guarantee
safety under all possible disturbance realisations but take the
opportunity to achieve the given objective if the disturbance can
be safely rejected. Following this thinking, a unified framework
is presented here for the tracking problem of constrained, linear,
dynamic systems in the presence of bounded disturbances, which
contains not only several sufficient conditions on disturbance sur-
vival and rejection but also a new optimisation-based controller
with the guarantee of safety1 and stability.

1.2. Related work

The optimal and safety-critical control design with specific
safety guarantee broadly falls into two categories, although it is

1 The safety here is concerned with the satisfaction of all constraints
hroughout the entire duration of system operation.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Fig. 1. A motivating example: Aerial physical interaction. (a) Without wind. (b) With wind. (c) Forces under the hover mode. In Fig. 1(a) and (b), A is the initial
osition, B is the target position, and C is the critical point. Suppose that the operator plans to let the drone safely move from points A to B, following an optimal
rajectory given in Fig. 1(a), but the unexpected strong wind exists. Physically, the drone should face the wind and generate suitable thrust to compensate for the
ind (drag) and gravity, as shown in Fig. 1(c). Note that the attitude (roll) and thrust should be kept within safe ranges. However, once the drone begins to descend,

ts thrust vector should be decreased and tilted, but there could not be enough force to compensate for the wind, which implies that the drone may be blown away
r even crashed, as shown by Fig. 1(b). Hence, the ‘‘best performance’’ that can be achieved with the heavy wind is to stay in a critical point C, which may be far
way from the target position B, with the suitable attitude and thrust to just compensate for the wind and gravity.
till an open problem to provide solutions without being too con-
ervative. The first category is to further enhance a pre-designed
ominal controller whose performance is robust against certain
ncertainties. Methods under this category generally have the
ttractive property of an add-on patch, i.e., still keeping the well-
uned nominal controller but with an additional mechanism to
odify the control input once any constraint becomes active. One
lassical approach under this category is the reference governor
RG, see Garone, Di Cairano, and Kolmanovsky (2017) and Kol-
anovsky, Garone, and Di Cairano (2014) for detailed surveys
nd recent successful applications in safe human–robot coexis-
ence (Merckaert et al., 2020) and legged robots control (Bratta
t al., 2022)). In the framework of RG, a low-level controller is
esigned to robustly stabilise the system and an add-on filter
or reference is designed to ensure constraint satisfaction. The
ecursive feasibility of RG can be guaranteed due to the robust
nvariance of the admissible set, however, the fact that only one-
tep prediction in the future is required to satisfy constraints
ay lead to poor performance (Rossiter & Kouvaritakis, 1998).
lthough RG is promising in safety-critical systems, it may be
ot suitable for the scenario where disturbances make a signif-
cant impact on the performance, e.g., see Fig. 1. As its name
uggested, RG often assumes that constraint violations are caused
y the change from the reference, and hence, its output admis-
ible set is calculated for all the possible disturbances in a given
et (Kolmanovsky et al., 2014, Sec. 2), which fails to fully exploit
isturbances.
Another prominent method belongs to the first category is

ased on the control barrier function (CBF) (Ames, Xu, Grizzle,
Tabuada, 2016), which has been widely applied in robotics

Farzan, Azimi, Hu, & Rogers, 2022; Ferraguti et al., 2022). The
afety condition described by the CBF with a well-defined relative
egree, together with the stability condition described by the
ontrol Lyapunov function (CLF), are both regarded as the add-
n constraints on the pre-designed nominal controller (Ames
t al., 2019). The CBF-CLF-based safety framework is flexible
s it can incorporate both the box constraints and the state-
unction ones, which, however, may bring considerable difficul-
ies in guaranteeing the feasibility. Only a few works have been
roposed to explore the feasibility, even for the pure CBF con-
traints, e.g., Xu (2018) and Xiao, Belta, and Cassandras (2022).
he conditions on the feasibility-guaranteed CLF constraints re-
ain unsolved mainly due to the lack of a general CLF con-
truction method. The practical approach to the feasibility of CLF
s to introduce a relaxation variable during optimisation (Ames
t al., 2019; Ames et al., 2016), which may be unavoidably large
nd break the performance of the pre-designed convergence.
2

Recent works considering the safety problem under the unknown
environment have been focused on modifying either the nominal
controller (Yan, Liu, Oh, & Chen, 2021) or the CBF using the
disturbance estimate (Daş & Murray, 2022; Wang & Xu, 2022).

Different from the first kind of method, the second category
directly formulates the control problem into a constrained opti-
misation without any hidden nominal controller. Among those,
a widely-used method is model predictive control (MPC); this
method has seen significant success in recent decades from the
conventional process control to robotics (Corsini et al., 2022;
Incremona, Ferrara, & Magni, 2017; Lindqvist, Mansouri, Agha-
mohammadi, & Nikolakopoulos, 2020), and has established itself
as the primary control method for handling system constraints
with several promising properties, e.g., guarantee of recursive
feasibility and asymptomatic stability (Rawlings, Mayne, & Diehl,
2017). Due to its explosive growth, readers are directed to Mayne
(2014) and Mayne, Rawlings, Rao, and Scokaert (2000) for de-
tailed surveys; here we only focus on MPC design with the re-
quirement of reference tracking while explicitly considering dis-
turbance rejection. In order to obtain the offset-free tracking,
appropriately embedding the model of the reference and the
disturbance is necessary based on the well-known internal model
principle (Isidori, 1995). Several early works have established a
popular setup, generally named as the disturbance model formu-
lation (Maeder, Borrelli, & Morari, 2009; Pannocchia & Bemporad,
2007; Pannocchia & Rawlings, 2003). This setup regards the cur-
rent disturbance estimate as an initial state in the prediction
model and lets the predicted disturbance in the horizon fol-
low a given model. Several variants of offset-free MPC exist,
e.g., the disturbance observer approach (Tatjewski, 2014) and
the velocity form approach (Betti, Farina, & Scattolini, 2013),
but they all show strong similarities with the disturbance model
formulation (Pannocchia, 2015; Pannocchia, Gabiccini, & Artoni,
2015). Recent years have witnessed the wide adaptation of this
setup in robotics applications which require high-precision track-
ing (Carron et al., 2019; Huang, Hofer, & D’Andrea, 2021; Liu,
Chen, & Andrews, 2012). However, establishing theoretical con-
ditions for this setup is very challenging because of the combined
presence of state/disturbance observer, target calculation and
receding-horizon optimisation. Indeed, almost all available meth-
ods for offset-free MPC follow a static analysis, i.e., assuming
that the system can reach an asymptotically stable equilibrium,
and then proving that offset-free control is attained at such
an equilibrium (Maeder et al., 2009; Pannocchia, 2015; Pannoc-
chia & Bemporad, 2007; Pannocchia et al., 2015; Pannocchia &
Rawlings, 2003; Tatjewski, 2014). However, this static analy-
sis cannot well guarantee the dynamic convergence, and easily



Y. Yan, X.-F. Wang, B.J. Marshall et al. Automatica 158 (2023) 111238

l
c
s
t
a
F
s
a
(
(
t
c

u
u
n
M
2
a
o
e
t
o
(
w
T
h
D
f
f
M
c
t
t
t
r

1

t
o
a
s
t
o
d
u
d
2
b
d

c
c
F
t
n
t
2
t
T
s
t
b
e

oses the recursive feasibility when the reference or disturbance
hanges (Rawlings et al., 2017; Rossiter, 2006). Towards the fea-
ibility issue of the changing reference, a sensible way to increase
he optimisation dimensions by involving artificial state and input
s additional decision variables is proposed in Rossiter (2006).
ollowing this contribution, some works have been done in other
imilar contexts, e.g., Betti et al. (2013), Limon, Alvarado, Alamo,
nd Camacho (2008), Limon, Ferramosca, Alvarado, and Alamo
2018) and Simon, Lofberg, and Glad (2014), where Limon et al.
2008) creatively use a special algebraic equation to parame-
erise the steady state and input, which could further save the
omputing resources.
The challenge in guaranteeing the recursive feasibility of MPC

nder disturbances lies in the time-varying estimation errors and
npredictable disturbances. An intuitive idea is to take robust-
ess into account for MPC design, for example using tube-based
PC (Chisci, Rossiter, & Zappa, 2001; Mayne, Seron, & Rakovic,
005). This kind of MPC develops a connection between the
bove-mentioned two categories in the sense that the system is
ptimised around a pre-designed nominal trajectory with tight-
ned constraints. Since the tube-based MPC design is analogous to
he nominal one, there are only a few works on reference tracking
r disturbance rejection. In Limon, Alvarado, Alamo, and Camacho
2010), the tracking MPC is designed based on a nominal model,
here all the disturbances in the original system are ignored.
his approach is relatively conservative in the tube design as it
as to cover all the possible realisation of the disturbance. In Xie,
ai, Lu, and Xia (2021), a feed-forward component is designed
irst based on the disturbance estimate in order to compensate
or the external disturbance as much as possible; a stabilising
PC is then designed with the tube, which is only needed to
over the uncompensated disturbance and disturbance estima-
ion error. Although recursive feasibility can be guaranteed by
hese methods, disturbances are all regarded as deleterious things
o the control performance, and hence, are rejected intuitively,
ather than being fully exploited.

.3. Contributions

In this paper, we propose a novel optimal safety-critical con-
rol strategy for disturbed dynamic systems with the guarantee
f safety and stability. The proposed method follows a natural
nd intuitive idea: Primarily keep the system in a static and
afe equilibrium, and then cautiously drive the equilibrium to
he given target as close as possible. To realise the first half
f the idea, learning from disturbances will be required. The
isturbance observer provides an estimation approach for the
nknown disturbance. Here, we adopt only an original version of
isturbance observer (DOB) (Chen, Ballance, Gawthrop, & O’Reilly,
000), which can achieve asymptotic estimation when the distur-
ance is constant, but pay more attention to fully exploiting the
isturbance estimate.
The contributions of this paper are threefold. As the main

ontribution, this paper provides a unified framework of safety-
ritical control design with the intervention from disturbances.
rom a high-level view, the proposed framework fully exploits
he opportunities raised by disturbances. Disturbance estimate is
ot only used to improve the tracking accuracy as the conven-
ional compensation-based approaches (Chen, Yang, Guo, & Li,
015; Sariyildiz, Oboe, & Ohnishi, 2019) but also acts as a monitor
o examine whether the current disturbance can be fully rejected.
o obtain the condition on disturbance rejection of safety-critical
ystems, this paper shifts the focus from the disturbance side
o the output reachability by defining a disturbance estimate-
ased output admissible (DEOA) set. Once the given reference
xceeds the DEOA set (which implies that rejecting the current
3

Fig. 2. Different setups in the tracking MPC. (a) The proposed method: A
pseudo steady disturbance-based prediction. (b) The conventional method: A
disturbance estimate-based prediction.

disturbance is a risky decision), the proposed method will transfer
the objective of fully rejecting the disturbance into optimally
coexisting with the disturbance.

Another contribution is that this paper guarantees recursive
feasibility for the first time when the disturbance estimate is
involved in online optimisation, with the mild assumption that
the external disturbance and its changing rate are bounded. To
well demonstrate this contribution, we illustrate the setups of
tracking MPC in Fig. 2, explicitly compared with the conventional
offset-free MPC (Rawlings et al., 2017, Chaps. 1.5 and 5.5). In this
paper, the recursive feasibility is guaranteed by embedding the
quartet of pseudo steady input, output, state, and disturbance
(IOSD) into optimisation. Note that as shown in Fig. 2(a), the pre-
diction model here is online optimised and driven by a decision
variable, the pseudo steady disturbance, rather than the distur-
bance estimate as in the conventional offset-free MPC. Hence,
we are able to decouple the prediction model from the rapid
change of disturbance estimates, which significantly contributes
to the guarantee of recursive feasibility or safety. In contrast to
the proposed method, as clearly stated in Rawlings et al. (2017,
Page 356, Chap. 5.5.3), recursive feasibility of the conventional
offset-free MPC can only be guaranteed in fairly limited scenarios,
i.e., when the changing rate of estimation dynamics is sufficiently
slow.

As a by-product, the last contribution lies in that this paper
establishes a separation principle between the estimation and
state feedback designs. In the context of the proposed MPC de-
sign, only the robustly asymptotic stability (RAS) set of estimation
error would affect the tube computation, which implies that the
proposed method not only copes with the peak phenomenon
of high-gain observer (El Yaagoubi, El Assoudi, & Hammouri,
2004; Wang, Zuo, Wang, Yang, & Hu, 2022), but also renders
the freedom of using a variety of estimation approaches. Besides,
due to the reduced-order DOB and disturbance error-based tube
design, the proposed method is initialisation-free, i.e., it works
for any possible initial state of disturbance estimate, which may
not be achieved by most existing methods. In the conventional
output MPC, the initial estimation error is required to be within a
pre-designed tube (Rawlings et al., 2017, Chap. 5); however, since
that disturbance is unknown, this initial guess on the disturbance
is generally difficult in practice or has to be quite conservative to
be satisfied, otherwise an inappropriate initial guess may make
the optimisation problem infeasible at the beginning.
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Table 1
The frequently used sets and variables.
X, U State and input constraints, (1)
X̄, Ū Tightened state and input constraints, (16)
X̄f (·) Terminal (state) set, (16)
Xs, Us Steady state and input set, (21)
Ys(·) Disturbance estimate-based output admissible set, (9)
D1, D2 Disturbance and its changing rate sets, (2)
DL Robustly asymptomatic stability set of disturbance estimation

error, (5)
SK Robustly positive invariant set of disturbance error, (15)
Ds Steady disturbance (estimate) set, (6)
P(·) Optimisation problems, e.g., Pd in (7), Pr in (10), PN in (14),

and Ps in (24)
(·)s Pseudo steady variables, e.g., us, ys, xs, ds in (14)
ˆ(·) Estimated variables, e.g., d̂ in (4)
c(·) or (·)c Constants, e.g., cr in (11) and dc , rc in Theorem 18

(·)0 Optimal variables for static optimisation problem, e.g., d0f in
(7) and r0f in (10)

(·)∗ Optimal variables for MPC optimisation problem, e.g., x̄∗ and
ū∗ in (14)

1.4. Organisation, notation and common definitions

The remainder of this paper is organised as follows. In Sec-
ion 2, the control objective is first presented and followed by
ufficient conditions on disturbance survival and rejection, which
rovide preliminaries for the proposed MPC framework in Sec-
ion 3. The theoretical analysis on recursive feasibility and stabil-
ty, and the numerical example are also provided in Section 3. The
ethod developed in the paper is illustrated by an aerial physical

nteraction problem with experiments reported in Section 4. Fi-
ally, conclusions are provided in Section 5 and main proofs are
ocated in Appendix A and Appendix B for the sake of readability.

Notation: I and R are integers and real numbers, respectively,
where superscripts or subscripts may be added to give specific
ranges. A C-set is a convex, compact set containing the origin.
Consider a ∈ Rn and b ∈ Rm, then col(a, b) := [aT , bT ]T ; for a set
⊂ Rn+m, the projection of Γ onto a is defined as Proja(Γ ) :=

a ∈ Rn
| ∃b ∈ Rm, col(a, b) ∈ Γ }. Given two sets A ⊂ Rn

nd B ⊂ Rn, several basic set algebra operators are defined by
⊕ B := {a + b | a ∈ A, b ∈ B}, A ⊖ B := {a | a ⊕ B ⊆ A} and
A := {Ka | a ∈ A} where K ∈ Rm×n. Given a set X ⊂ Rn, we
efine its complement as X∁

:= Rn
\X. The matrices 0n×m ∈ Rn×m

nd In ∈ Rn×n denote a zero matrix and an identity matrix,
espectively. For any matrix A ∈ Rn×n, ρ(A) denotes the spectral
adius. For any vector x ∈ Rn, |x| denotes the 2-norm and |x|2P
is defined by |x|2P := xTPx, where P ∈ Rn×n is a symmetric
matrix. For readability, the frequently used sets and variables in
this paper are listed in Table 1.

The following definitions on robustly positive invariant (RPI)
set (Rawlings et al., 2017, Page 217, Defin. 3.7) and robustly
asymptotic stable (RAS) set (Rawlings et al., 2017, Page 230, Defin.
3.11) are useful in the design and analysis of this paper.

Definition 1. A set S is robustly positive invariant for system
x+ = f (x, w), w ∈ W if, for every x ∈ S, f (x,W) ⊆ S.

Definition 2. Suppose the sets S1 and S2, S1 ⊂ S2, are robustly
positive invariant for system x+ = f (x, w), w ∈ W. The set S2 is
robustly asymptotic stable for x+ = f (x, w) in S1 if there exists
a KL function β(·) such that every solution φ(·; x,w) of x+ =
f (x, w) with initial state x ∈ S1 and any disturbance sequence
w ∈ W∞ satisfies H(φ(i; x,w), S2) ≤ β(H(x, S2), i), ∀i ∈ I≥0,

where i is the time index and H(x, S2) := infy∈S2 |x− y|. t

4

2. Problem formulation

2.1. System model

Consider a discrete-time system of the form:

x(k+ 1) = Ax(k)+ Bu(k)+ Bdd(k)
y(k) = Cx(k)

(1)

where x(k) ∈ Rn is the state; u(k) ∈ Rm is the control; y(k) ∈ Rp

s the output; and d(k) ∈ Rnd is the unknown disturbance; k ∈
≥0 is the current time, which may be skipped without causing
mbiguity. The full state is measurable and the state and input
rajectories are subject to the constraint (x(k), u(k)) ∈ X × U,
here both X and U are known C-sets, representing the state and

nput constraints, respectively. The initial state satisfies x(0) ∈ X.
he disturbance is assumed to satisfy the following assumption.

ssumption 3. The disturbance and its changing rate are
ounded by:

(k) ∈ D1, ∆d(k) ∈ D2, ∀k ∈ I≥0 (2)

here ∆d(k) := d(k+ 1)− d(k); D1 and D2 are known C-sets.

The objective of this paper is to design a composite controller
u(k) = κN (x(k), d̂(k), r(k)) with a well-designed disturbance es-
timate d̂(k) and a given reference r(k) such that the controlled
plant:

x(k+ 1) = Ax(k)+ BκN
(
x(k), d̂(k), r(k)

)
+ Bdd(k) (3)

urvives all disturbances satisfying Assumption 3. Furthermore,
or any specific disturbance, the proposed controller will take
very opportunity to fully reject it. To make the control objective
learer, we describe three different levels of interaction between
he plant and the disturbance, whose definitions are given as
ollows.

efinition 4. Consider system (1) under the disturbance satis-
ying Assumption 3.

(1) Disturbance Survival: For a given disturbance d(k), if the
safety constraint (x(k), u(k)) ∈ X × U, k ∈ I≥0 is always
fulfilled, system (1) is said to survive disturbance d(k). If
system (1) survives all possible disturbance realisations
satisfying Assumption 3, system (1) is said to survive all
disturbances.

(2) Disturbance Rejection: For a given disturbance d(k), if the
proposed controller is able to steer the output y(k) to the
given reference r(k) and system (1) survives disturbance
d(k), disturbance d(k) is said to be fully rejected.

(3) Disturbance Optimal Coexistence: For a given disturbance
d(k), if the proposed controller is able to steer the output
y(k) to an optimal solution corresponding to a predefined
performance index, but fails to fully reject disturbance d(k),
and system (1) survives disturbance d(k), system (1) is said
to optimally coexist with disturbance d(k).

Here, reference r(k) is assumed to be unknown in advance,
epresenting an input from human operator or a high-level de-
ision making.

emark 5. Disturbance survival, rejection, and optimal coexis-
ence are all important aspects of safety-critical control systems,
ith emphasis on the intervention from disturbance. Disturbance
urvival refers to the satisfaction of safety constraints throughout
he entire duration of system operation under all possible dis-

urbance realisations. On the other hand, disturbance rejection
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urther requires the objective to be achieved eventually, such
s offset-free tracking to the given reference under the specific
isturbance. Optimal coexistence is a compromised status when
isturbance rejection cannot be safely achieved.

.2. Disturbance estimation filter

Since disturbance d(k) is unknown, it is necessary to estimate
t first. Although multiple types of disturbance observers exist
ith different features (Chen et al., 2015; Sariyildiz et al., 2019),
e follow only an original version (Chen et al., 2000) but focus
ore on the approach of embedding the disturbance estimate

nto optimisation. The DOB is designed as follows:

(k+ 1) = (Ind − LBd)z(k)+ (L− LA− LBdL)x(k)− LBu(k) (4a)

d̂(k) = z(k)+ Lx(k) (4b)

where L ∈ Rnd×n is the observer gain; z(k) ∈ Rnd is the auxiliary
variable; d̂(k) ∈ Rnd is the disturbance estimate. Given that
the asymptotic estimation in (4) is only applicable to constant
disturbances, it is reasonable to expect that effective disturbance
rejection can only be achieved under the same condition.

Define the disturbance estimation error as d̃(k) := d(k)− d̂(k).
aking DOB (4) into plant (1) yields the following estimation error
ystem:

˜(k+ 1) = ALd̃(k)+∆d(k) (5)

here AL := Ind − LBd. Suppose that there exists an observer gain
such that AL is stable, i.e., ρ(AL) < 1, system (5) is input-to-state
table (ISS) with respect to ∆d(k) ∈ D2. Then robustly asymptotic
tability (RAS) set DL exists for the estimation error d̃(k). That is,
here exists a time instant k1 such that d̃(k) ∈ DL holds for all
≥ k1. In other words, d̂(k) will be captured by its steady set

s := D1 ⊕ (−DL), (6)

.e., d̂(k) ∈ Ds holds for all k ≥ k1.
It is worth noting that even a small initial error d̃(0) may

ead to a large estimation error due to the pursuit of faster
stimation performance. If the disturbance estimate is directly
nto the closed-loop system, then it will yield a peak error on
he system or even break the safety (El Yaagoubi et al., 2004;
ang et al., 2022). To avoid this peak phenomenon, we design

he following optimisation problem:

d

(
d̂
)
: d0f := arg min

df ∈Ds

⏐⏐⏐df − d̂
⏐⏐⏐2 . (7)

he optimisation problem Pd(d̂) generally acts as a saturation
unction for the disturbance estimate: Once the disturbance es-
imate is out of the steady disturbance set Ds, it will return the
losest one on the boundary of Ds.

emark 6. A common way to construct the RAS set DL for
he estimation error dynamics is using the sub-level set of the
yapunov function of system (5). Readers can refer to Jiang and
ang (2001, Lemma 3.5) for the detailed construction approach.

.3. Interactions with disturbances

With the filtered disturbance estimate, we are now able to
ive several sufficient conditions on surviving and rejecting dis-
urbances, which are based on the steady state and input sets,
s ⊆ X and Us ⊆ U. These two sets, Xs and Us, are defined as
he ranges of the current state x and input u that guarantee the
ystem exhibits a static behaviour for all possible disturbances
∈ Ds, which facilitate the construction of trackable reference
nd stability analysis. Here, the steady disturbance set Ds is used r

5

nstead of the real disturbance set D1 in order to capture the effect
f disturbance estimation error. The steady sets Xs and Us will be
pecifically constructed in Section 3.3.

.3.1. Disturbance survival
The condition of surviving disturbances is inspired by the

erial physical interaction scenario in Fig. 1, especially the drone
tays statically in the critical point under the strong wind. Hence,
he system is desired to reach a dynamic equilibrium under all
ossible realisations of disturbances. It is also quite necessary,
ince if the steady state and input are not able to survive all
isturbances, the system will be either oscillating within the
afety region or ‘‘blown away’’ and break the safety requirement,
s seeing the drone crash case in Fig. 1(b). Both consequences are
ot acceptable in practice. Such a consideration can be geometri-
ally formulated by Assumption 7, which is proved to be sufficient
or surviving all disturbances in Lemma 8.

ssumption 7. The steady state, input and disturbance sets
atisfy the following relation:

A− In)Xs ⊕ BUs ⊇ −BdDs. (8)

emma 8. System (1) survives all disturbances, if condition (8)
holds.

Proof. Noting that D2 is a C-set, we have that DL contains the
origin, which implies that Ds ⊇ D1. Suppose that (8) holds, then
for any disturbance d ∈ D1 ⇒ −Bdd ∈ −BdD1 ⊆ −BdDs,
there exists a pair of (x, u) ∈ Xs × Us ⊆ X × U such that
(A − In)x + Bu = −Bdd. Thus, x+ = x ∈ Xs ⊆ X. Hence, the
safety constraint (x(k), u(k)) ∈ X × U, k ∈ I≥0 is always fulfilled
for all possible disturbance realisations satisfying Assumption 3,
which completes the proof. ■

Remark 9. Assumption 7 is consistent with the feasibility re-
quirement of the target calculation in offset-free MPC (Rawlings
et al., 2017, Chap. 5.5) when the disturbance estimate is bounded
within a given set Ds. However, it is important to note that
Assumption 7 provides a pre-design verification criterion that
establishes a safe operating envelope. As demonstrated later in
Theorem 16, this assumption is critical for achieving recursive
feasibility (safety). Besides, the verification process is straightfor-
ward since the construction of the steady constraints Xs and Us is
ompletely independent of any disturbance-related variables, as
xplained in Section 3.3. Additionally, based on the definition of
isturbance steady set Ds, Assumption 7 implicitly includes the
equirements on disturbance sets D1 and D2.

.3.2. Disturbance rejection and towards optimal coexistence
By Definition 4, a disturbance can be fully rejected if the

eference can be tracked, which implies that the reachability of
utput is significant for examining disturbance rejection. We first
efine the output admissible set, which is named as disturbance
stimate-based output admissible (DEOA) set to emphasise that
e take full use of the disturbance information and distinguish it

rom the definition in reference governor (RG)-based methods.
Supposing that Assumption 7 holds, for any given disturbance

s ∈ Ds, there must exist at least a pair of (xs, us) satisfying that
A − In)xs + Bus = −Bdds. Then, we can define the DEOA set as
ollows:

s(ds) :=
{
ys = Cxs | (A− In)xs + Bus = −Bdds,

xs ∈ Xs, us ∈ Us

}
⊆ CXs.

(9)

ith the DEOA set (9), we can deduce a sufficient condition for

ejecting disturbance.
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emma 10. Disturbance d is fully rejected, if condition r ∈ Ys(d)
olds.

roof. Suppose that r ∈ Ys(d), then there exists a pair of (x, u) ∈
s × Us ⊆ X × U such that both (A − In)x + Bu = −Bdd and
= Cx = r hold. Similarly, we have x+ = x and y+ = y = r . This
ompletes the proof. ■

Towards optimal coexistence with disturbances, once the ref-
rence is out of DEOA, a cautious way is to generate a reachable or
rackable reference for the system to follow, which is the closest
dmissible target under the current disturbance estimate. We
hen design the following optimisation problem:

r
(
d0f , r

)
: r0f := arg min

rf ∈Ys
(
d0f

) ⏐⏐rf − r
⏐⏐2 . (10)

t is worth noting that the approach to determine the reachable
eference is extendable to consider the changing rate of reachable
eference to avoid oscillation.

ssumption 11. For a given reference r , there exists a constant
r > 0 such that⏐⏐r0f 1 − r0f 2

⏐⏐ ≤ cr
⏐⏐d0f 1 − d0f 2

⏐⏐ (11)

olds, if d0f 1 ∈ Ds and d0f 2 ∈ Ds are arbitrarily close, where
0
f 1 and r0f 2 are the optimal solutions of Pr (d0f 1, r) and Pr (d0f 2, r),
espectively.

emark 12. Noting that the DEOA set Ys(·) in (10) is the function
f d0f and if the difference between d0f 1 and d0f 2 is arbitrarily small,
he difference between the boundaries of Ys(d0f 1) and Ys(d0f 2)
ould also be arbitrarily small, so will be the difference between

0
f 1 and r0f 2. This geometric interpretation is depicted in Fig. 3,
here a first-order example is considered. Assumption 11 is a
athematical expression on the above-mentioned observation
nd is in the form of local Lipschitz continuity for convenience
n the subsequent stability analysis. Besides, it is worth noting
hat we only assume the existence of the Lipschitz constant cr ,
ut without any limitation on its size; the Lipschitz constant cr is

independent of the following design process, which only affects
the construction of the Lyapunov function W (k). Furthermore,
if polyhedral sets are considered here, (10) can be transformed
into a multi-parametric quadratic programming (mp-QP) prob-
lem with the parameter d0f appearing only on the right-hand side
f the constraints. Under mild conditions, r0f is continuous and
iecewise affine with respect to d0f (Bemporad, Morari, Dua, &
istikopoulos, 2002, Sec. 4), which also naturally verifies Assump-
ion 11. The detailed process using the mp-QP formulation has
een provided in Appendix C.

. Augmented predictive control framework

To obtain the control objective, surviving all disturbances but
aking every opportunity to reject them, a new tracking MPC frame-
ork is proposed under the name augmented predictive control
APC), which emphasises not only the hierarchical structure but
lso the augmented dimensions of optimisation. Before present-
ng the detailed design, the overall control scheme is given by
ig. 4, where the control input applied to the system (1) is still
ollowing a classical format, that is:

(k) := K
(
x(k)− x̄∗ (0; k)

)
+ ū∗ (0; k) (12)

here K is the controller gain, which needs to let AK := A + BK
e stable, i.e., ρ(AK ) < 1; the given reference and disturbance
stimate are in-explicitly contained in the optimal nominal state
¯∗ ¯∗
(0; k) and input u (0; k).

6

Fig. 3. A geometric interpretation of Assumption 11, where A = −1, B = Bd =

= 1 and Us = Xs = [−1, 1]. Two auxiliary lines are drawn, corresponding
o different disturbances d0f1 and d0f2 , respectively. To verify the validity of
ssumption 11, three cases need to be considered: (1) r ∈ Ys(d0f1 ) ∩ Ys(d0f2 ),

(2) r ∈ Y∁
s (d

0
f1
) ∩ Y∁

s (d
0
f2
), and (3) r ∈ Y∁

s (d
0
f1
) ∩ Ys(d0f2 ) or r ∈ Ys(d0f1 ) ∩ Y∁

s (d
0
f2
).

3.1. Main results

We are now in a position to specify the new optimisation
problem, whose solution yields the optimal steady input, output,
state, disturbance (IOSD), and nominal state and input. The pro-
posed cost function is given as follows, which is a combination
of the cost function from the conventional tracking MPC and the
penalties on the error between pseudo disturbance and distur-
bance estimate, and that between pseudo output and reference:

VN
(
IOSD(k), ū(k), x̄(0; k), d0f (k), r

0
f (k)

)
:=

N−1∑
i=0

ℓ (x̄(i; k)− xs(k), ū(i; k)− us(k))+ Vf (x̄(N; k)− xs(k))

+ Vd
(
d0f (k)− ds(k)

)
+ Vy

(
r0f (k)− ys(k)

)
(13)

here
(x̄(i; k)− xs(k), ū(i; k)− us(k))

:= |x̄(i; k)− xs(k)|2Q + |ū(i; k)− us(k)|2R
f (x̄(N; k)− xs(k)) := |x̄(N; k)− xs(k)|2P

Vd(d0f (k)− ds(k)) := |d0f (k)− ds(k)|
2
Pd

Vy(r0f (k)− ys(k)) := |r0f (k)− ys(k)|
2
Py
;

x̄(i; k) denotes the prediction obtained by iterating model i times
from the initial state x̄(0; k); IOSD(k) denotes the pseudo steady
sequence (us(k), ys(k), xs(k), ds(k)); ū(k) denotes the control se-
quence (ū(0; k), ū(1; k), . . . , ū(N−1; k)); N denotes the prediction
horizon; Q , R, P, Pd, Py are the positive definite weightings, and
the terminal weighting P is designed to cover the cost-to-go and
guarantee the stability.

The proposed APC is derived from the following optimisation
problem:

PN
(
x, d0f , r

0
f

)
: min

IOSD(k),ū(k),x̄(0;k)
VN (·) (14)

s.t.

x̄(0; k) ∈ {x(k)} ⊕ (−S ) (14a)
K
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Fig. 4. Schematic of the proposed method.

x̄(i+ 1; k) = Ax̄(i; k)+ Bū(i; k)+ Bdds(k) (14b)

¯(i; k) ∈ X̄, ū(i; k) ∈ Ū, i ∈ I0:N−1 (14c)

x̄(N; k) ∈ X̄f (xs(k)) (14d)[
A− In B

C 0p×m

][
xs(k)
us(k)

]
=

[
−Bdds(k)
ys(k)

]
(14e)

xs(k) ∈ Xs, us(k) ∈ Us, ds(k) ∈ Ds (14f)

where SK denotes the uncertainty set containing all possible
realisations of estimation errors; X̄ and Ū denote the tightened
constraints for state and input; X̄f (xs(k)) denotes the terminal
constant, which depends on the current pseudo steady state; Xs
and Us are the steady sets of state and input. Several undefined
sets will be specified subsequently.

3.2. Disturbance error-based tube design

In this section, we will focus on the specific design for the tube
SK in (14a) and the tightened constraints X̄ and Ū in (14c).

The motivation to use the tube here is mainly due to the
difference between the real disturbance and the pseudo steady
disturbance during the optimisation. Although we can expect
that the error between these two would converge to zero under
the mild assumption, the initial error is unpredictable due to
the unknown disturbance. Hence, a worst-case design has to be
considered. Let e(0; k) := x(k) − x̄(0; k) and e(1; k) := x(k + 1) −
x̄(1; k). Subtracting (1) from (14b) will yield:

e(1; k) = AK e(0; k)+ Bd (d(k)− ds(k)) . (15)

Noting that d(k) − ds(k) ∈ D1 ⊕ (−Ds) = D1 ⊕ (−D1) ⊕ DL, we
define WL := Bd(D1⊕ (−D1)⊕DL). Let SK be the robustly positive
invariant (RPI) set for (15), i.e., AKSK ⊕WL ⊆ SK , whose existence
is guaranteed if AK is stable (see Gilbert and Tan (1991, Sec.1) for
further details). Then, we can define the tightened constraints as
the conventional tube-based MPC:

X̄ := X⊖ SK , Ū := U⊖ KSK . (16)

n the optimisation problem PN (x, d0f , r
0
f ), the constraint (14a)

orces the initial error e(0; k) to be within the tube and due to the
PI property, we have e(1; k) ∈ SK , i.e., x̄(1; k) ∈ {x(k+1)}⊕(−SK ).

3.3. Steady and terminal constraints design

In this section, we will focus on the specific design for the
terminal and steady state constraints X̄f , Xs and Us in (14d) and
(14f).

The terminal condition designed here follows the spirit of the
stabilising condition in the conventional MPC (Rawlings et al.,
2017, Chap. 2.4). We first fix the format of the terminal controller
as follows:

ū(N; k) = K̄ (x̄(N; k)− x (k))+ u (k) (17)
s s t

7

where K̄ is the terminal controller gain. Taking (17) into the (14b)
and keeping (14e) in mind will give:

x̄(N + 1; k) = AK̄ (x̄(N; k)− xs(k))+ xs(k) (18)

where AK̄ := A+BK̄ . It is worth noting that no disturbance infor-
ation is involved in (18). Let xa(N; k) := col(x̄(N; k), xs(k), us(k))
∈ R2n+m. The dynamics of the augmented system and the termi-
nal controller are both obtained from (18), as follows:

xa(N + 1; k) = Aaxa(N; k), ū(N; k) = [K̄ ,−K̄ , Im]xa (19)

here

a :=

[ AK̄ In − AK̄ 0n×m
0n×n In 0n×m
0m×n 0m×n Im

]
.

An admissible invariant set ΘK̄ for system (19) can be defined by:

AaΘK̄ ⊆ ΘK̄ ⊆ Xa (20)

where

Xa :=
{
xa ∈ R2n+m

| xa ∈ X̄× λX̄× λŪ, [K̄ ,−K̄ , Im]xa ∈ Ū
}

and λ ∈ (0, 1) can be chosen arbitrarily close to 1.The introduc-
tion of λ in Xa is to obtain a finitely-determined approximation
of the maximal admissible invariant set, which hence is con-
vex (Gilbert & Tan, 1991). Besides, noting the identity matrices
in the main diagonal of Aa, the invariant sets for steady state and
input can be specified using the projection operation while the
terminal set is related to the steady state and can be specified
using a similar operation, as follows:

Xs := Projxs (ΘK̄ ) ⊆ λX̄ ⊂ X̄
Us := Projus (ΘK̄ ) ⊆ λŪ ⊂ Ū
¯ f (xs) :=

{
x̄N ∈ Rn

| ∀us ∈ Us, col(x̄N , xs, us) ∈ ΘK̄

}
⊆ X̄,
∀xs ∈ Xs.

(21)

ith (21), it is geometrical to conclude that:

K̄ =
⋃
xs∈Xs

X̄f (xs)× Xs × Us (22)

hich can also be proved using the set contain relationship.
esides, Xs and Us are both convex (Boyd, Boyd, & Vandenberghe,
004, Chap. 2.3.2).
In the meantime, the terminal weighting P and its controller

ain K̄ can be easily obtained from the discrete algebraic Riccati
nequality:
T
K̄PAK̄ − P + Q + K̄ TRK̄ ≤ 0. (23)

.4. Optimisation-based steady IOSD discussion

In this section, we will discuss the optimisation-based ap-
roach to compute the steady IOSD in (14e) and show the dif-
erences with that in the conventional offset-free MPC.

To simplify the analysis, we consider a steady-state scenario
here the tracking items in (13) are all set to zeros. Hence,
N (x, d0f , r

0
f ) will be simplified to the following optimisation prob-

em:

s
(
d0f , r

0
f

)
: min

IOSD
Vd

(
d0f − ds

)
+ Vy

(
r0f − ys

)
(24)

s.t.
[
A− In B

C 0p×m

][
xs
us

]
=

[
−Bdds
ys

]
(24a)

xs ∈ Xs, us ∈ Us, ds ∈ Ds. (24b)

he proposed approach is meaningful in the sense that the op-

imal steady disturbance and output are exactly the same as the
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iven ones, i.e., d0f and r0f . This inference is proved by Lemma 13
nd will play a significant role in the stability analysis. On the
ther hand, it is worth noting that during the transition process,
he optimised IOSD obtained from (13) only can serve as pseudo
teady sequences.

emma 13. Suppose that Assumption 7 holds, then the value
unction of Ps(d0f , r

0
f ) is 0 and its partial optimal solutions are d0s =

0
f , y

0
s = r0f .

roof. By the definition of Pr (d0f , r), i.e., r
0
f ∈ Ys(d0f ), there exist

˜s ∈ Xs and ũs ∈ Us such that (A − In)x̃s + Bũs = −Bdd̃s, Cx̃s =
˜s where d̃s := d0f and ỹs := r0f . Since that (ũs, ỹs, x̃s, ũs) is a
easible solution of the optimisation problem Ps(d0f , r

0
f ), taking the

orresponding disturbance and output, d̃s and ỹs, into the cost
unction will get Vd(d0f − d̃s) + Vy(r0f − ỹs) = 0. And hence, the
alue function of Ps(d0f , r

0
f ) is 0. It also implies that the partial

ptimal solutions should satisfy that d0s = d0f , y
0
s = r0f due to the

ptimality, which completes the proof. ■

emark 14. It is worth noting that the external signals d0f and r0f
re only involved in the cost function, rather than the constraints
f the optimisation problem (24). This approach is completely dif-
erent from the conventional offset-free MPC design, e.g., Maeder
t al. (2009) and Rawlings et al. (2017, Chap. 5.5), where the dis-
urbance and reference items are directly involved in the equation
onstraint. Once the disturbance (estimate) or the given reference
s rapidly changed, the feasibility of the conventional offset-free
PC cannot be easily guaranteed, which would break the safety

equirement (Limon et al., 2008, 2018; Simon et al., 2014).

emark 15. Lemma 13 also implies the necessity of introducing
he optimisation problem Pr (d0f , r). If one directly puts the ref-
rence r into the optimisation problem Ps(d0f , r

0
f ), i.e., replacing

he optimal reference r0f by the given one r , the value function
f Ps(d0f , r

0
f ) cannot be zero if r /∈ Ys(d0f ). This will lead to the

ptimal steady disturbance d0s may not be the target one, d0f ,
hich is desired to converge to the external disturbance d. Once
he optimal steady disturbance cannot converge to the external
isturbance, the optimal state and input will lose their physical
eaning as they are not matched with the real ones under the
urrent environment.

.5. Algorithm implementation

Now, the proposed control algorithm can be formally stated
s Algorithm 1. To clarify the algorithm, the signal flow is started
rom the disturbance estimate, which also corresponds to the
ontrol scheme shown in Fig. 4.

.6. Theoretical analysis

The following theorems present the results on recursive feasi-
ility and stability, whose proofs are located in Appendix A and
ppendix B for the sake of readability.

heorem 16. Suppose that Assumptions 3 and 7 hold. Then, system
1) controlled by (12) always fulfils the safety constraints throughout
he time, if the optimisation problem PN (x(k), d0f (k), r

0
f (k)) in (14) is

easible at the time k = 0.

ssumption 17. The matrix

A− In B
C 0p×m

]
s nonsingular.
8

Algorithm 1 Augmented Predictive Control
1: Offline: Specify the weightings Q , R, P , Py, and Pd, prediction

horizon N , controller and observer gains K and L, and con-
straints X̄, Ū, X̄f , Xs, Us, and Ds. ▷ See Sec. 3.2 and Sec.
3.3.

2: Initialise: Set the time k = 0 and specify the observer state
z(0).

3: Step One-Estimation Filter:

a) Measure the current state x(k) and receive the observer
state z(k) to compute the disturbance estimate d̂(k)
from (4b).

b) Solve the static optimisation problem Pd(d̂(k)) in (7) to
obtain d0f (k). ▷ See Sec. 2.2.

4: Step Two-Reachable Reference: Receive the current refer-
ence r(k). Solve the static optimisation problem Pr (d0f (k), r(k))
in (10) to obtain r0f (k). ▷ See Sec. 2.3.

5: Step Three-Nominal State/Input: Solve the nominal optimi-
sation control problem PN (x(k), d0f (k), r

0
f (k)) in (14) to obtain

x̄∗ (0; k) and ū∗ (0; k). ▷ See Sec. 3.1.
6: Step Four-Controller/Observer:

a) Compute the current controller u(k) from (12) and ap-
ply it into system (1) to generate the successor state
x(k+ 1).

b) Compute the successor estimate z(k+ 1) from (4a).
c) Set k← k+ 1 and go to Step One.

Theorem 18. Suppose that Assumptions 3, 7, and 11 hold, the
optimisation problem PN (x(k), d0f (k), r

0
f (k)) in (14) is feasible at the

time k = 0, and the disturbance and reference are constants in the
steady state, i.e., d(k) = dc , r(k) = rc hold for all k ≥ k2. Then,

(1) If rc ∈ Ys(dc), the control output y(k) asymptotically con-
verges to the set {rc} ⊕ CSK .

(2) If rc /∈ Ys(dc), the control output y(k) asymptotically con-
verges to the set {r0fc} ⊕ CSK , where

r0fc := arg min
rf ∈Ys(dc )

⏐⏐rf − r
⏐⏐2 .

Further, suppose that Assumption 17 holds, then

(3) If rc ∈ Ys(dc), the control output y(k) asymptotically con-
verges to rc .

(4) If rc /∈ Ys(dc), the control output y(k) asymptotically con-
verges to r0fc .

Remark 19. Assumption 17 is quite general since it is the
necessary and sufficient condition on existence of the feasible
target (Rawlings et al., 2017, Lemma 1.14) once the dimensions of
input are the same with that of output. Besides, if Assumption 17
holds, by using its inversion, the decision variable IOSD(k) in
PN (x, d0f , r

0
f ) could be reduced to IS(k) or OD(k), which is the

pseudo steady sequence of (us(k), xs(k)) or (ys(k), ds(k)).

.7. Numerical example

In this section, a numerical example is given to illustrate
he effectiveness of the proposed method, especially when the
isturbance cannot be fully rejected.
Consider a linear system given by:

=

[
0.5 1

]
, B =

[
0 1

]
, Bd =

[
1 1

]
, C = I2
1 1 1 0 0 1
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Fig. 6. Evolution of the DEOA set at the interval of 10 samples. (a) 3D view. (b)
Front view.

with the state and input constraints X = [−5, 4]2, U = [−6, 8]2,
and the disturbance range D1 = [−0.4, 0.8]2. The disturbance
and reference are both piece-wise constants, as follows:

(d(k), r(k)) =

⎧⎪⎨⎪⎩
(
[0, 0.8]T , [0, 0.5]T

)
, k ∈ I0:19(

[−0.4,−0.4]T , [−1, 1]T
)
, k ∈ I20:39(

[0.8, 0.8]T , [−1, 1]T
)
, k ∈ I40:60

he weightings are chosen as Q = R = Py = Pd = I2 and
he terminal weighting and terminal controller gain are both
alculated from the discrete-time Riccati inequality:

=

[
1.96 1.17
1.17 2.54

]
, K̄ =

[
−0.74 −0.80
−0.43 −0.74

]
.

he prediction horizon N is chosen as 3. The controller and
bserver gains are chosen as:

=

[
−0.72 −0.80
−0.44 −0.72

]
, L =

[
0.5 −0.5
0 0.5

]
uch that ρ(AK ) = 0.418 and ρ(AL) = 0.5. The initial system and
bserver states are x(0) = [−2, 1]T , z(0) = [5,−5]T .
To realise the proposed APC algorithm, several respective op-

imisation toolboxes have to be considered. Here, we perform set
omputation using the MPT3 toolbox (Herceg, Kvasnica, Jones, &
orari, 2013) and solve MPC optimisation using the YALMIP (Lof-
erg, 2004). The RPI set SK is computed by the outer approxi-

ation in Rakovic, Kerrigan, Kouramas, and Mayne (2005). The e

9

Fig. 7. Trajectories for the numerical example. (a) State-related variables. (b)
Input-related variables. (c) Disturbance-related variables.

simulation results are given in Figs. 5–7. Fig. 5(a) and (b) demon-
strate the validity of the tightened state and input constraints,
which are both non-empty; while Fig. 5(c) presents the calculated
steady state and input constraints. Fig. 5(d) geometrically shows
the physical meaning of Assumption 7, that is the computed
steady state and input constraints are able to provide enough
power to survive all the external disturbances. Besides, it is worth
noting that the area of the relative complement of −BdDs in
(A−In)Xs⊕BUs provides a quantification of the system operability,
which can be further maximised through parameter optimisation.
Fig. 6 shows the evolution of the proposed DEOA set, which varies
with the disturbance estimate in the shape. Moreover, Fig. 6
offers geometric interpretations for the optimisation problems
Pd(d̂) and Pr (d0f , r), which seek the closest point in Ds (or Ys)
elative to d̂ (or r), respectively. It is worth noting that in the
eference governor, the output admissible set is constant and
onservative since it should cover all the disturbances in a given
et. Fig. 7 shows the convergence of the disturbance estimate
o the disturbance and the system IOSD to the optimal steady
OSD. As shown in Figs. 6 and 7, during the periods of k ∈ I20:39
nd k ∈ I40:60, the given references are hold the same but the

xternal disturbances are changed. Consequently, the tracking
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erformance is different, i.e., the offset-free tracking can only
e achieved during k ∈ I20:39. This is because when the given
eference is out of the DEOA set, the proposed APC will drive the
ystem to the closest position in a safe way. Due to the unknown
isturbance, the initial guess on the d̂(0) or z(0) has a large effect
n the estimation performance, as shown in Fig. 7(c), which leads
arge overshoot in the state tracking during the period of k ∈ I0:10;
owever, all the states are still kept in the given safe region.

. Aerial physical interaction

Aerial robotics, i.e., drones, have been widely used in en-
ironment monitoring (Coombes, Fletcher, Chen, & Liu, 2020),
nfrastructure inspection (Jimenez-Cano, Sanchez-Cuevas, Grau,
llero, & Heredia, 2019) and aerial manipulation tasks (Ollero,
ognon, Suarez, Lee, & Franchi, 2021; Ruggiero, Lippiello, & Ollero,
018). Their deployment often requires physical interactions with
he environment, which in turn poses significant challenges to
he safety-critical control design of the drone. The motivating
xample in Fig. 1 has already revealed the influence of the aero-
ynamic force, let alone that from the physical contact with the
nvironment. Although pioneers provide solutions at the design
evel (Rashad et al., 2022; Tognon, Alami, & Siciliano, 2021),
he aerial robotics community would still benefit from a unified
ontrol framework to deal with those interactions and guaran-
ee safety. In fact, by acknowledging that the disturbance from
he environmental contact may not be fully rejected, the pro-
osed APC framework provides an avenue for developing safety-
ritical control systems operating in unknown environments. This
s illustrated in the following case study.2

.1. Control design

The kinematic motion of an aerial robot can be modelled as
ollows (Beard & McLain, 2012):

ṗ = Rv

˙ = gRTn3 −
T
m

n3 + ad
(25)

here p := [px, py, pz]T ∈ R3 is the position in the inertial
frame; v := [vu, vv, vw]T ∈ R3 is the velocity in the body
frame; R = [cθ cψ , sφsθ cψ − cφsψ , cψ sθ cφ + sψ sφ; cθ sψ , sψ sθ sφ +
ψcφ, cφsθ sψ−sφcψ ;−sθ , cθ sφ, cθ cφ] ∈ R3×3 is the rotation matrix
rom the body frame to the inertial one and cx := cos(x) and
x := sin(x), x ∈ {φ, θ, ψ}; φ ∈ R, θ ∈ R and ψ ∈ R are the
oll, pitch, and yaw angles, respectively; g ∈ R is the gravitational
cceleration; m ∈ R is the mass; T ∈ R is the total thrust created
y the four propellers; n3 := [0, 0, 1]T ∈ R3 is the basis vector;
d := [au, av, aw]T ∈ R3 is the acceleration disturbance, which
ontains the influence from the environment. Here, we use the
roposed APC for the positions py and pz and leave the position
x by using a proportional–integral–derivative (PID) controller.
or simplicity, we consider only the outer-loop dynamics of the
light control system and assume that the tracking performance
f the inner loop is desirable; the attitude tracking error can be
egarded as a disturbance on the outer-loop dynamics. To strictly
ollow the design approach in this paper, system (25) has to be
inearised and discretised first. It is straightforward to obtain the
ystem matrices in the case of zero yaw command, as follows:

=

[
I2×2 tsI2×2
02×2 I2×2

]
, B =

[
02×2
tsgI2×2

]
, Bd = I4, C =

[
I2×2 02×2

]
2 Video available at https://youtube.com/playlist?list=PLpeqs1J7TGl2TBLFEa95
-tHL8rarK8TY.
10
Fig. 8. Configuration of the flight test platform.

here ts > 0 is the sample time in the prediction horizon. The
OSD of drone are denoted by u(k) = col(φc(k), 1 − Tc(k)/mg) ∈
2, y(k) = col(py(k), pz(k)) ∈ R2, x(k) = col(py(k), pz(k), vv(k),
w(k)) ∈ R4 and d(k) = col(dp(k), dv(k)) ∈ R4, where Tc(k)

and φc(k) are the thrust and roll commands to the inner loop,
respectively; dp(k) ∈ R2 and dv(k) ∈ R2 are the disturbances
in the position and velocity channels, respectively, which also
encompass the modelling error caused by linearisation and back-
ward Euler discretisation, tracking error of the inner loop, and
external acceleration disturbance.

The parameters for the drone and controller are given as
follows. For the drone, the mass is m = 1.87 kg and the gravity
is g = 9.8 m/s2. For the observer part, the observer gain is
L = diag(0.2, 0.2, 0.2, 0.2) and the corresponding ρ(AL) = 0.8 <
1. For the controller part, the sample time is ts = 1/30 s, the
prediction horizon is N = 3, and the weightings are Q =

diag(1, 1, 10, 10), R = diag(1, 10), Pd = Py = 103I4. The terminal
weighting P and control gain K̄ (or K ) are computed by the
discrete-time Riccati inequality:

P =

⎡⎢⎣969.54 0.00 50.53 0.00
0.00 989.24 0.00 114.49
50.53 0.00 161.62 0.00
0.00 114.49 0.00 373.71

⎤⎥⎦
K̄ = K =

[
−0.61 0.00 −1.96 0.00
0.00 −0.27 0.00 −0.88

]
and the corresponding ρ(AK̄ ) = ρ(AK ) = 0.9895 < 1.

4.2. Experiment results

To implement the proposed APC controller on an onboard
computer, we first transfer the constrained optimisation problem
(14) into a standard quadratic programming (QP) problem and
then use the MATLAB

®
CoderTM to generate the deployable C

code of active-set algorithm for such a QP problem. In the ex-
perimental test, we use a Hexsoon 450 quadcopter as a platform.
This quadcopter uses a Pixhawk Black 2.1 as a flight controller
and a 7th generation Intel i7 NUC to run the proposed control
algorithm with the commands generated at 30 Hz. Communica-
tion links of the quadcopter are based on the MAVLINK protocol.
The configuration of the platform is given by Fig. 8. In the control
architecture of PX4 Autopilot, the throttle (within [0,1]) rather
than the thrust command is sent to the inner loop. The mapping
from the throttle to thrust is nonlinear, and also affected by the
battery percentage, but this has been captured in the modelling
stage.

As for the quantitative disturbance tests, we use the desk
fan and the resistance band as two typical interactions with
disturbances. The experimental results are given as follows.
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Fig. 9. Snapshots of wind test. 1⃝ Ascend; 2⃝ Hover at Ref A; 3⃝ Descend; 4⃝
over at Ref B; 5⃝ Move right; 6⃝ Hover at Ref C.

.2.1. Wind test—Disturbance rejection
A desk fan is used to test the performance of disturbance

ejection in a contact-free environment. The desk fan is aligned in
he same plane as the reference, whose tests are named as wind
est. The tests are conducted without the desk fan and at different
ettings of the fan, representing the cases of no, small, middle and
arge winds. The pair of reference (pyr ,−pzr ) is set as

−1 m, 2 m)
Ref A

→
30 s

(−1 m, 1 m)
Ref B

→
50 s

(1 m, 1 m)
Ref C

hich commands the drone to fly towards the desk fan, and
ence, the influences from winds are gradually increasing at each
est.

The results are given by Figs. 9–11, where the detailed system
tates and inputs are illustrated in Fig. 11. To show the accuracy
mprovement, we also compare the proposed method with a
implified version by setting all the disturbance estimates as
eros, which is then in a similar format with Limon et al. (2008,
010, 2018) and Simon et al. (2014). Although the drone can
ork in the safe region, large offset tracking errors exist even
ithout any wind disturbances, as shown by the green dotted line

n Figs. 10 and 11. This phenomenon can be explained using the
nalysis of RPI set given in Limon et al. (2010). By contrast, with
he appropriate compensation for external disturbance, as shown
n Fig. 11(c), the proposed method realises offset-free tracking
nder different degrees of winds. In other words, these kinds of
ind disturbances are fully rejected by the proposed method.

.2.2. Bungee test—Disturbance coexistence
A resistance band is used to test the performance of dis-

urbance optimal coexistence under the physical environment
ontact. The resistance band is connected between the drone and
nchor on the ground, whose tests are named as bungee test. The
nchor is located at the origin and the nominal length of the
esistance band is lc = 1.7 m. The pair of reference (pyr ,−pzr )
s set as

0, 2 m)
Ref D

→
50 s

(−0.5 m, 2 m)
Ref E

→
70 s

(−0.5 m, 1.5 m)
Ref F

hich commands the drone to fly towards the limit of the resis-

ance band and recover from that limit. It is also worth noting that

11
Fig. 10. Tracking performance of wind test in the phase plane. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 11. Wind test. (a) Outputs. (b) Inputs. (c) Disturbance estimates under the
large wind. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

the disturbance force from the resistance band is closely related
to the drone’s position. Following Hooke’s law, once the distance
between the two ends is longer than the nominal length, the tight
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Fig. 12. Snapshots of bungee test. 1⃝ Ascend; 2⃝ Hover at limit w.r.t. Ref D; 3⃝
ove left; 4⃝ Hover at limit w.r.t. Ref E; 5⃝ Descend; 6⃝ Hover at Ref F.

esistance band would generate internal force Fc = kc(|p| − lc),
here kc is the elastic coefficient; and if the distance is not longer
han the nominal length, the resistance band would be slack and
enerate zero internal force.
To show the consistency of the proposed controller, the

ungee tests are repeated three times, where the first test started
lightly left of the anchor and the rest two tests started directly
bove the anchor. The results are given by Figs. 12–14. In Fig. 13,
efs D and E are obvious in the tight region of the resistance band
nd are quite difficult to be tracked. All these tests show that
he proposed controller drives the drone to the optimal positions
n the sense that the drone statically stays in the best direction
etween the unreachable references and the origin, as shown in
ig. 13 and the throttle commands reach the given maximum
0%, as shown in Fig. 14(b). In Fig. 13, although the limit w.r.t
ef E or D at each test is slightly different (mainly due to the
ecreasing battery percentages), the drone can always find this
ptimal point and stay in it by using the real-time disturbance
stimates. Generally, the disturbances when the drone is tried
o track Refs D and E are unable to be fully rejected due to
he physical limitations and these three tests all show that the
roposed method can make the drone optimally coexist with such
isturbances. As for the Ref F, offset-free tracking can be achieved
s shown in Figs. 13 and 14(a). It is also interesting to note that
he disturbance estimates at the end of the bungee test are higher
han that in the wind test, which is mainly caused by the weight
f the resistance band itself.

.2.3. Computation resource
Real-time computation is critical for the proposed method,

ot only because the constrained optimisation-based control,
N (x, d0f , r

0
f ), needs to be solved online, but also due to the mon-

tor mechanism to choose disturbance rejection or coexistence,
d(d̂) and Pr (d0f , r). Fortunately, with the linear formulation, all
he optimisation modules can be straightforwardly rewritten as
P problems and multiple well-developed toolkits are available.
he computation time of each optimisation module by using the
efault QP of Matlab is given by Fig. 15, where the observer
odule contains the DOB itself (4) and the optimisation problem
d(d̂) in (7); the reference module contains the optimisation
roblem Pr (d0f , r) in (10); the controller module contains the
xplicit controller (12) and the optimisation problem PN (x, d0f , r

0
f )
in (14). It is worth noting that the observer module takes the r

12
Fig. 13. Tracking performance of bungee test in phase plane.

Fig. 14. Bungee test. (a) Outputs. (b) Inputs. (c) Disturbance estimates of Test I.

least computation time, which has to be enlarged 100 times for
clear visualisation. The total computation time of all these three
modules is given by the grey columns in Fig. 15, which is much
smaller than the sample time ts = 33.33 ms and proves the
eal-time computation property of the proposed method.
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Fig. 15. Computation time of each optimisation module.

. Conclusions

In this paper, we have built a unified framework to achieve
afety-critical control for dynamic systems under disturbances.
ifferent from most existing tracking designs, the proposed
ramework has provided an alternative but safer way, starting
rom surviving all disturbances but taking every opportunity to
eject them. To realise this goal, a new optimisation-based con-
roller with an augmented setup has been proposed, not only in
he additional penalties on the disturbance rejection and output
racking in the modified cost function but also in the pseudo
teady disturbance-driven prediction model. Moreover, this more
lexible setup has been proven to guarantee the recursive feasibil-
ty of constrained dynamic optimisation and offset-free tracking
o an optimal reachable target. Numerical simulation and aerial
hysical interaction tests have been both carried out to show
he features and effectiveness of the proposed method. Future
ork will focus on optimising design parameters to maximise
perability.
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ppendix

The appendix collects the detailed proofs on recursive fea-
ibility and stability, and the verification of Assumption 11. On
he proof of recursive feasible, although it looks like to follow
he standard way in the conventional MPC literature, the explicit
mbedding of a pseudo steady disturbance ds(k) as a decision
ariable makes it possible to keep the prediction model un-
hangeable, even when the disturbance or its estimate changes
apidly. This means that such a design way is the key point
o guarantee recursive feasibility, which cannot be strictly sat-
sfied in the conventional offset-free MPC as the disturbance
stimate is directly involved in its prediction model. Furthermore,
o guarantee the stability of the proposed robust tracking MPC
ramework, a novel non-quadratic Lyapunov function consists of
he value function from APC and the disturbance estimation error
s constructed, which is different from Lyapunov construction of
he conventional MPC. In addition, a contradiction method is used
o prove that the optimal pseudo steady output and disturbance
an converge to the desirable ones.
 x

13
Appendix A. Proof of Theorem 16

Proof. The optimal nominal state and control at time k are
enoted by:

¯
∗(k) :=

(
ū∗(0; k), ū∗(1; k), . . . , ū∗(N − 1; k)

)
x̄∗(k) :=

(
x̄∗(0; k), x̄∗(1; k), . . . , x̄∗(N − 1; k), x̄∗(N; k)

)
nd the optimal steady IOSD are u∗s (k), y

∗
s (k), x

∗
s (k), and d∗s (k).

We first construct the following sequences (A.1), which will
e proved to be feasible at time k+ 1:

¯ (k+ 1) :=
(
ū∗(1; k), . . . , ū∗(N − 1; k),

K̄ (x̄∗(N; k)− x∗s (k))+ u∗s (k)
)

¯ (k+ 1) :=
(
x̄∗(1; k), . . . , x̄∗(N − 1; k), x̄∗(N; k),

AK̄ (x̄
∗(N; k)− x∗s (k))+ x∗s (k)

)
s(k+ 1) := x∗s (k), us(k+ 1) := u∗s (k)

s(k+ 1) := y∗s (k), ds(k+ 1) := d∗s (k).

(A.1)

n (A.1), constraint (14a) holds for time k+ 1 due to the positive
nvariance of SK . By choosing ds(k+1) = d∗s (k), the nominal model
14b) is the same with that at time k. Hence, the last N−1 terms of
he optimal state/input trajectory at time k, i.e., x̄∗(k) and ū∗(k),
re admissible at time k + 1, and hence, are used to construct
he feasible sequence (A.1), which implies constraints (14b) and
14c) both hold for time k+ 1. Constraint (14d) holds due to the
ositive invariance of ΘK̄ . Constraints (14e) and (14f) hold since
he feasible steady IOSD at time k+1 are chosen the same as the
ptimal ones at time k. Hence, the sequence (A.1) is feasible for
ime k+ 1, which completes the proof. ■

ppendix B. Proof of Theorem 18

Before presenting the proof of Theorem 18, we will first give
ne lemma to reveal the relationships among the optimal IOSD.

emma 20. Suppose that the optimal solutions of PN (x, d0f , r
0
f ) in

14) satisfy x̄∗(0; k) = x∗s (k) and ū∗(0; k) = u∗s (k). Then, the rest of
he optimal solutions are d∗s (k) = d0f (k) and y∗s (k) = r0f (k) and the
alue function V ∗N (x̄

∗(0; k)− x∗s (k), d
0
f (k)−d∗s (k), r

0
f (k)− y∗s (k)) = 0.

roof. It will be proved by contradiction. Assume that x̄∗(0; k) =
∗
s (k) and ū∗(0; k) = u∗s (k), but y∗s (k) ̸= y0s (k) or d∗s (k) ̸= d0s (k).
ecalling the conclusion of d0f (k) = d0s (k) and r0f (k) = y0s (k) in
emma 13, we will have V ∗N (k) = Vd(d0s (k) − d∗s (k)) + Vy(y0s (k) −
∗
s (k)) > 0, where V ∗N (x̄

∗(0; k)− x∗s (k), d
0
f (k)− d∗s (k), r

0
f (k)− y∗s (k))

s denoted as V ∗N (k) for the notation simplification.
Consider a perturbation of x∗s (k) towards x0s (k), given by:

˜s(k) := γ x∗s (k)+ (1− γ )x0s (k), γ ∈ [0, 1]. (B.1)

imilarly, ũs(k), d̃s(k) and ỹs(k) can be defined in this way. Due to
he convexity, we have x̃s(k) ∈ Xs, ũs(k) ∈ Us, and d̃s(k) ∈ Ds.
t is quite straightforward to have that the quartet (ũs(k), ỹs(k),
˜s(k), d̃s(k)) is also the steady IOSD, i.e., x̃s(k) = Ax̃s(k)+ Bũs(k)+
dd̃s(k). Next, starting at x̄(0; k) = x∗s (k) and applying a constant
nput ū(i; k) = ũs(k), i ∈ I1:N−1 will obtain the following predicted
tates:

¯
i ( ∗ 0 )

˜
(i; k) = (1− γ )A xs (k)− xs (k) + xs(k) (B.2)
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here i ∈ I0:N . Then, we can construct the following sequences
(B.3):

ū (k) :=
(
ũs(k), . . . , ũs(k)

)
¯ (k) :=

(
x∗s (k), . . . , (1− γ )A

N (
x∗s (k)− x0s (k)

)
+ x̃s(k)

)
xs(k) := x̃s(k), us(k) := ũs(k)

ys(k) := ỹs(k), ds(k) := d̃s(k).

(B.3)

ith the similar analysis in Alvarado (2007, Proof of Lemma 3.2),
he sequences in (B.3) are feasible if γ is sufficiently close to
. The stage, terminal, disturbance rejection and output tracking
osts can be easily computed as follows:

(x̄(i; k)− xs(k), ū(i; k)− us(k)) = (1− γ )2
⏐⏐x∗s (k)− x0s (k)

⏐⏐2
AiTQAi

Vf (x̄(N; k)− xs(k)) = (1− γ )2
⏐⏐x∗s (k)− x0s (k)

⏐⏐2
ANT PAN

Vd
(
d0f (k)− ds(k)

)
= γ 2

⏐⏐d∗s (k)− d0s (k)
⏐⏐2
Pd

Vy
(
r0f (k)− ys(k)

)
= γ 2

⏐⏐y∗s (k)− y0s (k)
⏐⏐2
Py

nd the total cost is given by:

N (k) = (1− γ )2
⏐⏐x∗s (k)− x0s (k)

⏐⏐2
ΨN

+ γ 2
⏐⏐d∗s (k)− d0s (k)

⏐⏐2
Pd
+ γ 2

⏐⏐y∗s (k)− y0s (k)
⏐⏐2
Py

(B.4)

where ΨN :=
∑N−1

i=0 AiTQAi
+ANTQAN . Taking the differential VN (k)

in (B.4) with respect to the γ and evaluating it at γ = 1 gives
hat:

∂VN (k)
∂γ

⏐⏐⏐⏐
γ=1

= 2
(⏐⏐d∗s (k)− d0s (k)

⏐⏐2
Pd
+

⏐⏐y∗s (k)− y0s (k)
⏐⏐2
Py

)
> 0 (B.5)

hich implies that by decreasing γ from 1 to any value suffi-
iently close to 1, VN (k) can be decreased. It will cause a con-
radiction with the fact of V ∗N (k) = VN (k)|γ=1. Hence, we have
d∗s (k) = d0f (k) and y∗s (k) = r0f (k).

By choosing ū(i; k) = us(k), i ∈ I1:N−1, which leads x̄(i; k) =
xs(k), i ∈ I1:N , we obtain V ∗N (k) = Vd(d0s (k) − d∗s (k)) + Vy(y0s (k) −
∗
s (k)) = 0. Thus, the conclusions of Lemma 20 follow. ■

To make the reader easily understand the proof of Theorem 18,
e will first prove the first part (points (i) and (ii)), then the
econd part (points (iii) and (iv)).

roof of the first part of Theorem 18. Due to the recursive
easibility, the safety of the closed-loop system can be guaranteed.
ence, in the theoretical analysis of the stability, we only need to
onsider the time k ≥ k1, i.e., d̃(k) will be captured by DL. Then,
0
f (k) = d̂(k) holds for all k ≥ k1. If the disturbance is a constant
t the steady state, the proposed DOB is asymptotically stable,
.e., limk→∞ d̃(k) = 0, then limk→∞ d0f (k) = dc .

To clearly show the proof of the first part, we divide the proof
f this part into the following two steps:

(1) Step One: Prove the convergence of the nominal state and
input to the optimal pseudo steady ones;

(2) Step Two: Prove the convergence of the optimal pseudo
steady output and disturbance to the target ones.

tep One:
Using the standard procedures in MPC proof, we first compare

he value function of PN (x, d0f , r
0
f ) at time k with the cost under
he feasible sequences (A.1) at time k + 1. The value function at

14
ime k is given by:
∗

N (k)

=

N−1∑
i=0

ℓ
(
x̄∗(i; k)− x∗s (k), ū

∗(i; k)− u∗s (k)
)

+ Vf
(
x̄∗(N; k)− x∗s (k)

)
+ Vd

(
d0f (k)− d∗s (k)

)
+ Vy

(
r0f (k)− y∗s (k)

)
(B.6)

nd the cost function under the feasible sequences (A.1) at time
+ 1 is given by:

N (k+ 1)

=

N−1∑
i=1

ℓ
(
x̄∗(i; k)− x∗s (k), ū

∗(i; k)− u∗s (k)
)

+ ℓ
(
x̄∗(N; k)− x∗s (k), K̄

(
x̄∗(N; k)− x∗s (k)

))
+ Vf

(
AK̄

(
x̄∗(N; k)− x∗s (k)

))
+ Vd

(
d0f (k+ 1)− d∗s (k)

)
+ Vy

(
r0f (k+ 1)− y∗s (k)

)
.

(B.7)

o clearly compare V ∗N (k) with VN (k + 1), the differences in the
isturbance rejection cost Vd(·) and output tracking cost Vy(·)
eed to be computed first. It follows from (5) that:

d
(
d0f (k+ 1)− d∗s (k)

)
− Vd

(
d0f (k)− d∗s (k)

)
≤ c1

⏐⏐(d0f (k+ 1)− d∗s (k)
)
−

(
d0f (k)− d∗s (k)

)⏐⏐
= c1

⏐⏐d0f (k+ 1)− d0f (k)
⏐⏐ = c1

⏐⏐⏐d̂(k+ 1)− d̂(k)
⏐⏐⏐

= c1
⏐⏐⏐(AL − Ind )d̃(k)

⏐⏐⏐
(B.8)

nd by Assumption 11, similarly, we have:

y
(
r0f (k+ 1)− y∗s (k)

)
− Vy

(
r0f (k)− y∗s (k)

)
≤ c2

⏐⏐r0f (k+ 1)− r0f (k)
⏐⏐ ≤ c2cr

⏐⏐⏐d̂(k+ 1)− d̂(k)
⏐⏐⏐ (B.9)

or some Lipschitz constants c1, c2 > 0. Subtracting (B.6) from
B.7) and keeping (23), (B.8) and (B.9) in mind gives that:
∗

N (k+ 1)− V ∗N (k) ≤ VN (k+ 1)− V ∗N (k)

≤ −
⏐⏐x̄∗(0; k)− x∗s (k)

⏐⏐2
Q −

⏐⏐ū∗(0; k)− u∗s (k)
⏐⏐2
R + c

⏐⏐⏐d̃(k)⏐⏐⏐ (B.10)

here c := (c1 + c2cr )|AL − Ind | > 0.
Define W (k) := V ∗N (k)+ µ|d̃(k)|, where µ := c/(1− |AL|) > 0.

sing (5) and (B.10), we obtain:

(k+ 1)−W (k)

≤ µ(|AL| − 1)
⏐⏐⏐d̃(k)⏐⏐⏐+ c

⏐⏐⏐d̃(k)⏐⏐⏐
−

⏐⏐x̄∗(0; k)− x∗s (k)
⏐⏐2
Q −

⏐⏐ū∗(0; k)− u∗s (k)
⏐⏐2
R

≤ −
⏐⏐x̄∗(0; k)− x∗s (k)

⏐⏐2
Q −

⏐⏐ū∗(0; k)− u∗s (k)
⏐⏐2
R ,

(B.11)

hich implies that W (k) is non-increasing. Noting W (k) ≥ 0 and
sing the monotone convergence theorem, we have that the limit
f W (k) exists, denoted as W (∞) := limk→∞W (k). The existence
f W (∞) implies that the items on the right-hand side of (B.11)
onverge to zero, that is

lim
k→∞

x̄∗(0; k)− x∗s (k) = 0, lim
k→∞

ū∗(0; k)− u∗s (k) = 0

lim
k→∞

ȳ∗(0; k)− y∗s (k) = 0.
(B.12)

tep Two:
In what follows, we will prove that once the nominal state/

nput goes to the optimal steady state/input, the nominal output
ill go to the target output.
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From Lemma 20, we know that if x̄∗(0; k) = x∗s (k) and
¯∗(0; k) = u∗s (k), V ∗N (k) = 0 holds. Noting that W (k) =

(x̄∗(0; k)− x∗s (k), d
0
f (k)− d∗s (k), r

0
f (k)− y∗s (k), d̃(k)) is continuous

ith respect to each element and its limit exists, we have:

(∞) = lim
k→∞

W
(

lim
k→∞

x̄∗(0; k)− x∗s (k), d
0
f (k)− d∗s (k),

r0f (k)− y∗s (k), limk→∞
d̃(k)

)
= lim

k→∞
V ∗N

(
0, d0f (k)− d∗s (k), r

0
f (k)− y∗s (k)

)
= 0,

hich implies that:

lim
k→∞

ȳ∗(0; k) = lim
k→∞

y∗s (k) = lim
k→∞

y0s (k) = r0fc

lim
k→∞

d∗s (k) = lim
k→∞

d0s (k) = lim
k→∞

d0f (k) = dc .
(B.13)

hus, from the invariance of the tube SK , we can conclude that
he real output will tend to {r0fc} ⊕ CSK , which completes the
roof. ■

roof of the second part of Theorem 18. By Assumption 17, we
ave that the limits of x0s (k) and u0

s (k) exist:

x0s (∞)
u0
s (∞)

]
:=

⎡⎣ lim
k→∞

x0s (k)

lim
k→∞

u0
s (k)

⎤⎦ = [
A− In B

C 0p×m

]−1 [
−Bddc
r0fc

]
.

(B.14)

rom (B.13), we have that the limits of x∗s (k) and u∗s (k) exist and
re the same with (B.14), as follows:

x∗s (∞)
u∗s (∞)

]
:=

⎡⎣ lim
k→∞

x∗s (k)

lim
k→∞

u∗s (k)

⎤⎦ = [
x0s (∞)
u0
s (∞)

]
. (B.15)

Taking the controller (12) into system (1) gives:

x(k+ 1) = AK ex(k)+ w(k) (B.16)

here ex(k) := x(k) − x∗s (k) and w(k) := −(x∗s (k + 1) − x∗s (k)) +
(ū∗ (0; k) − u∗s (k)) + Bd(d(k) − d∗s (k)). According to the previous
nalysis of (B.12) and (B.13), w(k) will go to zero as time goes to
he infinity. Applying the property of ISS yields:

lim
→∞

ex(k) = 0⇒ lim
k→∞

x(k) = x∗s (∞) (B.17)

nd then we obtain:
lim
→∞

y(k) = lim
k→∞

Cx(k) = r0fc, (B.18)

hich completes the proof. ■

ppendix C. Verification of Assumption 11

Transforming the optimisation problem (10) Pr (d0f , r) into a
ulti-parametric quadratic program (mp-QP) problem depends
n the solution sets of Ax = b, where A := [A − In, B], x :=
ol(xs, us), and b := −Bdds. Hence, a systematic analysis would
ake the process unnecessarily complicated. As a result, we have
hosen to focus solely on two examples in this paper for the sake
f clarity and simplicity.
The following definition on the piecewise affine function (Be-

porad et al., 2002, Defin. 1) and the fundamental theorem on
he solution of mp-QP (Bemporad et al., 2002, Thm. 4) are used
n the verification of Assumption 11.

efinition 21. A function z(x) : X ↦→ Rs, where X ⊆ Rn is a
olyhedral set, is piecewise affine if it is possible to partition X
nto convex polyhedral regions, CRi, i ∈ I≥1, and z(x) = H ix +
i, ∀x ∈ CR .
i

15
emma 22. Consider the following mp-QP:

0(x) := argmin
z

1
2
zTHz

s.t. Gz ≤ W + Sx
(C.1)

and let H > 0 and X convex, where X is the set of feasible
parameters. Then the optimiser z0(x) : X ↦→ Rs is continuous and
iecewise affine.

We assume that Xs, Us and Ds can be represented by polyhe-
ral sets, i.e.,

s :=
{
xs ∈ Rn

| Axxs ≤ bx
}

Us :=
{
us ∈ Rm

| Auus ≤ bu
}

Ds :=
{
ds ∈ Rnd | Adds ≤ bd

}
.

C.1. Numerical Example in Section 3.7

In this example, noting that A− I2 is invertable, ys = −C(A−
I2)−1(Bus + Bdds). Hence, the optimisation problem (10) can be
transformed as follows:

u0
s (d

0
f ) := argmin

us

⏐⏐−C(A− I2)−1(Bus + Bdd0f )− r
⏐⏐2

s.t. Auus ≤ bu,

− Ax(A− I2)−1(Bus + Bdd0f ) ≤ bx

nd r0f (d
0
f ) = −C(A−I2)−1(Bu0

s (d
0
f )+Bdd0f ). By completing squares,

e can obtain the standard format in (C.1) where H = 2(C(A −
2)−1B)T (C(A− I2)−1B) > 0. The fact that r0f (d

0
f ) is continuous and

iecewise affine, follows trivially.

.2. Physical Example in Section 4

In this example, [A − I4, B] = [04×2, diag(ts, ts, tsg, tsg)],
hich implies xs,3, xs,4, us,1, us,2 can all be constructed by xs,1, xs,2.
ence, the optimisation problem (10) can be transformed into an
p-QP with 2-dimensional decision variables. The same fact on
> 0 and r0f (d

0
f ), follows trivially.
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