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ABSTRACT
In genetic programming (GP), controlling complexity often means
reducing the size of evolved expressions. However, previous studies
show that size reduction may not avoid model overfitting. There-
fore, in this study, we use the evaluation time — the computational
time required to evaluate a GP model on data — as the estimate of
model complexity. The evaluation time depends not only on the
size of evolved expressions but also their composition, thus acting
as a more nuanced measure of model complexity than size alone.
To constrain complexity using this measure of complexity, we em-
ployed an explicit control technique and a method that creates a
race condition. We used a hybridisation of GP and multiple linear
regression (MLRGP) that discovers useful features to boost training
performance in our experiments. The improved training increases
the chances of overfitting and facilitates a study of how managing
complexity with evaluation time can address overfitting. Also, ML-
RGP allows us to observe the relationship between evaluation time
and the number of features in a model. The results show that con-
straining evaluation time of MLRGP leads to better generalisation
than both plain MLRGP and with an effective bloat-control.
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1 INTRODUCTION
It has always been an important challenge in machine learning
(ML) to avoid generating models that fit the training data very
well but without generalising to the unseen data; this is termed
overfitting. Often these overfitting models are overly complex [4];
however, determining how much complexity is just enough is a
challenge. Another traditional concern in GP is complexity, which
is often manifested by a tendency to grow model sizes to a point
that renders the evolutionary search process ineffective. The most
popular approach to controlling complexity in GP is bloat control,
that is to limit the growth in size of the evolved expressions. How-
ever, previous studies have shown that bloat control alone does not
always overcome the model overfitting problem [2]. This begs the
question: is bloat control really complexity control?

To address the above limitation in bloat control, recent literature
[6–8] has proposed alternative approaches to control the computa-
tional complexity of models in GP. Instead of using size as a measure
of complexity, they use the evaluation time — the computational
time it takes to evaluate a GP model on data. The use of evaluation
time as a measure of complexity is built on the observation that a
model that is made up of computationally expensive building blocks
or that has large structures takes a long time to be evaluated, and
hence it is computationally complex. The work in [6] empirically
shows how the functional and structural complexity are different
by plotting the evaluation times of identically sized but functionally
diverse GP models, see a reproduction in Figure 1. Therefore, if
the evaluation time of evolving models are constrained then the
growth in the structural as well as the functional complexity will be
discouraged. The same work also recommended various techniques
to significantly minimise the noise in measuring evaluation times.
This paper adopts the use of all these recommendations to measure
complexity of the evolving models in MLRGP.

The next question is how to control the evaluation times. We
used two approaches to control evaluation times. First, we use an
effective bloat control method to discourage high evaluation times
in the same way it discourages large size, named Time-control (TC).
The second approach takes a simple view: induce a race among
competing models, named the Asynchronous Parallel Genetic Pro-
gramming (APGP) [6][8]. With APGP, the faster models can (if their
fitness is competitive) join the breeding population before their
slower counterparts and gain an evolutionary advantage.
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Figure 1: Size and composition affect evaluation times.
Higher average evaluation times were returned by individ-
uals made up of COS and SIN operators than same-sized in-
dividuals made up of simpler functions sets.

Method Test
Fitness

Size Evaluation
Times

No. of
Features

Time-Control Success
STD 9/10 10/10 10/10 10/10
BC 7/10 9/10 10/10 10/10
APGP Success
STD 9/10 10/10 10/10 10/10
BC 7/10 0/10 0/10 0/10

Table 1: Summary of the test for significance in difference.
The figures show the fraction of the tests where TC and
APGP produced significantly better results, respectively.

Figure 2: The correlation between evaluation time and the
number of features is greater than it is with size.

We used a GP system that is aided by Multiple Linear Regression
(MLR) [5] in our experiments. Such MLRGP systems [3] have be-
come increasingly popular lately because they improve the training
performance significantly; this is because the traditional GP often
underfits the data because it can not efficiently generate numeric
constants [1]. As this improved training accuracy can result in se-
rious overfitting [5], MLRGP is suitable for studying the effect of
controlling complexity with evaluation time on overfitting. With
this system, we compare the performance of the two methods that
restrict evaluation time with plain MLRGP (STD) and with MLRGP
combined with an effective bloat control technique (BC).

2 RESULTS
Ten widely used datasets were selected as test problems. We com-
pared test fitness scores and our three indicators of complexity: size,
evaluation times and the number of features. The Mann-Whitney

U test was used to determine the significance of the difference in
the final populations and the results are summarised in Table 1.

In terms of test-fitness accuracy (generalisation), the evaluation
times methods (TC and APGP) prevailed over STD and BC. Also,
they had matching results in terms of the number of tests they
prevailed; they both produced significantly higher test scores in 9
out of 10 tests against STD and 7 out of 10 against BC. However, the
two time control methods differed in how they handled complexity
(size, evaluation times and the number of features). TC produced
significantly simpler solutions against BC and STD with one ex-
ception out of 60 tests, this is despite TC and BC used the same
techniques to control time and size, respectively. APGP complexity
control was gentler; it produced significantly simpler solutions than
STD in all tests but more complex solutions than BC.

In addition to the effective control of the number of features by
TC and APGP, the final populations that MLRGP produced showed
a stronger correlation between the evaluation times and the number
of features (average of 0.996) than between evaluation times and the
sizes (average of 0.843), see a representative example in Figure 2.

3 CONCLUSION
We showed that the evaluation time behaves differently from size.
We demonstrated that it can discriminate between the size, the
complexity of the components, and the number of features of the
MLRGP individual. Also, the results asserts that using the evaluation
time to manage complexity leads to better generalisation. Thus,
this approach promises to be broadly applicable. Overall, this study
highlights the feasibility and merits of using the evaluation time.
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