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Abstract

Recent years have witnessed a surging interest towards the use of machine

learning tools for causal inference. In contrast to the usual large data settings

where the primary goal is prediction, many disciplines, such as health, eco-

nomic and social sciences, are instead interested in causal questions. Learning

individualized responses to an intervention is a crucial task in many applied

fields (e.g., precision medicine, targeted advertising, precision agriculture, etc.)

where the ultimate goal is to design optimal and highly-personalized policies

based on individual features.

In this work, I thus tackle the problem of estimating causal effects of

an intervention that are heterogeneous across a population of interest and

depend on an individual set of characteristics (e.g., a patient’s clinical record,

user’s browsing history, etc..) in high-dimensional observational data settings.

This is done by utilizing Bayesian Nonparametric or Probabilistic Machine

Learning tools that are specifically adjusted for the causal setting and have

desirable uncertainty quantification properties, with a focus on the issues of

interpretability/explainability and inclusion of domain experts’ prior knowledge.

I begin by introducing terminology and concepts from causality and causal

reasoning in the first chapter. Then I include a literature review of some of the

state-of-the-art regression-based methods for heterogeneous treatment effects

estimation, with an attempt to build a unifying taxonomy and lay down the

finite-sample empirical properties of these models. The chapters forming the

core of the dissertation instead present some novel methods addressing existing

issues in individualized causal effects estimation: Chapter 3 develops both
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a Bayesian tree ensemble method and a deep learning architecture to tackle

interpretability, uncertainty coverage and targeted regularization; Chapter 4

instead introduces a novel multi-task Deep Kernel Learning method particularly

suited for multi-outcome — multi-action scenarios. The last chapter concludes

with a discussion.



Impact Statement

The desire for highly personalized decision-making, that requires to implicitly or

explicitly hinge on causal reasoning and counterfactual statements, is pervasive

across several disciplines both at the industrial and academic level. However,

in most of these disciplines exploration of policies in the real-world through

randomized experiments is often costly, harmful or simply not feasible, and

thus researchers must rely on observational data. Following what has been

briefly mentioned in previous paragraphs, I will describe some real-world case

studies where causal machine learning methods, such as the ones developed in

this work, are in high-demand and already extensively deployed.

The original motivating case study for this thesis work particularly con-

cerned an application in the medical sciences, where the aim was to develop and

deploy a model to output the best therapy among three types of treatments,

two surgical and one non-surgical, for patients with history of cardiovascular

diseases, based on patient-specific clinical features. This is just one of the many

example in the clinical realm where causal learning is useful, as the methods

developed here are fairly generalizable to any type of counterfactual questions

about policy interventions, such as “what would have happened if individual i

undertook treatment A instead of treatment B?”, where one cannot typically

rely on randomized experimental data. But this type of what-if question is

typically found in several other domains. For example, recommendation sys-

tems are popular tools used in the tech and media advertising industry to

suggest new contents to a user (e.g., a product to buy online, a new movie

to watch, a new song/artist to listen to, etc.), where the underlying aim is to
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choose an action (e.g., a product to suggest) that maximizes a certain type of

reward/outcome (e.g., probability of buying the product suggested), based on

the user-specific history. Another example is precision agriculture, where the

aim is, e.g., to choose a combination of soil nutrients that maximize crop yield.

The ones cited above are just few of the many examples of real-world

applications of causal learning, as these methods arouse interest from virtually

any fields where individualized targeted policy making is ultimately of concern.

This explains why they are increasingly high in demand both in the industries

and in academia.

This work has led to the publication of several contributions in peer-

reviewed journals, as listed in more details later.
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Chapter 1

Introduction

The use of advanced statistical learning tools (Hastie et al., 2001; Murphy, 2012)

in causal inference has gained popularity in recent years, partly due to the fact

that large datasets are becoming available at relatively lower costs (thanks to,

e.g., electronic health records, social network data, etc.). One of the increasingly

common objectives of causal inference in many disciplines is to draw inferences

about individual-level causal effects and learn highly-personalized policies, as

opposed to average across the population of interest. The importance of inferring

individual-level causal effects lies in the fact that the impact of an intervention

is very often heterogeneous across units of analysis, so that optimal “treatment”

allocation policies need to be specifically tailored for different population’s

subgroups. Two such examples arise in precision medicine (Collins and Varmus,

2015; Hodson, 2016) and targeted advertising domains (Cheung et al., 2003),

where the ultimate goal is to make different decisions for each specific patient

or user. For instance, patients with high cholesterol levels respond differently

to statin prescriptions based on their age, gender, comorbidities, etc. This

type of analysis requires causal methods that can accurately estimate and

predict the impact of such treatment at a fine resolution, as well as quantify

uncertainty around it. To this end, popular statistical learning algorithms

that exhibit excellent predictive performance, such as tree ensembles, kernel

methods and neural networks, can be exploited also, with due adjustments, in

these causal settings (Künzel et al., 2017; Caron et al., 2022a). Additionally,
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Bayesian nonparametrics offer a toolbox of flexible and complex methods with

desirable Bayesian coverage properties for uncertainty quantification. This work

is therefore motivated by the growing number of (Bayesian) non-parametric

regression methods for modelling Individual (Causal) Treatment Effects

(ITE) using large datasets to answer individual-level counterfactual questions.

The fundamental problem of causal inference is that the random variable

of interest — namely the causal effect — is never directly observable, thus

standard supervised learning techniques cannot be directly applied. Moreover,

in the context of observational studies, the mechanism driving treatment allo-

cation is usually unknown and can obscure the causal effect of interest through

confounding factors (Dawid, 2000; Pearl, 2009a; Imbens and Rubin, 2015).

Confounding factors are observed or unobserved common causes of both treat-

ment selection and outcome. The “latent” treatment effect needs to be inferred

then by reconstructing counterfactual statements through randomization in the

experimental design phase, or in the case of observational data resort to, e.g.,

importance sampling (via weighting methods), matching, and/or regression

adjustment, provided that identification is actually assumed to be possible.

Randomized experiments, where treatment is randomly allocated,

marginally on confounding factors (such as clinical history or socio-economic

characteristics), are considered to be the gold standard in causal inference.

However, exploration of policies in the real-world through randomized studies

is generally costly, harmful, or simply unfeasible. Furthermore, randomized

data sometimes suffer from problems such as non-compliance and missingness

that might invalidate the randomization mechanism. In contrast, data of

observational nature, where policy allocation is not randomized, are more easily

accessible and abundantly present in many applied fields. However, observa-

tional studies present several drawbacks, largely attributable to sample selection

bias, which manifests when the treatment allocation mechanism is not under the

researcher’s control, but determined by other factors, which may be observable

and/or unobservable. This constitutes a potential source of confounding, if
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related also to the outcome of interest, that needs to be controlled for, as it

generates structural differences between the different intervention arms/groups.

Similarly, selection bias also generates partial overlap problems, that occur

when there are regions in the space of relevant confounding covariates where

units belonging to a specific treatment arm are virtually absent. As a result,

this creates imbalances due to the fact that, in these regions, the researcher

does not have access to appropriate comparison units, with those underlying

characteristics. Finally, although we do not specifically address this scenario in

this work, selection bias might also generate problems related to the fact that

treatment allocations and corresponding outcomes may not be independent

across individuals, i.e., sample displays interference between the units; we shall

briefly discuss this case of network interference in the last sections of this work.

We proceed by briefly summarizing contents in this manuscript. The

current chapter, Chapter 1, introduces the problem of causal learning and

causal effect identification, accompanied by the relative possible mathematical

notations. In particular, we describe three different frameworks for causal

modelling: i) the Neyman-Rubin Causal Model (Rubin, 1974, 1978; Imbens

and Rubin, 2015); ii) do-calculus and graphical causal models (Pearl, 2009a;

Koller and Friedman, 2009; Peters et al., 2017); iii) the decision-theoretic

approach (Dawid, 2000, 2015). The focus will be primarily on the first two.

Chapter 2 then specifically outlines the problem of estimating Individual

Treatment Effects (ITEs) via (non-parametric) regression-based techniques and

reviews some of the most recent methods, by casting them under the same

unifying taxonomy. Implied assumptions and finite-sample properties of each

method are empirically assessed, and their performance compared, via simulated

experiments. A practical demonstration of the two best performing methods

emerging from the simulations is presented as well; this is based on a real-

world study on the effect of participation to school meal programs on students’

health indicators. Chapter 3 focuses specifically on Bayesian nonparametric

and Probabilistic Machine Learning regression techniques and presents two
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novel methods that combine three main desiderata when it comes to highly-

personalized policy making, that most existing black-box causal methods failed

to comply with: i) Interpretability: existing causal ML models do not produce

any interpretable measure of importance as to what are the main moderators,

among the observed covariates, of the heterogeneity behind the response to a

treatment; ii) Targeted regularization/shrinkage: most causal ML models

are incapable to convey carefully tailored regularization, and prior knowledge in

a Bayesian perspective, directly on the quantity of interest, i.e., causal effects,

and often end up generating unintended bias in the estimates. iii) Uncertainty

quantification: for similar reasons to point ii), these models do not directly

produce appropriate Bayesian uncertainty intervals around causal effects point

estimates. The two models presented are respectively based on a recently

developed Bayesian tree-ensemble model, named Bayesian Additive Regression

Trees (BART) (Chipman et al., 1998, 2010), and on a more interpretable variant

of Neural Networks (NNs), theoretically grounded as Generalized Additive

Model (GAM), called Neural Additive Models (NAMs) (Agarwal et al., 2021),

coupled with approximate Bayesian deep learning inference techniques (Gal

and Ghahramani, 2016; Lakshminarayanan et al., 2017; Pearce et al., 2020;

Abdar et al., 2021). Chapter 4 then introduces a novel Bayesian nonparametric

causal model based on multitask Gaussian Processes (Rasmussen and Williams,

2005; Alvarez et al., 2012) and Deep Kernel Learning (Wilson et al., 2016), to

specifically tackle settings with high-dimensional data along multiple axes, i.e.,

settings with large covariate space, multiple treatment arms and also multiple

outcomes of interest, where existing methods would incur in sample efficiency

losses and scalability issues. The manuscript concludes with Chapter 5 by

summarizing and outlining, existing or potential, interesting research directions,

mainly revolving around how to relax some of the main assumptions and

discussing the problem of “causal discovery” or Bayesian structure learning.
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1.1 Statistical and Causal Learning

In this section we briefly highlight and formalize the fundamental philosophical

differences underpinning statistical and causal learning, in order to give more

sound foundations to the concepts introduced in the earlier paragraphs of

this chapter (Peters et al., 2017). Statistical Learning (Vapnik, 1999, 2000),

very loosely speaking, is concerned with discovering the statistical properties

of random variables in terms of their dependence, leveraging a given (finite)

sample of data indexed by {1, ..., n}, where n denotes sample size. For example,

given an independent and identically distributed (iid) sample consisting in

the pair of random variables {Xi, Yi}ni=1
iid∼ pX,Y (·), where pX,Y (·) is a joint

probability distribution, the goal is to learn a predictor for estimating Yi given

Xi. Here Xi ∈ X is a covariate (or input/explanatory variable) and Yi ∈ Y is

the outcome (or label). This predictor f : X → Y is typically learnt as the the

minimizer, among a set of possible functionals F , of a type of associated “risk”

(risk minimization), i.e.:

f ∗ ∈ argmin
f∈F

Rtrue
pX,Y

(f)

Rtrue
pX,Y

(f) = EpX,Y

[
L(f(x), y)

]
=

∫
(X ,Y)

L(f(x), y) p(x, y) dxdy ,

where p(·) is the true distribution over x and y and L(f(x), y) is a loss func-

tion that depends on the type of statistical problem at hand (e.g., regres-

sion, classification, etc.). Now, since the true joint distribution pX,Y (·) is not

observable, one has to resort to approximation with its sample equivalent

R̂emp
pX,Y

(f) = 1
n

∑n
i=1 L(f(xi), yi) (hence the term empirical risk minimiza-

tion), and train the model based on this estimate instead of the ground-truth.

The available sample {xi, yi}ni=1 consists of observations that are realizations of

a random experiment whose statistical and probabilistic properties, captured

by the joint probability pX,Y (·), are unknown. This what defines an inverse

problem. If the data satisfy the iid assumption, and provided that the mini-

mizer f ∗ of the true risk lives in the (possibly restricted) function class f ∗ ∈ F ,
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a desirable asymptotic property of a certain supervised learning algorithm, that

selects a certain function f ∈ F , is consistency, i.e. empirical risk converges

to the true risk R̂emp
pX,Y

(f)
p−−→ Rtrue,∗

pX,Y
(f ∗), and the true minimizer f ∗ ∈ F

gets selected, as n → ∞ and the estimation error goes to zero. Restricting

the class of candidate functionals helps as asymptotic convergence might be

very slow for large functional spaces, but on the opposite side, if the restricted

class of functions F does not contain the true function f ∗ one incurs into an

approximation error in addition to an estimation error. Typical restrictions

to the functional class space F include additive separability (e.g., of noise

term), regularizers, prior distributions, etc. The success of the empirical risk

minimization paradigm relies then on the satisfaction of the iid assumption,

trade-off between faster asymptotic convergence and low approximation error in

choosing the restricted class F , and on the complexity of the true distribution

pX,Y (·).

Statistical Model

Causal Graphical Model

Structural Causal Model

Physical
Model

1

Figure 1.1: A simple hierarchy

of models, in terms of their ac-

curacy in depicting relationships

between variables.

In Causal Learning (Pearl, 2009a; Imbens and

Rubin, 2015; Peters et al., 2017), where the

goal is to ultimately retrieve the cause-effect

relationships (Blaisdell and Miller, 2012) not

just purely probabilistic ones, one is faced with

the challenge of a typical statistical learning

inverse-problem, plus an additional layer of

complexity given by the fact that, even un-

der full knowledge of the true distribution

pX,Y (·), the underlying causal model might

not be learnable. In fact, pX,Y (·) is effectively

an observational distribution, which implies that data from pX,Y (·) are collected,

loosely speaking, by passively observing the outcome of a random experiment

in an environment. Instead, causal modelling is concerned with learning about

interventional distributions, that is, about (probabilistic, still) effects of

manipulative interventions or distribution shifts on a system (Peters et al.,
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2017), thus relating to a deeper level of understanding than just the statistical

properties. This locates causal models a step closer to the most accurate type of

knowledge of a system, represented by the mechanical/physical model (Peters

et al., 2017; Schölkopf et al., 2021).

Figure 1.1 on the side depicts a simple hierarchy of models, departing

from the most accurate mechanical/physical models, which includes (from

top to bottom): i) pure statistical model, that cannot answer counterfactual

questions, nor predict under a distribution shift, but can be learnt from obser-

vational data; ii) causal graphical model, i.e., graphs where arrows represent

causal relationships, that can predict under a distributional shift additionally,

meaning when an observed intervention changes the joint distribution pX,Y (·);

iii) structural causal models, i.e., system of equations expressing approximate

functional relationships between the variables of a system, that can also answer

counterfactual “what-if” questions (about why things happened); iv) physi-

cal/mechanical model, i.e., usually a system of differential equations, that can

do all the previous things, plus fully describe physical properties of a system.

Physical models become increasingly hard, if not impossible, to even formulate

as complexity of the system grows. Thus, causal models lie somewhere in the

middle of the hierarchy, and have additional desirable properties compared to

statistical ones. However, the causal learning problem inherits the hardness of

a statistical learning task, where one ought to make a first set of assumptions

to e.g. have iid data, restrict the functional class, etc., and, on top of that,

necessitates additional assumptions to identify the underlying causal properties

of a system from purely observational data, flawed by confounding sample bias.

These causal assumptions are laid out and discussed in the following sections,

under three equivalent mathematical frameworks for causal modelling.

1.2 Causal Modelling Frameworks

Identifying causal effects with fully randomized experimental data is relatively

less burdensome than with observational ones, as we get access to the (uncon-



1.2. Causal Modelling Frameworks 30

founded) “interventional” state of the world, where the causal effects (effects of

manipulative interventions) of interest are, by construction, isolated from any

other spurious associations (e.g., correlations between two non-stationary time

series). In the realm of observational data, assumptions are instead necessary

in order to remove confounding and effectively derive unbiased estimates of

causal effects by using observational quantities. In this section, we mainly in-

troduce the mathematical notation to represent causal notions, which has some

additional features compared to the purely statistical/probabilistic notation,

and we discuss causal assumptions necessary for the identification of causal

effects. The mathematical notation utilized for causal reasoning is not unique.

There are different, albeit equivalent, ways, or frameworks, for representing in-

terventional distributions. We begin by introducing the Neyman-Rubin Causal

Model framework (also known as the Potential Outcomes framework), popular

in e.g., the statistical, econometric and social sciences literature. Then we

proceed by discussing Pearl’s graphical approach, which relies on graphical

representation of Structural Causal Models via Bayesian Networks (Koller and

Friedman, 2009) and do-calculus, more popular, e.g., in the computer science

literature. Finally, we briefly comment on a third framework, represented by

Dawid’s decision-theoretic approach.

1.2.1 The Neyman-Rubin Causal Model

The Neyman-Rubin Causal Model, also known as the Potential Outcomes (POs)

causal model, (Neyman, 1923; Rubin, 1974, 1978; Splawa-Neyman et al., 1990;

Imbens and Rubin, 2015), very loosely speaking, conceives causal inference

as a structural missing data problem. For each unit of analysis i ∈ {1, ..., n},

we first define Ai ∈ A as the action (or treatment) variable, which consists

of a manipulative variable that we can artificially intervene on. We will

restrict our analysis to discrete A spaces, in particular to scenarios with a

binary action indicator A = {0, 1}, where Ai = 1 indicates exposure to,

e.g., a treatment and Ai = 0 indicates no exposure. However, notice that

most of the regression-adjustment methods reviewed in later sections can
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potentially be extended to the case of multi-arm discrete action space. Given

Ai ∈ A = {0, 1}, the framework defines the quantities
(
Y

(0)
i , Y

(1)
i

)
as Potential

Outcomes, where Y
(1)
i corresponds to unit i’s outcome under exposure to the

treatment, while Y
(0)
i corresponds to its outcome under no exposure. The

fundamental problem of causal inference is that, for each i, only one of the two

POs is actually observable, the “factual” outcome, while the other potential

outcome is effectively a “counterfactual”. The observed factual outcome Yi

then is the one corresponding to the specific realization of the action variable

(i.e., the action performed): Yi = AiY
(1)
i + (1 − Ai)Y

(0)
i . We will generally

consider, throughout this work, a setting where the outcome variable of interest

is continuous, i.e.,
(
Y

(0)
i , Y

(1)
i

)
∈ R2, but again most of the ideas and methods

presented can in principle be generalized to other types of outcome. We denote

then by Xi ∈ X a potentially high-dimensional set of observed covariates (e.g.,

patient’s or user’s characteristics). In the case of observational studies, a subset

of observed covariates X̃i ⊆ Xi constitute a possible source of confounding,

as that they may simultaneously determine the action Ai and the outcome

Yi (common causes). There could also be unobserved sources of confounding

Ui ∈ U , still common causes of Yi and Ai, that might impede identification.

Scenarios with unobserved confounders need to be addressed in a different way,

which entails a different set of assumptions (e.g., via instrumental variables).

However, throughout this work we will assume that we observe sufficient

variation in the high-dimensional covariates to capture the confounding effects.

Finally, we denote the main quantity of interest Y
(1)
i − Y (0)

i as the Individual

Treatment (or Causal) Effects (ITEs), that is, the (never observable) effect of

intervening on Ai, artificially setting it to Ai = 1 instead of 0, on the same

individual i. Provided we have access to either observational or randomized

experimental data Di = {Xi, Ai, Yi}, with i ∈ {1, ..., n}, the general aim is

to efficiently derive estimates for moments of the Y
(1)
i − Y (0)

i interventional

distribution. Two moments of primary interest are the Conditional Average
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Treatment Effect (CATE) and the Average Treatment Effect (ATE), defined as

CATE: τ(xi) = E
[
Y

(1)
i − Y (0)

i |Xi = xi

]
= µ1(xi)− µ0(xi) and (1.1)

ATE: τ = EX
[
τ(xi)

]
= EX

[
Y

(1)
i − Y (0)

i

]
, (1.2)

where the two quantities µ1(xi) = E
[
Y

(1)
i | Xi = xi

]
and µ0(xi) = E

[
Y

(0)
i |

Xi = xi
]
in (1.1) are the conditional average potential outcomes. The intuition

behind the estimation of CATE τ(xi) is the following. In case both potential

outcomes were observed, then Y
(1)
i − Y

(0)
i (ITE) would be modelled as the

response variable in a supervised regression framework where Xi are the d

regressors, and where the aim is to estimate the conditional mean of the

outcome, namely τ(xi) = E[Y (1)
i − Y

(0)
i | Xi = xi]. However, since only

Yi = AiY
(1)
i + (1 − Ai)Y

(0)
i is observable, direct application of supervised

regression models is not possible. The set of regressors Xi here does not

necessarily include all the available covariates, but only moderators of treatment

effects responsible for heterogeneity in the response. We will discuss in later

sections how detecting moderators is a particularly insightful part of the

analysis of heterogeneous moderation effects. Figure 1.2 provides a graphical

representation of a simple single-covariate example, where coloured dots show

observed values Yi = Y (Ai) of the response, while grey dots their corresponding

(unobservable) counterfactuals Y
(1−Ai)
i . Notice that the example is purely

illustrative and serves as visual aid to introduce the reader to the key concepts

in the Rubin-Neyman framework.

An additional quantity of interest under this framework is the propensity

score, which is defined, for each unit of analysis i, as the probability of being

selected into treatment (Ai = 1), given a set of observed covariates that we

denote by X̃i = x̃i, to stress the fact that it might be different from the set of

covariates used for the estimation of τ(xi); more formally:

π(xi) = P(Ai = 1 |Xi = xi) .
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Figure 1.2: Simulated example with one single covariate X. Potential outcomes

are generated respectively as Y
(0)
i ∼ N (3 + 0.2Xi, 0.25) and Y

(1)
i ∼ N (5.5− 0.1X2

i +

sin(1.5Xi), 0.25), while the propensity score is π(Xi) = Φ(−0.2 + 1.5Xi), where

Φ(·) is the standard normal cdf. Left panel: observed outcomes for the treated

(blue dots) and control (red dots) groups with underlying conditional mean function

(dashed lines), and unobservable counterfactual outcomes (grey dots). Right panel:

unobservable true ITE (grey dots) and corresponding conditional mean function

(dashed line).

Thus, for each unit, the binary treatment assignment Ai can be seen as the

outcome of a Bernoulli experiment where Ai ∼ Bernoulli
(
π(xi)

)
. In the simple

example of Figure 1.2, the propensity score is generated as a monotone function

of the covariate X. This is why treated units are more frequently observed for

higher values of X, while control units are more frequent for lower values of

X. The propensity score distribution in this case is also slightly skewed to the

right; as a consequence, there are more units in the control group compared to

the treated one.

The least stringent set of assumptions needed to identify and estimate

ATE and CATE, in fully randomized experiments, is made of:

a) Stable Unit Treatment Value Assumption (SUTVA) . Under POs

notation SUTVA is formally defined as Y
(a1,...,ai,...,an)
i = Y

(ai)
i , and states

that the potential response to treatment of unit i is not affected by other

units’ assignment to treatment ∀i ∈ {1, ..., n}. When SUTVA fails to holds,
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identification and estimation of causal effects become more challenging.

Nonetheless, many contributions in the literature have attempted to relax

this assumption (Hudgens and Halloran, 2008; Tchetgen and VanderWeele,

2010; Aronow and Samii, 2017). In the last chapter of the manuscript, we

will briefly introduce and discuss possible extension to recent work on causal

inference under networked interference (Toulis and Kao, 2013; Forastiere

et al., 2021; Ma and Tresp, 2021).

b) Consistency. Consistency assumption guarantees that the observed outcome

corresponds to one realization of the treatment only, formally if Ai = ai then

Yi = Y
(ai)
i , thus ensuring that there are no multiple versions of the same

treatment.

The two assumptions above imply absence of any interference between the units

of analysis, and are necessary and sufficient for identification in completely

interventional scenarios, where Ai is under the control of the researcher, but

not in observational ones. In the case of observational studies, an additional

set of assumptions is required to address the problem generated by sample

selection bias. These are:

c) Unconfoundedness. Also known as POs conditional independence, it states

that there is no unobserved common cause affecting selection into treatment

and outcome simultaneously. Under the POs framework this translates into

(
Y

(0)
i , Y

(1)
i

)
⊥⊥ Ai |Xi , (1.3)

thus ensuring that conditioning on X suffices to derive unbiased estimates

of the causal effect A→ Y , provided that the Common Support assumption,

discussed in the next point below, also holds. A well-known result concerning

the propensity score, derived by Rosenbaum and Rubin (1983), is that if

(1.3) holds, then (
Y

(0)
i , Y

(1)
i

)
⊥⊥ Ai | π(Xi) . (1.4)
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Conditional independence in (1.4) represents an equivalent way of expressing

unconfoundedness, by conditioning only on the propensity score rather than

on the full set of covariates. In a context where Xi is high-dimensional,

π(Xi) represents a 1-dimensional representation of a d-dimensional covariate

set that, in theory, equally achieves conditional independence between Yi and

Ai; its success in practice, though, is highly dependent on how well we can

approximate the propensity via a supervised model π̂(Xi). Unconfoudedness

might be, in some cases, a strained assumption to make (in complex systems

such as socio-economic ones), but represents less of a threat in settings where

Xi is sufficiently rich and thus likely include the relevant confounders, or

least a sufficient set of proxies for them. Formal identification strategy via

proxies is thoroughly described e.g. in Tchetgen et al. (2020), and addresses a

setting where some confounders in Xi are unmeasurable but their variability

is well enough explained by some measurable proxy Wi. A scenario where

unconfoundedness then fails to hold is when there are unobserved common

causes Ui of Ai and Yi, that do not admit proxies. In these cases, identification

might be achievable via Instrumental Variables (IV) (Angrist et al., 1996;

Pearl, 2009a), where generally an observed covariate Li (or generated (Wang

and Blei, 2019)) that does not share any unobserved common cause with Yi

and sufficiently explains variability in Ai is utilized as an instrument instead

of Ai. We will not address proximal nor instrumental settings in this work,

that merit their own specific discussion.

d) Common Support, also known as Positivity or Overlap. It states that

each unit i, identified by a given set of covariates Xi = xi, has non-zero

probability of being observed in the two treatment groups. In other words,

common support means there is no deterministic selection into treatment,

thus ensuring that there are no regions of the covariate space where only

treated or control units are observable. Under the framework outlined

above, common support assumption implies that propensity score satisfies

0 < π(xi) < 1, for each i. This guarantees the existence of CATE for every
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Xi = xi. As highlighted in later paragraphs, overlap does not have to hold

for the whole support X , but causal effects are identifiable only when in

regions where it does.

Under unconfoundedness and common support assumptions, CATE (and

consequently ATE) can be estimated from purely observational data in

Di = {Xi, Ai, Yi} i ∈ {1, ..., n}. In fact, under unconfoudedness, we have

that

µA(xi) = E
[
Y (Ai) |Xi = xi

]
= E

[
Y (Ai) | Ai = ai,Xi = xi

]
= E [Yi | Ai = ai,Xi = xi] ,

(1.5)

for ai ∈ {0, 1}, where the second equality arises from unconfoundedness, while

the last one from the identity Yi = AiY
(1)
i + (1− Ai)Y (0)

i and the consistency

assumption. As a straightforward implication of (1.5), one can identify CATE

as

τ(xi) = E
[
Y

(1)
i − Y (0)

i |Xi = xi

]
= (1.6)

= E
[
Y

(1)
i |Xi = xi

]
− E

[
Y

(0)
i |Xi = xi

]
= E

[
Y

(1)
i | Ai = 1,Xi = xi

]
− E

[
Y

(0)
i | Ai = 0,Xi = xi

]
= E [Yi | Ai = 1,Xi = xi]− E [Yi | Ai = 0,Xi = xi] .

where, as in (1.5), the third equality is given by unconfoundedness, and the last

one by the identity Yi = AiY
(1)
i +(1−Ai)Y (0)

i . Common support assumption is

then needed to guarantee that the two conditional average potential outcomes

µ1(xi) = E
[
Y

(1)
i |Xi = xi

]
and µ0(xi) = E

[
Y

(0)
i |Xi = xi

]
theoretically exist

for each values xi in their supports, and thus can be estimated through the

observed quantities in the conditional expectations E [Yi | Ai = 1,Xi = xi] and

E [Yi | Ai = 0,Xi = xi] respectively. To clarify, suppose that common support

does not hold for Xi = x∗ and that π(x∗) = 0 (without loss of generality), then

the conditional average potential outcome µ1(x
∗) = E

[
Y (1) |Xi = x∗

]
does not

theoretically exist, and it would not make sense to attempt to even estimate it.

In empirical studies of observational nature, common support sometimes
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fails to hold for the whole support of Xi. Hence, CATE can only be identified

and reliably estimated in some specific regions only. In particular, we might

refer to estimands such as Average, or Conditional Average, Treatment Effect

on the Treated (ATT and CATT, respectively) to indicate when treatment

effects are identifiable only on the treated group, or equivalently when common

support only holds for the treated units. The same holds for Average, or

Conditional Average, Treatment Effect on the Control (ATC and CATC). In

practice, empirical methods such as propensity score re-weighting and trimming

are generally utilized in order to focus estimation on overlap regions only; also,

Bayesian inference can be used as tools for assessing the lack of overlap (Hill

and Su, 2013).

As mentioned briefly in earlier paragraphs, this work particularly focuses on

estimation of causal effects in observational scenarios where unconfoundedness

and overlap assumptions hold. In the next two section, we will discuss how

identification of causal effects admits equal representation under two other

frameworks different than the Rubin Causal Model.

1.2.2 do-calculus and causal DAGs

The use of causal graphical models was mainly pioneered by computer scientist

Judea Pearl (Pearl, 2009a,b; Geffner et al., 2022), and together with the

Potential Outcomes framework remains one of the most popular tools for causal

reasoning. We will give an overview of the main concepts in probabilistic

graphical modelling (Koller and Friedman, 2009) and their causal declination,

coupled with Pearl’s do-calculus.

A graph is a mathematical structure consisting of vertices V and edges

E , G = (V , E), suitable to represent probabilistic dependencies (edges) be-

tween random variables (nodes) Xv, v ∈ V through a probabilistic graphical

model object. In particular, one can distinguish between undirected graphical

models (or Markov random fields) and directed graphical models, based on

whether the edges E are directional. Within the class of directed graphs then,

Directed Acyclic Graphs (DAGs) assume an important role in describing
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causal relationships, via Bayesian networks. A Bayesian Network B = (G,Φ)

then is a probabilistic graphical model capturing conditional independence

relationships among a collection of random variables, that can be represented

by a DAG G; Φ represents the parameter space (Koller and Friedman, 2009).

Hence, given a collection of d random variables (X1, ...,Xd), a Bayesian net-

work is generally utilized to represent a factorization of the joint probability

p(X1, ...,Xd) through DAG G, where nodes represent the variables and edges

their relationships; while Φ are the parameters of the conditional distributions:

p(X1, ...,Xd) =
d∏
i=1

p
(
Xi | pa(Xi)

)
, (1.7)

where pa(Xi) denotes all parent nodes of Xi.

Thus, the two main underlying assumptions required to convert a normal

DAG G into a causal one are: i) Local Markov Assumption, which states

that a node/variableXi is independent of all its non-descendant, given its parent

nodes; this essentially allows to express the joint probability of nodes X1, ..., Xn

through the Bayesian network factorization as p(X1, ...,Xd) =
∏d

i=1 p
(
Xi |

pa(Xi)
)
, where pa(Xi) denotes the “parents” of node Xi (faithfulness as-

sumption, needed for example in causal discovery, instead points in the opposite

direction: conditional independencies in the data imply d-separation in the

corresponding DAG, i.e. Xi ⊥⊥P Xj | Xk =⇒ Xi ⊥⊥G Xj | Xk); ii) Causal

Edges Assumption, which simply states that parent nodes are direct causes

of their children nodes — or, more informally, that arrows in a DAG exclusively

represent causal relationships. Given these two assumptions, we generally say

that there is a flow of association between two nodes Xi and Xj if there is a

path of directional edges (or arrows) connecting them (also indirectly via other

nodes). Figure 1.3 depicts three different cases of relationships between the

variables X1, X2 and X3. The dashed red line in the first two DAGs indicates

that there is a flow of association between X1 and X3, while this is not present

in (c).
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X1 X3

(a) Simple Markov

X2

X1 X3

(b) Forked

X2

X1 X3

(c) Collider

Figure 1.3: Examples of DAGs representing different types of relationship. The

dashed red line in (a) and (b) represents flow of association (null in the last case).

The node containing X2 is coloured differently to highlight the fact that conditioning

on X2 blocks the flow of association between X1 and X3 in (a) and (b), while it

unblocks it in (c).

In the causal DAG language, conditioning allows one to block (or unblock)

flows of association, and consequently single out desired paths of causality. For

instance, in Figure 1.3b) conditioning on X2 blocks the path, and thus the flow

of association, between X1 and X3 (dashed red line). Equivalently said, X2

d-separates the other two nodes, written as X1 ⊥⊥G X3 | X2 (where G stands for

“in the DAG”). D-separation implies conditional independence in distribution

X1 ⊥⊥G X3 | X2 =⇒ X1 ⊥⊥P X3 | X2 under the Local Markov assumption.

X1

X2

A Y

X3

Figure 1.4: DAG representing

M-bias, where X2 is a collider.

The DAG in Figure 1.3c) instead depicts a case

where X2 is known as a “collider”, i.e. a child

with more than one parent. Conditioning on

X2 here unblocks flow of association between

X1 and X3, X1 ⊥̸⊥G X3 | X2, that would be

otherwise absent, X1 ⊥⊥G X3. This example

is useful to understand why particular care is

required when deciding the conditioning set to

identify a specific causal path, as conditioning on a collider could lead to

unblocking of secondary non-causal associational paths (known as collider

bias). This explains why it is always advised not to condition on post-treatment

covariates, as they might be common children of A and Y . However, it is neither
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generally advised to condition on all the pre-treatment covariates, as collider

bias might arise also among them. The typical example is in causal DAGs with

an M-structure (hence the name “M-bias”), like the one depicted in Figure on

the side, where conditioning on X2 unblocks an otherwise non-existent path

from treatment A to outcome Y .

After having introduced few basic concepts about causal DAGs above,

we will see how they offer a rather intuitive framework for causal reasoning

and causal effects identification. We do so by first defining the quantity

p
(
Y = y | do(A = a)

)
as the interventional distribution, where the notation

do(A = a) (the do-operator) indicates that we intervene on A by “manually”

setting it equal to a. The intervetional distribution, conceptually different than

the conditional distribution p(Y = y | A = a), is what we seek to derive. In

particular, considering a binary action/treatment Ai ∈ {0, 1}, we are interested

in ATE and CATE as moments of this distribution, as defined in the POs

framework above:

ATE: E
[
Y | do(A = 1)

]
− E

[
Y | do(A = 0)

]
CATE: E

[
Y | do(A = 1), X

]
− E

[
Y | do(A = 0), X

]
.

(1.8)

Intervening on A by setting its value equal to a — indicated using the notation

do(A = a) — implies overriding the causal mechanism behind it, determined

by its parent nodes via p
(
A | pa(A)

)
. This translates graphically into all the

incoming directional edges to A (and to A only, every other mechanism is

unchanged; this is known also as “modularity assumption”)) being “pruned” or

canceled out, such that resulting causal DAG no longer represents the factor-

ization of the full joint probability in (1.7). In fully randomized experiments,

the conditional and interventional distributions are equivalent by construction,

as one essentially has intervened on A in the experimental design phase, thus:

p(Y = y | A = a) ≡ p
(
Y = y | do(A = a)

)
. In observational studies this is not

the case, and in order to identify p
(
Y = y | do(A = a)

)
through observational

quantities we need to condition on all the direct common causes (common
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parents) of A and Y to block flows of association different than the direct

causal association between them — exactly as in the POs framework. In causal

DAG terminology this is often refered to as backdoor adjustment, in that to

achieve identification we need to block all the “backdoor paths” from A to Y to

isolate the direct causal relationship (Pearl, 2009a). In the example of Figure

1.5a) in particular, X is said to satisfy the backdoor criterion, i.e. it blocks all

the backdoor paths between A and Y , thus ruling out the presence of hidden

commom causes that would invalidate the identification mechanism. For this

reason, in this case, conditioning on X is sufficient to identify p
(
Y | do(A = a)

)
as

p
(
Y | do(A = a)

)
=
∑
x∈X

p
(
Y | do(A = a), X

)
p
(
X | do(A = a)

)
=

=
∑
x∈X

p
(
Y | a,X

)
p
(
X | do(A = a)

)
= (1.9)

=
∑
x∈X

p(Y | a,X)p(X) ,

where the first equality is by the law of total probability, the second is given by

conditioning on X (which allows to recover the interventional distribution) and

the last by the fact that intervening on A cancels out the causal edge incoming

to A from X.

Identification is possible also in settings where the backdoor criterion is not

satisfied, such as: i) the instrumental variable case depicted by Figure 1.5b),

where L can be used as an instrument (e.g., in the classic econometric studies

with non, or partial, compliance) in lieu of A, by exploiting the fact that L

does not share any unobserved confounder with Y (Angrist et al., 1996); ii)

the proximal scenario of Figure 1.5c), where the coexistence of the three types

of ‘proxy’ variables (Z,X,W ) and U makes conditioning on X insufficient to

achieve identification, and a ‘proximal strategy’ is needed (Tchetgen et al.,

2020; Mastouri et al., 2021; Cui et al., 2023). Furthermore, another case of

instrumental variable application is represented by the frontdoor adjustment,
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X

A Y

(a) Unconfounded

L U

A Y

(b) Instrumental

U

Z WX

A Y

(c) Proximal

Figure 1.5: Example of causal DAGs where the aim is to identify the causal

relationship A→ Y : a) (fully observable) unconfounded scenario, the focus of this

work, where conditioning on X is sufficient to identify A → Y ; b) Instrumental

scenario, where we have some unobserved confounder U that we cannot condition on,

but we can use L as an “instrument” for A; c) Proximal, where the coexistence of

three types of proxies L = (Z,X,W ) makes conditioning insufficient, and ‘proximal

identification’ strategy is needed (Tchetgen et al., 2020).

where we assume we can access a “mediator” variable M which fully mediates

the path from A and Y , but does not share unobserved confounders with Y ,

i.e., A→M → Y .

Given a causal DAG (and again under the local markov assumption), we

can define an associated Structural Causal Model (SCM), which is a set

of functionals describing the causal relationships (the “arrows”) between the

variables in the DAG. More formally, a structural causal model is defined as a

4-tuple ⟨E,V ,F , p(ε)⟩ consisting of (subscript j indicates a random element in

the set):

1. E: denoting a set of exogenous variables εj ∈ E, defined as variables

determined outside of the model.

2. V: denoting a set of endogenous variables Vj ∈ V, defined as variables

determined inside the model.

3. F : a set of functions fj ∈ F mapping each element εj ∈ E and every

parent variables of Vj ∈ V, pa(Vj), to the endogenous variables Vj ∈ V,

fj : εj ∪ pa(Vj) 7→ Vj.

4. p(εj): a probability distribution over εj ∈ E.
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Both εj and Vj are nodes in the causal graph, while the functional causal

relationships fj ∈ F are depicted by arrows. As an example, the SCM associated

with the causal DAG in Figure 1.5a) is fully described by the following set of

equations:

Xi = fX(εi,X),

Ai = fA
(
pa(Ai), εi,A

)
= fA(Xi, εi,A) (1.10)

Yi = fY
(
pa(Yi), εi,Y

)
= fY (Xi, Ai, εi,Y ) ,

where fA and fY are potentially complex, non-linear functions, while εA and

εY are the unobservable exogenous variables representing noise. Especially fY

describes how outcome of interest Y changes in response to changes in the

manipulative variable A.

1.2.3 Dawid’s Decision-Theoretic Approach

The last identification framework we briefly present is based on the seminal

work of Dawid (2000, 2015). Dawid’s work emphasizes the distinction between

two substantially different causal problems, the Effects of Causes (EoC) and

the Causes of Effects (CoE), and that, in the former, one does not necessarily

needs to resort to the idea of “counterfactuals”. Learning EoC is concerned

with quantifying the future effects of an intervention in a causal systems where

the cause-effect relationship is known. This represents a setting where the

causal DAG structure is known, or partially known, (or, better, assumed) and

the focus is on estimating the causal effects of known causes (for instance, it is

scientifically proven that taking an aspirin can be good against migraine, but

e.g. we do not know whether this is always the case in the population as some

may suffer moderate to severe side effects).

On the other hand, CoE is instead concerned with learning what might

have been the causes of an observed effect. In this case, the causal DAG is

unknown (or only partially known), and the aim is to actually learn its causal

structure and effects through observed data (randomized or observational, or
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mixed). This is also known as a Causal Discovery task (Glymour et al.,

2019) — different than Structure Learning, that more generally consists in

learning graph structures (Drton and Maathuis, 2017). Dawid (2000, 2015)

thus underline the need for separate causal frameworks for these two problems.

In particular, they argue that while counterfactual statements are unavoidable

in the case of CoE studies, they are not strictly necessary in EoC ones, and

consequently discuss a different approach to causal effect identification under

the latter.

The framework is decision-theoretic as we assume that we deal with a

decision-making problem regarding e.g. what type of treatment A = a to

give to a patient. In the case of fully randomized studies, A is a “decision

variable”, not a random one, and thus does not follow a probability distribution

p(A). The quantity of general interest is the “hypothetical” distribution

p(Y = y | A = a). In particular, assuming A ∈ {0, 1}, we are interested in

comparing p(Y = y | A = 1) with p(Y = y | A = 0), e.g. through their expected

values E(Y | A = 1)− E(Y | A = 0) (ATE), with the goal of choosing A = a

that minimizes some loss function L(y) or maximizes some reward function

R(y). The decision-theoretic (DT) model is then simply made of a decision

variable A and the conditional hypothetical distributions p(Y = y | A = a).

Notice that a specific DT model, such as the one just described, does not admit

a unique representation through functional models Y = f(A, ε, ·) but many. In

the case of fully randomized experiments, two groups of exchangeable units are

administered A = 1 and A = 0 respectively, and can be viewed as being drawn

directly from the hypothetical conditional distributions p(Y = y | A = 1) and

p(Y = y | A = 0) at random.

In the case of observational studies instead, A is no longer a decision

variable and is now associated with a probability distribution p(A). The

problem here is that units under the two treatment arms can no longer be

viewed as exchangeable due to confounding stemming from some covariate

X, thus we seek to derive an approximation for the hypothetical conditional
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distribution. To this end, we define a regime indicator variable FA as

FA =


1 interventional with A = 1

0 interventional with A = 0

Ø observational ,

(1.11)

which simply describes under which regime one is operating. Under the no

unobserved confounding, randomized scenario we have that p(Y | FA = a) =

p(Y | A = a, FA = a), while in observational scenarios we have to assume that

p(Y | FA = a)
def
= p(Y | A = a, FA = a) =

∫
x
p
(
Y | A = a,X = x, FA = Ø

)
dp(x) ,

= p(Y | A = a, Fa = Ø)

which implies the conditional independence Y ⊥⊥ FA | A, that is the exact

equivalent of unconfoundedness assumption. The main difference is that the

assumption in a DT model does not rely on any notion of potential or coun-

terfactual outcomes, but only requires the definition of the regime indicator

variable FA and confounder X. In the rest of the work, we will rely mostly

on the POs and the Causal Bayesian Network (or Structural Causal Models)

frameworks instead of the decision-theoretic approach, as they are the most

widely adopted ones in the literature.



Chapter 2

Regression Adjustment Methods

for Causal Effects Learning

ContributionsThe majority of the contents in this chapter are based on a

paper submitted and accepted to the Journal of the Royal Statistical Society:

Part A (Statistics in Society). Reference: Caron et al. (2022a).

2.1 Introduction

Provided that causal effects are identifiable from data, their empirical estimation

can be tackled in different ways in practice (Imbens, 2004). For example,

matching methods (Rubin, 1973; Stuart, 2010) are concerned with pairing each

treated unit with a suitable “similar” control (or multiple ones) in terms of some

definition of distance between their covariate realization Xi = x
∗. Weighting

methods focuses on re-balancing observations with propensity score estimates

(Horvitz and Thompson, 1952; Hirano et al., 2003; Li et al., 2018), with the goal

to approximate sampling generated under an experimental setting. However,

throughout this second chapter, we will focus on the problem of estimating

Conditional Average Treatment Effects (CATE), τ(xi) = E
[
Y

(1)
i − Y (0)

i |Xi =

xi
]
in the POs framework or equivalently τ(xi) = E

[
Y | do(A = 1),Xi =

xi
]
− E

[
Y | do(A = 0),Xi = xi

]
in Pearl’s notation, through regression
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adjustment (or supervised learning) methods, with a particular focus on non-

parametric techniques, which allow to flexibly model complex functionals for

the outcome Y compared to parametric ones that are nonetheless still widely

used in applied disciplines. As described in the previous chapter, we consider

observational settings where we assume we observed all direct common causes

of A and Y in the set of covariates X (unconfoundedness), or at least enough

proxies that capture confounding effects (proximal scenarios). While this can

be a challenging assumption in some applied studies, e.g., in the socio-economic

sciences, it is less so in others, such as medical/health ones.

We begin by reviewing some of the most recent, and most popular, regres-

sion adjustment methods, providing an overview of their implied assumptions

and developing a novel unifying taxonomy for them. After briefly describing the

challenges related to model selection in causal effects learning, we then proceed

to compare models’ performance and demonstrate their empirical finite-sample

properties through a number of simulated experiments. Finally, we illustrate

a practical real-world application of some of the methods by analyzing the

NHANES data (Chan et al., 2016), with the aim of investigating the presence

of heterogeneous effects of school meal participation on children’s BMI, and

detecting the moderators responsible for heterogeneity.

2.2 Regression-Based Setup

The (non-parametric) regression approaches we will review generally model the

outcome surface Yi as a function of the covariates-action pairs (Xi, Ai) and

some unobservable error term εi : Yi = g(Xi, Ai, εi). More specifically, the

reviewed methods typically restrict the functional space capacity/complexity

in the corresponding structural causal model of the outcome by assuming that

the error term εi is additive and with mean zero, which leads to the following

setup:

Yi = f(Xi, Ai) + εi , where E(εi) = 0 , (2.1)
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and f(Xi, Ai) = E
[
Yi | Xi, Ai

]
is left unspecified and learnt from the data.

The strength of non-parametric regression models is that they are less prone

to misspecification of the functional form of f(·) (e.g., tree-based methods

model f(·) as piece-wise constant, splines as piece-wise polynomial, etc.). As

mentioned earlier in this work, the covariates Xi ∈ X represent a potential

source of confounding to be controlled for. In terms of model-building, this

means that ideally confounding variables contained in Xi need to be included

in the outcome model — and in the propensity score model, if employed —

while different subsets of other non-confounding covariates might be included in

the propensity and outcome models if they are relevant predictors of either Ai

or Yi, in order to increase precision of the estimates. In addition, in a setting

where the number of available covariates is high, one might want to resort to

some sort of shrinkage or regularization when estimating of f(·). However, as

explained in both Hahn et al. (2018) and Hahn et al. (2020), regularization

should be handled carefully in this context, as we will explain further in later

sections.

In the regression setup illustrated in (2.1), some of the frameworks reviewed

in the next section reserve a specific role for the propensity score (X-, R- and

τ -Learners) — these are often referred to as “propensity methods”. As for the

remaining methods, which do not explicitly envisage any use of the propensity

score, in the simulated studies that we conduct in later sections, we follow the

suggestion of Hahn et al. (2020) and incorporate PS estimates as an additional

covariate, according to the following two-stage regression framework:

π(Xi) = P
(
Ai = 1 |Xi

)
Yi = f

([
Xi π(Xi)

]
, Ai

)
+ εi .

(2.2)

The first stage in (2.2) involves estimating the propensity score, while the second

embeds it as an extra covariate in the covariate set (Heckman, 1979). Any

probabilistic classifier is suitable for use in the first stage regression (e.g. logistic

regression, neural networks, etc.). As explained in Rosenbaum and Rubin
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(1983); Hahn et al. (2020), and as we will describe in later sections, the addition

of π(Xi) to the covariate set in (2.2) represents an effective way to tackle bias

deriving from targeted selection. Targeted selection is a type of selection bias

that arises when individuals are selected into treatment based on the prediction

of otherwise adverse outcome (or of large gains under treatment), i.e., when

π(Xi) is a strictly monotone function of E[Y (0)
i |Xi = xi], and is common in

many observational studies (e.g. medical or socio-economic studies).

It is worth mentioning here that particular care should be taken when

building a propensity score model, especially in presence of high-dimensional

covariate spaces X ∈ X . Indeed, the use of conventional prediction-driven

‘automated’ variable selection methods in high-dimensional settings may not

result into an optimal propensity model in terms of causal effect estimation.

For instance, Brookhart et al. (2006) argue that including variables related

to the outcome, but not the treatment, should always be included in the PS

model, as these are shown to increase precision of causal effects estimates,

without increasing bias, in small samples. Furthermore, Pearl (2011) shows

that accidentally selecting in instrumental variables can be detrimental to both

bias and precision, but also the inclusion of near-Instrumental Variables (IV),

which are variables that act both as confounders and as instruments, in terms

of bias-variance trade-off.

Now, estimators for CATE τ(xi) ∈ T (where by T we denote CATE’s own

functional space) can be directly derived from the representations in (2.1) and

(2.2). There are currently several different approaches for deriving an estimator

for CATE from (2.1) and (2.2), that will be analyzed in the next section.

2.3 CATE Estimators

Given the framework outlined above, various meta-algorithms designed to

derive a CATE estimator have been proposed in the literature. These meta-

algorithms are often referred to as “Meta-Learners”, in that they are subroutines

of “base-learners”, which are common supervised learning algorithms (e.g. tree
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Table 2.1: Summary of meta-learners discussed in this work.

References CATE estimator

S-Learner
Hill (2011); Foster et al.
(2011)

τ(xi) = f(xi, 1)− f(xi, 0)

T-Learner
Athey and Imbens
(2016); Lu et al. (2018),
Powers et al. (2018)

τ(xi) = f1(xi)− f0(xi)

X-Learner Künzel et al. (2017)
τ(xi) = π(xi)τ0(xi) +

(
1 −

π(xi)
)
τ1(xi)

R-Learner Nie and Wager (2020)
τ(xi) = argminτ

{
Ln
(
τ(·)

)
+

Λn
(
τ(·)

)}
Multitask-
Learner

Alaa and van der Schaar
(2017, 2018)

τ(xi) = f⊤(xi)e

τ-Learner Hahn et al. (2020) τ(xi) as explicit model parameter

ensembles, neural networks, gradient boosting methods, etc.). In what follows,

we attempt to build a unifying taxonomy of these “Meta-Learners” approaches

in Section 2.3.1, while in Section 2.3.2 we present an overview on the problem

of model selection for CATE estimation, which is a substantially hard, arguably

impossible, problem.

2.3.1 Meta-Learners

As mentioned in the earlier sections, we will partly build on top of the work

by Künzel et al. (2017) and expand it by including the most recent contribu-

tions stemming from both the statistics and computer science literature. A

concise summary of the presented “Meta-Learners”, together with the relevant

references, can be found in Table 2.1.

2.3.1.1 S-Learners

“Single-Learners”, shortened to S-Learners, have been implicitly proposed, among

others, in the two early contributions of Hill (2011) and Foster et al. (2011),

and derive an estimator for CATE by including treatment assignment as “just

another covariate” in the covariate set Xi ∈ X , which means that CATE
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Figure 2.1: Simulated one-covariate data from Section 1.2. Left panel: conditional

mean fit from a S-Learner BART (dashed grey line). Right panel: conditional mean

fit from a T-Learner BART (blue and red dashed lines).

estimator take the form

τ(xi) = f
(
[xi 1]

)
− f

(
[xi 0]

)
. (2.3)

An S-Learner fits a single surface f(·), employing the regressors [Xi Ai], through

a base-learner and derives CATE estimates by taking the difference between

the two conditional average potential outcomes, which are represented by the

fitted f̂(·) with Ai = 1 and Ai = 0 respectively. The underlying assumption is

that the group-specific conditional average potential outcomes stem from the

same probabilistic model, whose conditional mean function is f(·) and error

term is εi. Regression trees are popular base-learners employed in the context

of S-Learners. For instance, Hill (2011) advocates the use of Bayesian Additive

Regression Trees (BART), while Foster et al. (2011) of random forests. The

left panel plot of Figure 2.1 shows a S-Learner BART fit for the conditional

mean f̂(·) of the single-covariate simulated example already encountered in

Figure 1.2. Notice that the dashed line representing f̂(·) has a unique color

(grey) to emphasize the fact that S-Learner fits a unique surface.

Since an S-Learner fits a single regression, it is quite restrictive in the

way it accounts for the variation in Y attributable to A; this is because it
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does not accurately target the causal functional of interest and thus performs

sub-optimal regularization. This issue regarding targeted regularization will

be further investigated in later sections and in the next chapter, particularly

in the experiments of Section 3.2.4. This is relatively more of an issue when

working with observational data, while it is less so with randomized experiments

where selection bias is not a threat. Alaa and van der Schaar (2018) and Hahn

et al. (2020) have both identified that the main drawback of S-Learners is

their lack of ability in adapting to different levels of sparsity and smoothness

across the treatment arms, since they impose the same regularizing conditions

for both treated and control groups. A S-Learner will then perform poorly

in a situation where the outcome surface complexity is very different across

the two groups. On the contrary, S-Learner is expected to perform well when

CATE is of simple form, as the complexity of the conditional average potential

outcomes surfaces µ1(xi) = E
[
Y

(1)
i |Xi = xi

]
and µ0(xi) = E

[
Y

(0)
i |Xi = xi

]
does not vary much across treatment groups. For example, consider the case

of a S-Learner employing a tree ensemble base-learner, such as BART. Since

a tree ensemble method like BART picks splitting variables at each node in

each tree randomly, it might not even choose A as splitting variable in some of

the trees in the ensemble, so that A will possibly be included in most of the

trees fitting the response Y , but not necessarily in all of them. The exclusion

of A from the splitting rules of a tree in BART is more likely to happen as

the number of covariates Xi grows larger, in that the model has a larger

set of splitting variables to pick from (Caron et al., 2022b). This intuitively

explains why S-Learners turn out to be appropriate in situations where the

complexity of ground-truth CATE functional is reasonably low, relative to the

variation in outcome attributable to the covariates only (E
[
Yi |Xi

]
). It may

happen in real world applications, such as clinical studies, that the researcher

possesses some domain knowledge regarding the complexity of the treatment

effect functional τ(xi) ∈ T . As we will explain in the following sections, this is

a useful piece of information when it comes to choose a suitable method and to
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reduce the capacity of the CATE functional space T through incorporation of

prior knowledge.

2.3.1.2 T-Learners

“Two-Learners”, shortened to T-Learners, derive an estimator for CATE by

fitting two separate surfaces for the treated and control groups and computing

their difference:

τ(xi) = f1(xi)− f0(xi) . (2.4)

Versions of T-Learners can be found in many contributions in the literature. For

instance, Athey and Imbens (2016), Lu et al. (2018) and Powers et al. (2018)

offer some examples employing decision trees, random forests and gradient

boosted trees as base-learners respectively. In contrast to S-Learners, T-Learners

separate the two treatment groups when modelling response variable Y , and

assume that group-specific conditional average potential outcomes are derived

from separate probabilistic models, characterized by different conditional mean

functionals f1(·) ∈ F1 and f0(·) ∈ F0 , and independent error terms ε1i and

ε0i. This allows to preserve distributional differences across the two groups

that might originate from selection bias, and to take into account different

degrees of sparsity and smoothness that vary with A, when regressing Y against

X. On the other hand, a shortcoming of T-Learners is that, as a result of

splitting the sample in two, they do not allow sharing common underlying

information between the groups when estimating the two surfaces. This is

particularly sub-optimal in a scenario where units in the two groups share

the same distributional characteristics in terms of the conditional distribution

p(y|x), which is regardless of the administered treatment Ai, and when the

treatment arms are particularly unbalanced, which might lead to dangerous

under/over-fitting.

The right panel plot in Figure 2.1 displays a T-Learner BART fit for

the conditional mean functions of the two treatment groups f1(·) ∈ F1 and

f0(·) ∈ F0, on the same one-covariate simulated example of Figure 1.2. Notice
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that fitted f̂1(·) and f̂0(·) are differentiated by colors (blue and red dashed lines

respectively), emphasizing the fact that T-Learner fits two separate regression

models with independent error terms.

T-Learners are expected to work particularly well when complexity of the

response surface is very different across treatment groups, i.e., depending on

Ai, and so CATE itself turns out to be a rather complex function. Ideally,

they preserve good asymptotic properties if sampling is balanced across groups

(Alaa and van der Schaar, 2018), i.e., if larger sample size implies both groups

are larger.

However, this is not often the case in many real world designs, where one of

the arms is typically smaller. In the presence of such highly imbalanced designs,

splitting the sample into subgroups inevitably leave too few observations for the

estimation of fA ∈ Fa in the smaller group. In the following subsections we will

see how this issue is addressed by other Meta-Learners that extend the T-Learner

framework (X-Learners and Multitask-Learners). On the contrary, T-Learners

tend to perform quite poorly in settings where CATE function is relatively

simple and heterogeneity patterns are not so sophisticated, i.e., situations where

S-Learner usually performs better. Hence if subject-matter prior knowledge, to

restrict the CATE functional space capacity T , suggests that treatment impact

is likely to be significantly complex, a T-Learner might be the preferred choice

(i.e., in a Bayesian sense, higher probability mass is assigned in the choice of

a suitable functional - we will see this more in details in the model selection

section).

2.3.1.3 X-Learners

X-Learners have been proposed by Künzel et al. (2017) as an extension of

T-Learners, and derive a CATE estimator in three steps. In the first step,

conditional average potential outcomes are fitted as in a T-Learner approach,

that is by using two separate regression models for the conditional means

f1(xi) ∈ F1 and f0(xi) ∈ F0, assuming independent error structures. Then

in the second step, “imputed treatment effects” are computed for each group
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separately; these are defined as the differences between the group-specific

observed outcome Y A
i , and the estimated unobservable conditional average

potential outcome Ŷ
(A)
i derived in the first step, more formally:

D̃1
i = Y 1

i − Ŷ
(0)
i if Ai = 1

D̃0
i = Ŷ

(1)
i − Y 0

i if Ai = 0 .
(2.5)

The second step thus attempts to recover the unobservable differences Di =

Y
(1)
i − Y (0)

i (ITE) separately for the treated and control group by replacing

the unobservable counterfactual outcomes with the relative conditional average

potential outcome estimates Ŷ
(1−A)
i , but using the observed outcome for the

other “actual” outcome Y A
i = Y

(A)
i , whereas a T-Learner would just use fitted

values for both instead. In the last step, D̃1
i and D̃0

i are utilized as response

variables in two separate regressions, employing the chosen base-learner (linear

regression, random forest, BART, etc.), to obtain estimates of τ̂1(xi) ∈ T1
and τ̂0(xi) ∈ T0, using covariates Xi as regressors. These two quantities are

group-specific CATE estimates. The two independent regressions then take the

following form

D̃1
i = τ1(Xi) + η1i if Ai = 1

D̃0
i = τ0(Xi) + η0i if Ai = 0 ,

(2.6)

where E[ηa,i] = 0 and cov(η1,i, η0,i) = 0. The final CATE estimate is then

obtained through a weighted average of the two group-specific CATE estimates,

τ̂(xi) = g(xi)τ̂0(xi) +
(
1− g(xi)

)
τ̂1(xi) , (2.7)

where g(xi) ∈ [0, 1] is a given weighting function. The authors propose to set

g(·) equal to a propensity score estimate g(xi) = π̂(xi), but this can also take

other forms (e.g. g(xi) = 1 or g(xi) = 0 if one of the groups is very unbalanced).

The intuition behind the last weighting step, that particularly characterizes

X-Learners, is the following. When we are in presence of an unbalanced
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design, with potential issues of poor overlap, and we fit a T-Learner, we would

ideally want to pick a more complex (possibly non-parametric) model for the

large treatment group and a simpler one for the small treatment group, to

avoid over-fitting and allow better within-group generalization. While the

model for the larger group is likely to be well-specified, since we observe

a lot of data points, the model for the smaller group might not be very

representative of the true conditional average potential outcome function,

µ1(xi) = E
[
Y

(1)
i |Xi = xi

]
or µ0(xi) = E

[
Y

(0)
i |Xi = xi

]
, as we only observe

a handful of data points. Nonetheless, the simpler model, which is then also

employed to obtain group-specific CATE estimates of the smaller group τ̂A(xi),

might be highly representative of the CATE function instead, so that τ̂A(xi) is

actually very close to the true τ(xi) = µ1(xi)− µ0(xi).

The choice of g(xi) = π̂(xi) allows to properly assign higher weight to the

simpler model’s CATE estimates, since e.g. if the treated group is small, then

π̂(xi) will generally be skewed to the right, and the final CATE estimates τ̂(xi)

will thus be close to τ̂1(xi). Choosing g(xi) ∈ {0, 1} is useful in scenarios where

the groups are very unbalanced, where more extreme values are necessary to

“nudge” the final CATE estimates τ̂(xi) towards the smaller group’s estimates

τ̂A(xi).

For this reason, in unbalanced studies (with poor overlap) where T-Learners

would yield unnecessarily complex estimates of CATE, X-Learners attempt

to improve accuracy by re-balancing group-specific CATE estimates through

propensity score weighting. In this way, they avoid overfitting and revert back

to simpler CATE patterns. A final remark about X-Learners, which is naturally

valid for all propensity methods, is that careful specification of the propensity

model is required to effectively improve precision in CATE estimates through

the last balancing step. Poor propensity estimates might not deliver the desired

results.

Figure 2.2 offers a simple example of a X-Learner, with BART as base-

learner, applied to the one-covariate simulated data encountered in Figure 1.2
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Figure 2.2: X-Learner BART applied to the simulated one-covariate example. Left

panel: unobservable ITE (grey dots) and imputed treatment effects D1 and D0

(blue and red triangles), estimated as in (2.5) using T-Learner BART. Right panel:

group-specific CATE estimates (blue and red dashed lines) obtained from the two

regressions in (2.6), and final weighted CATE estimates (green dashed line) obtained

from the re-balancing step in (2.7).

and Figure 2.1. X-Learner’s first step essentially derives, via T-Learner, the

same BART estimates seen in the right panel plot of Figure 2.1. The output of

the second step, namely the imputed treatment effects D̃1
i and D̃

0
i , are depicted

in the left panel plot of Figure 2.2 (red and blue triangles), together with the

true ITE (grey dots). The graph on the right instead shows the estimated

group-specific CATE τ̂1(xi) (blue dashed line) and τ̂0(xi) (red dashed line),

derived from the two regressions in (2.6), and the final CATE estimate τ̂(xi)

(green dashed line), obtained from the weighting step in (2.7). Propensity score

estimates employed for the weighting step were retrieved via probit version

of BART. Notice that the final CATE estimates τ̂(xi) lie in between the two

fitted group-specific τ̂1(xi) and τ̂0(xi).

2.3.1.4 R-Learners

R-Learner was originally proposed by Nie and Wager (2020) as a two-stage

meta-algorithm, and aims at minimizing a loss function specifically defined on

CATE through parameter tuning. The derivation of the two-step procedure
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stems from Robinson (1988) decomposition of the outcome model in (2.1). We

start by defining the following two quantities:

Yi = µ(Xi) + τ(Xi)Ai + εi

m(Xi) = E(Yi |Xi) = µ(Xi) + τ(Xi)π(Xi)
(2.8)

as the outcome model and the conditional mean outcome model, respectively.

Under this setup, unconfoudedness assumption implies that the error term is

such that E
[
εi |Xi, Ai

]
= 0. Notice that under this semi-parametric additive

parametrization τ(Xi) (CATE) enters explicitly in the outcome regression

model. By combining the two quantities above, Robinson (1988) noticed that

the outcome model can be parametrized as:

Yi −m(Xi) =
(
Ai − π(Xi)

)
τ(Xi) + εi . (2.9)

Starting from this decomposition, Nie and Wager (2020) derive a loss function

that can be used for parameter tuning in the estimation of CATE; the optimal

CATE estimates are defined as the minimizer of the following loss function:

τ(Xi) = argmin
τ

{
E

[((
Yi −m(Xi)

)
−
(
Ai − π(Xi)

)
τ(Xi)

)2]}
. (2.10)

The intuition behind equation (2.10) is the following. Suppose that an in-

dividual i is characterized by an extreme propensity value π(xi) ≈ 0; thus

its realized treatment assignment is almost deterministically Ai = 0. In this

extreme scenario, eq. (2.10) boils down to simple Mean Squared Error (MSE)

minimization for the conditional mean outcome model m(xi), as in a standard

regression problem. Hence, the term
(
Ai− π(Xi)

)
τ(Xi) subtracted serves as a

de-biasing term that grows larger with the discrepancy between the realized

treatment assignment Ai and the propensity score π(xi), and is supposed to

tackle selection into treatment imbalance through propensity score re-weighting.

The idea is that a base-learner that relies on parameter tuning (e.g. random
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forest or gradient boosted trees) can be tuned on the modified parametrization

of the outcome model in (2.9), which includes a version of the outcome net of

the baseline impact of the covariates Xi on Yi, m(Xi), and propensity score

balancing, instead of being tuned on the raw outcome Yi as one would do in an

S- or T-Learner framework. Since we cannot observe directly the quantities

in (2.10) for the minimization problem, the R-Learner replaces them with

cross-validated estimates, through the following two-step approach:

1. Split the data into k-folds (5 or 10 suggested). Fit nuisance functions

m̂(xi) and π̂(xi) (on a portion of left-out data) by minimizing usual

prediction errors via cross-validation

2. Plug in estimates from the first step to estimate τ̂(xi), by minimizing

the regularized sample equivalent of (2.10) via parameters tuning on the

k-folds, that is:

τ̂(Xi) = argmin
τ

{
L̂n
(
τ̂(Xi)

)
+ Λn

(
τ̂(Xi)

)}
, where (2.11)

L̂n
(
τ̂(Xi)

)
=

1

n

n∑
i=1

((
Yi − m̂−i(Xi)

)
−
(
Ai − π̂−i(Xi)

)
τ̂(Xi)

)2

,

and where Λn
(
τ̂(·)
)
is a term representing regularization (e.g. L1 or L2 regular-

ization, splines smoothness penalization, dropout, etc.). The super-script (−i)

refers to the i-th observation being held-out from the estimation subsample,

and used for k-fold cross-validation (or even more computationally intense

leave-one out cross-validation).

The R-Learner setup resembles, and is in fact inspired by, the doubly robust

approach to the estimation of average treatment effects (Cassel et al., 1976;

Bang and Robins, 2005; Dud́ık et al., 2011; Dud́ık et al., 2014; Chernozhukov

et al., 2018; Athey and Wager, 2021), with the main difference that the second

stage in the R-Learner is specifically designed for heterogeneous/conditional

treatment effects estimation with potentially non-linear models (Athey and

Wager, 2019; Nie and Wager, 2020). The strength of R-Learners lies in their
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two-stage procedure, where the first stage takes care of predicting the nuisance

functions m̂(xi) and π̂(xi), while the second focuses on CATE estimation

by constructing a direct loss function on it. In this way, R-Learners ensure

that regularization is targeted and implemented separately for the nuisance

functions and for CATE, and lowers the risk of over/under fitting. This is

intuitively a desirable feature when CATE is of different complexity (in most

cases smoother and sparser) compared to the nuisance functions, in that more

(or less) aggressive regularization can be conveyed when estimating it, compared

to that conveyed in estimating the baseline marginal effect of the covariates

on the outcome, m(xi). This particular feature is also shared by τ -Learners,

introduced in the next subsection, where direct regularization on CATE is

instead applied in the form of Bayesian shrinkage priors (Hahn et al., 2020;

Caron et al., 2022b,c). The loss minimization procedure described by the

R-Learner framework can generally involve any supervised learning method.

The original work of Wager and Athey (2018) and Nie and Wager (2020) focuses

particularly on the use of parametric LASSO linear regression, random forests

and gradient boosted trees, whose parameters are tuned to minimize the R-loss

in (2.11).

A final remark about R-Learners concerns the popular Causal Forest model

for CATE estimation (Wager and Athey, 2018; Athey and Wager, 2019), which

we are going to include in our empirical comparison of methods based on

simulated studies. As stated in Athey and Wager (2019), Causal Forest can be

viewed as a regression forest method motivated by the R-Learner setup. Indeed,

its latest implementation uses separate regression forests to fit the nuisance

functions and then trains another forests on the CATE loss function in (2.11).

2.3.1.5 Multitask-Learners

The idea of multitask-learning, or multi-output learning, for causal inference was

explicitly introduced by Alaa and van der Schaar (2017) and Alaa and van der

Schaar (2018), in the context of Gaussian Processes. The multitask perspective

on CATE estimation consists in viewing the two potential outcomes Y
(0)
i and
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Y
(1)
i as output of a vector-valued function f : X → R2, with d-dimensional

input space and 2-dimensional output space, where the output space is indexed

by Ai, that acts as “task identifier”. CATE estimator is defined as the difference

between the elements of the 2-dimensional output of f(·), i.e.,

τ̂(xi) = f̂1(xi)− f̂0(xi) = f̂⊤(xi)ξ , where ξ⊤ = [−1 1] . (2.12)

Equation (2.12) displays a very similar formulation to a T-Learner; and as

in the T-Learner procedure, the sample is practically split into the two subgroups

for the estimation. However, the advantage of viewing CATE estimation as a

multitask problem is that, instead of estimating the two potential outcomes

independently, as originating from separate conditional mean function spaces

F1,F0 and distributions, as one would do in a T-Learner or X-Learner, they

are estimated “jointly”, through the specification of hyperparameters that

trigger a joint loss minimization problem for the two “tasks”: learning fA=1 and

fA=0. Hence, while this approach separates the groups in subsamples (as in a

T-Learner), at the same time attempts to recover common underlying patterns

between them (as an S- or R-Learner would do) that would be otherwise lost

due to the sample splitting. A side advantage of multioutput learning is related

to the fact that joint estimation is convenient in cases where a treatment

arm features a substantially smaller number of units, in that the process of

borrowing information from the larger group becomes beneficial in fitting the

conditional average potential outcome of the other group — this is potentially

a major issue in presence of multiple treatment arms, and we will discuss it in

more details in Chapter 4.

In the case of Alaa and van der Schaar (2017), multitask learning is induced

through the specification of a particular structure in the kernel function of

a Gaussian Process regression prior. This specific type of Gaussian Process

prior kernel is often known as “coregionalization” kernel, and it is designed

to induce correlation in the estimation of vector-valued functions f(·) that

map to multiple outcomes; this forces the underlying functions constituting
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f(·) = [f0 f1] to share similar patterns. We refer to Chapter 4 in this work, and

furthermore Alvarez et al. (2012), for a more detailed discussion on multioutput

learning in Gaussian Processes. The method is labelled as Causal Multitask

Gaussian Process (CMGP). Alaa and van der Schaar (2018) then proposed a

similar method where multitask learning is induced via a non-stationary version

of the Gaussian Process kernel function (Non-Stationary Gaussian Process -

NSGP).

Alaa and van der Schaar (2017) and Alaa and van der Schaar (2018) are

two example of Multitask-Learners employing Gaussian Process regression as a

base-learner, but there are different ways of inducing multitask learning using

other types of base-learners (e.g. linear regression, tree-based methods, deep

learning, etc.). In particular, a popular recent contribution that implicitly

falls into the Multitask-Learners category is represented by Johansson et al.

(2016) and Shalit et al. (2017) implementation of representation learning for

CATE estimation (the methods are known with the name of Balancing Neural

Network and/or Counterfactual Regression). The idea behind this method

is to specify a deep learning model that learns “balancing” representations

of the covariates by simultaneously minimizing a distance metric between

the two distributions of the group-specific latent representations and a loss

function on the fitted conditional average potential outcomes fA(·). The goal of

this “double-loss” deep neural network structure is to produce counterfactual

outputs that generate from an approximation of a randomized study (expressed

by the balancing representations learnt by minimizing the discrepancy loss).

This model can be easily viewed as a form of Multitask-Learner, since the

parameters in the deep learning model are shared across the A tasks (“hard

parameter-sharing”).

Due to their similarity with T-Learners in deriving a CATE estimator, we

expect Multitask-Learners to perform better when complexity of the response

surfaces f1, f0 varies across groups, and CATE itself turns out to be a rather

complex function. Nonetheless, Multitask-Learners prevent from over-fitting
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simpler CATE functions as T-Learners via borrowing of information across

groups/tasks; and in this way (similarly to X-Learners) they also address the

issue of unbalanced groups, and potentially lack of common support, in a

Bayesian fashion.

2.3.1.6 τ -Learners

The last type of Meta-Learner reviewed in this chapter was implicitly developed

by Hahn et al. (2020), under the name of “Bayesian Causal Forest”. In a similar

fashion to the R-Learner framework, the authors exploit the Robinson (1988)

parametrization, but address the problem in a Bayesian way. Particularly, they

noticed that the parametrization

Yi = µ(Xi) + τ(Xi)Ai + εi , (2.13)

can be viewed as a Bayesian regression framework where the prognostic score,

defined as the impact of the covariates Xi ∈ X on the outcome Yi in absence of

the treatment, µ(xi) = E
[
Yi | Ai = 0,Xi = xi

]
, plays the role of the intercept,

while τ(xi) the role of the slope. In this perspective, CATE can be regarded as

an explicit “parameter” of the model (in the homogeneous treatment effects

extreme case, this would be a scalar parameter associated with ATE) and

thus can be treated in a Bayesian fashion through the specification of a (non-

parametric) prior distribution p
(
τ(·)

)
, which restrict CATE functional space

T capacity and can be shaped to convey prior knowledge, as well as more

targeted regularization that can capture even simple patterns of heterogeneity

(Caron et al., 2022b). Bayesian Causal Forest of Hahn et al. (2020) is composed

by a pair of separate and independent BART priors placed on µ(·) and τ(·)

respectively, but the parametrization in (2.13) can be exploited using other

Bayesian regression methods (e.g. Gaussian Process, Dirichlet Process regression,

etc.).

In addition to the parametrization shown in (2.13), Hahn et al. (2020)

make use of the two-stage procedure seen in (2.2). The two-stage approach
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is motivated by the presence of a particular type of confounding, which the

authors in Hahn et al. (2018) and Hahn et al. (2020) call Regularization Induced

Confounding (RIC). The intuition behind RIC is the following: regularization

applied directly on the two curves f1, f0 ∈ F1,F0 featuring in a T-Learner

(eq. (2.4)) may have unintended consequences on the induced regularization on

τ(·) ∈ T , leading to bias in the estimates of CATE (stemming from over-fitting).

RIC is shown to have a stronger effect when there is strong confounding, such

as in presence of targeted selection, that is when individuals are selected into

treatment based on the prediction of otherwise adverse outcome. Targeted

selection implies a potential strictly monotone relationship between the propen-

sity score π(xi) and the prognostic score µ(xi) = E
[
Yi | Xi, Ai = 0

]
, and is

rather common in studies of observational nature. The proposed way to tackle

confounding from targeted selection is precisely to use the two-stage representa-

tion illustrated in (2.2), where a probabilistic estimate of the propensity score

π̂(xi), obtained from the first stage regression, is added to the covariates for

the estimation of µ(xi) = E
[
Yi | Xi, Ai = 0

]
in the second stage, to account

for their potential relationship.

We name the above approach τ -Learner, as it involves an explicit

parametrization in terms of τ(xi) (similar to R-Learners) and a direct Bayesian

approach to CATE estimation. Hahn et al. (2020) specifically make use of

BART for estimation of µ(xi) and τ(xi), but any other Bayesian method could

potentially work as mentioned before.

As a further advantage, the direct Bayesian approach returns full predictive

posterior distribution on CATE, which conveniently allows the computation

of point estimates as well as credible intervals with nice uncertainty coverage

properties. This feature is shared also by Bayesian implementation of S-

Learners (Hill, 2011) and can be usefully employed to check for causal common

support, as showed by Hill and Su (2013). Meta-Learners that explicitly model

CATE, such as S- and R-Learners, can naturally provide confidence intervals

to accompany point estimates (Athey and Imbens, 2016; Athey and Wager,
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2019; Caron et al., 2022a,b), while T-Learners and their extensions (X- and

Multitask-Learners), which indirectly model CATE as the difference between

two separately fitted surfaces, must resort to re-sampling techniques such as

jackknife or bootstrapping to produce confidence intervals (Künzel et al., 2017).

2.3.2 Model Selection

Model selection is a challenging problem in causal inference, the main reason

being that one cannot observe counterfactual outcomes Y
(1−Ai)
i and thus the

ITE difference Y
(1)
i − Y (0)

i = τ(xi) + ηi, ∀i ∈ {1, ..., n}, which distinguishes it

from other classical statistical learning problems (Chapter 1). The aim here

would ideally be to select a model T ∗ ∈ {T1, ..., Td} within the (restricted)

class of possible functions, that minimizes a loss (or risk) function on the

estimated CATE τ̂(xi), in a supervised learning manner. CATE squared loss

function, of the type Ep[(τ̂ − τ)2], is referred to as Precision in Estimating

Heterogeneous Treatment Effects (PEHE) (Hill, 2011) and takes the following

form: Ep
[(
τ̂(xi)− τ(xi)

)2 | Xi = xi
]
. Thus the statistical learning problem,

under utopic full observability of counterfactuals and PEHE loss function, could

be depicted as

τ ∗ ∈ argmin
τ∈T

Ep
[
ℓ
(
τ(x), (y(1) − y(0))

)]
where

ℓ
(
τ(x), (y(1) − y(0))

)
=
[
τ(x)− (y(1) − y(0))

]2
.

Thus, PEHE would be an ideal loss function to use, but cannot be computed

because of partial observability of the POs. Moreover, typical loss functions for

standard regression problems (MSE, MAE, cross-entropy loss, etc.) computed

directly against the observed outcome Yi for estimating conditional average

PO functions f1, f0 are not reliable measures for goodness of resulting CATE

estimates for selection and confounding bias issues. For example, as discussed in

Section 2.3.1.3 in the context of X-Learners, fitting good POs models in terms

of their prediction error is not sufficient to guarantee good CATE estimates in

presence of unbalanced designs. Attempts have been made in the literature to
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develop a feasible way to select CATE models (e.g., Schuler et al. (2018); Alaa

and Van Der Schaar (2019)), but none of the very few model selection procedures

has been widely adopted for the reasons above. The R-loss encountered in

(2.11) in the R-Learner framework could be in principle utilized to evaluate

CATE estimates τ̂(·) stemming from any other Meta-Learning framework.

However, this implicitly entails assuming Robinson (1988)’s and R-Learner’s

parametrization Yi = µ(xi) + τ(xi)Ai + εi, with common error structure across

groups.

From a more high-level perspective, the problem of model selection for

CATE inference can be decomposed into three main tasks:

1) Causally sufficient variable selection. By causally sufficient variable

selection we refer to a step which is aimed at ideally partitioning covariates

into four distinct categories, namely: i) confounders, i.e. common causes

of Ai and Yi, to be included in both outcome and propensity model;

ii) predictors of Ai, to be included in the propensity model only, with

particular care given to the inclusion of IV and near-IV covariates (Pearl,

2011); iii) predictors of Yi, to be included in both the outcome model and

in the propensity model as well (Brookhart et al., 2006); iv) moderators

of the treatment effects, which are a (not necessarily strict) subset of

the outcome’s predictors entering the CATE model only. In the case

of “direct methods” not relying on propensity score adjustment, the

problem naturally reduces to the specification of the outcome model

only. The “causally sufficient” terminology here relates to the inclusion of

confounders, which represents the smallest set of covariates to condition

on that guarantees unbiased CATE estimates (Hill and Su, 2013), while

variable selection in propensity and outcome model is meant to improve

estimates’ precision instead.

Naturally, in empirical applications with large datasets, manual variable

selection is not feasible, so one typically resorts to regularization tech-

niques, after assuming unconfoundedness (i.e. we observe and include all
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confounders in the model). Nonetheless, we once again stress how this

requires some particular care given to some specific categories of PS co-

variates (see the end of Section 2.2 for a brief discussion). The interesting

sub-task for policy-making purposes in heterogeneous treatment effects

estimation is that of detecting the main moderators, possibly amongst

several covariates. As we will discuss in detail in later sections and in

Chapter 3, R- and τ -Learners have the comparative advantage to other

Meta-Learners that they provide a straightforward framework to do so

(Caron et al., 2022b). As also described earlier, by exploiting Robinson

(1988) parametrization they specify a direct regularized model on CATE,

that can easily return interpretable measures of “moderators importance”.

For example, a LASSO regression implementation of R-Learner (Nie and

Wager, 2020) would return a sparse vector of moderators’ coefficient; a

shrinkage prior implementation of Bayesian Causal Forest can return pos-

terior splitting probabilities on moderators instead (Caron et al., 2022b),

as we will discuss in Chapter 3.

2) Base-learner selection refers to the problem of finding the best super-

vised algorithm for fitting the surfaces of interest via the outcome and

propensity models. This sub-problem is essentially similar to a standard

statistical learning one. A first step might be related to determining

whether a parametric model is sufficient for adequately approximating

relationships in the data. Non-parametric regression models provide flexi-

bility to capture more complex patterns. Among non-parametric models,

the functional space might be restricted further to satisfy parsimony and

better generalization principles by applying regularization techniques, and

also via domain knowledge incorporation by placing a prior distribution

on the functional space. For example, one might consider splines or Gaus-

sian Processes as more appropriate than tree-based methods for certain

type of data, as they are better suited for fitting smooth functions. Some

Meta-Learners, namely T-, X- and R-Learners offer the opportunity of
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employing more than just one base-learner for different groups or different

nuisance function (PS or outcome). For example, if the treated group has

very few instances compared to the control, a parametric model is more

likely to deliver better generalization properties; in R-Learners, different

models can be adopted for fitting m(xi) and then τ(xi).

3) Meta-Learner selection. Finally, the chosen base-learner has to be

paired to one of feasible the Meta-Learners subroutines described in earlier

subsections. By “feasible” here we refer to the fact that some of the

Meta-Learners presented above do not support all types of base-learners.

While S-, T-, X- and R-Learners allow for a high degree of flexibility in

the choice of a base-learners, other frameworks are a bit more selective.

τ -Learners envisage the use of Robinson’s re-parametrization and a prior

distribution (e.g., BART, GP, BNN, etc.) to be placed on µ(·) and

τ(·), for a fully Bayesian inference; So far, to the best of our knowledge,

they have been implemented in the context of BART (Hahn et al., 2020;

Caron et al., 2022b) and (approximate) Bayesian Deep Learning (Caron

et al., 2022c). Multitask-Learners only allow for multi-output learning

algorithms (e.g BART have not been extended to multi-output problems

yet). As we will discuss in more detail in the next section, the choice of a

Meta-Learner is in practice primarily based on domain knowledge about

the study at hand and on study-specific characteristics (i.e. suspected

complexity of heterogeneity patterns, treatment groups imbalance, etc.),

which can be viewed as an encoded prior on CATE function p
(
τ(·)
)
, that

can be linked to different Meta-Learners’ properties.

2.4 Simulation studies

In this section we report and comment on results from two different semi-

simulated studies, carried out to compare performance of some of the models pre-

sented above in estimating CATE. A third supplemental semi-simulated study

can be found in the Appendix Section A. A semi-simulated study here consists
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in simulating only the outcome surface Yi in the dataset Di = {Xi, Ai, Yi}, start-

ing from real-world Xi and Ai. In the case of observational semi-simulations,

Hill (2011) introduced a practical way of recreating an observational study from

a randomized one. This is essentially done by leaving out a non-random portion

of the treated group, so that treatment assignment is no longer randomized.

Recreating an observational study from a purely randomized one has the main

advantage of ensuring control over the selection mechanism, such that common

support is guaranteed to hold, in this case, at least for the treated group. This

means that average treatment effects on the treated (ATT and CATT) are

identifiable, while those on the controls (ATC and CATC) are not.

We provide results based on the analysis of two real world randomized

controlled trials, after transforming them into observational studies. The first

semi-simulated setup employs the IHDP dataset, firstly introduced by Hill

(2011) and popular in both the computer science and statistics literature on

CATE estimation. The second and third setups instead employ the ACTG-175

dataset, and differ in the way the outcome and CATE are generated. Both code

and the datasets to reproduce the results in this section are publicly available

at https://github.com/albicaron/EstITE. As mentioned above, we present

here below results from the IHDP data simulation and one of the two setups

involving the ACTG-175 data, while we leave the other ACTG-175 setup in

the Appendix, Section A.

The models we test are the following: random forests and BART respec-

tively as S-, T- and X-Learners; LASSO regression, gradient boosted trees as

R-Learners, and Causal Forest, which is a particular implementation of random

forests as an R-Learner (Wager and Athey, 2018; Athey and Wager, 2019);

two Multitask-Learners in the form of Multioutput Gaussian Processes, one

with stationary kernel (Causal Multitask Gaussian Process - CMGP) and the

other with non-stationary kernel (Non-Stationary Gaussian Process - NSGP),

developed by Alaa and van der Schaar (2017) and Alaa and van der Schaar

(2018) respectively; finally, Bayesian Causal Forest (Hahn et al., 2020; Caron

https://github.com/albicaron/EstITE
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Meta-Learner Label Base-Learner

S-Learners
S-RF Random Forest

S-BART BART

T-Learners
T-RF Random Forest

T-BART BART

X-Learners
X-RF Random Forest

X-BART BART

R-Learners
R-LASSO LASSO Regression
R-BOOST Gradient Boosted Trees

CF Causal Forest

Multitask-
Learners

CMGP Causal Multi-task Gaussian Process
NSGP Non-Stationary Gaussian Process

τ -Learners BCF Bayesian Causal Forests (BART)

Table 2.2: List of Meta-Learner models compared in this experimental section.

The “Base-Learner” column indicates which statistical learning (parametric or non-

parametric) model is being used within the corresponding more general Meta-Learning

framework.

et al., 2022b), which is a specific implementation of τ -Learner employing BART.

A summary of the tested models is provided in Table 2.2. As explained in

earlier sections, some of the methods envisage a specific role for propensity

score, while for the other non-propensity methods we added PS estimates as

an extra covariate (Hahn et al., 2020) to provide a comparison that decouples

any difference in performance attributable to the inclusion of propensity score

in the model.

For each of the two datasets analyzed, in order to provide a comparison of

the methods presented above, we computed
√
PEHE estimates for each of the

B = 1000 Monte Carlo simulations, and we averaged it over all the simulations.

Consistently with what we discussed earlier,
√
PEHE was evaluated only in

the covariate space regions corresponding to the treated units (thus on CATT)

X1, as overlap is not guaranteed to hold on the covariate space regions of the

controls (i.e. on CATC). Estimates of PEHE were obtained through its sample
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equivalent, namely:

PÊHEτ =
1

nT

nT∑
i=1

(
τ(xi)− τ̂(xi)

)2
, (2.14)

where: subscript τ indicates PEHE is being computed on an estimate for τ ; nT

is the size of the treated group; τ̂(xi) is the CATT estimate obtained under the

given method; τ(xi) is the ground-truth CATT, always unknown in the real

world. Data are randomly split in 70% train set used to train the models, and

30% test set to evaluate the model on unseen data.
√
PEHE is reported for both

train and test data. Supplementary results on all the simulated experiments

regarding bias and
√
PEHE, evaluated also on CATC (out-of-overlap) regions,

are provided in the appendix.

It is worth mentioning here that, although we measure PEHE on CATT

point estimates, where overlap is theoretically guaranteed, there could still

be regions of limited overlap where all models rely heavily on extrapolation.

In general then, PEHE alone may not paint a reliable picture of models’

performance if measured in (theoretically guaranteed, but) poor overlap regions.

In fully simulated experiments (such as some of the ones appearing in the next

chapters) we have more direct control on, and thus can limit, poor overlap. A

more indicated way is to present PEHE alongside other performance measures

involving intervals estimates rather than just point estimates (as we do in

some of the next chapters’ experiments), e.g., uncertainty coverage and credible

intervals’ width.

2.4.1 IHDP data

The first semi-simulated setup makes use of the IHDP dataset (Brooks-Gunn

et al., 1992), popular in the literature for CATE estimation and used for

the first time in Hill (2011). It includes data taken from the Infant Health

and Development Program (IHDP), a randomized controlled trial aimed at

investigating the efficacy of educational and family support services, with

pediatric follow-ups, in improving cognitive skills of low birth weight preterm
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infants, who are known to have developmental problems regarding visual-motor

and receptive language skills (McCormick, 1985; McCormick et al., 1990). The

study includes observations on 985 infants whose weight at birth was less

than 2 500 grams, across 8 different sites. About one third of the infants

were randomly assigned to treatment (Ai = 1), which consisted in routine

pediatric follow-up (medical and developmental), in addition to frequent home

visits to inform parents about child’s progress and communicate instructions

about recommended activities for the child. Following Hill (2011), the outcome

variable (Yi) we use is the score in a Stanford Binet IQ test, whose values

can range from a minimum of 40 to a maximum of 160, taken at the end

of the intervention period (child’s age equal 3). The available final sample,

obtained after removing 77 observations with missing IQ test score, consists

of n = 908 data points. The dataset features 25 pre-treatment covariates, 6

continuous and 19 binary. The data are transformed into observational by

leaving out a non-random portion of the treated individuals, namely those with

non-white mothers. This leaves 139 observations in the treated group and 608

in the control group, for a total of 747 observations. Notice that removing a

non-random portion of the treated inevitably generates lack of common support,

as we no longer have children with non-white mothers in both treatment arms.

For this reason estimating ATE and/or CATE would be unwise, as outlined in

1. Thus, we can resort to treatment effects estimation on the treated group

only, i.e. ATT and CATT, where overlap is guaranteed to hold.

ITE is derived as the difference between the simulated potential outcomes,

which are generated as:

Y (0) ∼ N
(
exp

(
(X +W )βB

)
, 1
)
,

Y (1) ∼ N
(
XβB − ωbB, 1

)
,

(2.15)

whereW is an offset matrix of same dimension asX with every entry equal to 0.5,

and βB is a 25-dimensional vector of regression coefficients
(
0, 0.1, 0.2, 0.3, 0.4

)
,

sampled in each replication b of the experiment with probabilities
(
0.6, 0.1,
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Figure 2.3:
√
PEHE distribution in the train set (left) and test set (right), IHDP

data.

0.1, 0.1, 0.1
)
, as described in the experiment “Response surface B” in Hill (2011).

Following Hill (2011), coefficients βB are re-sampled in each replication b to

introduce some degree of sampling variation in the sparsity underlying the

potential outcomes surfaces, i.e. different relevant covariates in each replication.

For each replication b ∈ {1, ..., 1000}, ωbB is an offset chosen to guarantee that

ATT = E
[
Y (1) − Y (0) | A = 1

]
= 4.

Given the features of this specific simulated experiment, we might anticipate

some of the Meta-Learners’ behaviors, based on the properties that we laid

out in the previous sections. First of all, we notice that, by the way POs are

generated, CATT τ1(xi) ∈ T1 is bound to be a rather complex function. We

expect this feature to particularly favours T-Learners and their extensions

Multitask-Learners, over S-, X-, R- and τ -Learners, as they tackle CATT

estimation problem by fitting two separate functions f0 ∈ F1 and f1 ∈ F0,

which allows to capture very distinct, group-specific, degrees of complexity.

Secondly, at a higher base-learner selection level, the conditional average

potential outcomes generated in (2.15) are very smooth functions. This implies

that base-learners enforcing a higher degree of smoothness via regularization

(e.g. splines, Gaussian Processes, etc.) are well suited for the problem at hand.

Simulation results on performance are reported in Table 2.3 and Figure 2.3.
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Table 2.3: Meta-Learners’ results on IHDP and ACTG-175 data.
√
PEHEτ esti-

mates ± 95% confidence intervals for each tested model on CATT, on train and test

sets respectively.

IHDP ACTG-175

Train Test Train Test

S-RF 3.02 ± 0.23 2.96 ± 0.25 0.50 ± 0.01 0.48 ± 0.01
S-BART 1.75 ± 0.11 2.02 ± 0.15 0.43 ± 0.01 0.45 ± 0.01

T-RF 2.39 ± 0.17 2.28 ± 0.18 0.51 ± 0.01 0.49 ± 0.01
T-BART 1.35 ± 0.09 1.31 ± 0.09 0.48 ± 0.01 0.51 ± 0.01

X-RF 3.04 ± 0.21 3.15 ± 0.24 0.34 ± 0.01 0.36 ± 0.01
X-BART 1.34 ± 0.09 1.50 ± 0.12 0.44 ± 0.01 0.47 ± 0.01

R-LASSO 1.78 ± 0.13 1.82 ± 0.14 0.60 ± 0.01 0.63 ± 0.01
R-BOOST 2.04 ± 0.12 2.22 ± 0.15 0.47 ± 0.01 0.48 ± 0.01

CF 2.88 ± 0.19 2.84 ± 0.21 0.40 ± 0.01 0.39 ± 0.01

CMGP 0.89 ± 0.05 0.84 ± 0.07 0.42 ± 0.01 0.43 ± 0.01
NSGP 0.80 ± 0.05 0.81 ± 0.07 0.41 ± 0.01 0.42 ± 0.01

BCF 1.26 ± 0.09 1.22 ± 0.09 0.36 ± 0.01 0.38 ± 0.01

As anticipated by the above considerations, the best models appear to be the

multitask Gaussian Processes (CMGP and NSGP) of Alaa and van der Schaar

(2017) and Alaa and van der Schaar (2018). Also, T-Learners generally display

better performance than their S- and X-Learner counterparts (particularly over

S-RF, S-BART and X-RF, while X-BART has comparable performance to T-

BART). Less anticipated is the performance of BCF (τ -Learner), which comes

in second after the Gaussian Processes. This highlights BCF’s ability to convey

targeted Bayesian shrinkage on CATE, that, coupled with the flexibility in

modelling the response function of BART, allows one to adjust to more (or less)

complex CATE surfaces. In Figure 2.3, we report the empirical distribution

of
√
PEHEτ over the B = 1000 replications on both train and test data, for

each of the models. We also notice that tree-based methods are relatively more

prone to overfitting.

An important remark about the data generating process described by

(2.15) is that it does not really induce strong confounding, since it is easy for

a non-parametric base-learner to distinguish the two underlying polynomials
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E[Y (Ai) | Xi = xi]. And since the two polynomials E[Y (Ai) | Xi = xi] are

extremely different from each other, CATE ends up being an unrealistically

complex function. Besides, the fact that noise around E[Y (Ai) | Xi = xi] is

independently simulated for the two potential outcomes produces extra noise-to-

signal ratio on CATE, V(Y (1)
i −Y

(0)
i ) = V(εi,1)+V(εi,0), that renders estimation

challenging for every model in general. This implies that a relatively higher

number of Monte Carlo replications of the experiment are needed to obtain

estimates of
√
PEHE with sufficiently low variance to effectively compare

methods’ performance (in this case B = 1000 appears to suffice). In the

ACTG-175 simulated example illustrated in the next section, we will follow the

parametrization found in Robinson (1988), Nie and Wager (2020) and Hahn

et al. (2020) in the data generating process of the outcome surface, in order to

induce stronger confounding (which is believed to be common in observational

studies), generate a relatively simpler and more realistic CATE function, and

avoid creating unnecessarily high noise around CATE.

2.4.2 ACTG-175 data

The second semi-simulated setup presented here is re-created using the ACTG-

175 dataset. The data come from a randomized placebo-controlled trial aimed

at comparing monotherapy versus a combination of therapies in HIV-1-infected

subjects with CD4 cell counts between 200 and 500 (Hammer et al. (1996) for

details). As in the case of IHDP data, an observational study is recreated by

throwing away a non-random subset of patients, namely those not showing

symptomatic HIV infection. The final dataset consists of 813 observations and

12 variables (3 continuous and 9 binary). The list of covariates included in the

dataset are shown in Table 2.4.

Unlike the case of IHDP data, response surface Yi is not generated via

simulation of the two potential outcomes. Instead, we generate continuous

outcome Yi according to the parametrization

Yi = µ(Xi) + τ(Xi)Ai + εi , (2.16)
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Table 2.4: ACTG-175 dataset variables

Variable Description

age Numeric
wtkg Numeric
hemo Binary (hemophilia = 1)
homo Binary (homosexual = 1)
drugs Binary (intravenous drug use = 1)
oprior Binary (non-zidovudine antiretroviral therapy prior to

initiation of study treatment = 1)
z30 Binary (zidovudine use in the 30 days prior to treat-

ment initiation = 1)
preanti Numeric (number of days of previously received an-

tiretroviral therapy)
race Binary
gender Binary
str2 Binary: antiretroviral history (0 = naive, 1 = experi-

enced)
karnof hi Binary: Karnofsky score (0 = < 100, 1 = 100)

which allows to specify CATE directly, instead of starting from the simulation

of potential outcomes, and features a single error term εi. The prognostic score

µ(xi) and CATE τ(xi) are generated as:

µ(xi) = 8− 0.5hemo− |wtkg − 1|+ 0.5gender − 0.2

age+ 2

+ 0.5karnofhi − 0.5z30− 0.5race

τ(xi) = 1 + 0.2wtkg + 2ϕZ(wtkg) · (karnofhi + 2) ,

(2.17)

where ϕZ(·) is the density function of a standard normal distribution. Noise

is added by simulating normally distributed i.i.d. errors εi ∼ N (0, σ2), with

homoskedastic standard deviation equal to σ = 0.2(µmax − µmin), where µmax
is the sample maximum of the generated prognostic score, while µmin is the

sample minimum. Notice that, unlike the case of IHDP data, the error term

is not simulated independently for the two groups, which avoids imposing too

much noise around CATE. This translates into better signal-to-noise ration

reflected in the PEHE estimates to evaluate the models, as shown both in Table

2.3 and Figure 2.4. As in the IHDP simulated example,
√
PEHE is evaluated on

the treated group only, given that only CATT is guaranteed to be identifiable.



2.5. The effect of school meal programs on health indicators 77

In this second simulated setting, CATE is of simpler form. Hence, contrary

to the IHDP setup, we expect learners that better accommodate less complex

CATE functions (and thus higher confounding conveyed by the common prog-

nostic score), such as S-, X- and τ -Learners, to perform better than T- and

Multitask-Learners counterparts. In addition, the design is slightly unbalanced,

with 281 individuals in the treated group and 532 in the control, a feature

that might favour X-Learners. By inspecting the results reported in Table

2.3, we notice that X-RF and BCF are comparably the two best performing

methods. As we have pinpointed earlier, this is thanks to their ability to

detect simple heterogeneity patterns. S- and X-Learner implementation of

BART are then relatively better than T-BART, while S-RF and T-RF do not

exhibit any significant difference. CF (random forest R-Learner), which shares

the characteristics of conveying targeted regularization with BCF, trails just

behind X-RF and BCF. Finally, the two causal multitask Gaussian Processes

perform reasonably well considering that the setup is not favourable to T- type

of learners, as they tackle group imbalances by joint estimation of conditional

average POs. Figure 2.4 depicts again the distribution of
√
PEHE over the

B = 1000 replications, for both train and test data, for all the tested models.

We employ the ACTG-175 data also in a third semi-simulated setup

featuring more complex µ(xi) and τ(xi) surfaces, compared to the ones in

(2.17). Description and results of this third example are provided in the

Appendix Section A.2.

2.5 The effect of school meal programs on

health indicators

Eventually, in this section we provide a full-length analysis of the NHANES

data introduced in Section 2.1, previously analyzed by Chan et al. (2016), to

demonstrate the use of CATE estimation methods and related tools in the

study of heterogeneity. The dataset consists of n = 2330 observations and

P = 11 covariates. The outcome variable of interest Yi is child’s BMI, while the
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Figure 2.4:
√
PEHE distribution in the train set (left) and test set (right), ACTG-

175 data.

treatment Ai denotes participation in the National School Lunch or the School

Breakfast programs, which are both designed to tackle poor or insufficient food

access in low-income households. The full list of the variables, including the

available covariates, is provided in Table A.5 in the Appendix. This specific

setup suggests that the impact of participation in school meal programs might

be heterogeneous across children, in that demographics such as age, gender or

ethnicity might play a role in how effective participation is (e.g. younger kids

might benefit more than older ones, etc.). This advocates the use of methods

for CATE estimation.

By taking a rather agnostic approach to the problem, we decide to employ

Bayesian Causal Forests (τ -Learner) (Hahn et al., 2020) in the analysis, for

two primary reasons. Together with the causal multitask Gaussian Processes

of (Alaa and van der Schaar, 2017, 2018), BCF was the most flexible method

across different CATE simulations in the earlier section. In addition, as an

advantage over causal multitask Gaussian Processes, BCF makes it easier to

directly pick a BART prior to place on CATE and prognostic score µ(·).

First of all, we employ a 1-hidden-layer neural network classifier to estimate

the propensity score as a function of all the covariates, to be added as an

additional covariate, as envisaged by the τ -Learner framework. We then run
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Figure 2.5: Left pane: BCF’s posterior distribution estimates on CATE corre-

sponding to the approximated propensity score percentiles (i.e. to individuals in

the sample whose estimated propensity corresponds or is closest to PS percentiles).

Right pane: BCF’s CATE point estimates (averaged over the 5 000 post burn-in

MCMC iterations) as a function of child’s age.

Bayesian Causal Forest algorithm for a total of 10 000 MCMC iterations,

of which the first 5 000 are discarded as burn-in. The left pane in Figure

2.5 represents the resulting CATE posterior distributions corresponding to

different approximated propensity score percentiles (namely to individuals in

the sample whose estimated propensity is equal or closest to the PS percentiles).

This type of plot allows us to visualize uncertainty around individual CATE

point estimates. CATE estimates seem to be concentrated around zero for all

propensity score levels, which suggests a null average treatment effect (ATE)

and very weak or absent heterogeneity patterns. Uncertainty patterns are quite

consistent across different PS percentiles, apart from the minimum (i.e. 0%

percentile) where CATE distribution is much more diffuse, potentially signalling

a region of poor overlap.

Drawing attention to the study of moderation effects, we run a simple

decision tree partition algorithm using the R package rpart, where average

CATE point estimates τ̂(xi) are treated as the target variable, while the

covariates Xi ∈ X are treated as predictors. The purpose of this exercise,

that can done using CATE estimates obtained from any Meta-Learner, is to
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Figure 2.6: Decision tree indicating the most homogeneous subgroups in terms

of treatment response, as a function of the available covariates (moderators). The

nodes report CATE estimates averaged within the corresponding subgroup. The first

node intuitively reports ATE estimate.

find ex-post (post estimation) the most homogeneous subgroups in terms of

treatment response and the most informative moderating covariates. The

results are depicted in Figure 2.6 in the form of a simple decision tree, where

nodes report CATE estimates averaged within the corresponding subgroup, and

provide evidence of very little, if not null, heterogeneity arising from Children’s

Age, given that the first two most informative splits in the tree feature this

covariate, and that the estimated treatment effect is not very different across

these subgroups. To better visualize this relationship, in the right pane of

Figure 2.5 we plot point estimates of CATE against Children’s Age, that show a

weak but positive relationship. Figures 2.5 and 2.6 capture the role of Children’s

Age. Although it does not appear to be a major driver of propensity score

(Ethnicity, Poverty Level and Participation to other Food Programs seem to be

the main determinants of A — see Table A.6 in the Appendix), it is likely the

main source of the, albeit small, moderation effects.

From the original analysis carried out by Chan et al. (2016) on the same

NHANES dataset, it emerges that the estimated average treatment effect

(ATE), on the 2007-2008 logged data, is significantly small, perhaps actually
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null. As stated by the authors, this finding is likely attributable to the fact

that the school meal programs are already well implemented, that is, treatment

administration is already targeting the right population of individuals, with

the policy implication that there is no need for re-designing it. To relate their

findings to our analysis, we notice that results are very similar, in that we find

no significant treatment effect across propensity score percentiles (Figure 2.5),

and neither across subgroups defined by children’s age (Figure 2.6). Treatment

response patterns emerging from this analysis can be linked back to a settings

similar to the ACTG simulation example, where causal effects are weakly

heterogenous (in this case virtually constant and null), so that S-, X- and

τ -Learners would be the preferred choice. Results from BCF implementation of

τ -Learners in this analysis demonstrate its particular feature of being able, as

described by Hahn et al. (2020), to shrink CATE estimates back to homogeneity

if required, through targeted regularization.

2.6 Conclusions

In this chapter, we discussed the most recent developments on estimation of

heterogeneous treatment effects in the context of observational studies. Our

review of Meta-Learner frameworks and simulation studies lead to a few general

observations. With regards to the properties of Meta-Learners reviewed in

Section 2.3.1, there is a clear distinction between different groups of Meta-

Learners according to the type of CATE functional complexity. S-Learners

are appropriate when CATE displays simple heterogeneity patterns, while T-

Learners when CATE is rather complex. The other Meta-Learners are instead

designed to ideally adjust to different CATE complexity setups, although

some of them appear to do so better than others. Multitask-Learners feature

parameters sharing in the estimation of conditional average POs across “tasks”

Ai = a, but being an extension of T-Learners they essentially assume separate

models, with independent error terms, for the conditional average POs. For

this reason, although they generally perform drastically better than T-Learners,
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they appear to do slightly worse in settings with weak heterogeneity. The

remaining batch, formed by X-, R- and τ -Learners, consist of methods that

are instead specifically designed to address unbalanced designs and capture

simple heterogeneity patterns, in different ways. X-Learners successfully extend

T-Learners by applying propensity score re-weighting, while R- and τ -Learners

are both propensity methods that apply targeted regularization/shrinkage by

exploiting Robinson (1988) parametrization.

As for the results from the simulation exercises in Section 2.4, we described

how BCF (τ -Learners) and causal multitask Gaussian Processes (Multitask-

Learners) both performed consistently well across different simulated scenarios,

with X-Learner trailing just a bit behind, and thus appear to be quite flexible

and reliable methods to be chosen. BCF has also been shown to be particu-

larly effective in addressing strong confounding (through incorporation of PS

estimates).

Based on these findings, we suggest that model selection (or Meta-Learner

selection) for CATE estimation in practice particularly benefits from restrictions

placed on the CATE functional space capacity T stemming from domain

knowledge, equivalently interpretable as placing a “prior” p(τ(·)) on possible

models space. Now, while some of the methods reviewed above have to be

adjusted ex-post (e.g., if we have unbalanced groups and suspect CATE is

a relatively simple function, we estimate a T-Learner and then apply the

X-Learner framework), some others enable us to do this ex-ante (R- and τ -

Learner), regardless of whether we suspect CATE is relatively complex or

not. In the next chapter indeed, we are going to discuss how we can exploit

the Robinson (1988) parametrization by developing novel versions of R- and

τ -Learners with additional desirable features, to simultaneously tackle the

issues of targeted regularization and uncertainty-quantification and moderation

effects interpretability in heterogeneous causal effects estimation.



Chapter 3

Interpretability, Regularization

and Uncertainty Quantification

in Causal Effects Learning

ContributionsThe first part of this chapter is based on contents from a

paper submitted and accepted to the Journal of Computational & Graphical

Statistics (Caron et al., 2022b), with additional material explaining Bayesian

tree-ensembles models more in details. The second part instead includes material

based on a short workshop paper accepted to the 2nd Interpretable Machine

Learning for Healthcare Workshop at ICML (Caron et al., 2022c).

In this chapter, we focus on developing new Bayesian Non-Parametric

(or Probabilistic Machine Learning) techniques for individual treatment ef-

fects estimation, that specifically build on top of R- and τ - type of Learners

(Nie and Wager, 2020; Hahn et al., 2020) and Robinson’s parametrization

(Robinson, 1988). As mentioned in earlier chapters, Robinson’s parametrization

(Robinson, 1988) can generate advantages in terms of: i) Interpretability of

moderation effects, if coupled with white-box models; ii) Targeted regular-

ization/shrinkage on the treatment effects function CATE; iii) Uncertainty

quantification on CATE, if coupled with appropriate Bayesian inference tools.
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However, none of the existing reviewed methods has explicitly combined all

these three components together. Thus, in this chapter we present two novel

models that specifically address these three points simultaneously; one is based

on Bayesian Additive Regression Trees (BART) (Chipman et al., 1998, 2010),

while the other on a more interpretable variant of Neural Networks (NNs),

called Neural Additive Models (NAMs) (Agarwal et al., 2021), coupled with

approximate Bayesian deep learning inference techniques (Gal and Ghahramani,

2016; Lakshminarayanan et al., 2017; Pearce et al., 2020; Abdar et al., 2021).

We begin by introducing the popular BART model, developed by Chip-

man et al. (1998, 2010). We describe its non-parametric approach to fitting

conditional mean functions in regression problems, and also how inference is

achieved via Bayesian backfitting MCMC. BART has shown excellent perfor-

mance in many predictive tasks, thanks to its ability to adapt to the underlying

complexity of the conditional mean function (non-linearities, discontinuities,

interaction between predictors, etc.) coupled with good Bayesian uncertainty

coverage properties. For this reason it has also been successfully employed in

causal inference tasks, with due modification to the particular setting, as we

will discuss.

The second part of the chapter develops a shrinkage version of Bayesian

Causal Forests, a recently proposed causal version of BART, that is specifically

designed to estimate heterogeneous treatment effects under observational data,

and study moderation effects. The shrinkage component we introduce is

motivated by empirical studies where the number of pre-treatment covariates

available is non-negligible, leading to different degrees of shrinkage underlying

the surfaces of interest in the estimation of individual treatment effects. The

extended version presented in this work, which we name Shrinkage Bayesian

Causal Forest, is equipped with an additional pair of priors allowing the model

to adjust the weight of each covariate through the corresponding number of

splits in the tree ensemble. These priors improve on the model’s computational

efficiency and mixing time, adaptability to sparse settings and allow to perform
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fully Bayesian variable selection in a framework for treatment effects estimation,

and thus to uncover the moderating factors driving heterogeneity. In addition,

the method allows for prior knowledge about the relevant confounding pre-

treatment covariates and the relative magnitude of their impact on the outcome

to be incorporated in the model.

We then illustrate the empirical performance of Shrinkage Bayesian Causal

Forests in simulated studies, in comparison to Bayesian Causal Forest and

other state-of-the-art models already encountered in Chapter 2, to demonstrate

how it scales up with an increasing number of covariates and how it handles

strongly confounded scenarios. We also provide an example of application using

real-world data.

Finally, in the last part of the chapter, we introduce novel deep causal

learning architecture, Interpretable Causal Neural Networks (ICNN), which

exploit a type of R-Learner loss function, combining it with the interpretability

of Neural Additive Models (NAMs) (Agarwal et al., 2021), rooted in the

theory of Generalized Additive Models (GAMs), that can output Shapley value

(Shapley, 1953) functions on moderating effects.

3.1 Bayesian Causal Forests

This section begins by introducing Bayesian Additive Regression Trees and

Backfitting MCMC inference in them (Chipman et al., 1998, 2010). We will

briefly see how BART offer a very flexible way of estimating the conditional

mean function and adapt extremely well to non-linearities, lack of smoothness

(discontinuities) and interactions between predictors. For these reasons, BART

is not only widely used for prediction problems, but has also been successfully

employed in causal inference. In the second part of this section, we will thus

thoroughly review a popular causal version of BART, Bayesian Causal Forests,

already encountered in the previous chapter in the context of τ -Learners, Section

2.3.1.6.
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Figure 3.1: Simple tree structure, mapping inputs x1 and x2 to the terminal nodes

ψ = {ψl1, ψl2, ψl3}. Figure on the right represents the partition induced by the tree

on the input space.

3.1.1 Regression Trees

The conventional definition of a “decision tree” is that it is a collection of

recursive binary split rules of the type {xj ≥ c} vs {xj < c} that maps

inputs X = (X1, ..., XP ) ∈ X to a set of terminal nodes ψ ∈ Ψ located at its

“leaves”. More formally, a regression tree is a particular type of Adaptive

Basis-Function Model (ABM). An ABM has the following general form to

fit the conditional mean function of an outcome Y :

f(X) = E[Y |X] = ψ0 +
K∑
k=1

ψkϕk(X;ϖ) (3.1)

where ϕk(·) is the k-th basis function and ϖ are its parameters. In the specific

case of regression trees, the basis functions are defined by the binary split rules

and the parameters ψ = (ψ1 ... ψk) are the piecewise constant means in those

regions; so that (3.1) becomes:

f(X) = E[Y |X] =
b∑

k=1

ψkI
(
x ∈ Jk

)
(3.2)

where Jk denote the k-th region into which the input space is divided. Figure

3.1 shows an example of binary rules in a regression tree and the partition

induced by its basis functions on two inputs X = [X1 X2]. Although being a

non-parametric model, simple regression trees sometimes struggle to capture



3.1. Bayesian Causal Forests 87

complexity of the response function. In particular, due to the piece-wise constant

nature of the basis function approximation, they lack smoothness. To improve

on complexity of trees, “forest” models, combining trees via e.g. bagging or

boosting, such as in random forests (Breiman, 2001) and gradient boosted trees

(Friedman, 2001), have been developed. Gradient boosted trees in particular

share a lot of similarities with Bayesian Additive Regression Trees, considered

their “Bayesian equivalent”, as we will describe in the next section.

3.1.2 Bayesian Additive Regression Trees

Bayesian Additive Regression Trees (BART) are a non-parametric regression

model that estimates the conditional mean of a response variable Yi via a

“sum-of-trees”. Considering the regression framework in (2.1), one can use

BART to flexibly represent f(·) as:

f(X, A) =
m∑
j=1

gj

([
X A

]
,
(
Tj,Mj

))
=

m∑
j=1

b∑
k=1

ψj,kIJj,k

(
[X A]

)
,

(3.3)

where X and A are the covariate set and the binary treatment indicator,

as in the previous chapter. We will now describe the rest of the seemingly

daunting notation in (3.3) above. Starting from the first equality, m is the

total number of trees in the model. The pair (Tj,Mj) defines the structure

of the j-th tree, namely Tj embeds the collection of binary split rules while

Mj = {ψj,1, ..., ψj,b} the collection of b terminal nodes in that tree. gj(·) is a

tree-specific function mapping the predictors (X, A) ∈ X × A to the set of

terminal nodes Mj ⊆ Rb, following the collection of binary split rules expressed

by Tj . Hence, to expand further, gj
(
[X A], (Tj,Mj)

)
=
∑b

k=1 ψj,kIJj,k

(
[X A]

)
is essentially a step function where IJj,k

(
[x a] ∈ Jj,k

)
= 1. The collection

{Jj,k}bk=1 denotes the sub-regions of the covariate space X × A defined by

the partitioning rules of Tj. The intuition is that conditional mean function

f(x, a) = E
[
Yi | Xi = xi, Ai = ai

]
fit is computed by summing up all the
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terminal nodes ψj,k assigned to the predictors [X A] by the tree functions

gj(·), i.e.
∑m

j=1 gj(·). The “sum-of-trees” structure is what helps BART better

adapt to surface’s smoothness.

3.1.2.1 BART priors

Inference in BART is achieved by placing a prior distribution on the models

parameters θ =
{
(T1,M1), ..., (Tm,Mm), σ

}
, where (Tj,Mj) is the stochastic

tree structure and σ is the error term’s homoskedastic standard deviation, such

that Var(εi) = σ2. Notice we have not included m, the number of trees in

the ensemble. This is technically a parameter itself, but it is usually fixed

(m = 200 has been shown to work nicely in a variety of prediction problems),

or cross-validated, although this increases computational complexity of the

algorithm. The priors chosen for θ are independent, and regularizing. Under

independence between (Tj,Mj) and σ, we can rewrite the prior as

p
(
(T1,M1), ..., (Tm,Mm), σ

)
=

[ m∏
j=1

p
(
(Tj,Mj)

)]
p(σ)

=

[ m∏
j=1

p(Mj|Tj)p(Tj)
]
p(σ) (3.4)

=

[ m∏
j=1

[ b∏
k=1

p(ψkj|Tj)
]
p(Tj)

]
p(σ) ,

so that its specification reduces to defining p(Tj), p(ψkj|Tj) and p(σ), that

depend on few hyperparameters pre-set or tuned from the data.

The prior for p(Tj) is a branching process prior (Linero and Yang, 2018;

Ročková and Saha, 2019), made of three subsequent components that shape

the structure of the single tree Tj:

(i) The first component is concerned with determining the depth of each tree,

in a stochastic way. To this end, the probability that a node at depth dj,

within tree j, is non-terminal is defined as

α

(1 + dj)β
, where α ∈ (0, 1), β ∈ [0,∞) (3.5)
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and dj ∈ (0, 1, 2, 3, ...). Default values for the hyperparameters are α = 0.95

and β = 2. These values ensures that most of the probability mass is assigned

to small trees, with no more than dj = 5 splits each, P(dj > 5) ≈ 1%.

Small trees are a form of “weak learners” and are responsible of inducing

regularization (once added all up, as we will see later) in a very similar

way to gradient boosting (Friedman, 2001). BART approach however differs

from frequentist-based supervised tree algorithms such as random forest

and gradient boosted trees (Breiman, 2017), as regularization is conveyed

through prior distribution and tree depth is not a deterministic, fixed, tuning

hyperparameter, but stochastic.

(ii) Conditional on the tree depth dj , the second component decides which subset

of predictors Xsplit ⊂ X will form the tree’s binary splitting rules. In the

default BART case, a uniform distribution is placed on the splitting variables

so that each predictor xp has P
−1 probability of being picked (where P is the

total number of predictors). We will see in later sections how this component

can be modified to adaptively account for sparsity when learning f(·) and

speed up MCMC convergence (Linero, 2018).

(iii) Finally, given the splitting variables, a uniform distribution is placed on

the possible cutpoints/splitting values of each chosen xp, such that Jp =

{xp ∈ Xp : xp < c} vs ¬Jp = {xp ∈ Xp : xp ≥ c} is the resulting binary rule.

In case xp is continuous, it is generally discretized to up to 10 000 possible

cutpoints to choose from.

The prior for p(ψkj | Tj) on the independent terminal nodes then reads

ψkj | Tj ∼ N (µψ, σ
2
ψ) ,

such that the induced prior on f(x) = E(Y | x), which is the sum of all the

terminal nodes, is consequently N (mµψ,mσ
2
ψ). The hyperparameters µψ and
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σ2
ψ are set empirically by solving:

ymin = mµψ − k
√
mσψ, and ymax = mµψ + k

√
mσψ , (3.6)

with default k = 2, which guarantees that P
(
f(x) ∈ (ymin, ymax)

)
≈ 95%. For

convenience, the outcome Y is re-scaled using min-max normalization such

that ymin = −0.5 and ymax = 0.5, which guarantees that ψij ∼ N (0, σ2
ψ) where

σψ = 0.5
k
√
m
, i.e. the prior on ψij is centered, and thus shrinks to 0.

The prior for p(σ) is a standard conjugate Inverse Chi-Square σ2 ∼ νλ
χ2
ν
, where

the hyperparameters are the degrees of freedom ν and the scale λ. As in the

case of p(ψkj | Tj) hyperparameters, ν and λ are set empirically as follows:

λ is such that the q-th quantile of the σ prior is located at σ̂, the standard

deviation of the residuals ε̂i obtained from a crude OLS regression of Y on

X, i.e. P(σ < σ̂) = q, where q = 0.90 as default; and ν = 3 by default.

The combination of values (ν, q) = (3, 0.90) produces a prior which is neither

overdispersed nor overconcentrated, and give generally nice results in a variety

of applications. Other possible choices of q and ν are q ∈ {0.75, 0.99} and

ν = 10 respectively. In particular, (ν, q) = (10, 0.75) gives a more disperse

and conservative distribution, while (ν, q) = (3, 0.99) a more aggressive and

concentrated one.

3.1.2.2 Bayesian Backfitting MCMC in BART

Default hyperparameter specification in BART follows an “Empirical Bayes”

approach that avoids computationally expensive parameter tuning, considering

having to restart the MCMC chain multiple times. As a consequence, the

computational complexity of BART is entirely determined by its MCMC

inference, that we briefly describe here. BART’s MCMC algorithm takes the

form of a “Metropolis-Hasting within Gibbs” sampling procedure, utilized to

approximately sample from the posterior distribution

p(θ | y) def
= p

(
(T1,M1), ..., (Tm,Mm), σ | y

)
.
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For notational convenience, we denote T(−j) and M(−j) as the set of all tree

structures and all terminal nodes, except for those of the j-th tree, i.e. (−j) =

(1, ..., j − 1, j + 1, ...,m). A single Gibbs sampler MCMC iteration implies m

successive draws of (Tj,Mj) from the full conditional distribution:

p
(
(Tj,Mj) | (T(−j),M(−j)), σ, y)

)
, (3.7)

more specifically with an initial draw from the full conditional of Tj (determining

tree depth, splitting variables and cutpoints) p
(
Tj | (T(−j),M(−j)), σ, y)

)
, and

then from the full conditional of p
(
Mj | Tj, (T(−j),M(−j)), σ, y)

)
. Later, a draw

from the full conditional

p
(
σ | (T1,M1), ..., (Tj,Mj), y

)
(3.8)

is obtained, corresponding to a draw from an inverse-gamma. Draws from (3.7)

are obtained as follows. It can be seen that (3.7) depends on
(
(T(−j),M(−j)), σ)

)
only through the partial residuals Rj = y −

∑
k ̸=j g

(
x, (Tk,Mk)

)
, i.e. residuals

from the fit excluding the j-th tree. Draws in (3.7) are thus equivalent to draws

from:

p
(
(Tj,Mj) | Rj, σ

)
(3.9)

which uniquely identifies tree-related parameter in the single-tree regression

model described by Rj = gj
(
x, (Tj,Mj)

)
+ ε, whose likelihood function p(Rj|θ)

is still Gaussian. We can obtain draws from this posterior by sampling subse-

quently from p(Tj|Rj, σ) and then from p(Mj|Tj, Rj, σ). While the latter has

a conjugate Gaussian form, and can be efficiently sampled in block (Murray,

2020), the former can be expressed up to a normalizing constant as

p(Tj | Rj, σ) ∝ p(Tj)p(Rj | Tj, σ) . (3.10)

Draws from the above j-th tree posterior (3.10) can be obtained using a

Metropolis-Hasting (Metropolis et al., 1953; Hastings, 1970) step proposed in
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Chipman et al. (1998). This approach aims at generating a reversible Markov

chain sequence of trees, which is T 0, T 1, T 2, ..., whose limiting distribution is

p(Tj|Rj, σ). The MH algorithm step (within the Gibbs sampler) works in the

following way:

1. Start with an initial tree T 0 (the initial tree will be of depth d = 0)

2. Generate new candidate tree T ∗, according to the kernel probability

q(T i, T ∗)

3. Set T i+1 = T ∗ with acceptance probability:

α(T i, T ∗) = min

{
1,
q(T ∗, T i)

q(T i, T ∗)

p(T ∗)p(Rj|T ∗, σ)

p(T i)p(Rj|T i, σ)

}

otherwise, set T i+1 = T i.

The transition kernel density generating the proposal T ∗, q(T i, T ∗), assigns

different probabilities to the following possible moves in the search space of

trees T j, to be applied to the current tree T i (i.e. local moves):

1. Grow: with probability 0.25, pick a terminal node randomly and grow a

new one by randomly assigning a splitting rule by randomly picking one

of the remaining predictors and randomly choose a splitting value

2. Prune: with probability 0.25, pick a random pair of terminal nodes and

prune them

3. Change: with probability 0.40, pick a random internal node and ran-

domly reassign it to a new splitting rule (i.e. randomly pick a different

predictor and randomly pick one possible splitting value)

4. Swap: with probability 0.10, pick a random parent-child pair of internal

nodes and swap their position

The transition kernel q(T i, T ∗) allows the sampler to generate trees that effi-

ciently adapt to underlying complexity (discontinuity, interactions, etc.) in

the data. However, it is also been pointed out that the default kernel q(·),

associated with the four possible actions above, is responsible for slow-mixing
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in the chain for its moves are only local within the search space, and bear the

risk of getting trapped in local modes. Some contributions, such as Pratola

(2016) and He et al. (2019) have attempted to speed mixing up by changing

q(·). In particular the “grow-from-root” approach (He et al., 2019), where each

new tree Tj in the chain is essentially grown from scratch instead of being

a modified version of the previous Tj−1 (implying then a global move) seems

to significantly improve on mixing time, as it guarantees faster convergence.

Finally, the draw from the full conditional of Mj is made of independent draws

of the terminal nodes ψij from a conjugate normal distribution.

For more details about BART prior specification and inference we refer

to the seminal work of Chipman et al. (1998), Chipman et al. (2010), Linero

and Yang (2018), Ročková and Saha (2019) and Rocková et al. (2020), among

others.

3.1.3 BART for Causal Inference

Given their excellent predictive performance, BART models have been suc-

cessfully applied also in causal inference settings, starting from the early

contribution of Hill (2011), who first proposed it. In this section we will thor-

oughly describe a popular causal version of BART, named Bayesian Causal

Forests (Hahn et al., 2020).

As already mentioned in Section 2.3.1.6 in the previous chapter, Bayesian

Causal Forests make use of Robinson’s parametrization in a full Bayesian

fashion, by treating CATE τ(xi) ∈ T as a parameter with its own prior p(τ(·)).

In this way, through Robinson’s parametrization, one can avoid imposing

indirect CATE regularization on f(·) ∈ F instead, as described in (2.1). In

fact, as shown by Hahn et al. (2018) and Hahn et al. (2020), regularization

on f(·) ∈ F can generate unintended bias in the final estimation of CATE.

Bayesian Causal Forests thus uses the following two-stage representation, which

can be traced back to the work of Heckman (1979):

Ai ∼ Bernoulli
(
π(X̃i)

)
, π(x̃i) = P(Ai = 1 | X̃i = x̃i) , (3.11)
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Yi = µ
([
Xi π(X̃i)

])
+ τ(Wi)Ai + εi . (3.12)

The first stage (3.11) deals with propensity score π(x̃i) ∈ Π (Π is also known as

the policies space) estimation, for which any probabilistic classifier is suitable

(e.g. logistic regression, deep neural nets, etc.). Note that the regressors in the

propensity score model are denoted by X̃i ⊆Xi ∈ X to indicate that a subset

of covariates different to Xi can be employed. These X̃i ⊆ Xi ∈ X could

be the result of a combination of automated and manual variable selection

procedures, where the manual component is required to guaranteed that no

detrimental covariate for causal effects estimation (collider, IV, near-IV, etc.)

is accidentally included by the prediction-driven automated selection. The

second stage (3.12) estimates the prognostic score µ(·), defined as the effect

of the covariates Xi ∈ X on the outcome Yi in the absence of treatment

µ(xi) = E
[
Yi | Xi = xi, Ai = 0

]
, and CATE τ(·). Notice that Wi ⊆ Xi ∈ X

appears instead of Xi in the τ(·) function, to highlight the fact that, as in the

propensity score model, a different set of covariates may be used for CATE

estimation. In general we use slightly different notation for the covariates in

µ(·), τ(·) and π(·) to highlight the fact that the set of available covariates

Xi ∈ X might consist of four different types: i) confounders, i.e. direct and

indirect common causes of A and Y ; ii) prognostic covariates, i.e. predictors

of µ(·) only; iii) moderators, i.e. predictors of τ(·) only; iv) propensity

covariates, entering only π(·) equation. Any covariate that does not fall into

one of these categories is an irrelevant/nuisance predictor.

The two-stage procedure described above belongs to a class of models

known as “modularized”, as opposed to full-model approaches that attempt to

embed uncertainty around propensity scores in a single stage, which can lead

to poor estimates due to feedback issues in the “cut-posterior” approximation

of the full posterior (Zigler et al., 2013; Zigler and Dominici, 2014), which

attempts to fix feedback problems. See Jacob et al. (2017) for a thorough

discussion on the issue of modularized versus full/joint models.
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The advantage of the parametrization in (3.12) from a Bayesian standpoint

lies in the fact that separate priors can be placed on the prognostic score

µ(·) and on CATE τ(·) directly. This approach mitigates unintended bias

attributable to what the authors in Hahn et al. (2018, 2020) call Regularization

Induced Confounding (RIC). The intuition behind RIC is that CATE posterior

is strongly influenced by the regularization effects of the prior on f(·) in (2.1),

such that posterior estimates of CATE are bound to be biased, even more so in

presence of strong confounding, such as when treatment selection is suspected

to be “targeted”, i.e., when individuals are selected into treatment based on

the prediction of an adverse potential outcome if left untreated. In order to

alleviate confounding from targeted selection, the authors suggest to employ

propensity score estimates obtained from the first stage π̂ as an additional

covariate in the estimation of µ(·), in the hope that a good approximation of

π(·) ∈ Π can account also for unobserved confounding, given that we observe

good proxies for them (Tchetgen et al., 2020).

In practice, a BCF model assigns a default BART prior to µ(·), while a

prior with stronger regularization is chosen for τ(·), as moderating patterns

are believed to be simpler. The BART prior on τ(·), compared to the default

specification, consists in the use of a smaller number of trees in the ensemble

(50 trees instead of 200), and a different combination of hyperparameters that

govern the depth of each tree. In particular, in the context of BART priors,

the probability that a node at depth d ∈ {0, 1, 2, ...} in a tree is non-terminal

is given by ν(1 + β)−d, where (ν, β) are the hyperparameters to set (Chipman

et al., 2010). The default specification (ν, β) = (0.95, 2) already has a shrinkage

effect that accommodates small trees. The BCF prior on τ(·) instead sets

(ν, β) = (0.25, 3), with the purpose of assigning higher probability mass to

even smaller trees. This combination of hyperparameters in the CATE prior

allows to detect weak heterogeneous patterns, and provides robustness in case

of homogeneous treatment effects.

For the reasons illustrated above, BCF tends to outperform BART and
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other tree-based methods for CATE estimation, such as Causal Forests (Wager

and Athey, 2018). As we will illustrate in the following sections, our work

extends the BCF framework by introducing explicit shrinkage of irrelevant

predictors, which results into higher computational efficiency, and accommo-

dates different levels of smoothness across covariates, while, at the same time,

returning interpretable measures of feature importance in the estimation of

µ(·) and τ(·), separately.

3.2 Shrinkage Bayesian Causal Forests

BART, and consequently BCF, are known to cope with sparse DGPs reason-

ably well, thanks to the fact that splitting variables are chosen uniformly at

random in the sampling for p(Tj|·). However, they do not actively implement

“heterogeneous” sparsity, nor feature shrinkage, which in BCF inevitably implies

imposing equal importance to all the moderating covariates Xi responsible

for the heterogeneity. In addition, the complexity of CATE estimation under

high-dimensional covariate space inevitably depends on the smoothness and

sparsity of the surfaces of interest (Alaa and van der Schaar, 2018), and thus ne-

cessitates regularization. Accounting for sparsity would then generally improve

performance. At the same time, prior subject-matter knowledge on the relative

importance of the covariates may be available, and can improve estimates

and/or convergence if embedded in the model. In light of these considerations,

in this section we propose a method that enriches the BCF model, and differ

from the ones reviewed in the previous chapter in that it allows to jointly: i)

account for heterogeneous smoothness and sparsity across covariates; ii) tease

apart prognostic and moderating covariates through targeted variable selection;

iii) incorporate prior knowledge on the relevant covariates and their relative

impact on the outcome.

We start by briefly illustrating the notion of variable selection in the context

of tree ensemble models such as BART. Let us define first s = (s1, ..., sP ) as

the vector of splitting probabilities of each predictor j ∈ {1, ..., P}, where
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each sj represents the probability, for the j-th predictor, of being chosen as a

splitting variable in one of the decision nodes of a tree. The default version

of BART places a uniform distribution over the splitting variables, meaning

that each predictor has equal chance of being picked as a splitting variable:

sj = P−1 ∀j ∈ {1, ..., P}. As a consequence, predictors are virtually given

equal importance in the final fit. A sparsity-inducing solution in this framework

implies having a vector s of “stick-breaking” posterior splitting probabilities

where ideally the entries corresponding to irrelevant predictors are very close to

zero, while the ones corresponding to relevant predictors are significantly higher

than P−1. Posterior splitting probabilities in this context can be intuitively

viewed as a measure of variables importance (Breiman, 2001). A complementary,

decision-theoretic interpretation of sparsity-inducing solutions in this setup is

given by the posterior probabilities that a predictor j appears in a decision

node at least once in the ensemble. The two interpretations above (variables

importance and probability of inclusion) are interchangeable and qualitatively

lead to the same conclusions. In the next section we review how the sparse

extension of of BART proposed by Linero (2018) can accommodate sparse

solutions as described above, and how this modified version of BART can be

put to use in the context of Bayesian Causal Forests.

3.2.1 Dirichlet Additive Regression Trees

Dirichlet Additive Regression Trees (Linero, 2018), or DART, constitute an

effective yet practical way of inducing sparsity in BART. The proposed modifi-

cation consists in placing an additional Dirichlet prior on the vector of splitting

probabilities s, which triggers a consequent posterior update in the backfitting

MCMC algorithm. The Dirichlet prior on s reads

(s1, ..., sP ) ∼ Dirichlet
(α
P
, ...,

α

P

)
, (3.13)

where α is the hyperparameter governing the a priori preference for sparsity.

Lower values of α correspond to sparser solutions, that is, fewer predictors
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included in the model. The hyperparameter α is in turn assigned a prior

distribution, in order to deal with unknown degree of sparsity. This prior is

chosen to be a Beta distribution, placed over a standardized version of the α

parameter, of the following form

α

α + ρ
∼ Beta(a, b) , (3.14)

where the default parameter values are (a, b, ρ) = (0.5, 1, P ). The combination of

values a = 0.5 and b = 1 assigns higher probability to low values of α, thus giving

preference to sparse solutions (the combination (a, b) = (1, 1) would instead

revert back to default BART splitting probabilities, i.e. uniform distribution

over the splitting variables). The prior is assigned to the standardized version

of α in (3.14) instead of α directly, as this allows to easily govern preference

for sparsity through the parameter ρ. If one suspects that the level of sparsity

is, although unknown, rather high, setting a smaller value of ρ facilitates even

sparser solutions.

The modified version of DART’s MCMC implies an extra step to update

s, according to the conjugate posterior

s1, ..., sP | (u1, ..., uP ) ∼ Dirichlet
(α
P

+ u1, ...,
α

P
+ uP

)
, (3.15)

where the update depends on uj, defined as the number of attempted splits

on the j-th predictor in the current MCMC iteration. The phrase “attempted

splits” refers to the fact that BART MCMC algorithm generates trees through

a branching process undergoing a Metropolis-Hastings step, so that a proposed

tree in the process might be rejected, but the chosen splitting variables are

counted anyway in u = (u1, ..., uP ) (Chipman et al., 1998, 2010; Linero and

Yang, 2018). The rationale behind the update in (3.15) follows the natural

Dirichlet-Multinomial conjugacy. The more frequently a variable is chosen for

a splitting rule in the trees of the ensemble in a given MCMC iteration (or

equivalently the higher is uj), the higher the weight given to that variable by



3.2. Shrinkage Bayesian Causal Forests 99

the updated s | (u1, ..., uP ) in the next MCMC iteration. Hence, the higher sj,

the higher the chance for the j-th predictor of being drawn as splitting variable

from the multinomial distribution described by Multinomial
(
1, s | u

)
. This

extra Gibbs step comes at negligible computational cost when compared to

default BART typical running time.

3.2.2 Shrinkage BCF priors

Similarly to Linero (2018), symmetric Dirichlet priors can be straightforwardly

embedded in the Bayesian Causal Forest framework to induce sparsity in the

estimation of prognostic and moderating effects. Bearing in mind that, as

described in the previous section, BCF prior consists in two different sets of

independent BART priors, respectively placed on the prognostic score µ(·) and

CATE τ(·), our proposed extension implies adding an additional Dirichlet prior

over the splitting probabilities to these BART priors. Throughout the rest

of the work we will consider the case where Wi = Xi, i.e. where the same

set of covariates is used for the estimation of µ(·) and τ(·) (see eq. (3.12) for

reference), but the ideas easily extend to scenarios where a different set of

covariates is designed, based on domain knowledge, to be used for µ(·) and

τ(·)1. The additional priors are respectively

sµ ∼ Dirichlet

(
αµ

P + 1
, ...,

αµ
P + 1

)
,

sτ ∼ Dirichlet
(ατ
P
, ...,

ατ
P

)
,

αµ
αµ + ρµ

∼ Beta(a, b)

ατ
ατ + ρτ

∼ Beta(a, b) ,

(3.16)

where the Beta’s parameters are chosen to be (a, b) = (.5, 1) as default. The

hyperparameter ρ is set equal to (P + 1) in the case of the prognostic score

(ρµ = P +1) since, when estimating µ(xi), we make use of P covariates plus an

estimate of the propensity score π̂(xi) as an additional covariate. In the case

of τ(xi), we set it equal to ρτ =
P
2
to give preference to even more aggressive

1In certain cases, the set of pre-treatment covariates might benefit from an initial screening
by the researcher in the design of the study, and later undergo feature shrinkage in Shrinkage
BCF, with the possibility of incorporating further a priori knowledge through the prior
distributions, as described later in this section. As we will show in Section 3.2.3, in fact,
Shrinkage BCF not only adjusts to sparse data generating processes (DGPs) per se, but
allocates splitting probabilities in a more efficient way among the covariates, compared to
uniformly at random splits, increasing computational efficiency.
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Algorithm 1: Bayesian Backfitting MCMC in Shrinkage BCF

Input: Data (X,A, Y )
Output: MCMC samples of{

µ(b)(·), τ (b)(·), (sµ | uµ)(b), (sτ | uτ )(b), σ(b)
}B
b=1

for b = 1, ..., B do

Result: Sample µ(b)(x), (sµ | uµ)(b)
for j = 1, ...,mµ do

Sample tree structure Tjµ ∼ p(Tj |Rj , σ) ∝ p(Tj)p(Rj |Tj , σ)
Sample terminal nodes Mjµ ∼ p(Mj |Tj , Rj , σ) (conjugate normal)

end
Sample
(sµ | uµ) ∼ Dirichlet

(
αµ/(P + 1) + u1µ, ... , αµ/(P + 1) + u(P+1)µ

)
Result: Sample τ (b)(x), (sτ | uτ )(b)
for j = 1, ...,mτ do

Sample tree structure Tjτ ∼ p(Tj |Rj , σ) ∝ p(Tj)p(Rj |Tj , σ)
Sample terminal nodes Mjτ ∼ p(Mj |Tj , Rj , σ) (conjugate normal)

end
Sample (sτ | uτ ) ∼ Dirichlet

(
ατ/P + u1τ , ... , ατ/P + uPτ

)
Result: Sample σ(b)

Sample σ ∼ p
(
σ|µ̂(xi), τ̂(xi), Y

)
end

shrinkage, as CATE is typically believed to display simple heterogeneity patterns

and a higher degree of sparsity compared to the prognostic score.

We refer to this setup as Shrinkage Bayesian Causal Forest (Shrinkage

BCF). Naturally, the two Dirichlet priors trigger two separate extra sampling

steps in the Gibbs sampler, implementing draws from the conjugate posteriors:

sµ | uµ ∼ Dirichlet
(
αµ/(P + 1) + u1µ, ... , αµ/(P + 1) + u(P+1)µ

)
sτ | uτ ∼ Dirichlet

(
ατ/P + u1τ , ... , ατ/P + uPτ

)
,

(3.17)

where concentration parameter for sµ | uµ is rescaled by (P + 1), as we are

including a propensity score estimate π̂ in the covariates. Shrinkage BCF’s

setup allows first of all to adjust to different degrees of sparsity in µ(·) and τ(·),

and thus to induce different levels of smoothness across the covariates. Secondly,

it naturally outputs feature importance measures on both the prognostic score
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Figure 3.2: Dirichlet draws from Dirichlet(0.1, 0.1, 0.1) (left), Dirichlet(5, 0.1, 0.1)

(centre) and Dirichlet(5, 5, 0.1) in the case of P = 3 variables.

and CATE separately, given that separate draws of the posterior splitting

probabilities are returned. The extra computational time, per MCMC iteration,

is slightly higher, albeit negligible, compared to default BCF; however, Shrinkage

BCF demonstrates higher computational efficiency and better mixing (Linero

and Yang, 2018; He et al., 2019), thanks to the fact that it avoids splitting

on irrelevant covariates and guides exploration of the search space accordingly.

Thus, it necessitate far fewer MCMC iterations to converge, and improves

performance under sparse DGPs. A sketch of pseudo-code illustrating the

backfitting MCMC algorithm in Shrinkage BCF can be found in Box 1.

The Dirichlet priors in Shrinkage BCF can be also adjusted to convey

prior information about the relevant covariates and their relative impact on

the outcome. This can be achieved by introducing a set of scalar prior weights

k = {k1, ..., kP} ∈ RP
+, such that

sµ ∼ Dirichlet

(
k1µ

αµ
P + 1

, . . . , k(P+1)µ
αµ

P + 1

)
,

sτ ∼ Dirichlet
(
k1τ

ατ
P
, . . . , kPτ

αµ
P

)
.

(3.18)

The weights can take on different values for each covariate and can be set

separately for prognostic score and CATE. If the j-th covariate is believed to be

significant in predicting µ(·), then its corresponding prior weight kjµ can be set

higher than the others, in order to generate draws from a Dirichlet distribution
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that allocate higher splitting probability to that covariate. In the simulated

experiment sections later we will introduce a version of Shrinkage BCF with

informative priors assigning higher a priori weight to the propensity score π(xi)

in µ
(
xi, π(xi)

)
, to investigate whether this helps tackling strong confounding.

In Figure 3.2 we provide a visual example to illustrate how increasing the

value of the parameters of the Dirichlet distribution leads to more dense draws

in proximity of a specific covariate. For ease of visual representation, Figure 3.2

depicts a simple case of P = 3 predictors. The first graph on the left depicts

equally sparse Dirichlet draws, similar to those obtain from the Dirichlet prior

in the non-informative Sparse BCF version. The graph in the center and on

the right show what happens if one or two covariates are given higher weight:

the stick-breaking process allocates most probability to X1 in the center plot,

and to X1 and X2 in the right plot, while assigning near zero probability to X3.

3.2.3 Experiment 1: Targeted sparsity and covariate

heterogeneity

As a result of a fully Bayesian approach to feature shrinkage, Shrinkage BCF

returns non-uniform posterior splitting probabilities that assign higher weight

to more predictive covariates. This automatically translates into more splits

along covariates with higher predictive power, compared to default BCF. To

investigate whether this more strategic allocation of splitting probabilities in

Shrinkage BCF leads to better performance, we test it against a default version

of BCF including all the covariates and a version of BCF that already employs

the subset of relevant covariates only. Think of the latter as a sort of “oracle”

BCF that knows a priori the subset of relevant covariates, but may not assign

different weights to them in terms of relative importance in the estimation of

µ(·) and τ(·) respectively. To this end, we run a simple simulated example with

P = 10 correlated covariates, of which only 5 are relevant, meaning that they

exert some effect on the prognostic score or on CATE. We compare default

BCF, “oracle” BCF using only the 5 relevant covariates and Shrinkage BCF

using all the covariates (5 relevant and 5 nuisance). We generate the P = 10
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covariates from a multivariate Gaussian (X1, ..., X10) ∼ N (0,Σ), where the

entries of the covariance matrix are such that Σjk = 0.6|j−k| + 0.1I(j ̸= k),

indicating positive correlation between predictors. Sample size is set equal to

n = 1000. We then generate treatment assignment as Ai ∼ Bern
(
π(xi)

)
, where

the propensity score is

π(xi) = P(Ai = 1 |Xi = xi) = Φ
(
− 0.4 + 0.3Xi,1 + 0.2Xi,2

)
, (3.19)

and Φ(·) is the cumulative distribution function of a standard normal distribu-

tion. The prognostic score, CATE and response Yi are respectively generated

as

µ(Xi) = 3 +Xi,1 + 0.8 sin(Xi,2) + 0.7Xi,3Xi,4 −Xi,5 ,

τ(Xi) = 2 + 0.8Xi,1 − 0.3X2
i,2 , (3.20)

Yi = µ(xi) + τ(xi)Ai + εi , where εi ∼ N (0, 1) .

In this experiment only the first five predictors {X1, ..., X5} are relevant. Table

3.1 shows performances of the default BCF, “oracle” BCF run on just the 5

relevant predictors (oracle BCF-5) and Shrinkage BCF (SH-BCF), averaged

over H = 500 replications. Performance of the methods is measured through:

bias, defined as E
[
(τ̂i − τi) |Xi = xi

]
; the quadratic loss function

E
[
(τ̂i − τi)2 |Xi = xi

]
, (3.21)

where τ̂i is the model-specific CATE estimate, while τi is the ground-truth CATE;

and finally 95% frequentist coverage, defined as P
(
τ̂(xi)low ≤ τ(xi) ≤ τ̂(xi)upp

)
,

where τ̂(xi){low,high} are the upper and lower bounds of 95% credible interval

around τ̂(xi), returned by the MCMC. The loss function in (3.21) is also known

as the Precision in Estimating Heterogeneous Treatment Effects (PEHE) from

Hill (2011). Bias, PEHE and coverage estimates are estimated by computing,
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Model Bias
√
PEHE 95% Coverage

BCF 0.037 ± 0.008 0.447 ± 0.006 0.92 ± 0.01
Oracle BCF-5 0.034 ± 0.008 0.440 ± 0.006 0.91 ± 0.01
SH-BCF 0.031 ± 0.007 0.380 ± 0.006 0.88 ± 0.01

Table 3.1: Sample average bias,
√
PEHE and 95% coverage for default BCF, “oracle”

BCF which uses only the 5 relevant predictors (Oracle BCF-5) and Shrinkage BCF

(SH-BCF). Bold text represents better performance.

for each of the H = 500 Monte Carlo simulations, their sample equivalents

Bîasτ =
1

n

n∑
i=1

(
τ̂(xi)− τ(xi)

)
PÊHEτ =

1

n

n∑
i=1

(
τ̂(xi)− τ(xi)

)2
Cov̂erageτ =

1

n

n∑
i=1

I
(
τ̂(xi)low ≤ τ(xi) ≤ τ̂(xi)upp

)
,

and then averaging these over all the simulations. More precisely, Table 3.1

reports bias,
√
PEHE and coverage estimates together with 95% Monte Carlo

confidence intervals.

Shrinkage BCF shows better performance than default BCF as well as the

“oracle” BCF version in terms of bias and
√
PEHE, while reports just marginally

lower coverage, indicating that the method allocates “stick-breaking” splitting

probabilities in an efficient way and necessitates fewer MCMC iterations for

convergence. The intuition as to why Shrinkage BCF performs better than

“oracle” BCF, is that its priors allow not only to split more along relevant

covariates instead of irrelevant ones (which explains the advantage over BCF

in terms of mixing), but also to split more frequently along covariates that are

more predictive of the outcome, resulting in higher computational efficiency.

To illustrate this concept, consider how fit f̂(·) is constructed in simple tree

algorithms, i.e. piecewise constant, and suppose we have the following trivial

linear DGP with two covariates on the same scale, Y = 2X1 + X2. Both

covariates are relevant for predicting Y , but X1 has a relatively higher impact
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in magnitude. DART, and thus Shrinkage BCF, allocates more splits along the

more predictive dimension X1, while BART produces a similar level of splits

along both X1 and X2 and hence requires a larger number of MCMC iterations

to converge.

3.2.4 Experiment 2: Targeted regularization in

confounded studies

The parametrization in BCF, and thus in Shrinkage BCF as well, is designed to

effectively disentangle prognostic and moderating effects of the covariates and

to induce different levels of sparsity when estimating these effects, in contrast

to other methods for CATE estimation. The purpose of this section is to briefly

illustrate with a simple example how naively introducing sparsity through a

model that does not explicitly guard against RIC can have a detrimental effect

on CATE estimates. To this end, we simulate, for n = 1000 observations,

P = 5 correlated covariates as (X1, ..., X5) ∼ N (0,Σ), where the entries of the

covariance matrix are Σjk = 0.6|j−k| + 0.1I(j ̸= k). The treatment allocation,

prognostic score, CATE and response Yi are then respectively generated as

follows:

Ai ∼ Bernoulli
(
π(xi)

)
, π(xi) = Φ

(
− 0.5 + 0.4Xi,1

)
,

µ(Xi) = 3 +Xi,1 , τ(Xi) = 0.5 + 0.5X2
i,2 ,

Yi = µ(xi) + τ(xi)Ai + εi , where εi ∼ N (0, 1) .

Notice that in this simple setup the prognostic effect is determined by the first

covariate Xi,1, while the moderating effect by the second covariate Xi,2. We run

CATE estimation via three different methods that make use of DART priors.

The first is a S-Learner that employs DART (S-DART) to fit a single surface

f(·) and computes CATE estimates as τ̂(xi) = f̂(xi, Ai = 1)− f̂(xi, Ai = 0).

The second is a T-Learner that employs DART (T-DART) to fit two separate

surfaces, f1(·) and f0(·), for the two treatment groups and derives CATE

estimates as τ̂(xi) = f̂1(xi)− f̂0(xi). The last method is our Shrinkage BCF
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Method
Variable

X1 X2 X3 X4 X5 A

S-DART f(·) 0.12 0.43 0.00 0.00 0.00 0.45

T-DART
f0(·) 0.99 0.00 0.00 0.01 0.00 -
f1(·) 0.19 0.80 0.00 0.01 0.00 -

SH-BCF
µ(·) 0.98 0.01 0.00 0.00 0.01 -
τ(·) 0.00 0.96 0.00 0.03 0.01 -

Table 3.2: Posterior splitting probabilities from S-Learner DART, T-Learner DART

and Shrinkage BCF over the 5 available covariates. Values in bold denote which

covariates receive significant chunks of splitting probability in fitting the corresponding

functions, that characterize each model.

(SH-BCF). Each of these methods is able to account for sparsity when estimating

CATE. However, the interpretation of covariate importance is very different

across them, due to the way the CATE estimator is derived. In particular, as

indicated by the posterior splitting probabilities of each method in Table 3.2,

S-DART fits a single surface f(·), where A is treated as an extra covariate, so

it ends up assigning most of the splitting probability to A and then in turn to

other relevant covariates. T-DART performs “group-specific” feature shrinkage,

in that it fits separate surfaces for each of the treatment groups. Although

both S-DART and T-DART turn out to select the relevant covariates for the

final estimation of CATE, they are unable, by construction, to distinguish

between prognostic and moderating ones. Shrinkage BCF instead, thanks to

its parametrization, is capable of doing so, disentangling the two effects.

In the upcoming experiments section, we will show that Shrinkage BCF

outperforms default BCF and other state-of-the-art methods in estimating

CATE under two more challenging simulated exercises. Furthermore, in the

supplementary material we present results from few additional simulated ex-

periments.
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3.2.5 Simulated and Real-World Application

In this section, we report results from two simulated studies carried out to

demonstrate the performance of Shrinkage BCF and its informative prior version

under sparse DGPs. The first simulated study is intended to evaluate Shrinkage

BCF performance compared to other popular state-of-the-art methods for

CATE estimation, and to show how it scales up with an increasing number of

nuisance covariates. In addition, we will also illustrate how the method returns

interpretable feature importance measures, as posterior splitting probabilities on

µ(·) and τ(·). The second simulated setup instead mimics a strongly confounded

study, and is designed to show how versions of Shrinkage BCF deal with targeted

selection scenarios. In the supplementary material, we present further results

from four additional simulated exercises, designed to: i) study what happens

with perfectly known propensity scores in confounded settings; ii) investigate

computational advantage of DART priors; iii) test Shrinkage BCF’s reliability

under increasingly larger P ; iv) consider different types of sparse DGPs.

3.2.6 Comparison to other methods

The first setup consists of two parallel simulated studies, where only the total

number of predictors (P = 25 and P = 50) is modified. The purpose underlying

this setup is to illustrate how Shrinkage BCF relative performance scales up

when nuisance predictors are added and the level of sparsity increases.

For both simulated exercises, sample size is set equal to n = 1000. In order

to introduce correlation between the covariates, they are generated as correlated

uniforms from a Gaussian Copula CGauss
Θ (u) = ΦΘ

(
Φ−1(u1), . . . ,Φ

−1(uP )
)
,

where Θ is a covariance matrix such that Θjk = 0.3|j−k| + 0.1I(j ̸= k). A 40%

fraction of the covariates is generated as continuous, drawn from a standard

normal distribution N (0, 1), while the remaining 60% as binary, drawn from a

binomial Bin(n, 0.3). Propensity score is generated as:

π(xi) = P(Ai = 1 |Xi = xi) = Φ
(
−0.5 + 0.2Xi,1 + 0.1Xi,2 + 0.4Xi,21 +

ηi
10

)
,
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Family Label Description

Linear Models
S-OLS Linear regression as S-Learner
T-OLS Linear regression as T-Learner

R-LASSO LASSO regression as R-Learner

Naive Non-Parametrics kNN k-Nearest Neighbors as T-Learner

Tree-Based
Methods

S-BART BART as S-Learner
T-BART BART as T-Learner

CF Causal Forest
S-DART DART as S-Learner
T-DART DART as T-Learner
BCF Bayesian Causal Forest

SH-BCF Shrinkage Bayesian Causal Forest

Gaussian Processes
CMGP Causal Multi-task Gaussian Process
NSGP Non-Stationary Gaussian Process

Table 3.3: List of models tested on the simulated experiment in Section 3.2.6.

where Φ(·) is the cumulative distribution function of a standard normal, and

ηi is a noise component drawn from a Uniform(0, 1). The binary treatment

indicator is drawn as Ai ∼ Bernoulli
(
π(xi)

)
. Prognostic score and CATE

functions are simulated as follows:

µ(xi) = 3 + 1.5 sin(πXi,1) + 0.5(Xi,2 − 0.5)2 + 1.5(2− |Xi,3|) +

+ 1.5Xi,4(Xi,21 + 1)

τ(xi) = 0.1 + |Xi,1 − 1|(Xi,21 + 2) .

(3.22)

Notice that only 5 predictors among P ∈ {25, 50}, namely {X1, X2, X3, X4, X21},

are relevant to the estimation of the prognostic score and CATE. Eventually,

the response variable Yi is generated as usual:

Yi = µ(xi) + τ(xi)Ai + εi , where εi ∼ N (0, σ2) .

The error term standard deviation is set equal to σ = σ̂µ
2
, where σ̂µ is the

sample standard deviation of the simulated prognostic score µ(xi) in (3.22).

Performance of each method is evaluated through
√
PEHE estimates,
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P = 25 P = 50

Train Test Train Test

S-OLS 1.91 ± 0.00 1.91 ± 0.01 1.91 ± 0.00 1.91 ± 0.01
T-OLS 1.41 ± 0.01 1.47 ± 0.01 1.68 ± 0.01 1.78 ± 0.01

R-LASSO 1.17 ± 0.01 1.19 ± 0.01 1.20 ± 0.01 1.22 ± 0.01

kNN 1.62 ± 0.01 1.66 ± 0.01 1.72 ± 0.01 1.76 ± 0.01

S-BART 0.77 ± 0.01 0.79 ± 0.01 0.85 ± 0.01 0.86 ± 0.01
T-BART 1.11 ± 0.01 1.11 ± 0.01 1.28 ± 0.01 1.29 ± 0.01

CF 1.05 ± 0.01 1.05 ± 0.01 1.23 ± 0.01 1.23 ± 0.01
S-DART 0.59 ± 0.01 0.60 ± 0.01 0.59 ± 0.01 0.60 ± 0.01
T-DART 0.88 ± 0.01 0.89 ± 0.01 0.90 ± 0.01 0.90 ± 0.01
BCF 0.79 ± 0.01 0.82 ± 0.01 0.86 ± 0.01 0.88 ± 0.01

SH-BCF 0.54 ± 0.01 0.56 ± 0.01 0.55 ± 0.01 0.55 ± 0.01

CMGP 0.59 ± 0.01 0.61 ± 0.01 0.85 ± 0.03 0.77 ± 0.02
NSGP 0.60 ± 0.01 0.62 ± 0.01 0.74 ± 0.03 0.75 ± 0.03

Table 3.4: Train and test set
√
PEHE estimates, together with 95% confidence

interval, in the case of P = 25 covariates and P = 50 covariates scenarios.

averaged over H = 1000 replications, reported together with 95% Monte Carlo

confidence intervals. Data are randomly split in 70% train set, used to train

the models, and 30% test set to evaluate the model on unseen data;
√
PEHE

estimates are reported both for train and test data.

The models evaluated on the simulated data are summarized in Table

3.3. The first set of models includes a S-Learner and a T-Learner least squares

regressions (S-OLS and T-OLS), and a R-Learner (Nie and Wager, 2020)

LASSO regression (R-LASSO). The second set consists just in a naive k-nearest

neighbors (kNN) as a T-Learner. The third set includes the following popular

tree ensembles methods: Causal Forest (CF) (Wager and Athey, 2018); a

S-Learner and a T-Learner versions of BART (S-BART and T-BART) and

DART (S-DART and T-DART); Bayesian Causal Forest (BCF) (Hahn et al.,

2020); and finally our method, Shrinkage Bayesian Causal Forest (SH-BCF).

The last set includes two causal multitask versions of Gaussian Processes, with

stationary (CMGP) and non-stationary (NSGP) kernels respectively, both

implementing sparsity-inducing Automatic Relevance Determination over the
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Figure 3.3: Shrinkage BCF posterior splitting probabilities for each single covariates,

indexed on the x-axis, for µ(·) (on the left) and τ(·) (on the right), in the scenarios

with P = 25 predictors (first row) and P = 50 predictors (second row). Spikes

indicate higher probability assigned by Shrinkage BCF to the relevant predictors.

The horizontal dashed lines denote default BCF uniform splitting probabilities.

covariates (Alaa and van der Schaar, 2017, 2018).

Performance of each method, for the two simulated scenarios with P = 25

and P = 50 covariates respectively, is shown in Table 3.4. Results demonstrate

the high adaptability and scalability of Shrinkage BCF, as the method displays

the lowest estimated error in both simulated scenarios, and its performance

is not undermined when extra nuisance covariates are added, while the other

methods generally deteriorate.

Figure 3.3 shows how Shrinkage BCF correctly picks the relevant covariates

behind both prognostic and moderating effects, in contrast to default BCF

which assigns equal probability of being chosen as a splitting variable to each

predictor. Notice also that results do not essentially vary between the P = 25
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and the P = 50 scenarios (respectively first and second row graphs in Figure

3.3), as Shrinkage BCF virtually selects the same relevant predictors.

3.2.7 Strongly confounded simulated study

We presents here results from a second simulated study, aimed at showing how

Shrinkage BCF addresses scenarios characterized by strong confounding. In

particular, the setup is designed around the concept of targeted selection, a

common type of selection bias in observational studies, expressively tackled by

the BCF framework, that implies a direct relationship between µ(·) and π(·).

We run the simulated experiment in the usual way, by firstly estimating the

unknown propensity score; then we also re-run the same experiment assuming

that propensity score is known (results in the supplementary material), to gain

insights by netting out effects due to propensity model misspecification.

We simulate n = 500 observations from P = 15 correlated covariates

(the first 5 continuous and the remaining 10 binary), generated as correlated

uniforms from the Gaussian Copula CGauss
Θ (u) = ΦΘ

(
Φ−1(u1), . . . ,Φ

−1(uP )
)
,

where the covariance matrix is such that Θjk = 0.6|j−k| + 0.1I(j ̸= k). The

relevant quantities are simulated as follows:

µ(xi) = 5
(
2 + 0.5 sin(πXi,1)− 0.25X2

i,2 + 0.75Xi,3Xi,9

)
,

τ(xi) = 1 + 2|Xi,4|+ 1Xi,10 ,

π(xi) = 0.9 Λ (1.2 + 0.2µ(xi)) , (3.23)

Ai ∼ Bernoulli
(
π(xi)

)
,

Yi = µ(xi) + τ(xi)Ai + εi , where εi ∼ N (0, σ2) ,

where Λ(·) is the logistic cumulative distribution function. The error’s standard

deviation is set equal to half the sample standard deviation of the generated

τ(·), σ2 = σ̂τ
2
. Targeted selection is introduced by generating the propensity

score π(xi) as a function of the prognostic score µ(xi) (Hahn et al., 2020). The

BCF models tested on this simulated setup are: i) Default BCF; ii) agnostic

prior Shrinkage BCF; iii) agnostic prior Shrinkage BCF, without propensity
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Model Bias
√
PEHE 95% Coverage (sπ | uπ)

i) BCF -0.06 ± 0.01 0.49 ± 0.01 0.94 ± 0.00 9.09%
ii) SH-BCF -0.05 ± 0.01 0.38 ± 0.01 0.96 ± 0.00 0.29%
iii) SH-BCF (no PS) -0.05 ± 0.01 0.38 ± 0.01 0.96 ± 0.00 -
iv) I-BCF (kPS = 50) -0.05 ± 0.01 0.39 ± 0.01 0.96 ± 0.00 9.76%
v) I-BCF (kPS = 100) -0.05 ± 0.01 0.40 ± 0.01 0.96 ± 0.01 17.48%

Table 3.5: Bias,
√
PEHE, 95% Coverage and posterior splitting probability on π̂(xi)

— (sπ | uπ) — for: i) default BCF; ii) Shrinkage BCF; iii) Shrinkage BCF without

π̂(xi); iv) informative prior BCF with kPS = 50; v) informative prior BCF with

kPS = 100.

score estimate as an additional covariate; iv) Shrinkage BCF with informative

prior on µ(·) only, where prior weight given to propensity score is kPS = 50; v)

Shrinkage BCF with the same prior as iv), but kPS = 100. We test a variety of

BCF versions to examine how they tackle confounding deriving from targeted

selection. In particular, with iv) and v), we investigate whether nudging more

splits on the propensity score covariate induces better handling of confounding

and better CATE estimates. With ii) and iii) we study whether it is sensible

to have propensity score as an extra covariate, once we have accounted for

sparsity, in settings such as the one described in (3.23), where propensity π(·)

and prognostic score µ(·) are functions of the same set of covariates — more

specifically π(·) is a function of µ(·).

We first compare the usual performance metrics (bias,
√
PEHE, 95%

coverage), averaged over H = 500 replications, which are gathered in Table 3.5,

together with the average posterior splitting probability assigned to propensity

score (sπ | uπ) by each model, where applicable. As for the posterior splitting

probability (sπ | uπ), we notice that in ii) this is nearly zero, thus not really

different than not having π(·) at all, as in iii). This means that estimates of π(·)

do not virtually contribute a lot to the fit. Also, in i) and iv), the probability is

more or less the same, meaning that, in this example, setting kPS = 50 implies

assigning similar (sπ | uπ) as default BCF, but allowing sparsity across the

other covariates. In addition to the information in Table 3.5, for a better visual
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Figure 3.4: Posterior fit of π(·) and µ(·) relationship, for default BCF, Shrinkage

BCF (with π(·)) and the two versions of informative prior BCF (kPS = 50 and

kPS = 100). All the specifications effectively capture the underlying relationship.

inspection, we plot the posterior fit of the π(·) and µ(·) relationship for each

specification of BCF2.

The results corroborate those of the previous sections, as all the Shrinkage

BCF versions ii)-v) outperform default BCF i), thanks to their ability to adapt

to sparsity (Table 3.5). In order to net out effects that are due to propensity

model misspecification, we re-run the same example in (3.23) for H = 250, this

time assuming that PS is known, thus plugging in the true values in µ(xi, π).

Results can be found in the supplementary material.

The picture emerging from this exercise is the following. Methods ii)-v)

all have comparable performances in the realistic scenario where PS is to be

estimated (see Table 3.5); moreover, Figure 3.4 show that, in this case, they

2We avoid plotting the fit for iii) Shrinkage BCF without π(·), since it yields very similar
results to ii) Shrinkage BCF with π(·) — In Table 3.5, ii) allocates nearly 0% splits to π(·),
as in iii).
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all effectively capture the relationship between π(·) and µ(·). Hence, adjusting

prior weights to nudge more splits on the estimated PS — methods iv) and

v) — does not seem to improve performance. In the more abstract scenario

where PS is assumed to be known (whose results are gathered in supplementary

material), and thus the relationship between π(·) and µ(·) can be directly

estimated, versions i) and iii) perform poorly. The first because it does not

induce sparsity, while iii) does not include π(·) as extra covariate. Versions ii),

iv) and v) instead perform comparatively better as they virtually assign all the

splitting probability to π(·), leaving the other covariates out of the model. This

is unsurprising in a setup where π(·) is known, as its relationship with µ(·) is

straightforwardly captured. Even under this abstract scenario, specifications

iv) and v), which assign higher weight to π(·), do not show improvements on

performance, as also the agnostic prior version ii) effectively allocates the entire

splitting probability to the π(·) covariate.

Results from the example where PS is perfectly known are in line with

the findings of Hahn et al. (2020) and shed light on why adding π(·) as an

extra covariate is always helpful in tackling targeted selection. Naturally, the

success of this practice in addressing strong confounding heavily depends on the

quality of the approximation of π(·), that is, the quality of the propensity model

that estimates π̂(·), and whether this is capable to account for unobserved

confounders provided that there are enough good proxies among the observed

covariates in practice.

3.3 Effects of early intervention on cognitive

abilities in low weight infants

In this section, we illustrate the use of Shrinkage BCF by revisiting the study

in Brooks-Gunn et al. (1992), which analyzes data from the Infant Health and

Development Program (IHDP), found also in the previous chapter (although

there we employed just the treatment assignment and the covariates set). As

briefly mentioned in the last chapter, the IHDP was a randomized controlled trial
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aimed at investigating the efficacy of educational and family support services,

with pediatric follow-ups, in improving cognitive skills of low birth weight

preterm infants, who are known to have developmental problems regarding

visual-motor and receptive language skills (McCormick, 1985; McCormick et al.,

1990). The study includes observations on 985 infants whose weight at birth was

less than 2 500 grams, across 8 different sites. About one third of the infants

were randomly assigned to treatment (Ai = 1), which consisted in routine

pediatric follow-up (medical and developmental), in addition to frequent home

visits to inform parents about child’s progress and communicate instructions

about recommended activities for the child. Following Hill (2011), the outcome

variable (Yi) we use is the score in a Stanford Binet IQ test, whose values

can range from a minimum of 40 to a maximum of 160, taken at the end

of the intervention period (child’s age equal 3). The available final sample,

obtained after removing 77 observations with missing IQ test score, consists of

n = 908 data points, while the number of pre-treatment covariates amounts to

P = 31. A full list of the variables included in the analysis, together with a

short description, can be found in the supplementary material.

Firstly, we estimate propensity score using a 1-hidden layer neural network

classifier. Then we run Shrinkage BCF with default agnostic prior for 15 000

MCMC iterations in total, but we discard the first 10 000 as burn-in. As output,

we obtain the full posterior distribution on CATE estimates and splitting

probabilities relative to each covariate. The left-hand pane graph of Figure

3.5 shows the estimated CATE posterior distribution for the individuals in

the sample whose estimated propensity corresponds, or is closest, to the i-

th percentile of the estimated propensity distribution, where i is 0, 10, 20,

..., 100. The represented stratified CATE posterior distribution relative to

these propensity values conveys information about the uncertainty around the

estimates and depicts an overall positive and rather heterogeneous treatment

effects. The estimated average treatment effect is equal to ATE = 9.33 and

standard deviation of CATE estimates, averaged over the post burn-in draws, is
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Figure 3.5: Left panel: Posterior distributions for the CATE estimates, obtained

using Shrinkage BCF, corresponding to the approximated propensity percentiles

(i.e. for individuals in the sample whose estimated propensity corresponds or is closest

to the percentiles). Fill colour is darker around the median. Right panel: Shrinkage

BCF’s posterior splitting probabilities on τ(·), averaged over the post burn-in MCMC

draws.

equal to 3.25, which is another sign of underlying heterogeneity patterns in the

treatment response. The analysis would thus benefit from further investigation

about the heterogeneity of treatment effects, with the aim of distinguishing

the impact within subgroups of individuals characterized by similar features

(i.e. covariates values). Evidence on what the relevant drivers of heterogeneity

behind treatment effect are is given by the posterior splitting probabilities on

τ(·) (again averaged over the post burn-in draws), reported in the right-hand

pane graph of Figure 3.5, where few covariates end up being assigned relatively

higher weights compared to the others. The two covariates that primarily stand

out are the binary indicator on whether the mother’s ethnicity is white (29th

predictor) and the ordinal variable indicating mother’s level of education (31st

predictor).

We proceed with a sensitivity analysis of treatment effect subgroups by

following the suggestion of Hahn et al. (2020); that is, we fit a decision tree

partition algorithm using the R package rpart, by regressing mean CATE

estimates obtained from Shrinkage BCF τ̂(xi) (averaged over the MCMC
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Figure 3.6: Decision tree identifying the most homogeneous subgroups in terms of

treatment response, based on splitting rules involving the available covariates. The

nodes report CATE estimates averaged within the corresponding subgroup.

post burn-in draws) on the available covariates Xi ∈ X . The purpose of this

sensitivity analysis exercise is to identify the most homogeneous subgroups,

namely the subgroups leading to an optimal partition, in terms of their estimated

mean CATE, as a function of the covariates, and to examine how much the

emerging partition agrees with the results on posterior splitting probabilities

in Figure 3.5.

Results are depicted in Figure 3.6 in the form of a decision tree, pruned at

four levels. Zero splits trivially return ATE estimate (first node in Figure 3.6),

while shallower nodes show CATE estimates averaged within the subgroup

defined by the corresponding split rule. The first split is on the variable

“Mother’s level of education”, specifically on whether the mother has attended

college or not. The second level features a split on whether mother’s ethnicity

is white in one branch, and a split on whether mother has finished high school

in the other. These are exactly the same covariates selected by the posterior

splitting probabilities. The last set of splits is again on mother’s ethnicity,

number of children the mother has given birth to and whether child’s birth
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weight is less than 2kg. Within these subgroups, CATE estimates range from a

minimum of +2.1 to a maximum of +12.

Both CATE’s posterior splitting probabilities as well as subgroup analysis

particularly point to covariates related to mother’s education and ethnicity, in

addition to birth weight (in the subgroup analysis only). Results concerning

heterogeneity stemming from mother’s ethnicity and child’s birth weight are

consistent with those in the original (Brooks-Gunn et al., 1992) and follow-up

studies Brooks-Gunn et al. (1994); McCarton et al. (1997), where the treatment

effect is found to be lower for white mothers and for children with lower weight.

The advantage of carrying out subgroup analysis through models such as

Shrinkage BCF lies in the fact that subgroup identification can be done ex-post

using CATE estimates, without the need of manually identifying the groups or

partitioning the original sample ex-ante.

This illustrative example showed how Shrinkage BCF detects covariates

which are responsible for the heterogeneity behind treatment impact in an

example of real-world analysis, and how simple a posteriori partitioning of

CATE estimates allows the derivation of optimal splitting rules to identify the

most homogeneous subgroups in terms of treatment response. The analysis

demonstrated that the estimation of individual (or subgroup) effects is a key

factor for the correct evaluation and design of treatment administration policies.

3.4 Interpretable Deep Causal Learning for

Moderation Effects

We have seen in previous sections how Shrinkage BCF is a fully Bayesian model

that jointly tackles the three crucial components of interpretability, targeted

regularization and uncertainty quantification for individual treatment/causal

effects estimation, and thus highly personalized policy-making. However, in

Chapter 2 we have also discussed that properties of BCF and Shrinkage BCF,

as τ -Learners, are also shared by R- type of Learners (Nie and Wager, 2020),

since they use the same parametrization. In this second part of the chapter
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we specifically seek to improve further on the interpretability component of

moderating effects, by presenting a simple yet novel model for CATE learning

based on an interpretable version of neural networks, rooted in the theory of

Generalized Additive Models (GAMs).

3.4.1 Brief Overview of Feedforward Neural Networks

We begin by briefly outlining the main concepts in deep learning (Murphy,

2012; Goodfellow et al., 2016). Neural networks are a specific type of Adaptive

Basis-Function Models (ABMs), introduced in Section 3.1.1, that model the

conditional mean function of Y ∈ Y as a “concatenation” (or combination of)

of both linear and non-linear functions of the inputs X ∈ X , that is:

f(X) = E[Y |X] =
(
g1 ◦ ... ◦ gl

)
(X) = gl

(
... g1(X)

)
. (3.24)

The most basic type of neural net is also often called feedforward neural

networks, as functions {gj(·)}lj=1 are applied sequentially at each “layer” to

the previously obtained intermediate output gj−1(·), starting from the “input

layer”, and do not feature feedback connections (as in e.g. Recurrent Neural

Nets used for sequence data). The intermediate layers between the initial input

layer h(0) =X and the final output layer h(l) = f(X), identified by the output

of the functions h(1) = g1(X) up to h(l−1) = gl−1(gl−2(...)), are referred to as

hidden layers. The number of hidden layers, or length of chain of functions

{gj(·)}lj=1, represents the depths of the neural network, while the dimensionality

of a hidden layer h(j) is the width.

The functions {gj(·)}lj=1 are usually broken down into a sequence of linear

layers and non-linear activation functions, where at each stage previous layer’s

output is multiplied by a layer-specific weight matrix Wj and added a bias

term bj, i.e. Wjh
(j−1) + bj, then this is applied a non-linear transformation

gj(·) (activation function). Popular types of non-linear activation functions

are the Sigmoid, Tanh, ReLU, Softplus, etc. The NN structure can be then
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Figure 3.7: Intuitive graphical representation of a simple deep learning structure,

where inputs are passed through 3 hidden layers of m width (m nodes), and mapped

to a multi-dimensional vector outcome {Ŷj}kj=1 (regression or classification task).

represented as the following chain :

h(1) = g1(W1X + b1)

...

h(l−1) = gl−1(Wl−1h
(l−2) + bl−1)

f(X) = E[Y |X] = gl(h
(l−1)) .

Generally speaking, the depth, width and activation functions in a feedforward

neural network control the complexity of the resulting class of non-linear

functions F with which we are trying to approximate the target f(·). Thus,

adjusting for different degrees of complexity requires ad-hoc adjustments to the

neural network structure. Feedforward neural networks with a linear output

layer and at least a hidden layer paired with a non-linear activation function

have been proven to be universal approximators, i.e. can approximate any Borel

measurable function f ∈ B(X), given the right amount of hidden nodes (Hornik

et al., 1990). The parameter space in a neural network is composed by the

collection of all the layer-specific weights and biases θ
def
=
{
{Wj}lj=1, {bj}lj=1

}
.
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Figure 3.7 depicts a simple neural net structure as a graphical model.

3.4.1.1 Training of Neural Networks

In reasonably large (i.e. deep and wide) neural nets, parameters θ
def
={

{Wj}lj=1, {bj}lj=1

}
are typically learned via Stochastic Gradient Descent

(or generalizations of it such as RMSprop, ADAM, etc.), an iterative method

that uses approximate gradient information to minimize a loss function

L(θ) = E[ℓ(θ)]. In standard Gradient Descent, the loss function is approximated

by its sample average as L̂(θ) = 1
nT

∑nT

i=1 ℓi(θ), where {1, ..., nT} is the training

sample, and iterative updates to the parameters are computed as follows:

Gradient Descent: θt ← θt−1 − η
[ nT∑
i=1

∇ℓi(θ)
]
, for t ∈ {1, ..., T} (3.25)

where ∇ℓ(·) is the gradient of ℓ, η is the learning rate and T are the number

of iterations the algorithm is run for. The evaluation of the sum-gradient

element in (3.25) can be very expensive if one needs to compute the gradient

for many data points in the training set. In SGD, intense computations are

avoided by updating the parameters using gradient information on only a

sub-sample of observations. In particular, in SGD this is done by replacing

sum-gradient with single observation gradient, so that the “online” update

becomes θj ← θj−1 − η∇ℓi(θ), speeding up the computations significantly.

Gradient information, to be used in SGD, is acquired through a method

known as back-propagation. Back-propagation computes the partial deriva-

tives ∂ℓ/∂W and ∂ℓ/∂b by leveraging the chain rule of differentiation to prop-

agate the error backwards through the nodes in the network. For example, the

differential loss with respect to w
(k)
i,j , i.e. the weight relative to layer k, output

node i and input node j, can be computed as ∂ℓ/∂w
(k)
i,j = ∂ℓ/∂h

(k)
j ×∂h

(k)
j /∂w

(k)
i,j .

3.4.2 Interpretable Causal Neural Networks

We first raise the question on how we can straightforwardly use flexible deep

learning models, described in earlier paragraphs, in the context of CATE

estimation, in particular following Robinson (1988)’s parametrization, as we
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proved this leads to several improvements, among which better interpretability.

A very simple yet effective way of doing this, is to construct deep architecture

made of two separable neural net blocks that respectively learn the prognostic

function µ(xi) and the CATE function τ(xi), but are “reconnected” at the end

of the pipeline to minimize a single loss function Ly(·) , unlike T-Learners which

would instead minimize separate loss functions on f1(·) ∈ F1 and f0(·) ∈ F0.

The target loss function to minimize is generally defined as follows:

TCNN: min
µ(·),τ(·)

Ly
(
µ(x) + τ(x)a, y

)
, µ(·) ∈M def

= F0, τ(·) ∈ T (3.26)

where Ly(·) can be any standard loss function (e.g., MSE, negative log-

likelihood,...), inclusive of penalization (ℓ-1, ℓ-2,...). Note that M def
= F0

as prognostic score µ(·) coincide with f0(·) in a T-Learner: µ(xi)− f0(xi) =

E
[
Yi | Xi = xi, Ai = 0

]
. Through its separable block structure, the model

allows the design of different NN architectures for learning µ(·) ∈ F0 and

τ(·) ∈ T , which can be though of as “hardcoded” priors, while preserving

sample efficiency (i.e., avoiding sample splitting as in T-Learners), and to

produce uncertainty measures around CATE τ(·) ∈ T directly like τ -Learners

if coupled with (approximate) Bayesian methods (Gal and Ghahramani, 2016;

Lakshminarayanan et al., 2017; Pearce et al., 2020; Abdar et al., 2021). Thus,

if τ(·) is believed to display simple moderating patterns as a function of Xi, a

shallower NN structure with fewer nodes, and more aggressive regularization

(e.g., higher regularization rate or dropout probabilities), can be specified, while

retaining higher level of complexity in the µ(·) block. We generally refer to

this model as Targeted Causal Neural Network (TCNN) for simplicity from

now onwards. Figure 3.8 provide a simple visual representation. While in this

work we have been focussing on binary intervention variables Ai for simplicity,

TCNN can be easily extended to multi-category Ai by adding extra blocks to

the structure in Figure 3.8.

In addition to the separable structure, and in order to guarantee higher

level of interpretability on prognostic and moderating factors, we also propose
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Figure 3.8: Intuitive TCNN structure. The deep architecture is modelled through

a sample efficient, tailored loss function based on Robinson’s parametrization.

using a recently developed neural network version of Generalized Additive

Models (GAMs), named Neural Additive Models (NAMs) (Agarwal et al.,

2021), as the two µ(·) and τ(·) NN building blocks of TCNN.

Neural Additive Models impose restrictions on the neural network structure

to guarantee more interpretable output as a trade-off. In particular, they model

the response function in Yi = g(xi)+εi as a Generalized Additive Model (GAM)

(Hastie, 2017), a type of adaptive basis-function model that assumes additive

separability of g(·) for each input xi:

Yi = g(xi) + εi = β0 +
P∑
j=1

fj(xi) + εi , E(εi) = 0 ∀i ∈ {1, ...n},

where P is the total number of inputs X ∈ X in the model, so that fj(·) ∈ Fj
is the j-th input-specific function. GAMs type of model have been shown,

under common smoothness assumptions on each true {f ∗
j (·)}Pj=1 and other mild

conditions, to achieve optimal rates of convergence of the order of O(n−2r),

where r = γ
2γ+P

, for γ-smooth function g(·) (Stone, 1985). The input-specific

functions fj(·) ∈ Fj also have an interpretation as Shapley values (Shapley,

1953; Agarwal et al., 2021), as they represent the single predictive contribution

of input j to the total g(·) (“score functions”). The main difference in NAMs

from other types of GAMs is in the training techniques, as NAMs are trained

by minimizing e.g. a squared loss function through the usual combination of

the back-propagation procedure and gradient descent algorithms.
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Hence, we proceed by using NAMs as the building blocks to learn the µ(·)

and τ(·) functions and refer to this particular version of TCNN as Interpretable

Causal Neural Network (ICNN). Contrary to normal NNs, which fully “connect”

inputs to every nodes in the first hidden layer, NAMs “connect” each single

input to its own NN structure and thus outputs input-specific score functions,

that fully describe the predicted relationship between each input and the

outcome. The structure of the loss function (3.26) in ICNN thus becomes

additive also in the P covariate-specific µj(·) and τj(·) functions:

ICNN: min
µ(·),τ(·)

Ly
( P∑
j=1

µj(xj) +
P∑
j=1

τj(xj)a, y
)
, µj(·) ∈ F0,j, τj(·) ∈ Tj

where the single µj(xj) score function represents the Shapley value in terms

of prognostic effect of covariate xj, while τj(xj) its Shapley value in terms

of moderating effect. Hence, the NAM architecture in ICNN allows us to

estimate the impact of each covariates as a prognostic and moderating factor

and quantify the uncertainty around them as well. Under ICNN, the outcome

function thus becomes twice additively separable:

Yi =
P∑
j=1

µj(xi,j) +
P∑
j=1

τj(xi,j)Ai + εi , E(εi) = 0 ∀i (3.27)

where i ∈ {1, ..., n} and j ∈ {1, ..., P}. Naturally, the downside of NAMs is that

they might miss out on interaction terms among the covariates as a trade-off

losswith respect to interpretability gains. These could possibly be constructed

and added manually as additional inputs, although this would increase the

computational complexity of the model. To obtain better coverage properties in

terms of uncertainty quantification in both TCNN and ICNN, we implement the

Monte Carlo dropout technique (Srivastava et al., 2014; Gal and Ghahramani,

2016) in both µ(·) and τ(·) blocks to perform post-training resampling from

the posterior predictive distribution, in am approximate Bayesian inference

fashion.
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Monte Carlo dropout , roughly speaking, consists in re-sampling a pre-

trained neural network with dropout layers (Srivastava et al., 2014). Dropout

is a neural nets regularization technique that aims at improving out-of-sample

generalization and reducing complexity in over-parametrized neural nets by

stochastically “dropping” nodes within each hidden layer i ∈ {1, ..., L} with

probability pdrop, during each training step. Probabilistic dropout re-sampling,

if performed after training the neural network, generates an approximate sample

{1, ..., T} from the posterior predictive distribution q(· | ·) defined by the NN’s

parameters (Gal and Ghahramani, 2016), i.e. weights ω = {W}Li=1 and biases

b = {b}Li=1 where i ∈ {1, ..., L}, that is:

{
(W1, b1), ..., (WT , bT )

} approx∼ q(y∗ | x∗) =

∫
p(y∗ | x∗,W , b) dp(W , b)

where (Wt, bt) are grouped over layers Wt = (W 1
t , ...,W

L
t ), bt = (b1t , ..., b

L
t ),

while y∗ and x∗ are test points.

MC dropout can then produce approximate Bayesian credible intervals

around prognostic µ(·) and CATE estimates τ(·) in a very straightforward way,

and, in ICNN specifically, credible intervals around each inputs’ score functions

µj(·) and τj(·) for j ∈ {1, ..., P}, as we will demonstrate in the experimental

section below.

3.4.3 Simple Simulated Experiments

We hereby present results from a simple simulated experiment on CATE esti-

mation, to compare TCNN and ICNN performance against other methods. In

addition, we demonstrate how ICNN with MC dropout in particular can be em-

ployed to produce highly interpretable score function measures, fully describing

the estimated moderating effects of the covariates xi in τ(·), and uncertainty

around them. For performance comparison we rely on the root Precision in

Estimating Heterogeneous Treatment Effects (PEHE) metric already, encoun-

tered in previous sections. The list of models we compare include: S-Learner

version of NNs (S-NN); T-Learner version of NNs (T-NN); Causal Forest (Wager
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Figure 3.9: Score function output from ICNN model relative to covariate X1,

depicting its moderating effect on CATE, plus MC dropout generated credible

intervals.

and Athey, 2018), a particular type of R-Learner (R-CF); a “unique-block”,

fully connected NN that uses Robinson’s parametrization minimizing the loss

function in (3.26) (R-NN); a “unique-block” NAM, again minimizing the loss

function in (3.26) (R-NAM); our TCNN with fully connected NN blocks; and

ICNN. S-NN, T-NN and R-NN all feature two [50, 50] hidden layers. R-NAM

features two [20, 20] hidden layers for each input. TCNN features two [50, 50]

hidden layers in the µ(·) block, and one [20] hidden layer in the τ(·) block.

ICNN features two [20, 20] hidden layers in the µ(·) block, and one [50] hidden

layer in the τ(·) block, for each input.

We simulate n = 2000 data points on P = 10 correlated covariates, with

binary Ai and continuous Yi. The experiment was run for B = 100 replications

and results on 70%-30% train-test sets average
√
PEHEτ , plus 95% Monte

Carlo errors, can be found in Table 3.6. The full description of the data

generating process utilized for this simulated experiment can be found in the

appendix. NN models minimizing the Robinson loss function in (3.26) perform

considerably better than S- and T-Learner baselines on this particular example,

especially TCNN and ICNN that present the additional advantage of conveying
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Model Train
√
PEHEτ Test

√
PEHEτ

S-NN 1.046 ± 0.007 1.076 ± 0.007
T-NN 1.021 ± 0.002 1.074 ± 0.002

R-CF 1.467 ± 0.002 1.494 ± 0.002
R-NN 0.706 ± 0.003 0.712 ± 0.003
R-NAM 0.787 ± 0.002 0.787 ± 0.002

TCNN 0.361 ± 0.001 0.362 ± 0.001
ICNN 0.328 ± 0.001 0.331 ± 0.001

Table 3.6: Performance on simulated experiment, measured as 70%-30% train-test

set
√
PEHEτ . Bold indicates better performance.

targeted regularization. Considering the ICNN model only, we can then access

the score functions on the τ(·) NAM block that describe the moderating effects

of the covariates xi. In particular in Figure 3.9 we plot the score function of

the first covariate Xi,1 on CATE τ(·), plus the approximate Bayesian credible

intervals generated through MC dropout resampling (Gal and Ghahramani,

2016). In this specific simulated example, CATE function is generated as

τ(xi) = 3 + 0.8X2
i,1. So only Xi,1, out of all P = 10 covariates, drives the

simple heterogeneity patterns in treatment response across individuals, in a

quadratic form. As Figure 3.9 shows, ICNN is able in this example to learn a

score function that very closely approximates the underlying true relationship

0.8X2
i,1, and quantifies uncertainty around it. Naturally, in a different simulated

setup with strong interaction terms among the covariates, performance of ICNN

would inevitably deteriorate compared to the other versions of NN and models

considered here. Thus, performance and interpretability in this type of scenario

would certainly constitute a trade-off.

3.4.4 Real-World Example: the ACTG-175 data

Finally, we briefly demonstrate the use of ICNN on a real-world example.

Although the focus of the work so far has been on observational type of

studies, we will analyze data from a randomized experiment to show that the

methods introduced naturally extend to this setting as well, with the non-
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negligible additional benefit that both unconfoundedness and common support

assumptions hold by construction (i.e., no “causal” arrow going from X → A).

The data we use are taken from the ACTG-175 study, a randomized controlled

trial comparing standard mono-therapy against a combination of therapies

in the treatment of HIV-1-infected patients with CD4 cell counts between

200 and 500. Details of the design can be found in the original contribution

by Hammer et al. (1996). The dataset features n = 2139 observations and

P = 12 covariates X (which are listed in the appendix section below), a binary

treatment A (mono-therapy VS multi-therapy) and a continuous outcome Y

(difference in CD4 cell counts between baseline and after 20±5 weeks after

undertaking the treatment — this is done in order to take into account any

individual unobserved time pattern in the CD4 cell count).

The aim is to investigate the moderation effects of the covariates in terms

of heterogeneity of treatment across patients. In order to do so, we run ICNN

and obtain the estimated score functions, together with approximated Bayesian

MC dropout bands, for each covariate Xj, and we report these in Figure 3.10.

The results generally suggest a good degree of treatement heterogeneity, with

most of the covariates playing a significant moderating role.
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Figure 3.10: Estimated score functions, with associated MC dropout bands, de-

scribing moderation effects of each covariate xj on CATE, i.e. τj(xj), ∀j ∈ {1, ..., P}.

All the P = 12 covariates in the ACTG-175 data included in the moderation analysis

are described in Table 2.4.



Chapter 4

Scalable Bayesian Causal

Learning for Multi-Action and

Multi-Outcomes Settings

ContributionsThe contents in this chapter are relative to a paper submitted

and accepted to the Transaction on Machine Learning Research journal. Refer-

ence: Caron et al. (2022d). In addition, we include a discussion on the links

with the tangential topics of Reinforcement Learning.

So far in this work we have considered settings where the action or treat-

ment space is limited to a discrete binary space A = {0, 1} and the outcome is

continuous and unique Yi ∈ Y = R, while the covariate space Xi ∈ X is high-

dimensional. However, studies with multiple discrete actions A = {0, 1}d and

multiple outcomes are quite common in applied research, as policy decisions are

rarely based on a single outcome, but rather on a profile of different outcomes

that might exhibit positive or negative correlation. As an example, in the

medical domain, prescription of a specific treatment, such as anti-coagulants

to prevent the risk of blood clots forming, affects both the risk of myocar-

dial infarction (primary outcome), as well as the risk of bleeding (unwanted,

correlated, side effect).
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In this chapter we introduce a scalable Bayesian causal inference method

based on multi-task Deep Kernel Learning (DKL), a computational surrogate of

Gaussian Process regression that scales better with dimensions, to tackle such

scenarios characterized by high dimensionality along multiple “axes”, i.e. ac-

tions, outcomes and covariates. We start by briefly formalizing the problem by

highlighting also connection with Model-Based (Offline) Reinforcement Learn-

ing, as several applications in this topic typically present multi-arm discrete

action spaces. We then proceed by reviewing more in details the multi-task

Gaussian Process paradigm in causal learning (Alaa and van der Schaar, 2017,

2018), already encountered in Chapter 2, and how this can in theory be easily

extended to multi-actions and multi-outcomes scenarios. Finally, we discuss

how multi-task GP struggle in high-dimensions along multiple axis, and offer a

scalable, yet Bayesian, solution represented by multi-task Deep Kernel Learning

models.

4.1 Problem Framework

Suppose we have access to an observational dataset Di = {Xi,Ai,Yi} ∼ p(·),

with i ∈ {1, ..., n}, where Xi ∈ X is a set of covariates, Ai ∈ A = {0, 1}d a

set of discrete, mutually exclusive, actions, and Yi = {Yi,j}Mj=1 ∈ RM a set of

M different outcomes. For ease of notation, we will consider the “condensed”

version of the vector of categorical actions Ai instead of the one-hot encoded

one Ai ∈ A = {0, 1}d. Also, we begin by considering continuous type of

outcomes for simplicity, but we extend the methods also to discrete outcomes

(Milios et al., 2018), as in the experimental Section 4.4.2. As always, the goal

is to identify and estimate the effects of intervening on Ai, by setting it equal

to some value a, on the M outcomes Yi. Using the do-calculus notation of

Pearl (2009a) for simplicity in working with multiple actions and outcomes,

more in details we are interested in Bayesian inference on the interventional

multivariate distribution p (Y | do(A = a)). We assume that the SCM is fully
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described by the following set of equations:

Xi = fX(εi,X),

Ai = fA
(
pa(Ai), εi,A

)
= fA(Xi, εi,A) (4.1)

Yi = fY
(
pa(Yi), εi,Y

)
= fY (Xi, Ai, εi,Y ) ,

where pa(Ai) denotes parent variables (or direct causes) of Ai; εi,j are error

terms with a distribution p(εi,j). We make the two standard assumptions

for identification of the causal effect A → Y in this scenario, that is uncon-

foundedness, that must hold for all the M outcomes {Yi,j}Mj=1, and overlap,

0 < p(Ai = a|Xi = x) < 1, ∀a ∈ A. Remember that violation of overlap for

portions of X undermines generalization and extrapolation of the causal model’s

prediction in those regions. Under these two assumptions, the multivariate

interventional distribution p(Y | do(A = a),X = x) can be recovered via

backdoor adjustment as p(Y | do(A = a),X = x) = p(Y | A = a,X = x)

(Pearl, 2009a).

4.1.1 Connections to Reinforcement Learning

Generally speaking, the problem of causal effects learning is closely related to

the Reinforcement Learning literature (Sutton and Barto, 2018). We make

this connection only at this point of the work because Reinforcement Learning

problems typically feature multi-action scenarios. Loosely speaking, the main

idea in Reinforcement Learning is that an agent faces a dynamic programming

problem, where it sequentially interact with an environment at each time

t ∈ {1, ..., T}, whose information is summarized in a state St ∈ S, and decides

on a variety of actions to be taken at each state At ∈ A. The combination of

state-action at time t sends the agent to a new state St+1 through a trajectory

function fs : S × A 7→ S, and generate also a reward Rt+1 ∈ R through a

reward function fr : S × A 7→ R. Generally the dynamics of this system is

assumed to be Markovian, and can be thus described by a Markov Decision

Process (MDP). An MDP is a tuple consisting of ⟨S,A, ps, fr, γ⟩, where:
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1) S is the state set

2) A is the action set

3) ps(s
′ | St = s, At = a) is the stochastic transition probability

4) fr : S ×A 7→ R is the reward function generating rt = fr(s, a) = E[Rt |

St = s, At = a]

5) γ ∈ [0, 1] is a discount factor

The ultimate goal of the agent is to find an optimal policy, defined as a

probabilistic mapping π : S × A 7→ [0, 1] between the current state and the

action space π(At = a | St = s), that maximizes the expected returns, i.e. the

expected value of the sum of all discounted rewards Gt =
∑T−t−1

k=1 γkRt+k+1. A

policy π∗ ∈ Π is said to be optimal if it maximizes the state value function

Vπ(s) or equivalently the state-action value function qπ(s, a), defined as:

State: Vπ(s) = Ea∼π[Gt | St = s]

State-action: qπ(s, a) = Ea∼π[Gt | St = s, At = a]

where Vπ(s) = EA[qπ(s, a)], obtained by marginalizing on a. Thus, the optimal

policy satisfies π∗ = argmaxπ∈Π Vπ(s), or equivalently π∗ = argmaxπ∈Π qπ(s, a).

In typical RL settings, the agent usually learns π∗ “online”, in the sense of

active learning, with data collection operated by the agent happening on

the fly. In the more narrow, and more closely related, sub-topic of Offline

Reinforcement Learning (which includes e.g. the case of Dynamic Treatment

Regimes, where rewards are sparse) instead, one has access to some historical

(observational) data Dt = {Xt
def
= St, At, Rt}Tt=1, where Xt

def
= St ∈ X denotes

the environment/state covariates, while At ∈ A and Rt ∈ R are the usual

action and reward/outcome spaces. These historical data relate to a logged

“behaviour policy” implemented previously.

It is easily noticeable that RL inherently involves elements of causality and

counterfactual reasoning about actions to be played, and reward they conse-

quently generate. It can be straightforwardly shown how the settings described

above links back to estimation of causal effects and CATE in particular, with
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the non-negligible difference that we specifically work under the assumption

that data Di are i.i.d., which is often referred to as contextual bandits

setting in the RL literature, while general RL works in dynamic/sequential

sampling settings (data are i.i.d. only conditional on a “time slice”). If we use

Potential Outcome Y (a) to denote the collection of trajectory’s counterfactual

outcomes corresponding to a played action Ai = a, i.e. {Y (a)
1 , ..., Y

(a)
T }, under

the doubleton A = {0, 1}, one can define an equivalent state value function

generated by a policy π ∈ Π and the state/covariate set X ∈ X as

Vπ∈Π(X) = E
[
Y (1) π(A = 1|X) + Y (0) π(A = 0|X)

]
,

which is in turn equivalent to writing Vπ∈Π(X) = E
[
τ(x)π(A = 1|X)

]
where

τ(x) = E[Y (1) − Y (0)|X] is the CATE. In RL, one can generally distinguish

between two types of policy tasks: i) Off-Policy Evaluation (OPE), where

the goal is to evaluate a given policy πe ∈ Π in terms of the value it generates;

ii) Off-Policy Learning, where the goal is to derive the optimal policy

π∗ = argmaxπ∈Π Vπ∈Π(X), defined as above. The term “Off-Policy” here does

not refer to whether the task is an active type of learning, but rather to the

fact that, in an online setting, data are not being collected by the agent under

a certain given policy regime which generates the actions and the new states

according to At ∼ πβ(·|·). In policy learning we generally seek policy estimators

that give guarantees in terms of policy regret, defined as

R(π̂) = V∗(π)− EP
[
V(π̂)

]
= EP

[
V∗(π)− V(π̂)

]
≥ 0 , (4.2)

for the OPL task, where V∗(πp) = supπp∈Π V(πp). A very quick overview

of some of the relevant contributions in the related field of OPE and OPL

include the relatively early work of Qian and Murphy (2011), where theoretical

guarantees for direct regression-adjustment methods are provided. Dud́ık et al.

(2011); Zhang et al. (2012) first propose a classical doubly-robust approach

to the problem, while Kallus (2018) improves on the way the weights are
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derived. Zhao et al. (2012); Zhou et al. (2017) instead view OPL as a particular

case or classification problem and focus on developing a direct (non plug-in)

method aimed at directly maximizing a convex surrogate of the non-convex

classification loss. Eventually, Kitagawa and Tetenov (2018), Athey and Wager

(2021) and Kallus (2021) address the problem of OPL under constrained policy

class Π0 ⊆ Π.

4.2 Counterfactual Learning with Multitask

Gaussian Processes

For ease of exposition, consider the simple case with a single continuous outcome

Yi ∈ R, with i ∈ {1, ..., n}. We tackle the problem of estimating p(Y |do(A = a))

via non-linear regression-adjustment (Johansson et al., 2016; Shalit et al., 2017;

Künzel et al., 2017; Nie and Wager, 2020; Caron et al., 2022a). As in earlier

chapters, we assume the additive noise structural model:

Yi = fY (Xi, Ai) + εi,Y , E(εi,Y ) = 0 . (4.3)

As seen in Chapter 2, there are different ways in which one can derive an

estimator for p (Y | do(A = a)) and its moments, e.g. E[Y | do(A = a)]. Alaa

and van der Schaar (2017, 2018) first proposed the use of multitask learning

via Gaussian Process regression, in the specific context of conditional average

treatment effects estimation, which is defined, assuming binary Ai ∈ {0, 1},

as the quantity τ(xi) = E[Yi|do(Ai = 1),xi]− E[Yi|do(Ai = 0),xi]. The idea

behind causal multitask GPs is to view the D = |A| interventional quantities

Ya, where D is the number of discrete action arms, as the output from a

vector-valued function fY (·) : X 7→ RD (plus noise), modelled with a GP prior:

fY (·) ∼ GP
(
m(·), K(·, ·)

)
, (4.4)

with mean m(xi) ∈ RD and covariance/kernel function K(xi,xj) ∈ RD × RD,

given two P -dimensional input points xi,xj ∈ X for units i and j. Given the
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likelihood function as a multivariate Gaussian p(yi|fY ,xi,Σ) ≜ N (fY (xi),Σ),

where Σ ∈ RD × RD is the error covariance diagonal matrix with {σ2
a}Da=1 on

the diagonal and yi ∈ RD an output point, the posterior predictive distribution

for a train set covariate realization xi ∈ X , train set outcome realization yi ∈ R

and a test set covariate realization x∗
j ∈ X is obtained as, assuming zero prior

mean m(·) = 0 for simplicity:

p
(
fY (x

∗
j) | (xi,yi),fY , ϕ

)
≜ N

(
f ∗
Y (x

∗
j), K

∗(x∗
j ,x

∗
j)
)
,

f ∗
Y (x

∗
j) = K(x∗

j ,xi)Hy , K∗(x∗
j ,x

∗
j) = K(x∗

j ,x
∗
j)−K(x∗

j ,xi)HK
⊤(x∗

j ,xi) ,

where H =
[
K(xi,xi) + Σ

]−1

,

(4.5)

and where ϕ denotes the model parameters and f ∗
Y (x

∗
j) the function evaluated

at a test point x∗
j . Under zero prior mean m(·) = 0, the multitask GP in (4.4)

is fully parametrized by its kernel function K(·, ·). The structure of the kernel

function in a multitask GP is what induces task-relatedness when fitting the

multi-valued surface fY (·).

4.2.1 The multitask kernel

The simplest specification for the multitask kernel matrix is given by the

separable kernels structure, which assumes single entries in K(·, ·) to be of

the form ka,a′(xi,xj) = k(xi,xj) kA(a, a
′) = k(xi,xj) ba,a′ , with action a ∈

A = {1, ..., D}. Here, k(xi,xj) represents a base kernel (e.g. linear, squared

exponential, Matérn, etc.) while ba,a′ = kA(a, a
′) is the generic entry of the

D×D coregionalization matrix B, which contains the parameters governing

task-relatedness over the actions A. In the trivial case where ba,a′ = 0 we have

that tasks a and a′ are uncorrelated, i.e. actions a and a′ are unrelated in the

way they affect the outcome Y .

A slightly more general framework, which we adopt in this work, is given by

the sum of separable kernels structure (Alvarez et al., 2012). This assumes that

the single entry ofK(·, ·) reads ka,a′(xi,xj) =
∑Q

q=1Bq kq(xi,xj), i.e. the sum of

Q different coregionalization matrices Bq with associated base kernel kq(·, ·). In
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compact matrix notation this translates into K(X,X ′) =
∑Q

q=1Bq⊗Kq(X,X
′)

for two different input matrices X,X ′ ∈ X , where ⊗ is the Kronecker product.

Imposing a sum of separable kernels structure is equivalent to assuming that

the collection of action-specific functions {fYa(·)}Da=1 generates from Q ≤ D

common underlying independent latent GP functions {uq(·)}Qq=1, parametrized

by their base kernel kq(·, ·), that is cov(uq(xi), uq′(xj)) = kq(xi,xj) (Alvarez

et al., 2012).

In terms of the form of the coregionalization matrices Bq, with q ∈

{1, ..., Q}, we will follow the linear model of coregionalization (LMC),

which assumes that each Bq is equal to Bq = LqL
′
q, with single entries

bq; (a,a′) =
∑Rq

r=1 α
r
a,qα

r
a′,q. Rq represents the number of GP samples obtained

from the same latent GP function q, uq(·). Thus, adopting the LMC for

causal learning is equivalent to assuming that correlation in the {fYa(·)}Da=1

action-specific functions, modelled through the multitask kernel K(·, ·), arises

from Q different samples of Rq GP functions with the same kernel kq(·, ·),

drawn from Q ≤ D different independent latent GP processes {uq(·)}Qq=1. To

express this more compactly, a causal multitask GP model under the LMC

reads fY (·) ∼ GP
(
m(·), K(·, ·)

)
, with single entries of K(·, ·) being

ka,a′(xi,xj) =

Q∑
q=1

Bq kq(xi,xj) =

Q∑
q=1

AqA
′
q kq(xi,xj) , implying

cov
(
fa(xi), fa′(xj)

)
=

Q∑
q,q’

Rq∑
r,r′

αra,qα
r′
a′,q′ cov

(
urq(xi), u

r′
q’(xj)

)
.

(4.6)

In our specific case, as in Alaa and van der Schaar (2018), we employ

a special case of LMC, named intrinsic coregionalization model (ICM)

(Bonilla et al., 2008), where the underlying latent GP function is unique

(Q = 1), so that ka,a′(xi,xj) = B K̃(xi,x
′
i), with unique base kernel K̃(·, ·).

The ICM specification attempts to avoid severe parameter proliferation in

high-dimensional settings with multiple correlated actions D = |A|, while

still being capable of capturing task-relatedness through the relatively simple



4.2. Counterfactual Learning with Multitask Gaussian Processes 138

structure of B. However, beside the issue of parameter proliferation when A

features multiple discrete actions, exact GP regression is also known to scale

poorly with sample size and cardinality of input space |X |, and direct likelihood

maximization methods face issues in over-parametrized models, although some

solutions, such as variational methods (Titsias, 2009; Hensman et al., 2013),

might be adopted for better scalability.

4.2.2 Why multitask counterfactual learning?

We know that asymptotically under no sample selection bias between ac-

tion/treatment groups as in a randomized experiments, the best approach to

estimate the causal quantities fY (xi) would be a “T-Learner”, which implies

splitting the sample and fitting separate models for each arm A = a, f̂(x)a.

However, in finite samples flawed by selection bias, this is very often not the

best strategy as we have seen in earlier chapters. By simply extending results

on optimal min-max rates of convergence in Alaa and van der Schaar (2018),

one can show that with increasing action and covariates spaces at the same time

the problem of estimating causal effects becomes increasingly harder. For these

reasons, a multitask GP prior over the actions is well suited to tackle selection

bias and particularly estimation in regions with poor overlap, i.e. regions in

X where we mainly observe data points with specific action Ai = a and very

few others. In addition to this, as shown by Alaa and van der Schaar (2018), a

multitask GP prior can achieve the optimal minimax rate of Corollary 3.1 in

its posterior contraction rates.

Hence, splitting the sample into na subgroups and fitting independent

models can be very sample inefficient in these settings. Multitask GPs can

aid extrapolation in such cases of strong sample selection bias, by learning the

correlated functions {fYa(·)}Da=1 jointly as fY (·). The first row plots in Figure

4.1 provide a very simple one-covariate example of how multitask learning

addresses the issue of extrapolation and prediction in poor overlap regions.

Fitting the two surfaces fY 1(xi) and fY 0(xi) (dashed lines) through separate

GP regressions results in a bad fit out of overlap regions (top-left plot) in this
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Figure 4.1: Simple one covariate example, with A = {0, 1}. Overlap is guaranteed

to hold over the whole support X in the data generating process, i.e. every unit has

non-zero probability of being assigned to either Ai = 1 or Ai = 0, but p(Ai = 1|Xi) is

generated as an increasing function of Xi (selection bias). In the top row simulation,

the two underlying counterfactual surfaces fYd(xi) (dashed lines) are generated with

very similar patterns, thus GP (left panel) is unable to borrow information from

the other arm in poor overlap regions contrary to multitask GP (right panel). In

the bottom row simulation instead we generate less similar surfaces, so borrowing of

information through multitask GP does not lead to any improvement.

specific case. Multitask coregionalized GP attempts to fix this problem by

embedding the assumption that the two surfaces share similar patterns via joint

estimation of fYa(xi) and their task-relatedness parameters, increasing sample

efficiency (right panel). When the two surfaces share minor patterns instead,

such as in the second row plots of Figure 4.1, the sample efficiency gains are less

significant; and in some more extreme cases where the surfaces do not share any

similar pattern at all, assuming a multitask GP prior might also introduce bias.

The issue of partial overlap might be less severe in scenarios with larger sample

size, but not always; however, in settings with strong sample selection bias,

or settings with multiple discrete actions or action spaces that grow with the

sample size, the issue remains relevant. This is because the sampling mechanism
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is inherently flawed, so that even with infinite samples, poor overlap regions do

not fade away, independently of the modelling assumptions one makes.

Modelling assumptions on how to estimate {fYa(·)}Da=1 hence ultimately

depends on domain expert knowledge about the setting (Hahn et al., 2020).

If one possesses prior knowledge that the causal effects might be fairly homo-

geneous across units with different covariate realizations Xi = xi, so that the

CATE function is likely to display simple patterns (first row, Figure 4.1), then

using a multitask approach would actually help incorporate this assumption

in the model. Conversely, if one believes instead that CATE is likely to be a

rather complex function itself (second row, Figure 4.1), estimating {fYa(·)}Da=1

independently would be a better choice.

4.2.3 Multiple Output Designs

Reverting back to setups with multiple correlated outcomes, we introduce

a simple extension to the class of counterfactual GPs presented above that

involves an extra multitask learning layer over the M outcomes Yi, in addition

to the one over Ai. The way we formulate this is through an additional

coregionalization matrix, in the same fashion as we did for the actions case.

This extended version featuring stacked coregionalization, has a GP prior of

the following form:

Yi = fYa(xi) + εi , E(εi) = 0

fYa(·) ∼ GP
(
0, KY (·, ·)

)
, KY (·, ·) = BY ⊗BA ⊗ K̃(·, ·) ,

(4.7)

where BY is the M × M coregionalization matrix over the outcomes, BA

the D × D coregionalization matrix over the actions and K̃(·, ·) is the base

kernel. The vector-valued function fYa(·) in this case includes all the single-

valued functionals {fa,m(·)}D,Ma,m . The extra multitask learning layer over the

outcomes Yi is aimed at increasing sample efficiency by borrowing information

among correlated outcomes, as opposed to fitting M separate counterfactual

GPs with a single coregionalization layer over A, but it is also conceptually
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sound, as the quantity of interest is indeed the joint interventional distribution

p(Y |do(A = a),X = x), which accounts for and explicitly models correlation

between the outcomes, rather than the collection of marginal distributions

{p(Ym|do(A = a))}Mm=1, which leaves correlation unspecified. As we will address

in the later section, although the extra layer defined by BY allows for higher

sample efficiency, it also poses some issues due to parameter proliferation and

stability of the optimization problem in high dimensions.

4.3 Counterfactual Multitask Deep Kernel

Learning

Gaussian Processes regressions are known to scale poorly with large samples.

Their typical computational cost amounts to O(n3) for training points and

O(n2) for test points. Closely related, coregionalized GPs suffer from poor

scalability with sample size, but also from over-parametrization and instability

in the optimization procedure as the number of inputs P and the number of

discrete actions D increase. Deep Kernel Learning (DKL) was firstly introduced

by Wilson et al. (2016) with the aim of combining the scalability of Deep

Learning methods and the nonparametric Bayesian uncertainty quantification

of GPs in tackling prediction tasks in high-dimensional settings. Given a base

kernel k(·, ·) (e.g. linear, squared exponential, etc.), a DKL structure learns a

functional fYa(·) by passing the P inputs Xi ∈ X through a deep architecture

(a fully-connected feedforward neural network in our case), which maps them

to a lower dimensional representation space via non-linear activation functions.

The base kernel k(·, ·) is then applied in this lower dimensional representation

space, k(h(l), h(l)
′
), where h(l) is a neural network’s hidden layer, constituting

a final Gaussian Process layer (or an infinite basis functions representation

layer). The resulting mathematical object can be described as a kernel being

applied to a concatenation of linear and non-linear functions of the inputs,

namely K̃(x,x′) = K(g1 ◦ ... · · · ◦ gl(x), g1 ◦ ... ◦ gl(x′)) (Bohn et al., 2019).

Thus, the DKL architecture is end-to-end, fully-connected and learnt jointly:
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Figure 4.2: Counterfactual multitask DKL architecture. The P raw inputs are

passed through a deep learning structure with ℓ hidden layers. Multioutput separable

kernels (inducing coregionalization over actions A and outcomes Y ) are then applied

to the last Gaussian Process hidden layer, before the M action-specific output layer.

Parameters are estimated jointly by minimizing the negative log likelihood.

the P inputs are passed on to ℓ hidden neural nets layers where the last

hidden layer before the GP layer typically maps them to a lower dimensional

representation space (with e.g. two hidden units). This is what generates

benefits in terms of scalability compared to a classic GP, as the base kernel

k(·, ·) is applied to a lower dimensional representation space, rather than the

higher dimensional inputs space directly. Another intrinsic advantage of DKL

is that the deep architecture preceeding the GP layer can itself learn arbitrarily

complex function, so the choice of a specific GP kernel becomes less cumbersome.

For example, Wilson et al. (2016) show that DKL is more robust in recovering

step functions, due to weaker smoothness assumptions compared to standard

GP kernels.

DKL naturally presents some limitations concerning the more burdensome

parameter tuning (e.g., hidden layers and units selection) and the fact that they

more easily tend to overfit when overly-parametrized (we refer to Ober et al.

(2021) for a more detailed discussion of the issue). The kernel k(·, ·) in the last

GP layer of a DKL architecture can easily incorporate the separable kernel

structure for multitask learning, in the same fashion as the class of causal GPs
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presented earlier. Thus, we propose a multitask modelling framework to induce

correlation across the action-specific functions {fYa(·)}Da=1, under the name of

Counterfactual DKL (CounterDKL), where a similar Intrinsic Coregionalization

Model (ICM) in the same spirit of (4.6) is placed on the last hidden layer of

the neural network h(l) = gl(Wl h
(l−1) + bl), where (Wl, bl) are the last layer’s

weights and bias, such that

fYa(h
(l)) ∼ GP

(
0, K(·, ·)

)
, where

K(h(l), h(l)
′
) = KA(a, a

′)⊗ K̃(h(l), h(l)
′
) = B ⊗ K̃(h(l), h(l)

′
)

(4.8)

In this case, the Kronecker product of the coregionalization matrix occurs

in the last hidden layer, and features lower dimensional representations instead

of the potentially large number of raw inputs. Similarly, we can induce core-

gionalization over the M outcomes by adding another level of coregionalization,

with the kernel reading K(h(l), h(l)
′
) = KY (y, y

′)⊗KA(a, a
′)⊗Kq(h

(l), h(l)
′
) =

BY ⊗BA ⊗Kq

(
h(l), h(l)

′)
. Figure 4.2 graphically depicts a counterfactual mul-

titask Deep Learning architecture, with fully-connected hidden layers, a final

(infinite) GP layer and the M action-specific outcomes. The parameter space

in CounterDKL comprises: i) the set of deep neural network’s weight matrices

{Wi}li=1 and biases {bi}li=1; ii) the base kernel K̃ hyperparameters Φ, e.g. in

the case of squared exponential kernel Φ includes lengthscales and variances

parameters Φ = {ℓ, σ2}; iii) the coregionalization matrix B entries. Hence, the

parameter space is the collection Θ = ({Wi}li=1, {bi}li=1,Φ, B). These parame-

ters are estimated jointly via maximization of the log-marginal likelihood. More

details are provided in the appendix and in Wilson et al. (2016); Gardner et al.

(2018). In the next section, we will investigate properties of counterfactual

multitask GPs and DKL on a variety of experiments.

4.4 Experiments

We evaluate the performance of counterfactual GPs and counterfactual DKL

on a data generating process with three different but related tasks, and on
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a real-world example combining experimental and observational data. The

GPs implementations in the simulated examples all make use of the KISS-GP

approximation to compute the base kernel covariance matrix (Wilson and

Nickisch, 2015). The idea behind KISS-GP kernel approximation is that it

is a combination of grid structure methods (e.g. Kronecker structure K =

K1⊗ ...⊗KP , that guarantee a more easily solvable linear system) and inducing

points methods for sparse GPs (Quiñonero-Candela and Rasmussen, 2005)

(where only a chosen subset of m < n points is used for parameter training)

that guarantees better scalability. In KISS-GP, kernel k(x, x′) is approximated

as k(x, x′) ≈ wxk(U,U
′)wx′ , where U are m latent inducing points and wx,wx′

are sparse interpolation vectors1. KISS-GP allows one to go from O(n3) typical

training computational cost of GPs to O(n+m).

4.4.1 Fully Simulated Example

We consider a simulated setting with D = 4 possible actions A = {0, 1, 2, 3}

and M = 2 correlated outcomes Y = (Y1, Y2) ∈ R2. Actions and outcomes are

generated according to a propensity score/policy πb(xi) = p(Ai = a|Xi = xi)

and an outcome function fY (xi), both dependent on the covariates Xi ∈ X .

The DGP is fully described in the supplementary materials. The models we

compare are the following: i) separate standard GP regressions, employed

to fit fYd(·) distinctly for each outcome and for each action (GP, as a T-

Learner); ii) counterfactual multitask GP regression (Alaa and van der Schaar,

2017, 2018), with coregionalization over Ai only, meaning that we fit two

separate models for each outcome, but a unique multi-valued function model

for Ai (CounterGP); iii) counterfactual multioutput GP regression, a unique

model with coregionalization both over Ai and Yi (MOGP); iv) separate DKL

regressions with 3 hidden layers of [50, 50, 2] units, the equivalent of i) but

with deep kernel implementation (DKL); v) counterfactual multitask DKL

regression with 3 hidden layers of [50, 50, 2] units, the DKL equivalent of ii)

1 All experiments were run on a Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz, 8Gb
RAM CPU.
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(CounterDKL); vi) counterfactual multioutput DKL, the DKL equivalent of

iii) (MODKL). In particular, we consider two slightly different versions of

this setup. In the first version we fix the number of covariates to P = 10 (only

7 of them being relevant for the estimation) and study the behaviour of the

estimators with increasing sample size n ∈ {500, 1000, 1500, 2000, 2500}. In

the second version we fix sample size to n = 1500 and study the behaviour

of the estimators with increasing number of covariates P ∈ {10, 15, 20, 25}.

Performance of the models is evaluated on the following three related tasks:

• CATE: The first is the prediction of CATE: E(Yi|do(Ai = a),Xi = xi).

This is carried out using a 80% training set, and evaluated via root PEHE

(equivalent to RMSE) on a 20% left-out test set.

• OPE: The second is Off-Policy Evaluation, which is concerned with quan-

tifying how good a given alternative policy πe is, compared to the action

allocation policy that generated the data (behavior policy, πβ). This is done

by estimating the policy value V(πe) = EX ,A,Y

[∑
i πe(ai|xi)

(
Yi|do(Ai = ai)

)]
originating from πe. In our case we pick the alternative policy to be a

uniformly-at-random action allocation, i.e. πe ∼ Multinom(.25, .25, .25, .25).

Performance is evaluated through RMSE on the entire sample.

• OPL: The last is Off-Policy Learning, which is concerned with finding the

optimal policy π∗ : X → A, that is the policy that generates the highest

policy value: π∗
p ∈ arg maxπp∈Π V(πp). This last task is evaluated through

an Accuracy metric on the whole sample, which we label Optimal Allocation

Rate (OAR), indicating the percentage of units correctly assigned to their

specific optimal action π∗(xi) = a, i.e. the action that generates the best

outcome for them.

Since we are dealing with M = 2 outcomes, we produce performance measure-

ments on PEHE/RMSE and optimal allocation rate for both outcomes and

then average them, assuming both outcomes are given equal policy importance

and live on the same scale. For both versions of the setup, namely increasing
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Figure 4.3: Results on performance of the methods compared, in terms of RMSE

or Optimal Allocation Rate (OAR), averaged across B = 100 replications for each

n ∈ {500, 1000, 1500, 2000, 2500} (first row) and each P ∈ {10, 15, 20, 25} (second

row). First column: RMSE evaluated on the individual causal effect (ICE) estimation

task (on the test set). Second column: RMSE evaluated on the OPE task. Third

column: OAR on the OPL task, defined as percentage of units correctly allocated to

the best action among the D ones.

n and increasing P , we replicate the experiment B = 100 times to obtain

Monte Carlo averages and 95% confidence intervals for the metrics. Results are

depicted in Figure 4.3. RMSE performance in all models for increasing n and

P behaves accordingly what we discussed earlier. CounterDKL and MODKL

perform consistently better than the GP models, as they scale better with an

increasing sample size n and increasing number of predictors P . Particularly

MOGP’s performance deteriorates for issues related to stability of the marginal

likelihood maximization and over-parametrization, as we had to omit it from

the study of increasing predictors due to failed convergence for P > 10. The

advantages over standard DKL regression instead are entirely attributable to

sample efficiency gains from multitask coregionalization in CounterDKL and

MODKL, both in the increasing n and increasing P studies. In the case of

increasing P , we emphasize that as predictor space grows larger the causal
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Figure 4.4: Models’ performance in terms of RMSE (left plot) and 95% Coverage

(right plot), in estimating Individual Causal Effects (ICE) on a 20% left-out test set,

given an increasing level of confounding, represented by the γ parameter: higher

values of γ corresponds to higher probability of being assigned to one of the two

action Ai = {3, 4}, thus generating more arms imbalance.

DGP becomes relatively sparser (only 7 predictors out of P remain relevant for

the estimation), especially in the case of P = {20, 25}. So in these two cases the

batch of DKL models would perhaps achieve better performance from increasing

the number of hidden units or hidden layers and adding regularization (dropout,

ℓ1 or ℓ2 regularizers) in the deep architecture part.

In addition, we run a slightly different version of the CATE experiment

above, to further investigate properties of the models in terms of uncertainty

quantification, that we measure through the 95% coverage of each CATE

estimates (then averaged over actions and outcomes). This has also been

defined earlier in Chapter 3 as

Coverage95% =
1

n

n∑
i=i

I
(
f̂a(xi)low ≤ fa(xi) ≤ f̂a(xi)upp

)
,

where f̂a(xi)low and f̂a(xi)upp are the lower and upper bands of the 95% credible

interval output by the model on f̂a(xi), while fa(xi) is the true individual

counterfactual outcome corresponding to action Ai = a. Given fixed n = 2000

and P = 20 and a similar data generating process as before, we introduce the
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parameter γ, which governs the level of confounding, or the degree of groups

imbalance in terms of action allocation. Particularly, for increasing values of γ,

we assign higher probability of choosing one of the two action Ai = {3, 4}. This

generates action arms imbalance as it leaves gradually less units in arms {1, 2}.

Results are gathered in Figure 4.4, where MODKL display higher performance

both in terms of error and uncertainty quantification.

4.4.2 Real-World Example: Job Training Programs and

Unemployment

We demonstrate the efficiency of CounterDKL also on a second experiment

taken from Shalit et al. (2017), involving a popular real-world study on a job

training program, dating back to LaLonde (1986). The distinctive feature of this

dataset is that it combines a randomized and an observational subgroups, where

the aim is to estimate the effects of participation on a job training program on

earnings and employment. The randomized experiment features 297 treated

and 425 control units. The observational subsample is instead made of 2490

control units only. The binary treatment Ai ∈ {0, 1} denotes participation

to the job training program. The original outcome Yi is earnings after the

program, which is censored continuous (Yi = 0 for unemployed units). However,

following Shalit et al. (2017), we construct a binary indicator Yi ∈ {0, 1}

denoting employment status at the end of the job training program as outcome.

This gives us the opportunity to demonstrate the use of the methods presented

earlier also on binary/categorical type of outcomes. To this end we use the

classification method for GPs proposed in Milios et al. (2018), where class labels

are interpreted as coefficients of a degenerate Dirichlet distribution, which makes

the GP classification task efficiently faster and more scalable. The 7 covariates

Xi ∈ X in the study are the following: age, years of schooling, african american

ethnicity, hispanic ethnicity, marital status, high school diploma. Given the

presence of a randomized subsample, we can exploit it to compute unbiased

estimates of the quantities of interest and treat them as ground truth. The

two quantities of interest in this case are: i) the Average Treatment Effect
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Model Train MAE Test MAE Train Rpol Test Rpol Runtime (s)

GP 0.033 ± 0.006 0.036 ± 0.008 0.22 ± 0.02 0.27 ± 0.02 171.3 ± 16.1
CounterGP 0.033 ± 0.006 0.035 ± 0.007 0.24 ± 0.01 0.27 ± 0.02 248.6 ± 6.4

PCA + GP 0.073 ± 0.002 0.074 ± 0.003 0.22 ± 0.01 0.27 ± 0.02 66.3 ± 2.4
PCA + CounterGP 0.074 ± 0.001 0.074 ± 0.001 0.23 ± 0.01 0.26 ± 0.02 126.1 ± 3.9

AutoEnc + GP 0.075 ± 0.004 0.075 ± 0.003 0.21 ± 0.03 0.27 ± 0.02 76.0 ± 3.0
AutoEnc + CounterGP 0.076 ± 0.003 0.076 ± 0.003 0.24 ± 0.02 0.30 ± 0.03 138.7 ± 9.2

DKL 0.029 ± 0.011 0.042 ± 0.015 0.20 ± 0.01 0.21 ± 0.02 44.8 ± 3.3
CounterDKL 0.011 ± 0.003 0.015 ± 0.005 0.22 ± 0.01 0.25 ± 0.02 122.7 ± 7.4

1

Table 4.1: Train and test set performance on the Jobs data experiment in terms

of Mean Absolute Error (MAE) in estimating ATT, Policy Risk (Rpol) and over-

all runtime (s), with 10-fold cross-validated 95% intervals. Bold indicates better

performance.

on the Treated group (ATT), defined as ATT = T−1
∑Te

i=1 yi − C−1
∑C

i=1 yi,

where T and C are the number of treated and control units in the experimental

data; ii) the Policy Risk (Shalit et al., 2017), defined as the average error in

allocating the treatment according to the ICE estimates policy rule — namely

π(xi) = 1 if ICE = E(Yi|do(Ai = 1),xi) − E(Yi|do(Ai = 0),xi) > 0 — or

Rpol = 1−
[
E
(
Y |do(Ai = 1), π(xi) = 1

)
p(π(xi) = 1)+E

(
Y |do(Ai = 0), π(xi) =

0
)
p(π(xi) = 0)

]
. Notice that we cannot measure performance on ICE directly

as this is always unobservable in real-world scenarios; also, we restrict analysis

of average causal/treatment effects on the treated group since we are sure

that overlap holds there, as all the treated units were part of the randomized

experiment subgroup, while the observational subgroup is made only of control

units. More details about this experiment can be found in the Appendix C of

supplementary materials and in Shalit et al. (2017).

We compare the following models: i) GP and CounterGP, as in Alaa and

van der Schaar (2017); ii) vanilla PCA plus either GP or CounterGP; iii) vanilla

deep AutoEncoder plus either GP or CounterGP; iv) DKL and CounterDKL

(ours). Results on performance are gathered in Table 4.1, in terms of 70%-30%

train and test set Mean Absolute Error (MAE) on ATT, Policy Risk Rpol and

average runtime, accompanied by 10-fold cross-validated 95% error intervals.
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Model Train
√
PEHEτ Test

√
PEHEτ

RF 1.85± 0.13 2.39± 0.17
X-RF 3.29± 0.23 3.37± 0.24
CF 3.10± 0.21 3.07± 0.20

BART 0.97± 0.04 1.44± 0.09
X-BART 2.07± 0.14 2.13± 0.14
BCF 0.87± 0.05 1.34± 0.10

CounterGP 0.61± 0.02 0.70± 0.04
CounterDKL 0.62± 0.02 0.67± 0.04

Table 4.2:
√
PEHEτ on CATE estimates, plus 95% Monte Carlo intervals, of

compared models on the semi-simulated IHDP setup, evaluated on 80%-20% train-

test sets.

In this example multitasking is induced only over the binary treatment, as we

deal with just a single outcome of interest. As the results depict, by operating

jointly via a unique loss function, CounterDKL is significantly more efficient

than naively applying dimensionality reduction and fitting a multitask GP on

a lower dimensional space as two separate steps. It also displays gains over

CounterGP, thanks to its deep component that guarantees better computational

time (in terms of runtime) and scalability, and is able learn arbitrarily complex

functions while imposing weaker smoothness assumptions than standard GP

kernels, even on a low-dimensional covariate space example such as the one

presented here (7 covariates).

4.4.3 The Infant Health Development Program data

Finally we compare CounterDKL with few other methods for CATE estimation,

encountered earlier in Chapter 2, on the simulated experiment utilizing the

Infant Health Development Program (IHDP) data, originally found in Hill

(2011). As explained also in Chapter 2 experimental sections, this consists

in a semi-simulated setup, in that it makes use of real-world data from the

IHDP study, a randomized clinical trial aimed at improving the health status

of premature infants with low weight at birth through pediatric follow-ups

and parent support groups, and recreates an observational type of study by
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removing a non-random portion of treated units, namely those with “non-white

mothers”. This leaves a total of 139 observations in the treated group and

608 in the control. In addition, the semi-simulated setup uses the real-world

binary treatment Ai ∈ {0, 1} and the 25 available covariates Xi ∈ X , but

simulates the two continuous potential outcomes (Y1, Y0) ∈ R2, as described in

the non-linear “Response Surface B” setting in Hill (2011).

As anticipated above, the estimand of interest in this case is CATE again.

The models we compare include: i) vanilla Random Forest (RF), as a T-

Learner; ii) X-Learner version of Random Forests (X-RF) as in (Künzel et al.,

2017); iii) Causal Forest (CF), or Random Forests as an R-Learner, developed

by Wager and Athey (2018); iv) vanilla Bayesian Additive Regression Trees

(BART), as a T-Learner; v) X-Learner version of BART (X-BART); vi)

Bayesian Causal Forests (BCF) by Hahn et al. (2020); vii) Counterfactual GP

(CounterGP) as in Alaa and van der Schaar (2018); viii) our Counterfactual

DKL (CounterDKL) with [100, 100, 2] hidden layers. Results in Table 4.2

report
√
PEHEτ estimates relative to 1000 replication of the experiment on

80%-20% train-test split as in Alaa and van der Schaar (2017).



Chapter 5

Conclusions

This last chapter summarizes the ideas presented in the previous ones and

discusses some open problems in the causal inference literature, in addition

to issues in the more general machine learning domain that can be addressed

using tools from causality.

We start by very briefly summarizing the content of the different chapters.

In Chapter 1 we introduced the fundamental notions behind causal inference

and causal learning, together with the mathematical notation used in different

causal frameworks. We highlighted how the frameworks are interchangeable

and lead to the same causal identification results on Average and Conditional

Average Treatment Effects (i.e., ATE and CATE respectively). In Chapter

2 we reviewed the most recent and popular regression adjustment models,

based on modern ML techniques, for CATE estimation, by developing a new

unifying taxonomy and laying out their empirical finite-sample properties. In

Chapter 3 we proposed two new methods, Shrinkage Bayesian Causal Forest

and Interpretable Causal Neural Networks, specifically aimed at addressing

the interrelated issues of interpretability, uncertainty coverage and targeted

regularization on prognostic and moderating effects, in the estimation of CATE.

Finally, in Chapter 4 we developed a Bayesian model based on multitask

Gaussian Processes and multitask Deep Kernel Learning to efficiently tackle

scenarios with high-dimensionality over multiple axis, i.e., multiple actions,

outcomes and high-dimensional covariate space.
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5.1 Further challenges in Causal Learning

As thoroughly argued in the introductory Chapter 1, causal inference/learning

is a hard problem, particularly with observation data. The assumptions out-

lined in previous chapters, such as unconfoundedness and SUTVA (i.e., no

interference), might not often hold in practice. This requires due adjustments

and use of slightly different methods, that nonetheless imply a different set of

causal assumptions. We discuss here below general cases where the uncofound-

edness assumption (which is untestable) is violated, and also cases where the

i.i.d. sampling assumption is violated and how this affects causal assumptions

as well.

5.1.1 The unconfoundedness assumption

Unconfoundedness, i.e. the absence of unobserved common causes of A and

Y , often fails to hold in some types of studies, particularly in disciplines

that deal with complex systems such as socio-economic sciences. In these

cases, attempting to retrieve a point estimate of the causal effects of interest

would result in a degree of bias that depend on the entity and strength of the

unobserved confounders. In order to better illustrate this concept, we briefly

derive bias resulting from hidden confounders in the context of a simple linear

model. Suppose the structural causal model, represented by the DAG in Figure

5.1a), is the following:

A = fA(X,U, εA) = α1X + α2U + εA εA ∼ N (0, σ2
εA
)

Y = fY (X,A,U, εY ) = β1X + γA+ β2U + εY εY ∼ N (0, σ2
εY
)

(5.1)

where X is an observed confounder, while U is a hidden one, and trivially

ATE = CATE = γ. If we proceed towards identification by conditioning only

on the observed confounder X, we get that the conditional mean response of

group A is

µA = EX [µA(x)] = EX
[
E[Y | X,A = a]

]
=
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Figure 5.1: a) DAG with unobserved confounder U ; b) DAG with F representing a

factor or latent variable that, if conditioned on, restores unconfoundedness.

= EX [β1X + γA+ β2U + εY | X,A = a] =

= EX
[
β1X + γa+ β2E[U | X,A = a]

]
=

= EX
[
β1X + γa+ β2

(
a− α1X

α2

)]
=

=

(
γ +

β2
α2

)
a−

(
β1 −

α1

α2

)
EX [X] ,

so that when we attempt to retrieve ATE/CATE estimates γX = EX [τ(x)] =

EX [µ1 − µ0], we run into confounding bias that proportional to ratio of the

coefficients relative to U specified in the SCM equations above:

Bias(γX) = γX − γ = EX [τ(x)]− EX,U [τ(x, u)] = γ +
β2
α2

− γ =
β2
α2

. (5.2)

There are different ways one can attempt to tackle settings where unconfounded-

ness assumption is not credible. Generally these alternative approaches come at

the cost of some extra assumptions. For instance, one possibility to achieve full

identifiability back is through the use of Instrumental Variables (IV) (Angrist

et al., 1996; Pearl, 2009a; Imbens and Rubin, 2015), as depicted by the causal

DAG in Figure 5.1b). An Instrumental Variable L is essentially an auxiliary

variables that does not depend on the unobserved confounder U and affect

the outcome Y only through A. The contour of L in Figure 5.1b) is dashed,

to indicate that L can also be learned as a “de-confounder” latent variable,

e.g. if A is multiple actions and have sufficient variability. For example, Wang

and Blei (2019) have considered using Bayesian nonparametric latent variable
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models to learn the latent representation L and tackle IV estimation. The

problem with the IV strategy is that good instruments requires extra identifia-

bility assumptions (e.g., validity, exclusion restriction and exogeneity)

and these are not always achievable/available.

Another possible way of addressing non-identifiable causal effects due to

unobserved confounding is via partial identification methods (Manski, 1990;

Balke and Pearl, 1997; Pearl, 2009a). The main intuition behind these type

of methods is that they rely on the identification and estimation of “bounds”

around causal effects, rather than on point estimates identification, which

implies constructing an interval τ̂low(x) ≤ τtrue ≤ τ̂upp.

5.1.2 The i.i.d. assumption

Another class of problems in causal inference relates instead to settings where

the i.i.d. assumption in the sampling of data fails to hold. In particular, this

can refer to dynamic settings, where data are i.i.d. conditional on a “time

index”, or loosely speaking within a specific time slice. The literature on causal

effects estimation over time is abundant and spans different topics that are in

fact very similar between each other, such as Dynamic Treatment Regimes or

sub-topics in the Reinforcement Learning domain, discussed in the previous

chapter (Murphy, 2003; Robins, 2004; Schulte et al., 2014; Zhao et al., 2015;

Sutton and Barto, 2018).

Another way i.i.d. assumption can break apart is under some form of

interference between the units of analysis. This is reasonably common in

e.g. social science studies, and as a consequence violates the SUTVA assumption

as well. In some specific works, we could assume some type of known (or partially

known) networked interference, where essentially units are i.i.d. conditional

on their “neighbors” in the network (Hudgens and Halloran, 2008; Tchetgen

and VanderWeele, 2010; Forastiere et al., 2021; Ma and Tresp, 2021). In these

cases, manipulative interventions exert the usual direct effect on the units’

outcome, but also a spillover effects on their neighbors (e.g., think about

policies regarding vaccine rollout).
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5.2 Causality for Machine Learning

To conclude, we highlight that, although this work has intensively revolved

around how flexible probabilistic machine learning techniques can used for

estimating causal effects and designing optimal policies (“machine learning

for causality”), there is an increasing amount of contributions whose interest

lies instead in investigating how causal reasoning methods can be exploited in

pure machine learning tasks (Schölkopf et al., 2021) (“causality for machine

learning”).

An example of ambitious application of causal concepts in ML regards

the general problem of transfer learning and domain adaptation. The main

idea behind domain adaptation is to learn a model that is “transportable” to

other unseen data, where we usually do not have a different training set to

train the model anew. Thus, ideally we would want a model that is invariant of

biases and spurious correlation that are exclusively characterizing the available

training data (Peters et al., 2016a; Arjovsky et al., 2020), or in other words

invariant to the “environment”. A typical intuitive textbook example refers

to image classification. Suppose we train a model according to the empirical

risk minimization principle on images of cows on a grass. The model will

typically struggle to generalize and correctly classify images of cows on a

beach, since it will inevitably inherit environment dependence. We would

ideally want then to build a classifier that learns specific causal non-spurious

associations/mechanisms, and results in better generalization, rather than one

that only performs very well in-environment because of spurious correlations

overfitting. There is fairly recent stream of contributions that concentrates

on this issue of learning causally transportable (deep) representation models

(Peters et al., 2016a; Arjovsky et al., 2020; Schölkopf et al., 2021).

Another example of the use of causal reasoning tools in ML pertains to

interpretability/explainability in Black-Box models (Verma et al., 2020). The

main idea here is to use counterfactual experiments to understand why a ML

model has generated or predicted a certain output, by for example resorting to
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“ablation” studies on nodes in a deep convolutional neural network to understand

which particular traits that specific node is capturing in an image. Finally,

causality has also been successfully employed for AI/ML fairness and safety.

Contributions such as Kusner et al. (2017); Chiappa (2019) have developed the

concept of “Counterfactual Fairness” in ML methods, with the aim of taking

into account sensitive inputs/attributes in the training phase of a ML model.

The idea behind “Counterfactual Fairness” is quite simple: given a sensitive

attribute such as ethnicity or gender, we ideally would like to train a safe ML

model that does not predict different outcomes solely based on these attributes,

ceteris paribus, which can potentially lead to discriminatory decision-making.



Appendix A

Supplementary Material for

Chapter 2

A.1 Supplementary Results on simulated

examples

This appendix section contains additional results on the simulated exercises

encountered in Section 2.4.1 and 2.4.2, Chapter 2, respectively. In particular

we report tables with Biasτ estimates results on CATT (in-ovelap regions),

and Biasτ and
√
PEHEτ estimates on CATC (out-of-overlap regions), for

the various meta-learning models compared. CATC results are based on

non completely identifiable settings, and are shared for giving a hint of the

generalizability of the methods in non-overlap regions. As discussed in the

core section of 2 and 3, the Bayesian approach on CATE estimation offers a

ready-made tool for the detection of non-overlap regions (Hill and Su, 2013),

but this is reflected in “exploding” credible intervals in those regions, as one is

attempting to extrapolate/generalized to effectively a no-data region (i.e., shift

in distribution).

As a general takehome message, it emerges from these additional results

that Bayesian methods based on multitask and τ learner frameworks are either

the best or never trail a lot behind.
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Table A.1: IHDP and ACTG-175 simulated exercises of Section 2.4. Biasτ estimates

± 95% confidence intervals for each tested model on in-overlap CATT, on train and

test sets respectively.

IHDP ACTG-175

Train Test Train Test

S-RF -0.05 ± 0.04 -0.07 ± 0.05 0.01 ± 0.01 0.00 ± 0.01
S-BART -0.10 ± 0.03 -0.16 ± 0.04 -0.03 ± 0.01 -0.03 ± 0.01

T-RF -0.02 ± 0.03 -0.01 ± 0.03 0.00 ± 0.01 -0.01 ± 0.01
T-BART -0.04 ± 0.02 -0.03 ± 0.03 0.01 ± 0.01 0.00 ± 0.01

X-RF -0.08 ± 0.03 -0.10 ± 0.05 -0.04 ± 0.01 -0.04 ± 0.01
X-BART 0.06 ± 0.02 0.04 ± 0.02 -0.06 ± 0.01 -0.06 ± 0.01

R-LASSO 0.18 ± 0.03 0.14 ± 0.03 0.01 ± 0.01 0.01 ± 0.01
R-BOOST 0.22 ± 0.02 0.23 ± 0.04 0.10 ± 0.01 0.12 ± 0.01

CF 0.06 ± 0.03 0.05 ± 0.05 -0.04 ± 0.01 -0.04 ± 0.01

CMGP 0.00 ± 0.01 0.00 ± 0.02 -0.04 ± 0.01 -0.05 ± 0.01
NSGP 0.00 ± 0.01 0.00 ± 0.02 -0.04 ± 0.01 -0.05 ± 0.01

BCF 0.04 ± 0.02 0.03 ± 0.03 0.00 ± 0.01 0.00 ± 0.01

Table A.2: IHDP and ACTG-175 simulated exercises of Section 2.4. Biasτ estimates

± 95% confidence intervals for each tested model, on out-of-overlap CATC, on train

and test sets respectively.

IHDP ACTG-175

Train Test Train Test

S-RF -0.05 ± 0.05 -0.05 ± 0.05 -0.09 ± 0.01 -0.08 ± 0.01
S-BART -0.14 ± 0.03 -0.13 ± 0.03 -0.04 ± 0.01 -0.04 ± 0.01

T-RF -0.03 ± 0.01 -0.04 ± 0.02 -0.09 ± 0.01 -0.08 ± 0.01
T-BART 0.01 ± 0.01 0.01 ± 0.01 -0.07 ± 0.01 -0.07 ± 0.01

X-RF 0.14 ± 0.03 0.14 ± 0.04 -0.04 ± 0.01 -0.04 ± 0.01
X-BART -0.13 ± 0.03 -0.13 ± 0.03 -0.02 ± 0.01 -0.02 ± 0.01

R-LASSO 0.06 ± 0.02 0.06 ± 0.02 0.02 ± 0.01 0.02 ± 0.01
R-BOOST 0.41 ± 0.03 0.40 ± 0.04 0.18 ± 0.01 0.16 ± 0.01

CF 0.24 ± 0.04 0.25 ± 0.04 -0.01 ± 0.01 -0.01 ± 0.01

CMGP 0.11 ± 0.07 0.10 ± 0.07 -0.04 ± 0.01 -0.04 ± 0.01
NSGP 0.11 ± 0.02 0.10 ± 0.03 -0.05 ± 0.01 -0.05 ± 0.01

BCF 0.03 ± 0.01 0.04 ± 0.02 0.01 ± 0.01 0.01 ± 0.01
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Table A.3: IHDP and ACTG-175 simulated exercises of Section 2.4.
√
PEHEτ

estimates ± 95% confidence intervals for each tested model, on out-of-overlap CATC,

on train and test sets respectively.

IHDP ACTG-175

Train Test Train Test

S-RF 2.95 ± 0.25 3.16 ± 0.25 0.59 ± 0.01 0.51 ± 0.01
S-BART 2.13 ± 0.14 2.20 ± 0.14 0.45 ± 0.01 0.46 ± 0.01

T-RF 1.70 ± 0.12 2.39 ± 0.17 0.60 ± 0.01 0.51 ± 0.01
T-BART 0.82 ± 0.02 1.43 ± 0.09 0.55 ± 0.01 0.55 ± 0.01

X-RF 3.35 ± 0.23 3.39 ± 0.23 0.36 ± 0.01 0.36 ± 0.01
X-BART 2.21 ± 0.15 2.25 ± 0.15 0.44 ± 0.01 0.44 ± 0.01

R-LASSO 2.02 ± 0.14 2.07 ± 0.15 0.63 ± 0.01 0.63 ± 0.01
R-BOOST 2.34 ± 0.15 2.52 ± 0.16 0.52 ± 0.01 0.51 ± 0.01

CF 3.14 ± 0.21 3.07 ± 0.20 0.40 ± 0.01 0.40 ± 0.01

CMGP 0.83 ± 0.09 1.10 ± 0.11 0.45 ± 0.01 0.45 ± 0.01
NSGP 0.66 ± 0.03 0.97 ± 0.09 0.43 ± 0.01 0.43 ± 0.01

BCF 0.73 ± 0.02 1.35 ± 0.10 0.39 ± 0.01 0.39 ± 0.01

A.2 ACTG-175 data: a third simulated

exercise

In this second short appendix section we present results obtained from a third

semi-simulated exercise involving the ACTG-175 dataset. The structure of the

utilized ACTG-175 data is exactly the same as the one found in the example in

Section 2.4.2 (same number of covariates, sample size, etc.). The only difference

lies in how the prognostic score and CATE functions are simulated. For this

third setup we chose slightly more complex surfaces compared to the ones

in the other ACTG-175 simulation, to provide an additional example on the

performance of the reviewed methods under a more challenging data generating

process (closer to the one seen in the IHDP data example). More specifically,
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the two µ(xi) and τ(xi) surfaces are generated as

µ(xi) = 6 + 0.3wtkg2 − sin(age) · (gender + 1) + 0.6hemo · race− 0.2z30 ,

τ(xi) = 1 + 1.5 sin(wtkg) · (karnofhi + 1) + 0.4age2 .

(A.1)

Surfaces in (A.1) feature more complex functions and more interaction terms.

As in the other ACTG-175 data setup, Gaussian noise was added by simulating

εi ∼ N (0, σ2), with standard deviation equal to σ = 0.2(µmax − µmin), where

µmax is the sample maximum of the generated prognostic score, while µmin is

the sample minimum value.

Table A.4: Third simulated setup (ACTG-175 data).
√
PEHEτ estimates ± 95%

confidence intervals for each tested model on in-overlap CATT, on the train and

test sets respectively.

ACTG-175: 3rd simulation

Train Test

S-RF 0.97 ± 0.01 1.03 ± 0.01
S-BART 0.91 ± 0.01 0.95 ± 0.01

T-RF 0.82 ± 0.01 0.88 ± 0.01
T-BART 0.84 ± 0.01 0.93 ± 0.01

X-RF 0.76 ± 0.01 0.81 ± 0.01
X-BART 0.81 ± 0.01 0.88 ± 0.01

R-LASSO 1.13 ± 0.01 1.18 ± 0.01
R-BOOST 0.87 ± 0.01 0.92 ± 0.01

CF 0.87 ± 0.01 0.87 ± 0.01

CMGP 0.61 ± 0.01 0.72 ± 0.01
NSGP 0.59 ± 0.01 0.70 ± 0.01

BCF 0.77 ± 0.01 0.87 ± 0.01

Results in terms of performance of the tested models are reported in Table

A.4. A ranking similar to the one encountered in the IHDP data example

emerges, with the Gaussian Process Multitask-Learners being the best methods,

followed up by X-RF and BCF. This is explained by the fact that CATE

here is the result of a complex function, which tends to favour methods that
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fit separate surfaces (T-Learners, Multitask-Learners, etc.), just like in the

IHDP example. Notice in fact that also in this case T-Learners show better

performance than their S-Learner counterparts (T-RF vs S-RF, T-BART vs

S-BART).

A.3 NHANES variables list

Table A.5 contains the full list of variables included in the NHANES dataset

analyzed in Section 2.5.

Table A.5: NHANES variables

Variable Description

BMI Numeric. Body mass index (outcome variable)
school meal Binary (treatment indicator)
age Numeric (child’s age)
childSex Binary (male = 1)
afam Binary (African American = 1)
hisam Binary (Hispanic = 1)
povlev 200 Binary (family above 200% federal poverty lvl

= 1)
sup nutr Binary (supplementary nutrition program = 1)
stamp prog Binary (food stamp program = 1)
food sec Binary (food security in household = 1)
ins Binary (any insurance = 1)
refsex Binary (adult respondent gender is male = 1)
refage Numeric (adult respondent’s age)



A.3. NHANES variables list 163

Table A.6: Logit regression model of A as a function of the covariatesX. Coefficients

display log odds ratio. Stars indicate level of significance. Ethnicity (African America,

Hispanic), Poverty Level and participation to other food programs (Food Stamp)

appear to have the greatest and most significant impact on selection into treatment.

Child’s Age (the main moderator) is significant but of smaller magnitude.

Dependent variable:

Ai = 1

Child’s Age 0.052∗∗∗

(0.013)

Ref Age 0.001
(0.005)

Child’s Sex −0.010
(0.098)

African 1.047∗∗∗

(0.123)

Hispanic 1.086∗∗∗

(0.123)

Poverty Lvl −1.407∗∗∗
(0.110)

Suppl Nutr 0.244∗

(0.140)

Food Stamp 1.117∗∗∗

(0.131)

Food Security 0.345∗∗∗

(0.122)

Insurance −0.021
(0.143)

Ref Sex 0.023
(0.102)

Constant −0.669∗∗
(0.275)

Observations 2,330
Log Likelihood −1,260.824
Akaike Inf. Crit. 2,545.647

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Supplementary Material for

Chapter 3

B.1 Shrinkage Bayesian Causal Forests

B.1.1 Perfectly known propensity scores

Table B.1 displays results obtained from Section 3.2.7 simulated exercise, where

PS is assumed to be known and thus not estimated. Results are averaged over

H = 250 simulations.

Model Bias
√
PEHE 95% Coverage (sπ | uπ)

i) BCF -0.03 ± 0.01 0.38 ± 0.02 0.95 ± 0.00 9.1%
ii) SH-BCF -0.02 ± 0.01 0.31 ± 0.02 0.97 ± 0.00 95.5%
iii) SH-BCF (no PS) -0.06 ± 0.01 0.39 ± 0.02 0.96 ± 0.01 -
iv) I-BCF (kPS = 50) -0.02 ± 0.01 0.31 ± 0.02 0.97 ± 0.00 96.9%
v) I-BCF (kPS = 100) -0.02 ± 0.01 0.31 ± 0.02 0.97 ± 0.00 96.9%

Table B.1: Bias,
√
PEHE, 95% Coverage and posterior splitting probability on the

true π(xi) — (sπ | uπ) — for: i) default BCF; ii) Shrinkage BCF; iii) Shrinkage BCF

without the true π(xi); iv) informative prior BCF with kPS = 50; v) informative

prior BCF with kPS = 100.

B.1.2 Computational advantage of DART

In this small experiment, we briefly illustrate some of the computational

advantages of DART’s backfitting MCMC versus default BART. To this end,
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we compare on a purely predictive task three different specifications: i) default

BART run for 6 000 MCMC draws (of which 4 000 burn-in); ii) long-chain

BART run for 60, 000 MCMC draws (40 000 burn-in); iii) DART run for

6 000 MCMC draws (4 000 burn-in). The task is to predict Yi given P = 50

predictors Xi, of which only 5 are relevant, with n = 500. The predictors Xi

are simulated from a Gaussian Copula where elements of the correlation matrix

are Θjk = 0.3|j−k| + 0.1I(j ̸= k). Half of the predictors are continuous and half

binary. The outcome Yi reads instead:

Yi = 5 + 5 sin(πXi,1) + 2.5(Xi,2 − 0.5)2 + 1.5|Xi,3|+ 2Xi,4(Xi,20 + 1) + εi ,

where εi ∼ N (0, 1).

BART long BART DART

RMSE 2.11 ± 0.03 1.99 ± 0.03 1.74 ± 0.03

X1 21.85 ± 0.20 21.77 ± 0.18 66.43 ± 1.30
X2 18.03 ± 0.14 18.06 ± 0.13 43.94 ± 0.72
X3 6.85 ± 0.10 6.81 ± 0.09 10.49 ± 0.28
X4 11.18 ± 0.10 11.09 ± 0.09 24.04 ± 0.44
X20 6.63 ± 0.07 6.51 ± 0.05 39.44 ± 1.14

Table B.2: Test set RMSE and average number of splits on the five relevant

predictors, plus/minus 95% Monte Carlo standard error for: i) default BART; ii)

long-chain BART; iii) DART.

The purpose of this exercise is to investigate whether the relative perfor-

mance (measured with RMSE) of DART erodes with respect to BART run

for dramatically long chain. Results displaying averaged RMSE for test set

(we considered 70%-30% train-test split), in addition to the average number

of splits on the 5 relevant predictors for each model are depicted in Table B.2.

Results are averaged over H = 500 Monte Carlo replications. We can see that

running BART for way longer chains results in improved performance over

short-chain BART. This is due to the fact that BART’s MCMC concentrates

very slowly, while DART allows for much faster posterior concentration.
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Figure B.1: Estimated train (left plot) and test (right plot)
√
PEHE distributions

generated by BCF and SH-BCF respectively, over an increasing number of predictors.

B.1.3 High-dimensional P

In this third additional simulated experiment we study what happens to BCF

and SH-BCF with an increasing number of predictors P . To this end, we

consider setups with P ∈ {5, 10, 50, 100, 150} respectively. Sample size is fixed

at n = 250, and we run H = 200 Monte Carlo replications for each different P .

The covariates Xi are simulated from a Gaussian Copula where elements of the

correlation matrix are Θjk = 0.3|j−k| + 0.1I(j ̸= k). The DGP is the following:

µ(xi) = 3 + 1.5 sin(πXi,1) + 0.5(Xi,2 − 0.5)2 + 1.5(2− |Xi,3|) +Xi,4(Xi,P
2
+ 1) ,

τ(xi) = 0.1 + 1|Xi,1 − 1|(Xi,P
2
+ 2) ,

π(xi) = Φ
(
− 0.5 + 0.2Xi,1 + 0.1Xi,2 + 0.4Xi,P

2
+ νi

)
, (B.1)

Ai ∼ Bernoulli
(
π(xi)

)
,

Yi = µ(xi) + τ(xi)Ai + εi , where εi ∼ N (0, σ2) ,

where: Φ(·) is the standard Normal c.d.f.; νi ∼ Uniform(0, 0.1) is uniform noise;

error standard deviation is set to σ = 0.5 σ̂µ, where σ̂µ is the sample standard

deviation of the simulated µ(xi).

A 70%-30% train-test set split is utilized. Results are shown in Table B.3, which

depicts performance in terms of
√
PEHE, differentiated between train and test
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sets. We can appreciate how, compared to SH-BCF, default BCF’s performance

deteriorates as P increases, suffering from the curse of dimensionality.

BCF SH-BCF
P Train Test Train Test

5 0.91 ± 0.02 0.94 ± 0.03 0.83 ± 0.02 0.87 ± 0.03
10 1.30 ± 0.03 1.33 ± 0.04 1.12 ± 0.04 1.15 ± 0.04
50 1.57 ± 0.03 1.62 ± 0.04 1.23 ± 0.04 1.27 ± 0.05
100 1.66 ± 0.03 1.71 ± 0.04 1.26 ± 0.05 1.30 ± 0.05
150 1.74 ± 0.03 1.78 ± 0.04 1.32 ± 0.05 1.35 ± 0.06

Table B.3: Train and test set average
√
PEHE, plus/minus 95% Monte Carlo

standard error, for BCF and SH-BCF with an increasing P .

B.1.4 Different types of sparse DGPs

We study the performance of BCF and SH-BCF on four different types of sparse

DGPs. In particular, we consider a setting with fixed n = 500 and P = 5,

where covariates are generated again from a Gaussian Copula with correlation

matrix elements set to Θjk = 0.3|j−k| + 0.1I(j ̸= k). We run BCF and SH-BCF

for H = 200 Monte Carlo replications on each of the following four different

versions of a DGP, according to what surface is generated as sparse:

1) No Sparsity. The first version features no sparsity at all, meaning that

all the covariates are relevant for estimating every function of interest. The

DGP reads:

µ(xi) = 3 + 1.5 sin(πXi,1) + 0.5(Xi,2 − 0.5)2 + 1.5(2− |Xi,3|) + 1.5Xi,4(Xi,5 + 1) ,

τ(xi) = 0.1 + 1|Xi,1 − 1|(Xi,5 + 2)− 0.4Xi,3 + 0.6Xi,2Xi,4 ,

π(xi) = Φ
(
− 0.2 + 0.8Xi,1 − 0.1Xi,2 + 0.1Xi,3Xi,4 − 0.4Xi,5 + νi

)
, (B.2)

Ai ∼ Bernoulli
(
π(xi)

)
,

Yi = µ(xi) + τ(xi)Ai + εi , where εi ∼ N (0, 1) ,

where Φ(·) is the standard Normal c.d.f. and νi ∼ Uniform(0, 0.1) is uniform

noise
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2) Sparse π(·). The second DGP is exactly the same as (B.2), but propensity

score is a sparse surface, equal to π(xi) = Φ(−0.2 + 0.8Xi,1 + νi)

3) Sparse µ(xi). The third DGP is the same as (B.2), but prognostic score is

a sparse surface, equal to µ(xi) = 3 + 1.5(2− |Xi,3|)

4) Sparse τ (xi). Finally, the last DGP is the same as (B.2), but treatement

effect is a sparse surface τ(xi) = 0.1 + 1|Xi,1 − 1|

Again, a 70%-30% train-test split is considered. Table B.4 shows BCF’s and

SH-BCF’s results in terms of train and test
√
PEHE.

BCF SH-BCF
DGP Train Test Train Test

Not Sparse 0.96 ± 0.02 0.98 ± 0.03 0.92 ± 0.02 0.95 ± 0.03
Sparse π(·) 0.91 ± 0.02 0.93 ± 0.03 0.88 ± 0.02 0.93 ± 0.03
Sparse µ(·) 0.85 ± 0.02 0.87 ± 0.03 0.81 ± 0.02 0.83 ± 0.03
Sparse τ(·) 0.67 ± 0.02 0.67 ± 0.02 0.66 ± 0.02 0.66 ± 0.02

Table B.4: Train and test set
√
PEHE, plus/minus 95% Monte Carlo standard

error, for BCF and SH-BCF on the four different version of sparse DGPs.

B.1.5 Fully sparse vs non-fully sparse DGP

In this last additional simulated study we compare BCF and SH-BCF again in

two different scenarios with n = 500 and P = 10 correlated covariates (the first

5 continuous and the rest binary):

i) the first scenario is similar to the ones encountered in the previous sections

and it is fully sparse, in that only 5 out of P = 10 covariates feature both in

π(·) and either of µ(·) and τ(·):

µ(xi) = 3 + 0.5(Xi,1 − 0.5)2 + 1.5(2− |Xi,2|) + 1.5(Xi,8 + 1) ,

τ(xi) = 0.2 + 1|Xi,9 − 1| − 0.4Xi,10 ,

π(xi) = Φ
(
− 0.2 + 0.8Xi,1 − 0.1Xi,2 + 0.2Xi,8 + 0.5Xi,9Xi,10 + νi

)
,
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Table B.5: Train and test set
√
PEHE, plus/minus 95% Monte Carlo standard

error, for BCF and SH-BCF on fully sparse and non-fully sparse DGPs.

BCF SH-BCF
DGP Train Test Train Test

Fully Sparse 0.48 ± 0.01 0.49 ± 0.01 0.36 ± 0.01 0.37 ± 0.01
Non-Fully Sparse 0.32 ± 0.01 0.31 ± 0.01 0.27 ± 0.01 0.27 ± 0.01

ii) the second scenario instead is not “fully” sparse, in that all of the P = 10

are relevant, but half of them enters π(·) while the remaining half features in

either µ(·) or τ(·):

µ(xi) = 3 + 0.5(Xi,3 − 0.5)2 + 1.5(2− |Xi,4|) + 1.5(Xi,6 + 1) ,

τ(xi) = 0.2 + 1|Xi,5 − 1| − 0.4Xi,7 ,

π(xi) = Φ
(
− 0.2 + 0.8Xi,1 − 0.1Xi,2 + 0.2Xi,8 + 0.5Xi,9Xi,10 + νi

)
,

The results in terms of
√
PEHE are gathered in table B.5. SH-BCF’s

performance gain relative to BCF are more pronounced in the first scenario as

the DGP is fully sparse, given that {Xi,3, Xi,4, Xi,5, Xi,6, Xi,7} do not appear in

any of the functions of interest. In the second scenario, the DGP employs all

the covariates in either the outcome function or the propensity score function,

so the gap in performance between SH-BCF and BCF slightly deteriorates, with

SH-BCF being marginally better nonetheless for its computational advantages.

B.2 Variables included in the analysis

Table B.6 here below provide a full list of variables used for the analysis in

Section 6.

Table B.6: Variables from the Infant Health and Development Program (IHDP)

Variable Description Type

iq Score in IQ test (outcome Y ) Numeric

treat Participation to the program (treatment A) Binary
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bw Child’s weight at birth (in grams) Numeric

momage Mother’s age Numeric

nnhealth Neo-natal health index Numeric

birth.o Child’s order of birth Numeric

parity Number of children Numery

moreprem Number of children born prematurely Numeric

cigs Smoke during pregnancy Numeric

alcohol Drinks during pregnancy Numeric

ppvt.imp Mother’s PPVT test result 1 year post birth Numeric

bw 2000 Birth weight above/below 2kg Binary

female Child is a female Binary

mlt.birt Number of multiple births Ordinal

b.marry Marital status at birth Binary

livwho What family member lives with the child Ordinal

language Language spoken at home Binary

whenpren Trimester when prenatal care started Ordinal

drugs Drug use during pregnancy Binary

othstudy Participating in other studies at the same time Binary

site1 Site number 1 Binary
...

...
...

site8 Site number 8 Binary

momblack Mother’s ethnicity black Binary

momhisp Mother’s ethnicity hispanic Binary

momwhite Mother’s ethnicity white Binary

workdur.imp Mother worked during pregnancy Binary

momed4F Mother’s education level Ordinal
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B.3 Interpretable Deep Causal Learning

B.3.1 Data Generating Process

In this appendix section we briefly describe the data generating process utilized

for the ICNN simulated experiment. We generated n = 2000 data points on

P = 10 correlated covariates, of which 5 continuous and 5 binary, drawn from a

Gaussian Copula CGauss
Θ (u) = ΦΘ

(
Φ−1(u1), . . . ,Φ

−1(uP )
)
, where the covariance

matrix is such that Θjk = 0.1|j−k| + 0.1I(j ̸= k). The data generating process

is fully described by the following quantities:

µ(xi) = 6 + 0.3 exp(Xi,1) + 1X2
i,2 + 1.5|Xi,3|+ 0.8Xi,4 ,

τ(xi) = 3 + 0.8X2
i,1 ,

π(xi) = Λ
(
−1.5 + 0.5Xi,1 +

νi
10

)
,

Ai ∼ Bernoulli
(
π(xi)

)
,

Yi = µ(xi) + τ(xi)Ai + εi , where εi ∼ N (0, σ2) ,

(B.3)

where: Λ(·) is the logistic cumulative distribution function; the error’s standard

deviation is σ2 = 0.5; and νi ∼ Uniform(0, 1).



Appendix C

Supplementary Material for

Chapter 4

C.1 Data Generating Processes

We hereby describe the causal data generating processes in the simulated

examples of the paper (Section 3.2 and Section 5.1).

C.1.1 One covariate example

For the simple one-covariate example in Section 3.2 (Figure 2), where we discuss

the benefits of multitask counterfactual learning, we generated n = 300 data

points from one, uniformly distributed covariate, Xi ∼ Uniform(−3, 3). Then

we generated a binary action variable Ai ∼ Bernoulli
(
p(Ai = 1|xi)

)
, where

p(Ai = 1|xi) = Φ
(
0.2 +Xi

)
and Φ(·) is the standard normal cdf. Finally, the

two counterfactual outcome surfaces were generated as f0(xi) = 2 + 0.3 expXi

and f1(xi) = 3+ f0(xi), with the final outcome being Y = f0(xi) + τ(xi)Ai+ εi

where τ(xi) = f1(xi)− f0(xi) is the CATE function and εi ∼ N (0, 0.752).

C.1.2 Simulated

The causal data generating process for the simulated experiment of Section

5.1 is described as follows. The P covariates are generated from a uniform

distribution Xi,j ∼ Unif(−3, 3) for j ∈ {1, ..., P} and i ∈ {1, ..., n}. The action

allocation policy is simulated according to a multinomial distribution where
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the probabilities of being assigned to action Ai = a are generated as a softmax

function of the covariates p(Ai = a|Xi = xi) = exp{Xiβa} /
∑

a∈A exp{Xiβa},

where βa is an action-specific P -dimensional sparse vector of action-specific

coefficients defined as follow:

β1 =
[
−1 −0.8 −0.1 −0.1 0 ... 0

]
,

β2 =
[
0 0 1 0.8 0.2 0 ... 0

]
,

β3 =
[
1.5 −0.8 −0.1 −0.1 0 ... 0

]
,

β4 =
[
−1 −0.8 −0.1 −0.1 0 ... 0

]
.

Thus Ai is drawn from a multinomial with vector probabilities parameter

p(Ai = a|Xi = xi). The M = 2 action-specific correlated counterfactual

outcomes Yi | do(Ai = a) instead are generated as

Yi | do(Ai = a) = fY a(Xi) + εi , εi ∼ N (0,Σεi), where:

fY 11 = 3 + 0.4X0X1 − 0.3X2
2 + 0.2 exp(X3) + 0.6 sin(X4)

fY 12 = −1 + fY 11 + 0.1X5

fY 13 = 1 + fY 11 + 0.3X5

fY 14 = 0.5 + fY 11 + 0.5X6

fY 21 = 1 + 0.2X0X1 − 0.2X2
2 + 0.1 exp(X3)

fY 22 = −2 + fY 21 + 0.2X5

fY 23 = 2 + fY 21 + 0.4X5

fY 24 = 1 + fY 21 + 0.5X6

and where diag(Σε) = [σ1, ..., σ4], with σ1 = ... = σ4 = 0.5, and off-diagonal

elements are 0. Finally, we briefly describe the main specifications of the

methods compared. The GP models (GP, CounterGP and MOGP) all employed

a RBF base kernel, while the DKL models employed a three [50, 50, 2] hidden

layers feedforward neural network before the GP ∞-layer, which itself employs
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a RBF base kernel. The multitask and multioutput models (both GPs and

DKLs) all make use of the Intrinsic Coregionalization Model (ICM), such that

K(xi,x
′
i) = BY ⊗ BA ⊗ Kq(xi,x

′
i). All model were optimized through the

Adam solver.

C.2 The Job Training Data

The Job Training data (LaLonde, 1986) are a popular case study in the causal

inference literature. They comprise a portion of data pertaining to a randomized

experiment and a portion of observational data, with the randomized experiment

featuring 297 treated and 425 control units, while the observational data

being of 2490 control units only. Given the randomized subsample of the

data, we can obtain an unbiased estimate (computed on the randomized

units only) for the Average Treatment Effect on the Treated group (ATT)

as ATT = T−1
∑Te

i=1 yi − C−1
∑C

i=1 yi, where T and C are the number of

treated and control units in the experimental data, and treat this as the ground

truth for estimating performance of the methods; and also for the policy risk

measure Rpol = 1−
[
E
(
Y |do(Ai = 1), π(xi) = 1

)
p(π(xi) = 1) + E

(
Y |do(Ai =

0), π(xi) = 0
)
p(π(xi) = 0)

]
.

A brief overview on the specifications of the models employed follows. All

GPs employ RBF base kernel (also DKL’s specifications in the last hidden

layer). DKL and CounterDKL deep NN structure features three [10, 5, 2]

hidden layers. The AutoEncoder deep structure employed for the “AutoEnc +

GP” and “AutoEnc + CounterGP” models similarly learns a 2-dimensional

encoded lower-dimensional representation, where the encoder has two [10, 5]

hidden layers before the 2-dim representation and the decoder has [5, 10] hidden

layers before the reconstruction loss.
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C.3 Marginal Likelihood Maximization in

Multioutput Deep Kernels

In the multitask deep kernel learning class of models, the parameter space

Θ = (W,ϕ,B) is made of the deep neural network’s weightsW , the base kernel’s

hyperparameters ϕ (variance, lengthscales, etc.) and the coregionalization

matrix B entries. These parameters are learnt jointly by maximizing the log-

marginal likelihood L at the end of the GP layer. Using the chain rule, the

derivatives are:

∂L
∂W

=
∂L
∂Kϕ

∂Kϕ

∂g(x,W )

∂g(x,W )

∂W

∂L
∂ϕ

=
∂L
∂Kϕ

∂Kϕ

∂ϕ

∂L
∂B

=
∂L
∂K

∂K

∂B

where g(x,W ) is the function mapping the inputs to the lower representation

space parametrized by W , Kϕ is the base kernel and K(·) = B ⊗Kϕ(·) is the

coregionalized kernel.

C.4 Additional Simulated Experiments

Finally, we describe and present results on a few additional simulated examples

that we conducted to assess CounterDKL performance compared to some other

specifications seen in Section 5.2, on datasets with varying sample size, predictor

space and action space dimensions. In particular, following Dud́ık et al. (2011)

and Farajtabar et al. (2018), we make use of some of the popular datasets for

classification in the open-source UCI Machine Learning Repository (https:

//archive.ics.uci.edu/ml/index.php), by transforming the classification

task in a causal Off-Policy Evaluation task in the following way. Each dataset

is equipped with a pair of covariates Xi and classification labels Li. We view

the classification labels Li as our discrete actions Li = Ai, and consequently

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
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generate the action-specific outcome Yai as function of the covariates as follows:

Yai = exp{Xiβa}+ εi, where N (0, 0.5)

and βa is a P -dimensional vector of action-specific coefficients, where entries are

{0.4, 0.2, 0.0} sampled from a Multinomial(0.6, 0.25, 0.15), with replacement.

The datasets utilized are summarized in Table C.1 in terms of sample size n,

number of covariates P and number of actions. We compare GP, CounterGP,

DKL and CounterDKL models on an Off-Policy Evaluation task, where we

evaluate the uniformly at random generated policy, via the absoulte regret or

risk measure, defined as E
[
| V(πe) − V̂(πe) |

]
. All models employ a RBF

base kernel, either directly on the inputs or on the lower dimensional layer.

Results averaged over B = 20 replications of the experiments for each dataset

are gathered in Table C.2.

Data n P # actions

indian 573 10 2
heart 270 13 2
yeast 1484 8 10
contracept 1473 9 3

Table C.1: UCI datasets charac-

teristics.

GP CounterGP DKL CounterDKL

indian 0.390 0.392 0.376 0.347
heart 2.553 1.076 0.433 0.410
yeast 0.534 0.657 1.3144 0.081
contracep 0.339 0.003 0.008 0.007

Table C.2: OPE absolute regret on UCI datasets.

Bold denotes best performance.
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J. Peters, P. Bühlmann, and N. Meinshausen. Causal inference by using

invariant prediction: identification and confidence intervals. Journal of the

Royal Statistical Society. Series B (Statistical Methodology), pages 947–1012,

2016a.
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