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A B S T R A C T   

Precipitation seasonality is the main factor controlling vegetation phenology in many tropical and subtropical 
regions. Anticipating the rain onset is of paramount importance for field preparation and seeding. This is of 
particular importance in various African countries that rely on agriculture as a main source of food, subsistence 
and income. In such countries, skilful and accurate onset forecasts could also inform early warning and early 
actions, such as aids logistics planning, for food security. Here, we assess the skill of the seasonal forecast data 
provided by the Copernicus Climate Change Service in predicting the rain onset over Africa. The skill, i.e. the 
accuracy of the seasonal forecasts simulation ensemble compared to the climatology, is computed in a proba
bilistic fashion by accounting for the frequencies of normal, early and late onsets predicted by the forecast 
system. We compute the skill using the hindcasts (forecast simulations conducted for the past) starting at the 
beginning of each month in the period 1993–2016. We detect the onset timing of the rainy season using a non- 
parametric method that accounts for double seasonality and is suitable for the specific time-window of the 
seasonal forecast simulations. We find positive skills in some key African agricultural regions some months in 
advance. Overall, the multi-model ensemble outperforms any individual model ensemble. We provide targeted 
recommendations to develop a useful climate service for the agricultural sector in Africa.   

Practical Implications  

This research showed the scientific value and technical advances 
of predicting rain onset over the African continent using one 
instance of non-parametric method that is suitable for operational 
purposes. The robustness of this climate service can be enhanced 
by increasing the simulation ensemble size (as we demonstrated), 

involving different methodologies for the onset determination 
(Bombardi et al., 2020; Dunning et al., 2016; Liebmann et al., 
2012; MacLeod, 2018) and different observational references 
(Bombardi et al., 2019). However, to move from the scientific 
exercise and theoretically useful service, to an actionable climate 
service, we need to move away from a supply-driven approach and 
provide services that are user-driven and context-specific (Find
later et al., 2021). This requires involving stakeholders and future 
users of this service in a co-exploration and co-design of the 
products. The process of new knowledge coproduction, rather 
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than just its outcome, is the one that brings value to both the 
scientific and user community (Steynor et al., 2020). Coproduc
tion should hence be an iterative and inclusive process, that sup
ports learning and trust and partnership building, and enables the 
testing and evaluation of the new knowledge and services (Bojovic 
et al., 2021; Findlater et al., 2021; Steynor et al., 2020). These 
coproduction partnerships need to be equitable and to address 
power imbalances between actors (Vincent et al., 2020). This 
unequal power dynamics could appear in the case of North-South 
partnerships, and could be addressed by developing shared un
derstandings and questioning Western standards as the only 
possible baseline (Daly and Dilling, 2019; Hoppers, 2011). 

Information about the rain onset is a typical user requirement in 
agricultural-based economies, particularly emphasised in the re
gions strongly affected by the changing climate. Expectedly, in
formation about onset was repeatedly mentioned as the key 
information for agricultural planning during the FOCUS-Africa 
fieldworks in Tanzania and Malawi. From farmers and extension 
workers, over staffs from international NGOs, such as FAO and 
WFP, to ministry officials and representatives of the NHMSs, 
everyone agreed that providing information about seasonal fore
casts of the rainy season onset could be considered useful climate 
service. The co-exploration work done during the fieldworks did 
not only show a strong interest in the onset, but also confirmed 
that stakeholders are already familiar with seasonal climate 
forecasts supplied by NHMSs. Extension workers in Tanzania and 
Malawi receive training to help them interpret this information 
and disseminate it to farmers. Certainly, this plethora of users has 
different technical knowledge, practice of using climate informa
tion and need for detailed information. In accordance, while sci
entific information presented in this paper could support the 
current seasonal climate information development by NHMSs and 
could be of interest for some representatives of the ministerial 
departments, such agricultural research and services, extension 
workers could be more interested in the comprehensibility of the 
final service and hence it’s visualization so that they can 
communicate it in a simple way to farmers. 

The initial co-exploration of the needs for this type of climate 
service paved the way for the FOCUS-Africa co-development 
process which will further fuel discussion and knowledge ex
change between scientists and users. The co-developed stage will 
address the drawbacks that we recognised in this research, such as 
lack of skill, as well as visualization of probabilistic forecasts. 
Benefits of using information from climate forecasts, instead of 
climatology, in many cases only become obvious when consid
ering results over the long term, requiring inspections of long-term 
performance of forecasts with users (Terrado et al., 2019). 
Correspondingly, to more transparently communicate the concept 
of skill and demonstrate usefulness of probabilistic forecasts with 
relatively low skill, it has been suggested to include a long-term 
perspective. When it comes to visualisation, some of the aspects 
of seasonal climate forecasts of the rainy season onset that require 
particular attention are the representation of uncertainty and 
involvement of users to evaluate visualisation to make it more 
accessible, as well as to finding a shared language and terminology 
between service providers and users (Terrado et al., 2022). 

Since the skill of the seasonal forecasts obtained in this study is not 
sufficient to meaningfully inform decisions in several key agri
cultural areas of Africa, these regions require particular attention 
in the coproduction process. However, we demonstrated that a 
larger ensemble of simulation could be used in order to increase 
the overall skill. This could be partly achieved by considering all 
starting dates other than just the 1st of the month, which would 
provide 21 more members by the Met Office model (see Methods) 
and additional members additional models that are populating the 
C3S ensemble. Other multimodel ensembles from major seasonal 
forecast centers such as the North American Multi-Model 
Ensemble (NMME) could be included too. These, however, 
would need a separate skill assessment period (either 1991 to 
2020 or 1982 to 2020). Including different definition for the onset 
determination (Bombardi et al., 2020; Fitzpatrick et al., 2015) as 

well as alternative observational datasets to determine the refer
ence onset (Bombardi et al., 2019) should be considered in order 
to improve the robustness of the results. Finally, using bias cor
rected model outputs could further ameliorate the final perfor
mances. In fact, the ranked anomalies analysis is partially 
expected to reduce some of the model biases, which we recom
mend for further analysis. All these approaches that could improve 
or address the lack of skill require further discussion and ideas 
exchange, particularly with advanced users from the regions with 
low or no skill in seasonal forecasts. By working side by side also 
with intermediary users, such as employees from the ministry of 
agriculture, including extension workers, scientists could more 
easily understand what is crucial for informing decisions and how 
the information about the onset complements other information 
types and sources, and fits into different decision-making contexts. 

Data availability 

Data will be made available on request.   

Introduction 

Africa is emerging as a potential hotspot of climate change (Fan 
et al., 2021; Turco et al., 2015). Following the “wet areas getting wetter 
and dry areas getting drier” paradigm (Held and Soden, 2006; Toreti 
et al., 2013), the main climate change signal for precipitation over Africa 
broadly consists of the wetting of the Tropics and the drying of the 
Subtropics (Dosio et al., 2019; Spinoni et al., 2020). However, Africa 
experiences substantial inter-annual and intra-seasonal climate vari
ability that is also increasing (Dosio et al., 2021; Nikulin et al., 2018) 
and that could affect vegetation seasonality (Peano et al., 2019) and 
stability (Zampieri et al., 2021). 

Agriculture in Africa is heavily affected by climate variability and is 
vulnerable to climate change (Challinor et al., 2007; Zampieri et al., 
2019). Therefore, provision of climate services is a necessary pre- 
requisite for facilitating climate change adaptation in the agricultural 
sector over Africa, and seasonal forecasts are among the main tool for 
that purpose (Hansen et al., 2019; Vaughan et al., 2019; Wanders and 
Wood, 2017). However, transforming climate science into climate ser
vices and turning seasonal climate forecasts into useful and usable in
formation, requires an iterative, co-production process that brings 
together academic and domain knowledge (Carter et al., 2019, Bojovic 
et al., 2022; Bremer et al., 2019; Findlater et al., 2021; Norström et al., 
2020). 

Seasonal and monthly anomalies of atmospheric circulation, surface 
temperature and precipitation flux can be potentially predicted at the 
seasonal time-scale over several African regions, particularly in those 
characterized by a proven statistical relations with the El Nino Southern 
Oscillation (ENSO) state (Joly and Voldoire, 2009; Lenssen et al., 2020; 
MacLeod, 2019). Dynamical models show strong predictive skills in 
South Africa for temperature and precipitation anomalies in boreal 
summer (Ratnam et al., 2014), which translates in skilful forecasts of e.g. 
temperature extreme and drought indices (Winsemius et al., 2014). 
Given the association between tropical Pacific Ocean temperature 
anomalies and the Indian Ocean Dipole, Eastern Africa as well is a good 
candidate for skilful climate forecasts (Hastenrath et al., 2004). For this 
reason, dynamical seasonal predictions have been able to anticipate 
both the extremely dry October-December 2010 and March-May 2011 
rainy seasons, affected by a strong La Niña event (Dutra et al., 2013). In 
general, the forecast for the short rain season has higher skill than that 
for the long rainy season, due to high predictability of the Indian Ocean 
sea surface temperatures (Mwangi et al., 2014). Short rains’ empirical 
predictions have been successfully tested in the region since the 1990′s 
(Mutai et al., 1998), and recently the statistical and dynamical ap
proaches have been merged together to enhance forecast skill (Colman 
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et al., 2020). Dynamical forecasts of precipitation for Western Africa and 
the Sahel also show positive skill and reliability, although uncertainties 
are larger in this region (Pirret et al., 2020). Despite the large land
–atmosphere coupling exhibited in most part of the Sahel and the 
northern coast of Guinea (Koster et al., 2004), soil moisture memory 
decreases very rapidly during the dry season and does not contribute to 
the predictability of the all-summer monsoon rainfall (Douville et al., 
2007), while the end of the rain season is generally better predicted. 

The onset of the rainy season is an important climate indicator that is 
frequently requested by farmers (Golding et al., 2019; Mittal et al., 
2021). It was a clear requirement that emerged from preliminary dis
cussions with climate information users in Tanzania and Malawi, from 
farmers and extension workers to people working in agricultural 
department, within the EC-funded H2020 project FOCUS-Africa 
(Boscolo et al. 2021). In fact, with the exception of the most humid re
gions, precipitation is the main limiting factor for agricultural produc
tion in the tropical and subtropical climates of Africa (Iizumi et al., 
2019; Sacks et al., 2010). The date of onset often determines the length 
of the growing season, which is key for high crop yields. A late onset, 
even if followed by high rainfall, may lead to a short season with crops 
not reaching full maturity. The onset date is also an indicator of the 
overall seasonal rainfall amount (Camberlin et al., 2009). Information 
about the amount of rainfall early in the season and the onset date can 
also influence decisions on transhumance southward during the very 
late dry season with the aim of meeting the rain (Rasmussen et al., 
2014). Therefore, several studies already addressed the skill of the 
seasonal and sub-seasonal model simulations in predicting the onset of 
the rainy season over Western Africa (Kumi et al., 2020; Rauch et al., 
2019; Vellinga et al., 2013), Eastern Africa (MacLeod, 2018) and 
Southern Africa (Ratnam et al., 2018) using different definitions for the 
onset (Bombardi et al., 2020). Given the importance and the demands 
for such service, national weather services also provide operational as
sessments of the rainy season onset occurrence based on the timing 
when precipitation starts being consistently larger than certain empir
ical precipitation thresholds that depend on the specific location (see e. 
g. https://agromet.meteo.go.tz/). 

This study aims at providing a first overall picture of the rainy season 
onset predictability for the entire African continent implementing an 
algorithm to detect the onset from seasonal forecast model simulations. 
We chose an objective algorithm that allows determining the rainy 
season onset in relationship to the local long-term mean daily precipi
tation without the need of setting arbitrary thresholds (Liebmann et al., 
2012). This methods was tested on continuous data and does not account 
for double seasonality that characterizes in particular the Horn of Africa, 
a zonal equatorial strip extending from Uganda to Equatorial Guinea, 
and a small region on the southern West African coastline (Dunning 
et al., 2016). Therefore, we use a modified version of this algorithm to 
operate over time-windows of 6 months, similarly to other seasonal 
forecast applications (MacLeod, 2018). This solution might seem 
appealing to automatically remove the issue of double seasonality. 
However, double seasonality still represents an issue, especially if one 
season carries less water than the other, on in the case of a particularly 
dry year (Bombardi et al., 2017; MacLeod, 2019, 2018). Several 
methods have been proposed to address this issue (Bombardi et al., 
2020; Liebmann et al., 2012). In order to assess whether the location 
under scrutiny is characterized by double seasonality, we conduct a 
preliminary pre-processing of the precipitation data through harmonic 
analysis similarly to Dunning et al (2016). Over such regions, we apply 
an adaptive threshold that is always capturing the onset of the season 
under scrutiny, independently from the fact that it is a minor season and 
a particularly dry year. Our method is suitable for application in an 
operational context. We test it for all starting months over all of Africa, 
using a large ensemble of seasonal forecast models provided by the 
Copernicus Climate Change Service (C3S). We compute the probabilistic 
skill compared to the past observations. Finally, we discuss how to turn 
this information into a usable climate service. 

Data and methods 

This study uses the Climate Hazards Group InfraRed Precipitation 
with Station data (CHIRPS) version 2 (Funk et al., 2015) as observa
tional reference dataset for rainfall. The CHIRPS dataset is obtained by 
blending surface stations and satellite observations. The accuracy of the 
onset determination from CHIRPS is discussed by Dunning et al. (2016) 
in comparison with other observational datasets. CHIRPS data are 
remapped from the original 0.05◦ spatial resolution to the 1◦ grid of the 
seasonal forecast model using a conservative method (Chen and Knut
son, 2008; Jones, 1999), in order to be compatible with the seasonal 
forecast data. We apply a fast Fourier transform (FFT) algorithm to 
compute the first and second harmonics of annual precipitation, corre
sponding to the single and double seasonal cycles (Figure S1). As already 
noted (Dunning et al., 2016), several regions in Africa are characterized 
by marked double seasonality of precipitation. We find significant 
double seasonality signals also over arid regions (Figure S1). As noted 
before, this signal can be a consequence of the narrow rainfall peak. 

The seasonal forecasts dataset is composed of a multi-model 
ensemble of daily precipitation output simulated for the past (hind
casts) that is made available on the Copernicus Data Store (cds.climate. 
copernicus.eu) at 1-degree horizontal spatial resolution. Such ensemble 
is used to assess the skill on the past onset anomalies estimated at each 
starting month of the year. It is composed of:  

- 40 simulations by the CMCC-SPS 3.5 model (sps.cmcc.it);  
- 30 simulations by the DWD-21 model (https://www.dwd.de/EN/o 

urservices/seasonals_forecasts/project_description.html);  
- 25 simulations by the ECMWF System 5 model (https://www.ecmwf. 

int/en/forecasts/documentation-and-support/long-range);  
- 25 simulations by the Meteo-France version 7 model (https:// 

seasonal.meteo.fr/);  
- 7 simulations by the UK Met Office version 6.00 model (https://www 

.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc 
-outlooks). 

We use the simulations starting the 1st day of all the months from 
January 1993 to December 2016. Simulations last about 6 months, with 
small differences in duration among the models. The full dataset 
therefore would comprise more than 36 thousand simulations (127 
ensemble × 12 months × 24 years) of about 57 Megabytes each (about 2 
Terabyte total). The UK Met Office model also provides different starting 
dates (the 9th, 17th, 25th) that are not used in the present study, for 
consistency with the other models. The UK Met Office model is therefore 
less represented in the multi-model ensemble used for this study. 

For each of the available simulations the standard Liebmann method 
involves the following steps.  

a) compute the annual average of daily precipitation from the multi- 
annual precipitation mean (i.e. long-term annual mean/365) for 
each model. Such average is computed considering data simulated 
for all starting dates and all lead times. 

b) for each simulation, compute the difference between daily precipi
tation and the annual average of daily precipitation. 

c) integrate such difference in time for each seasonal forecast simula
tion. This results in a new ensemble of the same size of the original, 
but composed of cumulated daily precipitation anomalies instead of 
daily absolute values.  

d) compute the onset timing as the timing of the minimum of the 
cumulated daily precipitation anomalies. 

Compared to a more intuitive estimation based on the absolute daily 
data, the minimum of cumulated daily anomalies avoids ‘false onset’ 
that occur when a single precipitation event is triggering the onset al
gorithm, but it is followed by a dry spell immediately after, before the 
‘real’ start of the season (Liebmann et al., 2012). This formulation allows 
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uniform application of the algorithm to heterogeneous locations because 
it depends on local climatology instead of arbitrarily determined 
empirical thresholds (Liebmann et al., 2012). Another advantage of this 
method is that, in principle, it doesn’t require bias correction of different 
datasets – a significant factor when considering multiple forecast sys
tems, because each model results is processed on the basis of its own 
climatological values. 

Our implementation includes several differences with respect to the 
standard Liebmann method:  

a) as Dunning et al (2016), we conduct a preliminary analysis (FFT) to 
assess whether the location under scrutiny is characterized by single 
or double seasonality (see Figure S1). 

Fig. 1. Idealized examples of rainy season onset timing determination for a) single seasonal cycle and b-c-d-e-f) double seasonal cycles. The black solid line rep
resents the daily precipitation values for one year and a half. The dashed line represents the annual average of the daily precipitation values. The black stars represent 
the starting dates of the time-windows covered by the seasonal forecasts. The coloured lines represent the cumulated daily precipitation anomalies with respect to the 
annual mean (right y-axis). The circles represent the onset detections corresponding to the minimum of cumulated anomalies occurring within the time-window of 
the seasonal forecasts. Triangles represent detections that occur outside the time-window under scrutiny. Panel b represents the special case where the two seasons 
have the same amount of total water. Panel c and e represent a more generic case where the second season brings more water than the first (i.e. ’major season’ 
followed by ‘minor’ season). Panel e and f represent the other way round (‘minor season’ followed by ‘major season’). Onsets in panels a,b,c and d are computed with 
the Liebmann method using the long-term daily precipitation as threshold. Panels e and f use an adaptive threshold defined as the mean daily precipitation over the 
six-months estimation window. 
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b) as MacLeod (2018), we apply the algorithm to the six-month time- 
windows that typically characterize seasonal forecast models’ out
puts. This involves the additional issue of handling the detections 
that occur at the boundaries of the six-month period.  

c) as several investigators noted (Bombardi et al., 2020, 2017; Dunning 
et al., 2016; Liebmann et al., 2012; MacLeod, 2019, 2018), Lieb
mann’s methods could fail in case it is applied to detect the onset of a 
minor season in regions characterized by double seasonality, espe
cially in particularly dry years. For operational purposes, we 
conceived a simple method based on an ‘adaptive threshold’ that 
represents a good compromise between accuracy, simplicity and 
robustness. 

The detections that occur within the boundaries of the six-month 
period, excluding the boundaries, are considered accurate. The cases 
for which the minimum is occurring either at the beginning or the end of 
the simulated period can be considered informative as well. In fact, if the 
minimum is found at the beginning or at the end of this time-window, 
we can in principle assume that the onset occurred before the starting 
of the simulation, or after the end of it, respectively. Fig. 1 provides a 
visual representation of the onset estimation applied on six-month time- 
windows based on idealized data in the case of a single annual precip
itation cycle and of different types of double seasonality. 

The Liebmann (2012) method effectively captures the onset timings 
that occur within the forecasts’ period in the case of single seasonality 
(see Fig. 1a). Moreover, as shown in Fig. 1a, it provides useful in
dications in the cases where the onset cannot be determined precisely, 
because it occurs outside the time-window covered by the simulations. 
In case of symmetrical double seasonality (Fig. 1b), the method pro
duces valid detections only. However, in case of asymmetrical double 
seasonality (Fig. 1c), the method can fail to detect the onset for a time- 
window starting in proximity of the beginning of a rainy season with less 
rain than the following one (second starting date, orange line). This issue 
was similarly noticed by Bombardi et al. (2017) and MacLeod (2018) 
when applying the algorithm to observed and simulated precipitation in 
the case of very dry seasons. In the graphical example presented here, 
this issue is visible for the simulation started in February (the second 
starting date in the plot) because the algorithm captures the onset of the 
following season, corresponding with the absolute minimum of the 
accumulated precipitation anomalies. This issue can be aggravated if the 
difference between the precipitation levels of the two rainy seasons is 
larger, affecting also other starting dates (not shown). As a matter of 
fact, the first season onset is never detected if the following season 
produces around double the amount of rain with respect to the first. A 
simple way to overcome this issue consists of computing the cumulated 
precipitation anomalies based on the average precipitation computed 
over the current 6-month time window under examination, instead of 
using the long-term mean. The results of the method implementing such 
adaptive threshold are shown in Fig. 1e and 1f. Compared to the cor
responding panels 1c and 1d, the new method always provides good 
detections at the expense of a small uncertainty in the exact date. Such 
uncertainty is presumably smaller than that associated to the climate 
simulations, and definitely smaller than that related to missing the onset 
completely. 

In order to construct a method that is working for all Africa and 
surrounding regions, we propose a formulation that gradually shifts 
between the original Liebmann (2012) method for single seasonality 
regions and the method based on adaptive threshold for double sea
sonality regions. Our method can be described using the following 
threshold definitions to compute the precipitation anomalies:  

θL = Σy=1,ny Σt=1,365 (py,t)/(ny⋅365)                                                    (1)  

θA(y,d) = Σt=d,d+180 (py,t)/180                                                           (2)  

θc(y,d) = (c1⋅ θL + c2⋅ θA(y,d))/(c1 + c2)                                            (3) 

Where θL is the Liebmann (2012) precipitation threshold, defined as 
the long-term mean daily precipitation. py,t is daily precip at day t and 
year y, ny is the number of available years. d is the starting date of the 
detection window. θA(y,d) is the adaptive threshold defined as the mean 
daily precipitation over the six-months window under scrutiny. θA(y,d) 
is therefore depending on the year and on the detection window. θc(y,d) 
is a weighted mean of the Liebman and the adaptive threshold. c1 and c2 
are the first and second harmonic coefficients corresponding to unim
odal and bimodal precipitation annual cycles (Figure S1), respectively, 
computed on the observed precipitation climatology. Such methodology 
is reasonably simple to be implemented operationally and can be 
potentially extended for tri-modal precipitation annual cycles as well, if 
needed. 

The probabilistic skill of the onset determination is assessed for each 
starting date of the hindcast period (1993–2016) by computing the 
Ranked Probability Skill Score (RPSS). The onset timings are determined 
for each models’ simulations and starting dates. The tercile thresholds (i. 
e. the 33.3rd and the 66.7th percentiles) are computed, for each model 
and starting dates. These thresholds determine the ranges of the three 
categories considered here, which are early onsets (first tercile, p <
33.3rd percentile), later onsets (third tercile, p greater than 66.6th 
percentile) and normal onsets (otherwise). A similar process is used to 
categorize the onset occurrence in the CHIRPS observational dataset, 
considering the same time-windows of the seasonal forecast simulations. 
The 33.3rd and 66.7th percentiles are computed independently for the 
observation and for each forecast model. In this way each category 
(early, normal, late onset) is expected to represent the same frequency 
(33.3%) in the reference period for both the observations and the model 
simulations. 

The distribution of the onsets determined over the six-month win
dow is a superposition of two discrete and one continuous distributions. 
In fact, on the one hand, onset estimations occurring within the window 
can be considered a continuous variable (yet discretised at a daily time 
scale). While, on the other hand, onsets occurring at the window edges 
are two discrete histograms. In such a situation, terciles are well defined 
if and only if the 33.3rd and 66.7th percentiles are not over the edges of 
the detection window. In this case the terciles based ranges are actually 
holding the 33.3% of the data each. If the 33.3rd and 66.7th percentiles 
are over the edges of the detection window, we cannot compute the 
frequencies reliably. In the latter case, we mask the data for that 
particular region and starting date and we do not proceed with the skill 
assessment. 

In case the terciles are well defined, we evaluate the potential use
fulness of seasonal forecast models in terms of their ability to produce 
ensembles of simulation whose departure from the climatological dis
tribution is consistent with the observed anomalies. This would happen 
if the more frequent tercile category of the model’s ensemble (early, 
normal, late onset) matches the observed category for each year and at 
each starting date. The overall skill of the models’ ensembles can be 
therefore computed through the Ranked Probability Skill Score (RPSS), 
which accounts for the times when the most likely category predicted by 
a model matches the observed anomaly (Weigel et al., 2007). This is 
defined by the Ranked Probability Skill (RPS) given by equation (4):  

RPSy,d = sumk=1,k=3 (Yk – Ok)2,                                                        (4) 

where y and d represents the starting date of the simulations. k 
represents the categories (earlier, late onset). Yk are the frequencies of 
simulations with onset falling in each category. Ok is equal to one if the 
observed onset is falling in the k category, zero otherwise. The score is 
then defined by comparing the simulated skill to the one that would be 
expected according to the climatology:  

RPSSy,d = 1 – RPSy,d/RPSCL.                                                            (5) 

where RPSCL is computed as equation (4), but imposing Yk = 1/3 for 
each category. 
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Fig. 2. Example of onset timing determination algorithm applied to the observed daily precipitation data starting on 1st September 2000 at 30E, 10S.  

Fig. 3. Median observed onset timings over Africa determined over 6-month periods, starting at each month of the year (in days since the starting of each month). 
The median is computed from CHIRPS using the same 24 years of the seasonal forecasts hindcast period that are available in Copernicus (1993–2016). Regions where 
more than 33.3% of the onset are occurring outside the 6-month time-windows (two-sided) are masked in white. 
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Positive RPSS implies that the models perform better than the 
climatology. RPSS equal to one would be the upper limit if the models’ 
simulations were always capturing the observed anomaly. Negative 
RPSS implies that the models’ simulations are worse than the 
climatology. 

Results 

Onset determination 

Fig. 2 shows an example of the devel
oped determination algorithm for the onset timing applied to obtain the 
start day of the onset from real data (CHIRPS) over a time-window of six 
months. In the presented example (Fig. 2), two isolated precipitation 
events are occurring before the actual onset. In this and other simulated 
cases (not shown), the algorithm is often successful in finding a 
consistent onset over the individual events exceeding the threshold that 
could be followed by a few dry days. 

For operational purposes, it is convenient to express the onset tim
ings in days since the beginning of the time-window spanned by the 
seasonal forecasts’ simulations (Fig. 3), rather than in absolute dates. 
This might be less intuitive, but it simplifies considerably the software 
complexity, limiting the possible sources of error. Fig. 3 can be taken as 
reference for understanding the time-window of seasonal forecasting of 
the onset timings over Africa. 

Detected onset timings reflect expected seasonality in the continent. 
Looking at the seasonal forecasts starting in January over Western Africa 
(Fig. 3, window ‘Jan-Jun’), the rainy season onset occurs very soon in 
the Gulf of Guinea and progressively later on when moving north in the 
Sahel region. However, the bimodality of precipitation over the Gulf of 

Guinea is only partially captured. Over the Horn of Africa, two onsets are 
detected, one starting in April and one in September. Over Southern 
Africa, valid detections are found for the time windows starting in July 
(‘Jul-Dec’ window) to December (‘December-May’ window). A different 
seasonality is diagnosed over the Cape Town region and along the 
Atlantic coast, which is characterized by a precipitation regime typical 
of the middle-latitudes. 

Probabilistic skill assessment 

The probabilistic skill assessment is computed through the Ranked 
Probability Skill Score (RPSS, see methods), which assesses the ability of 
the simulations ensemble to capture the observed anomalies (Fig. 4). 
The assessment is performed for the multi-model ensemble weighting 
equally each model run. 

The skill of the multi-model ensemble is consistently positive over 
several regions for several key starting dates, especially in South Africa, 
Eastern Africa and the Middle East (Fig. 4). In most cases, the extent of 
the areas with positive skill is larger than that one with negative skill. In 
some cases, positive skills are found several months in advance. 
Assuming that the ‘exploitable value’ of the forecasts increases linearly 
with the time range on the anticipations, it is possible to define a proxy 
based on a factor that is equal to one if the onset is about to occur in the 
first month of simulation, equal to two is the onset is expected to occur in 
month two, etc. According to such idea, a timeliness skill value (TSV) 
could be simply defined as:  

TSV = RPSS ⋅ (Onset + 1),                                                              (6) 

where the onset is here expressed in months (of fraction of months) 
from the beginning of the simulations time windows (i.e. in days/30.5). 

Fig. 4. Ranked Probability Skill Score (RPSS) of the rainy season onset timing assessed in period 1993–2016 by the C3S seasonal forecast models’ ensemble. Regions 
where more than 33.3% of the onset are occurring outside the 6-month time-windows (two-sided) are masked in white. The text at the lower left corner of the panels 
indicates the percentage of area with positive skill and with skill larger than 0.1. 
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From this heuristic conceptual framework, we find that the areas 
with the most favourable conditions for rain onset forecasts (e.g. TSV 
greater than 0.3) are limited and mostly scattered in most of the study 
domain (see Fig. 5). However, spatial and temporal consistent regions 
with promising results are found in the Fertile Crescent for starting dates 
ranging from June to October, in Eastern Africa from May to November. 
Positive but less consistent applicability conditions are found for 
Southern Africa. Scattered and mixed results are found in other regions 
of Africa such as the Sahel (Fig. 5), where the inconsistency between 
‘local’ and ‘regional’ definitions of monsoon onset could be quite 
inconsistent among them (Fitzpatrick et al., 2015). This issue might 
characterize other regions of Africa and suggests that there could also be 
some inherent bias related to the inconsistent spatial resolution between 
observations and model simulations, even though they are remapped on 
common grids, especially in regions with sparse surface stations, and 
some level of intrinsic predictability at very high resolution. This pre
liminary analysis suggests that the results of the seasonal forecast should 
be communicated with caution and always in association with the skill 
assessment. More extended analyses and improved communication of 
the results will be implemented after co-exploration with stakeholders, 
including farmers and extension workers, and co-development with 
users with technical background, such as employees from agricultural 
departments and national meteorological and hydrological services 
(NHMS; see Discussion section). 

On a positive note, we found that the skill of the C3S model ensemble 
outperforms any individual model ensemble (see Fig. S2-6). It is there
fore advisable to implement a service based on larger model ensembles, 
or also coupled to additional sources of information such as predictions 
of large scale teleconnection patterns and climate indices (Fitzpatrick 
et al., 2015; Iizumi et al., 2021). 

Possible visualization options 

Dealing with large ensembles of seasonal forecast simulations also 
requires thoughtful strategies for analyzing and visualizing the 
complexity related to high degrees of freedom in a synthetic and clear 
fashion, especially for climate service provision purposes. However, we 
considered it useful and interesting to maintain a strong link with the 
underlying data, reflecting the probabilistic nature of the prediction 
problem. To improve comprehension of probabilistic frameworks 
affected by the different models’ biases, we suggest focussing on a single 
location and a single starting date through a kind of ‘abacus plot’ 
(Fig. 6). Such analysis is motivated by our previous experience with 
users (in the EU H2020 MedGOLD and FOCUS-Africa project) who are 
mainly interested in specific locations. Comparing the current forecast 
with the previous ones was also considered particularly useful, as it 
related on the historical memories and personal experiences of the end- 
users. The following example shows, for a location in Tanzania, all the 
onset forecasts issued in September for the entire historical time series. 
Observed onset at this specific location occurs on average 100 days (i.e. 
the 9th of December) after the forecast time and shows considerable 
variability (SD = 17 days; Min = 76, Max = 149). 

A considerable part of the anayses of seasonal forecast data consists 
of counting events occurring in predetermined frequency ranges 
defined, for instance, by percentile-based thresholds such as the terciles 
displayed in Fig. 6. As it is evident from that plot, individual simulations 
results are often widely spread and not of easy interpretation. Consen
sual predictions of a specific category are never found. This is, however, 
expected. In fact, large simulation ensembles are indeed very useful to 
sample the probability of occurrence of events reflecting the chaotic 
nature of the climate system. It is also worth noting that each simulation 
is equally probable, but we cannot know which one will be a-priori closer 

Fig. 5. Timeliness value of the skill computed for the twelve starting dates of the hindcast simulations conducted over period 1993-Only regions with positive skills 
are plotted. 
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to the observation, which is in principle to be considered a single 
manifestation of many possible realizations as well (Lorenz, 1963). 

Fig. 6 reveals the different models biases compared to the observed 
onset determinations. This is especially evident by comparing the tercile 
thresholds estimated for the individual models in comparison with the 
observed ones. This issue could be partially corrected by bias-correcting 
the model daily data before determining the onset. However, the 
probabilistic analysis we conducted does not strictly require this step, 
which is a great advantage. 

Although the agreement between the individual observed events and 
the simulated values was not common, it was sometimes possible to 
observe it, such as in 2015 and 2016. The level of probabilistic skill in 
predicting the occurrence of normal, early and late onset is quantified by 
the RPSS, which is slightly positive in this case. However, it is difficult to 
efficiently extract useful information from such a plot. For this scope, 
and for practical application, it is possible to consider a ‘condensed 
abacus plot’ displaying aggregated information of the models’ ensemble 
such as the most probable tercile (Fig. 7). 

The ‘condensed abacus plot’ is aiming at delivering probabilistic 
information on the seasonal forecast models’ ensembles skills for a 
particular location (Fig. 6). It is worth noting that the model ensemble 
median skill was not strictly tested yet in our study. Moreover, since the 
onset predicted by the models could be biased with respect to the ob
servations (see Fig. 6), quantile mapping has been applied to the 
modelled onset for plotting purposes in Fig. 7. This adds a further source 
of uncertainty in the information delivery. This visualization strategy 
will hence be tested and further co-designed with users. Hopefully, 

visual inspection of this plot allows potential users to assess the per
formance of the seasonal forecast for their location(s) of interest. In this 
case, the skill is positive (RPSS = 0.13), meaning that the models are 
more reliable than the climatology for decision making. There is how
ever also a risk, as apparent from Fig. 6, for the individual model result 
to sometimes lead to wrong decisions. We will consider dropping these 
visualization options of not considered useful by the end-users. In the 
next paragraph we show an already accepted concept for delivering the 
probabilistic results of the seasonal forecasts multi-model ensemble. 

Operational forecasts 

Another interesting perspective that can also depict the spatial 
variability of the predicted anomalies consists in showing the results of a 
single set of simulation in a probabilistic fashion to show the forecast 
issued on the most recent date using the visualization shown in Fig. 8. 
With this type of visualization, the probability of the most likely onset 
anomaly is mapped at the grid level (Rembold et al., 2023). Here, Fig. 8 
is actually produced using hindcast data, as an example for illustrative 
purposes. The same kind of visualization is in fact suitable for opera
tional purposes (see e.g. https://mars.jrc.ec.europa.eu/asap/se 
asonal_forecast.php). In the proposed example, early onsets are pre
dicted in South Africa and part of Madagascar. Late onsets are predicted 
for eastern Africa, which is the most prominent anomaly signal, and 
some part of the Mediterranean coastal regions. 

To find an optimal visualization approach and information amount 
and content, the ‘abacus plots’ as well as its suggested modifications for 

Fig. 6. Rainy season onset timings detected for the observations and model simulations at a particular location in Tanzania and starting date for the period 
1993–2016, expressed in days since the starting date of the simulations. Diamonds correspond to observations and circles to model simulations. Circles correspond to 
the individual model simulations’ results. Solid lines represent the 33rd and the 67th percentiles computed for the overall period for models and observations. Onset 
values occurring between the 33rd and the 67th percentiles are considered normal events, displayed in yellow. Onset values below the 33rd percentile are considered 
earlier than normal events, displayed in blue. Onset values above the 67th percentile are considered later than normal events, displayed in red. The multi-model RPSS 
for this location and starting month is reported in the title of the plot. 
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visualizing a single location over many starting dates (i.e. Figs. 6 and 7), 
the proposed visualization of large-scale operational forecasts (Fig. 8) 
and the skill assessment analyses (Figs. 4 and 5) should be presented to 
users for their evaluation and inputs for improvements, preferably in a 
workshop setting. The workshop should include representatives of 
different stakeholder groups and allow enough time for the participants 
to understand, test and evaluate the information. The scientists can then 
collect feedback about how to make the information more intuitive and 
usable. A structured workshop discussion should allow for ideas ex
change and for finding the compromise solutions, in a participatory and 
inclusive way. This final stage of the product’s visualization co- 
development implies an iterative process of testing and improving the 
climate service. Hence, those users who express interest and availability 
to stay in contact with the scientists after the workshop will be contacted 
again to test the improved visualisation and the process will continue 
until a usable product with optimal visualization is obtained. 

Conclusions 

We have presented a first assessment of the skill of seasonal forecasts 
over Africa in predicting the onset of the rainy season, a widely 
requested product for climate services that are being developed in Af
rica. We use a slightly modified version of a well-established algorithm 
for the onset determination that we apply to the Copernicus C3S sea
sonal forecast simulation ensemble. Given the importance of the 
communication of the results and interaction with users in developing 
the seasonal forecast products that is emerging in the recent climate 
service projects such as the EU H2020 MedGOLD and FOCUS-Africa, we 
devoted a large part of the paper in discussing a graphical method to 
deliver the probabilistic information of the forecasts. The envisaged 
further work will move this discussion from the scientific domain to an 
inclusive, transdisciplinary setting, allowing for knowledge exchange 
and co-development of the new service. Not only will the final product 

benefit from integrating scientific with local knowledge, but the 
coproduction process itself might build new, equal partnerships and 
promote testing and evaluation of the new products, adding to contin
uous improvements of the climate service. 

Although the presented results are to be considered preliminary, this 
paper provides a useful reference for a general interpretation of the re
sults of the onset determination from seasonal forecasts over Africa and 
for the corresponding computer code and routines. This will be further 
discussed and co-developed with operational meteorological services in 
Africa and with other local stakeholders. We identified some possible 
development lines to improve the quality of the information, which 
appear clear and promising from the scientific perspective. These sug
gestions will be further discussed and analyzed with stakeholders from 
different African regions to co-develop a usable service, a service “that is 
contextually relevant and suited to users’ technical capacity” (Findlater 
et al., 2021). 
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B., 2019. Climate Services Can Support African Farmers’ Context-Specific 
Adaptation Needs at Scale. Front. Sustain. Food Syst. 3, 21. https://doi.org/ 
10.3389/fsufs.2019.00021. 

Hastenrath, S., Polzin, D., Camberlin, P., 2004. Exploring the predictability of the ‘Short 
Rains’ at the coast of East Africa. Int. J. Climatol. 24, 1333–1343. https://doi.org/ 
10.1002/joc.1070. 

Held, I.M., Soden, B.J., 2006. Robust Responses of the Hydrological Cycle to Global 
Warming. J. Clim. 19, 5686–5699. https://doi.org/10.1175/JCLI3990.1. 

Hoppers, C.A.O., 2011. Towards the Integration of Knowledge Systems : Challenges to 
Thought and Practice. In: Harding, S.G. (Ed.), The Postcolonial Science and 
Technology Studies Reader. Duke University Press. 

Iizumi, T., Kim, W., Nishimori, M., 2019. Modeling the Global Sowing and Harvesting 
Windows of Major Crops Around the Year 2000. J. Adv. Model. Earth Syst. 11, 
99–112. https://doi.org/10.1029/2018MS001477. 

Iizumi, T., Takaya, Y., Kim, W., Nakaegawa, T., Maeda, S., 2021. Global Within-Season 
Yield Anomaly Prediction for Major Crops Derived Using Seasonal Forecasts of 
Large-Scale Climate Indices and Regional Temperature and Precipitation. Weather 
Forecast. 36, 285–299. https://doi.org/10.1175/WAF-D-20-0097.1. 

Joly, M., Voldoire, A., 2009. Influence of ENSO on the West African Monsoon: Temporal 
Aspects and Atmospheric Processes. J. Clim. 22, 3193–3210. https://doi.org/ 
10.1175/2008JCLI2450.1. 

Jones, P.W., 1999. First- and Second-Order Conservative Remapping Schemes for Grids 
in Spherical Coordinates. Mon. Weather Rev. 127, 2204–2210. https://doi.org/ 
10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2. 

Koster, R.D., Dirmeyer, P.A., Guo, Z., Bonan, G., Chan, E., Cox, P., Gordon, C.T., 
Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C.-H., Malyshev, S., 
McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K., Pitman, A., Sud, Y.C., 
Taylor, C.M., Verseghy, D., Vasic, R., Xue, Y., Yamada, T., 2004. Regions of Strong 
Coupling Between Soil Moisture and Precipitation. Science 305 (5687), 1138–1140. 

Kumi, N., Abiodun, B.J., Adefisan, E.A., 2020. Performance Evaluation of a Subseasonal 
to Seasonal Model in Predicting Rainfall Onset Over West Africa. Earth Sp. Sci. 7 
https://doi.org/10.1029/2019EA000928. 

Lenssen, N.J.L., Goddard, L., Mason, S., 2020. Seasonal Forecast Skill of ENSO 
Teleconnection Maps. Weather Forecast. 35, 2387–2406. https://doi.org/10.1175/ 
WAF-D-19-0235.1. 
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