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Abstract 

Bone defects are a challenge to healthcare systems, as the aging population experiences an 

increase in bone defects. Despite the development of biomaterials for bone fillers and scaffolds, 

there is still an unmet need for a bone-mimetic material. Cortical bone is highly anisotropic and 

displays a biological liquid crystalline (LC) arrangement, giving it exceptional mechanical 

properties and a distinctive microenvironment. However, the biofunctions, cell-tissue 

interactions, and molecular mechanisms of cortical bone anisotropic structure are not well 

understood. Incorporating anisotropic structures in bone-facilitated scaffolds has been 

recognised as essential for better outcomes. Various approaches have been used to create 

anisotropic micro/nanostructures, but biomimetic bone anisotropic structures are still in the 

early stages of development. Most scaffolds lack features at the nanoscale, and there is no 

comprehensive evaluation of molecular mechanisms or characterisation of calcium secretion. 

This manuscript provides a review of the latest development of anisotropic designs for 

osteogenesis and discusses current findings on cell-anisotropic structure interactions. It also 

emphasises the need for further research. Filling knowledge gaps will enable the fabrication of 

scaffolds for improved and more controllable bone regeneration. 

 

Keywords: Anisotropic structures; Osteogenesis; Bone tissue engineering; Biomaterials; 

Signaling pathways 

 

1. Introduction 

Large bone defects are defined as those exceeding the critical size (2.5 cm) [1] that cannot self-

recover without intervention. They are considered a major problem for clinicians and society. 

They are caused by various reasons, including but not limited to aging, genetics, trauma, severe 

diseases such as cancer, and infections. With an increase in global population aging, it is only 

reasonable to expect the cost of treating the number of bone defects to increase and become a 

huge burden on society. Approximately 2.2 million bone graft procedures per year are carried 

out worldwide[2]. In the United Kingdom (UK), there are approximately 850,000 new fractures 

seen each year. However, there are still 5-10% rates of nonunion of fractures, which adds 

additional costs for the National Health Service (NHS)[3]. The most commonly used 

conventional methods for reconstruction of large bone defects are vascularised fibula 
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autografts[4], the Ilizarov technique[5], and the Masquelet technique[6]. The vascularized 

fibula autograft provides a reliable source of vascularized bone graft, which promotes healing 

and can be used in various anatomical sites. It is suggested for defects of 5 to 12 cm. However, 

considerable donor site morbidity[7], longer operative time for microsurgery[8], and inadequate 

hypertrophy of the graft for the use of vascularized fibular autografts[9] are the limitations of 

this technique. The Ilizarov technique relies on distraction osteogenesis and is a leading option 

for defects of 2 to 10 cm. This minimally invasive approach offers precise control over bone 

regeneration. However, it requires an even longer duration of wearing a burdensome external 

fixation, resulting in an increased infection rate, joint stiffness, and negative influence on daily 

life quality[10]. The Masquelet technique[6] induces a biological membrane around the bone 

defect sites using a spacer, promoting formation of a vascularised bed at the first stage. After 

that, different cancellous bone graft materials without vessels can be implanted at the second 

stage. It is suitable for the administration of complicated bone defects, and it has been reported 

that defects of up to 25 cm can be regenerated[11]. On the other hand, the major disadvantages 

of this technique are the prolonged reconstruction period and multiple operations. Whether the 

aforementioned methods are used, a long and difficult process is inevitable. There also remains 

a critical issue that the final functional outcome is still unpredictable. 

 

In recent decades, the rapid development of bone tissue engineering has brought new solutions. 

Since the word ‘tissue engineering’ was mentioned for the first time in 1987[12], it evolved into 

a multidisciplinary term of ‘regenerative engineering’ with the advances and convergence of 

biomaterial science[13], stem cells[14], induced pluripotent stem cells (iPSCs)[15], and 

developmental biology[16]. In general, engineered artificial bone appears in the form of 

scaffolds with or without cell laden [17, 18]. Although a range of biomaterials have been 

developed, including metallics[19-22], inorganics[23-25], organics[26-29], and composites[30-

32], there are unsolved limitations such as insufficient biofunctionality, low mechanical 

properties, and cytotoxicity. Biomaterials that can fully mimic natural bone in structure, 

function, and mechanics have not yet been found. Nevertheless, the understanding of cell-

material interactions and advances in micro- and nanofabrication are narrowing the gap. It is 

widely known that the microenvironment (also known as the ‘niche’) intensively affects bone 

cell behaviours throughout the entire cell life span, including attachment[33], proliferation[34], 

differentiation[35], secretion[36], apoptosis[37], and even cancer-related activities[38]. Apart 

from mimicking the chemical microenvironment by formulating bone-like components, the 

remarkable influence of the physical microenvironment is drawing increasing attention. An 

increasing number of researchers have realised that topographic or structural cues are as 

important as mechanical properties, especially in bone, an organ with anisotropic structures at 

multiple scales. In this review, we introduced the hierarchical structure of bone and the latest 

knowledge about the role of the physical microenvironment, specifically, anisotropic structures, 

in bone regeneration. Then, current strategies for fabricating anisotropic structures were 

reviewed (Figure 1), followed by signalling pathway analysis. This review provides a thorough 

retrospective assessment of the progress of anisotropic designs for bone regeneration and 

indicates future trends and higher requirements in bone biomimetic scaffolds. 
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Figure 1. Current strategies for fabricating anisotropic structures for improving osteogenesis. 

2. Anisotropic structure of cortical bone and the corresponding role 

2.1 Anisotropic structure of cortical bone 

Bone is a supporting structure as well as a storage site for minerals and blood cells. It is 

classified into three types: compact tissue, cancellous tissue, and subchondral tissue[39, 40]. 

Compact tissue is located at the outer covering and is known as cortical bone. It is highly 

mineralised and contributes to most of the mechanical strength of bone. Cancellous tissue is the 

inner sponge-like trabecular bone. Subchondral tissue represents the transient structure at the 

end of the bone and is covered by cartilage tissue. Human cortical bone orchestrates organic 

and inorganic phases at multiple size scales into ordered and anisotropic structures, strongly 

suggesting a liquid crystalline (LC) structure. The unique organisation of bone at the nano- and 

microscale gives it extraordinary stiffness, allowing it to resist much higher forces under both 

static (maintaining posture and bearing weight of the body) and dynamic (walking, running, 

lifting, etc.) conditions than most other tissues[41]. In natural bone, the organic component of 

bone is mainly composed of type I collagen molecules with a length of ~200 nm and a width 

of ~2 nm. In a typical cortical bone formation process, collagen molecules self-assemble into 

highly ordered fibrillar structures, leaving periodical minor gaps, in which HAp, the major 

inorganic component of bone, deposits and forms plate-shaped crystals 10–20 nm in length and 

2–3 nm wide. There is evidence showing that this process is driven by the anisotropic 

piezoelectricity of collagen molecules[42]. Higher surface charges was found at the gap zone, 

resulting in an increased zeta-potential and hydraulic permeability to guide the calcium crystals 

infiltrate into the gap region. Then, the mineralised collagen molecules are packed into ～500 

nm larger fibrils that aggregate into 1 – 10 μm collagen fibre bundles[43]. Dense lamellas 

compacted from the collagen fibres dispose in two alternating directions, form orthogonal 
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polywoods and further compose osteons, the elementary unit of cortical bone, with a size of 

10–500 μm[44] (Figure 2a). 

 

In 1906, Gebhardt first introduced a model of bone microstructure: compacted collagen fibres 

dispose in two alternating directions to form orthogonal polywoods. The lamellar structure of 

cortical bone was first defined as parallel collagen fibres altering 90° between adjacent 

lamellas[45]. In 1968, Ascenzi and Bonucci further described that the osteon is a highly ordered 

structure using polarising microscopy, and the orientation of collagen lamellae can be classified 

into three different types[46], two of which have been widely accepted as main models (Figure 

2b). Although there are still no final conclusions about the bone model, it can be confirmed that 

cortical bone is a multilayer anisotropic structure with an altered arrangement between layers. 

In recent decades, liquid crystallinity in collagen systems has been reproduced at the molecular 

level in vitro. Collagen dissolved in acid solutions can gradually self-assemble and show a 

typical birefringence pattern of cholesteric liquid crystals at a high concentration of 80–120 

mg/mL[47, 48]. Resembling bone microstructure to anisotropic liquid crystalline structures 

suggests that the self-assembly of mineralised collagen is associated with fluidity; thus, this 

must occur at the very beginning of extracellular matrix (ECM) secretion in the external space 

of cells. This information provides an inspiration for mimicking ordered deposition and self-

assembly in vitro. Considering the coaxial lamellar structure of osten, the early-formed inner 

layer of parallel collagen fibres could be the clue inducing the cells’ directional secretion and 

self-assembly to form later outer lamellae. Therefore, anisotropic biomaterials can promisingly 

be used as templates to manipulate cell secretion behavior in vitro. 

 

Figure 2. (a) Schematic of the ordered structure of bone at multiple scales. (b) Two main 
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models showing the orientation of adjacent lamellae in osteons. Left: orthogonal polywoods 

changing orientation periodically and forming alternate dark or bright rings; Right: 

intermediate-type osteons have adjacent lamellae successively changing from a small and 

constant angle (scale bar = 5 μm). Adapted from references[43, 49]. 

2.2  The mechanical and biological role of anisotropic structures in bone 

Mineralised collagen fibrils (MCFs) are the fundamental unit of bone. The collagen and HAp 

are woven into an integrated anisotropic structure in the cortical bone, similar to a ‘biphase’ 

interpenetrating composite material where these two main components play different 

mechanical roles. Wang et al.[50] denatured collagen to various degrees using heat treatment 

at 37 – 200 °C without damaging the mineral phase of bone (changes in the mineral phases 

occurred only at temperatures above 400 °C[51]). The results show that the toughness of bone 

significantly decreased as the denaturation of collagen increased but had little effect on the 

stiffness of bone. The authors indicated that the loss of collagen network integrity, including 

cleaved peptides and/or damaged collagen-mineral bonding, may be one of the reasons for the 

reduced capacity to absorb energy to fracture. Organic components are the primary contributor 

to the toughness of bone[52]. In addition, we consider that the damaged alignment of collagen 

is also a factor resulting in decreased toughness. Since bone is anisotropic in nature, mechanical 

testing can help to verify this hypothesis. However, the authors only performed longitudinal 

mechanical tests, lacking data from the radial direction. More mechanical and optical data need 

to be collected before drawing conclusions. The unaffected mineral phases maintained the great 

stiffness of bone, which may be a result of the unchanged ordered arrangement of HAp. Martin 

et al.[53] also found that the anisotropic arrangement of collagen in equine cannon bone 

correlates with the modulus and strength of bone. Although the above studies have proven that 

the anisotropic and ordered arrangement of collagen/HAp is closely related to the mechanical 

properties of bone, their assessments were mostly carried out using collagen and HAp as a 

hybrid system. The outcomes could be comprehensive results of various factors. Since collagen 

and HAp are tightly integrated in bone, they bring huge challenges to polarising observation 

and mechanical evaluation of individual components. To better explain the individual 

characteristics of collagen and HAp in cortical bone, Novitskaya and colleagues[54] carried out 

comprehensive work investigating the mechanical influence of individual components in 

bovine cortical bone. In untreated (UT), demineralised (DM) and deproteinized (DP) cortical 

bones, all samples exhibit anisotropic mechanical behaviour. The highest stiffness was 

measured in the radial direction of UT bone due to the existence of a thin layer of 

circumferential lamellae (periosteal bone) that provides extra strength, while both DM and DP 

bones were stiffest in the longitudinal direction. Interestingly, the sum of strength of the DM 

and DP bones in all directions was not equal to that of the UT bone, suggesting a strong 

interaction between collagen and HAp, instead of simply mixing up or aligning these two 

components. The Young’s modulus of DM bone was nearly 100 times lower than that of UT 

bone, providing evidence correlating with the aforementioned literature that minerals contribute 

most of the stiffness in bone. A high degree of alignment and intact collagen-HAp binding at 

multiple scales strengthen the bone through mechanisms of preventing the accumulation of 

microcracks via good energy dissipation. At the stage of elastic deformation, mineralised 

collagen fibrils undergo stretching and interfibrillar sliding[55]. With increasing loads, plastic 
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deformation leads to interfibrillar and intrafibrillar slipping and dissociation of collagen-HAp 

bonds[52, 55, 56]. Plastic deformation is the result of damage at the nanoscale. All these 

incidents are related to the damping mechanism of collagen fibril viscoelasticity, which 

promotes energy dissipation and postpones failure[56]. Similarly, Jäger and Fratzl[57] also 

indicated that the disordered arrangement of collagen and HAp can impede load transmission. 

The preferred orientation of MCFs is regarded as an adaptation of long-term external 

mechanical loads. For example, the anterior quadrant of the murine femur cortical bone 

withstanding stronger tension contains a greater proportion of longitudinal MCFs compared to 

the posterior quadrant bearing stronger compression[58]. In correlation, an in vivo study on 

mice shows that aging and disuse exacerbates the disorder of MCFs and impairs mechanical 

properties[59]. Similarly, disease-caused damage to collagen/HAp orientation can contribute to 

increased strain and reduced mechanical properties. A mouse osteoporosis model revealed more 

heterogeneous collagen/HAp orientation of the L5 vertebral cortex, as evidenced by the 

observation of more random birefringence defect domains on the model by 

polarisingpolarizingpolarizing microscopy, along with decreased Young’s modulus compared 

to the control group[60]. In osteoarthritis (OA) models[61], collagen fibrils of early-stage grade 

I OA were still in an ordered liquid crystalline pattern with the c-axis of HAp parallel to the 

long axis of the fibrils. In comparison, severe grade IV OA formed a random arrangement of 

collagen fibrils accompanied by shape changes in HAp. The nonparallel arrangement of 

collagen and HAp in developed OA leads to abnormal load transmission and difficulties in 

stress dissipation, eventually causing fragility and weakening resistance to elastic deformation 

at the macroscale. In summary, MCFs serve as the nanoscale unit of bone, and the interaction 

between collagen and HAp through anisotropic and ordered arrangement plays a crucial role in 

the mechanical properties of bone. The mineral phase contributes significantly to the stiffness 

of bone, while the ordered arrangement and intact collagen-HAp bonding enhance bone 

strength and facilitate effective energy dissipation by preventing the accumulation of 

microcracks. The denaturation and failure of collagen-HAp bonding and damage of anisotropy 

can lead to a reduced capacity of the bone to absorb energy. 

  

The biological functions of anisotropic arrangement intrigued researchers. Cells are capable of 

sensing nanoscale cues and tuning their behaviors accordingly[62]. A computational modelling 

analysis suggests that the anisotropic microstructure may imply a preferential direction for cell 

invasion, deciding the spatial and directional distribution of newly formed bone[63]. Among 

all biomaterials, type I collagen and HAp are the most popular, as they are natural components 

of bone. These two biomaterials both have the capability to be organised into anisotropic 

structures under specific conditions, which is the unique arrangement in natural cortical bone. 

Some pioneering work investigated the influence of anisotropic collagen on a few types of cells. 

Normally, aligned collagen is prepared by shearing force. The seeded endothelial cells showed 

elongated morphology along the orientation of aligned collagen fibrils and enhanced 

proliferation, migration, and angiogenesis. In this process, integrin-mediated focal adhesions 

function as pivotal regulators of the cytoskeleton[64, 65]. The integrins α1 and α2 strongly 

interact with type I collagen[66]. However, these studies only looked into a few protein markers 

and genes involved in topography-cell interactions based on experience, which is incapable of 

unveiling the full picture of the cellular response to anisotropic arrangement. Nakayama and 
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colleagues[67] fabricated HAp/poly(acrylic acid) (PAA) nanorods into aligned films and used 

them as a photodynamic therapy platform for HeLa cells. This work preliminarily characterised 

the alignment of cells on orientated LC films and the treatment efficacy, but further mechanisms 

have not been discussed. Minami et al.[68] reported that aligned LC fullerene whiskers enabled 

concurrent control of C2C12 over cell elongation, alignment, and differentiation to muscle cells. 

Similarly, this work only focuses on characterising proteins and genes related to myogenesis 

and lacks in-depth mechanistic analysis of how cells respond to anisotropic arrangement. 

Previous studies have done limited work to reveal the mechanisms of anisotropically arranged 

collagen and HAp, especially for osteogenesis. A few reports, such as Wingender et al.[69] 

found that HAp nanocrystals were embedded within dense cholesteric LC collagen scaffolds 

during in situ mineralisation and that the preferential c-axis of HAp was aligned with the 

collagen fibril axis. However, the utilised LC collagen was only locally orientated, the effect of 

large-scale alignment has not been assessed, and the dense composites became an obstacle in 

observation. They emphasised the importance of the bone-like nanostructure in guiding cell 

behaviours, but no in vitro experiment has been carried out. Another study[70] using long-range 

ordered self-assembled collagen-like peptide amphiphile (CLPA) induced directional growth 

of MC3T3-E1 cells. Then, precipitation of calcium phosphate on the collagen-mimetic patterns 

was performed, but no lattice information of the minerals was reported. There remains a 

knowledge gap in the roles of anisotropic arrangement in osteogenesis. Notably, cell 

polarisation (elongation and orientation) appears to be a significant incident during 

differentiation and development into fully functioning cells. Inspired by the natural anisotropic 

structure of bone and previous reports, we believe that the structure is a critical clue but has 

long been neglected in investigating the process of bone formation. 

 

3. Micro/ nanoscale anisotropic structures for osteogenesis 

In bone regeneration and engineering, scaffold and stem cell combined strategies and artificial 

bone have become major emphases. Researchers have developed various materials, such as 

alloys[71] and natural or synthetic polymers[26, 72, 73], for in vitro evaluation or in vivo 

implantation. Some researchers have recognised the importance of incorporating anisotropic 

structures into scaffold fabrication to enhance mechanical stiffness and provide topographical 

cues for osteogenesis[74-76]. Fabricating anisotropic structures at the microscale is the strategy 

mostly adopted by researchers because it provides the best balance between osteogenic efficacy 

and difficulty in fabrication. In comparison, the characteristics of nanoscale materials can vary 

significantly from those of micro- or large-scale materials in terms of mechanical properties[77], 

optical properties[78], melting point[79], electrical conductivity[80], magnetic properties[81], 

and chemical[82] and biological reactivities[83, 84]. The large fraction of surface atoms, large 

surface energy, spatial confinement and reduced imperfections can contribute to this 

phenomenon[85]. Although microscale anisotropic structures have shown improved 

osteogenesis, cells can recognise nanoscale arrangements and may display different interactions 

compared to microscale arrangements[86, 87]. The biofunctions of nanoscale anisotropic 

structures are worth investigating. Here, we listed popular techniques that can fabricate 

anisotropic structures for the purpose of mimicking that of bone and discussed their advantages 

and limitations (summarised in Table 1). 
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3.1 Natural anisotropic materials 

Nature provides a variety of ready-to-use materials with aligned porous structures. Wood is a 

fantastic material similar to bone, with modulus (hundreds MPa) falls within the range of 

human trabecular bone (between 10 and 3,000 MPa)[88]. It is mainly composed of lignin, 

cellulose, and hemicellulose. A broad range of woods was used for fabricating scaffolds and 

they have a highly aligned and interconnected network, as well as extraordinary mechanical 

strength. Wood is rich in sources and has relatively lower expenses compared to synthesised 

materials, making it an option for bone tissue engineering. Figure 3a and 3b show the types of 

natural woods and delignification processes used to remove unwanted woody components. 

Inspired by the hierarchical anisotropic structure of natural wood, Wang et al.[89] developed a 

biomimetic scaffold by impregnating hydrogels in a delignified wood template, followed by 

strengthening the composite by in situ mineralisation of HAp nanocrystals. The composite 

showed anisotropic mechanical properties and reached a compressive strength of 39.5 ± 0.9 

MPa and an elastic modulus of 670 ± 11 MPa along the cellulose fibril growth directions, 

comparable to human trabecular bone. The in vitro experiment displayed enhanced osteogenic 

gene and biomarker expression, while the in vivo experiment confirmed new bone tissue 

ingrowth into and yielded good osteointegration with the scaffold. Introducing oriented wood 

texture as a skeleton followed by in situ mineralisation is a strategy for load-bearing bone repair. 

Liu et al.[90] fabricated delignified wood infiltrated with PCL and in situ deposited HAp. The 

composite showed anisotropic mechanical properties in the radial direction (420 MPa) and 

longitudinal direction (20 MPa). It has good biocompatibility and induces better cell migration, 

alignment, proliferation, and osteogenic differentiation than the control (Figure 3c – 3e). 

Similarly, Chen et al.[91] reported chitosan quaternary ammonium salt (CQS) and 

dimethyloxalylglycine (DMOG) treated wood-based anisotropic scaffolds. CQS enhanced the 

antibacterial ability, while DMOG significantly improved osteogenesis of human bone marrow-

derived stem cells (hBMSCs) and angiogenesis of human umbilical vein endothelial cells 

(HUVECs). They also identified that the treated wood scaffolds promoted osteogenic 

differentiation of the hBMSCs via Yes-associated protein (YAP)/transcriptional co-activator 

with PDZ binding motif signaling pathway. Hu et al.[92] developed highly strong delignified 

white wood/regenerated silk fibroin hydrogel scaffolds integrated with black phosphorus 

quantum dots (BPQDs) encapsulated by poly (lactic-co-glycolic acid) (PLGA), which can reach 

300 MPa at longitudinal direction and potentially function in both bone regeneration and 

ablation of bone metastasis. Another research group designed delignified white wood scaffolds 

filled with polyvinyl alcohol (PVA) hydrogel loaded with curcumin (Cur) and phytic acid (PA) 

for enhanced antibacterial, anti-inflammatory, and osteogenic activities[93]. Different 

properties (stiffness, porosity, etc.) in different types of wood make it an interesting topic for 

comparing and selecting the most suitable types for bone tissue engineering. Simultaneously, it 

is suggested to explore more modification techniques can further improved the wood-based 

scaffolds with various biofunctions. The drawbacks of using delignified wood as scaffolds are 

obvious. The delignification process can be time-consuming and complex. Although wood-

based scaffolds can reach a compression modulus of hundreds of MPa, their strength is still 

much lower than the GPa of natural cortical bone. This limits its long-term utilisation in load-

bearing sites. Otherwise, delayed union or nonunion of bone fracture may occur due to 
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mismatched mechanical strength[94]. Moreover, the microstructure of wood depends on its 

nature, so it is difficult to finely control or modify. This character also makes it challenging in 

terms of scalability and reproducibility, as the properties of natural materials can vary 

significantly depending on the source and processing method. Due to these significant 

disadvantages, wood poorly fits in the current trend of chasing precision manufacturing. 

 

Figure 3. (a) Schematic of two main types of wood frames, radial and longitudinal, that are 

generally used for processing; (b) Process of delignification. The delignified wood can be used 

as frames for polymer infiltration. Adapted from reference[95]. (c) The longitudinal view of 

immunofluorescence shows that the wood-hydroxyapatite-polycaprolactone (WHP) composite 

facilitated even distribution of MC3T3-E1 cells (blue). Scale bar = 200 μm. (d) The longitudinal 

false-coloured SEM image shows that the MC3T3-E1 cells (green) were elongated and aligned 

along the direction of the wood channels (blue). Scale bar = 20 μm. (e) A significantly higher 

ALP activity was measured from the MC3T3-E1 cells cultured on WHP scaffolds. PP: pure 

porous PCL; DW: delignified wood; WH: wood-hydroxyapatite; WHP: wood-hydroxyapatite-

polycaprolactone. Adapted from reference[90], Copyright 2020 American Chemical Society. 

3.2 Surface patterning with parallel grooves 

Modification of surface topography is one of the most straightforward and cost-effective 

methods of creating anisotropic structures. Parallel grooves are actually comprised of three 

crucial parameters: ridge width, gap width, and gap depth (or ridge height). Their combinations 

significantly affect the cell-material interaction. Normally, embossing and moulding (or 

microimprinting) are two popular techniques. Apart from the aligning effect in cells and 

extracellular matrix, which can enhance osteogenic differentiation, it also shows the potential 

to improve the integration between the scaffold and the surrounding tissue. Nadeem et al.[96] 

demonstrated that calcium phosphate/gelatin composite scaffolds with surface micropatterns of 

parallel grooves could upregulate the expression of the osteogenic biomarkers osteopontin 

(OPN) and osteocalcin (OCN) in human osteoprogenitor cells (hOPCs). The in vivo experiment 

showed that both the 50 μm and 40 μm groove patterned groups had better bone-scaffold 
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integration and more newly formed bone than the nonpatterned control group. In another study, 

parallel grooves on silica films guided human osteoblast-like cells into an aligned and elongated 

morphology, with enhanced ALP activity on a 45 µm spacing pattern[97]. The optimal groove 

spacing for osteogenesis seems to be inconsistent on different materials or is also related to the 

cell type. For example, MC3T3-E1 osteoblasts on patterned titanium were found to have 

improved cell length, elongation, and alignment, as well as increased expression of osteogenic 

genes and ALP activity, by increasing the groove width from 3 – 7 μm. The maximum 

stimulating effect peaked at a specific groove pattern with ridge width = 3 μm, groove width = 

7 μm, and groove depth = 2 μm[98]. Interestingly, changes in groove depth from nanoscale (35 

nm) to microscale (2 μm) on poly(lactic-co-glycolic acid) (PLGA) substrates have no 

facilitating effect on osteogenesis[99]. The limitations of this approach are challenges in 

confirming the most effective pattern for a specific material and a cell type, which could be 

time-consuming work and not repeatable in other materials and cell types. Furthermore, the 

technique is more suitable for creating patterns on (two-dimensional) 2D planes. Creating 

patterns in 3D significantly increases the complexity in fabrication. Long-term efficacy is also 

doubtable, as cell secretions could fill in the pattern and turn it to a flat surface after a period. 

Currently, no study has assessed the long-term efficacy of groove patterns. Finally, the grooves 

may not be suitable for load-bearing applications, as this pattern may weaken the mechanical 

properties of scaffolds. Surface patterning modification with parallel grooves is a promising 

method for bone regeneration scaffolds. It is convenient for investigating molecular 

mechanisms in vitro on a 2D plane. However, further studies are needed to optimise the pattern 

and evaluate its long-term effectiveness both in vitro and in vivo. 

3.3 Directional freezing 

Directional freezing is an ingenious method for obtaining aligned structures without 

introducing additional chemicals. Its versatility allows it to produce a wide range of intricate 

shapes of either porous three-dimensional structures or two-dimensional patterns on surfaces, 

including nanocomposites composed of polymers and inorganic materials, networks of aligned 

gold microwires, porous composite microfibers, and biaxially aligned composite networks[100]. 

Bioactive components can also be well preserved under low temperature. Figure 4a illustrates 

the process of directional freezing. Generally, the control of directional freezing relies on 

differences in temperature at two points of the subjects. The ice crystals then directionally grow 

from the low-temperature point towards the relatively high-temperature point, forming interval 

micro ice chambers. After freeze drying, the ice crystals sublimate and leave aligned 

interconnecting hollow channels[101, 102]. Some anisotropic structures have been investigated 

for their potential in enhancing osteogenesis. In 2006. Deville et al.[103] developed 

directionally frozen porous HAp scaffolds (Figure 4b and 4c) with high compressive strength 

up to 145 MPa for 47% porosity and 65 MPa for 56% porosity. In that study, the authors 

discussed parameters influencing the properties of the scaffolds. However, no biocompatibility 

or degradation tests were performed. The performance of the anisotropic scaffolds made from 

HAp slurry needs further testing. Maleki et al.[104] developed a hybrid scaffold made of silica 

and silk fibroin bioaerogel for bone regeneration (Figure 4d). The scaffold had a honeycomb 

micromorphology with a multiscale aligned porous structure created using directional freezing 

(Figure 4e). The authors evaluated the mechanical properties and biocompatibility of the 
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scaffold in vitro and in vivo and found that it had excellent mechanical strength, supported cell 

growth and osteogenic differentiation, and promoted new bone formation in a rat model. The 

scaffold also exhibited good biodegradability and bioactivity. It is suggested that the anisotropic 

silica-silk fibroin bioaerogel scaffold could be a promising candidate for bone tissue 

engineering. Su et al.[105] prepared a bilayered gradient poly(vinyl alcohol) (PVA)/HAp 

composite hydrogel by directional freezing. PVA hydrogels with aligned structures were first 

fabricated using directional freezing, followed by coating with HAp using electrophoresis. The 

composite reached up to 0.27 MPa tensile modulus and 0.51 MPa compressive modulus and 

supported the attachment of osteoblasts. Silk fibroin/nano-HAp/graphene oxide composite 

scaffolds with directional channels were fabricated by Wang and colleagues[106] using 

directional freezing. It was demonstrated that the scaffolds were beneficial to the adhesion and 

proliferation of BMSCs, upregulated osteogenic genes in vitro, and had better bone integration 

capabilities in vivo. Recently, some researchers have realised using anisotropic structures to 

exclude interference from nonosteogenic cells and fibrous tissues during bone 

regeneration[107]. By adjusting the temperature gradient, the direction of ice crystal formation 

can be controlled. The directionally frozen scaffolds comprised chitosan and porcine cortical 

bone-derived HAp nanoparticles. Scaffolds with either radial or axial pores were fabricated. 

Both in vitro and in vivo experiments confirmed that the scaffolds were highly biocompatible 

and effective in promoting biological functions. The scaffolds had pore channels that could 

guide cell infiltration, while the absence of open pores on the channel walls prevented 

surrounding cells and tissues from invading the scaffolds. Moreover, further in vivo tests 

showed that the radially oriented porous structure had the potential to promote osteogenesis 

while preventing interference from nonosteogenic cells and fibrous tissue in lacunar bone defect 

repair compared to the axially oriented porous scaffold. Similarly, in another report, directional 

migration of bone-related cells from the host tissue toward the center of the defect was found 

on radially frozen mineralised collagen scaffolds with nanosilicon incorporated[108]. 

Periosteum-diaphysis biomimetic directional silk fibroin scaffolds also prevented the growth of 

fibrous tissues in rabbit bone defect models and thus reduced the occurrence of nonunion[109]. 

Interestingly, directional freezing can also be applied to piezoelectric materials, providing 

multiple cues to induce osteogenesis. Tang’s group[110] fabricated 1-3-type BaTiO3/PMMA 

biopiezoelectric composites. These scaffolds combine both topographical and electrical stimuli 

to osteoblasts, guiding their ingrowth following the layer direction. However, the secretion or 

signaling pathways of the cells were not evaluated in this study. There are several main 

drawbacks in directional freezing. Contradictions between polymerisation and freezing are 

inevitable. Polymerisation is a critical step for maintaining a stable shape of polymers in wet 

conditions. However, crosslinked structures may interfere with ice crystal growth, creating less 

aligned channels. On the other hand, although freezing the solution directly before 

polymerisation gives more aligned microstructures and better controllability, crosslinking 

cannot be performed on freeze-dried scaffolds in some situations. For example, to stabilise a 

freeze-dried collagen scaffold without crosslinking, immersing the scaffold in a crosslinker 

leads to rapid dissolution and loss of shape before being crosslinked. The freeze-drying process 

also consumes much energy, as the vacuum pump and freezer need to be on working for at least 

24 to 48 hr. Directional freezing is a promising method for producing anisotropic scaffolds for 

bone regeneration, with advantages such as versatility, excellent mechanical strength, 
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biocompatibility, and biodegradability. Further research is needed to optimise the fabrication 

process, evaluate the efficacy of anisotropic structures in vivo, and determine the long-term 

stability and efficacy of directionally frozen scaffolds. 

 
Figure 4. (a) Schematic of temperature gradient-driven directional freezing. Ice crystals 

directionally grow from the low-temperature point towards the high-temperature point. After 

sublimation, hollow structures form in the place that was ice. Sacle bar = 100 μm. Adapted from 

references[111, 112], Copyright 2015 American Chemical Society (reference[112]). (b) A 

directionally frozen HAp scaffold (left) and illustration of the hierarchical microstructure of the 

porosity (right). Generally, three distinctive zones can be found in directionally frozen scaffolds. 

(c) SEM image of the longitudinal cross-section parallel to the growth direction of ice crystals. 

Adapted from reference [103]. (d) Gross view of silica and silk fibroin hybrid bioaerogel after 

directional freezing, and (e) SEM longitudinal view shows aligned micro channels. Adapted 
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from reference [104], Copyright 2019 American Chemical Society. 

3.4 Micro self-assembly 

Self-assembly is a process in which individual components with a high length-to-diameter ratio 

can spontaneously form an organised structure under specific conditions. Using self-assembly, 

particles can be organised into highly aligned arrangements at the nanoscale. For instance, by 

adding HAp rigid phases into alginate solution, HAp influenced the phase transition during the 

fabrication of alginate/HAp sponges, forming macrodomains with anisotropically aligned pores. 

The sponges effectively supported the attachment and proliferation of human dental pulp 

mesenchymal stem cells (hDPMSCs) in vitro and the development of newly formed mineralised 

matrix at the site of cranial defects in in vivo models[113]. Lin’s group[114] displayed a 

noncovalent assembly mediating preorientation-assisted strategy to fabricate highly anisotropic 

chitin/nanoscale 2D material (molybdenum disulfide and brushite, for example) composite 

hydrogels. The long-range aligned structure was obtained through mechanical deformation, 

such as shear force. In the reported process, the 2D materials were temporarily oriented under 

shear force, followed by polymerisation to achieve a permanent anisotropic microstructure. The 

orientation process significantly increased the strength and Young's modulus of the composites. 

In vitro culture of rat BMSCs on the hydrogels and implantation of the hydrogels into rat 

calvarial defect models both demonstrated improved cell migration and osteogenesis. Similarly, 

a biomimetic composite consisting of strontium (Sr)/copper (Cu)-doped 1D HAp and poly(dl-

lactide) (PDLA) was developed[115]. In the composite, the self-assembly effect drove the c-

axis of the HAp crystals to align with the PDLA polymer chains. Then, large-scale alignment 

is achieved via shear force when extruded from the nozzle. The anisotropic composite allowed 

sustained release of Sr and Cu ions, supported attachment and proliferation, enhanced ALP 

activity, and induced secretion of the anisotropic collagen fibre matrix of hMSCs. Mredha et 

al.[116] demonstrated fish swim bladder collagen (SBC)/poly(N,N’-dimethylacrylamide) 

(PDMAAm) double-network hydrogels. Taking advantage of the shear- and diffusion-induced 

collagen fibril orientation, the SBC self-assembled into an aligned and concentric organisation, 

was then enhanced by polymerisation of the PDMAAm network, and was coated with HAp on 

the surface. The composite reached a Young’s modulus of 0.45 – 0.8 MPa, which is comparable 

to that of natural cartilage. In vivo experiments showed that the hydrogel has excellent bonding 

ability with bone. Ma et al.[117] reported anisotropic protein organofibers with extraordinary 

mechanical strength that could improve osteogenesis. The fibres were made of genetically 

engineered proteins that self-assembled into supramolecular structures with controlled 

orientations. BMSCs were found to have enhanced expression of the osteogenic biomarker 

RUNX2 on the fibres, which demonstrated their potential as a regenerative matrix in bone tissue 

engineering. In conclusion, self-assembling structures may represent the closest to the process 

of bone formation. The use of self-assembly allows for precise control over the size, shape, and 

orientation of the scaffold. However, a main obstacle facing the self-assembly technique is the 

difficulties and complexity in fabrication, making it currently difficult to scale up for clinical 

applications. The use of self-assembly may result in poor control over the final structure, 

leading to variations in scaffold properties. Additionally, there may be limited types of materials 

that have self-assembling capability, and currently, no self-assembled materials can reach 

mechanical strength comparable to that of natural bone. 
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3.5 Electrospun nanofibres 

Electrospun fibres have intrinsic advantages in anisotropic structure and processability. Fibres 

can be easily spun into an aligned  nanopattern and form films, supporting cell attachment, 

proliferation, and differentiation. A type of PCL/gelatine-aligned fibre was designed to enhance 

alveolar bone regeneration. It effectively stimulates macrophages to polarise towards the M2 

phenotype, promotes bone immunoregulation and subsequently promotes the recruitment and 

osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs)[118]. 

However, the fibres are less feasible to fabricate into stiff and thick scaffolds with comparable 

mechanical properties to bones. PCL scaffolds coated with nanoscale PCL-aligned electrospun 

fibres (Figure 5a – 5c) explored the possibility of incorporating dual-scale topographical cues 

to influence human adipose-derived stem cell (hADSC) behaviour[119]. The cells were 

stretched and elongated along the fibres (Figure 5d), with improved overall osteogenic 

biomarker (COL-1, ALP, and OCN) expression. Nevertheless, there was no significant 

difference between the fibre-coated and naked PCL scaffolds. This could be a result of 

insufficient bioactivity of PCL substrates. Similarly, another group tried to combine 

electrospinning and photolithography techniques to create hybrid scaffolds with both nano- and 

microtopography (Figure 5e)[120]. Isotropic fibres (SU-8) and parallel grooves (on silicon 

wafer) mimicked the multilamellar helicoidal plywood model of bone, which promoted the 

proliferation, alignment, and osteogenic differentiation of hADSCs (Figure 5f). Fan et al.[121] 

developed anisotropic silk nanofiber-guided cell migration, along with enhanced angiogenesis 

by deferoxamine release, and the osteogenesis of hBMSCs was improved on the nanofibers. 

Osteoblasts were found with elongated and aligned morphology and enhanced mineralisation 

with c-axis orientation. Although some limitations constrain the application of electrospun 

fibres in bone tissue engineering, bioactive coating on the surface of PCL fibres and utilising 

fibres as a secondary additive to increase the topographical complexity of bulk scaffolds are 

promising approaches for enhancing osteogenesis. Overall, electrospun fibres show potential 

as bone regeneration scaffolds, but they are difficult to use as independent scaffolds in bones 

due to their inability to withstand loads and difficulties in forming enough spatial volume. 

Normally, electrospun nanofibers serve as surface modifications for solid bases. Further 

research is needed to address the limitations associated with their use and to optimise their 

effectiveness in promoting bone formation. Jo
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Figure 5. (a) Schematics of a hybrid surface modification process. Aligned PCL nanofibers 

were electrospun onto the 3D-printed PCL scaffolds. (b) SEM image of a nanofiber-modified 

scaffold (scale bar = 500 μm) and (c) magnification view of the anisotropically aligned 

nanofibers (color bar shows orientation, unit: °; scale bar = 100 μm). (d) hADSCs cultured on 

the hybrid anisotropic scaffolds displayed elongation and increased cell alignment anisotropy. 

Blue: nuclei, green: F-actin, red: collagen type I. Scale bar = 200 μm. Adapted from reference 

[119]. (e) Schematics of another study that fabricated electrospun SU-8 nanofibers with an 

anisotropic micropattern (20 μm ridges and grooves) using UV treatment. (f) Elongated and 

aligned hMSC morphology along the orientation of patterned nanofibers was observed on day 

14 compared to the random morphology in the control group with random SU-8 nanofibers. 

Green: F-actin. All images scale bar = 100 μm. Adapted from reference [120]. 

3.6 Liquid crystals (nano self-assembly) 

Liquid crystals are a typical form of nanoscale self-assembled structures. A liquid crystal is 

defined as a substance with a state of matter between liquid and solid. This mesophase may 

flow like a liquid, but its molecules are oriented in a crystal-like arrangement (Figure 6a). In 

1888, Friedrich Reinitzer, an Austrian botanist, described his discovery of liquid crystals for 
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the first time and started the saga of liquid crystals in the following hundred years[122]. He 

extracted cholesteryl benzoate from a carrot’s root and amazingly found that it had two ‘melting 

points’. The solid cholesteryl benzoate structure transformed into a turbid liquid (later identified 

as a liquid crystal) at 145.5 °C and became transparent at 178.5 °C. This demonstrates that 

cholesteryl benzoate has three different phases: solid, liquid crystal, and liquid. Otto Lehmann 

(1904) later identified more organic compounds with properties similar to Friedrich’s findings 

and originated the term ‘liquid crystal’[123]. Basically, there are three types of liquid crystals: 

nematic, smectic, and cholesteric, classified by molecular arrangement (Figure 6a). The 

molecules in nematic liquid crystals are aligned parallelly, while in smectic liquid crystals, they 

not only show molecular alignment but also form a layered structure. In cholesteric liquid 

crystals, the arrangement is similar to that of smectic liquid crystals, but the orientation of 

molecules varies between layers and forms a helical structure. 

 

Biological liquid crystals were first recognised by Lehmann in 1922. He realised that the liquid 

crystalline structure may play an important role in many forms of life[123], and his proposition 

has been validated and extended over the years. Long-range ordered arrangements can be 

observed not only in a liquid crystalline phase but also in a solidified phase from LC. All 

biological liquid crystals with anisotropic properties either are, or once were, in the lyotropic 

phase. LC organs have become one of the main structures in numerous forms of life due to their 

unique characteristics — mild biological condition-driven self-assembly, hierarchical units for 

signal transduction and stimulus response, and irreplaceable biofunctions. Over eons of 

evolution, nature has crafted numerous nanoscale biological structures with specific purposes. 

Biological liquid crystals are common examples that endow different forms of life with unique 

biofunctions. For example, the most eye-catching example of biological liquid crystals is the 

iridescent colour of beetle cuticles, which was first observed by Michelson in 1911[124] and 

was later interpreted as the circularly polarised reflection of beetle cuticles serving as 

communication channels for mate signalling and mate choice[125, 126]. In eukaryotes, cilia or 

flagella are critical for movement[127]. A special pattern known as the ‘9 + 2 array’[128] can 

be found in many types of animal or plant cells with cilia and flagella, from bacteria to the 

sperm tails. This obvious anisotropic and ordered structure with a high length-to-diameter (L/D) 

ratio strongly suggests an LC self-assembly process when the cilia and flagella are formed. 

Natural silk can be roughly described as multiblock copolymers reinforced by β-sheet domains 

of a relatively elastic protein matrix. It self-assembles and forms nematic liquid crystals with 

extraordinary elasticity[129, 130]. Human cortical bone has nanoscale LC structures; hence, 

nanoscale self-assembly may represent the closest process for mimicking bone formation and 

may have the highest potential for facilitating osteogenesis. 

 

Rod-like stiff particles can be manipulated into LC status. Aligned halloysite nanotubes on solid 

substrates were fabricated by Zhao et al.[131] via a shearing method with brush assistance 

(Figure 6b). The seeded hBMSCs were well aligned along the clay nanotube orientation (Figure 

6c) and exhibited promoted ALP activity and osteogenic gene expression (Figure 6d). In 

another work, researchers have fabricated biomineralised chitin nanowhisker (CHW)/ 

poly(ethylene glycol) diacrylate (PEGDA) hydrogels with bone-like chiral nematic LC state 

(Figure 6e)[132]. It was found that the CHW/PEGDA LC hydrogels induced higher protein 
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absorption and improved osteogenic differention of rat BMSCs, compared to CHW/PEGDA 

non-LC hydrogels. However, the authors haven’t provide further evidence explaining the 

mechanisms. Apart from stiff particles, soft collagen nanofibrils can also self-assemble into 

anisotropic cholesteric liquid crystals by molecular crowding, triggered when the concentration 

reaches a critical point (normally over 80 – 100 mg/ml[133]). Wingender and colleagues [69] 

used the polymer-induced liquid-precursor (PILP) process to fabricate bone-like ‘lamellar’ 

structures. Concentrated collagen LC scaffolds were mineralised to achieve a high degree of 

intrafibrillar mineralisation. The mineralised structures showed anisotropic diffraction arcs of 

HAp crystals and [001] oriented along the c-axis of the fibrils (Figure 6f and 6g). This work 

demonstrates that nanoscale self-assembly can guide the formation of oriented minerals, but 

cell-material interactions have not been assessed. In another work, Wu et al. [134] developed 

anisotropic LC octyl hydroxypropyl cellulose ester (OPC)/polyurethane (PU) soft substrates to 

study the soft elastic response resembling the physical microenvironment of the stem cell niche. 

They found that the addition of varying liquid crystal concentrations had great effects on the 

surface morphology and elastic modulus of the substrates. Human umbilical cord-derived 

mesenchymal stem cells (hUC-MSCs) were intensively affected by different doping rates of 

LC OPC, and their ALP activity and calcium deposition were significantly improved on 

substrates with 10% and 30% w/w OPC. In summary, LC structures can be compatible with the 

bone microenvironment and may serve as guides in cell fate commitment. The architecture of 

LC interfaces can be considered a bioinspired approach to impact cellular behaviours. However, 

current methods have difficulty realising fine control of LC particles/fibres and are unable to 

form bulk scaffolds. There is also a knowledge gap between the effect of general micro/nano 

patterns and LC nano patterns. The applications of liquid crystals are currently confined to 

coating or surface modification. There is an urgent need to develop reliable approaches for 

controlling liquid crystals at a large scale and comprehensively compare their biofunctions with 

those of other materials. 
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Figure 6. (a) Molecular arrangement of liquid, liquid crystal, and crystalline solid, and 

schematics of three types of liquid crystals. (b) Schematic illustration of brush-assisted 

preparation of ordered halloysite nanotubes for guiding the cell orientation. (c) 

Immunofluorescence staining of hBMSCs cultured on control (glass slide) or 8 wt% aligned 

halloysite nanotubes (scale bar = 20 μm). Cells showed elongated and aligned morphology and 

(d) higher ALP activity and expression of osteogenic genes on LC halloysite. Adapted from 

reference[131]. (e) Schematic illustration of the preparation and crosslinking interaction of 

CHW/PEGDA LC hydrogel. Adapted from reference[132]. (f) Bright-field TEM images of LC 

collagen fibrils and the corresponding mineral orientation (dark streaks in the white circle). 

Scale bar = 500 nm. (g) Diffraction patterns generated from the white circles in (f). Scale bar = 

10 nm-1. Adapted from reference[69]. 
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Table 1. Summary of advantages and disadvantages of different types of techniques in 

mimicking bone anisotropic structure. 

Technique Advantages Disadvantages References 

Natural 

materials (wood: 

pinewood, beech 

wood, etc.) 

• Highly aligned 

and 

interconnected 

network like 

bone; 

• Rich source and 

relatively cost-

effective; 

• Naturally, 

anisotropic 

mechanical 

properties. 

• Time-consuming 

and complex 

delignification; 

• Lower strength 

compared to natural 

cortical bone; 

• Uncontrollable 

microstructure. 

[89 – 93] 

Surface 

patterning 

(embossing, 

moulding, 

microimprinting, 

etc.) 

• Simple 

fabrication in 2D 

and cost-

effective; 

• Good 

repeatability; 

• Enhanced 

scaffold-tissue 

integration. 

 

• Varied optimal 

groove spacing 

across different 

materials and cell 

types; 

• Creating patterns in 

3D is complex; 

• Unknown long-term 

efficacy; 

• Grooves may 

weaken the 

mechanical 

properties. 

[96 – 99] 

Directional 

freezing 

• Produces aligned 

structures 

without 

introducing 

additional 

chemicals; 

• Versatility in 

crosslinked gels 

and liquid 

solution; 

• Preserves 

bioactivity of 

materials during 

the process. 

• Poorer alignment on 

crosslinked 

polymers; 

• Contradictions 

between directional 

freezing and 

crosslinking; 

• Energy-consuming. 

[103 – 

112] 
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Micro self-

assembly and 

Liquid crystals 

(nano self-

assembly) 

 

• May represent 

the closest to the 

process bone 

formation ; 

• Potentially the 

strongest 

biological 

activities. 

 

• Technical 

difficulties in 

appropriate control 

methods; 

• Currently 

challenging to scale 

up for applications; 

• Poor particle control 

may lead to 

variations in 

scaffold properties; 

• Limited types of 

materials; 

• Unable to reach 

comparable strength 

as bone. 

Micro 

self-

assembly 

[113 – 

117]; 

Liquid 

crystals 

[69], 

[131], 

[132], 

and 

[134] 

Electrospun 

fibres 

• Easy alignment 

and film 

fabrication; 

• Convenient and 

versatile in 

secondary 

processing. 

• Less feasible to be 

fabricated into stiff 

and thick scaffolds; 

• Insufficient 

bioactivity of 

poly(ε-

caprolactone) (PCL) 

substrates; 

• Unable to be used at 

load-bearing sites. 

[118 – 

121] 

 

3.7 Potential mechanisms of anisotropic structure-enhanced osteogenesis 

The anisotropic structures facilitate osteogenesis via multiple mechanisms. 1) The first key 

mechanism may be improved diffusion/infiltration. A research group fabricated nano-

HAp/polyamide66 (n-HAp/PA66) scaffolds with axially aligned channels (300 μm) utilising 

the thermally induced phase separation (TIPS) technique[135]. They found that the MG63 cells 

were elongated along the direction of channels of the anisotropic scaffolds and infiltrated better 

into the inner space. The in vivo experiment on rabbit radius bone defect models demonstrates 

that compared to isotropic scaffolds, anisotropic scaffolds facilitate new bone ingrowth and 

vessel invasion. The anisotropic structure improves mass transport and eliminates a necrotic 

core, while scaffolds with random pores generally have lower interconnectivity and a 

‘bottleneck’ effect between adjacent large pores. Earlier computational diffusion models[136-

138] indicate that the effective diffusion decreases with increasing tortuosity or disordered 

microstructures. A more distorted structure hinders the effective exchange of mass; hence, 

isotropic scaffolds frequently encounter issues of tissue ingrowth. This may be one of the 

reasons that simply ‘porous’ scaffolds do not always ensure satisfactory regenerative outcomes, 

especially in large bone defects, which require a larger volume of scaffolds. 2) Apart from 
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directly regulating bone cells, anisotropic topography can also guide the behavior of immune 

cells, which improve the immune microenvironment for enhanced osteogenesis. In a study[139], 

researchers used fish scales with anisotropic ridged micropatterns to polarise M2-phenotype 

macrophages, which in turn increased the secretion of the anti-inflammatory cytokines IL-4 and 

IL-10. The improved immune microenvironment together with MCFs further synergistically 

accelerated the osteogenic differentiation of rabbit BMSCs via the Wnt/β-catenin pathway. 3) 

Mediating cell morphology, cytoskeletal tension, and orientation. A study investigated the 

effects of micro- or nanoanisotropic lines on hMSC behaviours [140]. The authors found that 

the cells were elongated along the direction of parallel patterns, showed enhanced attachment 

and osteogenesis, and had upregulated expression of adhesion- and calcium-related genes. 

Additionally, stem cells exhibited a stronger response in terms of morphology, proliferation and 

differentiation on nanopatterns than on micropatterns. Reorganising the cytoskeleton and 

elongating the nuclei are crucial for signal transduction during transdifferentiation. Previous 

research has linked the elongation of the cytoskeleton and nucleus to modifications in gene 

expression patterns and cellular differentiation[141-143]. Elongation of both the cytoskeleton 

and nucleus is a frequently observed phenomenon in cells with enhanced osteogenesis. 4) 

Multiple molecular pathways may be involved. Liu et al.[144] designed a 4D-printed 

biomimetic periosteum with a hydrogel outer layer and an aligned hMSC sheet inner layer. 

They identified that the anisotropic micropatterns promoted migration, angiogenesis, and 

osteogenic differentiation of hBMSCs via activation of the PI3k/Akt signalling pathway. The 

PI3k/Akt pathway is actively involved in the mediation of cytoskeletal dynamics[145]. 

Furthermore, the designed anisotropic periosteum induced better new bone integration with the 

host tissue in the nude mouse calvarial defect models, showing a facilitating effect on 

angiogenesis and tissue ingrowth. In another paper[146], the authors cultured cells on repetitive 

nanotopological pillars with a size gradient and observed that nanotopological signals 

stimulated FAK, a protein that responds to integrin and is responsible for triggering mechanical 

transduction. This activation further led to downstream protein activation of ERK and JNK, 

which then resulted in the movement of transcriptional coactivator with PDZ-binding motif 

(TAZ) from the cytoplasm into the nucleus. TAZ activation of RUNX2 in the nucleus then 

upregulated osteogenesis. Noticeably, the regulation of ERK by FAK may also occur through 

the PI3k/Akt signaling pathway. Similarly, Yang et al.[147] cultured hBMSCs on 

hydroxyapatite surfaces treated using sandpaper to create parallel lines and varying roughness. 

The results demonstrated that hBMSCs displayed oriented morphology and had increased 

expression of YAP/TAZ and osteogenic-related genes such as RUNX2, OPN, and ALP. These 

findings suggested a signaling pathway affected by surface topography: the integrin recognises 

the surface, and the signal transduces to Rho-GTPase, which increases the tension of F-actin 

and squeezes the nucleus. This results in the movement of YAP/TAZ from the cytoplasm to the 

nucleus, where they activate osteogenic-related genes. Zhang et al.[148] indicated that by 

comparing MC3T3-E1 cells on grid patterns and flat surfaces, it was found that the cells had a 

larger spreading area and higher YAP expression on the grid pattern. After silencing YAP, ALP 

expression was attenuated. Additionally, on rougher surfaces, focal adhesions were distributed 

on the edge of cells, and the rough surface facilitated the nuclear localisation of TAZ, which 

then led to enhanced osteogenesis[149]. Based on the current literature, a potential signalling 

pathway for anisotropic pattern-induced enhancement of osteogenesis was hypothesised. The 
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hypothesis suggests that at the very beginning, cells recognise surface patterns and manoeuvre 

the location of integrin and focal adhesion aggregation, which leads to cell spreading. The 

bound integrin then transduces the topographical signal to FAK, leading to downstream 

activation of Rho-GTPase and an increase in cytoskeleton tension. The high tension squeezes 

the nucleus, inducing YAP/TAZ movement from the cytoplasm into the nucleus, where they 

upregulate RUNX2, a key gene for osteogenesis. It is important to note that this hypothesis is 

based on the current published literature, and it may not be applicable in all situations. In 

particular, the complexity of the natural ECM makes it difficult to study these factors at the 

cellular level. The cell-substrate interaction in bone development and regeneration should be 

mediated not only by a single factor (anisotropic patterns) but also by a collective result of 

topography, roughness, matrix stiffness, dynamic stimuli and so forth. Furthermore, multiple 

signaling pathways are likely involved in this complex process of cell communication, apart 

from the currently identified PI3k/Akt pathway. Further studies and clarification of how these 

pathways co-op and crosstalk with others to enhance osteogenesis on anisotropic substrates are 

needed. 

3.8 Conclusion and future perspectives 

The anisotropic structure is a unique form found in many organisms, including human cortical 

bone. The microstructure of bone plays an important role in mechanical transduction and 

biological guidance. This review presents current studies and understanding of anisotropic 

structure-induced directional osteogenesis. In bone tissue engineering, researchers have 

developed various materials and techniques to mimic the anisotropic arrangement, resulting in 

upregulated osteogenic genes and proteins. However, the ideal technique has not yet been found. 

Each of them demonstrates significant advantages and disadvantages. Most of their 

controllability remains at the microscale, lacking nanoscale cues for directing cells. 

Additionally, there is limited information regarding their capability of inducing directional 

osteogenesis. Although many studies have reported increased osteogenic gene expression levels 

and enhanced calcium deposition, there is insufficient evidence to demonstrate that newly 

formed minerals have achieved long-range ordered structures at multiple scales. The key factors 

in manipulating calcium secretion patterns are largely unknown. The randomly formed and 

distributed calcium poses a major obstacle for more controllable bone repair and for growing 

bone in laboratories. We also summarised findings regarding the signalling pathway in 

anisotropic structure-enhanced osteogenesis, but the available information is still limited. More 

studies are needed to further fill in the knowledge gap of cell-substrate interactions to guide 

lab-based scaffold and artificial bone fabrication. 

 

The understanding of anisotropic structures and their impact on bone tissue engineering has 

laid the foundation for promising future research and advancements. While various materials 

and techniques have been developed to mimic the anisotropic arrangement found in cortical 

bone, there is still a need to discover an ideal technique that can precisely direct cells towards 

the osteogenic lineage. To achieve this, researchers should further investigate the intricate 

interactions between anisotropic structures and bone cells. A deeper understanding of how these 

structures influence cell proliferation and differentiation towards osteogenesis will enable the 

development of more effective strategies. Anisotropic structures, especially LC structures, hold 
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potential as templates for guiding the growth direction of bone tissue in vitro. This approach 

could potentially lead to great development of advanced bone grafts and implants that promote 

directional osteogenesis and enhance regenerative outcomes. In parallel, the development of 

new materials and techniques that better mimic the anisotropic microstructure of bone should 

be explored. Researchers can investigate the integration of 3D printing, photoresponsive 

materials, magnetic or electric fields, and other innovative approaches to achieve precise 

control over anisotropic structures. These advancements would facilitate the fabrication of 

complex and reproducible structures, enabling more effective bone tissue engineering. 

Furthermore, the manipulation of calcium secretion patterns, a critical factor in achieving 

controllable bone repair, needs to be thoroughly investigated. Understanding the underlying 

mechanisms of calcium formation, distribution, and organisation within anisotropic structures 

is crucial. By gaining insights into these processes, researchers can devise strategies to 

overcome the challenges posed by randomly formed and distributed calcium. This knowledge 

will facilitate the development of more precise bone regeneration techniques in laboratory 

settings. Moreover, the signaling pathways involved in anisotropic structure-induced 

osteogenesis require further exploration. More comprehensive studies are needed to elucidate 

the intricacies of these pathways and their interactions with anisotropic structures. This 

understanding will be instrumental in developing targeted approaches that harness signalling 

pathways to enhance bone regeneration and repair. 
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Highlights: 

 

• Techniques addressing rising bone defect challenges. 

• Unveiling cortical bone's unique anisotropic structure. 

• Exploring anisotropic designs for enhanced osteogenesis. 

• Advocating deeper research for anisotropy-enhanced bone regeneration. 

 

 

Jo
ur

na
l P

re
-p

ro
of




