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Abstract 

Stenotrophomonas maltophilia is a Gram-negative bacterium, found in several different 

environments, such as soil, water and hospital. It can cause multiple infections but also 

has strong resistance to many antibiotics such as cephalosporins, carbapenems, and 

aminoglycosides. S. maltophilia confers antibiotic resistance through expression of two 

different β-lactamases: L1-metallo-β-lactamase (L1 MBL) and L2 β-lactamase. L1 

MBL is a class B3 β-lactamase and is the only known tetrameric β-lactamase known to 

humans. L2 is a class A β-lactamase which has been recently identified.  

 

In L1 MBL, there are, two loops (α3-β7 and β12-α5) known as the gating loops, that 

enclose the active site. The “open” and “close” conformations of these two loops were 

observed in the molecular dynamic simulation. These two conformations allow the gate 

loops have the ability of controlling the volume of the zinc binding pocket. The pocket 

size affects the substrate binding and further influence the catalytic activity of the whole 

protein. Therefore, gating loops are thought to have an important role in substrate 

binding and catalysis. In this thesis, the dynamics of the gating loops is explored 

through Markov state models. The “open” and “closed” confirmations are defined and 

three key interactions (salt bridge between R236 and D150c, the π–π stacking between 

H151 and Y227 and the orientation of P225) were identified that play an important role 

in controlling the conformation of the gating loops. Furthermore, as a tetramer, the 

correlation between the four subunits was also explored through CVAE-based deep 
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learning and network analysis. The results revealed a ‘dimer of dimer’ dynamics in L1 

MBL.  

 

The second part of the thesis focuses on exploring the dynamics of L2 β-lactamase 

family consisting of L2a, L2b, L2c and L2d enzymes. Homology modelling, 

MDLovofit, Markov state models, dynamic cross-correlation analysis and CVAE-

based deep learning were employed for identifying potential key interactions and 

dynamic correlations between each subtype. Two dynamic combinations regions were 

revealed (α1 helix/N-terminal, β9-α15 loop, β7-β8 loop, hinge region, and C terminal, 

β1-β2 loop, β8-β9 loop) which exist in all four L2 β-lactamases. Stabilising these two 

combinations could possibly help inhibit the function of L2 β-lactamases. Besides, 

several potential key residues which result in high dynamic regions were also identified. 

Since very few research targeted on L2 β-lactamases, this work could be a starting point 

for the following-up work. The improved understanding of the dynamics of L1 and L2 

β-lactamases will help in the design of their inhibitors and discovery of novel resistance 

breakers.  
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Impact Statement 

In this thesis, I present the enhanced understanding of the dynamic mechanism of L1 

and L2 β-lactamases. L1 and L2 β-lactamases together form the antibiotic resistance of 

Stenotrophomonas maltophilia (S. maltophilia). S. maltophilia is a nosocomial 

pathogen, which mainly infects immunocompromised hosts including cancer, 

transplant and cystic fibrosis patients. It can cause respiratory tract infection, along with 

clinical syndromes, such as catheter-associated and bloodstream. The dynamics of L1 

and L2 β-lactamases are still unclear. Understanding the dynamics pattern of these 

enzymes will help the investigation of L1 and L2 β-lactamases inhibitors. 

 

In L1 β-lactamase work, I used adaptive sampling simulation method base on the 

ACEMD molecular dynamics engine. Markov State Models, CVAE-based deep 

learning and network analysis were employed to construct kinetic models and proposed 

dynamic mechanism. The “open” and “closed” conformations of L1 β-lactamase has 

never been reported before. The reveal of these two conformations of gating loops will 

help the understanding of the L1 β-lactamase binding pocket. In most case of L1 β-

lactamase dynamics, the gating loop stay in “closed” state. The “closed” state limits the 

volume of binding pocket and stop the substrates to get access to the binding site. By 

identifying the important interactions which control the gating loop conformations, it 

is possible to stabilize these loops into the “open” conformation. The “open” 

conformation of L1 β-lactamase zinc binding site have a significant higher volume 
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which can allow much bigger substrate to get inside. The reveal of “open” and “closed” 

conformations not only improve the understanding of the L1 β-lactamase dynamics but 

also give more possibility for developing L1 β-lactamase inhibitors. Furthermore, a 

dimer-of-dimers dynamic mechanism was also found in L1 β-lactamase tetramer. The 

conserve residues of signal transferring from one binding site to another were also 

identified through network analysis. L1 β-lactamase tetramer has much higher catalytic 

activity compare with the monomer. Therefore, affect the signal transfer between each 

subunit in the tetramer can potentially make four subunits working individually and 

reduce the catalytic ability of L1 β-lactamase. The dimer-of-dimers dynamic 

mechanism could help in the design of L1 β-lactamase inhibitors.  

 

In L2 β-lactamase work, adaptive sampling simulations were carried out based on the 

homology modelling results. MDLovofit, Markov State Models, Dynamic Cross-

correlation and CVAE-based deep learning were employed for the analysis of L2 β-

lactamase dynamic mechanism. As no molecular dynamic research have been done 

before on L2 β-lactamases, this work will help to improve the understanding of L2 β-

lactamases in this field.  There are two dynamic combinations regions were found in 

this work: α1 helix/N-terminal, β9-α15 loop, β7-β8 loop, hinge region, and C terminal, 

β1-β2 loop, β8-β9 loop. These two combinations exist in all four kinds of L2 β-

lactamases. Therefore, these two combinations could be important for the full function 

of L2 β-lactamases. Stabilizing these two regions may help inhibit the enzymes. 

Furthermore, several key residues which responsible for the high dynamic regions were 
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also indicated. The conformational change of these residues could be important for the 

whole L2 β-lactamase dynamics pattern. The findings can help the future work on the 

development of novel inhibitors of L2 β-lactamase. 

 

L1 and L2 β-lactamases together form the antibiotic resistance of S. maltophilia. These 

two β-lactamases combined and produce antibiotic resistance to almost all the β-lactam 

antibiotics. This work focus on the dynamics research for L1 and L2 β-lactamases. By 

identifying the important combinations, regions and key residues, new direction of 

developing β-lactamase inhibitors could be revealed. The importance of this work is to 

explore the dynamic pattern of L1 and L2 β-lactamases and reveal the mechanisms and 

potential targets that never reported before.  
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1. Introduction 

Antibiotics  are one of the most important discoveries in modern history.1 The benefits 

of antibiotic usage are not just limited to the medical field, but it is also used in 

biological science research, agriculture, animal husbandry and the food industry.2 This 

makes it an essential product in our everyday lives. However, the misuse of antibiotics 

over the years has resulted in multi-drug resistance. One of the most common ways of 

developing resistance is via the expression of the β-lactamase enzyme.  

 

1.1 Antibiotics History 

An antibiotic is an antimicrobial substance active against bacteria. The first modern 

antibiotic drug was Salvarsan which was developed in 1910.3 It was used for treating 

syphilis and African trypanosomiasis and was the first effective treatment for this 

disease. However, the history of treatments for preventing infection stretches back to 

2000 years ago. People used various natural products, such as animal organs, honey 

and wood bark. Rome, Egypt, China and Greece have used mouldy bread to treat open 

wounds.4 Besides, tetracyclines were also found in skeletons excavated in Nubia during 

the Rome domination period.5 In 1676, microorganisms were identified by Antonie van 

Leeuwenhoek through his microscope.6 However, due to unclear cognition and poor 

achievements, the findings did not attract real attention during the renaissance and 

enlightenment periods. Unscientific treatment was still widely administered at that time. 

The patients’ conditions improved temporarily but often caused more serious side 



26 
 

effects. In 1871, penicillium glaucum inhibitory function was identified by Joseph 

Lister and used for curing nurses’ injuries. During the same period, the inhibition of 

one kind of bacteria by species was also noticed by Louis Pasteur. He and his colleague 

Jules Francois Joubert reported that bacillus anthracis could be inhibited when 

cultivated with aerobic bacteria. The word “antibiosis” was defined as a result of this 

relationship, which meant “one living organism kills another to ensure its existence” by 

Jean Paul Vuillemin in 1889.2 In the 1890s, Rudolf Emmerich and Oscar Löw found 

that the bacteria on patients’ bandages could prevent infection. They grew this green 

bacteria in batches and isolated the supernatant as a drug, which is pyocyanase.7 The 

treatment with pyocyanase had a mixed success, but it was considered a breakthrough 

for antibiotic discovery. In 1909, Salvarsan was discovered by Paul Ehrlich and his 

team and put on the market the year after that. This was the first modern antimicrobial 

agent  and was finally replaced by penicillin in the 1940s.8 

 

Penicillin was discovered in 1928 by Alexander Fleming.  This was regarded as a 

milestone in the history of drug discovery.9 Fleming, by accident, found that a fungus 

was inhibiting Staphylococcus growth. The purified inhibitory product from this fungus 

was penicillin. However, the industrial production of penicillin through Penicillium 

chrysogenum succeeded only in 1940 by Ernst Chain and Howard Florey.10 It was for 

the first time that humans had an effective product for treating bacterial infection. The 

success of penicillin promoted the development of antibiotics. Selman Waksman 

performed systematic research on soil bacteria (especially Streptomycetes and 
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Streptomyces members). Waksman’s platform was developed to mark the antagonisms 

among bacteria and discovered several major antibiotics drugs, such as clavacin, 

actinomycin, neomycin, and fumigation.11 Since then, the antibiotic discovery has seen 

tremendous progress and has grown as a vast field.11 Some popular antibiotics, 

including penicillin, polymyxin, quinolone, rifamycin, macrolides and tetracyclines, 

were discovered during that golden age.12 The last new class of antibiotics was 

discovered in the 1980s.2 The rising antibiotic resistance and low rate of investment 

returns have turned drug companies to gradually abandon the discovery of new 

antibiotics.13 There were 20 pharmaceutical companies that did antibiotic discovery 

research in the 1980s, while only five companies are now left in this field in 2015.14  
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1.2 Mechanisms of Action of Antibiotics 

Antibiotics can be classified based on their mechanism of action.15 There are three main 

classes of antibiotic mechanisms: (1) inhibiting cell wall synthesis (2) inhibiting nucleic 

acid synthesis (3) inhibiting protein synthesis. (Figure 1)  

 

Antibiotics inhibit cell wall synthesis  

Bacteria are surrounded by a cell wall, without which it cannot survive. The cell wall 

is made of peptidoglycan, a biopolymer consisting of sugars and amino acids. The 

peptidoglycan crosslinks peptide chains and sugars with the help of the enzymes 

transglycosidases.16 The crosslinking makes the cell wall stronger and more stable. The 

D-alanyl-alanine (DD) portion of peptide requires penicillin binding proteins (PBPs) to 

crosslink glycine residues.17 β-lactam and glycopeptides can inhibit the binding of PBPs, 

which results in the death of bacteria.18 The β-lactam ring can mimic the DD- peptides 

and bind to PBPs. After β-lactam binds to PBPs, the new peptidoglycans cannot be 

crosslinked and synthesised leading to the synthesis of an imperfect cell wall. 

Glycopeptides antibiotics can bind to DD-peptidases of precursor peptidoglycan and 

result in the inhibition of PBPs. When the bacteria grows, the loss of new peptidoglycan 

synthesis will result in bacteria cell wall lysis and death. 
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Figure 1: The mechanisms of action of antibiotic. The main mechanisms of actions by 

antibiotics can be divided into three main pathways: inhibiting cell wall synthesis, inhibiting 

nucleic acid synthesis and inhibiting protein synthesis. 

 

 

Antibiotics inhibit protein synthesis 

Proteins are synthesised in bacteria using messenger RNA (mRNA), on the ribosome 

via transcription and translation.18 The ribosome in bacteria is 70S and is composed of 

30S and 50S subunits. Antibiotics bind to and inhibit the function of 30S and 50S 

subunits.19 Tetracyclines and aminoglycosides can interact with 16S rRNA of 30S 

subunit. This interaction leads to premature termination and misleading in mRNA 

translation.20 Macrolides and chloramphenicol can interact with 23S of 50S subunit and 

causes premature termination and misleading in mRNA translation.21 
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Antibiotics inhibit DNA replication 

DNA replication requires several enzymes’ participation, such as DNA helicase, DNA 

polymerase, DNA ligase and DNA gyrase. Among these enzymes, DNA gyrase is 

essentially required.18 During DNA replication, polymerases bound to the helicase 

hexamer, unwind DNA and forces DNA to rotate.22 The rotation causes an 

accumulation of twists in DNA.23 DNA gyrase is responsible for relieving the tension 

caused by unwinding the DNA helix and it achieves the goal by adding negative 

supercoils.24 The DN gyrase enzyme is a homodimer composed of 2 A subunits and 2 

B subunits. During DNA replication, A subunit cuts the DNA strand while B subunit 

introduces negative supercoils.  Then, the A subunit reseals the nicked strand.20 

Fluoroquinolones have high affinity binding to the A subunit of DNA gyrase and 

reduces its cutting and resealing efficiency. These further influence protein synthesis in 

bacteria. 
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 1.3 Antibiotic Resistance  

Antibiotics are essential drugs for humans. WHO and US data indicated that the 

proportion of deaths because of infections has decreased from 50% to 10% after 

widespread antibiotic usage.1 However, antibiotic resistance has been reported to  

steadily rise in recent years. The antibiotic resistance pathogens increasing rate has 

exceeded the new antibiotic drug discovery rate. This could be the end of the 

unparalleled modern medicine age. US CDC (Center for Disease Control and 

Prevention) has declared 16 kinds of antibiotic resistance are in serious stage in 2019 

and more than two million patients have suffered due to antibiotic resistant infections.25  

 

Antibiotics have only been widely used for about 80 years. The wide use of antibiotics 

as therapeutics creates a selection for antibiotic resistance. For instance, methicillin is 

a β-lactam class antibiotic which was available in the market by 1959. Methicillin 

resistant Staphylococcus aureus (MRSA) was first found in 1961. The bacteria later 

became resistant to almost all β-lactam class antibiotics and was called as “super 

bacteria”. At first, MRSA was only found in hospitals. However, research indicated that 

MRSA has spread to patients not in previous contact with hospitals.26 The O’Neill 

commission is an organisation established in 2014 which was commissioned by the UK 

government to investigate antibiotic resistance. Their report indicated that antibiotic 

resistance would result in a 7% loss of economy (up to 210 trillion US dollars) and 

about 10 million advanced microbial resistance (AMR) annual deaths.27  
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Antibiotics and antibiotic resistance can both be found as natural products in the natural 

environment. Most of the known antibiotics were derived from actinomycetes (soil-

dwelling bacteria groups). Actinomycetes can produce specific antibiotic substances 

during metabolising, such as erythromycin, vancomycin and streptomycin.28 When the 

antibiotic producer generates antibiotics, it must have the resistance to prevent it from 

being killed by its own metabolites. The genes from these organisms are responsible 

for antibiotic resistance in many patients.29  

 

The reason why bacteria show multiple antibiotic resistance is because it can obtain 

resistance genes via both vertical and horizontal gene transfer.30,31 Vertical gene 

transfer is obtaining genes from parents’ gene pool during division, while through 

horizontal gene transfer the bacteria could obtain resistance from the environment.30,31 

Therefore, the environment becomes a massive source of acquiring and accumulating 

resistance genes.32 After accumulating the resistance genes in the natural environment, 

horizontal gene transfer makes it able to spread to the genes in the microbial community 

members. Recent research has identified resistance genes to β-lactams, glycopeptides 

and tetracyclines from metagenomic samples thought to be over 30000 years old.33 

Besides, along with medical and agricultural use, the resistance accumulation in the 

biosphere is dramatically increasing.34 There is recent research indicating that the 

sensitivity of antibiotic drugs  is being  gradually and steadily replaced by resistance in 

clinical use.35 
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The main non-therapeutic use of antibiotics originates from the increasing need for 

animal protein. After Second World War, scientists tried to introduce antibiotics into 

the food industry.36 At that time, researchers tried vitamins, folic acid and other 

chemical substances to accelerate animal growth. In 1946, Moore et al. indicated that 

feeding with sulpha drugs, folic acid and streptomycin can promote chicken growth.36 

In 1949, Lederle Laboratory tried various diet types to identify the “animal protein 

factor”, and believed the answer was vitamin B12 along with some unknown 

substances.37,38 The factor that promoted growth was soon identified as an antibiotic 

but not vitamin B12. This finding was applied on swine and cattle by to further 

research.39,40 In1951, people started to use Terramycin, Aureomycin and Penicillin in 

husbandry. Between 1963 to 1965, the Salmonella typhimurium outbreak reminded 

people the risk of widely using antibiotics in animals. UK government established a 

joint committee for “Antibiotics in Animal Husbandry and Veterinary Medicine”. After 

detailed research, the commission indicated the real risks of developing antibiotic 

resistance by using antibiotics to promote animal growth. However, by 2013, about 

131,109 tons of antibiotics was being used in the animal industry. The consumption of 

antibiotics is projected to reach 200,235 tons by 2030.41 
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1.4 Mechanisms of Antibiotic Resistance  

Along with the development of antibiotics, their wide misuse also promoted to the 

appearance and dissemination of antibiotic resistance. Bacteria  can  use multiple 

resistance mechanisms to overcome the effects of antibiotics.42 The mechanisms of 

antibiotic resistance  can be broadly categorised into four groups: 1) chemical 

modification of antibiotics, 2) preventing antibiotic from reaching its target, 3) 

modification of the binding site and 4) resistance based on global cell adaptation.42 

Chemical modification of antibiotics  

Chemical modification of antibiotics is one of the most common and successful 

mechanism employed by the bacteria. Here, the bacteria expresses an enzyme that can 

destroy the function of antibiotic drugs. The enzyme can either add specific chemical 

alternations or completely destroy the antibiotic. For instance, aminoglycoside 

modifying enzymes can inhibit aminoglycoside molecules by modifying the amino 

groups or hydroxyl groups.43 The β-lactam resistance is achieved through the 

breakdown of the β-lactam ring in the antibiotics by the β-lactamase enzymes.44 

 

Preventing antibiotics from reaching the target 

Bacteria can either decrease the permeability of antibiotics or expunge the antibiotic 

through efflux pumps. Many antibiotics have intracellular or cytoplasmic membrane 

targets, which means the antibiotic molecule needs to have an acceptable permeability 
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to reach the target. For instance, P.aeruginosa can have an aberrant expression of OprD 

protein, which can decrease the permeability and result in resistance to carbapenems 

antibiotics.45 The efflux pumps can also result in resistance via expunging antibiotic 

molecules completely out of the bacteria. In the 1980s, scientists recorded E.coli can 

pump tetracycline out of the cytoplasm of E.coli.46 

 

Modification of the antibiotic binding sites 

The binding sites of antibiotics in proteins can also be modified, which results in 

antibiotic resistance subsequently. There are several mechanisms that generate this kind 

of resistance, such as protection of the targets, mutation of the target sites, enzymatic 

alteration of the target sites or bypassing of the binding sites. For instance: Tet(O) and 

Tet(M) can dislodge tetracycline from its binding sites by interacting with the 

ribosome,47 while erythromycin ribosomal methylation can develop macrolide 

resistance.42  

 

Global cell adaptions resistance 

Bacteria has its own mechanisms to cope with the external environment. In the host 

body, the bacteria need to compete for nourishment while it is constantly attacked by 

the host’s immune system. Thus, the ability to adapt and cope with the stressful 

environment is essential. During thousands of years of evolution, bacteria has devised 
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complex mechanisms to keep the safety of pivotal cellular processes such as membrane 

homeostasis and cell wall synthesis. For instance, vancomycin resistance has developed 

using the global cell adaption response to the antibiotics.42 
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1.5 β-lactam and β-lactamases 

The class of β-lactam antibiotics contain a β-lactam ring as their core structure (Figure 

2). β-lactam antibiotics are the most commonly used antibiotics to treat infections. 

Since the discovery of penicillin in 1928, there are a number of β-lactam containing 

drugs have been discovered, including penicillin derivatives, β-lactam monobactams 

and cephalosporins and carbapenems. β-lactam has advantages in the treatment of 

serious bacterial infection based on its reaction mechanism. When β-lactam antibiotic 

gets into the human body, it can interact with penicillin-binding proteins (PBPs) and 

result in the prevention of bacteria cell wall formation.48 Its safety and efficacy have 

been proven in clinical treatment through time. However, the widely use of β-lactam 

results in the frequent expression of the β-lactamase enzyme, which will be mentioned 

in the following sections. 

 

β-lactamase is an enzyme that can hydrolyse β-lactam functional group and 

subsequently destroy the antibiotic biofunction.48 β-lactamase was first discovered in 

Bacillus (Escherichia) coli, even before the clinical application of penicillin.49 Wide 

usage of β-lactam antibiotics has resulted in growing cases of antibiotic resistance. High 

use of β-lactam antibiotics results in selective pressure on the bacteria, where only the 

ones expressing β-lactamase survive.50 There are about 2800 β-lactamases that have 

been identified and investigated.51 Due to the high rate of replication and mutation 

frequency, bacteria have the ability to adapt to new β-lactam antibiotics. As the 

resistance develops, β-lactam drugs gradually lose their potency against bacteria.52 The 
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rapid evolution rate allows β-lactamase enzymes to make the new antibiotic redundant 

within a relatively short time.  

 

 

 

Figure 2: The chemical structure of Penicillin. The red ring is the β-lactam ring, the nitrogen 

atom attaches to the β-carbon atom relative to the carbonyl and is therefore named as “β-lactam”. 

The carbon number is highlighted with blue. 

 

There are two major classifications of β-lactamases - the Ambler and Bush-Jacoby 

system.53 The Ambler system categorises β-lactamases into class A to D based on 

protein sequence, namely A (serine penicillinases), B (metallo-β-lactamases), C 

(cephalosporinases), D (oxacillinases).53 The Bush-Jacoby system categorises β-

lactamase into class 1 to 4 based on the substrate hydrolysis profile and inhibitor 

profile.54 Researchers further subdivided the classification of β-lactamases into two 
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main groups based on different hydrolysis mechanisms (Figure 3): by generating serine 

active site of an acyl enzyme (Class A, C, and D) and hydrolysis reaction facilitated 

through one or two essential zinc ions in the active site (Class B, metallo-β-

lactamases).55 The representative structures and their binding site from the four classes 

of β-lactamase are shown in Figure 4. The serine binding site and lysine general base 

are shown in class A, and C β-lactamases.  

 

 

 

Figure 3: Phylogenetic tree. Showing the structural evolutionary similarity between the four 

classes of β-lactamase. Classification of the β-lactamase enzyme family. Class A, C and D are 

serine β-lactamases which have acyl binding sites. Class B is metallo-β-lactamase which has 

zinc binding site. 

 

 

 
 
 
 



40 
 

Figure 4: Representative structures and their binding sites from the four classes of β-lactamase. 

The red region is the serine binding residue. The serine binding site and lysine general base in 

the binding site are focused on the right. Class A KPC-2 β-lactamase is from PDB 5UL8. Class 

B L1 Metallo-β-lactamase is from PDB entry 1SML. Class C AmpC β-lactamase is from PDB 

entry 1KE4. Class D OXA-23 β-lactamase is from PDB entry 4JF4.56–59  
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The serine β-lactamases (class A, C and D) mechanism of catalysis is well studied.52 

The three classes of SBLs (serine β-lactamases) displays low sequence identity. In spite 

of this, all of the SBLs exhibit the same acylation-deacylation mechanism of catalysis 

(Figure 5). During the acylation reaction, a general base B1 activates the nucleophilic 

serine (catalytic serine) and attacks the scissile carbonyl carbon of the β-lactam ring 

(Figure 5-A). The amide bond of β-lactam ring will break during the process via a 

tetrahedral oxyanion transition state (Figure 5-B). The intermediate state acylenzyme 

is formed as a result (Figure 5-C). The deacylation reaction occurs when a water 

molecule is activated by general base B2 for nucleophilic attack via tetrahedral 

deacylation (Figure 5-D). The water in this step is called the deacylating water (DW). 

A Penicilloate product is liberated after the nucleophilic attack (Figure 5-E).  

 

The class B metallo-β-lactamases (MBLs) proposed mechanism is also well 

documented (Figure 6).52 The ground state MBLs zinc binding site is associated with 

five histidine and one aspartic acid. Two zinc ions (Zn1 and Zn2) are bridged by a water. 

The substrate binding allows the bridged water molecule to do a nucleophilic attack on 

the scissile carbonyl (Michaelis complex). In the transition state complex, the carbonyl 

carbon geometry is altered. The geometry changes from planar to tetrahedral, to enable 

the β-lactam ring to be broken. In product dissociation, zinc ions will be bridged by a 

new water molecule. In MBLs research, the catalytic mechanism is important and 

widely investigated.60 The zinc ions in MBLs can be substituted by more active metal 

ions (such as cadmium and cobalt) while retaining the hydrolytic ability of the 



42 
 

enzyme.61 The zinc ions (Zn1 and Zn2) have different affinities in the zinc binding 

site.62 The enzymes with only Zn1 position occupied can be isolated.63 On the other 

hand, the Zn2 ion can coordinate with cysteine and have shown to be sensitive to 

oxidation.64 Researchers have a consensus view for the catalytic mechanism of MBLs. 

The binuclear binding site has the highest catalytically ability and represents for most 

cases in physiological conditions.65 
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Figure 5: The proposed mechanism of catalysis for serine β-lactamases (class A, C and D). (A) 

general base B1 activates nucleophilic serine to do a nucleophilic attack on carbonyl carbon. 

(B) the geometry of carbonyl carbon changes from planar to tetrahedral. (C) the β-lactam ring 

is broken and generates a covalent acyl-enzyme. Deacylating water activates general base B2. 

(D) nucleophilic attack on carbonyl carbon in tetrahedral deacylation transition state. (E) 

product dissociation.   
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Figure 6: The catalytic mechanism of L1 metallo-β-lactamase. In the ground state, two zinc 

ions in the binding site are bridged by a water molecule. These two zinc coordinate with five 

histidine residues and an aspartic acid. Zn2 also has an indirect bond with a serine residue 

through a water molecule. During binding to the substrate (Michaelis complex), Zn1 binds to 

the carbonyl oxygen, Zn2 binds to the β-lactam ring nitrogen, water bridge provides a 

nucleophilic attack on the carbonyl carbon. The nucleophilic attack on the carbonyl carbon 

changes its geometry, from planar to tetrahedral causing the Zn1-oxygen bond to be broken and 

forming a new bond with Y212. The water molecule bound to Zn2 is acidified by both zinc 

ions because of their proximity. The acidified water protonates the β-lactam ring nitrogen and 

bridges the two Zinc ions. In the product dissociation, another water from the solvent bridges 

Zn2 and S221.   
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Class A β-lactamase is serine dependent enzyme, including NMC-A (non-metallo-

carbapenamase), KPC, IMI, and SME. The members of class A β-lactamase can 

hydrolyse aztreonam, cephalosporins, carbapenems and penicillins.66 Class A β-

lactamase is mainly found in K. pneumoniae, Enterobacter cloacae and Serratia 

marcescens. These bacteria often show multiple drug resistance and narrow the 

treatment options. Class A β-lactamase is widely spread which makes the research of it 

more clinically important.57   

 

Class B metallo-β-lactamase show wide sequence diversity. There is only 25% 

sequence identity among some of the enzymes.67 However, structures from multiple 

metallo-β-lactamases have shown conserved structure around the binding sites. The 

enzyme has a special sandwich fold, with active sites on the interface. Up to 6 residues 

at the active sites can coordinate with one or two zinc ions in the centre of the binding 

site and hydrolyse a number of β-lactam antibiotics. The metallo-β-lactamase has 

recently attracted a lot of attention.68–70 In spite of the immense work that has been 

carried out to investigate metallo-β-lactamases, there is still no metallo-β-lactamase 

inhibitor available for clinical use.69,71,72  

 

Class C β-lactamase are serine cephalosporinases and the first identified β-lactamase.52 

Many most important Gram-negative species also have these genes to encode class C 

β-lactamase such as Enterobacter cloacae, Citrobacter freundii, Morganella morganii, 

Serratia marcescens and Pseudomonas aeruginosa.73 These genes are distributed on a 
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sequence labelled as AmpC. The AmpC genes are inhibited by upstream sequence 

labelled AmpR and are not expressed under normal condition.74 When the bacteria is 

exposed to a β-lactam, cell wall metabolite and intracellular incorporation will happen. 

The cell wall metabolite is processed by the enzyme AmpD.75 The interaction between 

substrate AmpD and AmpR reverses the  repression, resulting in the AmpC β-lactamase 

to be synthesized.73 The class C β-lactamase usually show resistance to cefotaxime, 

cefoxitin, cefotetan and ceftriaxone. This kind of β-lactamase also has a low 

hydrolysing rate for cefepime and could be inhibited by aztreonam, cloxacillin and 

oxacillin.53  

 

Class D β-lactamases are serine oxacillinases. These enzymes get their name based on 

their high rate of hydrolysing oxacillin (at least 50% hydrolyse benzylpenicillin) 76.  The 

class D β-lactamases have the most diversity in all four classes of β-lactamase and have 

very poor understanding in many respects.52 When the class D β-lactamase was first 

found, it only shows hydrolysed function to penicillins.77 However, class D β-

lactamases also show activity against carbapenems and cephalosporins now.78 These 

OXA enzymes are found in many Gram-positive bacteria species in recent research, the 

widely spread of this kind of β-lactamase increase the clinical significance.79  
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1.6 L1 and L2 β-lactamases 

L1 metallo-β-lactamase 

Stenotrophomonas maltophilia (S. maltophilia) is a nosocomial pathogen, which 

mainly infects immunocompromised hosts such as transplant, cancer and cystic fibrosis 

patients.80 S. maltophilia causes respiratory tract infection, along with clinical 

syndromes, such as catheter-associated and bloodstream.81 Although S. maltophilia is 

not a highly virulent pathogen, however, it has a crude mortality rate from 14% to 69% 

in bacteraemia patients.82,83 Treating S. maltophilia infection is rather difficult because 

it has low susceptibility to the commonly used antibiotics.84 However, the low 

susceptibility of S. maltophilia is not because of the acquisition through antibiotic 

resistance or mutations.85 Thus, there is an argument on how S. maltophilia infects 

humans. Some researchers believe that S. maltophilia infecting people is not a result of 

pathotype adaption to human hosts.86,87  On the other hand, recent research indicates 

the infection of S. maltophilia is the result of how bacteria adapts to the human hosts 

(fibrosis patients).88  Comprehensive research is still needed for a more specific 

understanding of S. maltophilia and the infections it causes.   

 

The antibiotic resistance of S.maltophilia is caused by two co-ordinately expressed 

chromosomal proteins: L1 metallo-β-lactamase (class B MBL) and L2 β-lactamase 

(class A SBL).89 The expression of these two β-lactamases is introduced by β-lactam 

antibiotics and both controlled by AmpR regulator. AmpR is a master regulator which 
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controls hundreds of genes expression.90 The AmpR regulated genes involved in the β-

lactam resistance. For S. maltophilia, research has indicated the AmpR regulator is 

necessary for L1 and L2 β-lactamases production.91 To be more specific, AmpR is 

activator for L1 β-lactamase production with or without an inducer.92 Besides, AmpR 

is an essential factor for L1 β-lactamase production even in  a basal level.  For L2 β-

lactamase, AmpR is a repressor without an inducer and an activator with an inducer.92 

In contrast, L2 β-lactamase basal expression is not AmpR-dependent. Therefore, L1 

and L2 β-lactamases seem to be regulated in different ways through AmpR. L1 and L2 

β-lactamases combine to generate the resistance observed in S. maltophilia. However, 

the relationship between the structure and function are not fully known.  

 

L1 β-lactamase is a unique β-lactamase. It has several features that make it special 

among all β-lactamases - It is the only known β-lactamase enzyme that exists as a 

tetramer (Figure 7). Each monomer of L1 β-lactamase has 10 α helix and 12 β sheets. 

The tetramer is maintained through three discrete sets of intra- and intermolecular 

interactions which make the monomers interact with the other three monomers.59 The 

interactions between monomers are mainly hydrophobic, each monomer has a buried 

non-polar side-chain surface area of 1300 Å2 for forming the tetramer.59  
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Figure 7: The structure of L1 metallo-β-lactamase. L1 MBL has four identical subunits. 

Different subunits are coloured in distinct colour. Subunit A is coloured with red, subunit B is 

coloured with yellow, subunit C is coloured with green and subunit D is coloured is coloured 

with purple. L1 MBL is the only known tetramer in all of the β-lactamase family. 

 

There is no evidence that can prove that the allostery affects the resistance activity, 

however, all other known β-lactamase, including both serine and metallo-β-lactamase, 

are monomeric.93  The proposed mechanism of L1 metallo-β-lactamase hydrolysing β-

lactam antibiotic has been shown above in Figure 6.  

 

There are several interactions that exist between subunits in L1 β-lactamase, with which 

the monomer interact with other three monomers.  First is the interaction between 
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subunit A and subunit B (and also between C and D subunits). The A and B subunits 

have similar interactions as C and D. The side chain of M175 of subunit A is surrounded 

by residues L154, P198, Y237 and Pro238 from subunit B, forming hydrophobic 

interactions (Figure 8).59 M175 (subunit A) interaction with the hydrophobic pocket in 

subunit B (repeated in C and D) is essential for tetramer stabilisation. A disruption of 

this interaction prevents tetramer formation of L1 β-lactamase.94 The interactions in 

this pocket are stable and no clinical strains have been identified that show variations 

affecting these interactions.81 

 

 

 

Figure 8: The M175-A side chain and the hydrophobic pocket on subunit B surface. Subunit 

A is coloured in red and subunit B is coloured in yellow. The side chain of M175 penetrates 

into the hydrophobic pocket on subunit B surface.  
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There are interactions between A and C subunits (B and D subunits) as well. The N-

terminals of each subunit forms an extended U-shaped structure (Figure 9) which is 

stabilised by mutual hydrophobic and electrostatic contributions.59 Two prominent 

leucine residues, L27 and L30 are positioned into the polar cavities on the opposing 

subunit surface. The surface cavities (Figure 10) are formed by the distal end (A32, 

Y33 and A37) and N-terminal end of α1 (M87, P89, Q90, M91 and H94).81  The area 

accounts for 600 Å2 of buried hydrophobic surface in each monomer of L1 β-lactamase. 

Interactions between M87 and H94 are reported to be important as well.95 The 15 amino 

acid N-terminal extension is also responsible for β-lactam binding.95 The N-terminal 

deletion results in a much slower hydrolysis rate and different substrate profile. 

Furthermore, the N-terminal is not necessary for β-lactam hydrolysis and tetramer 

stabilisation, but it is essential for negative cooperativity.94 Besides, the interaction of 

P166A with P166C and R148C can be further formed (Figure 11).81  
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Figure 9: The N-terminal extensions of subunit A and subunit C. Each N-terminal extension is 

15 amino acids long. The interactions between the two chains stabilized each other. The A 

subunit is colour in red and C subunit is coloured in green. 

 

 

 

 

Figure 10: L27, L30 and the surface cavity residues. Two leucine residues (L27 and L30) 

penetrate into the surface cavities formed in the adjacent subunit. The cavities consist of 

residues A32, Y33, A37, M87, P89, Q90, M91 and H94. Subunit A is coloured in red and 

subunit C is coloured in green.   
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Figure 11: The backbone of P166 (A-subunit) interacts with the side chain of R148 (C-subunit).  

Subunit A is coloured in red and subunit C is coloured in green.  

 

 

There are only a few interactions between subunit A and subunit D (or the analogous 

subunit B and subunit C). The hydrogen bonds between subunit A and D are mainly 

formed between D78 and R107 (Figure 12).59  
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Figure 12: The interactions between subunit A and subunit D. D78 and R107 are the main 

contributors forming a salt bridge interaction. The subunit A is coloured in red and subunit D 

is coloured in purple.  
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The two zinc ions in the binding site are bridged by a water molecule. The water 

molecule plays an important role in the hydrolysis reaction and present as a nucleophile. 

Zn1 is bound in trigonal bipyramidal coordination and Zn2 is bound in tetrahedral 

coordination (Figure 13). The geometry and residues involved in the ligation of Zn1 

were first time observed in metallo-β-lactamases.59 Recent research indicates that Zn1 

ion is essential for catalysis reaction and Zn2 ion is essential for proper folding of L1 

β-lactamase.96  

 

A disulphide bridge and two elongated loops connect to the active site (Figure 14). 

Typically, the disulphide bond is the strongest bond in the proteins. It is responsible for 

stabilising the globular structure and maintaining protein conformation. Thus the 

disulphide bond plays an important role in protein folding and stabilization.97  

  

There are two elongated loops present in each subunit. These two protruding loops, α3-

β7 and β12-α5 surround the binding site (metal centre). These loops can have 

hydrophobic interactions with β-lactam at the C2 and C6 positions and further influence 

the spectrum of substrates.59,98–100 Besides, two novel substitutions were found on this 

area: G195A and (G/E)198D.81 It is important because the substitution (G195A) can 

affect the positioning of Phe191 by decreasing the flexibility of the region.81 Residue 

F191 has been proven to be important for catalysis and substrate binding through 

several studies such as molecular modelling and kinetic study.98,99 Similarly, the 

substitution of (G/E)198D can also change the efficiency of enzyme catalytic. Residue 
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S221 on β12-α5 loop forms an indirect interactions with Zn2 and S225 is considered as 

a second-shell residue of H196.59 There are four novel substitutions have been reported 

recently: (P/A)235V, Q230R, (K/Q)232R, G233D. Although none of these novel 

substitutions directly interact with the substrate, however, it is possible that these 

substitutions can influence the overall conformation of the β12-α5 loop and further 

affect the catalysis efficiency.81 For instance, residues S221 and S225 are on the loop 

and have been proven important to the catalysis reaction. The substitutions can change 

the H-bonding network strength or alter its electrostatic characteristics, which will 

result in the changing of overall conformation. The overall conformation change could 

affect substrate binding and catalysis. 

 

There are several sites which are thought to be essential for metallo-β-lactamase 

function. However, L1 β-lactamase has different substitutions at these sites. At position 

219, an aspartic acid replaces cysteine, which is thought to be important for zinc binding; 

at position 222, a lysine is substituted by a serine. The lysine in this position is thought 

to be critical for substrate binding.89 The focus of this research on L1 β-lactamase will 

look into the key dynamic aspects of the L1 β-lactamase structure. 
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Figure 13: The zinc binding site of L1 metallo-β-lactamase. Two zinc ions coordinate with six 

residues and two water molecules. Zn1 coordinates with residue D120, H121, H263. Zn2 

coordinates with residue H116, H118, H196. Zn1 and Zn2 are bridged by a water molecule. 
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Figure 14: The two elongated loops (α3-β7 and β12-α5) form the gate entrance to the active site. 

These two loops surround the zinc binding site and control the volume of binding pocket. The 

disulphide bond is between residues C256 and C296. The loops are identical in all four subunits. 
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L2 β-lactamases 

Stenotrophomonas maltophilia (S. maltophilia) produces antibiotic resistance through 

L1 and L2 β-lactamase. These two β-lactamases can generate resistance to almost all 

β-lactam antibiotics.101 L2 β-lactamase is a class A β-lactamase which is inhibited by 

clavulanate.102 Compared to L1, the discovery of L2 β-lactamase is relatively new and 

has much less research work carried out on it. The literature mostly focuses on the 

function of AmpR, which regulates L2 β-lactamase expression. As detailed above, 

AmpR was identified as a regulator, upstream of L2 β-lactamase genome sequence. It 

has also been reported that AmpR is necessary for the catalytic function of both L1 and 

L2 β-lactamase.103 Besides, β-lactamase inhibitors for L2 also have been investigated, 

such as avibactam and bicyclic boronate.104 In this thesis, computational methods were 

used to study the conformational dynamics of four members of the L2 β-lactamase 

family namely L2a, L2b, L2c and L2d. Each L2 β-lactamase has 15 α helices and 9 β 

sheets (Figure 15). The sequence information was generated from PDBsum.105 

 

The biggest difference between L2 β-lactamase and other class A β-lactamase is that 

L2 has an extra α helix at the beginning of the sequence (Figure 16). Compared with 

other families of class A β-lactamase such as KPC, TEM, SME and SHV, the elongated 

α helix stacks on top of the enzyme and is far away from other secondary structural 

elements in the protein. This suggests that α1 helix, untethered at one terminal end is 

more flexible and therefore has more chance to influence the dynamics observed in the 

L2 β-lactamase family. Besides, L2 β-lactamases have no disulphide bond like in some 
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other families of class A β-lactamase (Figure 16). One of the CYS residue is replaced 

by ASN in L2 β-lactamase. The disulphide bond is the strongest bond in the protein. It 

is responsible for stabilising the globular structure and maintaining protein 

conformation  and therefore plays an important role in protein folding and 

stabilization.97  As a result the corresponding position on L2 β-lactamase, β3-α3 loop 

and β7-β8 loop will be more dynamic. As a consequence of the loss of the disulphide 

bond, the adjacent loops are more relaxed and can adopt multiple conformations during 

dynamics. As the understanding of the dynamics of L2 β-lactamase is sparse, the 

research described in this thesis aims to focus on the structural dynamics of the L2 β-

lactamases. 
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Figure 15: Sequence information of L2 β-lactamase.105 
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Figure 16: The alignment of L2b β-lactamase crystal structure (PDB number 5NE2) and a 

typical class A β-lactamase (KPC-2 β-lactamase, PDB number 2OV5). L2b enzyme is coloured 

in white and KPC-2 is coloured in light blue. The α1 helix and disulphide bond have been 

highlighted. KPC and other class A β-lactamases do not have the extra α1 helix that present in 

the L2 family. The α1 helix of L2 β-lactamase is present at the C-terminal end of L2 β-lactamase. 

The disulphide bond position of KPC is on the corresponding position of β3-α3 loop and β7-β8 

loop in L2 β-lactamase.104,106 
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2. Hypothesis and Objectives 

2.1 L1 Metallo-β-lactamase Hypothesis 

Background: The occurrence of antibiotic resistance in bacterial infection has 

increased in recent years. L1 β-lactamase, a class B3 metallo-β-lactamase (MBL), is 

unique, as it is the only functional tetramer amongst the large β-lactamase family. L1 

MBL exhibits intrinsic resistance to almost all β-lactam antibiotics. Therefore, finding 

ways to inhibit MBL is crucial to overcome antibacterial resistance. One of the distinct 

structural features in the enzyme is the presence of two elongated loops between α3-β7 

and β12-α5 that have been implicated to be directly involved in substrate binding and 

catalysis. The α3-β7 and β12-α5 loops are present at the interface between subunits and 

are in direct contact with M175, a residue that has been shown to have a direct effect 

on the catalytic activity of the enzyme.94 Furthermore, the loops are directly linked with 

the substrate binding sites and residues in the direct vicinity of the loops directly 

coordinate with the Zinc atoms.59 

 

Hypothesis: The working hypothesis is to explore and understand the structural 

dynamics of the α3-β7, β12-α5 loops and the correlation information between four 

subunits in the tetramer. Since the loops can control the volume of the binding pocket 

and thus affect the catalytic activity of the enzyme. Finding ways to stabilise them might 

be a route to inhibit L1 MBL. The signal transferring is also important for the full 

function of L1 β-lactamase. Finding the correlation between subunits in the tetramer 
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will indicate the potential target to affect the signal transferring and further reduce the 

catalytic activity of L1 β-lactamase. 

 

Aims: The aim of this study is to use enhanced sampling molecular dynamics 

simulations to investigate: 

 

(a) What is the conformational dynamics observed in the elongated loops?  

(b) How the four subunits structurally communicate within the tetramer? 

(c) Identification and conformational analysis of the metastable states. 

     

Methodology: Molecular dynamics simulations have been run with adaptive sampling 

approach and data has been collected from: 2090 trajectories, each run for 50 ns. 

Conformational analysis has been carried out using Markov State Models (MSM) and 

Convolutional Variational Auto Encoders (CVAE).  
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2.2 L2 β-lactamases Hypothesis 

Background: L1 and L2 β-lactamases combine to induce antibiotic resistance in 

Stenotrophomonas maltophilia. L2 β-lactamase, a class A β-lactamase, has limited 

research reported in the literature. The only experimental observations are that L2 β-

lactamase enzymes are inhibited by clavulanate and AmpR can regulate its function. 

To further understand the L2 β-lactamase family, structural dynamics is needed to 

highlight the potential key residues and important regions that can have an impact on 

substrate binding and catalytic activity.  

 

Hypothesis: The working hypothesis is to explore and understand the structural 

dynamics of four L2 β-lactamases (L2a, L2b, L2c and L2d). L2 β-lactamases should 

have important regions that influences the dynamics of the system. In spite of the high 

sequence identity between the four L2 β-lactamases, there are still considerable 

differences exist between these proteins, the key residue difference will result in 

different dynamics pattern in the simulation. Such as the relatively low identical rate of 

L2d sequence compare with other three enzymes and the only stabilized α1 helix in L2b 

β-lactamase. The four β-lactamases still have various mechanisms. Identifying both 

common and unique features in these enzymes will help in further investigating the 

structural dynamics of L2 β-lactamases. 

 

Aims: The aim of this study is to use enhanced sampling molecular dynamics 

simulations to investigate: 
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(a) What are the highly dynamic regions in the L2 β-lactamase family. 

(b) How these high dynamic regions function and are correlated. 

(c) The similarities and differences in the dynamic regions of different L2 β-

lactamases. 

 

Methodology: Molecular dynamics simulations have been run and data has been 

collected. Each L2 β-lactamase has at least 1500 trajectories; each trajectory has been 

run for 50ns. Conformational analysis was carried out using Markov State Models 

(MSM), MDLovofit, Bio3d and Convolutional Variational Auto Encoders (CVAE).  
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3. Methods 

3.1 Molecular Dynamics 

Molecular dynamics (MD) is a computational method that has been developed to study 

the motion of atoms and molecules. In 1957, the first MD simulation was carried out 

on primitive gases, and the first macromolecule simulation through MD was performed 

in 1977.107,108 The 2013 Nobel Prize in Chemistry recognised the basics of MD 

simulation work as part of the achievements.109,110 Nowadays, MD simulations play an 

indispensable role in the drug discovery process. A number of approved drugs have 

been identified using this approach, including captopril, ritonavir, saquinavir, indinavir 

and tirofiban.111,112 The success in drug discovery and drug development makes MD an 

essential tool in the pharmaceutical industry.113  

 

MD simulation is based on the principle of solving the Newton’s equation of motion. 

The input is the position of atoms (coordinates). The method then calculates the forces 

on the atoms through the Newton’s law (F = ma). In the simulation, input molecules 

are regarded as four-dimensional substances.114 The dynamic motions of the protein is 

an essential descriptors to describe the molecule movement.114 The dynamic motions 

of the protein  regulates the processing activities, such as catalytic activity and 

communications.115 Then the force applied to the atoms  generates motions and predicts 

the spatial position of each atom as it evolves through time.116 In the dynamic systems, 

the time scale of the events occurring can range from femtoseconds to seconds. The 
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microsecond to millisecond time scale motions are considered as the most  relevant to 

study function, as most conformational changes occur on this timescale. For example  

the slow backbone dynamics or the domain rearrangements can indicate the global 

translation of the protein.114 The picosecond to nanosecond time scales motion are 

usually chosen for describing the fast motions, usually associated with side chain 

dynamics.114  In the simulations, once the timescale is selected, the process is repeated 

and the new positions of atoms are calculated and updated. Summing up all the 

positions of atoms over time generates a trajectory. The potential energy of the system 

is determined by molecular mechanics methods.117  

 

An MD simulation permits to study how each atom will move in a molecule or a protein. 

This reveals some important motions at atomistic level, such as protein folding, pocket 

opening and closing and ligand binding.118 The conformational changes also lead to 

understanding a biomolecule response, which includes ligand interactions, stable intra- 

and intermolecular interactions and protein-protein interactions. Based on some of 

these capabilities, MD simulations have been shown to complement experiments. 

Starting from experimental data, MD simulations can be used to refine and optimise 

Xray derived structures.119 The computational method based on the annealing protocol 

helps to fit structural data and keep it stable at the same time.120 MD simulations have 

been found useful in detecting ambiguous ligand density in cryo-EM structures.121 

Beyond adjusting the existing states, MD is also widely used in building states.117 MD 

simulation has been used to assess and estimate ligand binding. For instance, when the 
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ligand binding pose is more stable in simulations, the accuracy of it is more than the 

unstable ones.122 Besides these, MD simulations are routinely used to calculate 

structural dynamics in macromolecules. The dynamic motion of water and ions can also 

reveal important aspects of protein function and ligand binding.123  

 

Force field 

In MD simulation, atoms are represented by mass, potential energy and charges. These 

parameters are used to describe bonded ( 𝑬𝒃𝒐𝒏𝒅𝒆𝒅 )and non-bonded 𝑬𝒏𝒐𝒏𝒃𝒐𝒏𝒅𝒆𝒅  

interactions in mathematical form. In 1969, Levitt and Lifson proposed the empirical 

expression for the potential energy of a system.110 The system potential energy (𝑬𝒔𝒚𝒔𝒕𝒆𝒎 

at position x is the sum of bonded energy and non-bonded energy. A force filed contains 

the sufficient details of potential energy function which include the functional forms 

and terms. Base on the information contained in the force field, the relative energy of 

the system is calculated and will be used to describe the atom position.124 The covalent 

connections between atoms are called as “bonded” interactions, the interactions are 

used to describe the different dynamic forms of the molecule.  

 

𝑬𝒔𝒚𝒔𝒕𝒆𝒎(𝒙) = 𝑬𝒃𝒐𝒏𝒅𝒆𝒅(𝒙) + 𝑬𝒏𝒐𝒏𝒃𝒐𝒏𝒅𝒆𝒅(𝒙) 

 

The bonded energy (𝑬𝒃𝒐𝒏𝒅𝒆𝒅) is the sum of bond stretching energy (𝑬𝒃𝒐𝒏𝒅), angle bending energy 

(𝑬𝒂𝒏𝒈𝒍𝒆), proper torsions energy (𝑬𝒕𝒐𝒓𝒔𝒊𝒐𝒏) and improper dihedral bending energy (𝑬𝒊𝒎𝒑𝒓𝒐𝒑𝒆𝒓).  

Non-bonded interactions 𝑬𝒏𝒐𝒏𝒃𝒐𝒏𝒅𝒆𝒅   consist of Coulomb electrostatics (𝑬𝒆𝒍𝒆) and van der 
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Waals interactions (𝑬𝑽𝑫𝑾 ). However, some other terms can also describe the interactions of 

hydrogen bond and polarisable sites.117 Figure 17 shows the representation of bonded and non-

bonded interactions which are used to describe the forcefield interactions definition. An appropriate 

force field is essential for the simulation.124 

 

𝑬𝒃𝒐𝒏𝒅𝒆𝒅(𝒙) = 𝑬𝒃𝒐𝒏𝒅(𝒙) + 𝑬𝒂𝒏𝒈𝒍𝒆(𝒙) + 𝑬𝒕𝒐𝒓𝒔𝒊𝒐𝒏(𝒙) + 𝑬𝒊𝒎𝒑𝒓𝒐𝒑𝒆𝒓(𝒙) 

 

𝑬𝒏𝒐𝒏𝒃𝒐𝒏𝒅𝒆𝒅(𝒙) = 𝑬𝒆𝒍𝒆(𝒙) + 𝑬𝑽𝑫𝑾(𝒙) 

 

 

 

 

Figure 17: Representation of different forms of potential energy in the system. The potential 

energy of the system is the sum of bonded interactions and nonbonded interactions. Spheres 

represent the atoms, covalent bonds are represented as solid lines, arrows represent the relevant 

interactions. 
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In this work, zinc Amber force field (ZAFF) was employed for L1 β-lactamase and 

Amber ff14SB force field was employed for L2 β-lactamases.125,126 The full name of 

Amber is “Assisted Model Building with Energy Refinement.127 Amber contains a set 

of force fields and also includes packages of molecular simulation programs.128 The 

force fields and programs work together which make Amber become a powerful 

framework for computational calculation.129 It was first developed by Peter Kollman's 

group at the University of California, San Francisco.128 The Amber programs were used 

for performing and analysing molecular dynamics simulations, especially for proteins, 

nucleic acids and carbonhydrates.127 

 

As mentioned above, an appropriate force selection is essential for simulation. It should 

be emphasized here, there is no completely right or wrong in the force field selection, 

different force field suit different occasions. Force fields are used to describe and 

simulation the molecular dynamic process in the real environment. The real 

environment is complicated and force fields work on one protein probably will have 

poor results on the other proteins, especially for the innovation work. And that is the 

reason why molecular dynamic tools need updating. For instance, Amber has updated 

to Amber 23 version, each version will contain new features to describe the molecules 

including sampling method, new restrains parameter, etc.130  The force field selection 

is in the “set up simulation” step, which means we can only check the results after 

generating the trajectories. Therefore, the force field selection is mostly based on 

researchers’ publications and experience.  
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L1 β-lactamase has a zinc binding site, therefore, a zinc force field need to be employed 

to describe the binding site. ZAFF was selected for this work. ZAFF force field used 

bonded plus electrostatics model approach to incorporate metal atoms into force 

field.126 There are three main approaches to incorporate metal atoms into force fields: 

bonded model (Figure 18-A), nonbonded model (Figure 18-B) and cationic dummy 

atom model (Figure 18-C).126 Bonded model describes the bonds and angles between 

metal atoms and ligands.131 Bonded plus electrostatics model includes the electrostatic 

potential (ESP) changes more than bonded model.132 The nonbonded model place 

integer charge on metal atoms while no bonds are added.133 The cationic dummy atom 

model is related to nonbonded model. Instead of putting integer charge, it adds cationic 

dummy atoms around the metal atoms to mimic the valence electrons.134  

 

Figure 18: three approaches of incorporating metal atoms into force fields. (A) bonded model. 

Including bonds and angles between metal atoms and ligands. (B) nonbonded model. Including 

integer charge on metal atoms. (C)  cationic dummy atom model. Including cationic dummy 

atoms around metal atoms. Figure adapted from reference 128. 

 

ZAFF is designed for four-coordinated zinc metal centre. It is a bonded plus 

electrostatics model. The bonded angle is decided by Hooke’s law which mean it needs 

a force constant number. The force constant (spring constant) of ZAFF was calculated 
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based on Cartesian Hessian matrix (equation 1) through Seminario method. Seminario 

method was developed by Jorge Seminario in 1996.135 It is developed to parametrize 

bond and angle parameters base on Hessian matrix.  The Hessian matrix is the second 

derivation of energy with respect to coordinates. [k] is the 3N x 3N Hessian matrix of 

the molecule. Force constants 𝝀𝒊 and the normal mode energy 𝝂𝒊 is obtained basing on 

the eigen analysis from Modeling ToolKit++ (MTK++) (equation 2). kAB is the 

interatomic force constant between atom A and atom B (equation 3). 𝜹  is the 

displacement of atoms and molecules. The calculation of force constant is to avoid 

defining internal coordinates. Electrostatics charge of ZAFF is obtained from the 

Merz−Singh−Kollman (MK)  and restrained electrostatic potential (RESP).136,137  

 

[𝒌] = 𝒌𝒊𝒋 =
𝝏𝟐𝑬

𝝏𝒙𝒊𝝏𝒙𝒋
                   (𝟏) 

𝑭𝒊 = −[𝒌]𝝂𝒊𝜹𝒅 = −𝝀𝒊𝝂𝒊𝜹𝒓       (𝟐) 

𝜹𝑭𝑨 = [𝒌𝑨𝑩]𝜹𝒓𝑩                           (𝟑) 

 

 

There are several different force fields describe zinc atoms. The reason of choosing 

ZAFF is because it works well on other zinc binding site researches and it give good 

results after we generating the trajectories. The nonbonded method was also employed 

such as cationic dummy atom method which not worked well on L1 β-lactamase. 
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For L2 β-lactamases, ff14SB force field was employed. Compare with L1 β-lactamase, 

L2 β-lactamases are serine β-lactamases which does not have zinc ions binding site. 

The ff14SB force field selection is based on experience. It was updated from ff99SB 

force field which is one of the most widely used force field and have been used for more 

than 10 years.138 The development of ff14SB is intended to work with TIP3P water 

model and it also improved the accuracy of protein backbone and side chain 

parameters.125  ff14SB force field updated all the dihedral parameters of side chain.125 

The backbone parameters are based on alanine and glycine, the side chain parameters 

are based on wider and bigger molecules.125 Both of backbone and side chain 

parameters ae based on large amount of force field training base on quantum 

theory.125,139 
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Periodic boundary conditions 

Periodic boundary conditions are a series of boundary conditions. In molecular 

simulation, a macroscopic system contains moles of molecules which makes it large 

enough and approximates infinite space.119 The bulk system needs periodic boundary 

conditions to be better described and approximated. A small box called “unit cell” is 

employed. The unit cell geometry is regarded as perfect two-dimensional tiling.140 

When an object get through one side of the unit cell in a certain velocity, it will appear 

on the opposite side of the unit cell in the same velocity.123 The macroscopic system is 

approximated by infinite number of unit cells. In molecular dynamics simulation, one 

of these unit cells is the original one and the other unit cells are called copy images. 

Therefore, only the features of original unit cell need to be recorded, replicated and 

propagated.141   

Ensembles 

Molecular dynamics simulation needs a specific ensemble at a specific time to describe 

a molecular condition.142 Ensemble is a physical concept, to be more specific, a 

statistical mechanics concept.143 It is an idealization which contains a large amount of 

a system’s virtual copies.143 Each virtual copy represents a possibility of the system.144 

The concept of ensemble was set up in 1902 by J. Willard Gibbs.144 A thermodynamic 

ensemble is a particular branch of the statistical ensemble and important to the 

molecular dynamics simulation. It is considered in statical equilibrium and employed 

to investigate the details of the thermodynamic system.142 There were three important 
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ensembles defined by J. Willard Gibbs: microcanonical ensemble (NVE ensemble), 

canonical ensemble (NVT ensemble) and grand canonical ensemble (µVT).144 

Microcanonical ensemble assumes three primary macroscopic variables as constant 

number: particles in the system (N), system volume (V) and system total energy (E). 

Instead of total energy of system (E), the NVT ensemble assume particles in the system 

(N), system volume (V) and temperature (T) to be constant. The grand canonical 

ensemble assumes chemical potential (µ), system volume (V) and temperature (T) to 

be constant. There are also other important ensembles exist, such as isothermal–isobaric 

ensemble (NPT). Isothermal–isobaric ensemble assumes particles in the system (N), 

pressure (P) and temperature (T) to be constant. Because the experiments react at 

constant pressure and temperature under laboratory conditions, NPT is also important 

for observing more realistic variations.142  

 

The MD simulation has its unique advantages when we compare it with experimental 

methods. First, the simulation will generate the coordinates and dynamic details of 

every atom in the system through time, which is very hard to achieve with any other 

experimental technique.119 Second, the conditions in a molecular simulation experiment 

are precisely known and controlled such as the detail of protein structure, mutations, 

modifications made or other molecules present in the system. It is easy to compare the 

simulation results under different experimental conditions. 
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MD simulation in drug discovery provides an interesting example of how simulations 

can control and drive experiments.145 The investigations in structural biology have 

found many key targets; for example in neuroscience drug discovery, such as 

transporters, GPCRs, ion channels, etc. The structure-based drug design requires the 

evaluation of dynamic properties in these proteins. In the generation of lead compounds, 

MD simulations can provide important information to improve the design. At a 

qualitative level, the efficacy and other properties that change will guide the 

optimisation. Simulations can predict the key interactions between pockets and ligands, 

the dynamic change of protein structural properties will guide the rearrangements of 

ligands.146 At a quantitative level, simulations allow the estimation of ligand affinities 

accurately.147  

 

Recently, MD simulations have attracted a lot of attention. The structural breakthrough 

in the resolution of a number of membrane proteins, such as GPCRs (G protein-coupled 

receptors) and neurotransmitter transporters, considered essential class molecules in 

neuroscience, have been researching accelerators.148 Such proteins were historically 

considered difficult targets. The breakthrough in relevant fields provided MD 

simulation with its initial data as a starting point.  

 

MD simulations have also become popular due to hardware and software technological 

advances. The computers available today are small and affordable. The graphics 

processing units (GPUs) make computers much more powerful than ever before and 



78 
 

allow researchers to run a simulation locally.149,150 The hardware improvement further 

leads to a software supply explosion, such as Amber, ICM and Gromacs, which are 

designed to manipulate structural macromolecules. In this work, Amber was used to set 

up the simulation, ACEMD engine was used to generate trajectories, SWISS model was 

used to build homology models, PyEMMA was used to build Markov state models, 

MDLovofit was used to identify high dynamic regions, WISP was used to generate 

network analysis results and Bio3d was used to generate dynamic cross-correlation 

analysis. These methods were employed to generate the results and give more specific 

information about the proteins. The detail of these methods will be mentioned lately in 

the results part. For analysing the results, VMD was the mainly used software.151 After 

generating the Markov state models, VMD allowed us to load all the models with all 

the frames at the same time. By superimposing these models and focused on the high 

dynamic regions, important conformational change can be revealed. And the details of 

residue orientation change can also be easily observed. Furthermore, the RMSD, atoms 

distance calculation and dihedral angle plot are also generated from VMD.  ICM was 

employed for analysis as well. It gave a clearer way to visualise the alignment of 

sequences and easy to select the residues base on the alignment. 

 

These research productivity tools make MD simulations more efficient and accurate. 

Along with the trend of the times, the MD simulation threshold for entry is lowered and 

more widely used. The applications have become faster, cheaper and more accurate. 

The theoretical and practical advantages offer MD simulations a great developing 
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opportunity. 
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3.2 Homology Modelling 

Homology modelling is a technique that uses high sequence identity to build atomistic 

models of “target” proteins based on a “template” protein. To be more specific, 

homology modelling is a structure prediction method in computational biology. It can 

help determine the 3D structure of proteins from their sequence. Before homology 

modelling was developed, the first crystal structure myoglobin was solved in 1960 

through experimental methods such as NMR or X-ray.152 These experimental methods 

have their own limitations. For NMR method, it is traditionally limited to small 

proteins.153 The recent breakthrough of NMR based on isotope-labelling and pulse 

sequence techniques enable NMR to process large proteins which have hundreds of 

kilodaltons molecular mass.154,155 And for running an X-ray method, the proteins need 

to be crystallized first.153 Both of these two methods are time consuming because of 

their long experimental process. The homology modelling can help to overcome this. 

Homology modelling method is comprised on two premises. First, the protein sequence 

determines the homology. Second, the protein structure is conserved and therefore 

changes much slower compared with the sequence during evolution.156 Thus, the 

similar homologous sequences of proteins will fold into similar 3D structures even 

when they have low sequence identity but have a reasonably high similarity. Homology 

modelling is considered as the most accurate computational structure prediction 

method.157 It can provide high accuracy 3D structures of proteins with lower price and 

less time comsumption.158 Thus homology modelling is widely used for generating high 

quality 3D structures of proteins if there is a suitable template. However, homology 
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modelling also has limitations. The accuracy of homology models depends on the 

sequence identity rate between targets and templates. Over 50% of identity sequence 

generally leads to acceptable models while lower than 50% of identical sequence can 

result in serious error.158 Therefore, the validation of homology modelling is always 

needed.  

 

There are several steps for building a reliable homology model. 1) identification and 

selection templates. In this step the input sequence will query the PDB database (such 

as RCSB), templates will be searched and selected. The templates selection is based on 

several factors other than just sequence identity.  For instance, templates from similar 

phylogenetic tree are also considered as an important factor.152 2) Sequence alignment 

and correction. The input sequence will be aligned with the template sequence after the 

template is selected. The correct alignment is crucial in homology modelling. 3) 

Building the model. Based on the template, there are several ways to build models. The 

model building could be classified in four ways: segment matching method, artificial 

evolution method, rigid-body assembly method and spatial restraint method.152 The 

segment matching method is extracting a cluster of atomic position from template as 

the leading position. The selection of the segment is based on the energy, sequence 

identity and structure geometry.158 The leading segments are used as a pillar to build 

the whole structure. The rigid body assembly method separates proteins into three parts: 

basic conserved core regions, side chains and loops.152 The rigid bodies are aligned with 

the template and put together to build new model. The artificial evolution method 
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combines rigid body assembly method with stepwise template evolutionary mutations 

together.159 The mutation will simulate until the template sequence is the same as the 

input sequence. The spatial restraint method use the restraints from templates to build 

the model.160 The restraints contain bond angle, contact distance, bond length and 

dihedral angle. 4) Loop modelling. Loops are not conserved compared with the other 

secondary structures. Therefore, loops structure can be varied even without deletion or 

insertaion.160 The loops can determine the specificity of proteins but they are more 

difficult to predict due to their flexibility. There are two main methods for building 

loops: database search and conformational search.160 Database search will browse 

protein structures from the PDB database and detect optimal segments build loops. The 

conformational search is based on a score function optimization.158 The possible 

conformation number will increase rapidly when loops get longer. This will make the 

conformational searching more time consuming. 5) Side chain modelling. In this step, 

the side chains are presented as low energy structures which are called as rotamers. The 

rotamers are determined by the backbone coordinates from the template and thereby 

determine the side chain model.152 6) Model optimization. After the model is built, the 

model needs to be optimized to eliminate errors. There are several ways to optimize 

model such as energy minimization, using more precise force field. 7) Model validation. 

The accuracy of model is important for further applications. Therefore, verification and 

validation are an essential step in homology modelling. The model could be checked 

by several ways, such as stereochemistry or Ramachandran plot.152 
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3.3 Markov State Models (MSM) 

In 1983, Zwanzig indicated if the dynamics of metastable states could be sensibly 

chosen and sufficiently described, the process to reach certain states would not be 

recorded in the system. This could be a simple way to calculate the transition rate 

between different systems.161 The idea was widely discussed in Van Kampen meeting 

and presented the frame work based on several key papers around the year 2000.162–165  

As the computational techniques and hardware rapidly develop, several present 

researches have  benefited from it. This finally has led to the appearance of Markov 

State Models (MSM) around the year 2010.166–169  In recent years, the method has been 

developed as a subfield of kinetic analysis and referred to as Markov State 

Modelling .170  With the combination of variational approach, states selection and the 

support of open-source software, MSM can be employed in multiple field analysis such 

as protein-protein association, protein ligand binding and the dynamics of protein 

folding. 

 

Combined with the molecular dynamics method, MSM was used to analyse the changes 

in the dynamics of the systems. MSM is a framework which means it has complicated 

mathematical functions to describe the entire dynamics of a system. In molecular 

dynamics simulations, MSM can also be used to identify underrepresented 

conformations which can be used as starting conformations to simulate dynamic 

systems. MSM is a transition probability matrix. Assuming the system is in a 

thermodynamic equilibrium condition; the configuration space is divided into several 



84 
 

discrete spaces of the system. Different states can represent a different dynamic process 

in the system. These states are separated by a chosen lag time. The transition probability, 

population and other parameters can be generated from the system. Therefore, 

appropriate states need to have appropriate lag time. The lag time needs to be long 

enough to describe the slow processes like conformational changes involving backbone 

dynamics and short enough to resolve fast dynamic motions employed by the side 

chains. In practice, the molecular dynamics simulation gives the input files (trajectories), 

MSM assigns the simulations to different states based on their different dynamic 

characteristics (Figure 19). The states generation process will also give useful 

information such as the population of states, how long does it take from one state to 

another and the free energy barrier between each state. 

 

Figure 19: Diagrammatic representation of MSM. The trajectories generated from simulation 

will be assign to different states base on the selected structural features. In this process, useful 

information could be extracted such as popularity and state transitions. Figure adapted from 

reference 109. 
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The MSMs also promote the experimental methods development. Researchers have 

fine-tuned MSM to make experimental results observable. If the coarser experimental 

results could be consistent with the models generated from MSM, the structural details 

from MSM becomes more reliable. The consistency between simulation-based model 

and experimental results provide richer information of the dynamic system and also 

help to improve the accuracy of the dynamic system.171,172 Besides, MSM has also been 

confirmed to identify the hidden binding sites (cryptic) in   proteins.173 Even without a 

proposed ligand, the hidden binding site could be revealed.170  

 

In this thesis, MSM will be used to explore different conformational states of both L1 

and L2 β-lactamases. Based on sufficient sampling, different states will be used to 

describe a variety of dynamic characteristics arising during the simulation. Other useful 

information will also be extracted to help further the research such as populations, free 

energy distribution and kinetic transition from one state to another. These models and 

other incidental details extracted from the simulations will help to improve the 

understanding the dynamic systems for further research.  
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3.4 CVAE-based Deep Learning 

CVAE or Convolutional Variational Autoencoder is an artificial neural network-based 

unsupervised deep learning technique. To understand what CVAE is, autoencoders (AE) 

need to be explained first. The autoencoders responsible for the main function of CVAE, 

C (convolutional) and V (variational) are the extension method base on autoencoders. 

Autoencoder is an unsupervised deep learning technique. It can identify the important 

information such as underlying correlation base on the neural network models. The 

generalised architecture of the autoencoder is shown in Figure 20. When the input file 

is received by the encoder, data will be compressed into a lower dimension space. The 

lower dimension data storage location is termed the latent space. In the latent space, an 

appropriate number of nodes need to be chosen to determine the dimensionality of the 

data. After selecting the dimensionality, the data will be put into the decoder for 

reconstruction. In most cases, the decoder is a mirror image of the encoder, the input 

data for the decoder only comes from the latent space. During the encoding and 

decoding, the autoencoder can be trained by minimising the reconstruction error. 

Therefore, the autoencoder can learn a lower dimensional representation of the original 

data. The potential correlations and important information can be found through neural 

network states in latent space, while insignificant information could be ignored during 

the training.  

 

Variational Autoencoder (VAE) is an extension based on the autoencoder..174 VAE 

provides a continuous and smooth latent space representation by using a different 
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method to describe the latent space. Instead of using a single value to describe each 

dimension in the latent space, VAE use probability distribution to describe each latent 

distribution in the encoder, mean and standard deviation of a Gaussian in most cases. 

An input vector is generated for the decoder, the vector selection is based on a random 

sample from each distribution. The samples in each distribution have similar values, 

therefore, the vector will help the decoder to give an accurate reconstruction. 

 

 

Figure 20: Autoencoder architecture. The squares indicate the dimensions in the system. The 

code gets in the system and making a dimensionality reduction through encoder then put into 

decoder to do a reconstruction. 

 

Convolutional Variational Autoencoder (CVAE) is a variation of VAE, where the 

convolutional layers have been added to the neural network states which arranges the 

data into a normal distribution in latent space. After the input matrix is entered in the 
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convolutional layers, the convolutional filter will be employed for each slice of the 

matrix. This is followed by the generation of a feature map. The feature map contains 

the strength and location information of detected features in the input file. The 

convolution filter will repeat in the convolution layers and allows the proteins with 

similar structure and energy characteristic to be clustered.175 Through clustering, the 

CVAE can provide a more efficient way to capture the key information in the system, 

especially for the secondary and tertiary structures. 

 

In this research work, CVAE will be employed to study both L1 and L2 β-lactamases. 

More specifically, the CVAE will be used to investigate the co-operativity of the four 

subunits in the L1 β-lactamase homo-tetrameric enzyme. Understanding the dynamic 

patterns of co-operation between identical subunits of L1 β-lactamase, can help in 

developing effective strategies for drug design, leading to the inhibition of the enzyme.  

In L2 β-lactamase family, four different L2 β-lactamase proteins (L2a, L2b, L2c and 

L2d) will be combined into one single CVAE model. To investigate the distribution of 

structures and extract the key conformations, a comparison of the dynamics between 

different enzymes of the L2 β-lactamases family will be made. The results will be put 

into both parallel and vertical comparison to investigate the important regions in 

individual proteins and the differences in same region between each protein. The 

resulting analysis will help to improve the understanding of the dynamic systems of the 

L2 β-lactamase family. 
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4. L1 Metallo-β-lactamase Results 

4.1 Set up and Running the Simulations 

The structure file of L1 metallo-β-lactamase (PDB entry 1SML) was obtained from the 

protein data bank.59 The tetramer was generated using the protein quaternary server 

(PQS).176 The tetramer file needed to be fixed before assigning the protonation states 

to the side chains. The HETATM record in the PDB file was changed to ATOM, all 

hydrogens and inconsistent naming were removed, TER were added between each 

chain, water molecules and zinc atoms. The fixed file was imported into H++ for 

protonation. H++ is a software which calculates ionizable groups at a particular pH 

value.177 H++ can also add missing hydrogen atoms based on the environment pH 

value.178 The pH was set at 7.0 in L1 simulation. H++ added all the missing hydrogen 

atoms to the protein during the process and generated the protonated output file. 

Amber20 was used to process the output file from H++ to generate the coordinate file 

(.inpcrd file) and topology file (.prmtop file)126. Zinc Amber force field (ZAFF) was 

employed to run the simulations.179 Before parsing the output file from H++, the file 

was fixed into ZAFF format. All the histidine residue names (HIS) in the binding site 

of each subunit were changed to the protonation type name (HID, HIE and HIP) (Figure 

21). Histidine has three types of protonation type, HID, HIE and HIP. The protonation 

type can change depend on pH value.180 When pH is around 7, two neutral protonation 

type HIE and HID exist. HID has hydrogen on the δ nitrogen. HIE has hydrogen on the 

ε nitrogen. When pH is low, positively charged protonation type HIP exists. HIP has 
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hydrogens on both nitrogens. When pH is high, imidazolate ion will be produced. Since 

the simulation have already set pH at 7, only HID and HIE will exist in the molecule. 

The protonation type can affect the results in the molecular dynamic simulation.181,182  

Therefore, a correct protonation type of histidine is important. Residue names of 

cysteine of disulphide bond in each subunit were changed from CYS to CYX, two zinc 

ions residue name in each subunit (Zn1 and Zn2) were changed to ZN6 and ZN9. 

Therefore, Zn1, H116, H118 and H196 were changed into ZN6, HD4, HE2 and HD5, 

respectively. Zn2, D120, H121 and H263 were changed into ZN9, AP2, HD8 and HD9, 

respectively. To load the ZAFF format file, some atom types were added to the ff14SB 

force field in the following format: ZN6—{{“ZN” “Zn” “sp3”} {“N5” “N” “SP3”} 

{“N6” “N” “sp3”} { “N7” “N” “sp3”}}, ZN9—{{“ZN” “Zn” “sp3”} {“NQ” “N” “SP3”} 

{“NP” “N” “sp3”} {“E2” “N” “sp3”} {“D2” “O” “sp3”}}. Atomic ions library 

file(atomic_ions.lib) and parameter modification file (frcmod.ions, 1lsm_hfe_tip3p, 

ZAFF.prep, ZAFF.frcmod) were eventually loaded using the tleap command. After 

loading the input file, the system was solvated using theTIP3P water box. The box edge 

to the closest protein atom was at least 12 Å.  
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Figure 21: Different protonation type of histidine. HID: Histidine with hydrogen on the δ 

nitrogen. HIE: Histidine with hydrogen on the ε nitrogen. HIP: Histidine with hydrogens on 

both nitrogens. HIP is positively charged. 

 

 

The Amber ff14SB force field with ZAFF parameters was used to generate the topology 

and coordinate files. Ther electrostatic interaction distance was set at ≤ 9 Å. During the 

simulations, the systems were first energy minimised for 1000 iterations of steepest 

descent. Then an equilibration protocol was run for 5ns at 1 atmospheric pressure, 300K 

temperature using the NPT ensemble. After equilibration, Markov State Models based 

adaptive sampling simulations was run for 50 ns. Instead of sampling from same 

conformational regions, adaptive sampling is designed to explore more under-sampled 

regions.183 After one simulation is done, the following simulations will utilize the 

information from all previous simulations to determine the starting point.184 In this case, 

it will focus on the most under-sampled regions in all previous simulations. The 

ACEMD molecular dynamics engine was employed for the simulation.185,186 The 

frames were saved every 0.1ns in the production run. 2090 trajectories were generated, 

each trajectory contained 500 frames.  
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4.2 Markov State Models 

PyEMMA v2.5.7 was employed to build the Markov State Models (MSM).187 All 

trajectories were loaded, backbone torsion and RMSD of all residues in gating loops 

(G149-D171 and A219-H239) from each subunit of the tetramer were selected as the 

input feature. The frame reading stride was set at 5, the tICA (Time-lagged independent 

component analysis) method was employed for data reduction, all the data was 

allocated into 3 ICs (independent components), the lag time was set at 1.0ns and the 

cluster number was set at 30. 7 states were built based on the implied timescale plot 

(Figure 22). The lines of the implied timescale plot were the maximum likelihood 

results of L1 β-lactamase simulation. The different colour lines indicate the maximum 

likelihood results. The thick black line over the grey area indicates when lag time and 

timescale were converged. The grey area under the black line describes an area where 

MSM cannot solve processes. The lag time need to be selected when all the results are 

converged.  This is when the lines become flat, 5.0ns lag time was deemed acceptable 

and selected for subsequent calculations. 
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Figure 22: Implied time scale plot of L1 β-lactamase. The different colour lines indicate the 

maximum likelihood results which show the converged behaviour of implied timescale. The 

lines become flat at 5.0ns which indicate the results are converge at 5.0ns.  
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CK test plot (Chapman-Kolmogorov test plot) is an essential step in MSM validation. 

The MSM simulation can only continue after passing the CK test plot. In the last step, 

implied time scale can provide information to select an appropriate lag time to resolve 

the dynamics. However, it only focuses on eigenvalues and ignores the eigenvectors. 

The eigenvectors contain more details of the simulation.188 Therefore, CK plot is 

employed for a stronger valadition. The CK test is based on the assumption that at a 

given lag time τ, the system will resolve into a number of states (models) that should 

explain the dynamics of the system. The prediction will be compared with another 

independent estimation. The standard CK test calculates the transition possibility 

between each metastable states based on that lag time.188 

 

The 7 state MSM model generated need to pass CK test. Figure 23 shows the CK test 

plot result. The CK plot of 7 metastable states with a lag time of 5.0ns illustrates an 

estimated (solid line) and a predicted (dashed line) projection within confidence 

intervals. If these two lines overlap with each other, it indicates the states pass the 

Bayesian sampling procedure with 95% confidence intervals. The results of L1 β-

lactamase CK plot indicate the estimated and the predicted values are within the range 

of confidence interval.  
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Figure 23: Chapman-Kolmogorov test plot of L1 β-lactamase. All 7 states passed the CK test 

within confidence intervals. 

  



96 
 

The free energy landscape at lag time 5.0ns was projected onto first 2 independent 

components. Multiple free energy minima can be observed in this plot (Figure 24). The 

PCCA distribution separates different metastable states into different energy minima. 

The two main minima are observed for state 6 and 7. The other sub minima are present 

for states 1 to 5. The metastable states need to be clustered clearly on the distribution 

plot to make sure the conformations in each state have the same features.  

 

 

Figure 24: L1 β-lactamase energy landscape. Multiple energy minima could be observed in the 

plot. The structures distributed in each energy minima had the same features. The plot could be 

used to verify if the PCCA distribution plot is reasonable or not. 
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The Perron Cluster-Cluster Analysis (PCCA) distribution plot highlights the location 

of the 7 metastable states (Figure 25). A clean distribution indicates clear 

conformational clustering, i.e. the conformations with same features are clustered and 

distributed into the same state. The first two independent components were used to 

demonstrate and identified 7 defined metastable states.  

 

 

Figure 25: The PCCA distribution plot for 7 states in L1 β-lactamase. Different colours in the 

distribution represented different conformational states in simulation. The conformations in the 

same state display   similar features.  
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To understand the net flux pathways, the transition path theory (TPT) needs to be 

mentioned first.  TPT is a theoretical tool for analysing the transition path ensemble.189 

To be more specific, researchers want to use TPT to solve rugged energy landscapes.189 

Before TPT is developed, transition state theory (TST)  and transition path sampling 

(TPS) was used to solve the rugged energy landscapes.190–192 TST is a well-known 

theory used as the cornerstone for chemical physics.191–193 It provides the intuition, 

language and foundation for developing computational tools.191 The TST has its 

limitation on solving rugged energy landscape, the complex situation makes the notion 

of transition state become not clear and result in the inaccuracy.189 Different from TST, 

TPS focuses on the transition path ensembles instead of transition states.194 However, 

TPS also has limitation on solving the complex system. Focusing on rare event occurs 

will make the transition paths themselves become too complicated to analyse.190 

Therefore, TPT was developed. TPT focus on the transition state ensemble and 

transition tubes.189 It can solve the following questions: (1) what is the probability 

distribution (2) what is the transition paths probability (3) what is the transition rate.195 

TPT allows a precise and more complete picture regardless of the complicated 

system.189  

 

The net flux is generated by TPT object in MSM. It calculates the productive recrossing 

between pairs of states. To be more specific, net flux is the difference between value of 

the fluxes in both directions. The net flux analysis provides the kinetic mechanism of 

interconversion between conformations during the simulation. It shows the pathways 
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of system which go from A to B and also provide the contribution of these pathways to 

the whole system. Net flux pathways plot of L1 β-lactamase is shown in Figure 26.  In 

L1 β-lactamase, most structures went from state 1 to the other states. State 7 is the most 

populated state. 1-4-7 (89.27%) is the dominant transition pathway of conversion 

between the metastable states. The thickness of arrows between states indicated the 

probability of transition. The thicker arrow indicates the higher possibility for transition 

between the two states.  

  



100 
 

Figure 26: Net flux pathways plot of L1 β-lactamase. Each cyan circle with certain number 

represented the corresponding metastable state. The bigger the circle, the more populated the 

state. Arrows between each state represented the possibility of each transition. The thicker the 

arrow, the higher the possibility. Most structures went from state 1 via state 4 and stayed at 

state 7. 

  



101 
 

Mean first passage time is an important parameter in MSM. It is an average timescale 

for a random event to first occur.164 Mean first passage time between different states of 

L1 β-lactamase was shown in Table 1. The number shows different timescale of 

transition from one state to another. The larger timescale implies a higher energy barrier 

and lower transition possibility between states. The larger the number, the fewer the 

occurrences of the conformational change. 0.00 indicates there is no energy barrier 

when states make no transition. Table 2 is the population and free energy estimation for 

the 7 metastable states of L1 β-lactamase. State 7 represented for over 80% of all the 

structures in the simulation. 

 

Table 1: Mean first passage times between different states in L1 β-lactamase. Most structures 

went from state 1 to state 4 and transit from state 4 to state 7. 

State/(ns) 1 2 3 4 5 6 7 
1 0.00  2829.89  47074.03  114.57  1559.23  17125.10  269.20  
2 7796.47  0.00  46768.51  4373.55  1262.80  16838.53  30.69  
3 8718.04  3405.80  0.00  5297.76  1581.42  17465.74  631.38  
4 3142.98  2750.64  46995.67  0.00  1480.80  17046.95  192.47  
5 8124.86  2822.16  46503.00  4704.48  0.00  16855.85  5666.00  
6 9153.89  3861.98  47850.15  5733.95  2318.63  0.00  1087.37  
7 7977.68  2677.59  46674.18  4557.67  1141.23  16772.15  0.00  

 

Table 2: The population of different states (π) and their free energy estimation. 

state π (%) G/kT (J) 
1 2.0389 3.892736 
2 1.2309 4.397427 
3 1.3944 4.272701 
4 3.1653 3.452921 
5 5.1502 2.966125 
6 6.3325 2.759479 
7 80.6877 0.214584 
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4.3 CVAE-Based Deep Learning 

CVAE was applied to analyse the cooperativity between the four subunits in L1 β-

lactamase. For running CVAE, 3 steps need to be employed. First is the pre-processing 

of trajectories. In this step, RMSD, native contacts and distance matrices needed to be 

generated from the trajectories. Distance matrix does not contain any information on 

the translational and rotational motions of the protein. Translational and rotational 

motions are unwanted parameters from the dynamics in most cases.175 RMSD, native 

contacts and distance matrices files were combined into a single system file. In the work 

presented here, the system file was generated for each subunit individually to 

investigate the dynamic pattern of each individual subunit. Then, the four subunits 

system files were combined into a single system file that contained features of all 4 

subunits albeit individually.   

. 

The second step was to run the CVAE and select an appropriate latent dimension 

number. The purpose of this step was to minimise information loss through the training 

epochs. In this experiment, CVAE latent loss is calculated at each dimension from 3-

30 (Figure 27). Each dimension runs 100 epochs to ensure that the training and 

validation loss is converged (Figure 28). After running CVAE, an optimal dimension 

needs to be selected. The dimension with the lowest loss is selected to post process the 

data. The CVAE results were inspected by repeating the training process with optimal 

latent dimension. The calculated loss from latent dimensions was shown in Figure 27. 

The red and blue lines represent the training and validation respectively. The lowest 
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loss was identified to occur in dimension 14. The loss observed in latent dimensions by 

epoch numbers is shown in Figure 28. The most optimal selected dimension 14 is 

highlighted with black. Then the output from dimension 14 was compared with the 

original data to ensure that the decoded result had no significant loss of information and 

was a good representation of the encoded data (Figure 29). The comparison between 

original encoded data and reconstructed decoded data verified that the compression of 

dimension 14 did not result in a significant information loss and can be used in the next 

step. 

 

 

Figure 27: Evaluation of information loss over latent dimensions. Red line was the training 

loss, the blue line was the validation loss. Latent dimension 14 show the best result with the 

lowest information loss. 
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Figure 28: Evaluation of information loss of different latent dimensions by epoch number. The 

lowest loss dimension was highlighted with black colour. 

 

 

Figure 29: Comparison of the original input file and reconstructed decoded file, the 

compression of dimension 14 did not result in a significant information loss. 
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After selecting dimension 14 as the optimal CVAE reduced dimension, the last step 

was to post process and visualise the data. In order to make the result easier to 

understand and analyse, the simulation results were first projected into a 3D latent space 

representation and then projected to a 2D plot for conformation extraction. Each 

conformation from the simulation was represented as a corresponding coordinate. In 

this case, t-SNE (t-distributed stochastic neighbour embedding) method was employed 

to reduce the data.196 For easier understanding of the CVAE latent dimension, 

conformations were also projected onto 2D plot with the t-SNE method.  

 

In L1 MBL CVAE experiment, all frames were put into the system to generate a general 

conformation distribution plot for all 7 states (Figure 30). The different subunits are 

represented with different colours, (subunit A-red, subunit B-yellow, subunit C-green 

and subunit D-purple.) Then the seven states’ structures which was generated from 

MSMs were projected on the general plot separately. This step was to check how four 

subunits cooperate in each metastable state.  
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A combined general conformation distribution plot for all 7 metastable states of L1 

MBL is shown in Figure 30. The separated conformation distribution plot for each 

metastable state is shown on Figure 31. Each state provided 1000 structures as 

representation. A total of 7000 structure distribution are shown on this plot. The 

different subunits were given distinct colours, namely subunit A-red, subunit B-yellow, 

subunit C-green and subunit D-purple. All subunits sample similar motions, as the 

conformations are clustered based on comparable dynamics. Subunits A and C share 

similar dynamics, while subunits B and D are clustered in the same tSNE space. Each 

metastable state provided the same number of structures rather than based on their 

population. The less populated state will have the same number of structures as the 

dominant state on the general plot. Therefore, the general plot cannot show the 

population of metastable states and looks congested.  

 

In the CVAE distribution, all subunits sampled similar motions. The conformations 

clustered base on the comparable dynamics. Based on the conformation distribution 

plot shown in Figure 30, most subunit A and C structures clustered together. Only a 

small cluster of subunit C in state 2 and a similar cluster distribution of subunit A in 

state 4 separated. The mixed distribution of subunit A and C was observed in all 7 

metastable states and represented for an overwhelming majority. This indicates that the 

subunit A and C displayed similar dynamics during the simulation. In contrast, subunit 

B and D clustered together in state 3, 4, 5 and 6. However, these states only represented 

for about 16% of all the structures. The majority of subunit B and D showed mixed 
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distribution. Therefore we can conclude that subunit B and D also showed a similar 

dynamic patterns during the simulation. Comparing the dynamics, the correlation b 

between subunit A and C was stronger than the correlation between subunit B and D.  

 

 

Figure 30: General conformation distribution plot for all 7 metastable states. The results show 

that A and C subunits show similar dynamics, while B and D subunits cluster together. 
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Figure 31: All 7 metastable states of L1 MBL conformation represented individually 

distribution plots.  
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4.4 Network Analysis 

The network analysis was also employed to investigate how the signals transferred 

between each subunit of the L1 MBL tetramer. Weighted Implementation of 

Suboptimal Paths (WISP) was used to study the communication between subunits .197 

The network analysis is employed to understand how conformational change in one 

part of the protein can influence other far away sites in other regions of the protein. In 

traditional network analysis, the computational methods focus on the most optimal 

paths from the allosteric site to the binding site. WISP analysis  also includes the 

suboptimal paths which could also impact the regulation of active site.197 

 

In L1 MBL, network analysis focused on how the four subunits communicate in the 

tetramer. Since the structure is symmetric, the binding site histidine (H116) was chosen 

as the start node in one subunit and also as the end node in the adjacent subunit. The 

most optimal paths between the two residues were then identified. The paths from one 

subunit to another gave the information of how one binding site influences another. The 

study of nodes and paths will help to improve the understanding of dynamic patterns of 

structural communication in the L1 MBL. As there are four subunits in the tetramer, 6 

plots were generated in total. For example paths from subunit A to B, A to C, A to D, 

B to C, B to D, C to D). The network analysis results will be illustrated first by a general 

overview to show the paths in the complete tetramer and then following by the detailed 

network paths between adjacent subunits. A diagrammatic network result is also 

illustrated for a clear explanation. 
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A-B paths 

In subunits A-B network analysis result, A subunit is coloured red and B subunit is 

coloured yellow, other subunits remain white. The paths between two subunits are 

shown in Figure 32. The network is also shown in a diagrammatic way in Figure 33 for 

a clear explanation. In Figure 33, the identical nodes in subunit A and B are highlighted 

(A117, H118, L145, Y164, P165 and P166). Among these conserved nodes (same 

nodes in both subunit A and B), P166 is essential for signal transmission between these 

two subunits, all signals have to pass via P166 to reach the nodes in the other subunit.  

 

Figure 32: The detailed view of paths from subunit A binding site to subunit B binding site.  

Figure 33: Diagrammatic representation of the paths from subunit A binding site to subunit B 

binding site. Identical nodes between two subunits are highlighted in a black box. The non-

identical nodes between two subunits are coloured lighter. 
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A-C paths 

In A-C network analysis, A subunit is coloured red and C subunit is coloured green, 

other subunits remain white. The paths between two subunits are shown in Figure 34. 

The network is also shown as a diagrammatic representation in Figure 35 for a clear 

explanation. The conserved nodes between subunit A and C are A117, A140, S142, 

A143, V144, L145 and L146. Among these conserved nodes, the signal transmission 

between two subunits passes via A140 or V144 to reach the other subunit. A140 is more 

important in the transmission. All signals pass from one subunit via residue A140 or 

V144 but will enter the adjacent subunit via A140 as the first node in the other subunit.   

 

Figure 34: The detailed view of paths from subunit A binding site to subunit C binding site. 

Figure 35: Diagrammatic presentation of the paths from subunit A binding site to subunit C 

binding site. Identical nodes between two subunits are highlighted in a black box. The non-

identical nodes between two subunits are coloured lighter. 
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A-D paths 

In the subunit A-D network analysis, A subunit is coloured red and D subunit is 

coloured purple, other subunits remain white. The paths between two subunits are 

shown in Figure 36. The network is also shown as a diagram in Figure 37 for a clear 

explanation. There is no conserved node between subunit A and D. All the signal 

transmission from one subunit to the other needs to go via residue K135 from subunit 

A.  

Figure 36: The detailed view of paths from subunit A binding site to subunit D binding site.  

 

 

Figure 37: Diagrammatic representation of the paths from subunit A binding site to subunit D 

binding site. There is no identical node existing between these two subunits.  
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B-C paths 

In subunit B-C network analysis, B subunit is coloured yellow and C subunit is coloured 

green, other subunits remain white. The paths between two subunits are shown in Figure 

38. The network is also shown as a diagrammatic representation in Figure 39 for a clear 

explanation. There is no conserved node between subunit B and C. All the signal 

transmission from one subunit to the other is transmitted via K135 from subunit C.  

 

Figure 38: The detailed view of paths from subunit B binding site to subunit C binding site.  

 

 

Figure 39: Diagrammatic representation of the paths from subunit B binding site to subunit C 

binding site. There are no identical nodes between these two subunits.  
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B-D paths 

In the B-D network analysis, B subunit is coloured yellow and D subunit is coloured 

purple, other subunits remain white. The paths between the two subunits are shown in 

Figure 40. The network is also shown as a diagram in Figure 41. The conserved nodes 

between subunit B and D are highlighted (A117, A140, S142, A143, V144 and L145) 

in a black box.  The nodes and paths are almost identical compared with the network 

result observed in subunit A-C. In the B-D network analysis, A140 and V144 has a 

direct path with A140 and V144 in the other subunit. Here the signal has two routes to 

transfer from one subunit to another. 

 

Figure 40: The detailed view of paths from subunit B binding site to subunit D binding site.  

Figure 41: Diagram representation of the paths from subunit B binding site to subunit D 

binding site. Identical nodes between two subunits are highlighted in a black box. The non-

identical nodes between two subunits are coloured lighter.  
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C-D paths 

In the C-D network analysis, C subunit is coloured green and D subunit is coloured 

purple, other subunits remain white. The paths between the two subunits are shown in 

Figure 42. The network is also shown as a diagram. in Figure 43. The conserved nodes 

are highlighted (A117, L145, Y164, P165 and P166). The nodes and paths are similar 

to the network result of A-B subunits. P166 is still the essential node for signal 

transmission from one subunit to another. 

 

Figure 42: The detailed view of paths from subunit C binding site to subunit D binding site.  

 

Figure 43: Diagram representation of the paths from subunit C binding site to subunit D 

binding site. Identical nodes between two subunits are highlighted in a black box. The non-

identical nodes between two subunits are coloured lighter.  
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5. L1 β-lactamase Discussion 

L1 β-lactamase have already been studied on two main directions: the zinc binding site 

mechanism and the potential L1 β-lactamase inhibitors. For those who focus on the 

double zinc binding site,  it has been proved that even with only one zinc L1 β-lactamase 

can also carry out the catalytic activity with less efficiency.198,199  Some of them focus 

on finding the inhibitors of  L1 β-lactamase. There are several compounds were found 

to be the potential inhibitor for L1 β-lactamase, such as withanolide R and amino acid 

thioesters.200,201 However, there is no inhibitor has been approved for clinical use.202 In 

this work, L1 β-lactamase analysis was carried out with molecular dynamic simulations 

to find out the conformational change of gating loops and the correlations in the 

tetramer. As a result, “open” and “closed” conformations were revealed and a dimer of 

dimer subunits correlation in the L1 β-lactamase tetramer was also indicated.203 

 

“Open” and “closed” conformations 

There were 7 states generated from the MSM analysis. Based on these states, three 

different conformations were identified that can describe the dynamics of the two gating 

loops: open, intermediate and closed. The conformations were defined by a 

combination of three structural features: (1) the salt bridge between residue D150c and 

residue R236; (2) the π–π stacking between residue H151 and residue Y227; and (3) 

the conformation adopted by P225 (Figure 44). 
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Figure 44: The position of the salt bridge, the π–π stacking, P225 and zinc ions. D150c and 

H151 are on the α3-β7 loop, R236, P225 and Y227 are on the β12-α5 loop. The salt bridge acts 

like a gate to control the opening and closure of the zinc binding site. 

 

The salt bridge between residue D150c and residue R236 is important for the L1 MBL 

catalytic activity.94 Residue D150c is positioned on α3-β7 loop and R236 is present in 

the β12-α5 loop. The salt bridge from these two elongated loops act as a gate for the 

opening and closure of the zinc binding site.204 In these two loops, β12-α5 loop 

displayed high flexibility during the dynamics. The α3-β7 loop was relative stable, due 

to the direct proximity to the zinc binding site. The formation and the loss of this salt 

bridge interaction regulated the “open” and “close” conformation adopted by the α3-β7 

and β12-α5 loops. The gating loop interactions are driven by the conformations adopted 

by the side chain of R236 from the β12-α5 loop., The varied conformations from the 
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side chain of R236 can be observed in the different metastable states. On the other hand, 

the side chain conformations of D150c from the α3-β7 loop remains relatively stable 

across all metastable states. In a previously reported work on TEM-1 β-lactamase (class 

A β-lactamase), the formation and loss of an important salt bridge interaction between 

key loops would change the orientation of the Ω loop and thus affect antibiotic 

resistance.205 This research provides evidence to infer that the gating loop salt bridge 

interactions could be important for the stability of zinc binding site and antibiotic 

resistance.205  

 

The π–π stacking between residue H151 and residue Y227 is important because it can 

increase the stability of zinc binding site topology and help the recognition of 

antibiotics.206,207 In L1 MBL, the π–π stacking remained stable in the “closed” state. 

When the salt bridge between two gating loops was broken, the volume round the zinc 

binding site increases significantly. This allows the side chain of Y227 to change 

orientation from pointing towards zinc atoms to residue R236 (Figure 45). The rotation 

changes the π–π stacking conformation and leads to the loss of the interaction. 

Therefore, the formation and loss of the π–π stacking between residue H151 and residue 

Y227 is directly influenced by the salt bridge between the gating loops.  
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Figure 45: Different status of salt bridge, π–π stacking and proline.  

 

The conformation of residue P225 is also a unique structural feature in the L1 β-

lactamase. Proline  can exist in two configurations: cis and trans (Figure 46). These two 

configurations are defined by the ω angle of proline (cis configuration ω angle close to 

0 degree, trans configuration ω angle close to 180 degree).208 The side chain of P225 in 

L1 exists in the trans configuration. This is in contrast to the cis configuration that 

proline residues adopt among most other β-lactamases.208 Published work on TEM-1 

β-lactamase (class A β-lactamase) suggested that when the proline exists in a cis 

configuration, it can help in the correct orientation of the binding site and protein 

folding.209,210 The conformational change of proline around binding site would result in 

the structural misalignment of the binding site leading to the dysfunction  of the 

protein.210 The ω angle of all  P225 were analysed to confirm the trans configuration 

(Figure 47). The ω angle stays at -180 degrees while often transiting to 180 degrees as 

well. This verifies the trans configuration of P225 in L1 β-lactamase. When the Cγ atom 

of P225 is oriented  towards the zinc binding site (Figure 45), it is defined as the “in” 
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conformation. The distance between Cγ atom of P225 and  centroid of the two zinc 

atoms is calculated at 6.5 Å in the crystal structure.59 All other orientations of P225 Cγ 

atom are defined as the “out” conformations (Figure 45). The difference between “in” 

and “out” conformation in different states was found to be regulated by coupled 

coordination of the gating loops salt bridge (D150c-R236) and π–π stacking (H151-

Y227). These two interactions could be the main reason why P225 stays in the trans 

confirguration in L1 β-lactamase. Besides, the “in” and “out” conformation could also 

affect  substrate binding. 
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Figure 46: cis and tans configuration of proline. The ω angle is highlighted. 

Figure 47: The ω angle analysis of P225 in all four subunits. The stride was set at 100 frames. 

The proline cis configuration ω angle is close to 0 degree and the trans configuration ω angle 

close to 180 degree.  In L1 MBL, the ω angle of P225 transition from -180 degree to 180 degree 

in all four subunits. Subunit D displayed highest flexibility in the tetramer.   
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To explain the conformational dynamics more clearly, the “closed” conformation of L1 

β-lactamase is discussed first. The “closed” conformation is defined by a combination 

of three structural conformations: the salt bridge formed between residue D150c and 

residue R236, the π–π stacking formed between residue H151 and residue Y227, P225 

present in the “in” conformation. Besides, there was an extra interaction present 

between the main chain of A224 (β12-α5) and side chain of Q310 (α6 helix). This 

interaction helps in the stablization of the β12-α5 loop (Figure 48) and further stablized 

both gating loops indirectly. State 3, 5, 6 and 7 represents the  “closed” states. State 7 

is the most populated state and represented over 80% of all the structures. State 7 is also 

the lowest energy state which mostly defined the “closed” conformation of L1 β-

lactamase. State 3, 5 and 6 were the sub-states of the “closed” conformation. There 

were minor differences found in gating loops  and the distal end of the active site. 

Therefore, the “closed” conformation was the dominant conformation in the L1 β-

lactamase. 
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Figure 48: The interaction between A224 and Q310. Two elongated loops were highlighted 

with red colour. Q310 and A224 interaction help stablized the β12-α5 loop. 
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States 2 and 4 were the intermediate states. In state 2, the π–π stacking between residue 

H151 and residue Y227 was still formed, and P225 was in the “in” conformation. 

However, the salt bridge between residue D150c and R236 was not formed. In state 4, 

two out of the three structural features were in the “open” conformation (salt bridge 

between residue D150c and R236 was not formed, no π–π stacking between residue 

H151 and residue Y227, P225 present in the “out” conformation). Besides, the 

interaction between the main chain of A224 (β12-α5) and side chain of Q310 (α6 helix) 

was also lost, resulting in the α6 helix to move away from the zinc binding site.  

 

State 1 represents the “open” state. In contrast to the “closed” state, the “open” state 

lost all three structural features, namely the salt bridge between residue D150c and 

R236 was not formed, there was no π–π stacking between residue H151 and residue 

Y227, and P225 was present in the “out” conformation (Figure 45). As a result of the 

loss of all these interactions the β12-α5 loop rotates away from zinc binding site. This 

results in a much larger pocket being formed around the zinc atoms, which would allow 

the substrates access the substrate binding site. Compare with “closed” state, a larger 

pocket allows bigger inhibitor ligand and a higher probability of inhibition. Therefore, 

“open” state can let drug designer achieve maximum probability of inhibition.  
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Besides, the side chain of residue F156 was also observed to have conformational 

differences in different states (Figure 49). The 1 dihedral angle of F156 also displayed 

large rotation in different states. Three snapshots were extracted from the “open”, 

“intermediate” and “closed” states and superimposed to give a more direct impression 

of the rotation of the side chain (Figure 49). It could be easily identified that the side 

chain of F156 has rotated as it makes transitions between different states. The side chain 

of F156 has also been shown experimentally to play an important role in L1 MBL 

substrate binding.100,211 Therefore, a direct link between F156 could also be established 

with the dynamic system of the two elongated loops. 

 

Figure 49: The dynamics of the F156 side chain. Three conformations  were extracted from the 

“open”, “intermediate” and “close” states and superimposed.  
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The other L1 β-lactamase crystal structures with ligand/substrate bound to the protein  

were also used for comparision with the states identified from the MSM (Figure 

50).59,100,211,212 A state 7 monomer (red), a monomer from apo state crystal structure 

(yellow, PDB entry 1SML) and a monomer from inhibitor binding complex (green, 

PDB entry 5DPX) were superimposed to compare the conformation of the elongated 

loops.59,211 All these structures were identified to be in a “closed” conformation. This 

indicated  that the “closed” conformation is extremely stable and the predominant 

conformations, thus confirming our observations.  

Figure 50: Superimposed structures of a state 7 monomer (red), a monomer from the apo state 

crystal structure (yellow, PDB entry 1SML) and a monomer from the inhibitor binding complex 

(green, PDB entry 5DPX). Zinc ions were also included  and are illustrated as  silver spheres. 
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Based on the analysis of the net flux plot of L1 β-lactamase (Figure 26), most structures 

went from state 1 to state 7 and transit via state 4. This path had the least mean first 

passage time in the flux pathways (Figure 27), which could explain why the path 

accounts for 89.7% of all the kinetic structures. Besides, there were also two less 

populated paths: from state 1 → state 7 (9.1%) and states 1 → 4 → 2 → 7 (1.2%).  

However, these two paths took longer mean first passage times. The longer mean first 

passage times indicates a higher free energy barrier. Therefore, the conformational 

changes between state 1, 4 and 7 could explain the dynamics of the L1 β-lactamase best.  

In each of these states, all the important conformational changes around zinc binding 

site could be related to the two elongated gating loops. 

 

To get a more detailed and a deeper understanding on the coordination of the three 

structural features (D150c-R236 salt bridge, H151-Y227 π–π stacking and the in/out 

conformation of P225) CVAE-based deep learning was employed.203 The interaction 

between D150c-R236 salt bridge, the distance between H151-Y227 π–π stacking, and 

the distance between centroid of two zinc ions and P225 were used as CVAE 

calculation features.  

 

The deep learning results are illustrated in Figure 51. The “closed” state conformations 

are highlighted in a red circle while the “open” state conformations are highlighted in 

a green circle. The “open” and “closed” conformations required all three structural 

features to be present or lost simultaneously (all open or all closed). Only three clustered 
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regions meet the requirement and have been highlighted in Figure 51. All other 

structures outside of these clustered regions were intermediate conformations.  As 

detailed above, conformations from all 7 metastable states were clustered on a general 

conformation distribution plot (Figure 30). Subunit D in state 1 described the “open” 

conformation. The clustered structures are present on the right bottom of Figure 31-1, 

and are same as that encircled in green in Figure 51. Subunit B of state 2 (Figure 31-2) 

described the intermediate “closed” conformation (where two of the three features 

exist). Subunit A of state 4 (Figure 31-4) described the intermediate “open” 

conformation (where two of the three feature are lost). Subunit C of state 7 (Figure 31-

7) was selected to describe the “closed” state.  The results of CVAE-based deep learning 

verified the   coordination of the structural features in the three  conformations. 
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Figure 51: CVAE-based deep learning results for clustering of D150c-R236 salt bridge, H151-

Y227 π–π stacking and the in/out conformation of P225. The tsne based clustering for (A) 

D150c-R236 salt bridge, (B) H151-Y227 π–π stacking and (C) in/out conformation of P225. 

The “open” conformations clustered region is highlighted in green circle while the “closed” 

conformation clustered region is highlighted in a red circle. All other regions represent the 

intermediate state structures. 

 

In general, the conformational changes of D150c-R236 salt bridge, H151-Y227 π–π 

stacking, the in/out conformation of P225 and the F156 side chain rotation could 

explain the dynamics of the two elongated loops, α3-β7 loop and β12-α5 loop. The β12-

α5 loop has higher flexibility compared with the α3-β7 loop The β12-α5 loop acts 

similar to a lid for the zinc binding site. In the “open” state, D150c-R236 salt bridge 

broken, H151-Y227 π–π stacking lose, P225 adopt to “out” conformation, these 

changes allow the β12-α5 loop to move away from the active site. The “gate” when 
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open, increases the volume of the active site permitting the substrates to access the zinc 

binding site. The “open” state, however, is a high energy state. As a result the β12-α5 

loop is drawn back to the “closed” state ,  which is lower energy and much more stable. 

This “closed” state is what is observed in all L1 MBL crystal structures including the 

conformation with inhibitrs.59,211 These changes in the conformational dynamics will 

have an obvious impact to the topology of the zinc binding site and influence the 

substrate binding and catalytic function in L1 MBL.  

 

Dimer-of-dimers  

The CVAE-based deep learning results highlighted that the subunit A and subunit C 

had similar dynamic patterns while subunit B and subunit D had similar dynamic 

patterns (Figure 30). In state 2, 3, 4, 5, 6 and 7, the similar dynamics of subunit A and 

subunit C could be clearly observed (Figure 31). The similar dynamics of subunit B and 

subunit D were mostly observed in state 5 and state 7. However, as state 7 accounts for 

more than 80% of all the structures in the simulation, subunit B and subunit D dynamics 

could still be considered as highly similar.  

 

 From the network analysis results, the signalling paths are also symmetric. Taken 

together, these results imply to a dimer-of-dimers dynamic pattern in L1 MBL. If the 

dimer-of-dimers motion is real, then the nodes along the signal paths in subunit A and 

C should be identical and subunit B and D nodes should be similar as well. As the 
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parallel comparisons were done (Figure 32-43), a vertical comparison would give a 

more straightforward understanding into this. 

 

The network analysis results between each two subunits in the L1 MBL were compared. 

In the following figures (Figure 52-54), the identical nodes are shown in black boxes 

while non-identical nodes from different subunits were given different colour. Subunit 

A was red, subunit B was yellow, subunit C was green and subunit D was purple. The 

comparison highlighted the presence of identical nodes between the two compared 

network analysis (such as between A-B subunits compared with C-D subunits). The 

same paths between identical nodes are shown with red solid line and other paths are 

showed with black dot line.  The comparison tries to find out the important residues 

and the similarities between the network results. 

 

The network path from subunit A to subunit B was compared with the path from subunit 

C to subunit D (Figure 52). As mentioned above, residue P166-P166 bridges the signal 

transmission between subunit A and B (C and D as well). The conserved residues 

between subunits A-B and C-D network results also illustrate a similar result. All 

conserved residues signal transfer from one subunit to the other need to via the path of 

P166-P166. Therefore, P166 could be seen as an important residue which bridges the 

signal between the A and B (C and D) subunits. Besides, the conserved paths and nodes 

in subunit A (and C) are highly identical with subunit B (and D). The path H116-A117-

Y164-P166-P166-Y164-A117-H116 is highly conserved and shows a symmetric 
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pattern. This path could be a main route for signal transfer from subunit A (and C) to 

subunit B (and D).  

 

Figure 52: A comparison of the subunits A-B paths with subunits C-D paths. Residues in 

subunit A (red), B (yellow), C (green) and D (purple) are illustrated. The distinct nodes in 

different subunits that were not on symmetric paths have been illustrated in a lighter colour; 

red solid lines between nodes that are between symmetric paths (between same nodes in 

different subunits), while black dot lines highlight alternative paths between nodes in the 

vertical comparison. The signal paths in subunit A and C, subunit B and D follow similar nodes.  

 

The network path from subunit A to subunit C was compared with the path from subunit 

B to subunit D (Figure 53). The nodes and paths are highly identical in subunits A-C 

and subunits B-D network analysis. More than 90% of the nodes are identical. Among 

these conserved nodes and paths, residue A140 bridges the signal transmission between 

the two subunits. The signal from one subunit can be transmitted via V144 or A140 but 

will eventually get into the adjacent subunit via A140. This indicates that A140 is an 

important residue to bridge the signal transmission between subunit A and C (or 
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subunits B and D). Besides, the network analysis results in subunit A-C (or subunits B-

D) are also highly symmetric.  

 

 

Figure 53: The comparison of subunits A-C paths with subunits B-D paths. Subunit A is red, 

subunit B is yellow, subunit C is green and subunit D is purple. The distinct nodes in different 

subunits that were not on symmetric paths have been illustrated in a lighter colour; red solid 

lines between nodes are between symmetric paths (between same nodes in different subunits), 

while black dot lines highlight alternative paths between nodes in the vertical comparison. The 

signal paths in subunit A and D, subunit B and C follow similar nodes. 

 

The network path from subunit A to subunit D was compared with the path from subunit 

B to subunit C (Figure 54). The nodes and paths are highly identical between these two 

network analysis results. The K135 (from A and C subunit) bridges the signal 

transferring between subunit A and D (B and C). The paths in subunit A (C) part are 

much simpler than D (B) part which makes the paths in subunit A (C) more important. 

The path H116-L114-I112-K135 in subunit A (C) could be the main route between 

subunit A (C) and D (B) signal transmission, the missing of each node on this path 
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could affect the whole signal transferring. Different from the results of A-B (C-D) and 

A-C (B-D), the nodes and paths are not symmetric (no symmetric residue) in A-D and 

B-C results.  

 

  

Figure 54: The comparison of subunit A-D paths with subunit B-C paths. Residues in subunit 

A (red), B (yellow), C (green) and D (purple) are illustrated. The distinct nodes in different 

subunits that were not on symmetric paths have been illustrated in a lighter colour; red solid 

lines between nodes are between symmetric paths (between same nodes in different subunits), 

while black dot lines highlight alternative paths between nodes in the vertical comparison. The 

signal paths in subunit A and C, subunit B and D follow similar nodes. 

 

 

The results from the network analysis supported the “dimer-of-dimers” dynamics.213,214 

In the L1 MBL tetramer each subunit has 2 neighbours. For example, subunit A is 

neighbour with subunit B and C. Similarly, B and C are neighbours to subunit D. 

(Figure 55). This explained why A-B, B-D, A-C and C-D paths are symmetrical. The 

symmetry in the tetramer results in the stochastic dynamics but follows structural 

communication involving similar path nodes. However, the dynamics of adjacent 
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subunits was different as they did not exhibit any symmetric nodes between them. 

Taken together, the CVAE-based deep learning and the network analysis results 

confirm a dimer-of-dimer dynamics for the L1 MBL.  The correlations between 

subunits help in the understanding the dynamics of the L1 MBL tetramer.  

 

The importance of dimer of dimers result is to indicate the potential key residues and 

correlation pattern of the tetramer. If the signal transferring could be reduced or 

inhibited, the tetramer could work similarly to four monomers or two dimers. As we 

mentioned above, L1 MBL has the highest function when it works as a tetramer. The 

conserve residues in signal transferring and on the protein-protein surface could be 

important targets for future drug design.  

 

Figure 55: The relationship of each subunit in L1 MBL. Subunit A (B) and D (C) are adjacent 

subunits. A-B, A-C, B-D and C-D are neighbour subunits.  
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6. L2 β-lactamase Results 

6.1 Homology Modelling  

In all four L2 β-lactamases, only the crystal structure of L2b β-lactamase is available 

(PDB number 5NE2).215,216 The sequences of L2a, L2c and L2d were downloaded from 

the β-Lactamase Database (L2a-Y08562, L2c-AJ251817, L2d-AJ272110).217 Due to 

the relative high sequence identity between L2b and L2a, L2c and L2d (69%) shown in 

Figure 56, homology modelling was used to obtain the atomistic models. The colour of 

alignment is based on consensus strength, a method for high quality alignment.218   

Figure 56: Sequence alignment of L2a, L2B, L2c and L2d β-lactamase. Conserved residues 

are highlighted with green. Dark green colour residues have higher consensus strength than the 

light green ones (lower RMSD). Conserve substitutions are highlighted with yellow. 

Nonconserved residues are coloured with white. The L2 β-lactamases binding sites are 

highlighted with red box.  
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Out of the four L2 β-lactamases, only L2b structure is available. The SWISS-MODEL 

website was used to generate the models of the other three proteins (L2a, L2c and L2d). 

219–221  SWISS-MODEL is an automatic comparative modelling server for building 3D 

protein structures.222 It is a free web based automated modelling tool and most widely 

used in this field.222 Only the sequence need to be provided to build the model. The 

template selection, alignment and model building are automatically finished by the 

server.222 In this case, L2a, L2c and L2d sequences were input into SWISS-MODEL. 

To consider the relationship between these four L2 enzymes, L2b β-lactamase (PDB 

number 5NE2) was selected as the template for L2a, L2c and L2d homology modelling. 

There is a D-glutamic acid bind to L2b β-lactamase in 5NE2. There are two type of 

glutamic acid exist: L-glutamic acid and D-glutamic acid. D-glutamic acid mainly exist 

as an essential component in the cell wall of certain bacteria.223 In L2b β-lactamase, the 

D-glutamic acid is a crystallisation artefact due to the crystallisation buffer has excess 

amino acid.104 Therefore, the D-glutamic acid should not be considered in the 

simulation. The models were built automatically by the server. Ramachandran plot was 

employed for model validation (Figure 57). In L2a Ramachandran plot, 96.64% of 

residues are in the Ramachandran favoured region, no residue in the disallowed region 

(Figure 57-L2a). L2c Ramachandran plot has 96.62% residues in the Ramachandran 

favoured region, no residue in the disallowed region (Figure 57-L2c). L2d model’s 

Ramachandran plot has 95.47% residues in the Ramachandran favoured region, no 

residue in the disallowed region (Figure 57-L2d). All three models pass the validation 

and will be used in the next step. 
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Figure 57: Ramachandran plots of L2a, L2c and L2d models. The dark green region is the most 

favoured area. Green region is the additional allowed area. Light green region is the generously 

allowed area. White region is the disallowed area. The sum of dark green region and green 

region is the Ramachandran favoured region. No residue is in the disallowed area. 

  



139 
 

6.2 Set up and Running the Simulation 

After the four L2 β-lactamase models were ready, the next step was to set up the models 

to run the simulations. All hydrogen atoms were removed using PyMOL visualisation 

software.224 The purpose of this step was to remove inconsistent naming, and 

nonstandard or incorrectly added hydrogens during the modelling process.225 Besides, 

the PDB files were edited for correct reading into the H++ server.  All HETATM 

records were changed to ATOM, TER record was added between each chain, ion and 

water molecules. After editing, the PDB model files were uploaded to H++ server to 

obtain the correct protonation state for each residue. The H++ server, based on the 

protonation state added the hydrogen atoms.177 The parameters set in H++ were as 

follows: solvent box topology/coordinate files (AMBER) were set to be “Cubic”, water 

model was “TIP3P” and the box edge distance from the solvent was set at “9.0Å”. 

 

The output file from H++ server is a PDB file that can be directly read into the Amber 

software, which then generates the coordinate (.inpcrd) and the topology file (.prmtop). 

The first step involves loading the force field, library files and parameter modification 

files for ions and residues in xleap. In this case, the Amber force field ff14SB, was 

loaded.125 The second step was to add counterions such that the net charge on the system 

is zero. Next the system needed to be solvated with TIP3P water and the box edge was 

set to 9 Å from the nearest protein atom. After finishing the steps above, the topology 

file (.prmtop) and the coordinate file (.inpcrd) were generated. The NME (N-terminal 

methyl amide) and ACE (C-terminal acetyl) neutral groups were used for capping chain 
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termini. 

 

During the simulations, the systems were first energy minimised for 1000 iterations of 

steepest descent. Then an equilibration protocol was run for 5ns at 1 atmospheric 

pressure, 300K temperature using the NPT ensemble. The system was equilibrated by 

keeping the backbone atoms fixed and allowing the side chain atoms, ions and water to 

move. The simulation time step was set at 4fs and the periodic boundary conditions 

were applied. The conventional simulation ran for 5ns at 1 atmospheric pressure. After 

the equilibration, the production run was carried out as multiple short MSM (Markov 

State Models)-based adaptive sampling simulations. Each trajectory ran for 50 ns (500 

frames) in total.226 The simulation generated at least 1500 trajectories for each protein 

system. ACEMD molecular dynamics engine was used to run the MD simulations.227 
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6.3 MDLovofit Results 

MDLovofit was employed for analysing the RMSD, RMSF and related regions. 228 

MDLovofit had its advantage in analysing the mobility of different backbone regions. 

228In L2 research, the cut off for Cα atom RMSD was set at <0.9Å. The cut off need to 

be high enough to avoid regions of less importance and low enough to make each L2 

β-lactamase display the dynamic regions. After trying several cut off values, 0.9Å was 

selected for the analysis. 

 

The root-mean-square deviation (RMSD), was used to assess the average distance 

between atoms after superimposing them. RMSD help in studying the stability of the 

protein and RMSF help in identifying the flexibility of the structures. 

 The RMSD is calculated as: 

𝑹𝑴𝑺𝑫 =
𝟏

𝒏
𝜹𝒊

𝟐

𝒏

𝒊 𝟏

 

 

 𝜹𝒊 was the distance between two atoms i from different but superimposed proteins, n was the 

number of structure. The RMSF was the time average of RMSD. It was calculated as: 

 

𝒑𝒊 = (𝒙𝒊 − ⟨𝒙𝒊⟩)𝟐 

 

𝒙𝒊 was the coordinate of particle I, ⟨𝒙𝒊⟩ was the average position of particle i.  
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L2a β-lactamase results 

In L2a β-lactamase simulation, about 25% of Cα RMSD was more than 0.9Å (Figure 

58). Several regions display Cα RMSD > 0.9Å residues, and include: α1, β1-β2 loop, 

α6, β7-β8 loop, β8-β9 loop, β9-α15 loop (Figure 59). 

Figure 58: 25% of Cα RMSD was more than 0.9Å in L2a β-lactamase. 

Figure 59: MDLovofit result of L2a β-lactamase. Red colour highlights the high dynamic 

residues, where Cα RMSD was more than 0.9Å. Several regions contain these residues, including: 

α1, β1-β2 loop, α6, hinge region, β7-β8 loop, β8-β9 loop and β9-α15 loop.  
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L2b β-lactamase results 

In L2b β-lactamase, only 3% of Cα RMSD was more than 0.9Å (Figure 60). There were 

multiple regions had Cα RMSD > 0.9Å residues in L2b β-lactamase, include: β1-β2 

loop, α6，α6-α7 loop, α7, α7-β5 loop, Ω loop , α10, α10-α11 loop, α13-α14 loop, β7-

β8 loop and  β8-β9 loop (Figure 61).  

Figure 60: 3% of Cα RMSD was more than 0.9Å in L2b β-lactamase. 

Figure 61: MDLovofit results of L2b β-lactamase. Red colour highlights the high dynamic 

residues where Cα RMSD was more than 0.9Å. Several regions contain these residues, 

including: β1-β2 loop, α6，α6-α7 loop, α7, α7-β5 loop, Ω loop , α10, hinge region, β7-β8 loop 

and  β8-β9 loop. 
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L2c β-lactamase results 

In L2c β-lactamase, 4% of Cα RMSD was more than 0.9Å (Figure 62). Several regions 

show Cα RMSD > 0.9Å residues, including: α1, β1-β2 loop, distal flap, α6, α6-α7 loop, 

Ω loop, α10, α13-α14 loop, β7-β8 loop, β8-β9 loop and β9-α15 loop (Figure 63). 

Figure 62: 4% of Cα RMSD was more than 0.9Å in L2c β-lactamase. 

Figure 63: MDLovofit result of L2c β-lactamase. Red colour highlights the high dynamic residues, 

where Cα RMSD was more than 0.9Å. Several regions contain these residues, including: α1, β1-β2 

loop, distal flap, α6, α6-α7 loop, Ω loop, α10, α13-α14 loop, β7-β8 loop, β8-β9 loop and β9-α15 

loop. 
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L2d β-lactamase results 

In L2d β-lactamase, 13% of Cα RMSD was more than 0.9Å (Figure 64). Several regions 

display Cα RMSD > 0.9Å residues, including: β1-β2 loop, β2, β2-β3 loop, distal flap, 

Ω loop, α10-α11 loop, α13-α14 loop, α14-β7 loop, β7-β8 loop, β8-β9 loop and β9-α15 

loop (Figure 65). 

Figure 64: 13% of Cα RMSD was more than 0.9Å in L2d β-lactamase. 

Figure 65: MDLovofit results of L2d β-lactamase. Red colour highlight the high dynamic 

residues, where Cα RMSD > 0.9Å. Several regions contain these residues, including: β1-β2 

loop, β2, β2-β3 loop, distal flap, Ω loop, α10-α11 loop, hinge region, α14-β7 loop, β7-β8 loop, 

β8-β9 loop and β9-α15 loop. 
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6.4 Markov State Models   

PyEMMA v2.5.7 was used to build the MSM (Markov State Models).187 All trajectories 

from 4 systems were loaded into PyEMMA separately. With selected features, the 

MSMs permit the resolution of metastable states and highlight structural changes 

during the kinetic transition between different states. To build the L2 β-lactamase 

MSMs, the selected features were backbone torsions, RMSD and side chain torsion of 

hydrophobic nodes residues.229 Hydrophobic nodes are consist of stretches of 3 to 9 

highly conserved hydrophobic residues. Each stretch is called as a hydrophobic node.230 

These  nodes exist in all class A β-lactamases.230 These hydrophobic nodes were found 

to have local contact with each other and also help stabilizing the tertiary structures.229 

The class A β-lactamases show a dynamic similarities on these nodes and also important 

for the whole structure dynamics.229 

 

After features were selected, all trajectories were loaded into the PyEMMA software 

with a stride of 1. The tICA method was employed to reduce the dimensionality of the 

data and was allocated into 3 components (ICs).  The selected features were kept 

identical in all four L2 β-lactamases to make comparisons reliable. Based on the MSM 

results, by comparing the sampled structures from different states led to significant 

understanding of the kinetic changes. The important structural dynamics can be 

observed during the conformation transitions from one state to the other. 
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L2a β-lactamase results 

To build a L2a β-lactamase MSM, the lag time was set to 1ns, the cluster number was 

80, and 5 states were selected. To verify the convergence of the MSMs, an implied 

timescale plot was generated and is shown in Figure 66. The implied timescale refers 

to the relaxation timescales of input molecules.188 The timescale is estimated by a MSM 

transition matrix at a certain lag time. The implied timescale plot confirmed the 

convergence behaviour of the process at 1ns lag time. The different coloured lines 

indicate the maximum likelihood results, the thick black line over the grey area 

indicates when lag time and timescale were equal. The black line with the grey area 

under it describes an area where the MSM cannot resolve processes.  

Figure 66: Implied time scale plot for L2a β-lactamase. The total implied time scale was set at 

5ns to show the converged processes. Different colour lines indicate the maximum likelihood 

results. Flat lines at 1ns indicates that 1ns is an appropriate lag time selection. 
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The CK plot of 5 metastable states with a lag time of 5.0ns illustrates an estimated (solid 

line) and a predicted (dashed line) projection within confidence intervals (Figure 67). 

If these two lines overlap with each other, it indicates the states pass the Bayesian 

sampling procedure with 95% confidence intervals. The results of L1 β-lactamase CK 

plot indicate the estimated and the predicted values are within the range of confidence 

interval.  

 

Figure 67: Chapman-Kolmogorov test plot for L2a β-lactamase. All five states passed the CK 

test plot. 
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The PCCA distribution probability plot (Figure 68) highlights the clusters of different 

metastable states. A clean distribution indicates a clear conformational clustering. The 

conformations with the same feature are clustered into the same state. The first two 

independent components were used to identify 5 defined metastable states.  

 

 

 

Figure 68: PCCA distribution plot for 5 states in L2a β-lactamase. Different colours in the 

distribution represented different states. The conformations in the same state display same 

features.   
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Free energy landscape shows the energy distribution at selected lag time. The free 

energy distribution at 1ns lag time is shown in Figure 69. The free energy (FE) 

calculated at lag time 1ns was projected into the first 2 independent components. 

Multiple free energy minima are observed in this plot. 4 main minima and several sub 

minima are shown. Each main minima correspond to a metastable state. Only the sub 

minima from upper-left corner can be separated and represent for state 1. The PCCA 

distribution tries to separate similar conformations representing metastable states into 

distinct free energy minima. The structures in the same energy minima are similar.  

 

 

Figure 69: L2a β-lactamase free energy landscape at lag time 1ns. Multiple energy minima 

could be observed in the plot. The minima correspond to the metastable states in PCCA 

distribution plot. 
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The net flux pathways plot calculates the productive recrossing between pairs of states. 

The net flux plot of L2a is shown in Figure 70. The plot shows the transition pathways 

from state 1 (highest energy state) to the other states. State 4 and 5 are the most 

populated states in L2a β-lactamase. The arrow indicates the difference value of the 

fluxes in both directions. Therefore, state 4 structures will eventually go to state 5 and 

state 5 is most stable state in all 5 metastable states. 

 

 

Figure 70: Net flux pathway plot of L2a β-lactamase. Each cyan circle with certain number 

represented the correspond state. The bigger the circle, the more populated the state. Arrows 

between each state represented the possibility of each transition. The thicker the arrow, the 

higher the possibility.  
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Mean first passage time is an important parameter in MSM. It is an average timescale 

for a random event to first occur.164 The mean first passage times between different 

states in L2a β-lactamase is shown in Table 3. The number between each two metastable 

states indicates the timescale for the conformational change to first happen. Larger 

timescale implies a higher energy barrier and lower transition possibility between states. 

For instance, most structures transit from state 1 to state 4, because the energy barrier 

between these two states was lowest at 824 ns. Table 4 shows the population (π) of each 

state and the free energy estimation. State 4 and 5 represents for about 90% of all the 

structures. 

 

Table 3: Mean first passage times between different states in L2a β-lactamase. Most 

conformation transit from state 1 to state 4 and then transit from state 4 to state 5. 

State/(ns) 1 2 3 4 5 
1 0.00  1647.50  5733.05  824.48  1010.65  
2 5246.50  0.00  4648.09  1002.49  1078.17  
3 8579.77  4515.40  0.00  1334.94  1016.36  
4 11839.44  8634.43  9292.10  0.00  521.15  
5 12333.83  9039.02  9274.71  814.79  0.00  

 

Table 4: L2a β-lactamase 5 states population (π) and their free energy estimation. 

State π (%) G/kT (J) 
1 0.8779  4.735404  
2 3.5667  3.333517  
3 5.8663  2.835938  
4 33.1852  1.103066  
5 56.5038  0.570862  
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L2b β-lactamase results 

In L2b β-lactamase MSM, the lag time was set at 4 ns, the cluster number was 100, and 

9 states were built. Figure 71 is the implied timescale plot for L2b β-lactamase. The 

lines become flat and converged at 4ns lag time, which was deemed acceptable for the 

subsequent analysis.  

 

 

 

Figure 71: L2b β-lactamase implied timescale plot, lag time was set at 4ns. The converged 

lines indicate the 4ns is an appropriate lag time selection.  
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9 states were built in L2b β-lactamase MSM. The CK test plot for L2b β-lactamase is 

shown in Figure 72. The CK test verified 9 metastable states of L2b β-lactamase at 4ns 

lag time.  The predicted line and estimate line overlaps with each other indicating 9 

states were acceptable for L2b β-lactamase MSM and subsequent analysis. 

 

 

 

Figure 72: Chapman-Kolmogorov test plot for L2b β-lactamase. All 9 states passed CK test 

within confidence intervals. 
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There were 9 states built for L2b β-lactamase. The PCCA distribution plot for L2b β-

lactamase is shown in Figure 73. 9 metastable states were well separated. State 4 was 

tried to split into two substates in order to resolve the clustering. However, more state 

number cannot give clean separation. Therefore, 9 states were built for the subsequent 

calculation. 

 

 

 

Figure 73: L2b β-lactamase PCCA distribution plot. 9 metastable states were well separated. 

Different colours in the distribution plot represents different states in the simulation. The 

conformations in the same state exhibit same structural features. 
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The free energy landscape plot can provide information on the low energy 

conformations and how they are distributed. The Free energy at lag time 4.0ns was 

projected into the first 2 independent components (Figure 74). Multiple free energy 

minima can be observed in this plot. There are two main minima and several sub 

minima observed. Each low energy region corresponds to a metastable state. State 4 in 

PCCA distribution plot cannot be separated into substates due to the high energy which 

could be observed in Figure 74. 

 

 

Figure 74: L2b β-lactamase free energy landscape at lag time 4ns. Two main energy minima 

and several sub minima observed. The high energy of state 4 could be the reason why it is 

difficult to be separated into two states. 
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The net flux calculates the difference between the values of the fluxes in both directions. 

The net flux plot of L2b β-lactamase is shown in Figure 75. The plot shows the 

transition pathways from state 1(highest energy state) to the other states. State 9 was 

the most populated state in L2b β-lactamase. Most conformations take one of the two 

pathways 1-5-9 (49.42%) or 1-8-9 (35.70%). 

Figure 75: L2b β-lactamase net flux pathway plot. Arrows between each state represented the 

probability of each transition. The thicker the arrow, the higher the probability of transition. 

The numbers on the arrows indicate the mean first passage times of transition.  
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Mean first passage time shows an average timescale for a random event to first occur. 

The Mean first passage time between different states in L2b β-lactamase is shown in 

Table 5. The number shows different timescales of conformational transition from one 

state to another. A higher timescale between states implies a higher energy barrier and 

a lower possibility of the conformational change. Table 6 lists the population and free 

energy estimation for the 9 states of L2b β-lactamase. 

 

Table 5: Mean first passage times between different states in L2b β-lactamase. 

 

Table 6: L2b β-lactamase 9 states population (π) and free energy estimation. 

State π (%) G/kT (J) 

1 0.0738 7.211293 

2 0.0827 7.097262 

3 0.1597 6.43935 

4 0.1769 6.337267 

5 1.0041 4.601057 

6 5.6597 2.871796 

7 11.8615 2.131871 

8 13.911 1.972488 

9 67.0104 0.399427 

  

State/(ns) 1 2 3 4 5 6 7 8 9 

1 0.00  442038.94  97467.79  265623.21  29438.54  2591.33  2324.49  2573.52  1200.56  

2 87010.96  0.00  27573.15  260898.07  14288.12  3078.21  2775.51  3642.07  1704.71  

3 122984.94  405007.63  0.00  259364.25  9117.95  2781.35  2462.92  3535.17  1412.59  

4 138865.15  485852.16  105650.39  0.00  34324.01  2217.30  2511.58  3585.26  1379.74  

5 122789.28  460173.03  76417.52  255486.22  0.00  2694.39  24444.35  3456.64  1335.39  

6 185449.92  536977.55  158149.59  311187.68  90381.75  0.00  1266.73  2554.05  92.63  

7 185576.13  537067.43  158225.46  311874.82  90523.38  1658.11  0.00  2612.01  159.16  

8 184806.68  536888.63  158259.79  311914.69  90499.20  1927.91  1594.39  0.00  426.04  

9 185466.89  537008.67  158185.28  311755.03  90426.64  1495.57  1173.76  2458.96  0.00  
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L2c β-lactamase results 

For the L2c β-lactamase analysis, the lag time was set at 20ns, the cluster number was 

100, 6 states were built. Figure 76 shows the implied timescale plot for L2c β-lactamase. 

Results were well clustered at 20ns, thus 20ns lag time was used for subsequent 

calculation.  

 

 

 

Figure 76: L2c β-lactamase implied timescale plot. The lag time was set at 20.0ns. Different 

colour lines indicate the maximum likelihood results. Flat lines indicate convergence at 20ns 

lag time. 
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6 states were built in L2c β-lactamase MSM. The CK test plot for L2c β-lactamase is 

shown in Figure 77. The CK plot assumed 6 states with 20ns lag time through MSM 

estimate and is shown as dot lines. The solid line is the prediction line which calculated 

the metastable states within confidence intervals. The predict line and the estimate line 

overlap with each other indicating 6 states were acceptable for L2c β-lactamase MSM 

subsequent calculation. 

Figure 77: Chapman-Kolmogorov test plot for L2c β-lactamase. All 6 states passed CK test 

within confidence intervals.  
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The PCCA distribution plot shows how the metastable states are distributed. The plot 

for L2b β-lactamase is shown in Figure 78. The first two independent components were 

used to calculate distrbution and identified 6 defined metastable states. 6 states were 

built and are well separated. 

 

Figure 78: L2c β-lactamase PCCA distribution plot. 6 metastable states were well separated. 

Different colours in the distribution plot represented distinct states clustered from the 

simulation.  
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The free energy landscape plot shows the distribution of the free energy minima. The 

free energy landscape at 20ns lag time is shown in Figure 79. The free energy calculated 

at lag time 20 ns was projected onto the first 2 independent components. There are 4 

main minima and several sub minima observed. The main minima correspond to the 

metastable states 4, 5 and 6 in PCCA distribution plot. The sub minima are separated 

into 3 parts and correspond to the metastable states 1,2 and 3.  

 

 

Figure 79: L2c β-lactamase free energy landscape at lag time 20ns. 4 main minima and several 

sub minima are observed. The minima correspond to the metastable states in PCCA distribution 

plot.  
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The net flux plot is generated by TPT object in MSM to show the productive transition 

between pairs of states. Net flux plot of L2c β-lactamase is illustrated in Figure 80. As 

shown on the plot, state 6 represents for the most proportion (largest area). The net flux 

indicates all other states will eventually get into state 6. The path 1-3-6 (98.21%) is the 

dominant pathway taken by conformations during the simulation.  

Figure 80: Net flux pathway plot of L2c β-lactamase. Most conformations went through 1-3-

6. Each cyan circle with certain number represented the correspond state. The bigger the circle, 

the more populated the state. Arrows between each state represented the possibility of each 

transition. The thicker the arrow, the higher the possibility.  
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The Mean first passage times between different states in L2c β-lactamase is shown in 

Table 7. The timescale between 1-3-6 is less than that observed in the other pathways. 

This indicates the energy barrier between these states is much lower and conformational 

change is easier to happen. Table 8 shows the population (π) and the free energy 

estimation of each state. State 5 and 6 represent for more than 85% of all the 

conformations. While state 1 and 2 represent for less than 1% of the structures. State 6 

is the dominant state in L2c simulation. 

 

Table 7: Mean first passage times between different states in L2c β-lactamase. 

State/(ns) 1 2 3 4 5 6 
1 0.00  78535.12  91.60  6925.35  11017.99  937.42  
2 1916648.47  0.00  2352.59  6277.80  11260.96  1195.89  
3 1912641.03  77168.03  0.00  6866.71  10895.64  830.92  
4 1926144.51  87584.33  13173.65  0.00  10428.32  347.54  
5 1928254.11  90532.24  15221.02  8445.04  0.00  2250.97  
6 1925977.63  88271.17  12960.85  6164.06  10051.24  0.00  

 

Table 8: L2c 6 states population (π) and free energy estimation. 

State π (%) G/kT (J) 
1 0.0049 9.929605 
2 0.5085 5.281443 
3 5.5731 2.887216 
4 5.1581 2.964608 
5 18.3193 1.697214 
6 70.4361 0.350464 
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L2d β-lactamase results 

In L2d β-lactamase MSM, the lag time was set at 2ns, the cluster number was 80, and 

8 states were built. Figure 81 shows the implied timescale plot for L2d β-lactamase. 

The lines become flat and converged at 2ns lag time, therefore, 2ns was acceptable for 

the subsequent analysis.  

 

 

Figure 81: L2d β-lactamase implied timescale plot. Flat lines at 2ns indicates that this lag time 

was acceptable. 
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8 states were built for L2d β-lactamase MSM. The CK test was employed for the 

valadition. The plot for L2d is shown in Figure 82. The prediction was given based on 

the model quantity and was compared with an independent estimation. The predict line 

and the estimation line superimpose with each other. Therefore 2ns is an acceptable lag 

time for subsequent analysis. 

Figure 82: Chapman-Kolmogorov test plot for L2d β-lactamase. All 8 states were within 

confidence intervals and pass the CK test. 
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The PCCA distribution plot shows how 8 metastable states of L2d distributed during 

the simulation. The plot for L2d β-lactamase is shown in Figure 83. 8 metastable states 

were well separated. Higher states number was also tried to separate the state 1 and 6 

but was not successful. Therefore, 8 states were chosen as the optimal state number. 

 

 

Figure 83: L2d β-lactamase PCCA distribution plot, 8 metastable states were well separated. 

Each different colour represents different state. The structures in the same states have similar 

features.  
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The Free energy distribution was shown in the free energy landscape. L2d free energy 

distribution at 2ns lag time is shown in Figure 84. There are 5 main minima and several 

sub minima observed. The high energy of the two regions of state 1 and 6 explain why 

it is difficult to separate these two states into more substate. 

 

Figure 84: L2d β-lactamase free energy landscape at lag time 2ns. 5 main minima and several 

sub minima were observed. The minima correspond to the metastable states in PCCA 

distribution plot. State 1 has similar high energy on its edge. It can explain why it is hard to 

separate state 1 into the upper and lower parts. The state 6 is observed with similar high energy 

and difficult to be separated. 
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The netflux plot for L2d β-lactamase is shown in Figure 85. The dominant pathway in 

L2d β-lactamase conformational change are 1-6-8 (50.07%) and 1-7-8 (35.85%). Most 

structures will eventually turn into state 8. 

Figure 85: L2d β-lactamase net flux pathway plot. Each cyan circle with certain number 

represented the correspond state. The bigger the circle, the more populated the state. Arrows 

between each state represented the possibility of each transition. The thicker the arrow, the 

higher the possibility.   
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 Mean first passage times is an average timescale for a random event to first occur. It is 

an important parameter in MSM is because it implied the possibility of transimission 

between metastable states.The mean first passage time between different states in L2d 

β-lactamase is shown in Table 9.  Table 10 is the population and free energy estimation 

for 8 states of L2d β-lactamase. 

 

Table 9: Mean first passage times between different states in L2d β-lactamase. 

State/(ns) 1 2 3 4 5 6 7 8 

1 0.00  28019.86  19869.50  20681.75  9893.76  2195.96  13387.36  2483.54  

2 35118.37  0.00  22051.00  22816.47  14768.75  4952.82  63.00  4489.08  

3 45599.67  39065.57  0.00  3375.93  12599.54  1761.50  24459.14  1519.33  

4 45878.28  39314.50  3182.34  0.00  12878.23  2113.70  24706.47  1728.19  

5 41988.20  37895.81  18703.65  19510.50  0.00  1082.62  23286.00  1291.75  

6 43996.03  37661.27  17279.88  18204.08  10996.39  0.00  23062.22  323.74  

7 35075.27  14910.45  22043.40  22806.17  14756.66  4951.11  0.00  4471.19  

8 44385.72  37704.84  17748.78  18464.98  11377.91  923.40  23090.34  0.00  

 

Table 10: L2d β-lactamase 8 states population (π) and free energy estimation. 

State π (%) G/kT (J) 
1 0.3591 5.629193 

2 0.4741 5.351449 

3 0.8481 4.769877 

4 7.1378 2.639763 

5 6.6054 2.717279 

6 12.3167 2.094213 

7 15.1096 1.88984 

8 57.149 0.559508 
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6.5 Dynamic Cross-correlation Analysis 

Cross-correlation is a measurement that tracks the movement of two or more sets of 

relative data. In network analysis, cross-correlation was employed to find the 

correlation between different regions of the L2 β-lactamase enzymes. These regions 

could be far away from each other, but the signal transfer during the simulation may 

influence the dynamics of each other. Bio3d software was used for residue correlation 

analysis.231 The network analysis was based on different states which were built and 

described above in the MSM section. The analysis provides the correlation information 

of residues, both positive and negative. A positive correlation between two regions (or 

residues) is when one region becomes dynamic and influences the other region to also 

become dynamic. Their dynamic pattern is the same. A negative correlation between 

two regions (or residues) is when one region is dynamic while it influences the other 

region to become stable. Such a scenario is said to be invertly related. 
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L2a β-lactamase results 

In L2a β-lactamase, 5 states were built using MSM. Therefore, 5 cross-correlation plots 

were generated, each describing correlation between residues observed within each 

metastable state (Figure 86). The cyan area is the positive correlation and the pink area 

describes the negative correlation. The larger the area, the more residues involved in 

the correlation.    

  

From the plots, the correlation occurs in three regions of the enzyme in α4-α8, Ω loop 

and α14-α15. Between these three regions, the α4-α8 correlation had an obvious 

expansion after state 1, with more residues being involved in the correlation. Most of 

the α4-α8 correlations occurred within the two helices. The Ω loop correlation had a 

slight increase in state 1 and 4 and remained the same in states 2,3 and 5. The Ω loop 

correlation in state 1, 2 and 4 also occurred with β7-β8 loop and β9-α15 loops.  

 

The correlation between the two regions almost disappeared in the other 2 states. The 

β1-β2 and β8-β9 displayed a stable correlation and was observed in β9. The dynamics 

correlated between α14-β8 and α6-α9, α15. The α14-β8 and α6-α9 area correlation had 

fewer residues involved at state 1,3 and 5. Especially in state 1 and 5, the correlation 

almost disappears. In contrast, the correlation involved much more residues in state 2 

and 4. The correlation between α15 and β4-α9 was less dynamic. Compared to state 1, 

the correlation involved more residues in states 2 and 4 and involved fewer residues in 

state 3 and 5. 



173 
 

Figure 86: Cross-correlation analysis results for L2a β-lactamase. 5 plots were generated for 5 

states built from the MSM. The cyan area shows positive correlation, the pink area shows 

negative correlation. The red circles indicate the regions involved in the cross-correlation.  
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L2b β-lactamase results 

Compared with L2a β-lactamase, L2b β-lactamase displayed much less cross-

correlation. 9 states were built in the MSM analysis. Therefore, 9 plots were generated 

(Figure 87), describing interactions within each metastable state. β4-β5, Ω loop and 

α14-α15 had some minor correlation (red circle around the diagonal line). The 

correlation between Ω loop and α3 remained consistent in all 9 states. In contrast, Ω 

loop and α14-α15 correlation was only observed in state 7 and almost disappeared in 

all other 8 states. 2 stable correlations were observed, β8-β9 with β1-β2 and α15 with 

β4-α6. 

Figure 87: Cross-correlation analysis results for L2b β-lactamase. 9 plots were generated for 9 

states built from the MSM. The cyan area shows positive correlation, the pink area indicates 

negative correlation. The red circles highlight the area of cross-correlation.  
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L2c β-lactamase results 

In L2c β-lactamase cross-correlation results, 6 plots were generated based on 6 states 

built in the MSM. Only a few correlations were observed (Figure 88). β4-β5, Ω loop 

and α14-α15 had some inner correlation (red circle around the diagonal line). The 

correlation between Ω loop and α3 involves several residues but exists in all 6 states. Ω 

loop was also observed to have a correlation with β8-β9 in state 1, 2 and 4. Only a few 

residues were involved in this correlation and it almost disappeared in state 3, 5 and 6. 

Besides, 2 stable correlations observed between β8-β9 and β1-β2 and between α15 and 

β4-α6. In state 5, some correlations were also observed between N terminal-α1 and α14-

α15. 

Figure 88: Cross-correlation analysis results for L2c β-lactamase. 6 plots were generated for 6 

states built from the MSM. The cyan area shows positive correlation, the pink area indicates 

negative correlation. The red circles highlights the area of cross-correlation. 
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L2d β-lactamase results 

In L2d β-lactamase, the cross-correlation analysis generated 8 plots for 8 states from 

the MSM (Figure 89). Among all 8 states, state 2 and 3 indicate highly dynamic results. 

The correlation in state 2 and 3 showed an obvious increase compared with the other 6 

states. In state 1, 4, 5, 6, 7 and 8, several correlations were observed. β4-β5 and α14-

α15 displayed some correlation (red circle around the diagonal line). There were several 

correlations observed in β8-β9. β8-β9 with β1-β2, α15 with β4-α9. Ω loop also had a 

correlation with α15 all states except state1.  

Figure 89: Cross-correlation analysis results for L2d β-lactamase. 8 plots were generated for 8 

states from MSM. The cyan area represents positive correlation, the pink area corresponds to 

negative correlation. The red circles indicate the region of correlation.  
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6.6 CVAE-based Deep Learning of L2 β-lactamases 

CVAE-based deep learning was employed to analyse the trajectories of L2a, L2b, L2c 

and L2d β-lactamases. For running CVAE-based deep learning, 3 steps need to be 

employed. First was the pre-processing. In this step, RMSD, native contacts and 

distance matrices needed to be generated from the trajectories. Distance matrix does 

not contain the translational and rotational motion information..175 The CVAE model 

was assessed by estimating the training and validation loss with the rising dimension 

numbers. RMSD, native contacts and distance matrices were compiled into a single 

system file which contains all information processed above. Following that, the four 

system files from L2a, L2b, L2c and L2d β-lactamases were combined into a single file 

system that contained a stack of the four individual systems.  

 

The second step was to run the CVAE and select an appropriate latent dimension 

number that displayed the lowest loss. The purpose of this step was to minimise 

information loss through the training epochs. In this experiment, CVAE latent 

dimensions were set at 3-30 (Figure 90) Each of the dimension ran 100 epochs to make 

sure the training and validation loss converged (Figure 91). After running CVAE, an 

optimal state needs to be selected. Therefore, the CVAE results were inspected by 

repeating the training process with different latent dimensions. The loss of latent 

dimensions is illustrated in Figure 90, where the red line represents the training loss and 

the blue line is the validation loss. The lowest loss was observed in dimension 17,  

where the mean validation loss was the minimum among all latent dimensions. The loss 
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of latent dimensions by epoch numbers is shown in Figure 91. The optimal selection is 

highlighted as a black line. Following this, the 17th dimension state was put into the 

reconstruction process and compared with the original data. A comparison of the 

encoded versus the decoded was done to ensure the decoded result had no significant 

loss of information (Figure 92). 

 

 

 

Figure 90: Evaluation of information loss over latent dimensions. Red line represents the 

training loss, the blue line is the validation loss. Latent dimension 17 show the best result with 

the lowest information loss. The comparison between original encoded data and reconstructed 

decoded data verified the compression of dimension17 did not result in a significant 

information loss and can be used in the next step. 
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Figure 91: Evaluation of information loss of different latent dimensions by epoch number. The 

lowest loss dimension was highlighted with black colour. 

 

 

Figure 92: Comparison of the original input file and reconstructed decoded file, the 

compression of 17 dimensions did not result in a significant information loss. 
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After selecting 17th dimension as the optimal CVAE state, the last step was to visualise 

the CVAE results (Figure 93). In order to make the result easier to analyse and 

understand, the simulation results were first projected into a 3D latent space 

representation and then projected to a 2D plot for conformation extraction. Each 

conformation from the simulation was represented as a corresponding coordinate. In 

this case, t-SNE (t-distributed stochastic neighbour embedding) method was employed 

to reduce the data.196 For easier understanding of the CVAE latent dimension, 

conformations were also projected onto 2D plot with the t-SNE method. Figure 93 

shows the distribution of 17th latent dimension in a 2D plot. Different colours indicate 

different proteins from which the structure came from. Most of the L2d β-lactamase 

conformations clustered on the top, some L2b β-lactamase structures clustered  on the 

left, others were mixed and distributed. The corresponding free energy plot was shown 

in Figure 94. There are several low energy regions. 4 lowest energy regions were 

selected and the structures of L2a, L2b, L2c, and L2d β-lactamase clustered in these 

regions were extracted for further analysis.  
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Figure 93: Conformational distribution in 2D plot clustered using the t-SNE method. Different 

protein conformations are shown in different colours, L2a (blue), L2b (light blue), L2c (orange), 

L2d (red). Most L2d β-lactamase conformations were clustered on the top of the plot, some 

L2b β-lactamase conformations were clustered on the left.  
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Figure 94: Free energy distribution plot. Four free energy minima were selected for 

conformation extraction.  
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In each low energy minima, four conformations from four enzymes with the most 

similar coordinates were selected for extraction. In region 1, 2 and 3, all four systems 

were observed. In region 4, only L2a, L2b and L2c β-lactamases conformations were 

observed and extracted. The conformations from the same regions were superimposed 

for comparison. Besides, the conformations from different low energy region but from 

same enzyme (such as four L2a extracted structures from four different regions) will 

also be superimposed and compared. The extracted conformations from the same 

regions were similar suggesting efficient clustering of the algorithm. The areas with 

enhanced dynamics and differences are highlighted with red colour (Figure 95).  In 

structures extracted from region 1, Ω loop, hinge region, β8-β9 loop from L2a β-

lactamase is different from other 3 proteins (highlighted with red in Figure 95-1). The 

loops on L2b, L2c and L2d were superimposed with each other while these loops on 

L2a β-lactamase is dissimilar from the other three enzymes’ loops. The four structures 

from minimum 2 are similar. No significant difference was observed (Figure 95-2). In 

minimum 3, the hinge region and β8-β9 loop of L2a β-lactamase, α14-β7 loop, β8-β9 

loop and β9-α15 loop of L2d β-lactamase displayed some motion away from the others 

(highlighted with red in Figure 95-3). α6-α7 of L2a β-lactamase and Ω loop of L2b β-

lactamase in minimum 4 show a slight difference (highlighted with red in Figure 95-4). 
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Figure 95: Superimposed structures extracted from different low energy minima, highlighting 

areas of dynamic differences (red). 
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Among the extracted structures, the conformations from the same protein were also 

investigated. This comparison gives more information about low energy structures 

during the simulation. The structures were similar but still showed some dynamic 

regions.  

 

In L2a β-lactamase, the loops from different free energy regions show high dynamic 

motions. The loops that showed higher RMSD are Ω loop, β8-β9 loop and α6-α7 

(highlighted with red colour in Figure 96-L2a). Besides, α1, α2-β1, β1-β2 and hinge 

region also displayed high dynamics (highlighted with green colour in Figure 96-L2a).  

 

The L2b β-lactamase structures were identical. Only β1-β2 loop and Ω loop observed 

a conformational change in L2b (highlighted with green colour in Figure 96-L2b).  

 

In L2c β-lactamase, β1-β2 loop from four structures extracted from different regions 

showed large differences. Other than superimposed with each other, four  β1-β2 loops 

from four energy minima was divided into two groups (highlighted with red colour in 

Figure 96-L2c). The α1 and Ω loop showed conformational changes (highlighted with 

green colour in Figure 96-L2c). 

 

For L2d β-lactamase, only three structures were extracted. There was no L2d β 

lactamases in minimum 4. The loops of these three structures had displayed motions 

away from each other. α1-β2 loop, β1-β2 loop, β8-β9 loop and β9-α15 loop had obvious 
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structural changes (highlighted with red colour in Figure 96-L2d). The α1, distal flap, 

hinge region and Ω loop also had small structural differences.  

Figure 96: Comparison of extracted structures from the same protein. The extracted structures 

from the same protein were aligned. The conformational changes are highlighted in red and 

green colours.   
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7. L2 β-lactamases Discussion 

L2 has few research on it, most of current L2 research focus on the AmpR regulator 

function.232–235 L2 β-lactamase has been proved that it is not AmpR dependent.92 Some 

other publication focus on L2 inhibitors investigation, such as relebactam, clavulanate 

and avibactam.236,237 There is no L2 β-lactamase inhibitor has been found yet. On the 

other hand, as a class A serine β-lactamase, the mechanism of other class A serine β-

lactamase has been widely explored. The key residue such as S70, K73, S130, N132, 

E166, T235 and T237 have already been revealed.52 The important regions for catalytic 

regions are also indicated, such as hinge region, Ω loop and  hydrophobic nodes.229,238–

241 Furthermore, a number of class A β-lactamase inhibitors have also been found, such 

as clavulanate, sulbactam and tazobactam.242–244 The widely research of class A β-

lactamase allows L2 have a large database to refer. 

 

As mentioned above, L2 β-lactamase has an extra α helix at the beginning of the 

sequence. The structural difference will result in potential different mechanisms. Since 

there is no dynamic research has been done on L2 β-lactamase before, the 

understanding of L2 β-lactamase dynamic pattern is important. In this work, four L2 β-

lactamase proteins were analysed. Therefore, they will be discussed first separately and 

then as a combined discussion.  
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L2a β-lactamase discussion 

In L2a β-lactamase, 25% of Cα RMSD was more than 0.9Å (Figure 58) which was 

higher when compared with the other 3 proteins. These included the α1, β1-β2 loop, α6, 

hinge region, β7-β8 loop, β8-β9 loop and β9-α15 loop. The RMSF was calculated from 

each of the 5 metastable states (Figure 97).  The comparison between the different 

metastable states from the same low energy minima gives a better indication of the 

dynamics observed in these minima.  

 

 

Figure 97: RMSF plot for 5 states in L2a β-lactamase. Different colours represent different 

states in L2a β-lactamase.  
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All 5 metastable states show high dynamics in the complete α1 helix. Some residues 

from α1 interacted with the β9-α15 loop. The interactions frequently disappeared during 

the course of the simulation. This makes this region highly dynamic. In this case, the 

highest RMSF for α1 (state 1) was compared with the lowest RMSF state (state 4), to 

identify different interactions between these states. Among all the interaction between 

α1 and β9-α15 loop, S21(sidechain)-Q273(sidechain) showed the biggest difference. In 

state 1 the S21-Q273 interaction changes between formation and loss. In state 4, the 

interaction is stable and is seldomly lost. Besides, when interaction is broken, the two 

residues drift far from each other. The distance between residue S21 and residue Q73 

had been calculated in Figure 98. The cut off of interaction length is set at 5Å. State 1 

had 50% more changes between formation and loss of this interaction. Besides, when 

S21 get closer to Q273, other residues from α1 also tend to form interactions with the 

β9-α15 loop, such as T24 and D25. The less frequent changes between interactions may 

help stabilise structures in state 4. The residue dynamic cross-correlation plot (Figure 

86) shows no correlation between these two regions in all 5 states. However, α1 may 

indirectly stabilize β9-α15.  
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Figure 98: Distance between S21 and Q273. The cut off set at 5 Å (red line). The two states 

highlight the formation and loss of bond. The bond is lost 18% in state 1 and 12% in state 4. 

 

The β9-α15 loop dynamic was not just influenced by α1 but is also influenced by β7-

β8 loop (Figure 99). State 5 displayed highest RMSF in the β7-β8 loop (Figure 97) 

while state 4 was the lowest. Comparing the dynamics in these two states, it was found 

that the long side chain of R243 (from β8 sheet, very close to β7-β8 loop) was 

responsible for the β7-β8 loop dynamics. R243 can attracted and form hydrogen bonds 

with both the side chain of T216 (from hinge region) and the backbone of Y271(from 

β9-α15 loop). Y271 and T216 are on the opposite side of R243. If R243 get closer to 

each one residue, it will be far away from the other one (Figure 100). It should be 

emphasized that the bond formation and lost are not directly correlated but can be 

further influenced by the neighboring regions. When the R243 get attracted by Y271, 
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the β7-β8 loop and β9-α15 loop get closer to each other. When R243 forms a bond with 

Y271, it drifts far away from T216. It is possible that R243 can form bonds with T216 

and Y271 at the same time. The dynamics of β7-β8 loop, β9-α15 loop and hinge region 

working together. Changes in each region can influence the dynamics and interactions 

the other two regions.  

 

In state 5, R243 interacts with Y271. The high dynamics of β9-α15 loop influenced β7-

β8 loop and resulted in a relatively high RMSF in state 5 than in any other 4 states. In 

contrast, R243 in state 4 tended to stay in the middle or get closer to T271, while the 

bond between R243 and the backbone of Y271 was not broken. The interaction in two 

opposite direction makes the α1 interactions with β9-α15 loop and β7-β7 loops more 

stable. This can also explain the hinge region dynamics observed in all metastable states. 

R243 are attracted by both T216 and Y271, the bond forming and losing result in the 

dynamics in this region. When R243 was far away from T216 and stay with Y271 in 

state 5, the RMSF value of this region also showed a small amount of decrease.  
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Figure 99: The position of α1, β7-β8 loop, β9-α15 loop, T216, R243 and Y271. β9-α15 loop was 

in the middle of α1 and β7-β8 loop, when it was in a highly dynamic state, it could be influenced by 

α1 and β7-β8 loop. R243 has a long side chain which can form bonds with both T216 and Y271. 

Figure 100: A closeup view of T216, R243 and Y271 position. R243 can form bonds with both 

T216 and Y271. When R243 get closer to one of the two residues, it will get far away from the 

other one. 
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From the DCCM plot (Figure 86), we observe the β9-α15 loop had negative correlation 

with α6 and α9. The stabilization of β9-α15 loop in metastable state 4 may increase the 

dynamics of these two areas. Especially in α6, two RMSF peak was observed in α6 and 

adjacent α7. It was found that α6 tended to stay in a wider and more relaxed orientation 

in state 4. In this relaxed state, the interactions between residues within the α6 loop 

decreased and these allowed interactions forming between α6 and α7 easier, especially 

between the side chain of R98 (α6) and the backbone K115 (α7) (Figure101).  

 

 

Figure 101: The hydrogen bond formation between the side chain of R98 (α6) and the 

backbone of K115 (α7). In order to form this interaction, a large rotation in the side chain of 

R98 was observed.  

 

 

Furthermore, large dynamics was also observed in β1-β2 loop and β8-β9 loops. β1-β2 

loop and β8-β9 loop are positioned parallel to one another. There were several stable 

interactions between them, such as L50 (bb)-V259 (bb) and T52 (sc)-P257(bb). Since 

there are no other loops close to β1-β2 loop and β8-β9 loop, the dynamics of these loops 
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tend to influence each other.  Comparing the high RMSF values of the β1-β2 loop and 

β8-β9 loops, it might also be that the large dynamics could be further influenced by the 

long end of the C-terminal. When the C terminal gets close to the β1-β2 loop and β8-

β9 loop, the C-terminal can make interactions frequently, such as R56 (sc)-G290(bb) 

(β1-β2 loop) and W258-G290 (β8-β9 loop). It is interesting to note that these two bonds 

could form at the same time (Figure 102). Therefore, the high dynamics of β1-β2 loop 

and β8-β9 loop could be a direct consequence of the flapping of the C-terminal 

frequently in the vicinity of β1-β2 loop or β8-β9 loop.  

 

In L2a β-lactamase simulation, most structures will stay in metastable state 4 and 5 

(Table 4). However, some regions show a quite opposite dynamic pattern in these two 

states (α1, α6, β7-β8 loop, β8-β9 loop). In state 4 α1, β7-β8 loop and β8-β9 loop are 

stable while these regions in state 5 are dynamic. α6 helix in state 4 is quite dynamic 

which is stable in state 5. Based on the DCCM plot, most negative correlation was also 

observed in these regions, which implied the L2a β-lactamase protein could have two 

patterns of dynamics.245  
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Figure 102: C-terminal affect β1-β2 loop and β8-β9 loop dynamics. C terminal got close to β1-

β2 loop and β8-β9 loop. β1-β2 loop and β8-β9 loop had stable bonds forming between each 

other (such as L50-V259 and T52-P257). When the C terminal comes close to these two loops, 

it can form several bonds (such as R56-G290 and W258-G290). The high dynamic and 

unordered rotation of the C terminal will influence the dynamic of β1-β2 loop and β8-β9 loop. 
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L2b β-lactamase discussion 

There was only 3% Cα RMSD over 0.9Å in L2b β-lactamase (Figure 60). However, 

there were  numbers of highly dynamic regions, including: β1-β2 loop, α6，α6-α7 loop, 

α7, α7-β5 loop, Ω loop, α10, hinge region, β7-β8 loop and  β8-β9 loop. The high number 

of dynamic regions and low percentage of high Cα RMSD indicated the dynamic 

motions in L2b β-lactamase were relatively stable. There were 9 states built in L2b β-

lactamase MSM analysis. Most of the structures are present in metastable state 7, 8 and 

9 which represent more than 90% of all the structures.  The RMSF plot for L2b β-

lactamase is illustrated in Figure 103. State 3 was more dynamic than other states. 

Interestingly, state 3 only represented less than 1% of all conformations. It was not 

surprising that this state was a highly dynamic intermediate and a transitionary state.  

 

Figure 103: RMSF plot for 9 states of L2b. Different colours represent different states. 
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In L2b β-lactamase, α1 was much more stable than that observed in L2a β-lactamase. 

Only the N terminal displayed disordered dynamics. β9-α15 loop was stable in this case. 

In contrast, α6-α7 showed high dynamics in L2b β-lactamase. This could be explained 

by the stability of β9-α15 loop. Based on the L2b β-lactamase residue in the DCCM 

plot (Figure 91), there is a negative correlation between β9-α15 and α6-α7. The stable 

state of β9-α15 loop could increase the dynamics of α6-α7 and allow interactions to 

form more readily in this region. The β7-β8 loop comes closer to Ω loop and can both 

form interactions with residues in the Ω loop (N170-N238) and the hinge region (T216-

R243) which results in the dynamic in these two areas. On the other side of the enzyme, 

the C terminal moves away from β1-β2 loop and β8-β9 loop in L2b β-lactamase. The 

side chain of R283 moves closer to S276. This interaction pulls the entire α15 helix 

away from β1-β2 loop and β8-β9. Without the influence of the N-terminal, the β1-β2 

loop and β8-β9 are still highly dynamic regions but show less RMSF when compared 

with L2a β-lactamase. The interactions between these two loops, via L50-V259 and 

T52-P257, are the reason why they are positively correlated and can influence each 

other. The residues in α10 helix were also highly dynamic. There was a φ angle main 

chain rotation (around 100 degree) of G156 (Figure 104), which could change the 

localised conformation of several residues.230   
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Figure 104: φ angle rotation of G156 in α10. The main chain rotation resulted in the residue 

and its neighbours having a big conformational change.  

 

In L2b β-lactamase, the cross-correlation was much apparent. The CVAE results of L2b 

β-lactamase in low energy basins were also very similar. The only differences were 

present in β1-β2 loop and Ω loop. 9 states were built, almost all of them exhibited 

similar dynamic pattern. The most populated states had the same RMSF during the 

simulation. This could indicate that the L2b β-lactamase it is a much stable system.   
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L2c β-lactamase discussion 

There was only 4% Cα RMSD over 0.9 Å in L2c β-lactamases (Figure 62). The high 

RMSD regions included α1, β1-β2 loop, distal flap, α6-α7, Ω loop, α10, hinge region, 

β7-β8 loop, β8-β9 loop and β9-α15 loop. The RMSF plot was generated for 6 states in 

L2c (Figure 105). Based on the Table 8, most structures in the simulation will remain 

in state 6. State 5 was another populated state but is also a substate of state 6. The 

structures go from state 1 and reach state 6. After staying in state 6 some structures can 

change conformation between state 5 and state 6. Thus states 5 and 6 represent about 

88% of all the structures. They exhibit much lower energy than the other metastable 4 

states (Table 8). Only a few cross-correlations were identified in L2c β-lactamase; a 

little more than L2b β-lactamase but much less than L2a β-lactamase. The negative 

correlation between β9-α15 loop and α6 that was observed in L2a and L2b β-lactamases 

was still present.  

Figure 105: RMSF plot for the 6 states of L2c β-lactamase. Different colour represents 

different states. 
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In the L2c β-lactamase, the α1 helix, β9-α15 loop, β7-β8 loop and the hinge region are 

highly dynamic, similar to L2a β-lactamase. The α1 helix comes in the vicinity of β9-

α15 loop making interactions S21-Q273 and result in the elevated dynamics of these 

two regions. As mentioned above and showed in Figure 99, the hinge region, β9-α15 

loop and β7-β8 loop can affect each other’s dynamics.229 The α1 helix and β9-α15 loop 

dynamics will also result in the dynamics of hinge region and β7-β8 loop indirectly. 

However, the general dynamics of L2c β-lactamase was much stable than L2a β-

lactamase. Due to the negative correlation that existed between β9-α15 loop and α6, the 

patterns of motion in of α6-α7 was similar to L2b β-lactamase. In this case the α6 and 

α6-α7 loop was in a relaxed state and can form interactions with neighboring residues. 

The Ω loop is also in a highly dynamic state, where G175 main chain rotation is 

observed on the Ω loop (ψ angle).230 This occurs with the same frequency for all states 

which can explain the similar RMSF value in all states of the Ω loop.229,230 The main 

chain rotates by about ~200 degrees rotation (Figure 106). Besides, β7-β8 loop can 

come closer to the Ω loop and form bonds with the Ω loop (N170-N238).246  On the C 

terminal side, the combination of C terminal, β1-β2 loop and β8-β9 loop was 

maintained. The C terminal was attracted by both β1-β2 loop and β8-β9 loop, resulting 

in a relatively high dynamic.  
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Figure 106: ψ angle rotation of G175 on Ω loop. The main chain rotation will result in the 

residue and its neighbours having a big conformational change. 

 

Based on the RMSF plot (Figure 105), a high RMSF region only existed in state 5 was 

observed, happened on β7-β8 loop. It was found a main chain rotation mostly only 

happened in state 5 (Figure 107). The ψ angle of E240 was over 0 degree stay at around 

25 degree in most structures (red line in Figure 108), while on all other 5 states, the ψ 

angle was mostly under 0 degree and stayed at around -50 degree (black lines in Figure 

108). The main chain rotation made the stable bond D241-Q265(β9) change to stable 

bond D241-R274(α15) (Figure 107). This main chain rotation could possibly explain 

why some structures reach state 6 and then change to state 5, because this was the only 

obvious dynamic difference between state 5 and state 6. This is also confirmed by the 

low mean first passage time between state 5 and 6 indicating a low energy barrier 

between the two states.188,247 The distal flap was also observed to be highly dynamic 

but only included few residues (R86 and R87). The RMSF result highlights that this 

mostly happens in state 1 and 2 and becomes more stable in the following states. State 

1 and 2 only represent for less than 1% of all conformations in total and the dynamics 

could be because of the R86 and R87 long side chain rotation. In general, the distal flap 
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was stable in most cases.  

 

In L2c β-lactamase simulation, the CVAE extracted structures were quite similar.248,249 

Only β1-β2 loop had obvious differences. The Ω loop and α1 helix had small side chain 

rotations which were similar to L2b β-lactamase. In general, most L2c β-lactamase 

structures had similar dynamic pattern, from state 1 to state 6. Only state 5 had a main 

chain rotation which resulted in a differing RMSF peak. In spite of this state 5 was 

mostly similar to state 6. The main chain rotation could be the key factor of the different 

dynamics between state 5 and all other states. Very few cross-correlations were 

observed and not large differences between different states. This could imply a simple 

dynamic system which can be influenced by limited factors.245 
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Figure 107: The ψ angle rotation of β7-β8 loop. The rotation occurs in state 5. The main chain 

rotation breaks the stable D241-Q265(β9) bond and made a new stable bond between D241-

R274(α15). The rotation results in a high dynamics for D241.  
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Figure 108: Rotation of D241 ψ angle. The red line represents state 5, black lines represents 

state1,2,3,4 and 6. Only in state 5, the average value of ψ angle was about 25 degree. In all 

other states, the value of the ψ angle was around -50 degrees. 
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L2d β-lactamase discussion 

In L2d β-lactamase, 13% of Cα RMSD was more than 0.9Å (Figure 64). This is the 

most dynamic of all L2 β-lactamase enzymes. The highly dynamic regions include: α1, 

β1-β2 loop, β2-β3 loop, distal flap, Ω loop, α10-α11 loop, hinge region, α14-β7 loop, 

β7-β8 loop, β8-β9 loop and β9-α15 loop. L2d β-lactamase was the most different 

enzyme from the other three L2 β-lactamase enzymes. It displays the least identical 

sequence, only around 69% (Figure 56). In contrast, L2a, L2b and L2c had over 90% 

sequence identity. 8 states were built for L2d β-lactamase. State 8 had 57% of structures 

while state 4 was 7%, state 5 was 6%, state 6 was 12% and state 7 is 15%. The structural 

distribution was more even in L2d β-lactamase. Therefore, the dynamic system could 

behave more varied which resulted in the large numbers of high dynamic regions. The 

RMSF plot was generated for L2d β-lactamase states and is illustrated in Figure 109. 

Figure 109: RMSF plot for 8 states of L2d β-lactamase. Different colour represents different 

states. 
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In L2d β-lactamase, α1 helix, β9-α15 loop, β7-β8 loop and hinge region are in close 

proximity (mentioned above and shown in Figure 99). The dynamics of each one of 

these four regions will affect the other three regions’ dynamic. α1 was quite stable in 

most states, but in state 8 the RMSF was very high. It was found that in state 8, N 

terminal can rotate to a much wider region to make interaction with, such as with β9-

α15 loop or α14 helix. The rotation of α1 can influence β9-α15 loop. As mentioned 

above, the bonds between T216-R243 and Y271-R243 control the dynamics of β9-α15 

loop, β7-β8 loop and hinge region. In L2d, Y271 has been instead by an aspartic acid 

(D272. L2d had an extra residue at residue 40. When residue at the same position in the 

sequence alignment, their number need to plus one after residue 40 in L2d). The residue 

changes on Y271 made R244 in L2d easier to get attracted by C221. The change in 

sequence of L2d enzyme, did not alter the correlation between β9-α15 loop, β7-β8 loop 

and hinge region. Instead, it enhanced the dynamics and made it more varied.   

 

On the other side of the protein, the C terminal, β1-β2 loop and β8-β9 loop interactions 

were broken. The α15 helix showed greater stability. The C terminal remained in its 

position and could not come close to β1-β2 loop and β8-β9 loop. The bonds between 

β1-β2 loop and β8-β9 loop were still formed. Without the influence of the C terminal 

residues, it was much easier for β1-β2 loop to make interactions with β2-β3 loop (such 

as R57-Q63 and R57-D64, shown in Figure 110). Because of R57 influencing dynamics, 

the bond between H61 and β2 loop (such as G60 and H61) was easier to break (shown 

in Figure 110). The formation and bond breakage among β1-β2 loop, β2 and β2-β3 loop 
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results in high dynamics of the three regions. Besides, β8-β9 loop could also be 

influenced as well via β1-β2 loop. 

Figure 110: The interactions between β1-β2 loop, β2 and β2-β3 loop. The different coloured 

ribbons represent different regions, red for β1-β2 loop, yellow for β2, green for β2-β3 loop. 

R57 could form bonds with both Q63 and D64. The presence of R57 will make the bonds 

between Q63 and β2 (such as H61 and G60) easier to break. 

 

The dynamics of β2-β3 loop can also influence α10-α11 loop. The long side chain of 

R66 displayed bond formation with both α10-α11 loop and α12 helix (D183). R66 was 

closer to α12 helix, but in some cases, it can be attracted by α10-α11 loop and form 

bond with the backbone of I160.  The bond formed between R66 and I160 did not affect 

the stability of α12 helix very much. This could because the secondary structure of the 

protein is harder to show a conformational change rather than loops.250,251 On the other 

hand, the bond formation and loss with α10-α11 loop results in the α10-α11 loop to be 

highly dynamic (Figure 111).  
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Figure 111: The interactions between β2-β3 loop, α10-α11 loop and α12. The different colour 

ribbons represent different regions: β2-β3 loop (green), α10-α11 loop (red), α12 helix (yellow). 

R66 can make interactions with α12 (D183), and α10-α11 loop (I160). These interactions 

stabilise the loops in the region. 

 

There was a ψ angle main chain rotation observed in L226 on α14-β7 loop (about 180 

degree) (Figure 112). The rotation occurs in state 2, 3, 4, 6, 7 and 8. It seldom happens 

in state 1 and 5. In state 1 and 5, ψ angle is stabilized at around -40 degree and became 

around 140 degree in state 2,3,4,6,7 and 8 (Figure 113). The rotation resulted in bond 

formation between G227 and D287(α15) which could help to stabilise the region 

(Figure 112). This is the reason why state 2,3,4,6,7 and 8 display a lower RMSF in this 
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region. Besides, distal flap showed a high dynamic in L2d β-lactamase.229,230 The 

metastability of this region could imply an “open” and “close” dynamics. The open 

conformation of distal flap could be linked akin to a pocket opening to access the 

hydrophobic nodes, similar to that observed in KPC-2 β-lactamase.230 To investigate 

this loop further, the distance between V90(C) and F202(C) was measured. It was 

found that the structures stayed in an “open” state in most cases (~18 Å), but in some 

rare occasions, the distance will reach less than 15Å.252 No particular “closed” state was 

found in any of the 8 states. Only in some rare cases the closed conformation was 

observed. Such a low number of observed conformations is not statistically significant 

to label it as a closed state. The tendencies of this region result in the dynamic. The Ω 

loop was also observed to be highly dynamic. Based on the cross-correlation plot 

(Figure 89), a negative correlation between Ω loop and α15 was identified.231,245 

Therefore, when α15 becomes more stable, the negative correlation results in higher Ω 

loop dynamics.  
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Figure 112: The ψ angle rotation occurs on α14-β7 loop in residue G227. The rotation occurs 

in state 2, 3, 4, 6, 7, 8. The main chain rotation allows bond formation between G227 (bb) and 

the side chain of D287 (α15), helping to stabilise the loop. Therefore, state 2, 3, 4, 6, 7 and 8 

show low RMSF in this region.  
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Figure 113: Rotation of the ψ dihedral angle of residue G227 .The black lines represent state1 

and 5, the red line represent state 2, 3, 4, 6, 7 and 8. In state 1 and 5, the ψ angle stayed at 

around -40 degree and was around 140 degree in states 2,3,4,6,7 and 8. 

 

 

In L2d β-lactamase, the number of high dynamic regions was relatively higher than that 

of the other three enzymes. More main chain rotations were observed. The dynamic 

cross-correlation map also shows highly dynamic state 2. In CVAE, the extracted 

conformations show high diversity (Figure 95 and 96). This could because of most of 

the L2d structures were clustered separately. Only a few conformations mixed with the 

other L2 β-lactamases. The differences in the extracted conformations structures also 

implied a complicated dynamic system. These highly mobile regions could influence 

and affect the catalytic process in this enzyme.248,251  
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Combined L2 β-lactamase discussion 

Among all four L2 β-lactamase proteins, there were several common dynamic regions: 

β1-β2 loop, β7-β8 loop, hinge region and β8-β9 loop. These regions can be clustered as 

two dynamic combinations observed in all four simulation. First, was the α1 helix, β9-

α15 loop, β7-β8 loop and hinge region. The α1 helix shows high dynamics in the 

simulation. It is positioned is at the untethered N-terminal end of the enzyme and does 

not make interactions with any other secondary structural elements. Thus, as a result of 

its flexibility this helix can come close to β9-α15 loop and affect β9-α15 loop dynamics. 

β9-α15 loop is positioned parallel to β7-β8 loop; this allows bond formation between 

Y271 (β9-α15 loop) and R243 (β7-β8 loop). However, the long side chain of R243 can 

also come close to T216 from the hinge region. Therefore, the R243 can also form 

bonds with both Y271 and T216. The bond formation and loss between these three 

residues influences the dynamics in β9-α15 loop, β7-β8 loop and hinge region (Figure 

99).  

 

The second region was the interactions between the C-terminal β1-β2 loop and β8-β9 

loop region. C-terminal is also highly dynamic in most cases. The C-terminal can form 

interactions with β1-β2 loop and β8-β9 loops individually or with both loops 

simultaneously. The interactions can vary, depending upon the sequence from different 

enzymes (such as G290-R56 in L2a). The high dynamics observed in the C terminal 

will influence the stability of β1-β2 loop and β8-β9 loop.  
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Different from other more investigated class A β-lactamase such as KPC, SME, SHV 

and TEM, L2 β-lactamase has an extra α1 helix, which could affect the dynamics of the 

entire system.210,229,243 The α1 helix is relatively stable in L2b and L2d β-lactamases. 

L2d β-lactamase has a sequence identity of around 69% with all other three enzymes. 

However, L2a, L2b, L2c have about 92% sequence identity, which makes it easier to 

identify key residues involved in the dynamics in α1 helix (Figure 56 shows sequence 

alignment). In L2b β-lactamase α1 helix, only residue N21 was different from L2a and 

L2c (residue S21). It was also observed that residue S21 correlated with the dynamics 

of α1 helix in L2a and L2c enzymes. This indicates that residue S21 could be the key 

residue for stabilising the interactions in the α1 helix.  

 

Figure 114: RMSF plot for L2a, L2b, L2c and L2d β-lactamases. Different colours indicate 

different proteins. 
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L2a, L2b and L2c β-lactamases have high sequence identity.81,204 However, the 

dynamic manifestation between these systems is quite different (Figure 114, RMSF plot 

for all four proteins). Based on the RMSF plot, even in spite of L2d β-lactamase having 

low sequence identity, it still shows similar dynamics.81,204 This indicates there should 

be a conserved dynamic pattern for all four proteins. L2a β-lactamase had 25% of Cα 

RMSD >0.9Å while L2b and L2c β-lactamase had 3% and 4% respectively. There are 

only few residues in L2a β-lactamase that are different form L2b and L2c enzymes, 

which can be a cause of this difference namely V41, R42, Q87, S154, I155, T162, L228 

and R232. These residues mostly belong to the stable regions.  This implies that some 

of them could be crucial in signal transfer. Besides, L2a β-lactamase was dynamic in 

α1-α2, β9-α15 loop, β7-β8 loop which was different from all other 3 proteins. L2b and 

L2c β-lactamase show similar RMSF in these regions. This indicates that L2a β-

lactamase key residues should be different from both L2b and L2c enzymes on the same 

position of the sequence. Due to the high sequence similarity between L2a, L2b and 

L2c, there were very limited residues that could meet the requirement. Residues V41 

and R42 were the only two residues matching the selection. Besides, the RMSF peak at 

β4-α16 loop could also use the same pattern of selection. The key residues in L2c β-

lactamase in this region should be different from both L2a and L2b enzymes. R97 and 

D98 in L2c enzyme are the only ones that fit the criteria. These selected residues could 

be important nodes for signal transfer or the dynamic system.229,253 Future research can 

target on these residues function, such as whether they join the catalytic activity or they 

can affect the substrate binding.253   
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8. Conclusion 

8.1 L1 Metallo-β-lactamase Conclusions 

This study aimed to improve the understanding of L1 β-lactamase using molecular 

dynamics simulations. The adaptive sampling dynamics simulation was employed, 

MSM models were built, CVAE were carried out, network analysis was used to 

investigate the dynamics of the elongated gating loops using various computational 

methods.188,197,226   

 

More specifically, this work focuses on the dynamics of two gating loops and the 

relationship between the two elongated loops and the zinc binding site.204 The results 

indicate that the two gating loops’ (α3-β7 loop and β12-α5 loop) dynamics can affect 

the structural dynamics of the zinc binding site. Different conformations of these two 

loops results in different substrate binding pocket size and affects substrate binding. 

There are three main structural features that control the dynamics of the gating loops 

which were highlighted in different metastable states. The salt bridge between residue 

D150c and residue R236, the π–π stacking between residue H151 and residue Y227, 

P225 in the “in” configuration classify the loops to be in open, intermediate or closed 

conformations. Besides, β12-α5 loop displays highly flexibility during dynamics while 

α3-β7 loop was relatively stable due to the direct proximity to the zinc binding site. 

Furthermore, the correlation between the four subunits was investigated by employing 

the CVAE-based deep learning and network analysis.174,175,248,249 The results indicated 
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a dimer-of-dimers pattern of dynamics in the L1 MBL tetramer.213,214 The CVAE results 

revealed subunit A has similar dynamics with subunit C while subunit B has similar 

dynamic pattern with subunit D. Network analysis also verified this through the parallel 

and vertical comparison of the network paths. The dynamic research of the two gating 

loops and the correlation between the tetramers will help the understanding of L1 β-

lactamase dynamics. The “open” and “closed” conformation can control the volume of 

the binding pocket. The pocket volume has a significant increase in the “open” state 

which can allow bigger substrates to get access. Therefore, the “open” state can give 

the maximum probability for L1 MBL inhibitor research. Furthermore, the key 

interactions that control the “open” and “closed” conformations are also revealed. 

Inhibiting or changing the function of these key interactions’ residues can possibility 

result in the maintain of “open” state and help the inhibitor design.  Besides, a dimer of 

dimers dynamic pattern in L1 MBL tetramer has also been indicated. The conserve 

nodes on the protein-protein interactions between monomers could also be the potential 

target. Inhibiting these nodes function could possibility make the tetramer work similar 

to four monomers and reduce the dull catalytic function. 

 

The work on L1 MBL has been published as: “Gating interactions steer loop 

conformational changes in the active site of the L1 metallo-β-lactamase” Zhao, Z.; 

Shen, X.; Chen, S.; Gu, J.; Wang, H.; Mojica, M. F.; Samanta, M.; Bhowmik, D.; Vila, 

A. J.; Bonomo, R. A.; Haider, S. Gating Interactions Steer Loop Conformational 
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Changes in the Active Site of the L1 Metallo-β-Lactamase. eLife 2023, 12, e83928. 

https://doi.org/10.7554/eLife.83928.203 
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8.2 L2 β-lactamase Conclusions 

The aim of this study was to advance the understanding of the L2 β-lactamase dynamics 

and investigate the dynamic similarities or differences in all four L2 β-lactamase 

proteins through MSM analysis, MDLovofit and CVAE-based deep 

learning.140,170,175,188,228 The Markov State Models were built for analysing the diversity 

of dynamics between multiple metastable states.247 Different metastable states are 

stabilised as different structural conformations. By analysing these structural changes 

in the same region from different metastable states help to understand the crucial 

conformational changes in the structures.170 These high dynamic regions were explored, 

and several key conformational changes were revealed and explained through various 

analysis tools. Dynamic cross-correlation analysis was explored by Bio3d, deep 

learning was performed through CVAE, the free energy map helped in defining the low 

energy basins from which several structures were extracted.140,231 The alignment of 

these structures, from the low energy basin, indicated different highly mobile regions 

and dynamic systems.140 A parallel comparison within and between systems was also 

carried out. As initial research, the conformational changes and the dynamic patterns in 

the L2 β-lactamase family is reported. The dynamic regions with high RMSF were 

explored and the structural role of α1 helix/N-terminal, β9-α15 loop, β7-β8 loop, hinge 

region, and C terminal, β1-β2 loop and β8-β9 loop was revealed. It is proposed that 

stabilising these regions may help in influencing the structural dynamics of the L2 β-

lactamase.  
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8.3 Summary and Future Work 

This work is focusing on the β-lactamase dynamic investigation. The β-lactamase 

problem is one of the most urgent topics for public health.52,242,254 It can inhibit the 

function of the β-lactam antibiotic which is the most widely used antibacterial agent 

family.15,28,48 S. maltophilia can produce two kinds of β-lactamases: L1 MBL and L2 

SBL.88,89,232,255 These two β-lactamases allow it to hydrolyse almost all the β-lactam 

antibiotic drug.88,232 The mortality rate of S. maltophilia is from 14% to 69% for 

bacteraemia patients.82,83 The more frequent appearance of S. maltophilia makes the 

investigation of L1 and L2 β-lactamases become important. The more information we 

learn, the easier we can design corresponding β-lactamase inhibitors. 

 

In this work, L1 gating loops dynamic and subunits correlation have been investigated. 

The “open” and “closed” conformations with the key interactions control these 

conformations were revealed.203 As the “open” state can give the maximum probability 

for drug designer. The “open” state is the best target for inhibitor developing. Through 

inhibiting these key interactions will potentially result in the L1 MBL stay in “open” 

state.  Besides, a dimer of dimers correlation pattern was also revealed, key residues 

were indicated.203,213 The residues on the protein-protein interactions could be the 

potential targets for affecting the tetramer signal transferring and thus reduce the 

catalytic activity of the tetramer. 
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In L2 work, the important dynamic regions are investigated. Since there is few research 

on L2 SBL, this work is an early-stage study for the future investigation. Two high 

dynamic region combinations were revealed, several main chain dihedral angle change 

were indicated, the similarity and difference of four enzymes’ dynamic pattern were 

studied. The two high dynamic regions combinations exist in all four kinds of L2 β-

lactamase. Thus they can be important for the whole dynamic system function. Target 

these regions and inhibit the dynamic combinations will potentially inhibit L2 SBL 

catalytic function.  

 

There are also some limitations exist in this work. 1)The pH value was set at 7 for set 

up the L1 simulation. The histidine protonation type HIP only exists in lower pH value, 

which limits the simulation.182 2)We used tICA method for MSM model building which 

will ignore some fast motion in the simulation.256 3)The results of MSM are based on 

feature selection, multiple features and their combinations can be selected. It is possible 

that other features will give better results.165,173,188 4) In molecular dynamics simulation, 

the electronic effects are ignored.117,119,257,258 5) The parameters can be easily set in 

molecular dynamics simulation, but in the real environment, it could be difficult to 

reproduce the experiment.117–119 

 

The future work can focus on the key residues, interactions and regions in this work. 

For L1, the investigation of how to inhibit the three key interactions of gating loops 

could be worth. Whether any of them can be inhibited, how much of “open” state will 
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represent for if one of these key interactions can be inhibited, what is the volume change 

of the binding pocket during the dynamic and which ligand could be possible fit this 

pocket. Furthermore, the conserve nodes of signal transferring between subunit could 

also be targets.197  Whether these nodes’ function can be inhibited. If the nodes can be 

inhibited, how will the tetramer work, four monomer, dimer of dimer or one monomer 

with trimer. Numbers of work can be done based on these results.213,214 For L2, the two 

dynamic combinations could be important for the whole structure dynamic and it need 

to be tested and verified. Besides, will the extra α helix affect the key residues function 

which has already been proved in other class A serine β-lactamases. The understanding 

of L2 β-lactamase is still limited and need to be investigated. 
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