
SURROGATE-DRIVEN MOTION MODEL FOR MOTION COMPENSATED CONE-BEAM CT
RECONSTRUCTION USING UNSORTED PROJECTION DATA

Yuliang Huang1,2 Kris Thielemans1,3 Jamie R. McClelland1,2

1 Centre for Medical Image Computing, University College London, London, UK
2 Wellcome and EPSRC Centre for Surgical and Interventional Sciences,

University College London, London, UK
3 Institute of Nuclear Medicine, University College London, London, UK

ABSTRACT
Cone-beam CT (CBCT) is widely used in image guided ra-
diotherapy, but motion due to breathing can blur the image.
Similar to 4DCT, 4D CBCT can reduce motion blur but 4D
CBCT acquisitions take 2˜4 times longer than 3D CBCT
and often suffer from phase sorting artefact. This study aims
to obtain motion models and motion-free images simulta-
neously from unsorted 3D CBCT projection data, using a
general motion modelling framework previously proposed by
our group, which was for the first time successfully applied to
real CBCT data equivalent to a one-minute acquisition. The
performance of our method was comprehensively evaluated
through digital phantom simulation and also validated on real
patient data. This study demonstrated the feasibility of our
proposed framework for simultaneous motion model fitting
and motion compensated reconstruction using unsorted 3D
CBCT projection data.

Index Terms— Motion compensation, respiration surro-
gate, motion model, unified framework, CBCT

1. INTRODUCTION

Cone-beam CT has been widely used in image-guided radio-
therapy to ensure radiation dose is delivered to the tumor.
However, any motion, such as respiratory motion, could lead
to artifacts and affect the image quality of CBCT images [1].
To address this problem, more CBCT projections can be ac-
quired over a longer acquisition time and then sorted into
multiple respiratory phases (normally 6 10 phases) to obtain
4DCBCT [2], i.e., a series of CBCT images reconstructed out
of projection subsets that belong to each respiratory phase.
Nevertheless, 4DCBCT suffers from severe streak artifact due
to the uneven angular distribution of projections within each
phase [3], and breath-to-breath variability and sorting errors
can lead to residual blurring. Moreover, the longer acquisi-
tion time of 4DCBCT was not preferable in clinical practice
and associated with more imaging dose to patients [4].

In comparison to 4DCBCT, motion compensated ap-
proaches use all the projection data instead of a subset to

reconstruct a single reference state image I0 by considering
the motion at every timepoint with respect to the reference
state image [5, 6]. The image at a specific time point It can
be obtained by warping I0 according to the motion at that
timepoint. Since all the projections are used for reconstruc-
tion, acquisition time can be shortened and streak artifacts
reduced, but the difficulty of this approach lies in estimating
the motion at every timepoint.

Some methods estimated the motion from the planning
4DCT scan [7], but changes of the motion pattern and/or
anatomy between the 4DCT and CBCT scan could limit the
accuracy of such approaches. Projection-based methods may
be more suitable for estimating motion during CBCT acquisi-
tion since the projections are the direct measured data. Under
this approach, the optimal deformation vector field (DVF)
is solved by maximizing the similarity between a projection
of the warped reference image and the measured projection.
Wang and Gu proposed the SMEIR algorithm [8] which com-
bined projection-based motion estimation with motion com-
pensated reconstruction to iteratively update the DVF and ref-
erence image. The method still required phase-binning of the
projection and thus assumed reproducible breathing, which is
not always a valid assumption for lung cancer patients [9].
Instead, Jailin et al estimated the DVF corresponding to every
single projection without requiring phase sorting [10], giving
very promising results but requiring long computation time.

Surrogate driven motion models [11] are another method
that can provide DVFs at each frame in a more intuitive way
than the one described in [10]. In this approach, the motion
is parameterized by one or more respiratory surrogate sig-
nals which can be acquired from external devices, such as
marker(s) on the skin surface [12], or derived directly from
the projection data [13].

However, the traditional way of fitting a surrogate driven
motion model requires first estimating the 3D motion at each
timepoint e.g. using image registration [11], which made it
less applicable to projection data. In recent years our group
has been developing a general motion model framework that
unified motion model fitting with image registration and mo-
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tion compensated reconstruction, enabling the method to be
applied on unreconstructed ‘raw’ data such as CBCT projec-
tions [14].

In this study, the general framework was applied to CBCT
projection data and evaluated systematically by numerical
simulation. More importantly, the feasibility of this method
is demonstrated on clinical data for the first time. Using our
method, dynamic images that showed the respiration mo-
tion of lung cancer patients can be generated from nothing
more than unsorted CBCT projection equal to a 1-minute
acquisition.

2. METHOD AND MATERIAL

2.1. General Motion Model Framework

Given a set of 2D CBCT projection images (Pt), the goal of
this study is to obtain a motion-free CBCT image (I0) and
a time series of DVFs Dt that can warp the reference state
image I0 to the CBCT image (It) at the moment when each
projection was acquired, as shown by equation (1)

It = T (I0,Dt) (1)

where T is a function that resamples I0 according to the spa-
tial transform determined by Dt at time-point t.

This study used free-form deformations, in which the de-
formation is obtained from B-spline transformation:

Dt = ϕ(Mt) (2)

where Mt is the control point parameters of B-spline trans-
formation. The surrogate-driven respiration correspondence
model can then be represented as follows:

Mt = St ·C = Σr
iSit ·Ci (3)

in which r is the number of surrogate signals, Sit is the ith

surrogate signal at time-point t and Ci is the ith component
of correspondence model parameters.

The motion model parameters C can be determined by
minimizing the loss function below:

f = −ΣtL(Pt,P
′
t) (4)

P′
t = At · It (5)

where L refers to localized normalized cross correlation, P′
t

and Pt are the estimated and measured projection images at
time t respectively, and At is the acquisition matrix for CBCT
forward projection.

Combining equations (1)-(5), the gradient of the loss
function with respect to the motion model parameters could
be calculated as follows:

∂f

∂Ci
= Σt

∂Mt

∂Ci
· ∂Dt

∂Mt
· ∂It
∂Dt

· ∂P
′
t

∂It
· ∂f

∂P′
t

= −ΣtSit ·
∂ϕ(Mt)

∂Mt
· ∂T (I0,Dt)

∂Dt
·At

∗ · ∂L(Pt,P
′
t)

∂P′
t

(6)

where i = 1, . . . , r, and At
∗ is the adjoint matrix of At.

In each iteration, the motion model parameters are updated
with the gradient above and the step length determined by
line search method.

Initially, a standard FDK [15] reconstruction is performed
for I0, and the model parameters C are updated for a fixed
number of iterations, or until there is no improvement in the
loss function. The motion model is then used to perform a
motion compensated reconstruction of I0 [5, 6]. The method
then proceeds to iteratively update C and I0 until there is
no further improvement or the total number of iterations are
reached. A multi-resolution approach is used, with Pt, C,
and I0 being resampled at each resolution level.

The hyperparameters of this study can be listed as below:
number of resolution levels is 3, control point grid spacing is 8
pixels, maximum number of motion compensated reconstruc-
tion per level is 6, maximum iteration number of model fitting
is 100. To save the runtime, this study just used the first 2 res-
olution levels for model fitting and only used evenly-spaced
stochastic subset (one-tenth of) of time-points per iteration.
Compared with the 30 hours runtime in previous study [10],
the runtime for our method ranged from 1 to 5 hours, which
was one of the major advantages of our method.

2.2. Digital Phantom Simulation

The 4DXCAT software [16, 17] was used to generate a
ground truth reference state image and sequence of DVFs
from breathing traces that represent the diaphragm and chest
surface motion. This study used two sets of real breathing
traces, as shown in Figure 1, which were measured from cine
sagittal MR slices. The first set of breathing traces showed
regular respiration and the other one exhibited a more irregu-
lar pattern including hysteresis and inter-cycle variation. For
both simulations, the reference state image was warped by the
DVF sequence and projection images were generated using
the geometry of a real CBCT scan and OpenRTK [18]. The
breathing traces were normalized and then used as surrogate
signals for motion model fitting.

Our method was tested on these two sets of simulation
data using the following metrics:

• DSC: average Dice Similarity Coefficient between esti-
mated and ground-truth tumour masks.

• Ecenter: average Euclidean distance between estimated
and ground-truth tumour centroid positions.

• EDVF: DVF error, the average L2-norm of difference
between ground-truth and estimated DVF within the body
mask.

• NRMSE: root-mean-square error between the recon-
structed image and the reconstruction using round-truth
DVFs, normalized to the maximum pixel value.

Results of our method were also compared with uncor-
rected results. The term “uncorrected” means not compen-
sating for motion, or equally speaking, the DVFs at all time-
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Fig. 1. Two sets of breathing traces for 4DXCAT simulation.

points are zero and the tumour masks at every time-point are
the same as the tumour mask on reference state image. The
uncorrected CBCT reconstruction refers to standard FDK re-
construction [15] that does not compensate for motion.

2.3. Clinical Dataset

Our method was also validated on real patient data from the
public SPARE Challenge dataset [19]. Two patients were
selected from the dataset that did not exhibit severe trunca-
tion issues in CBCT projections. The CBCT images were
acquired over a full rotation on Varian Trilogy with Source-
to-Image Distance (SID) of 1000 mm and Source-to-Detector
Distance (SDD) of 1500 mm and the detector was offset to
enlarge the field-of-view. Dimension and pixel size of the
projection images were 1024x768 and 0.388 mm respectively.
680 projections were used, equivalent to a one-minute scan.

As external breathing traces are not available for the
SPARE Challenge datasets, this study used the Intensity
Analysis (IA) method [13] to extract a respiratory signal
directly from the projection images. This signal and its tem-
poral gradient were normalized and then used as the surrogate
signal for the two patient datasets. Since no ground-truth was
known for clinical data, visual comparison was used to eval-
uate the results.

Fig. 2. Comparison of different reconstructions for regular
(left) and irregular (right) breathing simulations.

3. RESULTS

3.1. Evaluation on Simulation Data

Table 1 contains the results of the evaluation metrics as de-
scribed in section 2.2 for the regular and irregular breathing
simulations respectively. The results of our method are com-
pared with uncorrected results, i.e., not compensated for res-
piratory motion.

Table 1. Evaluation metrics for regular and irregular breath-
ing simulation (unit of Ecenter and EDVF: mm).

Simulation Metric Uncorrected Our Method

Regular
breathing

DSC 0.46±0.23 0.90±0.05
Ecenter 8.32±5.68 0.93±0.54
EDVF 2.38±1.14 1.34±0.63

NRMSE 0.11 0.07

Irregular
breathing

DSC 0.63±0.15 0.92±0.03
Ecenter 7.72±3.70 0.70±0.31
EDVF 1.70±0.68 1.07±0.46

NRMSE 0.10 0.09

The uncorrected results show that there is substantial mo-
tion of the tumour and other anatomy during CBCT acquisi-
tion. When using our method, the motion of the tumour and
other anatomy can be estimated well, and the quality of the
reconstructed images are also improved. This is the case for
both the regular and irregular breathing simulations.

Figure 2 displays coronal and sagittal views of the un-
corrected CBCT reconstructions, i.e., standard FDK without
motion compensation (top), the CBCT reconstructions using
ground-truth DVFs (middle), and the results of our method
(bottom) for the regular breathing and irregular breathing sim-
ulations, respectively.

The quantitative evaluation was also consistent with vi-
sual assessment. From Figure 2, it can be seen that the image
quality of the CBCT obtained by our method is much better
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Fig. 3. Uncorrected CBCT (left) and motion compensated
reconstruction with our method (right) for patient 1.

than the uncorrected images and comparable to the ground-
truth.

3.2. Validation on Clinical Data

Figure 3 and Figure 4 show the sagittal and coronal views
of the uncorrected reconstruction (top row) and motion com-
pensated reconstruction (middle row) for the two patients, re-
spectively. Clearer lung tissue details and sharper diaphragm
edges can be observed in the reconstructed CBCT after apply-
ing our method for both patients. This is highlighted by the
intensity profiles at the white lines, which show better tissue
contrast after applying our method.

4. CONCLUSION AND DISCUSSION

One of the main limitations of our current method is requir-
ing input surrogate signals and that it can be difficult to ac-
quire good signals either from projections or using external
devices. In addition, we currently require non-truncated data
and our runtime is still rather long for clinical application.
To address the problems above, we are currently working on
surrogate-free approach, in which the surrogate signals were
optimized along with the motion model and hence did not
need to be extracted prior to motion model fitting. Moreover,
more advanced reconstruction algorithms, such as iterative re-
construction algorithms, will be utilized to overcome the trun-
cation issue, and GPU implementation will be investigated to
accelerate our method.

Our method has great potential for future clinical appli-
cations as it can provide both a high-quality motion compen-
sated CBCT image, and accurate estimates of the respiratory
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Fig. 4. Uncorrected CBCT (left) and motion compensated
reconstruction with our method (right) for patient 2.

motion, including intra- and inter-cycle variations, from noth-
ing other than projection data of a 1-minute CBCT scan. This
means it can provide up-to-date estimates of the image and
motion of the day on standard linacs, facilitating future inno-
vations in adaptive treatments and outcome studies by provid-
ing up-to-date targets and OARs delineation, and more accu-
rate estimates of the delivered dose.
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