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Abstract 

Over the past century, research has helped us build a fundamental understanding of 

the neurobiological underpinnings of anxiety. Specifically, anxiety engages a broad 

range of cortico-subcortical neural circuitry. Core to this is a ‘defensive response 

network’ which includes an amygdala-prefrontal circuit hypothesized to drive 

attentional amplification of threat-relevant stimuli in the environment. In order to help 

prepare the body for defensive behaviors to threat, anxiety also engages peripheral 

physiological systems. However, our theoretical frameworks of the neurobiology of 

anxiety are built mostly on the foundations of tightly-controlled experiments, such as 

task-based fMRI. Whether these findings generalize to more naturalistic settings is 

unknown. To address this shortcoming, movie-watching paradigms offer an effective 

tool at the intersection of tightly controlled and entirely naturalistic experiments. 

Particularly, using suspenseful movies presents a novel and effective means to induce 

and study anxiety. In this thesis, I demonstrate the potential of movie-watching 

paradigms in the study of how trait and state anxiety impact the ‘defensive response 

network’ in the brain, as well as peripheral physiology. The key findings reveal that 

trait anxiety is associated with differing amygdala-prefrontal responses to suspenseful 

movies; specific trait anxiety symptoms are linked to altered states of anxiety during 

suspenseful movies; and states of anxiety during movies impact brain-body 

communication. Notably, my results frequently diverged from those of conventional 

task-based experiments. Taken together, the insights gathered from this thesis 

underscore the utility of movie-watching paradigms for a more nuanced understanding 

of how anxiety impacts the brain and peripheral physiology. These outcomes provide 

compelling evidence that further integration of naturalistic methods will be beneficial 

in the study of the neurobiology of anxiety. 
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Impact Statement 

Impact within academia 

Traditional task-based paradigms have revealed a myriad of neurobiological 

mechanisms underlying anxiety-relevant processes. Yet, these have been established 

within a narrow range of study-specific parameters (for instance, only a select number 

of ways in which anxiety is induced in experiments). Movie-watching as a more 

dynamic and ecologically-rich paradigm, can help determine the robustness of effects 

across a variety of contexts that may be more representative of daily life.  

From a theoretical perspective, I demonstrate that results do show inconsistencies 

with previous task-based studies. Specifically, my results call into question exactly how 

anxiety impacts the perception of faces, how trait and state anxiety interact in more 

naturalistic contexts, as well as notions of ‘intrinsic connectivity’ in anxiety. 

Irrespective of theoretical interpretation, the present thesis demonstrates the utility of 

movie paradigms as a novel methodological tool for naturalistically inducing and 

investigating anxiety. However, given the scarcity of research on this topic, much of 

the work throughout the thesis should be seen as a proof of concept. By demonstrating 

that individual differences in anxiety do appear to be associated with neurobiological 

responses to movies, this opens up avenues for further lines of inquiry within anxiety 

research. Moreover, by using a range of analytical tools I hope others can gain a better 

understanding of what techniques may (and may not) be sensitive to the detection of 

anxiety-relevant idiosyncrasies. This holds potential to advance both theoretically-

driven studies of anxiety, as well as those interested in phenotypic prediction 

(biomarker-based research). 

 

Impact outside academia 

Anxiety bares a significant impact on public ill health and is prevalent globally. Yet, 

treatments are lacking. In the UK, less than half of those seeking help will respond to 

the first treatment they receive. As such, there is a strong patient-centric motivation 

for attaining a better understanding of the neurobiological and psychological 

underpinnings of anxiety. By developing a better understanding, we can help aid the 

development of research into pharmacological agents and psychological interventions 
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to treat anxiety. Moreover, there is little guidance for how current therapeutic 

interventions should be applied based on an individuals need. Consequently, there is 

a push for precision psychiatry, wherein the idiosyncratic responses of an individual 

can be used to tailor interventions to an individual. Movie-watching is already being 

applied in clinical contexts (e.g., pre-surgical mapping). Movie paradigms may 

eventually hold potential for aiding clinical evaluations of psychiatric disorders, 

including anxiety.  
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1. Introduction 

 

There is no terror in the bang, only in the anticipation of it. 

– Alfred Hitchcock 

 

1.1 Conceptualizing Anxiety 

Adaptive State Anxiety 

Anxiety is commonly a ubiquitous, evolutionarily adaptive emotional response to 

potential threats. A key function of anxiety is to promote the detection, identification, 

and avoidance of harm (Mobbs et al., 2015). Akin to states of fear, anxiety can help 

individuals mobilize defensive responses. While fear is typically characterized as being 

elicited by certain threats (‘the bang’), anxiety is thought to arise in response spatially 

and/or temporally uncertain threats (‘anticipation of the bang’; Mobbs et al., 2020); 

albeit, there is not necessarily a clear distinction between fear and anxiety, as both 

occur on a continuum and are supported by highly similar neural architecture as a way 

to engage defensive responding (Hur et al., 2020; Shackman & Fox, 2016). 

When in potentially dangerous environments, anxiety can confer several 

advantages, including: dilation of the pupils (Leuchs et al., 2019), heightening 

sensitivity to faint visual input (Mathot, 2018) which may help detect potential threats; 

increased respiration and blood flow, providing oxygen to skeletal musculature and 

thus supporting physical exertion for defensive behaviors such as fleeing (McCorry, 

2007); tuning of perceptual and attentional systems toward threat-relevant stimuli, 

aiding the identification of dangers (Robinson et al., 2012); and a myriad of other 

adaptive, psychological and physiological alterations (Robinson et al., 2013). Thus, in 

certain contexts, being in a state of anxiety can help to avoid harm by engaging a 

range of systems that calibrate perception and peripheral physiology toward survival 

behaviors such as fighting, fleeing, or freezing. 

A common approach for studying adaptive states of anxiety has thus been to 

present participants with prolonged, unpredictable threats. One of the most frequently 

used procedures is threat of shock paradigms (Robinson et al., 2013), wherein 
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participants are instructed that they are either at risk of receiving electrical shocks or 

are safe from said shocks. Behavioral and biological measures are then contrasted 

between these conditions to pinpoint mechanisms that may underpin state anxiety. 

Threat of shock is of course not the only paradigm which has been used. Other 

approaches include: CO2 procedures, which expose participants to increased levels 

of carbon dioxide to induce anxiety symptoms, most commonly panic (Hout & Griez, 

1984); and public speaking challenges such as the ‘Trier Social Stress Test’, which 

involves recording responses prior to participants giving a speech in front of an 

audience (Kirschbaum et al., 1993). Due to its prominence throughout the literature 

(especially neuroimaging), findings primarily from threat of shock paradigms form the 

foundation for much of this thesis. 

 

Pathological Anxiety 

States of anxiety come with a significant energy cost, downregulation of digestion 

processes, and impair some psychological processes such as facets of memory 

encoding (S. Bolton & Robinson, 2017; McCorry, 2007). When a person’s propensity 

toward anxiety is overly sensitive and chronic, this can cause individuals to experience 

significant distress, a criterion for a diagnosis of anxiety disorders (Substance Abuse 

and Mental Health Services Administration, 2016). Thus, oversensitive and chronic 

engagement of this system is maladaptive and such manifestations of anxiety may 

give rise to levels of anxiety that interrupt daily functioning.  

Such pathological manifestations of anxiety have a powerful impact on public 

ill health, with global prevalence estimated at around ~5-11% of the population (Baxter 

et al., 2013). Yet, treatment is lacking. Only around half of those with pathological 

anxiety will respond to the first treatment they receive (Ansara, 2020; Clark, 2018; 

NHS Digital, 2022). By investigating how and when anxiety may go awry, we may be 

better able to guide interventions accordingly. In addition to threat of shock paradigms, 

research has thus also commonly investigated the underpinnings of anxiety by testing 

how behavioral and biological responses may vary between individuals as a function 

of clinical diagnosis.  
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Trait Anxiety 

The distinction between adaptive vs maladaptive manifestations of anxiety is not 

always obvious. To guide clinical decision-making, pathological anxiety is frequently 

categorized as being present or absent in an individual (LeBeau et al., 2015). 

Psychiatry research traditionally studied mental ill health (including anxiety disorders) 

in such a manner. However, dichotomizing anxiety can impose disadvantages on 

empirical research, such as increasing the likelihood of false negatives and ignoring 

important symptom-level heterogeneity (Kraemer, 2007). Hence, dimensional 

approaches which observe anxiety along a continuum are becoming more widely 

adopted (Cuthbert & Insel, 2013; Insel et al., 2010; Kotov et al., 2017). Here, I refer to 

between-subjects, individual differences along this dimension as trait anxiety 

(disposition toward anxious states; Spielberger, 2013), but also consider within-

subject variation of state anxiety (transient anxiety pertaining to uncertain threats) as 

belonging to such a continuum.  

Investigating the overlapping and distinct mechanisms of state and trait 

dimensions may point toward the biological bases of pathological anxiety (Robinson 

et al., 2013), helping researchers generate clinically-relevant hypotheses and tools for 

treatment evaluation (Grillon et al., 2019). There is currently no consensus as to 

definitions/distinctions between state, trait, and pathological anxiety within the field of 

anxiety research. Throughout the thesis, I operationalize anxiety along both 

dimensions of state anxiety (transient, evoked experiences of anxiety) and between-

persons trait anxiety (an inherent disposition to anxiety). Moreover, as the line between 

adaptive and maladaptive anxiety is ambiguous, I do not theoretically distinguish when 

dimensions are healthy or pathological. 

 

1.2 The Impact of Anxiety on Face Perception 

As anxiety appears to promote the detection and avoidance of potential threats in the 

environment (Marks & Nesse, 1994; Mobbs et al., 2020), its association with 

alterations in psychological processes are—unsurprisingly—far reaching, from value-

based decision-making to spatial navigation (Robinson et al., 2013). Anxiety’s impact 

on perception and cognition is also multifaceted. Some have suggested two separate 

pathways: influences on ‘low-level’ threat responding vs ‘high-level’ processes that 
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may be more strongly related to the subjective experience of emotion, albeit these two 

systems interact (Taschereau-Dumouchel et al., 2022). Here, I focus predominantly 

on one key process, threat vigilance, in the context of face perception due to its 

prominence throughout the anxiety literature. 

Anxiety is known for its impact on vigilant attention toward potential threats in 

the environment (Robinson et al., 2012). A salient feature of the environment for many 

animals is conspecifics. The emotional expressions of conspecifics can signal a broad 

range of information, both about the state of the individual and the environment 

(Darwin, 1872). For instance, facial expressions of other humans can signal potential 

threats in the environment (e.g., a fearful face in response to a dangerous animal); or 

from the expressor themselves (e.g., an angry face directed toward the observer in 

anticipation of a fight). Accordingly, decades of behavioral and neuroscience research 

into anxiety have calibrated experimental designs around face perception. 

In traditional emotion perception paradigms, static images of faces are 

presented and participants are asked to categorize them given a selection of emotion 

categories. Inducing states of anxiety via threat of unpredictable shock appears to 

increase the accuracy and speed at which faces are categorized, as well as the 

perceived intensity (Kavcıoğlu et al., 2021; Robinson et al., 2011). Between-subjects 

differences in trait anxiety seem to affect face processing in similar ways to induced 

states of anxiety: a perceptual bias, most prominently toward negatively valenced 

faces, is often observed (Doty et al., 2013; Robinson et al., 2012). These effects are 

also apparent when explicitly comparing those with anxiety disorders to healthy 

controls (Arrais et al., 2010; Bradley et al., 1999). Such alterations in face processing 

are often discussed in relation to fearful faces, but effects are often observed across 

a range of other emotions, including happy and angry faces, and even a bias toward 

categorizing neutral faces as fearful (Kavcıoğlu et al., 2021). Moreover, there may well 

be multiplicative effects of state and trait anxiety, wherein the effects of induced 

anxiety on attentional biases may be greatest in those scoring higher in trait anxiety 

(Dyer et al., 2022). However, not all studies have found reliable, generalizable effects. 

While the threat of shock literature has established a robust effect, it appears other 

modalities and designs (e.g., CO2 inhalation) have not always found consistent results 

(Dyer et al., 2022). Therefore, it is worth noting that findings appear sensitive to task 
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parameters. The source of threat and context of an experiment appear linked to the 

precise impact of anxiety on face perception. 

 

1.3 Anxiety and the Amygdala 

Neuroscience experiments have started to outline the brain structures which give rise 

to such anxiety-dependent responses to threat. Numerous studies in non-human 

animals outlined a role of the amygdala in such threat processing. For instance, 

surgical lesions to mice amygdala appear to decrease defensive behaviors (i.e., 

freezing) in response to shocks (Slotnick, 1973). Conversely, optogenetic excitation of 

the mouse amygdala appears to promote defensive behaviors (Ciocchi et al., 2010). 

Consequently, investigations into human anxiety often focused on this as a primary 

region of interest. Early human fMRI work utilizing state anxiety inductions indicated 

activation in the amygdala to be associated with anxiety-relevant biases toward 

emotional facial expressions (Herry et al., 2007). Moreover, numerous studies 

demonstrated amygdala responses to faces appeared to scale with individual 

differences in trait anxiety (Bishop et al., 2004; Dickie & Armony, 2008; Somerville et 

al., 2004). This led to the view that the amygdala was a key region responsible for 

instantiating states of anxiety and defensive responding, many referring to it as the 

‘fear center’ (LeDoux, 2020). 

 

1.4 Amygdala-Prefrontal Responding to Threat 

Human neuroscience, particularly affective neuroscience, has started to go beyond 

purely modular views of brain function (i.e., amygdala as the region responsible for 

anxiety), which may be over-simplistic and unable to sufficiently capture biological 

dynamics underlying anxiety (Pessoa, 2017). Instead, mental processes, including 

anxiety, are now often seen as relying on distributed systems across the brain. In the 

context of anxiety, this is consistent with empirical work demonstrating that circuit-level 

responses to faces demonstrates better reliability than single region activations (Nord 

et al., 2017, 2019; Sauder et al., 2013). A more holistic explanation may thus come 

from studying the wider circuitry associated with anxiety-relevant regions, such as the 

amygdala. One circuit implicated from the non-human animal literature has been an 

amygdala-prefrontal circuit which may drive defensive responding. 
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Inducing state anxiety via threat of shock paradigms in rodents has revealed  

increased coupling between the amygdala and prelimbic cortex (a homologue to the 

human dorsomedial prefrontal cortex/anterior cingulate cortex; dmPFC/dACC) using 

extracellular recordings and pharmacological, optogenetic, and stimulatory 

manipulations (Karalis et al., 2016; Vidal-Gonzalez et al., 2006). Electrophysiological 

recordings in non-human primates have also demonstrated increased amygdala-

prefrontal coupling whilst under induced states of anxiety (Livneh & Paz, 2012; Taub 

et al., 2018). Human studies appear consistent with much of this work: inducing states 

of anxiety via threat of shock increases engagement of an amygdala-dorsomedial 

prefrontal circuit1 during face perception (Robinson et al., 2012). Congruent with 

behavioral studies, increased responsiveness of this circuit is also seen in those 

scoring high in trait anxiety and with anxiety disorders (Robinson et al., 2014). 

Anxiolytic medication, such as serotonin re-uptake inhibitors, appear to attenuate the 

responsiveness of this circuitry, including to faces (Faria et al., 2014; Godlewska et 

al., 2016). This circuit has thus been hypothesized to underpin attentional amplification 

of threat-relevant stimuli in the environment. However, the responsiveness of this 

circuit is not exclusive to face stimuli. When anxiety is induced within-subjects in the 

absence of explicitly presented visual stimuli, amygdala-prefrontal connectivity 

increases, the degree of which appears to be modulated as a function of individual 

differences in trait anxiety (Vytal et al., 2014). This does not discount the role of this 

circuit in vigilance to threat; rather it suggests that engagement might potentially occur 

under general states of anxiety, irrespective of environmental cues. 

How individual variations in trait anxiety relate to amygdala-prefrontal 

connectivity remains controversial. By one view, individual differences in trait anxiety 

only surface while under states of anxiety (as theorized by the diathesis-stress model, 

Brozina & Abela, 2006, and as implicated by threat of shock studies, Robinson et al., 

2012). An alternative possibility is that impaired amygdala-prefrontal functioning in 

anxious populations might emerge through stable differences in brain function. That 

                                            
1The functional term dorsomedial prefrontal cortex has been used flexibly across the neurosciences in 
reference to a variety of anatomically and functionally distinct regions. This is partially due to a lack of 
consensus on precise regional borders. The region implicated in the anxiety literature point to what 
could be described, anatomically, as a region close to anterior midcingulate cortex and overlaps with 
premotor cortex (see figure 1.1). To remain consistent with nomenclature of the anxiety literature, I use 
the term dorsomedial prefrontal cortex throughout the thesis in reference to this region. 
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is, high levels of trait anxiety are associated with chronic engagement of amygdala-

prefrontal circuitry. 

 

1.5 Anxiety and ‘Intrinsic’ Amygdala-Prefrontal Connectivity 

The use of resting-state paradigms—wherein subjects are instructed to lie task-free in 

an fMRI scanner—have provided some insight into psychiatric symptoms and chronic 

‘intrinsic’ connectivity in the absence of experimentally-presented stimuli (Canario et 

al., 2021). Associations between self-reported symptoms of trait anxiety and resting-

state connectivity suggest anxious individuals may chronically engage amygdala-

prefrontal circuitry (M. J. Kim et al., 2011), even in the absence of experimentally-

induced states of anxiety or stimulus presentation. On the other hand, this seems at 

odds with the non-human primate literature, which suggests anxious temperament is 

associated with decreased connectivity (Birn et al., 2014). Generally, findings from 

resting-state studies of anxiety appear particularly inconsistent. A recent systematic 

review of resting-state anxiety research described studies which found increased, 

decreased, and no alterations in resting-state amygdala-prefrontal connectivity (Mizzi 

et al., 2022). 

Conceptually, the extent to which resting-state paradigms allow researchers to 

directly observe ‘intrinsic connectivity’ also remains controversial as: the scanning 

environment does not offer a context-free setting for which we can study the brain at 

‘rest’ (Finn, 2021); and is particularly susceptible to influence from confounds arising 

from physiological signals (Murphy et al., 2013) and fMRI sequence parameters (Cao 

et al., 2023; Risk et al., 2021). Moreover, this is at odds with prior theoretical models 

and threat of shock studies which suggest individual differences in trait anxiety only 

emerge under states of anxiety (Brozina & Abela, 2006; Robinson et al., 2012). In 

sum, there is some tentative evidence to suggest individuals with high trait anxiety 

chronically engage amygdala-prefrontal circuitry, irrespective of specific 

environmental cues. However, there is substantially more evidence to suggest 

individual differences in amygdala-prefrontal responding emerge primarily in response 

to environmental cues (e.g., induced states of anxiety or emotional facial expressions). 
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1.6 Anxiety and the ‘Defensive Response Network’ 

So far, I have focused on amygdala-dorsomedial prefrontal circuitry, noted for its 

involvement in one key aspect of anxiety, threat vigilance. This forms the foundation 

for much of my hypothesis-testing throughout the thesis. However, a much wider 

network appears to also be associated with anxiety-relevant processes such as threat 

vigilance. A broad range of highly connected cortico-subcortical neural circuits, 

referred to here as the ‘defensive response network’ (Abend et al., 2022), has been 

implicated in a range of non-human and human research. I will start by briefly 

reviewing three subcortical structures, the bed nucleus of the stria terminalis (BNST), 

hypothalamus, and periaqueductal gray (PAG). 

The BNST (sometimes referred to as the ‘extended amygdala’) is a region 

dorsal to and highly connected with the amygdala which has been implicated as 

playing a core role in coordinating adaptive responses to potential dangers. It was 

previously posited that the amygdala is more strongly related to immediate threats 

(fear responses), but the BNST was associated with processing chronic, uncertain 

threats (anxious responding; Davis, 2006). However, this framework remains disputed 

(Fox & Shackman, 2019). Indeed, human fMRI work has demonstrated 

indistinguishable activation between the amygdala and BNST for certain (fear) for 

uncertain threat (state anxiety) responses (Hur et al., 2020); thus, both may contribute 

to anxiety-relevant processes.  

In addition to guiding perception/cognition, regions such as the amygdala and 

BNST have been seen as playing a key role for instantiating states of anxiety; in other 

words, they can give rise to the subjective experience of anxiety (Adolphs, 2013). On 

the other hand, the hypothalamus has previously been thought of as a passive relay 

to downstream regions in order to engage defensive behaviors and provide signals to 

peripheral physiology, but does not necessarily instantiate subjective experiences of 

emotions or provide any specific modulation of these behaviors (Davis, 1992; Wada & 

Matsuda, 1970). More recent work in mice suggest optogenetic excitation and 

lesioning of the hypothalamus appears to indicate that the hypothalamus may indeed 

modulate conditioned responses to electric shocks, so it is not simply a passive relay 

(Kunwar et al., 2015). There has been some human fMRI work demonstrating 

associations between hypothalamus activation in response to threats (Mobbs et al., 
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2009), but this literature is relatively more scarce and commentary regarding 

mechanisms has been primarily in relation to animal research (Dalgleish et al., 2009). 

Another subcortical region that may play a key role, but has often been 

overlooked, is the PAG. Electrophysiological recordings and optogenetic manipulation 

in mice indicate the PAG in both the detection of potential threats in the environment, 

as well eliciting fleeing behaviors (Deng et al., 2016). Congruent with the animal 

literature, human fMRI research has demonstrated that, alongside the amygdala and 

BNST, activation of the PAG can be observed in response to induced anxiety (i.e., 

threat of shock, Hur et al., 2020). Moreover, such activation has been shown to be 

modulated as a function of the approach of electrical shocks (Mobbs et al., 2007). The 

PAG has therefore been posited as being able to track threat imminence (Mobbs et 

al., 2007) and select appropriate defensive responses accordingly (Faull et al., 2016). 

A breadth of research has also demonstrated top-down projections from the 

cortex to subcortex. In addition to the dorsomedial prefrontal cortex, these include the 

insula, subgenual anterior cingulate (sgACC), and anterior ventromedial prefrontal 

cortex (vmPFC). Inducing state anxiety via threat of shock in humans increases 

activation in the insula (Choi et al., 2012), but this activation has been implicated in a 

broad array of anxiety-relevant processes. These include (but are not limited to) the 

insula’s role as processing interoceptive information (internal bodily states), 

anticipating future events, determining controllability over stressors, and acting as 

integrative hub between emotion and cognition (Choi et al., 2012; Grupe & Nitschke, 

2013; Limbachia et al., 2021; Terasawa et al., 2013). 

The sgACC has often been implicated in threat learning. Human fMRI research 

indicates that pairing emotional face stimuli with electric shocks can result in increased 

functional connectivity between the sgACC and amygdala (Hakamata et al., 2020), 

suggesting this region may provide input regarding learned threat. Moreover, this 

connection may be significantly stronger in individuals with high trait anxiety levels 

(Hakamata et al., 2020). This also indicates a role of the sgACC in perceived intensity 

of threats. Indeed, work which has modulated the intensity of electric shocks suggests 

parametric modulation of activation in the sgACC as a function of perceived intensity 

of threat (Straube et al., 2009). Again, this representation of threat intensity appears 

to also correlate with individual differences in trait anxiety (Straube et al., 2009).  
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Contributions of a region in anterior vmPFC/medial orbitofrontal cortex, just 

anterior to the sgACC, to anxiety has been evidenced in a small number of studies. 

The literature in this domain is relatively far scarcer than the aforementioned regions. 

Unlike most other regions in the ‘defensive response network’, anterior vmPFC 

appears to demonstrate reduced activation following threat of shock (Kirlic et al., 

2017). A study lesioning this region in macaques demonstrated that such lesions 

increase defensive behaviors (Pujara et al., 2019), an effect that would not be 

expected in other regions, such as the amygdala (Kalin et al., 2001). Some have 

posited that this region may therefore be more strongly related to representations of 

positive affect and/or safety signal integration (Myers-Schulz & Koenigs, 2012; 

Tashjian et al., 2021). 

To summarize, associations between state and trait anxiety and an amygdala-

dorsomedial prefrontal circuit has been one of the most consistent findings in the threat 

of shock literature, as demonstrated via meta-analytic evidence (Chavanne & 

Robinson, 2021). When in a state of anxiety, this circuit is thought to tune attentional 

resources toward threat-relevant stimuli in the environment (threat vigilance). 

However, a much wider grouping of cortical and subcortical regions, referred to here 

as the ‘defensive response network’, is thought to be recruited to engage a range of 

anxiety-relevant processes, from threat conditioning to safety signaling. In addition to 

the amygdala and dmPFC, this includes the BNST, hypothalamus, PAG, insula, 

sgACC, and anterior vmPFC. Broadly speaking, projections from the cortex have 

traditionally been thought of as providing regulatory, evaluative, and contextual inputs 

to more fundamental threat processes in subcortical regions (Tillman et al., 2018). 

However, while I have discussed the aforementioned regions in relation to specific 

perceptual and cognitive processes, these likely operate as a broad, interactive 

network to instantiate states of anxiety and orchestrate defensive behaviors 

(Chavanne & Robinson, 2021; Gorka et al., 2018). Moreover, by no means does this 

‘defensive response network’ necessarily constitute the sole circuitry responsible for 

processing threat and generating anxious responses, but is comprised of fundamental 

structures that underpin states of anxiety, reported consistently across studies 

(Chavanne & Robinson, 2021; Shackman & Fox, 2021).  
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Figure 1.1. A set of regions referred to here as a ‘defensive response network’ which 

forms fundamental circuitry recruited during states of anxiety. Subcortical regions (red) 

include amygdala, bed nucleus of the stria terminalis (BNST), hypothalamus, and 

periaqueductal gray (PAG). Cortical regions (blue) include dorsomedial prefrontal 

cortex (dmPFC), insula, subgenual anterior cingulate cortex (sgACC), and an anterior 

section of the ventromedial prefrontal cortex (vmPFC). 

 

1.7 Anxiety and Peripheral Physiology 

The Autonomic Nervous System 

An overarching purpose of the ‘defensive response network’ is to facilitate the 

detection, identification, and avoidance of dangers in the environment (Mobbs et al., 

2015). The detection and identification of threat can be aided by tuning perceptual and 

cognitive systems to seek out sources of harm. In order to avoid these threats, survival 

behaviors such as fighting or fleeing may be needed. States of anxiety may serve to 

pre-empt such physical exertion and thus—in addition to alterations in the brain—also 

impact the peripheral nervous system. 
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Early theories did not often emphasize the brain as a central mechanism for 

anxiety, but posited peripheral physiology to be the biological basis (Dewey, 1894; 

James, 1884). There were theorizations with regards to both top-down and bottom-up 

influences of affective states on the body. Put simply, some suggested that altered 

bodily states arose in response to emotions, while others argued emotions arose in 

response to bodily states (James, 1894). Since such early postulations, there have 

been major developments in our understanding of peripheral physiology, as well as 

empirical work advancing our theories of how bodily states may be associated with 

anxiety. This has led us to an understanding that anxiety is associated with signals 

from the brain to the body and from the body to the brain, which I review below. 

Anxiety has been associated with a range of changes to peripheral physiology, 

including increased heart rate, respiration, perspiration, and pupil dilation (e.g., 

increased heart rate; McCorry, 2007). This impact on peripheral physiology arises 

primarily via the autonomic nervous system. Activity in two, prominent components of 

this system, the sympathetic and parasympathetic branches, are constantly balanced 

to promote homeostasis dependent on context (Buijs, 2013). Conceptually, the 

sympathetic branch is traditionally associated with adaptive ‘fight-or-flight’-like 

responses that are integral to anxiety, while dominance of the parasympathetic branch 

is associated with ‘rest-and-digest’-like behaviors (McCorry, 2007). This is a somewhat 

crude simplification, as different affective states, contexts, and goals may uniquely act 

across these systems in discrete manners (Critchley, 2005, 2009), but it provides a 

useful basic framework for approaching the study of anxiety. Broadly speaking, the 

balance in activity of these branches is impacted across a range of spectral 

frequencies ranging from respiration modulating balance within seconds (Stein et al., 

1994) to influences of sleep and circadian rhythms throughout the day (H. J. Burgess 

et al., 1997). Acute mental stressors appear to impact autonomic balance in the order 

of seconds to minutes (Salahuddin et al., 2007). Specifically, anxiety elicits increases 

in activity in of the sympathetic branch of the autonomic nervous system, as well as 

(vagally-mediated) parasympathetic withdrawal (Friedman & Thayer, 1998a). 

Popular proxies for autonomic balance are cardiac measures (heart rate and 

heart rate variability). This is due to the autonomic nervous system’s impact on 

pacemaker cells in the sinoatrial node of the heart (Zaza & Lombardi, 2001). When 

sympathetic activity is high (and/or parasympathetic activity is low), the rate of cardiac 
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action potentials is increased, resulting in increased heart rate (Grassi et al., 1998). 

Moreover, the heart is not a regular metronome: variability is natural, arising from 

continual fluctuations in autonomic balance (the ratio of sympathetic to 

parasympathetic activity) and baroreceptor reflex (the increasing/decreasing of 

intervals between beats to regulate blood pressure). Sympathetic dominance (and 

consequently, anxiety) is associated with lower variability in heart rate (Elghozi & 

Julien, 2007). While it would be ideal to not rely on such proxies and measure activity 

within the autonomic nervous system directly, this is difficult to achieve due to the 

invasiveness of required procedures giving rise to issues concerning safety (Mano et 

al., 2006). Heart rate and heart rate variability thus offer a useful proxy for researchers 

to study the impact of anxiety on the autonomic nervous system. 

Anxiety is known for its top-down influence on the autonomic nervous system. 

That is, anxiety causes alterations in autonomic balance. For instance, when state 

anxiety is induced within-subjects, increases in heart rate and decreases in heart rate 

variability can be observed (Battaglia et al., 2022; de Groot et al., 2020). Following 

induced anxiety, individual differences in trait anxiety appear to show associations with 

cardiac responding (Beatty & Behnke, 1991; Kantor et al., 2001; Levine et al., 2016). 

Moreover, patients with pathological levels of anxiety appear to show chronically 

reduced heart rate variability in the absence of tasks or state anxiety inductions 

(Chalmers et al., 2014; Pittig et al., 2013). Therefore, there is clear evidence that 

anxiety engages peripheral physiological systems. This may (in some instances) serve 

as an adaptive function to prepare the body for physical exertion. 

There is emerging evidence that, in addition to influencing peripheral 

physiology, anxiety (and its associated perceptual/cognitive processes) is reciprocally 

influenced by the body. Theories of interoception highlight the role of bottom-up input; 

the perception of internal, visceral sensations also impact anxiety-relevant processes. 

This includes signals from the stomach, lungs, and—pertinent to this thesis—the heart 

(Craig, 2003; Critchley & Harrison, 2013).  

The effects of cardiac signals are seen as modulators of state anxiety-relevant 

processes within individuals. For instance, the perceived intensity of threat-relevant 

stimuli (i.e., fearful faces) appears to be modulated as a function of the cardiac cycle 

(Garfinkel et al., 2014). Moreover, researchers have derived behavioral measures 
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gauging the degree to which individuals are attending to their own cardiac signals 

(referred to as interoceptive awareness), such as tasks which test the ability of 

participants to count their own heartbeats (Garfinkel et al., 2015). When these tasks 

are delivered alongside state anxiety inductions (i.e., public speaking challenge), 

increased awareness of cardiac signals has been observed (Durlik et al., 2014). 

Moreover, the degree to which people attend to such internal bodily signals appears 

to vary between individuals. There is converging evidence to suggest trait anxiety and 

pathological anxiety are associated with increased sensitivity to the perception of 

heartbeats (Domschke et al., 2010).  

However, the methodologies in much of the human interoception literature are 

predominantly correlational in nature, limiting the ability to infer a causal relationship 

between visceral signals and anxiety. One recent study in non-human animals has 

provided causal evidence for cardiogenic signals attenuating anxiety. Optogenetically-

induced tachycardia in mice resulted in anxiety-like behaviors such as an aversion to 

exploration of open spaces and suppression of reward seeking (Hsueh et al., 2023).  

Pharmacological medication provide some evidence for a causal role in humans. For 

example, propranolol is a sympatholytic beta-blocker that acts by directly 

downregulating cardiac activity (e.g., heart rate). It is used regularly to reduce the 

severity of anxiety, particularly due to its impact on somatic symptoms (Suzman, 

1976). Given that non-somatic anxiety symptoms are lessened by downregulation of 

sympathetic activity indicates a role of visceral signals in shaping subjectively-

experienced anxiety in humans. However, propranolol’s efficacy varies largely 

(Papadopoulos et al., 2010; Protopopescu et al., 2005) and is able to cross the blood-

brain barrier (Pardridge et al., 1983), ruling out selective effects on peripheral 

physiology alone. Therefore, evidence for visceral signals shaping anxiety in humans 

remains primarily correlation.  

Taken together, there is substantial evidence that states of anxiety induce and 

are influenced by internal bodily states. The strength of this reciprocal communication 

appears to shift alongside measures of trait anxiety. Anxiety appears to increase 

activity in the sympathetic branch of the autonomic nervous system and decrease 

activity in the parasympathetic branch. This manifests in bodily changes such as 

increases in heart rate and decreases in heart rate variability. Moreover, bodily signals, 

such as those from the heart, may in turn shape anxiety-relevant processes. 
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Specifically, anxiety may be associated with increased sensitivity and awareness 

towards these internal signals. 

 

Neural-Autonomic Communication in Anxiety 

While scarce, some studies have begun to elucidate the reciprocal communication 

between central neural structures and the autonomic nervous system. Regions across 

the ‘defensive response network’ appear associated with neural-autonomic 

communication in the context of anxiety. This includes amygdala, dorsal and ventral 

medial prefrontal regions, sgACC, and insula, the last of which has received particular 

attention. 

 One approach for studying communication between the brain and peripheral 

physiology is by correlating the degree to which activation or connectivity in the brain 

is associated with measures of autonomic balance. One study found that the degree 

to which the heart rate increases in response to a public speaking challenge was 

positively correlated with activation in subgenual/perigenual ACC and medial 

OFC/vmPFC (Wager et al., 2009). Another study investigated individual differences in 

resting-state ‘intrinsic’ connectivity and its associations with state anxiety (i.e., threat 

of painful thermal stimulation) evoked skin conductance responses (Abend et al., 

2022). Here, the authors found amygdala-vmPFC connectivity to be positively 

correlated with anxiety-evoked changes in skin conductance. Likewise, a study which 

induced worry (asking participants to ruminate about a previous sad, anxious, or 

stressful emotional event), found the degree to which amygdala-dmPFC and 

amygdala-vmPFC circuitry responds to the worry-induction to be correlated with 

individual differences in heart rate variability responses (though this may vary as a 

function of pathological anxiety; Makovac, Meeten, Watson, Herman, et al., 2016). 

These studies indicate anxiety-relevant correlations between brain 

activity/connectivity and autonomic responses. However, it is difficult to infer what 

function these brain responses are serving; are they causing increases in heart rate 

or reflecting an increase in interoceptive attention to visceral signals, or even both? 

 One approach to disentangle bottom-up interoceptive influences from top-down 

signaling to the autonomic nervous system is through active manipulation. Evidence 

in rodents using postmortem tissue staining, electrophysiological recordings, and 
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optogenetic manipulation of cardiac activity point to a causal role of the insula as a key 

hub for the integration of visceral signals and anxiety-relevant behaviors (Hsueh et al., 

2023). A technique applied within the human literature has been to instruct participants 

to explicitly attend to their own bodily signals (e.g., heartbeats or breathing). Neural 

responses can then be contrasted between the timepoints when participants are 

paying more or less attention to their own bodily signals, even in the absence of altered 

autonomic balance (e.g., increased heart rate). fMRI studies using this approach have 

demonstrated that increasing interoceptive awareness is correlated with increased 

activation in the insula, as well as amygdala and sgACC (Doll et al., 2016; Terasawa 

et al., 2013). 

 Taken together, we have seen some evidence for regions within the ‘defensive 

response network’ in the brain being recruited for communication with the autonomic 

nervous system. This evidence suggests that anxiety-evoked increases in activity 

across the amygdala, dmPFC, insula, and sgACC are associated with increased 

autonomic responses and interoceptive awareness (figure 1.2). 
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Figure 1.2. An illustrative overview of fundamental neurobiological mechanisms 

underlying threat responding. When alerted to potential threats in the environment, the 

brain engages a ‘defensive response network’. This can promote attentional vigilance 

toward threats, communication with the autonomic nervous system, and can give rise 

to subjective experiences of anxiety. 

 

1.8 Moving Beyond Traditional Task Paradigms: the Case for Movies 

The Need for Ecological Validity 

From the literature, we have learnt that anxiety appears to be associated with a 

distributed cortico-subcortical-autonomic network that drives anxiety-relevant 

processes. Specifically, anxiety may be associated with 1) altered amygdala-prefrontal 

responsivity to affective environmental cues, such as faces; 2) increased amygdala-

prefrontal connectivity whilst under uncertain threat anticipation (threat of shock); 3) 

chronic amygdala-prefrontal connectivity; 4) altered autonomic responding; and 5) 

increased communication between the brain and the autonomic nervous system. Our 

understanding of the neurobiology of anxiety has been built on the foundation of 
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tightly-controlled experimental paradigms. This has been done so as to allow 

researchers to mitigate the impact of confounds such as low-level perceptual features 

which might bias results. The downside of this approach however, is that it comes at 

a cost to ecological validity (Vigliocco et al., 2023). More specifically, tasks employed 

in anxiety research do not typically present “rich, multimodal dynamic stimuli that 

represent our daily lived experience” and cannot be assumed as unquestionably 

providing “a reasonable approximation of how we encounter stimuli in everyday life” 

(Sonkusare et al., 2019).  

The degree to which results generalize from the anxiety literature to more 

naturalistic settings outside of specific laboratory conditions remains unresolved. This 

is critical for anxiety research because a key goal is to aid those suffering from anxiety 

disorders. Firstly, the lack of generalizability to naturalistic settings has implications for 

the assessment of how anxiety impacts people’s daily functioning. There is currently 

a call to move assessments of anxiety and mood disorders toward measures of 

underlying constructs, such as attentional bias to threat, as opposed to clustering self-

report symptoms into discretized diagnoses (Cuthbert & Insel, 2013; Insel et al., 2010). 

This could be achieved through a battery of self-report, behavioral, and biological 

measures. In other areas of psychiatry, this is already implemented. For instance, 

clinical neuropsychologists will evaluate brain images from patients with brain lesions 

and evaluate underlying facets of cognition accordingly. However, in these cases, it 

has been demonstrated that using ecologically-valid assessments of cognition may be 

better able to encapsulate how such lesions impact a patients daily functioning (P. W. 

Burgess et al., 2006). If there is an eventual move toward using behavioral or biological 

measures in the assessment of anxiety and mood disorders, there needs to be 

validation that these measures capture how anxiety impacts a person’s daily 

functioning outside of the specific assessment method. 

The motivation for validating findings from the anxiety literature in ecologically-

rich settings also extends to the development of treatments. Therapeutic interventions 

are designed to alleviate anxiety in people’s daily lives. Yet, only approximately half of 

those with anxiety disorders will respond to initial psychological or pharmacological 

treatment (Ansara, 2020; Clark, 2018; NHS Digital, 2022). These interventions are 

selected and developed based on our current evidence base; for instance, by 

synthesizing pharmacological agents (i.e., anxiolytic medication) in relation to specific 
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biological targets evidenced in basic research (Sartori & Singewald, 2019). Traditional 

methods, such as fMRI-measured brain responses to static faces, are then employed 

as a test of the efficacy of anxiolytic medication in randomized controlled trials 

(Gingnell et al., 2016). If results from traditional paradigms (e.g., brain responses to 

static faces) do not encapsulate how anxiety impacts people outside of such settings, 

this may necessitate re-evaluations in the development and testing of clinical 

interventions for anxiety.  

Public speaking challenges are one type of procedure used in anxiety research 

that may constitute a more ecologically-rich setting (Kirschbaum et al., 1993). These 

operate by asking participants to prepare a presentation to deliver to an audience and 

recordings (e.g., physiological monitoring) occur prior to, during, and after the 

presentation. This, arguably, constitutes a more naturalistic paradigm compared to 

other procedures, like threat of shock, as this is representative of a setting that many 

naturally experience outside of laboratory settings. However, public speaking 

challenges induce a specific type of social anxiety related to public speaking that is 

arguably distinct from direct threat-oriented models of anxiety. Responses arise 

partially as a product of sociocultural attitudes toward such settings and is not always 

effective at eliciting states of anxiety (Miller & Kirschbaum, 2019). Moreover, the 

rigidness for the procedure means there are limitations as to which measures can be 

acquired. For instance, stimulus testing (e.g., face perception) and neuroimaging are 

particularly difficult to smoothly implement as part of public speaking challenges, due 

to issues such as movement-related artifacts (Rosenbaum et al., 2018). These 

drawbacks do not discount the contribution of public speaking challenges to our 

understanding of anxiety; rather, highlights that public speaking challenges do not on 

their own solve the field’s constraints on generalizing to more naturalistic contexts. 

One hybrid method which could allow researchers to study anxiety in more 

naturalistic settings is movie-watching. That is, presenting video clips to participants 

while recording behavioral, physiological, and neuroimaging measures. Unlike 

traditional task-based designs, which present static, decontextualized stimuli (e.g., 

grayscale cropped faces presented for < 1 second), movies constitute dynamic, 

multisensory, contextualized content that may be representative of everyday 

experiences (Aliko et al., 2020).  
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Using movies as a platform for studying mental phenomena is not entirely new 

to cognitive neuroscience. In the neuroimaging domain, this was first introduced in the 

mid-2000s, where a study was able to demonstrate activation of the fusiform gyrus to 

faces during movie-watching (Hasson et al., 2004). Earlier work emphasized the 

fusiform gyrus as a core node for face processing, but these findings were typically 

based on paradigms which presented grayscale, cropped faces statically and with 

minimal context (Kanwisher et al., 1997). By detecting the same effects during movie-

watching, there was evidence for generalizability of fusiform activation to faces in a 

relatively more naturalistic context, which may more accurately capture the processes 

underlying the day-to-day perception of faces. 

In addition to studying mental processes in relatively more naturalistic settings, 

there are numerous technical benefits to movie paradigms. Traditional task-based 

paradigms can induce drifts in mood over the course of the task (participants become 

less happy throughout the experiment) which results in desensitized responses to 

stimuli (i.e., reward; Jangraw et al., 2023). Meanwhile in completely task-free designs 

(resting-state), participants often report feeling drowsy, which can confound 

neuroimaging measures (Joliot et al., 2023).  Movies, on the other hand, were created 

to engage audiences. We typically do not spend our free time completing traditional 

cognitive tasks, whereas we do watch movies frequently and voluntarily (we even pay 

to see them). The average person in the UK spends over 5 hours consuming television 

and video content per day (Ofcom, 2022). In addition to being able to probe mental 

processes of interest, such engagement can promote in-study compliance, resulting 

in reduced head movements, gains in signal to noise ratio, and improved reliability 

(Byrge et al., 2022; Eickhoff et al., 2020; Frew et al., 2022).  

 

Analytical Approaches to Movie-Watching 

Movie paradigms confer several analytical benefits, such as the ability to examine data 

in numerous ways. Here, I will briefly discuss 3 methods, namely feature-based 

general linear modelling (GLM), seed-based functional connectivity, and intersubject 

correlation, which I apply throughout the thesis. Feature-based GLM is a common 

approach inspired by the task-based literature. As with task designs, the onsets and 

durations of features within movies are coded and convolved with the hemodynamic 
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response function. These time series are inserted as regressors into a general linear 

model wherein brain activation or connectivity can be estimated in response to 

components of the movie stimulus. This approach has been used successfully across 

numerous studies (for instance, investigations into the encoding of spatial information 

during movie-watching; Häusler et al., 2022). An advantage of feature-based GLM is 

that the models can be interpreted in the context they were specified. That is, 

understanding which features of the movie are evoking responses in the brain. 

However, these approaches rely on numerous assumptions (e.g., shape of the 

hemodynamic response function and fluctuations in temporal dynamics), which may 

come at the cost of statistical sensitivity.  

Data-driven analyses inspired by the resting-state literature have also been 

implemented within movie-watching paradigms. A classic approach within this 

literature is seed-based functional connectivity. Here, the time series of regions within 

the brain are extracted and then correlated with one another to produce functional 

connectivity matrices. These matrices can then be inputted into group-level models to 

test for the effects of different movies and/or individual differences in traits on brain 

connectivity. This is entirely data-driven, as no specific features of the movie are 

explicitly built into the model. Using such an approach, researchers have been able to 

demonstrate connectivity measures derived from movies may outperform those of rest 

in predicting individual differences in cognitive and emotional traits (Finn & Bandettini, 

2021). This approach may offer improved sensitivity for detecting phenotypic variation 

and clustering, as it does not rely on as many assumptions as feature-based GLM. 

However, seed-based functional connectivity measures are typically time-invariant. 

Metrics are derived from movie-wide averages, so minimal information regarding 

stimulus features are driving connectivity measures. For example, two participants 

could demonstrate different connectivity profiles across time, but retain the same 

movie-wide connectivity measure (e.g., if one subject had high connectivity in the first 

half, but not second, their connectivity measure would be the same as another 

participant who had high connectivity in the second half, but not first). This can result 

in connectivity measures being less sensitive in the detection responses to specific 

features within a movie. 

 Finally, a hybrid approach which is more unique to movie-watching paradigms 

is intersubject correlation. Here, each subjects’ dependent measure (e.g., neural time 
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series) is correlated with every other subject to produce pairwise metrics, measures 

of ‘intersubject similarity’ (instead of within-person measures, as is the case with 

feature-based GLM and seed-based functional connectivity). This can be implemented 

with movies as participants’ measures are recorded in response to the exact same 

stimulus timings. Put simply, each subject typically watches the same video, which 

elicits a generally shared experience, and so their time series can be directly 

compared. Intersubject correlation is unconstrained in that it does not rely on 

assumptions about time series (e.g., shape of fMRI responses) but is also time-locked 

and driven by features within the movie, such as fluctuations in emotional context. 

However, despite being time-locked and sensitive to the content within a movie, results 

do not allow for temporal specificity (inferring which time points in the movie are driving 

effects) because similarity measures are typically based on comparisons across the 

entirety of movie-viewing.  

 There has now been an extension of intersubject correlation calibrated primarily 

for the study of individual differences during movies, coined intersubject 

representational similarity analysis (inspired from previous implementations of 

representational similarity analysis, Kriegeskorte et al., 2008). Here, intersubject 

similarity measures are generated both for the dependent measure (e.g., neural time 

series), as well as the measure of individual differences (e.g., trait anxiety scores). The 

intersubject similarities can then be compared. For example, pairwise similarities in 

neural responding can be correlated with pairwise similarities in trait anxiety. If a 

significant relationship is observed, we can infer that activity in brain regions varies as 

a function of trait anxiety during movie-watching. This technique has been 

demonstrated as providing sensitivity to detecting shared and idiosyncratic 

representations relevant to affective systems (G. Chen et al., 2020; P.-H. A. Chen et 

al., 2020; Finn et al., 2020; Finn & Bandettini, 2021). For predicting individual 

differences in self-reported trait measures, there is evidence demonstrating gains in 

sensitivity compared to traditional resting-state style approaches (G. Chen et al., 

2020). 

Movies elicit rich, complex psychological and biological responses. 

Accordingly, selecting appropriate analyses to apply to such data can be a challenge. 

Here, I have outlined three key approaches: feature-based GLM, seed-based 

functional connectivity, and intersubject correlation (figure 1.3). Each of these have 
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their relative advantages and disadvantages. Broadly speaking, each approach 

requires some compromise between statistical sensitivity vs theoretical precision. 

Given the complexity of movies and range of questions that can be addressed with 

such data, there is no one approach which fits all. Using these approaches in parallel 

provides the possibility of being able to carve out a better understanding of mental 

phenomena through differing analytical perspectives. Accordingly, throughout the 

present thesis, I make use of all three of these techniques for studying anxiety in the 

context of movie-watching. 

 

Figure 1.3. Three key analytical approaches for movie-watching analyses, which I use 

throughout the thesis. Inspired by traditional task paradigms, is feature-based general 

linear modelling, which can tests activation and connectivity to specific stimulus 

onsets. From the resting-state literature, I employ seed-based functional connectivity, 

which derives connectivity measures across entire movies. A hybrid approach, more 

specific to movie-watching, is intersubject correlation which calculates measures of 

similarity between subjects as they watch movie stimuli. Inspired from (Vanderwal et 

al., 2019). 
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Applying Movie-Watching to Anxiety Research 

Movies could offer a broad array of benefits to neuroscience and psychology research 

in general, but anxiety may particularly benefit. Using movies as a stimulus could allow 

us to explore anxiety’s impact on specific cognitive processes in a more naturalistic 

manner. They could allow us to test how trait anxiety shapes responses to dynamic, 

contextually rich facial expressions (beyond static, grayscale faces). Moreover, 

movies can serve as novel and more naturalistic means of inducing anxiety. There is 

no doubt that threat of shock elicits states of anxiety, as evidenced by self-reported 

feelings of anxiety (Robinson et al., 2011). However, threat of shock dichotomously 

probes states of anxiety or safety and is not typically experienced outside of laboratory 

settings. On the other hand, movies can elicit continual fluctuations in suspenseful 

uncertainty (e.g., by posing potential dangers to characters) that engage audiences 

and elicits anxiety (Schmälzle & Grall, 2020). This could allow us to test ongoing 

dynamics of state anxiety through a source that may be experienced outside of 

laboratory settings. 

Despite methodological and theoretical advantages offered by movie-watching 

paradigms, there is scarce work investigating fear/anxiety in the context of movies. 

One study demonstrated that increases in the subject experience of fear during horror 

movies was associated with increased amygdala-dmPFC responding (Kinreich et al., 

2011). Another study investigated acute fear (‘jump-scares’) and sustained fear 

(arguably, states of anxiety) during horror movies (Hudson et al., 2020). This found 

increased activation in amygdala, dmPFC, and periaqueductal gray in response to 

acute fear, but these regions were not as responsive to sustained fear (sgACC and 

precuneus were responsive to sustained fear; note: this study did not provide any 

direct contrast between fear vs anxiety). Thus, two studies have indicated state 

anxiety-dependent recruitment of amygdala-dmPFC circuitry during movie-watching. 

To my knowledge, no studies had directly explored anxiety-dependent 

responses to movies further than this (prior to the present thesis). Most prominently, 

no work had directly investigated individual differences in trait anxiety and responses 

to movies, which forms the basis for the majority of studies in the present thesis. 

Specifically, no work had looked at the impact of trait anxiety on the perception of faces 

during movies; the response to suspense (in contrast to threat of shock); and 
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autonomic responses to movies. Moreover, no work had directly investigated the 

impact of anxiety on neural-autonomic communication during movies. 

 

1.9 Thesis Aims and Research Questions 

I have outlined key findings from the literature which have given us a fundamental 

understanding of a cortico-subcortical-autonomic network that underpins anxiety, and 

how this system pertains to anxiety’s impact on perception and cognition. Specifically, 

anxiety appears to be associated with a ‘defensive response network’ in the brain. At 

the core of this network is an amygdala-dmPFC circuit which is thought to drive 

attentional amplification of threat-relevant stimuli in the environment. This ‘defensive 

response network’ also includes other regions implicated in anxiety-relevant 

processes, namely the BNST, hypothalamus, PAG, insula, subgenual anterior 

cingulate (sgACC), and anterior ventromedial prefrontal cortex (vmPFC). Activity 

across this network appears to drive anxiety-relevant processes such as threat 

conditioning and safety signaling. Moreover, anxiety also manifests in—and is 

influenced by—altered bodily states. In particular, there appears to be an intrinsic link 

between anxiety-relevant processes in the brain and activity within the autonomic 

nervous system.  

Traditional paradigms have induced anxiety (e.g., threat of shock) and tested 

responses to specific stimuli (e.g., grayscale, statically-presented faces) in tightly-

controlled experimental settings which may not resemble the rich, complex, and 

multisensory contexts that we experience in our everyday lives. Therefore, movie-

watching offers one potential platform in which we can start to bridge this gap toward 

ecological validity. In the present thesis, I aimed to explore the questions of whether—

during movie-watching—anxiety was associated with altered neural, subjective, and 

autonomic responses to movies. The biological measures (i.e., ‘defensive response 

network’ in the brain and cardiac responding) driving the hypotheses throughout this 

thesis were motivated by the need to determine if findings from traditional task-based 

paradigms generalize to more naturalistic settings. Specifically, I focus on testing 

whether threat of shock-elicited neurobiological responses to specific salient stimuli 

(i.e., faces) and ongoing states of anxiety are also present during movie-watching.  
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 In chapters 2-4, I investigate associations between anxiety and brain responses 

during movies. Specifically, in chapter 2, I use feature-based general linear modelling 

to explore the extent to which trait anxiety is correlated with amygdala-dmPFC 

responses to faces in movies. In chapter 3, I test whether trait anxiety is associated 

with altered amygdala-prefrontal responding to suspense (a potentially more 

naturalistic induction of state anxiety compared to threat of shock). In chapter 4, I test 

whether the findings from chapter 3 can be explained through measures of resting-

state connectivity. In chapter 5, I outline the development of an analytical pipeline for 

the processing of cardiac data, which I then use in chapter 6 to test whether individual 

differences in trait anxiety are associated with autonomic responses to movies. Finally, 

in chapter 7, I tie the previous chapters together by investigating the extent to which 

states of anxiety during movies may impact communication between the brain and the 

autonomic nervous system. Finally I provide a general discussion of these 

investigations.  

 

1.10 Movie Databases 

An advantage of movie-watching studies is that, by making data openly available data, 

they can be flexibly analyzed to answer different theoretical questions. In my 

experimental chapters, I make use of multiple openly available databases which I 

performed secondary analyses on, as well as a primary dataset I collected. To my 

knowledge, none of these had previously been analyzed in the context of anxiety. 

Table 1.1 lists a brief summary of these databases. 
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Table 1.1. Summary of datasets used in the thesis. 

Database 
Secondary 

analysis 

Full sample 

size 
Conditions 

Scanner 

strength 

Naturalistic 

Neuroimaging 

Database 

Yes 86 Full length movies 1.5T 

Human 

Connectome 

Project 

Yes 178 
Series of 1-5 minute video 

clips 
7T 

Cambridge 

Center for 

Aging and 

Neuroscience 

Yes 652 
8 Minute video clip + 

resting-state 
3T 

Internal 

dataset 
No 150 2 x 8 minute video clips N/a 

Caltech Conte 

Center 
Yes 55 

8 minute video + 5.5 

minute video 
3T 

 

1.11 Chapter Prefaces 

Throughout the thesis, I present results from work that has been published in peer-

reviewed journal or uploaded as preprints. The introductions have been written for 

readers with minimal context (i.e., without having to read the other chapters). For 

readers of this thesis to be able to go through chapters not only chronologically but 

also in isolation, I have edited the chapters throughout where necessary, added 

prefaces to chapters linking them to the overarching motivation of the thesis, and 

included references to the published versions of the studies. 

 

1.12 General Introduction Summary 

In this general introduction I have outlined that there are three key conceptualization 

of anxiety: state, pathological, and trait. For the purpose of the present thesis, I 

operationalize anxiety along continuous dimensions of state anxiety (induced, 

transient anxiety) and trait anxiety (a person’s disposition to states of anxiety). 
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Evidence from traditional behavioral paradigms have demonstrated that state and trait 

anxiety are associated with biased processing of threat-relevant information in the 

environment. A common finding has been that anxiety makes individuals more vigilant 

in detecting and identifying facial expressions. An amygdala-dorsomedial prefrontal 

circuit is thought to underpin the attentional amplification of such stimuli. A wider array 

of regions in the brain forming a ‘defensive response network’ is also implicated in 

orchestrating such anxiety-relevant processes and defensive behaviors. Core to these 

processes is also altered physiological responding, namely changes to autonomic 

activity. 

 Despite such a wealth of literature exploring the impact of anxiety on the brain 

and cognition, there is much left to be explored. Studies in anxiety have typically been 

conducted in highly controlled task-based paradigms that may not be representative 

of responses outsides such settings. Addressing this gap is critical to advance anxiety 

research because current interventions, which aim to alleviate peoples’ daily 

experience of anxiety, are built on the foundation of these experimental paradigms. 

Using movies as stimuli in experiments offers a potential platform in which we can 

bring research closer to more naturalistic settings, which comes with a range of 

theoretical and methodological advantages. In the present thesis, I aim to extend the 

research focus on anxiety to movie-watching paradigms. Throughout my experiments, 

I therefore test a variety of hypotheses on how anxiety may be associated with neural 

and autonomic responses to movie stimuli. 
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2. Face-Dependent Amygdala Connectivity during Movie-

Watching 

2.0 Preface 

A wealth of studies using threat of shock to induce states of anxiety have demonstrated 

that states of anxiety bias the processing faces, the degree to which varies with 

individual differences in trait anxiety. Specifically, there is evidence to suggest anxiety 

results in quicker and more accurate detection/identification of facial expressions. An 

amygdala-dmPFC circuit is thought to drive this attentional amplification. In chapter 2, 

I set out to test the extent to which anxiety would be associated with neural responses 

to faces during movies. 

 

For the final published versions of this study, please refer to the below reference: 

Kirk, P. A., Robinson, O. J., & Skipper, J. I. (2022). Anxiety and amygdala connectivity 

during movie-watching. Neuropsychologia, 169, 108194. 

https://doi.org/10.1016/j.neuropsychologia.2022.108194  

  

https://doi.org/10.1016/j.neuropsychologia.2022.108194
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2.1 Abstract 

Rodent and human studies have implicated an amygdala-prefrontal circuit that drives 

threat vigilance. To date, this has been established in tightly controlled paradigms 

(predominantly using static face perception tasks) but has not been extended to more 

naturalistic settings. Consequently, using ‘movie fMRI’—in which participants watch 

ecologically-rich movie stimuli rather than constrained cognitive tasks—I sought to test 

whether individual differences in anxiety correlate with the degree of face-dependent 

amygdala-prefrontal coupling in two independent samples. Analyses suggested 

increased face-dependent superior parietal activation and decreased speech-

dependent auditory cortex activation as a function of anxiety. However, I failed to find 

evidence for anxiety-dependent increases in face-dependent amygdala-prefrontal 

connectivity. My findings suggest that work using experimentally constrained tasks 

may not replicate in more ecologically valid settings and, moreover, highlight the 

importance of testing the generalizability of neuroimaging findings outside of the 

original context. 
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2.2 Introduction 

As highlighted in chapter 1, a key function of anxiety is to promote vigilance toward 

potential threats in the environment, but chronic engagement of this system may 

underlie pathology (Robinson et al., 2012). Research has reliably shown anxiety 

biases the processing of faces (Robinson et al., 2011; Surcinelli et al., 2006), a highly 

salient feature of the environment for (highly social) humans. Consequently, 

neuroimaging experiments of anxiety have predominantly utilized face-perception 

tasks, often focussing on amygdala activation. There are numerous studies 

demonstrating increases in amygdala response to faces parametrically scales with 

affective bias (i.e., fear/anxiety; de Groot et al., 2020; Killgore & Yurgelun-Todd, 2005; 

Somerville et al., 2004) and is seen in the presence of anxiety disorders (Cooney et 

al., 2006). Subsequent research has demonstrated, however, that within-subject 

amygdala response across time holds moderate-to-poor reliability (Nord et al., 2017; 

Sauder et al., 2013). Taking a modular, amygdala-centric view may indeed be over-

simplistic, and unable to sufficiently capture biological dynamics underlying anxiety. 

Instead, a more holistic explanation may come from studying the wider circuitry 

associated with the amygdala. 

There is now substantial evidence from the animal literature implicating 

amygdala-prefrontal circuitry in threat processing (for a review, see Robinson et al., 

2019), wherein dorsomedial prefrontal/anterior cingulate cortex (dmPFC/ACC) 

provides top-down entrainment of amygdala reactivity, and this bears importance for 

responding to potential threat (Karalis et al., 2016). Recruitment of this circuit has also 

been demonstrated in human subjects: increased amygdala-dmPFC/ACC coupling 

during the processing of fearful faces has been demonstrated in humans undergoing 

induced anxiety (Robinson et al., 2012). Notably, this coupling positively correlates 

with self-report measures of anxiety symptoms and may constitute a more temporally 

stable signal than amygdala reactivity alone (Nord et al., 2019). This circuitry is posited 

to drive anxiety-induced amplification of salient stimuli; thus, excessive recruitment of 

this circuitry could result in chronic attentional biases for threat (Robinson et al., 2012). 

The implication of this ‘aversive amplification’ circuit in humans has been replicated 

elsewhere, such as in: clinical samples (Demenescu et al., 2013; Robinson et al., 

2014), resting-state analyses (Vytal et al., 2014), emotion regulation tasks (Zotev et 

al., 2013), and predator-prey paradigms (Gold et al., 2015). Of course, other fMRI 
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paradigms have demonstrated anxiety-dependent amygdala connectivity to regions 

such as ventromedial prefrontal cortex (M. J. Kim et al., 2011) and insula (Roy et al., 

2013). Nonetheless, increased amygdala-dmPFC/ACC coupling is a consistent 

finding, and as such, is a commonly adopted model for biomarker-focused anxiety 

research (Brehl et al., 2020; Grillon et al., 2019; Yuan et al., 2016). 

Despite a multitude of fMRI studies investigating the neural substrates of 

anxiety, a methodological gap remains in the literature. Research has predominantly 

relied on static, unnatural face stimuli presented without any context. These paradigms 

deviate from the natural perception of faces in day-to-day settings (Barrett et al., 2007) 

and may lead to misclassification of expressions, particularly those of fearful/sad faces 

(Carlisi et al., 2021). Such tightly-controlled experiments could lead to theory that may 

overlook dynamic, context-dependent networks in the brain (Skipper, 2014; 

Sonkusare et al., 2019; Spiers & Maguire, 2008). Previous studies have built a 

fundamental understanding of core threat circuitry, but whether anxiety-related brain 

activity in less constrained settings can be explained by current theory has yet to be 

established.  

The recent uptake in ‘movie fMRI’ paradigms—where participants watch real 

movies whilst in the fMRI scanner—allows the opportunity to address some of these 

concerns. This method may help validate and extend current models of anxiety, 

improve data quality, and inform biomarker-based research (Eickhoff et al., 2020; Finn 

& Bandettini, 2021; Hasson et al., 2010; Vanderwal et al., 2019). Indeed, two studies 

so far have demonstrated within-subject amygdala-prefrontal coupling during anxiety-

inducing movie scenes (Hudson et al., 2020; Kinreich et al., 2011). To my knowledge 

however, there exists no study investigating whether between-subject differences (i.e., 

self-reported symptoms of anxiety) in amygdala-prefrontal circuitry are seen in 

ecologically-richer contexts. Therefore, in the present preregistered two-experiment 

study, I investigated the relationship between self-reported anxiety and amygdala-

connectivity in two independent movie-watching fMRI datasets. 

 

Database Summary 

In the present project, I used two openly available databases which include movie 

fMRI, the Naturalistic Neuroimaging Database (Aliko et al., 2020; experiment 1) and 
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Human Connectome Project (Van Essen et al., 2013; experiment 2). A table describing 

participants and fMRI sequences is provided for comparisons (table 2.1). Both 

databases required participants to have no history of psychiatric or neurological 

illness. This information is elaborated on within experiment-specific reporting. 

Distributions of anxiety scores (from the NIH Toolbox’s Fear-Affect CAT Age 18+; NIH 

Toolbox, n.d.) are also provided (figure 2.1). 

 

Figure 2.1. Raincloud Plots (M. Allen et al., 2019) of anxiety scores for the Naturalistic 

Neuroimaging Database (NNDB) and Human Connectome Project (HCP): jittered data 

points represent individual participants, box plot hinges mark 25th/50th/75th 

percentiles, box whiskers indicate 1.5*interquartile range, and density plots represent 

smoothed distribution.  
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Table 2.1. Key cross-experiment comparisons. Columns (left to right) refer to: 

databases used; participant N (including gender and age-range); MRI magnet 

strength; repetition time; echo time; flip angle; voxel size; multiband acceleration; 

phase encoding direction. 

Database N Magnet TR TE FA Voxels MB Phase 

NNDB 86 (42 F/44 
M; 18–58 

years) 

1.5T 1000ms 54.8ms 75° 3.2mm3 4 A->P 

HCP 178 (108 
F/70 M; 22-
31+ years) 

7T 1000ms 22.2ms 45° 1.6mm3 5 Variable 

 

 

Experiment 1 Hypotheses (Naturalistic Neuroimaging Database) 

Based on the ‘aversive amplification’ circuitry hypothesis (Robinson et al., 2014), I 

preregistered the following predictions in regard to my analyses of the Naturalistic 

Neuroimaging Database: 

1. Self-reported symptoms of anxiety will positively correlate with face-dependent 

dmPFC-left amygdala functional connectivity. 

2. Self-reported symptoms of anxiety will positively correlate with face-dependent 

dmPFC-right amygdala functional connectivity. 

 

Experiment 2 Hypotheses (Human Connectome Project) 

Prior to reanalysis in the updated naturalistic neuroimaging database (see Methods), 

I previously observed depleted amygdala-cingulate and -middle frontal gyrus 

connectivity as a function of anxiety. This effect was no longer apparent following 

reanalysis with updated preprocessing (reported below). As such, I hypothesized a 

similar effect on an independent dataset to provide out-of-sample validation. 

Specifically, I predicted: 
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1. Self-reported symptoms of anxiety will negatively correlate with seed-based 

amygdala-dmPFC functional connectivity during movie-watching. 

2. Self-reported symptoms of anxiety will negatively correlate with seed-based 

amygdala-middle frontal gyrus functional connectivity during movie-watching. 

 

2.3 Methods 

Preregistration 

My planned analyses were preregistered. Along with my code, these are available on 

the Open Science Foundation (https://osf.io/345nj/). 

 

Datasets 

Naturalistic Neuroimaging Database (Experiment 1) 

I conducted analyses on the Naturalistic Neuroimaging Database (Aliko et al., 2020). 

In brief, the database contains a set of 86 right-handed participants (42 females; aged 

18–58 years, M = 26.81, SD = 10.09) viewing entire movies whilst under functional 

MRI. Participants watched one movie during scanning, and the movie varied between 

participants (10 movies in total; minimum length = 92 min; maximum length = 148 min; 

table 2.2). Scanning was conducted on a 1.5 T Siemens MAGNETOM Avanto (T2*-

weighted images: TR = 1000ms, TE = 54.8ms, Slices = 40; FA = 75°, voxel size = 

3.2mm3, MB = 4). The functional data had already been preprocessed using the 

following steps: slice-time correction; volume registration; registration of functional 

images to warped anatomical scan; spatial smoothing to 6 mm FWHM; normalization; 

and manual ICA artifact rejection. The use of ICA-denoising is particularly relevant to 

my analyses in addressing physiological confounds (e.g., respiration) that would 

otherwise be of relevant concern (Chang & Glover, 2009; Glasser et al., 2019). For a 

full overview of database details, see (Aliko et al., 2020). 

Since preregistering my analyses, the naturalistic neuroimaging database 

released a new version (v2.0), which contains a fix for an issue with timeseries scaling 

for runs of different lengths as well as the implementation of a standardized 

preprocessing pipeline, ‘afni_proc.py’. In the present manuscript, I summarize my 

https://osf.io/345nj/
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original findings under results and report the updated analyses. The full reporting of 

my original results can be found in the preprint (Kirk et al., 2021, version 1). 

 

Stimulus Onsets. Word onset and face data from the movies was extracted 

using Amazon Web Services’ Transcribe (https://aws.amazon.com/transcribe/) and 

Rekognition (https://aws.amazon.com/rekognition/). Detected face and word onsets 

had an associated confidence score for being correct (0–100%). For this, I selected 

an arbitrary threshold of 90%. Across movies, an average of 92.7% (SD = 2.63%) of 

faces detected fell within this threshold (table 2.2). Rekognition has been shown to 

perform well in naturalistic detection of faces (Hsu & Chen, 2017). Transcribe word 

information was matched and aligned with subtitle information (see Aliko et al., 2020). 

To further validate the accuracy of the face and word detection algorithms, I specified 

confirmatory contrasts, wherein I saw expected fusiform and auditory cortex activation 

respectively (figure 2.2). Face and word onsets had variable durations. For the 

purposes of obtaining psychophysiological interaction terms, onsets were resampled 

into stable 200 ms windows (5 Hz). 

 

Behavioural Data. Approximately two weeks prior to scanning, participants 

completed questionnaires from the NIH Toolbox (NIH Toolbox, n.d.). Of relevance to 

the present study, this included an emotion battery (Salsman et al., 2013). Here, I used 

the Fear-Affect CAT Age 18+ uncorrected T-scores. The questionnaire measures 

“symptoms of anxiety that reflect autonomic arousal and perceptions of threat” (NIH 

Toolbox, n.d.). This holds convergent validity with other, commonly used anxiety 

questionnaires (Salsman et al., 2013; Schalet et al., 2014). 

 

  

https://aws.amazon.com/transcribe/
https://aws.amazon.com/rekognition/
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Table 2.2. Naturalistic Neuroimaging Database summary: movie watched, number 

of subjects, movie length, and the proportion of detected faces that fell within my 

confidence threshold. 

Movie N Duration 
(mins) 

Proportion of faces over 90% 
confidence 

500 Days of Summer 20 91.17 95% 

Citizenfour 18 113.40 94% 

12 Years a Slave 6 128.53 91% 

Back to the Future 6 111.23 92% 

Little Miss Sunshine 6 98.33 91% 

The Prestige 6 125.25 91% 

Pulp Fiction 6 148.03 91% 

The Shawshank 
Redemption 

6 136.35 89% 

Split 6 112.32 97% 

The Usual Suspects 6 101.70 96% 

 

Human Connectome Project 7T Dataset (Experiment 2) 

The Human Connectome Project is a large-scale database of multimodal MRI data 

(Van Essen et al., 2013). Within the database is a subset of functional scans (n = 184; 

runs = 4) collected with a 7T Siemens MAGNETOM whilst participants watched movie 

scenes across 4 sessions/2 days (TR = 1000ms, TE = 22.2 ms, slices = 85; FA = 45°, 

voxel size = 1.6mm3, MB = 5). Participants watched 14 movie clips (duration range = 

65-255s) interspersed with 22 rests (20s) and 4 repeated video validation clips (83s). 

I provide a summary below (table 2.3; for full details, see 

https://protocols.humanconnectome.org/HCP/7T/). This constituted the dataset for 

experiment 2. Six subjects had at least 1 run of movie data missing. These were 

excluded, leaving a final n = 178. 

 

  

https://protocols.humanconnectome.org/HCP/7T/
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Table 2.3. Presentation order for Human Connectome Project movie-watching data. 

All clips were preceded and followed by 20s rest. 

Day 1 Day 2 

Block 1 Block 2 Block 3 Block 4 

Two Men (244s ) Inception 

(227s) 

Off The Shelf 

(181s) 

Home Alone (232s) 

Welcome To 

Bridgeville (222s) 

Social Network 

(259s) 

1212 (185s) Erin Brockovich 

(230s) 

Pockets (188s) Ocean’s Eleven 

(249s) 

Mrs. Meyer’s Clean 

Day (204s) 

The Empire Strikes 

Back (255s) 

Inside The Human 

Body (64s) 

Validation clip 

(83s) 

Northwest Passage 

(143s) 

Validation clip (83s) 

Validation clip (83s) 
 

Validation clip (83s) 
 

 

Preprocessing. The data available was already preprocessed using a minimal 

pipeline (fMRIVolume: gradient-distortion correction, FLIRT-based motion correction, 

TOPUP-based unwarping, coregistration, transformation to MNI, intensity 

normalization & bias field removal; (Glasser et al., 2013). In addition to these steps, I 

smoothed the data to 6mm FWHM (‘3dBlurToFWHM’; masked in subject-specific grey 

matter) to match the smoothness of the data in experiment 1. Key differences to the 

preprocessing performed on the Naturalistic Neuroimaging Database are: the use of 

TOPUP-based unwarping; lack of ICA-denoising (in volume-based data); and lack of 

slice-time correction. 

 

Behavioral and Demographic Data. The Human Connectome Project also 

used the NIH Toolbox, and thus contains the Fear-affect CAT 18+ uncorrected T-

scores which I used for my analyses. Human Connectome Project age data is provided 

in pseudonymized brackets (22-25; 26-30; 31-35; 36+). For the purposes of my 

regressions, these were coded as categorical factors. As certain age by gender cells 

did not have sufficient N to run my group-level model (relevant N’s: 22-25 years 
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females = 1; 36+ years females = 2; 36+ years males = 0), ages were re-coded into 

two brackets (22-30 years, M = 56, F = 51; 31+ years, M = 14, F = 57). 

 

Analyses 

fMRI time series extraction and modelling were conducted in AFNI (Cox, 1996). 

Relevant AFNI functions are denoted in parentheses. Due to memory constraints, 

within-subjects analyses were conducted on sections of slices at a time (‘3dZcutup’). 

Beta-weight outputs were then concatenated back into whole-brain maps (‘3dZcat’) 

before group-level analysis. All analyses used two-sided tests thresholded at α=.05. 

 

Regions of Interest Masks 

My key regions of interest include the amygdala and dorsomedial prefrontal cortex 

(dmPFC). My amygdala ROIs were selected through individual anatomical 

parcellations of T1 images in Freesurfer (Fischl, 2012). ROI masks were visually 

inspected for successful segmentation. My dmPFC ROI was a functional mask from a 

recent meta-analysis of anxiety (Chavanne & Robinson, 2021; ‘patients>controls 

20mm’ at ~[0 25 40]). 

 

Naturalistic Neuroimaging Database Modelling 

My within-subjects models were constructed using generalized psychophysiological 

interactions (McLaren et al., 2012). This enabled me to test context-dependent 

connectivity with amygdala above and beyond task-related activation and covariation 

with the raw amygdala time series. In line with AFNI recommendations 

(https://afni.nimh.nih.gov/CD-CorrAna), I conducted the following preparatory pipeline 

for each subject: 1) extract time series of amygdala (‘3dmaskave’); 2) upsample to 

resolution of stimuli onsets (‘1dUpsample’); 3) deconvolution of seed time series 

(‘waver’, basis function = BLOCK, then ‘3dTfitter’); 4) obtain and convolve interaction 

terms for stimuli onsets (‘1deval’, then ‘waver’, basis function = BLOCK); and 5) 

downsample interaction terms to resolution of TR (‘1dcat’). I built my 1st level design 

matrices (‘3dDeconvolve’, -mask “sub-*_T1w_mask”) inputting 9 regressors: face 

onsets convolved with a hemodynamic response function (HRF; basis function = 

dmBLOCK), HRF-convolved word onsets (basis function = dmBLOCK), left amygdala 

seed time series, right amygdala seed time series, left amygdala face interaction term, 

https://afni.nimh.nih.gov/CD-CorrAna
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right amygdala face interaction term, left amygdala word interaction term, right 

amygdala word interaction term, and a constant (-polort 0). 

I constructed a group-level matrix using AFNIs multivariate modelling 

(‘3dMVM’) with 1st-level beta-weight maps inserted as within-subject variables (‘-

wsVars’). Anxiety, gender, age, and movie watched were inputted as between-subject 

regressors (‘-bsVars’). The inclusion of the latter regressors in my model allowed me 

to test differences above and beyond those induced (linearly) by specific movies, age, 

and/or gender. All analyses were coded as general linear tests (‘-gltCode’). My whole-

brain analyses used t-tests with an initial cluster-defining threshold of puncorr.<.001 

before whole-brain cluster correction (‘3dFWHMx’ with group residuals, ‘3dClustSim’; 

i.e., k >= 10.4). 3dMVM and 3dClustSim were constrained using subject-wide 

averaged masks (“sub-*_T1w_mask”; ‘3dMean’). Whole-brain results are reported in 

MNI space.  

Given that my hypotheses sought to test a specific functional landmark within 

the medial prefrontal cortex, whole-brain statistical correction could have been overly 

conservative. As such, I also conducted ANCOVAs of dmPFC-averaged betas for my 

main hypothesis-testing in the Naturalistic Neuroimaging Database.  

 

Human Connectome Project Modelling 

I first removed effects of no interest from raw time series for each run using 

‘3dDeconvolve’ by including baseline terms with drift (-polort A) and 12 motion 

parameters (raw + temporal derivatives) as regressors to produce a cleaned, error 

time series. I then extracted amygdala seeds (‘3dmaskave’) from the cleaned time 

series before computing left and right amygdala-whole brain beta-weights and 

correlation maps (‘3dDeconvolve’; ‘3dcalc’; r maps were Fisher z-transformed). 

Volumes which included majority rest or validation clips (i.e., assigning 0 to TRs in 

seed regressors). The first 10 seconds of movie volumes were also excluded to rule 

out influence from rests. 

I took within-subjects amygdala time series beta-weight maps and whole-brain 

correlations forward to a group-level model (‘3dMVM’; Chen et al., 2014) with anxiety 

scores, age, gender, and run as regressors. This was again masked within a grey 

matter mask (average Freesurfer-derived grey matter segmentations). Whole-brain 

analyses employed cluster-level correction (‘3dClustSim’) using a spatial 

autocorrelation function estimated from group-level residuals (‘3dFWHMx’). I 
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inspected results using contrast-specific two-sided t-tests at two levels of voxel-wise 

correction: puncorr.<.01, and puncorr.<.05, which resulted in cluster thresholds of k >= 

431.7 and k >= 1913.7 respectively.  

For post-hoc exploratory-testing, I also made use of a canonical 400 parcel-

level segmentation (Schaefer et al., 2018). Linear models including anxiety scores, 

age, and gender and regressors were conducted for each movie clip (14) by amygdala 

connection (2) by parcel (400) combination (total = 11200). Beyond this, I did not 

submit these to formal hypothesis-testing; rather, I visualized amygdala connectivity x 

anxiety t scores on a per clip basis to aid in interpretation of my results. 

 

Control Analyses. I additionally included post-hoc control analyses to test 

whether observed connectivity results were driven by anxiety-correlated noise across 

both datasets. I reconducted my analyses using calcarine sulcus as a seed (instead 

of amygdala). This was to test whether any of my anxiety-dependent 

psychophysiological or seed results may be a product of global signal correlations, 

rather than an effect specific to amygdala connectivity.  

 

Deviations from Preregistration 

I note the following deviations from preregistration for the Naturalistic Neuroimaging 

Database: 

 I did not preregister a plan to handle centering for the purposes of my group-

level intercepts. Anxiety scores were mean-centered. As age showed a strong 

positive skew this was median-centered for the purposes of group-level 

intercepts. 

 I preregistered to construct multiple group-level models using F tests. However, 

I streamlined this by having a single coherent group-level model, coding two-

sided t-tests for planned analyses whilst retaining the same statistical 

thresholding. This was done to provide directionality (e.g., increased vs 

decreased connectivity). 

 I decided to re-inspect my results at more liberal voxel-wise thresholds in order 

to investigate relatively more diffuse effects (Cox, 1996). I also included a word 

by anxiety correlation in the analysis. Post-hoc tests are noted within text. 
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 As the intersection of between-subjects grey matter resulted in an overly thin 

mask, I changed required overlap from 100% to 95% of participants. 

 In the present manuscript, I summarize my original findings and report the 

updated analyses for version 2 of the naturalistic neuroimaging database. The 

full reporting of my original results can be found in the preprint (Kirk et al., 2021, 

version 1). 

 The control analysis was conducted post-hoc. 

 

I note the following deviations from preregistration for the Human Connectome Project 

dataset: 

 I preregistered to code ages into four categories. However, as certain gender 

by age cells did not have sufficient N to run my model, I collapsed ages into two 

categories (see behavioral/demographic data). 

 As the intersection of between-subjects grey matter resulted in an overly thin 

mask I changed required overlap from 100% to 95% of participants. 

 ROI and control analyses were conducted post-hoc. 

 

2.4 Results 

Naturalistic Neuroimaging Database Version 1 Results 

I originally conducted my analyses on the Naturalistic Neuroimaging Database using 

an earlier version of the dataset (V1). As my updated analyses (on NNDb V2) altered 

my inference, I report here a brief summary of the relevant original findings. Firstly, I 

saw no correlations with anxiety scores for face onsets. For my hypothesized seed-

based functional connectivity analyses, I did not observe any correlations between 

psychophysiological interactions and anxiety scores. I did not observe effects of 

anxiety on seed-based functional connectivity at my initial voxel-wise threshold. I then 

re-inspected results with more liberal voxel-wise thresholding (p < .01, p < .05; cluster-

corrected). For my seed regressors, I observed correlations between anxiety and: right 

amygdala-anterior/mid cingulate (voxel-wise p <.05, peak = [1 43 13], 273 voxels) and 

left amygdala-right anterior middle frontal gyrus connectivity (voxel-wise p < .05, peak 

= [31 58 22], 175 voxels; lateral Brodmann area 10). Contrasting these results with 
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main effects suggested these were functionally excitatory connections independent of 

faces/words, but were depleted as a function of anxiety.  

 

Activation-based Analyses (Naturalistic Neuroimaging Database Only) 

To provide a basic characterization of the naturalistic neuroimaging dataset and 

validate the use of my onset regressors, I ran two-tailed t-tests for altered activation to 

1) faces and 2) words. As expected, I saw increased activation to faces in fusiform gyri 

(peak = [40 -89 -17], 1133 voxels), notably overlapping with meta-analytic fusiform 

face area activation (peaks = [39 -53 -22; -40 -54 -23]; (Aliko et al., 2020; Berman et 

al., 2010). I did observe separate clusters of reduced lingual/fusiform gyri activation to 

faces (left peak = [-29 -50 -8], 634 voxels; right peak = [28 -56 -8], 676 voxels), though 

these were more distal to typical face-selective activation. In regard to word onsets, I 

saw increased activation in primary auditory cortices/superior temporal gyrus (left peak 

= [-68 -11 4], 2092 voxels; right peak = [67 -5 1], 1379 voxels; figure 2.1.2). 

I saw two cluster-corrected positive correlations with anxiety scores for faces in 

superior parietal lobe (left peak = [-29 -68 64], 18 voxels; right peak = [34 -65 58], 23 

voxels). For my post-hoc word onset analysis, I observed a cluster in left auditory 

cortex to negatively correlate with anxiety scores (peak = [-65 -32 16], 34 voxels). 
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Figure 2.2. Whole-brain results (puncorr.<.001, cluster-corrected at k >= 11; red voxels 

= increased activation, blue voxels = reduced activation) demonstrating brain 

activations to faces and words and how activation to these stimuli correlate with self-

reported anxiety.  
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Face-Dependent Amygdala Connectivity (Naturalistic Neuroimaging Database 

Only) 

For PPI main effects, I observed increased connectivity as a function of faces, notably 

increased connectivity between amygdala and dmPFC (figure 2.3). I also observed 

effects of increased amygdala connectivity as a function of words in medial prefrontal 

cortex (left and right amygdala terms) and auditory cortex/superior temporal gyrus 

(right amygdala only). 

For my hypothesized connectivity analyses, I did not observe any cluster-

corrected correlations with anxiety scores. As whole-brain statistical correction could 

be overly conservative, I conducted ROI analyses to test my hypotheses. Congruent 

with the whole-brain tests, ROI ANCOVAs also failed to demonstrate a significant 

effect of anxiety. I repeated analyses post-hoc with more liberal voxel-wise threshold 

(p < .01 & p < .05; cluster-correction thresholds = 35.8 & 144.9 respectively. I observed 

a positive correlation between anxiety scores and face-dependent amygdala-superior 

temporal sulcus connectivity (voxel-wise p < .05; left peak = [-68 -11 4], 250 voxels; 

right peak = [61 -20 16], 223 voxels). 
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Figure 2.3. Whole-brain results (puncorr.<.001, cluster-corrected at k >= 11) 

demonstrating increased amygdala connectivity as a function of faces and spoken 

words.  

 

Seed-Based Functional Connectivity 

Naturalistic Neuroimaging Database 

I conducted two preregistered, exploratory left and right amygdala seed-whole brain 

correlations. This tested for effects of amygdala connectivity independent of specific 

stimuli (i.e., faces and words) within movies. For the left amygdala seed term, I saw 

increased left amygdala-inferior occipital gyrus connectivity as a function of anxiety 

(peak = [-53 -77 -5], 12 voxels). Following more liberal, post-hoc thresholding, I also 

saw increased left amygdala-middle frontal gyrus connectivity (voxel-wise p < .01, 

peak = [-41 37 43], 40 voxels) and right amygdala-middle temporal gyrus connectivity 

(voxel-wise p < .05, peak = [58 -71 10], 195 voxels) as a function of anxiety. 
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Human Connectome Project  

I observed main effects of amygdala seeds partially consistent with the previous 

experiment (figure 2.4), including positive connectivity to fusiform face area, prefrontal 

cortex, and cingulate gyrus. However, I did not observe any corrected correlations 

between anxiety scores and seed connectivity in whole-brain analyses. 

 

Figure 2.4. Whole-brain results (puncorr.<.001, cluster-corrected; red voxels = 

increased activation, blue voxels = reduced activation) demonstrating main effects of 

amygdala-whole brain seed connectivity. 

  

I reconducted the above analyses using Fisher z-transformed correlation 

coefficients instead of beta-weights. This did not alter inference. Another property of 

the HCP dataset was that the runs used different phase encoding directions (runs 1/4 
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= Anterior-Poster, runs 2/3 = Posterior-Anterior). As phase encoding direction is known 

to have an impact on distortions and signal dropout around the amygdala (De Panfilis 

& Schwarzbauer, 2005), the variable phase encoding employed in the present dataset 

could mask results collapsed across runs. As such, I preregistered additional analyses 

to test effects of anxiety on runs which used Anterior-Posterior and Posterior-Anterior 

phase encoding separately. For runs with AP phase only (congruent with the 

Naturalistic Neuroimaging Database) I observed two cluster-corrected (i.e., voxel-wise 

p < .05, k < 1913.7), anxiety-relevant results: a heightening of left amygdala-right 

fusiform/cerebellum connectivity (peak = [36 -59 -46], 2043 voxels) and a degradation 

of right amygdala-right fusiform/cerebellum connectivity (peak = [37 -78 -19.2], 1950 

voxels). Neither of these clusters were apparent in runs which used PA phase. 

 

Control Analyses 

For my calcarine connectivity control analysis, I did not find any correlations with 

anxiety across all voxel-wise thresholds (.001, .01, .05) in both the Naturalistic 

Neuroimaging Database and Human Connectome Project. This suggested my 

previous anxiety-relevant connectivity results were not driven by global noise (e.g., 

motion; though this assumes between-subject differences in BOLD artifacts are 

consistent across the whole brain). 

 

Clip-Level Analysis 

For my clip-level analysis, I did not submit clip by parcel model outputs to any formal 

statistical testing. For descriptive, exploratory purposes only, I note variability in the 

number of parcels surpassing uncorrected significant thresholds across the clips 

(range = 7:72; table 2.4; figure 2.5). 
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Table 2.4. Movie clips and the number of amygdala-parcel x anxiety correlations 

surpassing uncorrected p < .05. 

Clip No. Parcels < .05 Clip No. Parcels < .05 

1212 7 Empire Strikes Back 28 

Mrs Meyers Clean Day 7 Erin Brockovich 34 

Social Network 14 Pockets 43 

Welcome to Bridgeville 16 Two Men 44 

Northwest Passage 24 Ocean’s Eleven 49 

Home Alone 25 Inception 67 

Inside the Human Body 27 Off the Shelf 72 

 
 
 

 
Figure 2.5. Left and right amygdala connectivity (2 x 400 parcels) x anxiety t-scores 

per movie clip. Clips (x axis) ordered by number of amygdala-parcels demonstrating 

uncorrected significance (p < .05). 
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2.5 Discussion 

This project was motivated by an amygdala-prefrontal model of threat-processing. 

Initially evidenced by the rodent literature (see Robinson et al., 2019), this model 

outlines an excitatory amygdala-prefrontal circuit which drives harm avoidance 

(Robinson et al., 2014). fMRI work has implicated a homologous circuit in humans: 

experiments have demonstrated amygdala-prefrontal coupling to faces appears 

increased whilst under threat of shock, the degree of which correlates with self-

reported anxiety (Robinson et al., 2012). In the present preregistered two-experiment 

study, I sought to extend this model of anxiety to naturalistic settings through means 

of movie fMRI. To this end, I correlated face-dependent connectivity with self-reported 

anxiety symptoms in a movie-watching database. In my original analyses, seed-based 

functional connectivity analyses suggested self-reported anxiety to correlate with 

degraded amygdala-dmPFC coupling, but only when using post-hoc thresholding. 

However, I failed to replicate this effect in a second dataset. Moreover, this effect 

dissipated when using an updated version of the database with improved 

preprocessing, thus I do not infer this as a stable finding. Following reanalysis in the 

updated database, I observed anxiety-relevant correlations with stimulus-onset 

activation, but did not observe robust alterations in connectivity. 

 Within the main effects tests of whole-brain activation (experiment 1), I report 

expected engagement of fusiform gyrus and auditory cortex to faces and spoken 

words respectively. In addition to replicating previously observed effects, this mitigated 

concerns regarding the accuracy of the stimulus-detection algorithm to adequately 

detect face and spoken word onset information. Moreover, I noted two correlations 

with anxiety. As a function of anxiety, I saw greater face-dependent bilateral superior 

parietal activation and reduced spoken word-dependent activation in left auditory 

cortex. As these were not hypothesized clusters, I do not comment on these further, 

but—given that these effects passed a priori thresholding—future work should seek to 

test whether these effects are apparent in an independent sample. 

 For my psychophysiological interaction analyses, I observed widespread main 

effects. This included increased face-dependent connectivity to inferior frontal gyri, 

medial prefrontal cortex, and superior temporal gyri. I did not see correlations between 

anxiety and connectivity in my hypothesized regions, though inspection of results with 

post-hoc thresholding implicated increased face-dependent amygdala-superior 
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temporal sulcus connectivity as a function of anxiety. I also conducted seed-based 

functional connectivity analyses across two datasets. I did not observe any cluster-

corrected results at my preregistered voxel-wise threshold. Using post-hoc thresholds, 

I noted anxiety-relevant amygdala-middle frontal and -middle temporal connectivity in 

experiment one, and amygdala-fusiform connectivity in experiment two. Given the lack 

of overlap between these studies and the use of post-hoc thresholds, I do not make a 

strong inference regarding these results. I emphasize however that differences in 

movie content and length between these two datasets should be considered for future 

studies wishing to provide replications and/or out-of-sample validation. 

Across the psychological sciences, our theories and models are built on the 

foundations of highly controlled studies (Yarkoni & Westfall, 2017). Said experimental 

designs were driven by the need for adequately controlling potential confounds. 

However, this comes with the cost of limited contextual generalizability. Indeed, the 

present results highlight a discrepancy when utilizing relatively more naturalistic 

stimuli. It may be that harm avoidance circuitry is not maximally engaged during face 

perception. Instead, said processing may occur more broadly for generally salient 

information in the environment (though the seed-based functional connectivity 

analyses did not evidence this). My work has further emphasized the need within 

affective neuroscience to scrutinize what components of theories do and don’t extend 

to ecologically-richer settings.  

While it has become apparent that movie fMRI can evoke relatively more stable, 

richer, and clinically insightful functional networks (Eickhoff et al., 2020; Finn & 

Bandettini, 2021; Meer et al., 2020), the present study highlights the need for careful 

consideration of stimulus complexity when modelling dynamic movie fMRI data. I was 

unable to explore the temporal properties (e.g., emotional content) with the data 

available. However, when I re-analyzed data on a scene-by-scene basis, the results 

implied that differences may occur as a function of movie stimulus. Given that 

individual differences in anxiety may be most prominent within threatening 

environments, directly modelling dynamic, canonical valence/arousal ratings may 

increase sensitivity to these effects (as has been demonstrated within the depression 

literature: Gruskin et al., 2020). Moreover, said dynamics may be nested throughout 

multiple features of the movies, ranging from overall emotional tension to specific 

content within faces (e.g., novelty, expression).  



 

62 

Alternatively, traditional approaches to fMRI analyses (i.e., feature-based GLM) 

may be particularly constrained when attempting to capture anxiety-relevant neural 

systems during movie-watching. One possible avenue for future work would be to 

bridge data- and hypothesis-driven approaches through the use of techniques such as 

intersubject representational similarity analysis (P.-H. A. Chen et al., 2020). This may 

help implicate whether previously reported anxiety-relevant brain circuitry is engaged 

during movie-watching without the need for assumptions regarding stimulus features 

or hemodynamic response. 

 I also highlight here the tools used to assess anxiety in the present project. 

Though the NIH toolbox offers a useful battery for a wide assessment of 

cognitive/affective domains, this was a computerized adaptive questionnaire that 

typically administers far fewer questions than more standardized anxiety 

questionnaires, such as the state-trait anxiety inventory (Spielberger, 1983), which 

may be more appropriate for detecting subtle differences along the continuum of 

anxiety severity. It may also be plausible that the two dimensions of state vs trait 

anxiety may reveal dissociable effects, though I have previously noted these two 

measures (as assessed by questionnaires) to correlate very highly (r = .83; see Kirk, 

Robinson, & Gilbert, 2021). Consequently, the dissociation of these may be further 

elucidated through correlations with both questionnaires and regressors marking tonal 

shifts throughout movie stimuli. I also note the non-clinical nature of the present 

project. Given that individuals demonstrating particularly high anxiety may avoid 

volunteering for fMRI studies (Charpentier et al., 2021), explicit comparisons between 

individuals with anxiety disorders and healthy controls may reveal differences not 

apparent here. 

 Finally, I highlight that several of my results presented were detected using 

post-hoc voxel-wise thresholds. As such, conclusions regarding these effects should 

be tentative. Furthermore, I also note that my results indicate preprocessing steps 

(experiment 1 v1 vs v2) and scanning parameters (experiment 2) likely impact the 

sensitivity of detecting effects of anxiety. Future work interested in investigating 

amygdala-prefrontal connectivity in movie fMRI should pay particular attention to how 

the sensitivity of the BOLD signal in medial temporal lobe and prefrontal cortices may 

be impacted by preprocessing and sequence parameters. Given this limitation, it is not 

possible within the constraints of the present project to rule out the role of this circuitry 
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in anxiety-related face processing. Nonetheless, I believe the present work has laid 

foundations to help guide future movie fMRI work into anxiety. 

 

Conclusion 

My project aimed to test whether an amygdala-prefrontal threat-processing model of 

anxiety could extend to naturalistic stimuli. I noted effects of anxiety on face-dependent 

superior parietal activation and word-dependent auditory cortex activation. However, I 

failed to find a correlation between face-dependent amygdala-prefrontal coupling 

during movie-watching and self-reported anxiety. Seed analyses also did not reveal 

robust effects of anxiety-relevant amygdala-cingulate connectivity. Overall, this work 

tempers the proposed role of this circuitry in anxiety and highlights the importance of 

testing predictions derived from experimentally constrained contexts in more 

naturalistic settings to ensure generalizability. 
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3. Amygdala-Prefrontal Dynamics and Suspense  

3.0 Preface 

In chapter 2, I failed to find evidence of an association between trait anxiety and 

amygdala-prefrontal responses to faces during movies. One potential explanation is 

that trait anxiety may be primarily associated with altered brain responses only 

following state anxiety induction. As such, in chapter 3, I sought to use a more dynamic 

approach which incorporated ongoing emotional dynamics within movies. I focus on 

suspense as a naturalistic mode of anxiety induction. In this chapter, I test whether the 

association between individual differences in trait anxiety and amygdala-dmPFC 

responses is emerge primarily during highly suspenseful scenes in movies. 

 

For the final published versions of this study, please refer to the below reference: 

Kirk, P. A., Holmes, A. J., & Robinson, O. J. (2022). Anxiety Shapes Amygdala-

Prefrontal Dynamics During Movie-Watching. Biological Psychiatry Global Open 

Science. https://doi.org/10.1016/j.bpsgos.2022.03.009  

 

  

https://doi.org/10.1016/j.bpsgos.2022.03.009
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3.1 Abstract 

A well-characterized amygdala–dorsomedial prefrontal circuit is thought to be crucial 

for threat vigilance during anxiety. However, engagement of this circuitry within 

relatively naturalistic paradigms remains unresolved. Using an open functional 

magnetic resonance imaging dataset (Cambridge Centre for Ageing Neuroscience; n 

= 630), I sought to investigate whether anxiety correlates with dynamic connectivity 

between the amygdala and dorsomedial prefrontal cortex during movie-watching. 

Using an intersubject representational similarity approach, I saw no effect of anxiety 

when comparing pairwise similarities of dynamic connectivity across the entire movie. 

However, preregistered analyses demonstrated a relationship between anxiety, 

amygdala-prefrontal dynamics, and anxiogenic features of the movie (‘canonical’ 

suspense ratings). My results indicated that amygdala-prefrontal circuitry was 

modulated by suspense in low-anxiety individuals but was less sensitive to suspense 

in high-anxiety individuals. I suggest that this could also be related to earlier 

anticipation  or slowed disengagement to suspense. Moreover, a measure of threat-

relevant attentional bias (accuracy/reaction time to fearful faces) demonstrated an 

association with connectivity and suspense. Overall, this study demonstrated the 

presence of anxiety-relevant differences in connectivity during movie-watching, 

varying with anxiogenic features of the movie. Mechanistically, exactly how and when 

these differences arise remains an opportunity for future research. 
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3.2 Introduction 

Studies to date have outlined an amygdala-dorsomedial prefrontal circuit that may 

underlie threat processing (Milad et al., 2007; Robinson et al., 2012). Conditioning 

paradigms have demonstrated this in vitro in both rodents (Vidal-Gonzalez et al., 2006) 

and primates (Taub et al., 2018). Functional magnetic resonance imaging (fMRI) 

studies have provided evidence for the presence of this circuit in humans (Robinson 

et al., 2012; Vytal et al., 2014). Moreover, the degree of engagement appears to 

interact with the affective content of stimuli (e.g., facial expressions) and individual 

differences in trait anxiety (Robinson et al., 2012; Vytal et al., 2014). As such, 

recruitment of this circuit, above and beyond regional activation (Nord et al., 2017, 

2019; Sambuco et al., 2020), is thought to drive attentional amplification of threat-

relevant features in the environment, a core component of anxiety (Robinson et al., 

2014). However, studies to date have primarily investigated this using static stimuli 

(i.e., faces) presented without context. Consequently, the relationship between this 

circuit and anxiety in more dynamic, naturalistic contexts remains poorly understood. 

Extending study of this circuitry to more naturalistic stimuli offers the opportunity to 

validate these findings in more ecologically rich settings and observe how this circuit 

may be modulated as a function of dynamic contextual features. 

A small number of studies have demonstrated anxiety-relevant within-subject 

amygdala-prefrontal coupling during movie-watching. Specifically, these have 

demonstrated increased functional connectivity between the amygdala and 

dorsomedial prefrontal cortex (dmPFC) during fear-inducing/anxiogenic scenes within 

movies (Hudson et al., 2020; Kinreich et al., 2011). However, we know little about how 

individual differences in anxiety interact with this connectivity during movie-watching. 

Therefore, in chapter 2, I explored how between-subject differences in anxiety 

modulated this circuitry. I did not find convincing interactions between circuitry and 

individual differences in anxiety using traditional, static (time-invariant) feature- and 

seed-based approaches. Put more simply, when looking for connectivity patterns that 

were stable (irrespective of specific scenes within movies), I did not see differences 

as a function of anxiety. Given the emotional complexity of movies, an approach that 

is sensitive to ongoing dynamics (e.g., how anxiety-inducing a scene is) within the 

stimuli may be more suitable. 
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Studies have now started to implement intersubject representational similarity 

analysis for movie stimuli (for an introduction to representational similarity analysis, 

see (Kriegeskorte et al., 2008). Broadly speaking, this treats other subjects as a control 

measure for each subject at every point in the movie. By comparing two subjects’ brain 

activity across a movie, I can generate a measure of how neurally similar the two 

subjects were. If differences in neural similarity correlate with differences in self-

reported similarity (i.e., trait anxiety), I can infer that brain activity in region X during 

movie-watching varies as a function of individual difference Y. This technique is 

unconstrained in that it does not rely on traditional onset-convolved regressors, which 

require the researcher to specify exact events. However, unlike stimulus-independent 

analyses, such as seed-based functional connectivity analysis, it remains stimulus 

driven and time locked: the movie elicits a generally shared experience, but similarity 

measures will capture, in this instance, anxiety-relevant deviations from this. This 

approach has demonstrated sensitivity to detecting shared and idiosyncratic 

representations relevant to affective systems (G. Chen et al., 2020; P.-H. A. Chen et 

al., 2020; Finn et al., 2020; Finn & Bandettini, 2021). With a goal of predicting individual 

differences (i.e., self-report scores), it has been argued that this approach allows for 

greater sensitivity for predicting brain-behavior relationships versus traditional resting-

state paradigms (G. Chen et al., 2020). However, despite being sensitive to the 

content within a movie, results do not allow for temporal specificity (which time points 

in the movie are driving effects) because similarity measures are based on 

comparisons across the entirety of movie-viewing. Thus, this approach may offer 

sensitivity for detecting phenotypic variation and clustering, but its ability to inform 

biopsychological theories of affective systems is inherently limited. 

A complementary method to deriving similarity measures across an entire 

movie is through dynamic (time-varying) analyses. This provides information regarding 

neural connectivity at each time point, allowing brain measures to be mapped back 

onto stimulus information (e.g., anxiogenic features). This works in a similar manner 

to the aforementioned analyses (looking at similarity across the entire movie), except 

neural similarity is based on specific time points throughout the movie. Similar to 

traditional techniques (feature-based regression), this allows for inferences 

concerning which time points are driving effects. However, unlike traditional modeling 

approaches, this also makes fewer assumptions regarding properties of the fMRI 
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signal, such as shape of the hemodynamic response across anatomy and time. 

Consequently, this has the potential to increase sensitivity while retaining stimulus-

relevant specificity. Little work has been done in this domain; yet, this approach has 

demonstrated that the relationship between depressive symptoms and brain activity 

(i.e., medial PFC and posterior cingulate) tracks ongoing emotional intensity/valence 

of movie stimuli (Gruskin et al., 2020). It is thus plausible that the impact of trait anxiety 

on connectivity may vary as a function of ongoing anxiogenic features within a movie. 

By one view, impaired amygdala-prefrontal functioning in anxious populations 

might emerge through stable deficits in brain function (as tested within the resting-

state framework). An alternate possibility is that idiosyncrasies in activity/functional 

connections change alongside the emotional content of movies (as evidenced in 

Gruskin et al., 2020). Analogously, it has been demonstrated that increasing cognitive 

demands (via cognitive tasks) boosts brain-based predictions of cognitive variation 

compared with rest (J. Chen et al., 2022; Finn et al., 2017). Likewise, it may therefore 

be that individual differences in trait anxiety only surface within specific emotional 

contexts, most prominently state anxiety (as theorized by the diathesis-stress model, 

Brozina & Abela, 2006, and as implicated by threat of shock studies, Robinson et al., 

2012). In this project, I aimed to extend my previous work (chapter 2) on the 

engagement of threat circuitry during naturalistic viewing. Specifically, I aimed to 

explore the extent to which intersubject similarity in amygdala connectivity during 

movie-watching was modulated as a function of trait anxiety. Moreover, I sought to 

test how anxiety-relevant differences in connectivity may vary as a function of the 

anxiogenic content within the movie (i.e., suspense). 

 

Hypotheses 

I made the following preregistered (https://osf.io/hfc9n/) predictions in regard to a 

movie-watching fMRI dataset. Each were tested on left and right amygdala 

connectivity separately: 

1. Pairwise similarity in self-reported anxiety will positively correlate with similarity 

in amygdala-dorsomedial prefrontal connectivity during movie-watching. In 

other words, I will observe anxiety-relevant idiosyncrasies when comparing 

https://osf.io/hfc9n/
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subjects’ amygdala-prefrontal connectivity time courses across an entire movie 

clip. 

2. Pairwise similarity in self-reported anxiety will show greater correlations with 

amygdala-dorsomedial prefrontal similarity during highly suspenseful scenes. 

In other words, I will observe a greater impact of trait anxiety on amygdala-

prefrontal connectivity during high (vs low) suspenseful scenes. 

 

3.3 Methods 

Cam-CAN Dataset 

fMRI Data 

I conducted analyses on the Cambridge Centre for Ageing Neuroscience database 

(Cam-CAN; n = 652, Mean Age = 54.81, Age SD = 18.54, 329 Female, 50/589 left/right 

handed, 11 ambidextrous, 2 missing hand data; (Shafto et al., 2014; Taylor et al., 

2017). Participants were required to be cognitively healthy and free of neurological or 

serious psychiatric conditions. Experimental procedures relevant to the present study 

included viewing a clip from Alfred Hitchcock’s ‘Bang! You’re Dead’. BOLD signal was 

acquired on a 3T Siemens TIM Trio System using multi-echo T2* EPI (32 axial slices 

3.7mm thick, 0.74mm gap, TR = 2470ms; TE = [9.4, 21.2, 33, 45, 57] ms, FA = 78deg; 

FOV = 192x192mm; voxel size = 3x3x4.44mm, TA = 8mins 13s). Functional data were 

preprocessed using: realignment and unwarping with fieldmaps, slice-time correction, 

transformation to MNI space, and despiking using outlying wavelet coefficients (no 

smoothing). For a full overview of database details, see (Taylor et al., 2017). 

 

Self-Report and Behavioral Data 

Prior to scanning, participants completed the Hospital Anxiety and Depression Scale 

(HADS; Stern, 2014). The anxiety section of this scale constituted my self-report metric 

for hypothesis-testing (figure 3.1). Subjects with no available HADS data (n = 3) were 

omitted from the relevant analyses. In addition to self-report measures, I made use of 

canonical suspense ratings previously collected as 21 subjects viewed the same 

‘Bang! You’re Dead’ clip (Schmälzle & Grall, 2020). To account for hemodynamic lag, 

I shifted the ratings backward by 2TRs (~5s; consistent with prior work in this domain, 



 

70 

(Finn & Bandettini, 2021), removing the last two data points and imputing the first two 

with the mean of the first 5 TRs of the original ratings. This regressor therefore acted 

as a continuous, block-wide parametric modulator and did not require convolution with 

the hemodynamic response function. 

In a set of exploratory analyses, I derived an anxiety-relevant cognitive bias 

measure from behavioral data. I was interested in whether individual differences in 

affective bias (Aylward et al., 2020), namely greater vigilance toward threat-relevant 

stimuli in the environment (Mogg & Bradley, 2006), also demonstrated effects of 

movie-dependent connectivity (as observed in threat of shock studies, Robinson et al., 

2012). For this, I calculated threat vigilance measures from the face perception task 

participants completed prior to scanning (‘emotion expression recognition’). This 

included labeling faces morphed between emotional expressions (happiness-surprise, 

surprise-fear, fear-sadness, sadness-disgust, disgust-anger, anger-happiness; stimuli 

derived from (Ekman, 1976). My threat vigilance measure was calculated through a 

simplified drift-diffusion model. I extracted summary statistics pertaining to accuracy 

and mean/variance of RT for correctly-labeled trials where morphs contained 70/90% 

fear (summary statistics used as trial-by-trial data is not provided within Cam-CAN). 

Summary statistics were then inputted into E-Z drift-diffusion modeling (Wagenmakers 

et al., 2007). The drift parameter constituted my threat vigilance metric. RT variance 

values of 0 (one correct trial) and accuracy values of 0, 0.5, and 1 were increased (or 

decreased for the latter) by .000001 to avoid division errors. Subjects with no available 

face data (n = 15) were omitted from relevant analyses. Spearman correlation 

suggested a small, positive relationship between self-reported anxiety and threat 

vigilance (ρ = .13, p = .0008). 

My choice for the use of fearful (vs angry) faces was based on a theoretical 

distinction between immediate, direct threat (an angry individual) vs uncertain threat 

(fearful expressions, which may signal the presence of nearby danger). The former 

could be conceptualized as evoking panic/fearful responses, whereas the latter may 

be more related to states of anxiety (though both likely fall on a continuum, see Mobbs 

et al., 2020). 
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Figure 3.1. Kernel density plots for age, self-reported anxiety, and threat vigilance (cut 

at minimum/maximum). Due to a very low accuracy (5%, z = −10) in the face 

perception task, 5 subjects had a drift rate parameter of −3.1, which is not visualized 

here (but was retained in analyses). HADS, Hospital Anxiety and Depression Scale. 

 

Analysis 

fMRI timeseries extraction and modeling were conducted using AFNI (Cox, 1996) and 

Python. Relevant functions are denoted in parentheses. Analyses were preregistered 

(https://osf.io/hfc9n/) and used two-sided tests thresholded at α=.05. Post-hoc 

analyses are reported separately in the results section. Visualizations were generated 

with Seaborn (Waskom, 2021) and Matplotlib (Hunter, 2007). Data can be accessed 

via a request to Cam-CAN (Cam-CAN-archive.mrc-cbu.cam.ac.uk). I have made my 

scripts openly available (https://osf.io/5xsp6/). 

 

Regions of Interest Masks 

My amygdala ROIs were selected through individual anatomical parcellations of T1 

images in Freesurfer (Fischl, 2012) constrained with an inflated (‘3dROIMaker’, -inflate 

3; figure 3.2) MNI amygdala mask (AAL atlas; Rolls et al., 2020). dmPFC was defined 

via a functional mask from a previous meta-analysis of anxiety relevant task-based 

activations; specifically, I used a conjunction map of adaptive/maladaptive anxiety 

(‘Induced vs. Transdiagnostic 20mm’, cluster at ~[0, 23, 45], Chavanne & Robinson, 

2021; https://neurovault.org/images/384691/; figure 3.2). For whole-brain analyses, 

functional volumes were segmented via a canonical parcellation (Schaefer et al., 2018; 

400 parcels) constrained within subject-specific, inflated gray matter masks. 

https://osf.io/hfc9n/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://osf.io/5xsp6/
https://neurovault.org/images/384691/
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Participants with failed Freesurfer segmentations (n = 10) or no overlap between auto-

masked EPIs and at least one canonical parcel (n = 9) were excluded from analyses. 

Combined with missing self-report/behavioral data, this left 630 participants for my 

analyses on self-report measures (3.37% dropout) and 618 participants for analyses 

on threat vigilance measures (5.21% dropout). 

 

Figure 3.2. Region of interest definitions for hypothesis testing. Left: Subject-specific 

regions of interest were defined using FreeSurfer before being constrained within an 

inflated Montreal Neurological Institute amygdala mask (coronal slice at y = −2). Right: 

the dorsomedial prefrontal cortex mask was generated from a meta-analysis looking 

at the conjunction between adaptive and maladaptive anxiety (sagittal slice at x = −3; 

Induced (+) vs. Transdiagnostic (+) 20 mm, Chavanne & Robinson, 2021). 

 

For exploratory analyses, I was also interested in the hypothalamus, bed 

nucleus of the stria terminalis (BNST), periaqueductal gray (PAG), medial orbitofrontal 

cortex/anterior ventromedial prefrontal cortex (vmPFC), subgenual anterior cingulate 

cortex (ACC), and anterior insula. Subcortical structures were defined anatomically: 

BNST and periaqueductal gray masks were based on previous manual tracings (in 

MNI space) of 10 and 53 subjects respectively (Theiss et al., 2017; Weis et al., 2022); 

and hypothalamus was defined through Freesurfer parcellations (Billot et al., 2020; all 

subunits combined due to the EPI voxel resolution). Cortical structures were defined 
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functionally from meta-analytic clusters (Chavanne & Robinson, 2021; Anterior Insula 

= ‘Induced (+) vs. Pathological anxiety (+) 20mm’, anterior vmPFC = ‘Induced anxiety 

(threat > safe) 20mm’; subgenual ACC = ‘Transdiagnostic anxiety (patients > 

controls)’). Medial structures where lateralizations were neighboring (BNST, PAG, 

hypothalamus, dmPFC, anterior vmPFC, subgenual ACC) were collapsed bilaterally. 

Given the spatial resolution of scans and likelihood of minor misalignments, the BNST 

and periaqueductal gray masks were dilated (3 times) and eroded (2 times) in order 

to create masks which would overlap with more participants. 

 

Within-Subject and Pairwise Modeling 

 fMRI Data. I removed effects of no interest from raw timeseries 

(‘3dDeconvolve’) by regressing out baseline signals with drift (-polort A; detrending) 

and 24 motion parameters (raw + derivatives + squares) to produce a cleaned 

timeseries for each voxel. I then extracted ROI seeds (‘3dmaskave’) from the cleaned 

volumes. These were taken forward to produce TR-wise functional connectivity 

measures based on sliding window analyses (‘timecorr’, Owen et al., 2021; width = 

8TRs/~20s, gaussian kernel weighting) between the amygdala and cortical ROIs 

(which were subsequently Fisher transformed and Z-scored). 

 Movie-wide intersubject representational similarity matrices were then 

constructed as a function of between-subject Pearson correlations in amygdala (left 

and right separately) -cortical connectivity (bilateral cortex) measures. TR-wise 

intersubject representational similarity matrices were constructed as a function of 

differences in between-subject amygdala-dmPFC connectivity measures. 

 

Self Report and Behavioral Data. Self-report similarity measures were first 

calculated as the difference in self-reported anxiety. This allowed me to test a ‘one-to-

one’ relationship between anxiety and connectivity; namely, whether high-high or low-

low anxiety pairwise comparisons showed greater similarity than high-low anxiety 

comparisons. In other words, participants who differ on the low end of the HADS scale 

(e.g., 1 vs 2) will show the same differences in connectivity than those who differ on 
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the higher-end (e.g., 19 vs 20). In instances of undirected brain measures (i.e., movie-

wide correlations) I used absolute differences in self-reported anxiety.  

I also generated an exploratory matrix using the ‘AnnaK’ approach (Finn et al., 

2020). Each cell in this matrix was calculated as the pairwise means of self-reported 

anxiety scores. Unlike the previous matrix, this allowed me to test a nonlinear 

relationship, namely that high-high anxiety pairwise comparisons would show greater 

similarity than low-low comparisons (or vice-versa). For instance, a negative 

correlation would suggest that participants who differ on the higher-end of the HADS 

scale (e.g., scores of 19 vs 20) will show similar connectivity profiles, whereas 

participants who differ on the low-end of the scale (e.g scores of. 1 vs 2) show greater 

variability in connectivity profiles. Finally, I created a matrix for my threat vigilance 

measures, using both differences and ‘AnnaK’ mean scores. 

 

Group Modeling 

I compared neural and behavioral similarity matrices using Partial Spearman Rank 

correlations using age, sex and motion (mean framewise displacement) as covariates. 

TR-wise analyses against suspense ratings used Pearson correlations. Significance 

was based on null distributions derived from 10,000 permutations of cells in the neural 

similarity matrices. For an overview of my analysis pipeline, see figure 3.3. 
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Figure 2.2.3. Illustration of analysis pipeline. (A) I first derived time series of dynamic 

connectivity using a sliding window approach, with data points in the window weighted 

using a Gaussian function. (B) Pairwise similarity matrices were produced by 

correlating dynamic connectivity time series, calculating differences in connectivity at 

each repetition time (TR), and calculating differences in anxiety measures. (C) To test 

my first hypothesis, I correlated pairwise similarities in anxiety and amygdala–

dorsomedial prefrontal cortex (dmPFC) connectivity across the entire movie. (D) 

Testing my second hypothesis, I repeated this procedure but at every TR in the movie 

and compared anxiety-related differences in connectivity against canonical suspense 

ratings. Significance for all group-level models were based on permutation testing. 

fMRI, functional magnetic resonance imaging; HADS, Hospital Anxiety and 

Depression Scale. 
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3.4 Results 

Movie-Wide Connectivity Tests 

Firstly, I conducted Spearman correlations between self-report similarity (absolute 

difference) and functional connectivity similarity across the entire movie clip 

(Hypothesis 1). I did not observe effects in either left (ρ = .002, p = .581) or right (ρ = 

.001, p = .819) amygdala-dmPFC connectivity. Planned exploratory analyses also 

failed to show this for my threat vigilance (left: ρ = -.003, p = .517; right: ρ = -.003, p = 

.508) or ‘AnnaK’ models (left: ρ = .002, p = .620; right: ρ = -.0002, p = .968). In further 

planned exploratory analyses, I re-conducted movie-wide tests (self-report) using time 

series from 400 cortical parcels (Schaefer et al., 2018) for both absolute difference 

and ‘AnnaK’ models. Although some parcels surpassed Bonferroni correction (400 

parcels, p < .000125), effect sizes were marginal (max |ρ| = .03). In other words, when 

comparing connectivity across the entirety of the movie clip, no single amygdala-parcel 

timeseries explained greater than 0.09% of the variance associated with anxiety.  

 

Anxiety x Connectivity x Suspense Tests 

I next produced Spearman correlations between self-reported anxiety (constant) and 

neural similarity matrices for each TR (dynamic). TR-wise coefficients were then taken 

forward to Pearson correlations against the canonical suspense ratings timeseries. 

This allowed me to test whether mapping between amygdala connectivity and self-

report similarity was most prominent during high suspense scenes (Hypothesis 

2). Unlike my movie-wide analyses, the TR-wise representational similarity matrices 

were directional in nature, meaning relative connectivity strength could be compared 

across subjects. I observed an inverse relationship to that which I predicted: there was 

a significant negative correlation between canonical suspense ratings and anxiety-

dependent increases in right amygdala-dmPFC connectivity (r = -.16, p = .02; though 

not apparent for left amygdala: r = -.05, p = .53). Moreover, planned exploratory 

analyses demonstrated a stronger relationship between suspense and the impact of 

threat vigilance on right amygdala-dmPFC connectivity (r = -.19, p = .006; left 

amygdala-dmPFC: r = -.05, p = .51; figure 3.4). 
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Figure 3.4. Left/Middle: Scatterplots demonstrating a negative correlation (with 95% 

confidence intervals) between repetition timewise suspense ratings and anxiety-

relevant increases in right (R) amygdala–dorsomedial prefrontal cortex (dmPFC) 

connectivity. Left: Hospital Anxiety and Depression Scale (HADS) anxiety scores. 

Middle: threat vigilance (drift rate from drift-diffusion models of fearful face 

responding). Right: bar plot demonstrating change in average connectivity (z scores) 

from low to high suspense (highest − lowest quartiles of suspense) across the lowest 

and highest quartiles of self-reported anxiety (with 95% confidence intervals). 

 

These results suggested that amygdala-dmPFC circuitry was modulated by 

suspense in low anxiety individuals, but this circuitry was less sensitive to suspense 

in high anxiety individuals. However, there are several interpretations for this result 

(see Discussion). To aid in interpretation, I ran post-hoc amplitude-based peak-

detection (SciPy’s find_peaks; Virtanen et al., 2020) across the suspense ratings 

timeseries (smoothed) to mark events of relative increases in suspense; this allowed 

me to visualize how anxiety-relevant alterations in amygdala-dorsomedial prefrontal 

cortex connectivity altered alongside anxiogenic scenes (figure 3.5). One event (#8) 

was manually adjusted to better reflect the plateau of suspense. 
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Figure 3.5. Time series of canonical suspense ratings (orange line), suspenseful 

events (orange rectangles, marked using amplitude-based peak detection), average 

right (R) amygdala–dorsomedial prefrontal cortex (dmPFC) dynamic connectivity, and 

the correlation between anxiety and dynamic connectivity at each repetition time (TR) 

(smoothed). Shading denotes 95% confidence intervals. 

 

Post-Hoc Tests 

As the relationship between dynamic connectivity and anxiety appeared dependent on 

the presence of suspense, I reconducted TR-wise tests across a wider ‘defensive 

response network’ (Abend et al., 2022) consisting of amygdala, bed nucleus of the 

stria terminalis, hypothalamus, periaqueductal gray, subgenual anterior cingulate 

cortex, an anterior section of the ventromedial prefrontal cortex, dorsomedial prefrontal 

cortex, and anterior insula. Most prominently, suspense showed the strongest 

relationship with anxiety-relevant differences in amygdala-periaqueductal gray 

connectivity (left amygdala: r = -.41, p < .0001; right amygdala: r = -.35, p < .0001; 

figure 3.6). 
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Figure 3.6. Pearson correlations between TR-wise suspense ratings and trait anxiety-

relevant increases in dynamic connectivity (lower triangle = self-report; upper triangle 

= threat vigilance). Bolded cells refer to correlations surviving Bonferroni correction 

across 45 comparisons across connectivity measures, p < .0011. 

 

Working with unconstrained naturalistic data (i.e., movies), it is difficult to 

orthogonalize features across the stimulus. As such, results should be interpreted with 

an understanding that a degree of collinearity likely exists between low- and high-level 

stimulus features. Using the pliers package (McNamara et al., 2017), I extracted 

features to demonstrate such collinearity. Suspense showed small-to-moderate 

correlations with power of the audio signal (a proxy for volume; r = .41), brightness (r 

= .23), and number of faces present (r = -.25). I also demonstrated correlations 

between age and anxiety (self-report: ρ = -.23, p < .001; threat vigilance: ρ = -.47, p < 

.001). Thus, there may be interactions between age and anxiety-dependent 

connectivity. 
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I used a sliding window approach due its utility demonstrated from previous 

work (E. A. Allen et al., 2014; Handwerker et al., 2012; Hutchison et al., 2013). 

However, a possible limitation of a sliding window approach to dynamic connectivity 

is that results may be sensitive to window length, offset, and filtering (Shakil et al., 

2016). As such, I tested the robustness of these effects when using differing window 

lengths. Using window length of 6TRs (~15s), 8TRs (~20s), or 10TRs (~25s) did not 

change inference regarding suspense, right amygdala-dmPFC connectivity, and self-

reported anxiety (6TRs: r = -.17, p = .02; 10TRs: r = -.17, p = .02). The same was true 

for threat vigilance measures (6TRs: r =-.18, p =.01; 10TRs: r = -.20, p = .006). These 

analyses suggest my reported findings are robust across a variety of window lengths.  
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3.5 Discussion 

There is a wealth of task-based literature implicating an amygdala-prefrontal circuit 

that underlies threat-relevant biases fundamental to anxiety (Milad et al., 2007; 

Robinson et al., 2012, 2014; Taub et al., 2018; Vidal-Gonzalez et al., 2006; Vytal et 

al., 2014). Yet, little has been done to test whether individual differences in this circuit 

arise in more naturalistic settings. In the present study, I aimed to extend this work to 

a movie-watching paradigm using a dynamic, flexible analytical framework, inter-

subject representational similarity analysis. Here, I tested whether anxiety would 

correlate with amygdala-dorsomedial prefrontal cortex dynamic connectivity 

throughout movie-watching. I failed to find evidence for this. I next tested the 

hypothesis that the relationship between anxiety and connectivity would vary 

depending on anxiogenic features within the movie (i.e., canonical suspense ratings). 

I observed effects in the inverse direction to what I predicted: the relationship between 

anxiety and right amygdala-prefrontal connectivity was negatively correlated with 

suspense (r = -.16, p = .04). Additionally, a planned exploratory analysis suggested a 

measure of threat vigilance (i.e., accuracy/reaction time to fearful faces) was slightly 

more sensitive to these effects (r = -.19, p = .001). I offer several interpretations for 

how this effect may have arisen. 

At face value, the negative relationship suggested high (vs low) anxiety 

individuals had relatively increased connectivity during low suspense scenes (and/or 

reduced connectivity during high suspense). This would suggest that high anxiety 

individuals chronically engage this circuit, irrespective of anxiogenic scenes in movies, 

whereas low anxiety individuals selectively engage this circuit in response to 

anxiogenic scenes. Some resting-state studies have evidenced greater sustained 

engagement of this circuit irrespective of stimuli (Roy et al., 2013), though there is 

mixed evidence (see Mizzi et al., 2022). However, I suggest this is not the most 

plausible inference. In my previous study (chapter 2), I did not find evidence for 

differences in seed-based functional connectivity measures of amygdala-dmPFC 

circuitry across significantly longer movie scans. Moreover, this interpretation is in 

direct contrast to findings from threat of shock studies, which suggests individual 

differences emerge primarily when under a state of anxiety (Robinson et al., 2012). 

One possibility is that anxiogenic, vicarious features of the movie evokes 

different affective processes to those elicited by direct, personal threat (threat of 
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shock). There is scant evidence explicitly investigating how the medium of anxiety-

induction impacts brain response. Behavioral research has suggested differential 

impacts of physical vs social threats on emotional face perception amongst socially 

anxious individuals (Buckner et al., 2010). Additionally, given the very distinction 

between social and generalized anxiety disorders (Counsell et al., 2017), social vs 

direct threats may indeed differentially impact anxiety-relevant processes. Self-

reported findings from media psychology offer additional insight. Unlike threat of 

shock, which is not typically thought of as a desirable experience, many people seek 

out anxiogenic media such as horror movies (Bantinaki, 2012). Indeed, it has been 

suggested that while the initial experience of anxiogenic scenes may be aversive, 

individuals scoring high in sensation-seeking may feel an aftermath of positive 

emotions and emotionally unstable individuals may show greater evoked anxiety 

(Clasen et al., 2018). Moreover, viewers of anxiogenic media may be worried about 

characters within the movie, but not themselves. Given that the anxiety measure was 

self-oriented, the suspense ratings may also be impacted by trait empathy. Therefore, 

the affective state elicited by suspenseful movies is likely multifaceted and more 

dynamic in nature than states evoked by threat of shock. Given the absence of these 

effects in seed-based functional connectivity measures (chapter 2), I conclude that 

these individual differences are likely arising in response to the emotional context 

elicited by the movie. 

Visualization of the results further supports a distinct interpretation to suspense-

insensitive, chronic engagement. Although temporal fluctuations in suspense resulted 

in initially similar right amygdala-dmPFC connectivity patterns between participants, 

toward the end of and/or following a lag after these events there seems a divergence 

in coupling as a function of individual differences in anxiety. This is in line with a body 

of literature demonstrating anxious individuals have reduced habituation to threat-

relevant stimuli (Blackford et al., 2013; Campbell et al., 2014; Protopopescu et al., 

2005). This also relates to findings demonstrating an association between personality 

and emotions experienced after anxiogenic scenes (Clasen et al., 2018). In other 

words, I suggest engagement of amygdala-prefrontal connectivity was slower to 

disengage following anxiogenic scenes in high anxiety individuals. Inversely, due to 

the short intervals between suspenseful scenes, this could be explained by earlier, 

amplified effects of anxious anticipation (Abend et al., 2022; McMenamin et al., 2014; 
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Najafi et al., 2017; engagement of amygdala-prefrontal connectivity was stronger 

when high anxiety individuals started to expect a forthcoming suspenseful scene). 

I did not submit these timeseries to any formal analyses as this would have 

relied on post-hoc assumptions regarding data which I had already observed, such as 

the specific lag following suspense events. Moreover, the aforementioned delay 

appears non-constant and/or could be impacted by other features not modeled in the 

current study (which was limited to canonical suspense ratings). Thus, the 

explanations I offer are of course provisional. Nonetheless, the present results provide 

evidence that anxiety, dynamic connectivity, and anxiogenic features of a movie do 

interact in a time-varying manner. An opportunity movie-watching fMRI offers for future 

research is elucidating exactly how anxiety, connectivity, and nested features of the 

stimuli may interact. Based on the present findings, I encourage future research 

explicitly: test temporal lags in modeling (e.g., vector auto-regression); embed various 

features of the stimulus, ranging from high-level affective dynamics (e.g., suspense) 

to visual onsets (e.g., facial expressions), in analyses of dynamic connectivity; and 

compare connectivity profiles between anxiogenic scenes and threat of shock. 

I also draw attention to the convergence between the self-report (Hospital 

Anxiety and Depression Scale; Stern, 2014) and behavioral measures (threat 

vigilance; derived from accuracy and reaction times to fearful facial expressions). The 

correlation between self-report and behavior was small (ρ = .13, p = .0008), suggesting 

that—although overlapping—these measures could tap into different latent constructs. 

Whereas the latter targeted attentional biases to threat, a key feature of anxiety 

(Aylward et al., 2020; Mogg & Bradley, 2006), the self-report measure summated 

multiple symptoms of pathological anxiety (e.g., “Worrying thoughts go through my 

mind”, “I get a sort of frightened feeling like 'butterflies' in the stomach”) which may 

measure distinct dimensions (e.g., worry, somatic symptoms, interoception; Andrews 

& Borkovec, 1988; Garfinkel et al., 2016). I was unable to assess item-level 

correlations in the present dataset. Nonetheless, both self-report and threat vigilance 

measures demonstrated correlations with dynamic right amygdala-dmPFC 

connectivity and suspense. Yet, the relationship between threat vigilance, 

connectivity, and anxiogenic features of the movie (r = -.19, p = .006) was slightly 

stronger than self-reported anxiety (r = -.16, p = .02). These results lend support for 

previous theorizations that this circuit is involved in attentional amplification of threat-
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relevant stimuli, such as emotional facial expressions (Robinson et al., 2014; this may 

also be related to how the threat vigilance measure was based on a perception of 

others and the stimulus presented posed danger to other characters). 

 I note several facets of the present findings which may warrant further 

investigation. Firstly, I highlight the relationship between anxiety and right (but not left) 

amygdala-prefrontal connectivity. This lateralization is congruent with previous threat 

of shock studies (Gold et al., 2015; Robinson et al., 2012; Vytal et al., 2014), yet little 

is known about this dominance. Given that lateralization is apparent both within and 

outside of traditional paradigms, this warrants further investigation (e.g., whether this 

is related to handedness). Second, I noted potential interactions between age, anxiety, 

connectivity and suspense. Future work should seek to detail the exact nature of this 

relationship. Third, I was unable to test whether the observed associations are 

apparent in those with a clinical diagnosis. There is evidence to suggest the impact of 

induced anxiety may vary as a function of clinical diagnosis (Makovac, Meeten, 

Watson, Herman, et al., 2016). Therefore, it is possible these effects may not manifest 

in the same manner for those with clinically-significant levels of anxiety and results 

need to be interpreted in the context of subclinical variation. To my knowledge, there 

are currently no available movie-watching datasets which have explicitly sought to test 

clinically-diagnosed individuals. This may prove fruitful for further exploration of the 

impact of anxiety on brain responses to movie-watching. 

 Finally, I highlight the unconstrained nature of the present paradigm. Given the 

naturalistic basis of the stimulus (a movie), it is unsurprising there are confounded 

features within the stimuli. I noted small-to-moderate correlations between suspense 

ratings, power of the audio signal (~loudness), brightness, and faces present. 

However, these aesthetics likely culminate to give rise to overall suspense (Lehne & 

Koelsch, 2015). It is therefore difficult to elucidate sensory processing from affective 

phenomena. Given that the relationship between anxiety and connectivity manifested 

in a slightly different manner to that seen in threat of shock studies, it will be important 

to: demonstrate generalizability of this effect across different movie stimuli, preferably 

with less collinearity between features; and ensure future task-based and movie fMRI 

studies are conducted in compliment to each other. 
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Conclusion 

In the present study, I investigated whether dynamic connectivity during movie-

watching related to individual differences in anxiety. Across the entirety of the movie 

clip, comparisons of dynamic amygdala-prefrontal connectivity did not relate to 

individual differences in anxiety. However, anxiety appeared to have a variable impact 

on dynamic connectivity dependent on the presence of anxiogenic features in the 

movie (i.e., suspense). I suggest anxiety could be associated with: suspense-

insensitive, chronic engagement of threat circuitry in high anxiety individuals; slowed 

disengagement of threat circuitry following anxiogenic scenes; or greater 

apprehension of anxiogenic scenes. Elucidating exactly how and when these 

individual differences appear offers opportunity for future study. 
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4. Anxiety and ‘Intrinsic’ Amygdala Connectivity 

4.0 Preface 

In chapter 3, I demonstrated that associations between trait anxiety and amygdala-

dmPFC responses are modulated as a function of suspense during movie-watching. 

However, effects were in the inverse direction to what I predicted. The correlation 

between trait anxiety and amygdala-dmPFC responding was greatest during low 

suspense scenes. On the one hand, this could reflect individual differences in chronic 

‘intrinsic’ connectivity that are apparent in the absence of states of anxiety. On the 

other hand, these effects could be movie driven, but arose due to nuances temporal 

dynamics that may reflect processes such as earlier anticipation or slowed 

disengagement to suspense. In chapter 4, I sought to contextualize these prior results 

by testing the association between trait anxiety and resting-state derived connectivity 

using the same participants, brain regions, and anxiety measures as chapter 3. The 

key hypothesis here was that trait anxiety measures would demonstrate a positive 

correlation with amygdala-dmPFC functional connectivity. 

 

For the final published versions of this study, please refer to the below reference: 

Kirk, P. A., Holmes, A. J., & Robinson, O. J. (2022). Threat vigilance and intrinsic 

amygdala connectivity. Human Brain Mapping, 43(10), 3283–3292. 

https://doi.org/10.1002/hbm.25851  

 

  

https://doi.org/10.1002/hbm.25851
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4.1 Abstract 

A well-documented amygdala-dorsomedial prefrontal circuit is theorized to promote 

attention to threat (“threat vigilance”). Prior research has implicated a relationship 

between individual differences in trait anxiety/vigilance, engagement of this circuitry, 

and anxiogenic features of the environment (e.g., through threat of shock and movie-

watching). In the present study, I predicted that—for those scoring high in self-reported 

anxiety and a behavioral measure of threat vigilance—this circuitry is chronically 

engaged, even in the absence of anxiogenic stimuli. My analyses of resting-state fMRI 

data (n = 639) did not, however, provide evidence for such a relationship. 

Nevertheless, in my planned exploratory analyses, I saw a relationship between threat 

vigilance behavior (but not self-reported anxiety) and intrinsic amygdala-

periaqueductal gray connectivity. Here, I suggest this subcortical circuitry may be 

chronically engaged in hypervigilant individuals, but that amygdala-prefrontal circuitry 

may only be engaged in response to anxiogenic stimuli. 
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4.2 Introduction 

A growing body of literature has outlined a cortico-subcortical network which is 

engaged during states of anxiety. A core feature of this network appears to be 

amygdala-dorsomedial prefrontal circuitry (Milad et al., 2007; Roy et al., 2013; Vidal-

Gonzalez et al., 2006), which has been theorized to drive attentional amplification of 

threat-relevant stimuli in the environment (Robinson et al., 2012, 2013). Individual 

differences in attention to threat (“threat vigilance”) are thought to be a key feature 

driving variation in trait anxiety (Grupe & Nitschke, 2013; MacLeod & Mathews, 1988). 

Indeed, hyper-engagement of this amygdala-prefrontal circuit while under induced 

anxiety has been observed in clinically anxious populations (Robinson et al., 2014). 

As such, the study of amygdala-prefrontal circuitry has been a primary line-of-inquiry 

in the anxiety literature. However, there is likely a significantly wider network beyond 

this core circuit. 

The bed nucleus of the stria terminalis (BNST), a region dorsal to- and highly 

connected with the amygdala is also thought to play a core role in coordinating 

adaptive responses to potential dangers (Hur et al., 2020). Early work suggested 

that—while the amygdala was thought to react to immediate threats (fear 

responses)—the BNST was associated with processing chronic, uncertain threats 

(anxious responding; Davis, 2006). However, this framework remains disputed (Fox & 

Shackman, 2019). Nonetheless, the BNST, also known as the “extended amygdala”, 

has an established role in processing ambiguous threats and, consequently, is heavily 

implicated in anxiety (Hur et al., 2020). Additionally, other subcortical regions such as 

the hypothalamus and periaqueductal gray may form a key junction between threat-

relevant perceptual/cognitive processes and the embodied responses associated with 

anxiety: engagement of fight-flight-freeze behaviors and alterations in autonomic 

functioning (Deng et al., 2016). 

A breadth of research has demonstrated top-down, cortico-subcortical 

projections. In addition to the dorsomedial prefrontal cortex, other regions in the cortex 

have been implicated, such as: the anterior insula, associated with a range of 

functioning including anxiety-relevant interoceptive sensitivity, anticipation of future 

events, and controllability of stressors (Grupe & Nitschke, 2013; Limbachia et al., 

2021; Terasawa et al., 2013); subgenual anterior cingulate, related to threat-relevant 

memory processes (Hakamata et al., 2020); and an anterior section of the 
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ventromedial prefrontal cortex/medial orbitofrontal cortex (Pujara et al., 2019), which 

may relate to positive affect and/or safety signal integration (Myers-Schulz & Koenigs, 

2012; Tashjian et al., 2021), though relatively less attention has been paid to its 

functional distinction from subgenual ACC. Broadly speaking, projections from the 

cortex have typically been thought of as providing regulatory, evaluative, and 

contextual inputs to fundamental threat processes in subcortical regions (Tillman et 

al., 2018). While the aforementioned regions have been selectively associated with 

specific perceptual/cognitive processes, these likely operate as a broad, interactive 

network to orchestrate defensive behaviors (Chavanne & Robinson, 2021; Gorka et 

al., 2018). 

We have now seen a plethora of anxiety research implicating this “defensive 

response network” spanning cortical and subcortical regions (Abend et al., 2022). 

However, despite a wide range of research establishing an association between 

anxiety and this network, our understanding of individual differences in this circuitry 

nonetheless remains limited. There is substantial literature establishing the presence 

of amygdala-dorsomedial prefrontal connectivity while under induced anxiety, but 

designs are not typically powered for large-scale individual differences research. On 

the other hand, large-scale resting-state studies sometimes include such circuitry 

within multivariate models, which have started to emerge as useful in the prediction of 

self-reported anxiety (Li et al., 2019). However, there can be difficulties interpreting 

the contributions of feature weights in these models (e.g., nonlinear support vector 

machines; Misaki et al., 2010) and how they relate to true brain activity/connectivity. 

Thus, model parameters often do not directly grant access to physiological information 

and necessitate transformations before attempting to estimate this information (Haufe 

et al., 2014). With the frequent goal of behavioral prediction, these studies often focus 

on models' decoding accuracy of psychiatric symptoms; consequently, there is often 

less of a focus on elucidating low-level mechanisms associated with this circuitry. 

Among resting-state research that has included amygdala-prefrontal circuitry 

as a focal point, there is little consensus. For individuals with clinical anxiety, multiple 

studies have demonstrated both increased and aberrant amygdala-prefrontal 

connectivity at rest (see Mizzi et al., 2022). Despite accelerated developments in 

analytical tools, much of this research has remained dependent on diagnostic criteria 

and/or self-report measures which may have high underlying heterogeneity (Cuthbert 
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& Insel, 2013; Insel et al., 2010). Secondly, as these measures depend on 

introspection, they may not be comparable across individuals nor tap into precise 

internal processes (Baumeister et al., 2007; Watson et al., 2017). Moreover, individual 

scales are often associated with differing and/or multiple latent factors (Rose & Devine, 

2014). While these measures may be a useful tool to implicate whether regions and 

connections are generally implicated in anxiety, they provide little theoretical precision 

as to the processes underlying brain circuitry. 

In chapter 3, I demonstrated that individual differences in anxiety were 

associated with amygdala-dorsomedial prefrontal dynamics during movie-watching; 

however, effects were notably stronger for a targeted behavioral measure of threat 

vigilance than self-reported anxiety. I noted that subjects' reaction time/accuracy to 

fearful faces correlated slightly higher with suspense and amygdala-prefrontal 

dynamics (r = −.19) than did self-reported scores from the Hospital Anxiety and 

Depression Scale (r = −.16). This supports the notion that perceptual/attentional 

processes related to threat are a key function of this circuitry. Counter to my 

predictions, I saw effects primarily during low suspense scenes. As visualizations 

demonstrated the possibility of a more nuanced, dynamic relationship between 

anxiety, connectivity, and suspense than that indicated by linear correlation, I offered 

three interpretations for these effects: (1) high trait anxiety individuals chronically 

engage amygdala-prefrontal threat circuitry irrespective of the anxiogenic features of 

the environment; (2) high trait anxiety individuals show greater apprehension of 

anxiogenic scenes; or (3) anxiety slows disengagement of threat circuitry following 

anxiogenic scenes. In order to explore this “chronic engagement” hypothesis of 

amygdala-prefrontal connectivity, I sought to test whether anxiety was associated with 

functional connectivity in the same individuals, but during resting-state scanning. 

Specifically, I investigated whether this relationship was apparent for “intrinsic 

functional connectivity” of the amygdala and dorsomedial prefrontal connectivity as 

derived from eyes-closed resting-state scans in a separate imaging run, but in the 

same subjects using the same anxiety measures. In planned exploratory analyses, I 

also sought to test whether intrinsic connectivity of a wider defensive response 

network was associated with anxiety measures. 
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Hypotheses 

I made the following key predictions regarding a resting-state fMRI dataset. Each 

tested left and right amygdala connectivity separately and were preregistered on the 

Open Science Framework (https://osf.io/cfdq7/): 

1. Self-reported anxiety will positively correlate with ‘intrinsic’ amygdala-

dorsomedial prefrontal connectivity (seed-based functional connectivity). 

2. A behavioral measure of threat vigilance will positively correlate with ‘intrinsic’ 

amygdala-dorsomedial prefrontal connectivity (seed-based functional 

connectivity). 

 

4.3 Methods 

The present resting-state project was conducted following a related analysis on movie-

watching data. Experiment code and data derivatives are available at the Open 

Science Foundation (https://osf.io/cfdq7/). Raw data are available on request from the 

Cam-CAN website (https://Cam-CAN-archive.mrc-cbu.cam.ac.uk/dataaccess/). 

 

Cam-CAN dataset 

fMRI Data 

I conducted analyses on the Cambridge Centre for Ageing Neuroscience database 

(Cam-CAN; n = 652, Age Mean = 54.81, Age SD = 8.54, Age Range = 18.5 - 88.9, 

330 Female, 320 Male, 50/589 left/right handed, 11 ambidextrous, 2 missing hand 

data; Shafto et al., 2014; Taylor et al., 2017). The present study made use of volumes 

acquired during eyes-closed resting-state scanning. BOLD signal was acquired with a 

T2* GE EPI (32 axial slices 3.7mm thick, 0.74mm gap, TR = 1970ms; TE=30ms, 

FA=78 deg; FOV=192 mm x 192 mm; 3 x 3 x 4.44mm, TA=8mins 40s). The functional 

data were already preprocessed using the following steps: realignment and unwarping 

with fieldmaps, slice-time correction, transformation to MNI space, and despiking using 

outlying wavelet coefficients (no smoothing). For a full overview of database details, 

see (Taylor et al., 2017). 

 

https://osf.io/cfdq7/
https://osf.io/cfdq7/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
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Self-Report and Behavioral Data 

Prior to scanning, participants completed the Hospital Anxiety and Depression Scale 

(HADS; Zigmond & Snaith, 1983). The anxiety section of this scale (7 items; 

Cronbach’s α = ~.83; Bjelland et al., 2002) constituted my self-report metric for my first 

hypothesis. Subjects with no available HADS data (n = 3) were omitted from the 

relevant analyses, leaving 649 participants (mean/SD of anxiety scores = 4.96/3.30). 

I also previously conducted analyses on whether a behavioral measure of 

attentional bias to threat (‘threat vigilance’) also correlated with connectivity. For this, 

I calculated threat vigilance measures from a face perception task participants 

completed prior to scanning (‘emotion expression recognition’). This included labeling 

faces morphed between emotional expressions (happiness-surprise, surprise-fear, 

fear-sadness, sadness-disgust, disgust-anger, anger-happiness; stimuli derived from 

Ekman, 1976). My threat vigilance measure was calculated through drift diffusion 

modeling of fearful facial expressions. My choice for the use of fearful faces was based 

on the notion that these signal uncertain threats, a feature of the environment typically 

associated with anxiety/vigilance (Mobbs et al., 2020). 

I first extracted accuracy and mean/variance of RT for correctly-labeled trails 

where morphs contained 70/90% fear (summary statistics used as trial-by-trial data 

for each morph step are not provided within the Cam-CAN dataset). These were then 

inputted into E-Z drift-diffusion modeling (Wagenmakers et al., 2007). The drift 

parameter constituted my threat vigilance metric. RT variance values of 0 (one correct 

trial) and accuracy values of 0, 0.5, and 1 were increased (or decreased in the last 

case) by .000001 to avoid division errors. Subjects with no available face data (n = 15) 

were omitted from the relevant analyses. In chapter 3, I reported a small but significant 

positive relationship between self-reported anxiety and threat vigilance measures (ρ = 

.13, p = .0008; distributions plotted in figure 4.1). 
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Figure 4.1. Kernel density plots of self–reported HADS anxiety and threat vigilance 

measures. Due to low accuracy in the facial emotion task, 5 subjects had extremely 

low drift rate parameters of −3.1 (not visualized, but retained in analyses). 

 

Analyses 

fMRI time series extraction and modeling was conducted using AFNI (Cox, 1996) and 

Python. Relevant functions are denoted in parentheses. All analyses used two-sided 

tests thresholded at α=.05 unless otherwise stated. All tests were preregistered 

(https://osf.io/cfdq7/). The only deviation to preregistration was repeating analyses on 

data following global signal regression as a robustness check (see within subject 

modeling; I report below which tests were conducted post-hoc). 

 

Regions of Interest Masks 

All masks were the same as used in chapter 3 (as such, language will largely overlap). 

Specifically, for hypothesis-testing, my key regions of interest were the amygdala and 

dorsomedial prefrontal cortex: my amygdala ROIs were selected from previously-

generated anatomical parcellations of T1 images in Freesurfer (Fischl, 2012) 

constrained within a dilated MNI amygdala mask; my dmPFC mask was selected from 

a meta-analysis demonstrating the conjunction of adaptive/maladaptive anxiety 

(‘Induced (+) vs. Transdiagnostic (+) 20mm’, Chavanne & Robinson, 2021; 

https://neurovault.org/images/384691/; figure 4.2). The latter mask was generated 

based on an overlap between activation-based results contrasting unpredictable-

threat vs safe conditions and clinical vs healthy subjects (pooled across two or more 

anxiety disorders). This was chosen so as to be atheoretical regarding the distinction 

between the neural manifestation of adaptive and maladaptive anxiety. 

https://osf.io/cfdq7/
https://neurovault.org/images/384691/
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For exploratory analyses, I was also interested in the hypothalamus, bed 

nucleus of the stria terminalis (BNST), periaqueductal gray (PAG), medial orbitofrontal 

cortex/anterior ventromedial prefrontal cortex (vmPFC), subgenual anterior cingulate 

cortex (ACC), and anterior insula. Subcortical structures were defined anatomically: 

BNST and periaqueductal gray masks were based on previous manual tracings (in 

MNI space) of 10 and 53 subjects respectively (Theiss et al., 2017; Weis et al., 2022); 

and hypothalamus was defined through Freesurfer parcellations (Billot et al., 2020; all 

subunits combined due to the EPI voxel resolution). Cortical structures were defined 

functionally from meta-analytic clusters (Chavanne & Robinson, 2021; Anterior Insula 

= ‘Induced (+) vs. Pathological anxiety (+) 20mm’, anterior vmPFC = ‘Induced anxiety 

(threat > safe) 20mm’; subgenual ACC = ‘Transdiagnostic anxiety (patients > 

controls)’). Medial structures where lateralizations were neighboring (BNST, PAG, 

hypothalamus, dmPFC, anterior vmPFC, subgenual ACC) were collapsed bilaterally. 

Given the spatial resolution of scans and likelihood of minor misalignments, the BNST 

and periaqueductal gray masks were dilated (3 times) and eroded (2 times) in order 

to create masks which would overlap with more participants (though at the cost of 

potential unrelated noise/signal; see chapter 4.5 discussion). 

Participants with failed Freesurfer segmentations (n = 10) were excluded from 

analyses. Combined with missing self-report/behavioral data, this left 642 participants 

for main-effects tests (1.53% dropout), 639 participants for tests on self-report 

measures (1.99% dropout), and 627 participants for tests on threat vigilance measures 

(3.83% dropout). I note here that 9 participants who were not included in my previous 

movie-watching analysis (due to issues of timeseries extraction from a canonical 400 

parcel solution) were included in the present analysis. 
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Figure 4.2. ROI definitions. Left: axial view showing anterior vmPFC, sgACC, anterior 

insula, hypothalamus (80% Freesurfer overlap), amygdala (dilated MNI mask used for 

constraining segmentations), and periaqueductal gray masks. Middle: sagittal view 

showing the dmPFC mask; pink lines refer to axial and coronal slices. Right: coronal 

view showing BNST, hypothalamus, and dilated amygdala masks. 

 

Within-Subject Modeling 

 fMRI data. I first removed effects of no interest from my raw time series 

(‘3dDeconvolve’) by regressing out baseline signals with drift (-polort A; demeaning 

and detrending) and 24 motion parameters (raw + squares + temporal derivatives + 

derivatives squared) to produce a cleaned time series (I also highlight here that data 

the was previously despiked and I included motion parameters in my between-subjects 

modeling, see Group-Level Results). I then extracted ROI seeds (‘3dmaskave’) from 

the cleaned time series. For each subject I then calculated (Fisher-transformed) 

Pearson correlations between all ROIs to generate functional connectivity measures.  

As my original analysis didn’t remove global BOLD signals, this had the 

potential to mask anti-correlated regions (Murphy & Fox, 2017). Following planned 

analyses, I generated a second preprocessed dataset (post-hoc) by including a 25th, 

global signal regressor which was generated by taking the mean timeseries of all 

voxels within auto-masked volumes. For visualization purposes, I also calculated 

whole-brain, voxel-wise amygdala correlations on this data (‘3dTcorr1D’), which I 

projected onto a surface using NIlearn (Abraham et al., 2014). 
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Group-Level Modeling 

For group-level tests I first looked at average within-subject connectivity via t-tests for 

all pairs of ROIs. For between-subjects effects, I conducted partial Spearman 

correlations between anxiety measures (self-report/threat vigilance) and amygdala-

dmPFC connectivity, including age, sex, and motion (mean framewise displacement) 

as covariates of no interest. All tests were reconducted post-hoc on data which had 

been preprocessed with global signal regression. I report uncorrected results and 

those which surpass Bonferroni correction across 45 edges (p < .0011). 

 

4.4 Results 

Average Connectivity 

In my original, planned analysis, all regions demonstrated positive functional 

connections and surpassed Bonferroni correction for all 45 edges (t (641) range = 

11.3:110.8, p < .00001)). Following global signal regression, the polarity of some of 

these connections was altered (figure 4.3). Applying global signal regression had no 

impact on the direction or significance of inference for my subsequent, statistically-

corrected results.  
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Figure 4.3. Average correlations of timeseries between all ROIs (“functional 

connectivity”). (a) Heatmap of average functional connections between regions before 

(lower triangle) and after (upper triangle) global signal regression (GSR). Displayed 

are non-Fisher transformed r for visualization purposes. Bolded cells refer to 

connections significant at Bonferroni-corrected p < .05. (b) Average amygdala-whole 

brain functional connectivity (r) following global signal regression (no thresholding). 

BNST, Bed nucleus of the stria terminalis; PAG, periaqueductal gray; dmPFC, 

dorsomedial prefrontal cortex; vmPFC, (anterior) ventromedial prefrontal cortex; 

sgACC, subgenual anterior cingulate cortex. 
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Hypothesis-Testing 

To test my key hypotheses, I conducted partial Spearman correlations between 

anxiety measures and amygdala-dmPFC connectivity, including age, sex, and motion 

(mean framewise displacement) as covariates of no interest. Self-reported anxiety did 

not demonstrate a significant relationship with amygdala-dmPFC connectivity (left 

amygdala: ρ = .004, p = .90; right amygdala: ρ = .03, p = .51). Threat vigilance also 

did not demonstrate a significant relationship (left amygdala: ρ = .04, p = .37; right 

amygdala: ρ = .06, p = .13; figure 4.4). 

 

Exploratory Tests 

For planned exploratory analyses, I repeated partial Spearman correlations between 

anxiety measures and all pairs of ROIs, applying Bonferroni correction for all 45 edges 

(p < .0011). Self-reported anxiety was not significantly related to any of my connectivity 

measures. However, threat vigilance was significantly associated with increased left 

amygdala-periaqueductal gray functional connectivity (ρ = .15, p = .0001). I 

subsequently repeated my analyses post-hoc on data which had been preprocesed 

with global signal regression. This did not alter my inference: threat vigilance again 

demonstrated a significant relationship with increased left amygdala-periaqueductal 

gray functional connectivity (ρ = .14, p = .0005; figure 4.4).  
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Figure 4.4. Partial Spearman correlations between threat vigilance and functional 

connectivity (ρ; adjusting for age, sex, and mean motion). (a) Heatmap of correlations 

before (lower triangle) and after (upper triangle) global signal regression (GSR). **p 

< .05, Bonferroni-corrected across 45 edges; *p < .05, uncorrected. Only the left 

amygdala-periaqueductal gray connection survives correction regardless of GSR. (b) 

Glass brain plot of uncorrected correlations (p < .05 uncorrected with GSR). BNST, 

bed nucleus of the stria terminalis; PAG, periaqueductal gray; dmPFC, dorsomedial 

prefrontal cortex; vmPFC, (anterior) ventromedial prefrontal cortex; sgACC, subgenual 

anterior cingulate cortex.  
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4.5 Discussion 

In the present study I sought to test whether ‘intrinsic’ (seed-based, resting-state) 

functional connectivity of an amygdala-dorsomedial prefrontal circuit, thought to 

underlie attention to threat, correlated with individual differences in anxiety. I looked at 

both self-reported anxiety and a behavioral measure of attention to threat (‘threat 

vigilance’), derived from the accuracy and reaction times of face perception data. 

Testing my key hypotheses, I did not observe a relationship between the anxiety 

measures and amygdala-dorsomedial prefrontal connectivity. In my planned 

exploratory analyses, I did however observe a correlation between threat vigilance 

and heighted functional connectivity between the amygdala and periaqueductal gray. 

 My hypothesis—that trait anxiety measures would positively correlate with 

intrinsic amygdala-prefrontal connectivity—was motivated by threat of shock studies 

(Robinson et al., 2012), the resting-state literature (which has shown mixed results, 

see Mizzi et al., 2022), and my previously observed results associating individual 

differences in anxiety and this circuitry to suspenseful dynamics during movie-

watching (chapter 3). In the latter, I observed a negative correlation between anxiety-

relevant alterations in amygdala-dmPFC connectivity and suspense: one 

interpretation of my findings was that—while low anxiety individuals selective engage 

this circuit in response to threat—highly anxious individuals chronically engage this 

circuit, irrespective of anxiogenic cues; another interpretation was that highly anxious 

individuals have slowed disengagement and/or greater apprehension to anxiogenic 

scenes. If highly anxious individuals chronically engage this circuit even in the absence 

of salient stimuli, I would expect differences to also be apparent during resting-state 

scanning.  

Here, I report no significant relationship between self-report/vigilance and 

amygdala-dmPFC connectivity. This provides insight into how this circuitry is recruited 

across individuals. In line with the threat of shock literature, engagement of this 

circuitry may only arise in response to anxiogenic stimuli; consequently, individual 

differences are not observed in the absence of such perturbations (i.e., eyes-closed 

resting-state scanning). Even if a true effect were present in the dataset, I highlight 

here: a) the relatively large sample size (n = 639); b) lack of detecting these effects 

across two differing preprocessing pipelines c) inconsistent findings from prior resting-

state studies (Mizzi et al., 2022); and d) and previously observed effects in the same 
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subjects with the same mask during movie-watching (chapter 3). Consequently, I 

argue that any potential effect—if true—is of a theoretically negligible magnitude 

compared to effects following induced anxiety. 

 After hypothesis-testing I conducted a series of planned exploratory tests on a 

wider ‘defensive response’ network which included other subcortical and cortical 

regions implicated in anxiety and threat vigilance (Abend et al., 2022; Grupe & 

Nitschke, 2013). Here, I detected a relationship between amygdala-periaqueductal 

gray connectivity and threat vigilance (but not self-report). Main effects tests suggest 

these were functionally positive connections that were heightened among those 

scoring high in threat vigilance. In other words, more behaviorally vigilant individuals 

demonstrated heightened positive amygdala-PAG connectivity These regions—and 

their connection—have been repeatedly implicated in top-down, anxiety-relevant 

regulation of autonomic functioning and fight-flight-freeze behaviors (for reviews, see 

Faull et al., 2019; Lefler et al., 2020). 

 Stimulation-based work in rodents has demonstrated populations of neurons 

within the periaqueductal gray which respond to threat detection and threat responsive 

behaviors (Deng et al., 2016; Y. Wang et al., 2021). In addition to typical evoked 

activation, primate research has demonstrated associations between per individual 

differences in anxious temperament and functional connectivity between the amygdala 

and periaqueductal gray (Fox et al., 2018). Human fMRI work has demonstrated an 

association between evoked anxiety and periaqueductal gray activation (Hur et al., 

2020; Mobbs et al., 2007). One study in humans using an anxiety induction did not 

find interactions between functional connectivity of the periaqueductal gray and the 

degree of evoked anxiety or clinical diagnosis (Abend et al., 2022). Here, I provide 

evidence that, unlike amygdala-prefrontal connections, individual differences in 

amygdala-periaqueductal circuitry may be apparent at rest; specifically, this circuitry 

may be chronically engaged in hypervigilant individuals, even in the absence of 

threatening cues/anxiogenic stimuli.  

Prior resting-state research contrasting clinical groups has failed to observe 

such associations with amygdala-periaqueductal gray connectivity (Arnold Anteraper 

et al., 2014). I believe this is likely related to the different latent factors measured by 

self-report scales and the functional processes underlying this subcortical circuitry. I 
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previously noted only a small association between self-report and threat vigilance 

measures (ρ = .13; chapter 3). The former measure (Hospital Anxiety and Depression 

Scale; Zigmond & Snaith, 1983) summates multiple dimensions of the 

symptomatology underlying anxiety disorders (e.g., worry/rumination, somatic 

sensations, panic attacks) which may each engage different internal processes 

(Baumeister et al., 2007; Watson et al., 2017). By having a self-report measure which 

averages across multiple latent dimensions, there is likely reduced sensitivity to 

detecting specific internal processes.  

‘Higher-order’ symptoms (e.g., worry) vs more ‘fundamental’ processes (e.g., 

threat vigilance) have been traditionally discussed in the context of relying more so on 

cortical vs subcortical structures respectively (Paulesu et al., 2010; Somerville et al., 

2010). This is one interpretation of why effects on subcortical connectivity were not 

apparent for the self-report measure. However, given recent evolutionary change of 

the human subcortex, this distinction may not be as clear as previously thought (Chin 

et al., 2023). Instead, these dimensions likely differentially engage cortico-subcortical 

circuitry (Grupe & Nitschke, 2013; Kolobaric et al., 2022). Consistent with the small 

correlation between self-report and behavior, it may also be that the self-report 

measure is not a strong indicator of behavioral responding to threat. Therefore, this 

connection may also be specific for behavioral responses to threat and unrelated to a 

person's consciously-aware feelings of anxiety (LeDoux & Pine, 2016). In line with 

recent calls (Moriarity et al., 2022), these findings further highlight the need for greater 

emphasis in anxiety research to investigate when/how measures of symptom 

subtypes, behavior, and brain function converge and diverge. I recommend future 

work to expand the present analytical framework to better identify specific phenotypic 

variation by assessing item-level self-report scores (which were unavailable in the 

present study) as well as additional self-report scales assessing different aspects of 

anxiety. 

I have provided evidence that a behavioral index of threat vigilance may be a key 

process underlying chronic engagement of amygdala-periaqueductal gray circuitry. 

However, the use of human fMRI provides us with only one perspective for clarifying 

the function of this circuitry in humans. Due to the inherent associations between the 

BOLD signal and anxiety with autonomic functioning (Hu et al., 2016; Iacovella & 

Hasson, 2011), fMRI constrains the ability to draw causal conclusions as to 
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mechanisms underlying this circuitry. In order to further delineate the 

psychophysiological processes driving this circuitry in humans and why it is associated 

with threat vigilance (e.g., are these signals directly or indirectly related to vigilance 

and/or autonomic regulation?), I encourage the use of modalities that enable stronger 

causal inferences (albeit, see chapter 6 for my application with fMRI). For instance, 

regional recordings and stimulation via intracranial electroencephalography may help 

further tease apart how these regions contribute to the perceptual, cognitive, and 

autonomic processes associated with anxiety (Parvizi & Kastner, 2018).  

 In the present study, I took a theory-driven approach for pre-selecting regions 

of interest. This was done to study a variety of anxiety-relevant connections (i.e., 45 

edges) while minimizing the degree of statistical correction. However, this comes with 

inherent inferential constraints. First, as my approach did not use a whole-brain 

parcellation, there may be other connections relevant to self-reported anxiety and 

threat vigilance which were missed by taking this approach. Therefore, I cannot infer 

that regions with no significant connections in the present results would be the same 

when using a whole-brain parcellation. Second, several of the regions were not 

defined on a subject-specific basis, which may reduce sensitivity to related signals. 

Arguably, the lack of detected effects (particularly in cortical regions) could thus have 

arisen due to the use of standard-space masks. In the context of my hypothesis-testing 

however, I do note that the dmPFC mask was sufficient for capturing anxiety-relevant 

processes in the same subjects during movie-watching (chapter 3). I also noted effects 

in subcortical regions such as the BNST and periaqueductal gray. These masks were 

based on previous manual tracings in MNI space (on n = 10 and n = 53 subjects 

respectively). As these regions are notably small, this risked missing relevant signals 

due to minor misalignments between subjects. I therefore dilated and eroded these 

masks to create better overlap between subjects. However, as these regions neighbor 

other small, subcortical structures, white matter, and ventricles, this procedure risked 

bringing in noise and unrelated signals.  

Moreover, the dataset was collected using a 3 Tesla magnet with relatively large 

voxels (3 x 3 x 4.44mm) which—compared to 7 Tesla scanning—may not be as 

spatially precise for the small, subcortical regions defined in the present study 

(Huggins et al., 2021). Lastly, although I describe an absence of stimuli during 

scanning, I highlight that resting-state scanning may not be a passive state. Rest can 
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be considered a task in and of itself, with different effects across populations, and thus 

may not offer a completely neutral backdrop for studying intrinsic connections (Finn, 

2021). Understanding this, my inferences regarding these structures are of course 

tentative and research using more refined spatial resolutions, other neuroimaging 

modalities, and subject-specific definitions is needed. 

 

Conclusion 

The present study aimed to investigate whether an association was present between 

individual differences in anxiety and amygdala-prefrontal connectivity whilst at rest; I 

did not observe such a relationship. I suggest this circuitry may only be engaged in 

response to anxiogenic stimuli; and thus individual differences only emerge under 

such conditions. On the other hand, I noted a relationship between a behavioral 

measure of attentional bias to threat (‘threat vigilance’) and amygdala-periaqueductal 

connectivity. Much of the prior literature has discussed the role of this subcortical 

circuitry in responding to threatening cues. Here, I provide evidence that this may be 

chronically engaged, irrespective of anxiogenic features of the environment. 

Moreover, why this was observed for the threat vigilance measure, but not self-report, 

I argue is due to the function role of this circuitry in more fundamental processes 

related to threat vigilance. Future research using higher magnet strengths and other 

imaging modalities will likely prove fruitful for elucidating precise contributions of this 

subcortical circuitry to anxiety-relevant processes. 
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5. RapidHRV: An Open-Source Toolbox for Extracting Heart 

Rate and Heart Rate Variability 

5.0 Preface 

Anxiety is a multi-faceted construct engaging numerous perceptual, cognitive, and 

physiological processes ranging from threat vigilance to worry to autonomic 

responding. In chapters 2-4, I explored the extent to which trait anxiety was associated 

with amygdala-dmPFC responding during movie-watching. Here, we found evidence 

that there are associations, but this likely fluctuates as a function of suspense. 

Whether these dynamics reflect altered subjective experiences and engagement of 

peripheral physiological systems remains unanswered. As such, I sought to test the 

extent to which trait anxiety also shapes peripheral physiological responding, as well 

as subjective experiences of state anxiety, during movie-watching. Before conducting 

such a study, in this chapter I developed an analytical pipeline to be used for deriving 

subsequent measures of autonomic balance (i.e., heart rate). 

 

For the published version of this software, please refer to the below references. Note: 

for brevity, I have included a significantly compressed version of this report so as to 

be adapted toward the primary aims of the thesis. 

Kirk, P. A., Bryan, A. D., Garfinkel, S. N., & Robinson, O. J. (2022). RapidHRV: An 

open-source toolbox for extracting heart rate and heart rate variability. PeerJ, 10, 

e13147. https://doi.org/10.7717/peerj.13147  

 

  

https://doi.org/10.7717/peerj.13147
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5.1 Abstract 

Heart rate and heart rate variability have enabled insight into a myriad of 

psychophysiological phenomena. There is now an influx of research attempting using 

these metrics within both laboratory settings (typically derived through 

electrocardiography or pulse oximetry) and ecologically-rich contexts (via wearable 

photoplethysmography, i.e., smartwatches). However, these signals can be prone to 

artifacts and a low signal to noise ratio, which traditionally are detected and removed 

through visual inspection. Here, I developed an open-source Python package, 

RapidHRV, dedicated to the preprocessing, analysis, and visualization of heart rate 

and heart rate variability. Each of these modules can be executed with one line of code 

and includes automated cleaning. In simulated data, RapidHRV demonstrated 

excellent recovery of heart rate across most levels of noise (>=10 dB) and moderate-

to-excellent recovery of heart rate variability even at relatively low signal to noise ratios 

(>=20 dB) and sampling rates (>=20 Hz). Validation in real datasets shows good-to-

excellent recovery of heart rate and heart rate variability in a range of recording 

modalities, dependent on the degree of artifacts such as motion. 
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5.2 Introduction 

Evidence has outlined a link between heart rate, heart rate variability, and health-

related risks, including mental illnesses  (Hillebrand et al., 2013; Jandackova et al., 

2016; Makovac, Meeten, Watson, Garfinkel, et al., 2016; Pham et al., 2021)(Hillebrand 

et al., 2013; Jandackova et al., 2016; Makovac et al., 2016a; Pham et al., 2021). 

Consequently, there is now an influx of research looking into whether these measures 

can be derived in naturalistic settings to track clinically-relevant outcomes, namely 

through wearable devices (Georgiou et al., 2018; Mulcahy et al., 2019). However, a 

key issue when opting to use the measures in naturalistic settings are the low signal 

to noise ratios (e.g., photoplethysmography (PPG), a typical measure for cardiac 

monitoring in wrist wearables, Caizzone et al., 2017). Moreover, heart rate variability 

measures generally require relatively longer windows for extraction compared to heart 

rate (Baek et al., 2015). Thus, significant noise poses a problem for out-of-laboratory 

applications, as point estimates can contain large errors from technological limitations 

and motion artifacts within windows of extraction. In experimental settings, noise has 

often been dealt with through visual inspection of data (Makovac, Watson, Meeten, 

Garfinkel, et al., 2016; Rae et al., 2020); but when approaching time courses in 

relatively larger-scale samples, manual outlier detection is not a pragmatic solution. 

Whilst some open-source packages are already available for the analysis of 

heart rate and heart rate variability, these are typically modality-specific, and not 

targeted at wrist-worn measures (e.g., pyVHR for video-based estimation, Boccignone 

et al., 2020). Some modality-general packages do exist, but these often still require 

manual visual inspection and/or can require custom scripting on the users end for 

tailoring to e.g., noisy PPG measures (‘Analysing_Smartwatch_Data’ in HeartPy, van 

Gent et al., 2019; NeuroKit2, Makowski et al., 2021). As such, these are often less 

suited for dealing with datasets collected across large time frames. Consequently, I 

set out to develop a simple yet flexible toolbox for the extraction of time-domain heart 

rate and heart rate variability measures with automated artifact rejection applicable 

across recording modalities, including wrist-worn PPG. Here, I present the 

development and validation of an open-source Python package, ‘RapidHRV’. 
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5.3 Pipeline 

RapidHRV was developed in Python (V 3.7.9). RapidHRV source code and tutorials 

are available to download through PyPi (https://pypi.org/project/rapidhrv/) and GitHub 

(https://github.com/peterakirk/RapidHRV). Below I provide an overview of RapidHRVs 

preprocessing, analysis (figure 5.1), and visualization. Each of the three modules only 

requires one function (one line of code) to run, for which I have embedded examples 

at the end of the relevant sections below.  

 

  

Figure 5.1. Overview of RapidHRV pipeline. Across an entire block, the pipeline 

initially processes data with high-pass filtering, upsampling, and smoothing. 

RapidHRV then applies a sliding window across the entire block. Within each window, 

the data are scaled. Heart rate (beats per minute) and heart rate variability (root mean 

squared of successive differences + standard deviation of intervals) are calculated for 

each window, and data is submitted to outlier rejection. RapidHRV produces both a 

cleaned and uncleaned time series of heart rate and heart rate variability. 

 

https://pypi.org/project/rapidhrv/
https://github.com/peterakirk/RapidHRV
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Preprocessing 

First, data is upsampled with cubic spline interpolation (3rd order polynomial; default 

= 1kHz) to increase temporal accuracy of peak detection. To mitigate potential long-

term drifts in the signal, the pipeline then applies a high pass butterworth filter (0.5Hz) 

across the input data. Finally smoothing with a Savitzky-Golay filter (3rd order 

polynomial; default = 100ms) is applied to reduce spiking (sharp increases in the signal 

caused by artifacts such as motion) whilst retaining temporal precision.  

 

Extracting Heart Rate and Heart Rate Variability 

Following preprocessing, the pipeline scales the data (between 0 and 100) and runs 

peak detection on every window (default width = 10s; for a methodological discussion 

and prior validation of using ultra-short, 10s windows in heart rate variability 

estimation, see Munoz et al., 2015). This outputs peaks and their properties (e.g., 

heights, amplitudes, width; SciPy ‘find_peaks’, Virtanen et al., 2020). As RapidHRV 

uses fixed movements for the sliding window, a window can start or end at any point 

during the cardiac signal. This can occasionally result in underestimation of the 

first/last peak’s amplitude as the baseline value may—for example—be set during the 

P wave. Therefore, RapidHRV recalculates amplitudes of the first/last peaks using 

baseline imputation from the neighboring peaks.  

For extracting beats per minute (BPM) the number of peaks, k - 1, is multiplied 

by 60 (seconds), and divided by the difference in time between the first and last peaks, 

i and j: 

 

The root mean square of successive differences is calculated by obtaining: (1) 

the interbeat interval, IBIi, between neighboring peaks; (2) the successive differences 

in interbeat intervals, IBIi - IBIi+1; (3) the square of differences; (4) the mean of squared 

differences (dividing by the number peaks, N, - 1); and (5) the root of the mean square 

of successive differences (RMSSD): 
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BPM and RMSSD were selected as the primary measures as they appear to 

be the most stable metrics when derived from ulta-short recordings (Baek et al., 2015). 

RapidHRV also supplements these measures with the standard deviation of N-N 

intervals (SDNN), standard deviation of successive differences (SDSD), proportion of 

successive differences greater than 20ms (PNN20), proportion of successive 

differences greater than 50ms (PNN50), and high-frequency power (HF; note: as this 

requires more data points than time-domain analyses NaN is returned if there is 

insufficient data). 

 

Outlier Detection 

The last phase of the pipeline is to pass measures derived from peak extraction to 

outlier rejection (figure 5.2). This is applied at the level of the sliding window. If a 

window is declared an outlier, heart rate and heart rate variability measures are 

removed from the cleaned time series. By default, RapidHRV returns both the cleaned 

and the uncleaned time series. In addition to default parameters listed below, the 

package has optional arguments embedded to allow users to override these presets. 

Given that not all users may be entirely comfortable manually adjusting these, 

RapidHRV additionally contains semantically-labeled arguments as inputs for outlier 

constraints (‘liberal’, ‘moderate’ [default], and ‘conservative’; corresponding 

parameters are parenthesized under Biological Constraints and Statistical 

Constraints). 

 

Biological Constraints 

RapidHRV first applies restrictions to exclude data that are highly unlikely given known 

physiology: 

1. Screening for sufficient peaks in a window (default: number of peaks > (window 

width / 5) + 2), floored at 3; default at 10s = 3 peaks). This is primarily for 

computational applicability and efficacy, screening data prior to further 

processing. The minimum number of peaks required to enable calculation of 

RMSSD is 3. As such, this is also applied to the uncleaned time series. 
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2. Minimal and maximal heart rate (‘moderate’ [default]: 30 > BPM > 190; ‘liberal’: 

20 > BPM > 200; ‘conservative’: 40 BPM > 180). These boundaries were based 

on typical heart rate at rest and during exercise in the healthy population 

(Pierpont & Voth, 2004; Sandvik et al., 1995; Savonen et al., 2006). 

3. Minimal and maximal heart rate variability (‘moderate’ [default]: 5 > RMSSD > 

262; ‘liberal’: 0 > RMSSD > 300; ‘conservative’: 10 > RMSSD > 200). Default 

arguments correspond to the minimum/maximum 2nd/98th percentiles of 

resting RMSSD across ages 16-89 years (van den Berg et al., 2018). 

 

Statistical Constraints 

RapidHRV next applies statistical constraints to account for noisy data that may 

otherwise appear to provide measures within the range of known physiology: 

1. Median absolute deviation (MAD) of peak heights (distance from minimum 

value of signal in window; i.e., 0) and prominence (amplitude from baseline 

height; ‘moderate’ [default] = 5 MAD units; ‘liberal’ = 7; ’conservative’ = 4). 

Unlike Z-scoring, this quantifies each peak’s height and prominence in a given 

window in terms of its deviation from the median value in the same window (for 

a discussion of median absolute deviation see Leys et al., 2013). Applying 

these constraints to height and prominence helps exclude windows with noise-

driven inaccuracies in peak detection. 

2. Median absolute deviation of interbeat intervals (‘moderate’ [default] = 5 MAD 

units; ‘liberal’ = 7; ’conservative’ = 4). This was also implemented to account for 

inaccuracies in peak detection, either where spiking may cause detection of an 

irrelevant peak shortly after e.g., an R wave, or low signal to noise ratio may 

result in missing relevant peaks. 

3. Time from the first peak to the last peak does not recede 50% of the fixed 

window width. This is to ensure the user that the actual length of time for 

extracting HR/HRV is not less than half of that which is specified in the window 

width argument. Given debates surrounding adequacy of different window 

lengths for HRV extraction (Baek et al., 2015; Munoz et al., 2015), this was 

implemented primarily as a theoretical constraint (rather than for just cleaning 
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per se) to ensure the user is not provided data that deviated significantly from 

their specified window. 

4. Analysis can be executed with one line of code, which returns a pandas 

DataFrame (McKinney, 2012; The pandas development team, 2023) containing 

the analyzed data. 

 

 

Figure 5.2. The only outlier rejection method applied to the uncleaned time series is 

screening for a sufficient number of peaks to derive metrics. The cleaned time series 

then goes through a battery of biological constraints (thresholding minimum/maximum 

beats per minute (BPM) and root mean square of successive differences (RMSSD)) 

and statistical constraints (median absolute deviation (MAD) of peak heights, 

prominences, and intervals; ensuring adequate duration from first to last peaks). 
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Visualization 

To allow for selected manual inspection, I have also implemented optional interactive 

visualizations via matplotlib (Hunter, 2007) which allow the user to plot the time course 

of heart rate and heart rate variability. The user can then select and view specific data 

points to see the window of extraction. 

 

5.4 Validation Methods 

Datasets 

To validate the above pipeline I subjected it to a series of tests across both simulated 

and real data (table 5.1). I first started by testing RapidHRV’s estimations in two sets 

of simulated data (PPGSynth; Tang et al., 2020). Next, I ran validation in real data 

across successively noisier modalities: electrocardiography (ECG), finger 

photoplethysmography (PPG), and wrist PPG data. Database information and code 

generated in validation tests are available through the open science framework 

(https://osf.io/7zvn9/). For full details of simulation parameters and datasets, please 

refer to the published report (Kirk et al., 2022). For purposes of the present report, I 

only report validation in two of the datasets (1. Simulations across sampling rates and 

noise; and 4. Data collected from finger PPG recordings; Table 5.1). 

 

Table 5.1. Simulated and real datasets used for validation of RapidHRV. 

Dataset Modality N Conditions Duration Hz 

1. 

Simulation 

PPGSynth 273 None 

(noise) 

5 min 20–250 Hz 

2. 

Simulation 

PPGSynth 172 (10 

repeats) 

‘Anxiety’ 5 min 20–250 Hz 

3. (Iyengar 

et al., 1996) 

ECG 40 Movie ~2 h 250 Hz 

4. (de Groot 

et al., 2020) 

Finger IR 

PPG 

39 Anxiety 

(sitting) 

2 × 28 min 1,000 Hz 

5. (Reiss et 

al., 2019) 

Wrist PPG 15 Varying 

activities 

~2.5 h 64 Hz 

https://osf.io/7zvn9/
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Analyses 

Unless otherwise stated, all analyses were conducted using RapidHRV’s default 

arguments: window width = 10s; window movement = 10s; outlier method = ‘moderate’ 

(peak/height median absolute deviation = 5, interbeat interval median absolute 

deviation = 5, BPM range = 30-190, RMSSD range = 5-262); minimum window 

successful extraction = 5s, minimum amplitude for peak detection = 50, minimum 

distance between peaks = 250ms; for ECG data, ecg_prt_clustering = True). To 

assess performance across datasets, I used: visualizations; intraclass correlation 

coefficients (ICC; two-way mixed effects, absolute agreement, single measure); root-

mean-square-error (RMSE); and sensitivity to experimental effects (Cohen’s d). For 

ICC values, I used the following semantic labels for interpretation: ICC < .5 as ‘poor’, 

.5 < ICC < .75 as ‘moderate’; .75 < ICC < .90 as ‘good’, and .90 < ICC as ‘excellent’ 

(Koo & Li, 2016). 

 

5.5 Validation Results 

Parameter Recovery in Simulated PPG 

I first took the pipeline forward to validation using simulated photoplethysmography 

(PPG) data from PPGSynth (Tang et al., 2020) in MATLAB. This allowed me to test 

how well RapidHRV recovered known parameters under specified conditions, such as 

sampling rate and noise. RapidHRV was able to accurately recover heart rate across 

most sampling frequencies and noise in my initial simulations. Accurate detection of 

BPM primarily started to degrade when signal to noise ratios were less than 10dB 

(table 5.2). RapidHRV cleaning provided improvements in simulations with a signal to 

noise ratio of 10dB. 

Table 5.2. Intraclass correlations between simulated BPM and RapidHRV for 

uncleaned (and cleaned) data as a function of sampling rate and noise. 

Sampling rate 0.01 dB 10 dB 20 dB 

20 Hz 0.06 (0.18) 0.37 (0.80) 0.98 (1.0) 

50 Hz 0.18 (0.13) 0.80 (0.96) 1.0 (1.0) 

100 Hz 0.33 (0.26) 0.96 (1.0) 1.0 (1.0) 

250 Hz 0.62 (0.7) 1.0 (1.0) 1.0 (1.0) 
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Performance in recovery of heart rate variability was again primarily based on signal 

to noise ratio. At 20dB RapidHRV recovery of RMSSD was good-to-excellent for 

higher sampling rates (>=100Hz), whereas lower sampling rates (<100Hz) required 

slightly lower levels of noise (>30dB) for excellent recovery. RapidHRV cleaning 

provided clear improvements when signal to noise ratio was below 30dB (figure 5.3). 

 

Figure 5.3. Parameter recovery of simulated PPG data as a function of heart rate 

variability (Intraclass Correlations (ICC) and Root Mean Square Error (RMSE) against 

ground truth). Y axes reflect the true RMSSD in the data, whilst the X axes reflect 

RapidHRV’s estimation. For readability, data is only plotted in a key range of 

performance (subplots: 10–40 dB noise left-to-right; 20–250 Hz top-to-bottom). 

 

Estimation via Finger PPG 

I next took the pipeline forward to validation in finger PPG data. Here, I used a dataset 

of 39 subjects (Age: Mean = 22.67; Range = 18–38 years; demographics reported 

prior to n = 1 exclusion) watching 2 × 28 min blocks of documentary and horror video 

clips undergoing finger PPG recording (1,000 Hz, de Groot et al., 2020). This allowed 
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me to contrast psychological conditions of the experiment, testing whether RapidHRV 

was able to detect effects of anxiety. Moreover, in the original study, data had been 

preprocessed and analyzed using a commercially available software (Labchart; 

ADInstruments, Sydney, Australia; analyzed using built-in ‘Peak Analysis’ module). 

This allowed me to benchmark RapidHRV against another software. The full dataset 

and description is available via the Open Science Framework (https://osf.io/y76p2/). 

 

Sensitivity to Anxiety 

In the finger PPG data, RapidHRV was able to capture previously reported (de Groot 

et al., 2020) effects of anxiety on BPM (table 5.3). RapidHRV additionally 

demonstrated an influence of anxiety on RMSSD. Effects on BPM were greater 

following cleaning, whereas detection of effects on RMSSD was entirely dependent 

on cleaning. 

Table 5.3. Effect size (Cohen’s d) of heart rate and variability between conditions as 

a function of software and cleaning method. 

Software BPM effect (d) RMSSD effect (d) 

Labchart 0.52 0.19 

RapidHRV (Uncleaned) 0.45 −0.04 

RapidHRV (Cleaned) 0.54 0.35 

 

Benchmarking 

Overall, there was excellent agreement between RapidHRV and previous estimates 

(de Groot et al., 2020; implemented using LabChart, ADInstruments, Sydney, 

Australia) of BPM (ICC > .99; figure 5.4). For heart rate variability, there was good 

agreement between the two when using the cleaned time series (ICC = .89), but poor 

agreement when using the uncleaned time series (ICC = .32). 

 

https://osf.io/y76p2/
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Figure 5.4. Agreement between RapidHRV and a previous Labchart analysis (de 

Groot, Kirk & Gottfried, 2020) of heart rate and variability in a finger PPG dataset (n = 

39). 
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5.6 Discussion 

RapidHRV is an open-source toolbox for extracting heart rate and heart rate variability 

measures. RapidHRV was developed in response to the need for software dedicated 

to dealing with extensive cardiac data collected across large time frames, such as out-

of-laboratory PPG recordings, which may require point estimates from very short time 

windows (~10 seconds). Python packages currently exist which can analyze cardiac 

data (e.g., Systole, Legrand & Allen, 2022; NeuroKit2, Makowski et al., 2021; pyHRV, 

Gomes et al., 2019). However, outlier rejection algorithms often require visual 

inspection and/or extensive scripting on the user's end. While suitable for the cardiac 

data collected during laboratory experiments, this may not be feasible when dealing 

with data collected across large time-scales, such as weeks or months. Here, I have 

attempted to fill this gap by developing a programmatically easy-to-use toolbox which 

extracts HRV measures from ultra-short windows and automates artifact detection and 

rejection. In general, this is applied via a series of biological and statistical constraints. 

Moreover, for ECG data, I have also implemented a k-means clustering algorithm for 

delineating P, R, and T waves. Across simulated and real datasets, I scrutinized 

RapidHRV, testing scenarios where it was and was not able to extract meaningful 

metrics. I show that signal to noise ratio, sampling rate, and recording modality had a 

clear impact on sensitivity of estimation. Here, I summarize these validation tests and 

make modality-specific recommendations for users. 

 

Simulations 

Within simulated data, RapidHRV was able to recover heart rate across most levels of 

noise (white gaussian noise filter >=10dB), even at relatively low sampling rates 

(>=20Hz). RapidHRV’s recovery of heart rate variability was excellent at relatively low 

levels of signal to noise ratio (>=20dB), though there was degradation of performance 

as sampling rate decreased.  Additional simulations of cardiac responses to an anxiety 

induction demonstrated RapidHRV estimations fully captured effects at moderate 

levels of noise (>=30dB) even at relatively low sampling rates (i.e., 20Hz). RapidHRV 

was able to partially capture effects (~50% reduction in effect size) at very high levels 

of noise (>=10dB when Hz >50). Simulations revealed RapidHRV cleaning was 

particularly beneficial at lower sampling rates and higher levels of noise, but was not 
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necessary (or could be relaxed) when signal and sampling rates were high. Moreover, 

these simulations were able to clarify the validity of RapidHRV’s default window (10s) 

for estimation of heart rate variability across a longer time period (i.e., 5 minutes).  

 

Finger PPG 

Using RapidHRV-estimates, I noted effects of anxiety on heart rate and heart rate 

variability in a database of participants watching horror and documentary videos while 

undergoing finger infrared PPG recordings. Notably, the estimated effect size was 

analogous to that noted in threat of shock studies (Gold et al., 2015). Moreover, when 

contrasting subject-specific estimates, I found good-to-excellent agreement between 

RapidHRV and a previous analysis using a commercially available software. Effect 

sizes between conditions and convergence of estimates between softwares was 

significantly improved following RapidHRV cleaning. 

 

Conclusion 

In the present paper, I have outlined RapidHRV: an open-source Python pipeline for 

the estimation of heart rate and heart rate variability. Across simulated datasets, 

RapidHRV showed good-to-excellent recovery of heart rate and heart rate variability 

at relatively high levels of noise in simulation data. Estimates in finger PPG 

demonstrated RapidHRV was able to recapitulate known effects anxiety, and showed 

excellent agreement with visually-inspected analyses and commercial software. Given 

the increased interest in the use of wearable measures of heart rate metrics and how 

they relate to other domains such as mental health, I hope that this toolbox will be of 

wide use to the community, and that the simulation and benchmarking tests provided 

may help inform the design and analysis of such studies. 
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6. Anxiety and Subjective-Autonomic Responding to a 

Suspenseful Movie Clip 

6.0 Preface 

In chapter 2-4, I demonstrated associations between trait anxiety and amaygdala-

dmPFC responding during movie-watching. In this chapter, I sought to test whether 

these responses may be associated with activation within the autonomic nervous 

system. Before doing so, I developed an analytical pipeline (RapidHRV) in chapter 5 

to extract heart rate measures as a proxy for autonomic balance. In chapter 6, I use 

RapidHRV to test the extent to which trait anxiety also shapes heart rate, as well as 

subjective experiences of state anxiety, during the same suspenseful video clip used 

in chapter 3. 

 

For a pre-printed version of this study, please refer to the below reference: 

Kirk, P. A., Foret-Bruno, P., Lowther, M., Garfinkel, S., Skipper, J. I., & Robinson, O. 

J. (2023). Anxiety symptomatology and subjective-cardiac responding to a 

suspenseful movie clip. PsyArXiv. https://doi.org/10.31234/osf.io/dqhnx 

  

https://doi.org/10.31234/osf.io/dqhnx
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6.1 Abstract 

There are known associations between the presence of experimentally-presented 

threats and peripheral physiological responses, such as a heart rate, which holds 

implications for understanding pathological levels of anxiety. Moving away from 

traditional task-based paradigms, I investigated whether subjective experience (i.e., 

continuous state anxiety ratings) and heart rate were associated with individual 

variations (n = 133) in trait anxiety symptomatology (items on the hospital anxiety and 

depression scale) during an anxiogenic movie clip. In other words, do different trait 

anxiety-related processes manifest in altered anxiety states vs heart rate during 

movies? Using intersubject representational similarity analysis, I report a significant 

association between pairwise similarities in trait anxiety symptom profiles and 

continuous state anxiety ratings during suspenseful movie-watching. On the other 

hand, I failed to detect associations between trait anxiety symptoms and heart rate. 

This suggested that trait anxiety symptoms are associated with differences in 

subjective experiences of anxiety during suspenseful movies, but are potentially not 

associated with autonomic responses.  
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6.2 Introduction 

It has long been theorized that—when faced with potential dangers—peripheral 

physiology is engaged to facilitate defensive behaviors in response to threat, namely 

fighting or fleeing (Cannon, 1929). One significant mechanism which gives rise to 

these responses is the autonomic nervous system. This includes two branches, 

sympathetic and parasympathetic, which are differentially engaged based on 

homeostatic demand (including, but not limited to, defensive responding; (Morrison, 

2001). When posed with a direct threat, humans typically alter activity within and 

across sympathetic/parasympathetic branches Friedman & Thayer, 1998). Effects of 

this include increased respiration, perspiration, pupil dilation, and altered cardiac 

activity (e.g., increased heart rate; McCorry, 2007). Many of these responses may 

confer benefits to an individual when encountering threat; for example, increased heart 

rate provides oxygen-rich blood to support musculature when fighting and fleeing 

(Critchley, 2009; McCorry, 2007). 

A large body of literature has detailed which physiological responses may relate 

to state anxiety, conceptualized as an emotion evoked by uncertain threat, and trait 

anxiety, one's predisposition to anxious states. One of the most studied aspects of 

physiology in this context is cardiac reactivity. When inducing state anxiety through 

personally-direct threat, such as exposing participants to unpredictable shocks, 

increases in heart rate are often observed (Petry & Desiderato, 1978). Moreover, 

cross-sectional comparisons reveal trait anxiety to be associated with greater 

increases in heart rate to personally-directed threat (Somerville et al., 2010; albeit, 

effects are not always consistent, see Qiao et al., 2022). Consequently, how 

physiological measures, such as heart rate, may correlate with pathological levels of 

trait anxiety have come under investigation. Following induced state anxiety, 

pathologically high trait anxiety appears to be associated with relatively greater 

increases in heart rate (Pittig et al., 2013). However, such effects may not be apparent 

for all types of anxiety, such as social anxiety disorders (Pittig et al., 2013). This 

implicates a key role of symptomatology (the types of symptoms experienced; e.g., 

vigilance vs worry vs somatic sensations) in the relationship between trait anxiety and 

autonomic activity. This also speaks to a larger issue of overlooking subsets of anxiety-

related mechanisms and differences in the types of conscious experience of anxiety. 
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Despite physiological responses being associated with the presence of threats 

or clinical diagnosis, the relationship to subjective experience in this relationship is 

often neglected. The mapping of biological measures onto self-reported experiences 

of anxiety can be, and is often, weak (Boeke et al., 2020; Marek et al., 2022; 

Rosenberg & Finn, 2022). If the eventual goal of this research is to aid individuals 

experiencing pathological levels of anxiety, there are clear needs to distinguish threat 

responding (which includes autonomic responses) from consciously experienced 

anxiety (LeDoux & Pine, 2016; Taschereau-Dumouchel et al., 2022). This discrepancy 

is often not directly addressed in studies. Moreover, even if such measures are 

included, our knowledge remains constrained to the experimental environment of 

these paradigms. There is clear evidence that, when an explicit, direct threat is 

presented in a laboratory, there are increases in heart rate, and this might vary 

between individuals based on their symptomatology. However, the extent to which 

anxiety symptomatology may be associated with psychological/physiological 

responding outside of constrained experimental contexts remains unknown. 

One approach to move anxiety research toward more ecological paradigms is 

through the use of movies, which may allow us to probe the biology of anxiety in a 

manner more naturalistically representative than that of traditional task-based 

paradigms (Eickhoff et al., 2020; albeit, the extent of this ecological validity is 

debatable, see Grall & Finn, 2022). Additionally, it offers several analytical benefits. 

By having stimulus presentation time-locked between participants (participants are 

viewing the same videos, so time series are comparable), we can apply techniques 

such as intersubject representational similarity analysis (P.-H. A. Chen et al., 2020; 

Finn et al., 2020; Kriegeskorte et al., 2008). Like intersubject correlation, this computes 

pairwise similarities in time courses between participants. However, it also allows us 

to study individual differences by comparing how intersubject similarities in responding 

to movies maps onto similarities in trait anxiety. This technique has often been applied 

to neuroimaging data. To my knowledge, no work has used this technique in the study 

of individual differences in anxiety and autonomic/subjective responses (one recent 

study has investigated cardiac responses in the context of mentalizing, see R. Wang 

et al., 2022). 

Using intersubject representational similarity analysis, I have previously 

demonstrated movie-watching’s utility for understanding the neurobiology of anxiety, 
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reporting individual differences in trait anxiety to be associated with threat circuitry 

dynamics during suspenseful movie-watching (chapter 3). However—while I was able 

to demonstrate that suspenseful movie-watching elicits anxiety-relevant 

idiosyncrasies in neural circuitry—the extent to which trait anxiety is manifested in 

altered: (1) self-reported state anxiety; and (2) autonomic responding remains unclear. 

In the present study, I collected data on participants watching the same suspenseful 

movie clip that has been used in multiple prior neuroimaging datasets. However, less 

work has linked this data to behavioral/physiological responses, especially in regard 

to individual differences. As participants watched this same suspenseful stimulus, I 

took an intersubject representational similarity approach to test the extent to which 

anxiety symptomatology was associated with both ongoing state anxiety and cardiac 

responses during suspenseful movie-watching. 

 

Hypotheses 

In the present preregistered study (https://osf.io/w2duj/), I compared between-

subjects, pairwise similarities in anxiety symptom profiles (comparisons of item-wise 

scores on an anxiety questionnaire) with pairwise similarities in psychophysiological 

responding. I predicted that pairwise similarities in anxiety symptom profiles would 

positively correlate with pairwise similarities in: 

1. Continuous reporting of state anxiety during suspenseful movie-watching. 

2. Heart rate during suspenseful movie-watching. 

 

6.3 Methods 

Participants 

Experiments using cognitive tasks have found associations between trait anxiety and 

cardiac responding in the range of r = ~.25-.40 (Shinba et al., 2008; Williams et al., 

2017). At the floor end of such study effects, I calculated approximate sample size 

using G*Power 3.1 (Faul et al., 2007). Given my strong priors and that the tests for my 

hypothesis are only interpretable in one direction (i.e., intersubject representational 

similarity analysis, see analysis), I calculated power for a one-tailed effect, specifying 

https://osf.io/w2duj/
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r = .25, α = .05, 1-β = .9 (‘Correlation: bivariate normal model’). This suggested an 

approximate sample size of n = 134. To account for ~10% data rejection, this was 

raised to n = 150. As preregistered, a stopping rule was implemented wherein signal 

quality and confirmatory tests were checked at n = 50 (Bonferroni correction on 

confirmatory tests was adjusted accordingly). I continued to collect the full sample but 

discontinued the use of certain measures, as described below. Following exclusion 

criteria (see Design and Analysis), 133 subjects were retained for hypothesis-testing 

and 115 for exploratory analyses. Participants were required to be: aged between 18 

and 64; have normal or corrected to normal vision; right handed; have no current or 

past diagnosis of psychiatric disorder; no current prescription or non-prescribed use 

of any psychiatric drugs; and not be pregnant. 

 

Design 

Self-Report and Behavioral Data 

Participants completed: a demographic questionnaire (age [M = 25.53, SD = 8.26, 

range 18-58], gender [118 female, 29 male, 2 gender variant/non-binary, and 1 

transgender female], and ethnicity [94 Asian or Asian British, 41 White, 6 Mixed or 

multiple ethnic groups, 6 Black/Black British/Caribbean/African, 3 Other ethnic 

groups]); the Hospital Anxiety and Depression Scale (HADS; (Zigmond & Snaith, 

1983; the trait section only of the Spielberger State-Trait Anxiety Inventory (STAI; 

Spielberger, 1983); Generalised Anxiety Disorder Assessment Questionnaire (GAD-

7; Spitzer et al., 2006); and the short form of the Perth Emotional Reactivity Scale 

(PERS-S; Preece et al., 2019). The anxiety section of the HADS scale constituted my 

self-report metric for hypothesis-testing (see figure 6.1 for distribution), so as to be 

able to draw direct comparisons to my prior work using the same scale (chapters 3 

and 2.3). Each questionnaire included a catch item for inattention ('Please select 

[OPTION X]'). Participants who failed the catch item in the HADS were excluded from 

all analyses as this was my key hypothesis-testing measure (n = 3). Participants who 

failed a catch item on the other questionnaires were only excluded from exploratory 

analyses (n = 24; full exclusions in table 6.1). I also included a slider (ranging from 

“Not Anxious” to “Very Anxious”; figure 6.2) at the bottom of the screen for participants 

to continually rate state anxiety. 
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Table 6.1. Participants fulfilling exclusion criteria. Criteria below are not mutually 

exclusive within-subjects. These included, failing catch items on the questionnaires 

(HADS, GAD, STAI, or PER-S); issues with stimulus presentation/recording 

(audio/logging error), and subjects who provided unresponsive ratings.  

Hypothesis-testing exclusions (n = 17) Exploratory exclusions (n = 
35) 

Failed HADS 
check 

Audio/logging 
error 

Unresponsive Failed GAD, STAI, or 
PERS-S check 

3 6 8 24 

 

 

Figure 6.1. Histograms plots (with kernel density estimation) of age and scores on the 

Hospital Anxiety and Depression Scale (HADS; anxiety section). 

 

 

Figure 6.2. During the movies, participants provided continuous ratings of subjective 

state anxiety using a slider at the bottom of the screen. 
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Video Clips 

Participants watched two clips, both ~8 minutes in duration. My suspense clip was 

from Alfred Hitchcock’s ‘Bang! You’re Dead’, which has been used extensively in 

neuroimaging studies (Kliemann et al., 2022; Kolisnyk et al., 2023; Shafto et al., 2014). 

The edited, black and white clip consists of a child who finds what he believes to be a 

toy gun, not realizing it is a loaded gun. The child continues to play with the weapon 

until the clip ends with him triggering the gun and almost shooting a maid. The non-

suspense clip was from the comedy show ‘Friends’ (Season 10 episode 6; ~8 minutes 

following the opening titles). This was selected so as to match the social/sensory 

complexity of my suspenseful clip and to allow for comparisons with databases which 

use the same video (Boyle et al., 2020). The clip was edited to grayscale so as to 

match ‘Bang! You’re Dead’.  

The video clips were counterbalanced between subjects. To establish a 

baseline and mitigate the influence of emotional states between conditions, 

participants also viewed a picture of a relaxing beach scene (as used in de Groot et 

al., 2020) for 2 minutes before, between, and after video clips (see figure 6.3 for full 

schematic). 6 subjects were excluded due to audio/logging errors during the 

experiment. 

 

Physiological Recordings 

Cardiac signals were recorded using a Nonin 8000S finger pulse oximeter 

(https://www.nonin.com/products/8000s/). Before my stopping rule, supplementary 

physiology measures were recorded using an EmotiBit (https://www.emotibit.com/), 

but this was dropped due to issues of signal quality. 

https://www.nonin.com/products/8000s/
https://www.emotibit.com/


 

128 

Figure 6.3. Experimental Protocol. Participants consented, had the recording devices 

attached, and completed questionnaires before watching a series of video clips. HADS 

= Hospital Anxiety and Depression Scale, STAI = State-Trait Anxiety Inventory, GAD-

7 = Generalised Anxiety Disorder Assessment, PERS-S = Perth Emotional Reactivity 

Scale (short form). 

 

Analyses 

 Analyses were conducted in Python, including the use of the RapidHRV (chapter 5), 

SciPy (Virtanen et al., 2020), and Pingouin (Vallat, 2018) packages. As preregistered 

(https://osf.io/w2duj/), all analyses used one-sided tests thresholded at α=.05 unless 

otherwise stated. 

 

Within-Subject Processing 

 Continuous anxiety ratings. Continuous state anxiety ratings underwent 

minimal processing. Subjects whose responses never changed (n = 8) were excluded 

from all analyses. Data was resampled down to 1000ms windows so as to be able to 

match the resolution of the cardiac data. Time series from each clip were baseline 

subtracted (average response from 2 minute calm picture scene prior to videos), then 

smoothed using a Savitzky-Golay filter (‘scipy.signal.savgol_filter’, 3rd order 

polynomial, window length 10s), before finally being Z-scored. For 49 subjects, an 

https://osf.io/w2duj/
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error resulted in the first 30 seconds of slider data not logging properly. This was 

interpolated using backwards fill based on the first valid rating. 

 

Cardiac Data. Cardiac data from the pulse oximeter were processed using 

RapidHRV. Heart rate (beats per minute, BPM) time series were extracted using a 

window length of 10,000ms, window offset of 1000ms, and outlier rejection handled 

using RapidHRV defaults (outlier_detection_settings = 'liberal'). Rejected/missing 

heart rate and heart rate variability data points were interpolated using a cubic spline 

and smoothed with a Savitzky-Golay filter (3rd order polynomial, window length 10 

samples). 

 

Typicality Measures. For each subject, I produced typicality measures. I 

define this as every subject's similarity to ‘canonical’ measures of affect (as measured 

in separate datasets); in other words, how ‘typical’ their responses are to group 

averages. This was done for two reasons: (1) my continuous state anxiety ratings 

scale (figure 6.2) was generated for the purposes of this study and I wanted to 

benchmark the collected ratings as a confirmatory check; and (2) for use in exploratory 

tests of individual differences in trait anxiety. Typicality measures were calculated 

using Fisher-transformed bivariate correlations between primary dependent measures 

collected in my study (continuous state anxiety ratings and BPM) and independent, 

external ratings of suspense (Schmälzle & Grall, 2020), tension (Sun et al., 2022), 

arousal, valence, and uncertainty (Majumdar et al., 2022). All external ratings were 

resampled to the same resolution as the features generated from the present study. 

 

Subjective-Autonomic Coherence. For each subject, I produced a similarity 

measure between continuous state anxiety ratings and BPM time series. This was 

achieved through the use of dynamic time warping—in ‘dtaidistance’ (Meert et al., 

2020)—constrained using a Sakoe-Chiba band size of 10 seconds (in other words, 

allowing for a maximal lag of 10 seconds between the two signals). I also re-calculated 

measures post-hoc without this constraint. 
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Intersubject Similarity Measures. My main question, whether individual 

differences in trait anxiety were associated with altered behavioral and physiological 

responses within the clip, was assessed using intersubject representational similarity 

analysis (Finn et al., 2020; Kriegeskorte et al., 2008; Figure 6.4). I first created a trait 

anxiety symptom profile similarity matrix. Each cell in the matrix was a comparison 

between two subjects; specifically, Euclidean distance for pairwise comparisons of 

mean-centered item-wise scores on the anxiety section of the Hospital Anxiety and 

Depression Scale. Next, I generated behavioral/physiological similarity matrices. I 

calculated Fisher-transformed bivariate correlations on continuous anxiety rating/BPM 

time series for each pairwise comparison of subjects. For exploratory analyses, I also 

looked at anxiety sum scores on the HADS. Unlike trait anxiety symptom profiles, 

which refer to differences between subjects for every item on the questionnaire, the 

trait anxiety sum score refers to differences in total scores on the questionnaire. 

 

Group-Level Modelling 

All group-level analyses used one-sided tests thresholded at α=.05 unless otherwise 

stated. This was chosen a priori as many of my analyses (i.e., intersubject 

representational similarity analysis) are not theoretically interpretable in negative 

directions or because I had strong priors (e.g., increased state anxiety during the 

suspenseful clip compared to baseline). Multiple comparisons corrections were 

applied using Bonferroni correction. I inverted all distance measures for interpretability 

so that higher values are associated with greater similarity. 

For confirmatory tests, I first validated the use of my continuous anxiety ratings 

scale by submitting my typicality measures against one-sample t-tests against 0. I then 

contrasted primary dependent measures (continuous anxiety ratings and BPM) across 

conditions (suspenseful, non-suspenseful, baseline) as a manipulation check. 

Hypothesis-testing was conducted on intersubject similarity matrices (figure 

6.4). The two similarity matrices (1: trait anxiety symptom profiles vs. 2: continuous 

state anxiety ratings or BPM) were compared using partial Spearman correlations with 

age and gender as covariates. Significance was assessed using permutation-testing; 

the trait anxiety symptom profile similarity matrix was randomly permuted 10,000 times 

and correlated against the continuous anxiety ratings/BPM similarity matrices to create 
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a null distribution for which the original coefficients were compared against. This was 

run separately for each hypothesis. 

For exploratory analyses, I submitted typicality measures and subjective-

autonomic coherence measures to two-tailed partial Spearman rank correlations with 

gender and age as covariates and HADS anxiety sum scores as the predictor. 
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Figure 6.4. Overview of analysis pipeline. Prior to watching clips, participants filled out 

the hospital anxiety and depression scale (independent variable). Continuous state 

anxiety ratings and heart rate (HR) were then recorded as they watched a suspenseful 

movie clip (dependent variables). Intersubject similarity in trait anxiety symptom 

profiles was calculated as pairwise Euclidean distance across anxiety items. Similarity 

for: 1) continuous anxiety ratings; and 2) heart rate were calculated as fisher 

transformed correlations. At the group level, I compared intersubject similarities in trait 

anxiety symptom profiles against: 1) continuous state anxiety ratings; and 2) HR. 
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Deviations from Preregistration 

I note the following deviations from preregistration. 

 For 49 participants, a logging error resulted in no slider ratings for the first 30 

seconds. This was interpolated using backward filling. I also preregistered to 

exclude participants whose variability exceeded 3 median absolute deviations 

of the sample. This was implemented primarily to exclude participants who did 

not respond at all or moved the mouse a minimal amount. No subjects exceed 

3 deviations above the median. However, invariant responses—i.e., people 

who didn't ever move the slider—did not exceed 3 deviations below the median. 

As such, participants who also provided invariant responses on the slider (n = 

8) were excluded from all analyses. 

 I originally preregistered to include heart rate variability as a primary outcome. 

However, a recording error from the pulse oximeter device resulted in leakage 

from other channels into the pulse oximeter channel from the first 59 subjects. 

Using an altered preprocessing pipeline (i.e., clipping and additional smoothing; 

see available code), I was able to recover heart rate data, but was unable to 

recover heart rate variability due to lack of  temporal precision in pulse timings 

following said processing. As such, I only focus on heart rate for my analyses. 

For transparency, I have still retained the associated original Bonferroni-

corrected thresholds, but note that adjusting this either way does not alter 

inference. 

 I originally preregistered to compare item-wise scores on questionnaires 

between participants using Spearman rank correlations. However, I instead 

used Euclidean distance as correlations of -1, 0, and 1 could not be Fisher 

transformed, correlation coefficients could not be calculated where there was 

no variance in scores (which changes dependent on implementation of reverse 

coding), and correlations are insensitive to the magnitude of discrepancies in 

scores (e.g., participants who deviate on an item by 1 are treated the same as 

those who deviate by 4). 

 Before the implementation of my stopping rule, I included an Emotibit device to 

record skin conductance. However, due to issues of signal quality, I stopped 

use of this device for the remainder of the experiment, which meant dropping 
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skin conductance as a measure in my analyses. Alteration of Bonferroni 

correction did not alter inference. 

 I have added additional tests between conditions to help contextualize my 

findings and as robustness checks. Other post-hoc tests are listed in the results 

as such. 

 

6.4 Results 

Confirmatory Tests 

As my continuous anxiety ratings scale (figure 6.5) were generated for the purposes 

of the planned study, I benchmarked the collected continuous state anxiety ratings to 

those from independent samples. Specifically, I correlated my continuous ratings 

against previously collected ratings of suspense (Schmälzle & Grall, 2020), tension 

(Sun et al., 2022), arousal, valence, and uncertainty (Majumdar et al., 2022) to 

produce ‘typicality’ measures for each subject. Fisher transformed correlation 

coefficients were submitted to one-sample t-tests against 0. Anxiety ratings were 

significantly associated with independent ratings of suspense (average r = .62, t(132) 

= 31.66, p < .0001), tension (average r = .64, t(132) = 31.46, p < .0001), arousal 

(average r = .60, t(132) = 29.41, p < .0001), valence (average r = -.59, t(132) = -28.16, 

p < .0001), and uncertainty (average r = .44, t(132) = 21.49, p < .0001). 

t-tests also confirmed increases in self-reported anxiety in the suspenseful 

condition compared to baseline (2 minute rest prior to video clips; t(132) = 20.24, p < 

.0001) and to the non-suspenseful condition (t(132) = 18.64, p < .0001). On the other 

hand, BPM was not significantly increased in the suspenseful compared to baseline 

(t(132) = -2.798, p = .98) nor the non-suspenseful condition (t(132) = .37, p = .713).  
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Figure 6.5. Z-normalized time series (with 95% confidence intervals) for continuous 

state anxiety ratings (first row) and BPM (second row) for the suspense (first column) 

and non-suspense (second column) clips. 

 

Hypothesis-Testing 

I predicted that pairwise similarities in trait anxiety symptoms (item-wise differences) 

would be associated with pairwise similarities in continuous state anxiety responses 

and BPM during the suspenseful condition. Partial Spearman rank tests of intersubject 

similarity matrices revealed that trait anxiety symptom profiles were correlated with 

continuous state anxiety ratings (ρ = .1, p < .0001; figure 6.6) but not BPM (ρ = -.01, 

p = .845). I conducted a post-hoc test which demonstrated that the association 

between trait anxiety symptoms and continuous ratings dissipated when using just trait 

anxiety sum scores as a predictor (ρ = .01, p = .171). There was a small correlation 

between pairwise differences in sum scores and symptom similarity (ρ = -.02). As 

such, I re-conducted my analysis (between trait anxiety symptoms and continuous 

ratings) post-hoc with pairwise similarities in sum scores as a covariate which did not 

change my inference (ρ = .1, p < .0001). 

To inspect the specificity of my effects post-hoc, I tested whether associations 

were the same for my non-suspenseful condition and when accounting for change in 

similarity between conditions. I did not detect an association between trait anxiety 



 

136 

symptom profiles and continuous state anxiety ratings during the non-suspenseful 

condition (ρ = -.037, p = .999). Effects for the suspenseful clip also remained after 

contrasting measures against the non-suspenseful condition (ρ = .097, p < .0001). For 

BPM, I again did not detect an association during the non-suspenseful condition (ρ = 

.001, p = .457) nor when contrasting conditions (ρ = -.006, p = .722). 

 

Figure 6.6. Intersubject similarity matrices (left) were calculated via pairwise 

comparison between subjects: 1) trait anxiety symptoms from self-report 

questionnaires prior to watching movie clips (lower triangle); and 2) continuous state 

anxiety ratings during anxiogenic movie-watching (upper triangle; see figure 6.4 for 

more details). Partial Spearman correlations were run between intersubject similarity 

measures to test for the association between trait anxiety symptoms and continuous 

ratings during the movie clip. The correlation was re-run with 10,000 random 

permutations of the anxiety symptoms matrix to produce a null distribution; the original 

coefficient was compared against to derive significance (right). 
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Exploratory Tests 

For exploratory tests, I conducted typicality analyses. This refers to how ‘typical’ (i.e., 

Fisher transformed correlation coefficient) each subject's time series is when 

compared to ‘canonical’ ratings of suspense and uncertainty (group averages from 

independent data). Using this approach, I failed to find an association between trait 

anxiety sum scores and typicality scores for continuous anxiety ratings (suspense: ρ 

= .04, p = .646; uncertainty: ρ = .17, p = .074) nor BPM (suspense: ρ = .01, p = 894; 

uncertainty: ρ = .03, p = .793). I also investigated whether trait anxiety was associated 

with measures of subjective-autonomic coherence (similarity between ratings and 

BPM). I failed to find evidence for an association between subjective-autonomic 

coherence and HADS anxiety sum scores (ρ = .08, p = .379). 
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6.5 Discussion 

Prior work has established a link between induced anxiety (for example, by threat of 

shock) and increased autonomic responding, including cardiac activity (Petry & 

Desiderato, 1978). As such, how peripheral physiological responding, such as heart 

rate, may be linked to pathological levels of trait anxiety has come under study (Pittig 

et al., 2013). However, many of the observed effects have been established using 

tightly-controlled experimental paradigms, such as threat of shock. The extent to which 

these effects generalize to more naturalistic settings has not received sufficient 

attention. Moreover, how these responses relate to ongoing subjective states of 

anxiety is often overlooked. By presenting the exact same anxiogenic stimuli as my 

previous work (chapter 3), the present study set out to investigate to what extent trait 

anxiety symptoms were associated with continuous state anxiety ratings and heart 

rate responses during an anxiogenic movie clip. Using an inter-subject correlation 

approach, I found a significant association between pairwise similarities in trait anxiety 

symptoms and continuous state anxiety responses, but failed to find an association 

with heart rate. 

As the independent variable, I first derived pairwise similarities in trait anxiety 

symptom profiles. This was operationalized as intersubject item-wise similarities on 

the anxiety section of the hospital anxiety and depression scale. Put simply, I produced 

measures of how similar pairs of individuals were in regard to their symptoms of trait 

anxiety, rather than just overall scores summed across items. Testing my first 

hypothesis, I found trait anxiety symptoms to be significantly associated with 

continuously reported state anxiety ratings during a suspenseful clip. When using 

summary scores from questionnaires, which average responses across symptoms, 

this effect was not present as a separate test or when used as a covariate. As 

measured through self-reported questionnaires, this suggests differing types of trait 

anxiety symptoms—more so than overall intensity—may be associated with ongoing 

states of anxiety during anxiogenic movie-watching. 

I demonstrated an association between trait anxiety symptoms and continuous 

state anxiety ratings using intersubject representational similarity analysis (Finn et al., 

2020; Kriegeskorte et al., 2008). To my knowledge, no work has used this technique 

in the study of individual differences in anxiety and subjective/autonomic responses. 

While I was able to demonstrate that associations between trait anxiety symptoms and 
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continuous state anxiety ratings do arise within stimulus presentation, I cannot pinpoint 

what specific components of the movie may be driving these effects. By contrasting 

the effects with a non-suspenseful clip, there is evidence to suggest, overall, 

anxiogenic movie stimuli elicit anxiety-relevant idiosyncratic responses. However, 

whether these associations occur at specific spectral densities (e.g., low-frequency 

drifts vs spikes in anxiety) or are related to specific content in the movies (e.g., the 

presence of a gun vs arguments) was not-tested within this approach. It would be 

especially fruitful to further investigate and replicate effects using both intersubject 

representational analysis and other analyses which do not rely on pairwise 

comparisons, such as using factor analysis to produce within-subject measures of 

symptom types. I particularly encourage future work to investigate whether specific 

dimensions of anxiety (e.g., threat vigilance vs rumination) are associated with specific 

responses (e.g., amplitude of acute responses to weapons vs slow returns to baseline 

following peaks of suspense). Moreover, the data was collected from participants 

watching two ~8 minute clips. In addition to alternative analytical approaches, it will be 

important to also test the specificity of these effects across differing movies. 

For my second hypothesis, I failed to find any associations between trait anxiety 

symptoms and heart rate responses. One interpretation is that there was no such 

effect or that it was of a weaker magnitude than the sample permitted me to detect. 

Given that I did not detect overall increases in heart rate as a function of the 

suspenseful video clip, it may be that the degree of anxiety induction by this clip was 

also insufficient to probe the autonomic nervous system in a relevant manner. 

Alternatively, given that such anxiogenic stimuli does not impose direct threat on an 

individual (unlike threat of shock), there may be no need to prepare the body for ‘fight-

fight’-like responses (all the while still evoking a state of anxiety). Future work should 

investigate whether more anxiogenic clips could drive individual differences in 

autonomic responding, as is seen in studies using personally-directed threats (Abend 

et al., 2022).  

It is also important to contextualize these null findings in light of my analytical 

approach. Here, I compared differences in trait anxiety symptoms (multivariate) with 

heart rate (univariate). It could be that the association between trait anxiety and 

peripheral physiology does not manifest in such a univariate manner. There is 

evidence to suggest that different emotional processes impact different organs 



 

140 

dependent on current goals (Critchley, 2005, 2009). It may be that trait anxiety 

symptoms are not associated with just increases in heart rate during anxiogenic 

movies. Rather, trait anxiety symptoms are associated with differing responses across 

autonomic projections (e.g., some symptoms could be more strongly associated with 

heart rate, while others are more so with respiration). Whilst I was able to recover heart 

rate measures, heart rate variability was excluded as a measure due to noise, which 

could have provided greater sensitivity to detecting effects (Pittig et al., 2013). 

Likewise, the measure of skin conductance was excluded due to poor signal quality, 

which could have also provided sensitivity (Abend et al., 2022). I encourage future 

work to look at autonomic responses to movies across physiology measures (heart 

rate, heart rate variability, tonic/phasic skin conductance, respiration etc.) and across 

differing frequency domains (drifts vs spikes in heart rate). 

 I lastly acknowledge there are methodological constraints present in the study. 

Cardiac measures in just under half of the subjects contained moderate levels of noise 

(due to a logging error). As such, I cannot conclude that no anxiety-relevant 

idiosyncrasies in autonomic responding truly exist during suspenseful movie-watching; 

rather, I have failed to provide evidence that anxiety symptomatology may be 

associated with altered heart rate during a moderately suspenseful video clip. 

 

Conclusion 

In the present study, I sought to test to what extent trait anxiety symptoms may be 

associated with ongoing states of anxiety and heart rate during suspenseful movie-

watching. Using intersubject representational similarity analysis, I demonstrated that 

pairwise similarities in trait anxiety symptoms, but not overall scores on 

questionnaires, were associated with pairwise similarities in continuous state anxiety 

ratings during a suspenseful movie clip (n = 133). However, I failed to find an 

association between trait anxiety symptoms and heart rate responses. I recommend 

future studies test whether a relationship between trait anxiety and cardiac responses 

may be revealed when using more anxiogenic movie stimuli and by incorporating 

additional physiological recordings. 
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7. Neural-Autonomic Responses to Suspense 

7.0 Preface 

I previously demonstrated that trait anxiety was associated with amygdala-prefrontal 

dynamics during movie-watching. In chapter 6, my analyses indicated that individual 

differences in anxiety were associated with ongoing states of anxiety during movie-

watching, but I failed to detect any associations with autonomic responding (i.e., heart 

rate). This initially suggests that movies do not necessarily drive anxiety-relevant 

increases/decreases in cardiac responding during movie-watching. However, even in 

the absence of observable alterations in cardiac responding, it is nonetheless plausible 

that communication between the brain and the autonomic nervous system could be 

impacted (e.g., altered interoceptive awareness). As such, in the present chapter, I 

sought to tie together all the previous chapters and investigate the extent to which 

states of anxiety during movies might be associated with alterations in communication 

between the brain and the autonomic nervous system. 

 

For the pre-printed version of this studies, please refer to the below references: 

Kirk, P. A., & Robinson, O. J. (2023). Preliminary evidence for altered neural-

autonomic coherence during anxiogenic movies. PsyArXiv. 

https://doi.org/10.31234/osf.io/ce8mh 

 

 

https://doi.org/10.31234/osf.io/ce8mh
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7.1 Abstract 

Neuroscience research into anxiety has predominantly focused on its impact on 

central or peripheral nervous systems in isolation. However, there is evidence to 

suggest anxiety impacts the degree of communication between the brain and the 

autonomic nervous system. Existing literature suggests fundamental threat circuitry, 

typically engaged in anxiety-relevant processes such as attentional vigilance, also 

serves to communicate with peripheral physiology, namely the autonomic nervous 

system. However, whether such neural-autonomic communication occurs outside of 

tightly-controlled experimental settings, and in relatively more naturalistic contexts, is 

less clear. Here, using a suspenseful movie-watching paradigm (n = 29; Caltech Conte 

dataset), I hypothesized that activity in three key structures (amygdala, dorsomedial 

prefrontal cortex, and insula) would show increased associations with autonomic 

responding (i.e., heart rate) as a function of anxiety. I failed to find associations with 

my primary activity measures. However, in my planned exploratory analyses, 

suspenseful movie-watching was associated with reduced coherence between heart 

rate and: amygdala-dorsomedial prefrontal dynamic connectivity; amygdala-

subgenual anterior cingulate dynamic connectivity; precuneus activity; vmPFC activity; 

and bilateral putamen activity. Taken together, I provide preliminary evidence for 

altered neural-autonomic coherence as a function of anxiogenic movie-watching. I 

encourage future work to investigate the causal directionality of these effects, the 

extent to which they generalize to other movie stimuli, and how they may interact with 

pathological levels of anxiety. 
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7.2 Introduction 

One function of anxiety is to promote the detection, identification, and avoidance of 

harm (Mobbs et al., 2015). When under a state of induced anxiety, neural systems can 

tune perceptual/cognitive processes to promote such vigilance (attention to threat-

relevant stimuli; (Eysenck et al., 2007). Underlying this is a core network of cortico-

subcortical brain circuitry, which includes the amygdala; bed nucleus of the stria 

terminalis; hypothalamus; periaqueductal gray; insula; dorsomedial prefrontal cortex 

(dmPFC); subgenual anterior cingulate cortex (sgACC); and anterior ventromedial 

prefrontal cortex (vmPFC); all of which serve a multitude of functions (Chavanne & 

Robinson, 2021; Grupe & Nitschke, 2013). Here, I refer to this as the ‘defensive 

response network’ (Abend et al., 2022). Research in recent decades has focussed on 

how these systems link anxiety to processes such as attention, reward/punishment, 

and memory (Robinson et al., 2013). At the same time, anxiety also induces—and is 

influenced by—alterations in peripheral physiology; most notably, the autonomic 

nervous system. Indeed, at the outset of modern psychology, the central nervous 

system was not always seen as the fundamental basis of anxiety. Instead, peripheral 

physiology was posited to be the biological driver of affect (Dewey, 1894; James, 

1894). Since then, the role of peripheral physiology in anxiety has often been studied 

as a separate line of inquiry to direct studies of brain activity. 

Research has established a link between anxiety and activity across branches 

of the autonomic nervous system (typically summarized as increased sympathetic 

activation and/or parasympathetic withdrawal), using proxies such as heart rate, heart 

rate variability and skin conductance (Friedman & Thayer, 1998b; Hodges & 

Spielberger, 1966; Lader, 1967). Dominance of the sympathetic branch of the 

autonomic system can assist an individual during ‘fight-flight’-like contexts; for 

instance, by providing increased blood flow to support musculature for physical 

exertion (e.g., fleeing; McCorry, 2007). Such somatic manifestations have been 

proposed to constitute a separable dimension of anxiety compared to ‘cognitive’ 

symptoms (Schachter, 1964). The reality is likely less clear cut; emerging evidence 

reveals an intrinsic link between peripheral physiology and cognitive processes in 

anxiety (Critchley et al., 2013; Mallorquí-Bagué et al., 2016). For instance, the cardiac 

cycle may modulate the perception of threat-relevant stimuli (Garfinkel et al., 2014). 

Likewise, there is substantial overlap in neural circuits which drive autonomic activity 
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and are associated with threat vigilance (albeit at the spatial resolution of fMRI), 

namely the amygdala, dorsomedial prefrontal cortex, and insula (Critchley, 2005; 

Thayer et al., 2012; Wager et al., 2009). Indeed, anxiety-induced individual differences 

in autonomic responding are correlated with differences in amygdala-prefrontal 

responding (Abend et al., 2022; Makovac, Meeten, Watson, Herman, et al., 2016). 

Thus, anxiety-relevant brain systems (‘defensive response network’), which have 

largely been discussed in terms of perceptual processes such as threat vigilance, may 

also be responsible for communication with peripheral physiology. 

Although the field has started to develop a core framework for studying the 

neural substrates of anxiety (both central and peripheral), one potential issue arises: 

most of our understanding is driven by tightly-controlled experimental paradigms. The 

extent to which observed effects are thus seen outside of such conditions remains 

relatively unknown. As such, I have since extended the research focus to movie fMRI, 

which consists of presenting movies to subjects while undergoing scanning. By using 

such unconstrained and relatively more naturalistic stimuli, we can start to develop a 

better understanding of whether prior results translate to more ecological settings. 

Studies have demonstrated within-subject effects of anxiety on amygdala-prefrontal 

activity during movie-watching (Hudson et al., 2020; Kinreich et al., 2011). In chapters 

2 and 3, I investigated between-subject alterations in movie-evoked 

activity/connectivity; my results suggest individuals scoring higher in trait anxiety 

demonstrate some differential processing of features such as faces/words and show 

idiosyncrasies in threat circuitry dependent on the degree of suspense in a movie. 

Hence, anxiogenic movies appear to offer an effective platform for investigating 

anxiety in a more ecologically-rich context. 

Movie fMRI studies have predominantly been constrained to studying the brain 

in isolation, with links primarily constrained to perceptual/cognitive processes or self-

reported questionnaires. There exist few studies linking neural and autonomic systems 

during movie-watching. Intracranial electrophysiological recordings in humans have 

provided evidence for a role of insula-dorsomedial prefrontal/anterior cingulate 

dynamics in shaping autonomic responses during emotional face processing in movies 

(Sonkusare et al., 2023). One movie fMRI study suggested general arousal/valence-

driven heart rate dynamics to be associated with shifts in macro-scale architecture, 

namely in salience, executive, and default mode networks (which includes, but is not 
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limited to, insula and dorsomedial prefrontal cortex/anterior cingulate; (Young et al., 

2017). These studies have not assessed associations with subcortical structures. 

Moreover, to my knowledge, no studies have yet to directly investigate whether 

communication between threat circuitry and the autonomic system alters as a function 

of anxiety during movie-watching.  

In the present study, I investigated which components of the ‘defensive 

response network’ may be associated with heart rate (as a proxy for autonomic 

responding) during movie-watching. While much research conceptually embeds 

findings in terms of top-down autonomic entrainment (e.g., brain signals to the heart), 

I also acknowledge that the relationship between central and peripheral nervous 

systems is not unidirectional. I do not aim to make causal inferences regarding 

directionality of communication (put simply, whether the brain is influencing the heart 

or the heart is influencing the brain). As such, in referring to communication between 

the brain and autonomic/cardiac activity, I opt for a more theoretically-neutral term, 

coherence. 

 

Hypotheses 

In the present study I contrasted brain activation during an anxiogenic/suspenseful clip 

and a non-suspenseful clip. As stated in my preregistration (https://osf.io/9vy87/), I 

predicted that the suspenseful movie would be associated with stronger coherence 

between heart rate and activity in the: 

4. Left amygdala. 

5. Right amygdala. 

6. Left insula. 

7. Right insula. 

8. Dorsomedial prefrontal cortex. 

 

Following hypothesis-testing, I also preregistered to expand my analyses to 

encapsulate activity within and connectivity across a ‘defensive response network’. In 

addition to my primary regions of interest for hypothesis-testing, this included BNST, 

hypothalamus, PAG, sgACC, and anterior vmPFC. 

https://osf.io/9vy87/
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7.3 Methods 

Dataset 

I made use of the Caltech Conte Center dataset (Kliemann et al., 2022). In brief, n = 

29 (following exclusion of subjects from the full n = 55; see Cardiac Data) participants 

watched a grayscale, 8 minute clip from Alfred Hitchock’s 'Bang! You’re Dead’. The 

clip consists of a child playing with a real, loaded gun, which they believe is a toy gun. 

The clip generally builds in suspense until the child almost shoots a maid. Its use for 

eliciting anxiety-relevant idiosyncrasies in neural circuitry was demonstrated in 

separate participants in chapter 2. Participants also watched Pixar’s ‘Partly Cloudy’, 

which served as the non-suspenseful, control condition. The 5.5 minute animated clip 

consists of anthropomorphized clouds which create baby humans and animals. 

Whole-brain scanning was conducted on a Siemens 3T Magnetom Prisma 

using echo planar imaging: 2.5mm2 voxels, TR = 700ms, TE = 30ms, FA = 53o, 

multiband acceleration = 6. Data had already undergone standardized preprocessing 

(using fMRIPrep), including distortion correction, coregistration, and motion correction 

(for full details, see Kliemann et al., 2022). 

 

Analyses 

Within-Subject Processing  

Cardiac Data. Pulse oximeter data (200Hz) was previously processed with 

RapidHRV (chapter 5), making use of a 10 second moving window with a 1s offset 

(figure 7.1). Beats per minute (BPM) constituted my metric for heart rate. As I aimed 

to investigate ongoing communication between the brain and autonomic nervous 

system (rather than block-wide averages), heart rate variability was not used due to 

its instability at small time scales (Pecchia et al., 2018). Missing data points were 

interpolated using cubic-spline interpolation (3rd order polynomial) and 

backward/forward fill using the first/last valid data point (for missing data at the 

beginning/end of the time series). BPM time series were: smoothed using a Savitzky-

Golay filter; upsampled to 700ms (to match the temporal resolution of fMRI 

acquisition); detrended (with the same detrending parameters applied to fMRI data, 

see fMRI Data); shifted by 6s (to account for hemodynamic lag, as used in chapter 3); 
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and Z-normalized. RapidHRV output and a priori visual inspection indicated 26 

subjects had severe noise present in the signal. These subjects were excluded from 

the present analysis, leaving 29 subjects for subsequent analyses. 

 

Figure 7.1. BPM time series averaged across all participants for suspenseful movie-

watching (top) and non-suspenseful movie-watching (bottom). 

 

fMRI Data. I denoised data by taking voxel-wise residual time series from a 

GLM (3dDeconvolve) which contained the following parameters: detrending (-polort 

‘A’); nuisance regression of CSF and WM mean signals; and 24 motion parameters (6 

rotational and translation + 6 temporal derivatives + 12 squares of raw and 

derivatives). For voxel-wise analyses only, I applied smoothing to 6mm FWHM 

(3dBlurToFWHM). 

For group-level analyses, time series were extracted (3dmaskave) from 10 

regions (as implemented in chapters 3 and 4). For my 3 hypothesis-testing ROIs, 

dmPFC and insula were defined using meta-analytical clusters (“induced (+) vs. 

transdiagnostic (+) 20 mm” and “induced (+) vs. pathological anxiety (+) 20 mm” 

respectively; Chavanne & Robinson, 2021), and amygdala was defined using 

FreeSurfer parcellations (constrained within an inflated AAL defined amygdala mask, 

Rolls et al., 2020). These specific ROIs were selected: based on my hypotheses, to 
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allow consistency with- and comparisons to my prior studies, and because they show 

spatial convergence with meta-analyses indicative of neural-autonomic 

communication (Dugré & Potvin, 2023; Ferraro et al., 2022). The remaining 7 ROIs 

correspond to the rest of the ‘defensive response network’ (hypothalamus, bed 

nucleus of the stria terminalis, periaqueductal gray, anterior ventromedial prefrontal 

cortex, and subgenual anterior cingulate cortex; figure 7.2), following the same 

definition procedures as my chapters 3 and 4 (FreeSurfer segmentations for subcortex 

and meta-analytic clusters for cortex; Billot et al., 2020). ROIs were spatially 

resampled (3dresample) to match the grid spacing of the EPI data.  

In addition to activation time series, I derived dynamic connectivity measures 

across all edges of the ‘defensive response network’. Using a sliding window based 

analysis in the ‘timecorr’ package (width = 29 TRs/20.3 seconds, gaussian kernel 

weighting; Owen et al., 2021), I produced time series of Fisher transformed correlation 

coefficients. I selected my window to match that chapter 3 (note: supplementary 

analyses in this work suggested changing the window size did not change inference). 

Time series were then Z-normalized. 

 

Figure 7.2. Regions of interest for (MNI x=-4, y=-3, z=-3) primary hypothesis-testing 

(red) and exploratory analyses (orange). ROIs included are left slice: anterior insula 

(meta-analytically defined), bed nucleus of the stria terminalis (MNI anatomical mask), 

and periaqueductal gray (MNI anatomical mask); middle slice: amygdala and 

hypothalamus (Freesurfer-defined; i.e., a union of all subjects); right slice: dorsomedial 

prefrontal cortex, anterior ventromedial prefrontal cortex, and subgenual anterior 

cortex (meta-analytically defined). 
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Neural-Autonomic Coherence. Traditionally, ongoing associations between 

HRF-convolved cardiac measures and the BOLD signal have been tested by looking 

at the instantaneous correspondence between the two signals (Nguyen et al., 2016; 

Valenza et al., 2019). I also took this approach by calculating Fisher transformed 

bivariate correlations between the two signals. However, I also wanted to approach 

the data in a way which made fewer assumptions concerning the temporal relationship 

between the two signals. As such, I also made use of dynamic time warping (using 

‘dtaidistance’, Meert et al., 2020), which warps two signals non-linearly so as to best 

match all timepoints in regard to similarity, with the final output being a distance 

measure. Warping paths were constrained using a Sakoe-Chiba band corresponding 

to 14 TRs (~10 seconds). Due to the difference in duration between the two conditions, 

I matched the number of TRs between conditions (i.e., omitting the first section of the 

suspense condition). I lastly generated exploratory whole-brain measures. For this, I 

calculated voxel-wise, Fisher transformed cross-correlation maxima between HR and 

the BOLD signal (3ddelay; Saad et al., 2001, 2003; figure 7.3). Here, 3ddelay only 

tests for lags in BOLD data against the HR signal. As such, I introduced an additional 

10s lag into the HR to allow for tests of neural activity both preceding and following 

HR. 
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Figure 7.3. Overview of analysis pipeline. From the fMRI and pulse oximeter signals I 

preprocessed/extracted BOLD and Heart Rate time series. I then calculated the 

similarity (‘coherence’) between these signals using three approaches. For my regions 

of interest analyses, I used dynamic time warping and bivariate correlations. For 

whole-brain exploratory analyses, I selected cross-correlation maxima at every voxel. 
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Group-Level Modeling 

All group-level models were run in Python and AFNI (Cox, 1996) and used two-tailed 

tests at p < .05. For this, ROI brain-heart similarity measures were submitted to paired-

sample t-tests comparing across suspenseful and non-suspenseful conditions. 

Bonferroni correction was run at the level of hypothesis-testing measures (5 activation 

ROIs, p <. 01) and exploratory tests (10 activation ROIs + 45 connectivity measures, 

p < .0009). I also provided main effects, one-sample t-tests against 0 per condition to 

contextualize results. For my whole-brain analyses, I submitted cross correlation 

maxima maps to paired t-tests between conditions (3dttest++). I adjusted for a false 

positive rate using permutation-based cluster thresholding (-Clustsim, voxel-wise p < 

.001), resulting in cluster-corrected threshold of k > 16. Coordinates are reported in 

MNI space. 

 

Deviations from Preregistration 

I note the following deviations from my preregistration: 

 I did not preregister a plan for smoothing fMRI data. This was done post-hoc, 

but only for exploratory voxel-wise analyses. 

 To help characterize my planned tests (i.e., direction of connectivity/activation), 

I have provided supplemental one-sample t-tests for conditions separately. 

 I originally stated 27 subjects were excluded due to excessive noise in the 

cardiac signal. This was an error, and the actual number of subjects excluded 

was 26 (leaving 29 for analyses). 

 I have provided supplementary descriptive time delay statistics for cross-

correlation clusters. 

 In my voxel-wise analyses, I did not account for the fact that 3ddelay only delays 

BOLD signals and, in this instance, only tests for HR preceding BOLD activity. 

As such, I introduced a 10s lag to account for this. 

 

 



 

152 

7.4 Results 

Roi Analyses  

I first ran paired-sample t-tests on brain-heart coherence measures between the 

suspenseful and non-suspenseful conditions. For my key hypotheses, I failed to find 

evidence for a significant difference for either my primary (dynamic time warping) or 

secondary (bivariate correlation) measures of brain-heart similarity. In my planned 

exploratory analyses, I expanded this out to a wider ‘defensive response network’ 

which—in addition to more regions of interest—included dynamic connectivity 

between all regions. I failed to find evidence using my dynamic time warping measure, 

but found two Bonferroni-corrected results for my bivariate correlation measure 

(instantaneous association between BOLD and 6s-lagged HR). Within-subject 

changes in coherence were observed for amygdala-dmPFC dynamic connectivity 

(t(28)=-3.91, p = .0005) and amygdala-sgACC dynamic connectivity (t(28)=-4.44, p = 

.0001; figure 7.4). This was characterized by a general positive coherence between 

heart rate and connectivity in the non-suspenseful condition, which was then reduced 

during the suspense condition (figure 7.5). 
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Figure 7.4. Effect (Cohen’s D) of suspenseful vs non-suspenseful movie-watching on 

brain-heart coherence. Coherence measures in each condition were defined as the 

Fisher transformed bivariate correlation between 6s-lagged HR against fMRI 

measures.  The diagonal of the matrix represents change in activation-based 

coherence. Cells below the diagonal represents change in dynamic connectivity-

based coherence. Blue cells refer to a reduction in coherence between heart rate and 

brain responses during suspenseful movie-watching relative to non-suspenseful 

movie-watching, while red cells refer to an increase. There were no significant 

changes in the coherence between activation and heart rate. Dynamic connectivity 

between the right amygdala and both the dmPFC and sgACC was associated with 

reduced coherence with heart rate during the anxiogenic movie. ** p < .0009 

(Bonferroni-corrected threshold), * p < .05 (uncorrected). 
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Figure 7.5. Violin plots detailing coherence (Fisher-transformed correlation 

coefficients) between amygdala-prefrontal dynamic connectivity and heart rate as 

participants watched non-suspenseful and suspenseful movie clips. This illustrates 

that coherence was significantly positive during the non-suspenseful condition and 

was reduced during the suspenseful condition (to negative coherence for amygdala-

dmPFC and to non-significant coherence for amygdala-sgACC). * p < .05. 

 

 

Whole-Brain Analysis 

Next, I submitted cross-correlation maxima maps to paired-sample t-tests 

(3dttest++). A different technique to my ROI analyses, this method found the maximum 

correlation between heart rate and BOLD at varying delays (which was applied equally 

between conditions). While global covariation with the heart rate signal was entirely 

positive in both conditions, I found reduced associations between heart rate and 

activity in 5 regions during the suspenseful (vs non-suspenseful) movie. Of particular 

relevance, I observed associations in precuneus, vmPFC, and bilateral putamen 

(figure 7.6; results listed in table 7.1). For descriptive purposes, I also extracted mean 

delay across subjects and conditions in these clusters, which suggested HR was 

preceding activation by ~16s. 
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Figure 7.6. Whole-brain differences in cross-correlation maxima (suspense - non-

suspense movie) projected onto a template brain (MNI x=2, y=1, z=-8, voxel-wise p < 

.001, cluster-corrected k > 16). Taking a different approach to my ROI analysis, this 

technique selected the maximum correlation between activity and heart rate across 

varying lags within each voxel. When contrasting conditions, this suggested coherence 

between heart rate and activity in precuneus, vmPFC, and bilateral putamen was lower 

during the suspense condition compared to non-suspense. 

 

Table 7.1. Whole-brain clusters from cross-correlation maxima maps. Delay has 

been calculated after accounting for a hemodynamic lag of 6s and refers to the delay 

from HR to BOLD. 

Region Voxels Peak p Mean delay ( 95% 
CI) 

Precuneus 56 [-12, -58, 69] <.01 17.2s (12.9, 21.5) 

Right cuneus 33 [26, -98, 12] <.01 14.3s (10.0, 18.6) 

Left putamen 29 [-26, 2, -11] <.02 16.1s (11.5, 20.8) 

Right putamen 25 [28, -5, -11] <.02 16.1s (11.7, 20.5) 

vmPFC 25 [-2, 45, -16] <.02 16.8s (12.4, 21.2) 

Right cerebellum 17 [24, -82, -24] <.05 21.8s (16.1, 27.5) 

 



 

156 

7.5 Discussion 

Prior literature implicates a moderating role of anxiety on the communication between 

the brain and the autonomic nervous system (Critchley, 2005; Makovac, Meeten, 

Watson, Herman, et al., 2016). Whether these findings generalize to relatively more 

naturalistic settings has yet to be tested. Consequently, I sought to test the extent to 

which the association between neural responding (BOLD signal) in threat circuitry and 

autonomic responding (heart rate) may change as a function of an anxiety-inducing 

movie clip. Specifically, I tested whether the association between heart rate and 

activation/connectivity across the ‘defensive response network’ differed as 

participants’ watched anxiogenic and control movie clips (suspenseful and non-

suspenseful). I found evidence for anxiety-relevant alterations in the association 

between heart rate and: 1) amygdala-dorsomedial prefrontal cortex dynamic 

connectivity; and 2) amygdala-sgACC dynamic connectivity. Specifically, I observed 

positive associations between amygdala-prefrontal dynamic connectivity and heart 

rate in the non-suspenseful condition and this was reduced to negative (amygdala-

dmPFC) or non-significant (amygdala-sgACC) associations during the suspenseful 

condition. Moreover, my whole-brain analyses revealed anxiety-relevant reductions in 

the association between heart rate and activity in precuneus, vmPFC, and bilateral 

putamen. 

My general framework posited that states of anxiety would be associated with 

increased coherence between threat circuitry responses and heart rate. This was 

motivated by the idea that anxiety promotes both top-down signaling to increase 

sympathetic activity (and consequently, cardiac activity), as well as promoting 

increased interoceptive awareness/sensitivity to cardiac activity. However, 

incongruent with this framework, the results implied coherence was reduced in the 

suspense condition, compared to the non-suspenseful condition. I offer several 

interpretations. 

While anxiety appears to increase sympathetic activation, this is often preceded 

by faster acting parasympathetic withdrawal (Critchley, 2009). Perhaps the results are 

thus better understood in terms of parasympathetic withdrawal. Prior studies outside 

the anxiety literature have also implicated associations between parasympathetic 

activity and suppression of sgACC/dmPFC responses (Barber et al., 2020; J. Kim et 

al., 2011; O’Connor et al., 2007). Especially in the context of the available scanning 
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durations (< 10 minutes per duration) and that the coherence measures were restricted 

to relatively short delays (0s to ~16s), it is plausible that the results highlight the impact 

of anxiety ‘releasing the brake’ on parasympathetic control via amygdala-prefrontal 

circuitry. 

It is also important to consider that effects may be driven by the non-

suspenseful, control condition. The non-suspenseful condition, ‘Partly Cloudy’, 

contains positively-valenced content. Anxiety is not the only emotion to impact 

autonomic responding. Positively valenced stimuli can still elicit responses in 

peripheral physiology. For instance, prior research has noted cardiac acceleration in 

response to happy faces (albeit of a lower magnitude than negatively-valenced faces), 

and this may correlate with responses in the amygdala (Critchley, 2005). It is equally 

plausible that the effects do not pertain to reduced communication between central 

and peripheral nervous systems; rather, increased communication as a function of 

positively-valenced content. 

A final consideration for interpretation is that reduced coherence may be 

underpinned by bottom-up, interoceptive processes. In chapter 6, I failed to find 

associations between individual differences in trait anxiety and heart rate responses 

to the same anxiogenic stimuli used in the present study (all the while still inducing 

states of anxiety). Thus, the anxiogenic stimuli may not be eliciting threat-relevant top-

down, autonomic responses. As such, bottom-up interoceptive influences must be 

considered. Prior work suggests increasing awareness of interoceptive signals, such 

as attention to respiration, appears to be associated with altered amygdala-prefrontal 

responses (Doll et al., 2016). Therefore, the measures of neural-autonomic coherence 

may be driven by the degree to which individuals are attending to their own cardiac 

signals during movie-watching. A primary function of adaptive anxiety is to attend to 

threats in the environment (Mobbs et al., 2015). As such, participants' engagement in 

the suspenseful condition could feasibly detract from interoceptive integration that was 

apparent during the non-suspenseful condition. Put simply, another interpretation is 

that participants are attending to their own heart rate more during the non-suspenseful 

condition compared to the suspenseful condition. However, it is outside the scope of 

the current study to draw conclusions regarding directional causality. It may therefore 

be useful for future studies to consider the implementation of active manipulations 
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(e.g., pharmacological or behavioral) to disentangle the contribution of interoceptive 

awareness to neural responses during movie-watching. 

It is important to contextualize the results also with the non-significant results, 

as well as my methodological constraints and choices. All presented analyses were 

preregistered. However, I selected activation within the amygdala, dorsomedial 

prefrontal cortex, and insula to be the primary measures of coherence (rather than 

previously discussed dynamic connectivity). I failed to find evidence of altered 

coherence between heart rate and activation in these regions between conditions. This 

may represent a true null and effects primarily emerge at the level of communication 

between regions (connectivity) rather than activity within regions. Given the sample 

size (n = 29) and neuroimaging measure, it is difficult to provide evidence in favor of 

the null and the presented results should be considered preliminary. I therefore 

recommend future work to test whether the absence/appearance of anxiety-relevant 

alterations in neural-autonomic communication does primarily emerge at the level of 

circuitry, as opposed to regional activity (at least, in relation to amygdala-prefrontal 

circuitry).  

Replication of the results is especially important given the exploratory nature of 

the coherence measures, which used varying methods to approximate neural-

autonomic coherence (dynamic time warping, bivariate correlations, and cross-

correlation maxima). The measures were either predominantly data-driven (dynamic 

time warping and cross-correlation maxima) or assumed instantaneous 

correspondence between BOLD and HRF-lagged heart rate (bivariate correlation). It 

will be useful to generate characterizations of the temporal relationship between 

ongoing neural activity (BOLD) and cardiac responding in these contexts; for instance, 

through the use of methods such as vector autoregression to derive exact temporal 

lags (and whether this varies across regions). Following this, research into neural-

autonomic communication may be able to produce measures more sensitive to the 

effects of induced anxiety, and hold potential to disentangle associations with 

sympathetic vs parasympathetic activity. 

Generalization of my results to other movie stimuli is also strongly encouraged. 

Here, I conducted the present study in order to provide generalizability from the anxiety 

literature to a relatively more naturalistic platform. However, the present study used a 
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dataset which included 29 subjects watching short movie clips (< 10 minutes per 

condition). It will be important to test whether these effects hold when using: different 

movie stimuli varying in low-level sensory features, especially as the suspense 

conditions was grayscale and non-suspenseful condition was not; larger/longer 

samples, due to the potential for instability of effects in small sample sizes (Marek et 

al., 2022); and other proxies for autonomic responding (e.g., skin conductance). 

Finally, the present findings need to be contextualized entirely in terms of induced 

states of adaptive anxiety. I cannot conclude whether these results translate to 

pathological levels of anxiety. Future work should seek to investigate between-

subjects effects of maladaptive anxiety on neural-autonomic communication during 

movie-watching, which has been observed in task-based designs (Abend et al., 2022). 

 

Conclusion 

I aimed to investigate how communication between the brain and the autonomic 

nervous system may change as a function of anxiogenic movie-watching. Here, I found 

preliminary evidence for anxiety-relevant alterations in the coherence between heart 

rate and amygdala-prefrontal dynamic connectivity (amygdala-dorsomedial prefrontal 

cortex and amygdala-subgenual anterior cingulate). Moreover, I found evidence for 

alterations in coherence between heart rate and activity in precuneus, vmPFC, and 

bilateral putamen. However, effects were in the inverse direction to which I 

hypothesized. Coherence was positive during the non-anxiety condition, but reduced 

during the anxiogenic condition. This was demonstrated in 29 subjects undergoing < 

10 minutes of scanning per condition. Future work testing the stability of these with 

longer (and different) movie stimuli, as well as in pathological levels of anxiety, will be 

important for grasping a better understanding of the contributions of this circuitry to 

peripheral physiology. 
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8. General Discussion 

Traditional experimental paradigms, such as threat of shock, have build a fundamental 

understanding of the neurobiological basis of state and trait anxiety. Anxiety appears 

to be associated with a broad cortico-subcortical-autonomic network which drives 

processes such as threat vigilance (Chavanne & Robinson, 2021; Shackman & Fox, 

2021). However, our understanding is predicated on a limited range of tightly-

controlled paradigms. Whether anxiety presents itself in the same way ‘in the wild’, 

outside of such laboratory settings is unknown. One platform to bridge this gap is 

through movie-watching. Movies can evoke emotional states and present stimuli in a 

more contextually-rich, dynamic, naturalistic manner. Yet, there is scarce research 

investigating the neurobiological manifestiations of anxiety in response to movies. In 

order to test whether findings from the anxiety literature generalize to relatively more 

naturalistic settings, I therefore conducted a series of studies assessing the extent to 

which anxiety impacts neural, subjective, and autonomic responses to movies. 

 

8.1 Summary of Findings 

Chapter 2 

I began by investigating the impact of anxiety on neural responses to movies. The 

prior literature implicates a ‘defensive response network’ that underpins anxiety 

(Abend et al., 2022). Core to this network is an amygdala-dorsomedial prefrontal 

circuit, posited to drive aversive amplification of threat-relevant stimuli in the 

environment. For instance, amygdala-prefrontal response appear to biasing 

perceiving faces as fearful (Robinson et al., 2012, 2014). Accordingly, chapter 2 set 

out to test whether individual differences in trait anxiety were associated with 

amygdala-prefrontal responses to faces in movies. I failed to find evidence of altered 

responses in this amygdala-prefrontal circuit, but did note associations between 

anxiety and activation to faces/speech in other regions, such as superior parietal lobe 

and primary auditory cortex. 
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Chapter 3 

The anxiety literature implicates that inducing state anxiety through threat of shock 

elicits associations between trait anxiety and amygdala-prefrontal response, 

irrespective of stimulus-specific processing (Vytal et al., 2014). Therefore, I sought to 

assess the degree to which trait anxiety was associated with amygdala-prefrontal 

responses to suspenseful movies (a naturalistic approach to inducing state anxiety). I 

demonstrated significant associations between trait anxiety and amygdala-prefrontal 

responses during suspenseful movie-watching. This was in the inverse direction to 

which I predicted: positive associations between trait anxiety and amygdala-prefrontal 

responding were greatest when suspense was low. 

 

Chapter 4 

One interpretation of chapter 3’s findings was that positive associations between trait 

anxiety and amygdala-prefrontal connectivity during low suspense scenes could 

reflect differences in connectivity while at rest. In order to aid interpretation of chapter 

3’s findings, I subsequently analyzed resting-state data from the same participants as 

chapter 3, using the same anxiety scores and regions of interest. I failed to find any 

associations between self-reported trait anxiety and resting-state ‘intrinsic’ functional 

connectivity, though did report an association between a behavioral measures of 

threat vigilance and amygdala-periaqueductal gray connectivity.  

 

Chapters 5-6 

My findings from chapters 2-4 highlight that movie-watching can be used to elicit 

anxiety-relevant idiosyncratic responses in neural circuitry. However, whether said 

brain activity might manifest in physiological (autonomic) responses and subjective 

experiences of state anxiety remained unclear. In order to test this, I first developed a 

pipeline for extracting heart rate, a proxy for autonomic balance, from cardiac 

recordings in chapter 5. I then tested whether trait anxiety was associated with 

differences in cardiac activity (i.e., heart rate) and subjective responding (i.e., 

continuous state anxiety ratings) to the same movie stimuli as chapter 3. I 
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demonstrated that trait anxiety symptoms were associated with continuous state 

anxiety during suspenseful movie-watching, but not heart rate.  

 

Chapter 7 

In chapter 5, I failed to find evidence of an association between trait anxiety and 

autonomic responses to a suspenseful movie clip. This initially suggested that the 

idiosyncratic neural responses I observed in chapter 3 were not associated with 

engagement of peripheral physiology. However, this did not rule out the possibility of 

general alterations in the communication between the brain and the autonomic 

nervous system. In chapter 7, I therefore explored the extent to which the ‘defensive 

response network’ may be responsible for communication with the autonomic nervous 

system while under states of anxiety. I predicted that anxiety-inducing movie clips 

would increase communication between the ‘defensive response network’ (amygdala, 

dmPFC, and insula in particular) and the autonomic nervous system. Here, I compared 

heart rate and neural (BOLD) responses in subjects watching an anxiogenic, 

suspenseful movie clip and a non-suspenseful, control movie clip to produce 

measures of neural-autonomic coherence (the similarity of heart rate and BOLD 

responses). I predicted that the anxiety would be associated with increased neural-

autonomic coherence in the suspenseful condition compared to the non-suspenseful 

condition. My results provide preliminary evidence for altered coherence between 

amygdala-prefrontal responding and autonomic activity during suspenseful movies. 

However, results were in the inverse direction to my prediction. There was a positive 

association between heart rate and amygdala-prefrontal responses in the non-

suspenseful control condition, but this was reduced to negative or non-significant in 

the suspense condition. This indicated that communication between the brain and the 

autonomic nervous system may be greater during non-anxiogenic movies compared 

to anxiogenic movies. 

 

8.2 Implications 

The overarching question throughout my thesis was: do our findings from the anxiety 

literature generalize to more naturalistic settings? The preliminary answer: in some 

cases, yes; in others, no; but—most often—neurobiological responses may diverge to 
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previous observations from traditional paradigms. I studied anxiety using a range of 

approaches, investigating effects of trait and state anxiety on the brain, peripheral 

physiology, and subjective responses. I found mixed evidence. Some predicted 

effects, such as an association between trait anxiety and amygdala-dmPFC responses 

to faces, were not apparent during movie-watching. Some relationships, such as that 

between anxiety and neural-autonomic communication, emerged in the opposite 

direction to results from previous task-based studies. These findings warrant potential 

re-evaluation/contextualization of prior anxiety research; specifically, calling into 

question whether such results represent the manifestation and impact of anxiety on 

neurobiological responses outside specific laboratory settings and in daily life. In this 

section of the thesis, I discuss such re-evaluations primarily in relation to the neural 

and autonomic underpinnings of anxiety. I then discuss more broadly the utility of 

movie-watching for anxiety research. 

 

Neural Responses to Faces 

A wealth of literature indicates that both state and trait anxiety impact the processing 

of faces. For instance, the speed, accuracy, and intensity in which emotional facial 

expressions are perceived appears to be facilitated by anxiety (Arrais et al., 2010; 

Bradley et al., 1999; Doty et al., 2013; Kavcıoğlu et al., 2021; Robinson et al., 2011). 

A bias toward categorizing faces as fearful appears associated with increased 

engagement of amygdala-dmPFC circuitry, the degree to which varies with individual 

differences in trait anxiety (Robinson et al., 2012, 2014). As such, I predicted that 

individuals scoring higher in trait anxiety would demonstrate increased amygdala-

dmPFC responses to faces during movies. I observed overall increased amygdala-

dmPFC responses to faces in the whole sample, but this effect did not vary as a 

function of trait anxiety scores. 

This could represent a true null, but theoretical interpretation needs to be 

grounded within the analytical approach. Here, I failed to find an association between 

trait anxiety scores and amygdala-dmPFC responses to faces in general. Responses 

to faces of all emotional expressions was assessed due to the implication that anxiety 

biases processing across all emotional expressions, including neutral faces 

(Kavcıoğlu et al., 2021). I did not detect a significant association between amygdala-
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prefrontal responses to faces in general and trait anxiety (though there were 

associations with superior parietal activation). Thus, I found tentative evidence against 

the notion that anxiety is associated with amygdala-prefrontal responses to all faces 

in more naturalistic settings. However, some studies have implicated bias perception 

appears primarily for threat-relevant faces, fearful expressions in particular (Doty et 

al., 2013; Robinson et al., 2012). In chapter 2, responses to specific facial expressions 

(i.e., fearful) were not evaluated due to concerns regarding the ability of the face 

recognition software to accurately decode emotional expressions. This leaves open 

the possibility that trait anxiety may still shape amygdala-dmPFC responses to faces, 

but only to specific emotional expressions. 

It is also import to consider context. I adopted an approach typically employed 

in the task-based literature, feature based general linear modelling, which tested for 

average responses to faces across entire movies. This modelling was time-invariant: 

it assumed brain responses would be consistent throughout movies. While the 

association between trait anxiety and amygdala-prefrontal activity may potentially be 

observable in minimal contexts (such as resting-state; Kim et al., 2011), this 

association is likely greatest in anxiogenic contexts, congruent with diathesis-stress 

models of anxiety (Zuckerman, 1999). Therefore, the findings from chapter 2 indicate 

that trait anxiety may not be associated with altered amygdala-prefrontal 

responsiveness to faces in general, but it is plausible that such effects could emerge 

dependent on wider emotional context. 

 

Neural Responses to Suspense 

I next took to investigating anxiety while taking into account the overall emotional 

dynamics of the movie. Specifically, I extracted dynamic measures of brain 

connectivity and embedded these features within ratings of ongoing suspense, which 

served as a naturalistic anxiety induction. Findings from the threat of shock literature 

implicate that as general anxiety increases, amygdala-prefrontal connectivity 

increases, and this is greatest for those scoring high in trait anxiety (Robinson et al., 

2012, 2014). As such, I predicted positive associations between trait anxiety and 

amygdala-prefrontal responses would be greatest during highly suspenseful scenes. 

Yet, my findings indicated the associations were greatest during low suspense scenes. 
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Put simply, trait anxiety was associated with relatively increased amygdala-dmPFC 

responding during low suspense scenes and reduced amygdala-dmPFC engagement 

during high suspense scenes.  

One interpretation is that the positive association between trait anxiety and 

amygdala-prefrontal connectivity during low suspense scenes could arise as a function 

of difference in ‘intrinsic’ connectivity at rest. My follow-up study using resting-state 

scanning revealed no such associations between trait anxiety and ‘intrinsic 

connectivity’. As such, there is evidence to suggest effects were driven by the content 

of the movie. My visualizations of neural time series indicated idiosyncratic responses 

were far more nuanced and dynamic than findings from the threat of shock literature 

would imply. That is, anxiety-relevant idiosyncratic responses to suspense may not 

arise simply as a linear function of suspense.  

One perspective for contextualizing these results comes from research in media 

psychology literature. There is evidence to suggest that the initial experience of 

anxiogenic movie scenes may be aversive to all, but there is large individual variations 

in subjective experiences preceding/following such scenes. Some may experience 

positive emotions, while others feel anxiety (Clasen et al., 2018). Indeed, neuroticism, 

which strongly correlates with trait anxiety (r = ~.7, Muris et al., 2005), tends to be 

associated with reduced seeking of anxiogenic media, as well as greater self-reported 

anxiety in the aftermath of such content (Clasen et al., 2018). This is congruent with 

neuroimaging studies which find anxiety is associated with earlier amplified 

anticipation as well as slowed habituation of amygdala-prefrontal responses to 

aversive events (Blackford et al., 2013; Campbell et al., 2014; McMenamin et al., 2014; 

Najafi et al., 2017; Protopopescu et al., 2005). I therefore suggest that the effects 

observed associations between trait anxiety and amygdala-dmPFC engagement in 

chapter 3 are arising due to suspense, but these dynamics might relate to early 

anticipation of- and slowed disengagement following suspenseful scenes. 

The key findings here are that associations between trait anxiety and responses 

in a fundamental threat circuit (amygdala-dmPFC) do emerge during suspenseful 

movie-watching. However, incongruent with threat of shock paradigms, the 

association between trait anxiety and amygdala-dmPFC engagement may not simply 

be linearly modulated as a function of anxiogenic features of the environment. Rather, 
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there are nuanced dynamics relating to anxiety (potentially earlier anticipation of 

and/or slowed disengagement to threat) which drive idiosyncratic responding. 

However, what exact processes these effects may reflect remained unclear. Could this 

brain activity relate to engagement of peripheral physiology? Are these individual 

differences in neural responses manifesting in altered subjective experiences of 

suspenseful movies? In my remaining chapters, I sought to address these questions. 

 

Autonomic Responses to Suspense 

Even at the outset of modern psychology, peripheral physiological responses have 

always been considered as playing a role in affective states (Dewey, 1894; James, 

1894). In relation to anxiety, it has been theorized that peripheral physiology is 

engaged to facilitate defensive behaviors in response to threat, namely fighting or 

fleeing (Cannon, 1929). Activity across the autonomic nervous system may aid such 

behaviors; for instance, by providing increased blood flow to support the body for 

physical exertion (Critchley, 2009; McCorry, 2007). Experimental work does suggest 

state and trait anxiety are be associated with autonomic responding, as reflected in 

cardiac activity (Beatty & Behnke, 1991; Kantor et al., 2001; Levine et al., 2016). In 

this thesis, I failed to replicate such effects in suspenseful movie-watching. 

I tested the extent to which trait anxiety symptoms were associated with heart 

rate during a suspenseful movie clip (the same as used in chapter 3). No associations 

with heart rate were apparent. This is in spite of trait anxiety being associated with 

states of anxiety and engagement of the ‘defensive response network’ to the same 

suspenseful movie. If this represents a true null, this should be considered in 

discussions of anxiety in relation to threat responding. The framework motivating these 

studies was based on findings from literature on responding to personally-directed 

threats; for instance, responses to uncertain threat of shock. However, in recent years, 

it has been emphasized that such threat responding may not be necessary for eliciting 

subjective experiences of anxiety, and vice versa (LeDoux & Pine, 2016; Taschereau-

Dumouchel et al., 2022). My results do not invalidate previously observed associations 

between self-reported trait anxiety and physiological responses to threatening stimuli. 

Rather, in line with recent calls, we cannot presume that autonomic responses are 

always associated with traits/states of anxiety. This may be especially apparent in 
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conditions outside traditional paradigms, which have typically framed anxiety around 

personally-directed threat. This seems particularly the case for movies, which do not 

pose a direct, physical threat toward an individual. 

 

Subjective Responses to Suspense 

When assessing how trait anxiety may shape states of anxiety during suspenseful 

movie-watching, I decided to employ an approach which might encapsulate symptom-

level information, intersubject representational similarity analysis. This was because 

prior work has indicated that types of trait anxiety symptoms play a key role in the 

relationship between anxiety and autonomic responding (Pittig et al., 2013). 

Accordingly, I compared individual differences in trait anxiety symptomatology. This 

was operationalized as pairwise similarities (comparisons between pairs of subjects) 

in responses across questionnaire items (which assess different types of anxiety 

symptoms, such as worry and somatic symptoms). Put simply, each pair of subjects 

was compared as to how similar they were in terms of the type of anxiety symptoms 

they experienced. This is in contrast to my previous analyses which used summated 

responses across all items to engage overall intensity of trait anxiety symptoms. 

Using this approach, I detected a significant association between trait anxiety 

symptom profiles and subjective responses to a suspenseful movie (i.e., continuous 

ratings of state anxiety). In other words, different types of trait anxiety symptoms were 

associated with differences in when individuals felt anxious during suspenseful movie-

watching. The association between trait anxiety and continuous ratings of state anxiety 

was not apparent when using sum scores (intensity of trait anxiety). Taken together, 

this indicated that the type—but not overall intensity—of trait anxiety symptoms is 

associated with subjectively-experienced states of anxiety during suspenseful movies. 

If these differences are underpinned by brain responses to suspense, this holds 

implications for neuroimaging analyses of movie data. For instance, in chapter 2 I 

tested the association between trait anxiety summary scores and neural responses to 

faces, but failed to detect a significant relationship. Given that symptom types appear 

to show a stronger mapping onto subjective experiences than general symptom 

intensity (at least, as measured by self-report questionnaires), linking neural 

responses to movies with trait anxiety symptom types (rather than sum scores) might 
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prove a more sensitive approach. Calls for such transdiagnostic approaches in 

psychiatry, which go beyond diagnostic categories and look at underlying dimensions 

of pathology, have been made in recent years for both task and resting-state 

neuroimaging research (Parkes et al., 2020). Due to the use of adaptive 

questionnaires or lack of item-level data, such a symptom-level analysis could not be 

implemented in my neuroimaging chapters. Nonetheless, my findings motivate future 

movie studies to consider transdiagnostic/symptom-level analyses when studying the 

neurobiology of anxiety. 

 

Neural-Autonomic Responses to Suspense 

Although I previously failed to detect effects of anxiety on autonomic responses in 

general, this led me to my final line of inquiry. Even in the absence of observable 

increases/decreases in overall autonomic activity, it is possible that reciprocal 

communication between anxiety circuitry and the autonomic nervous system could 

nonetheless change as a function of anxiogenic movie-watching. Compared to work 

which studies anxiety’s impact on central and peripheral nervous systems as separate 

lines of inquiry, there is scant literature directly investigating neural-autonomic 

communication in the context of anxiety. Some work has implicated increased 

communication between the ‘defensive response network’ and autonomic nervous 

system during states of anxiety (Abend et al., 2022; Makovac, Meeten, Watson, 

Herman, et al., 2016). In this thesis, I sought to test whether these effects were 

apparent during movie-watching. I predicted that suspenseful movie-watching would 

elicit increased communication between the ‘defensive response network’ and 

autonomic nervous system. To test this, I assessed the similarity between neural and 

heart rate time series during suspenseful vs non-suspenseful movie clips to produce 

measures of neural-autonomic ‘coherence’. I found significant associations, but in the 

inverse direction to predicated. Neural-autonomic coherence was stronger (and 

positive) in the non-suspenseful condition compared to the anxiogenic, suspenseful 

condition (which was non-significant or negative). 

Given the neuroimaging method (fMRI), sample size (n = 29), and proxy for 

autonomic responding (heart rate), it is difficult to draw strong inferences from these 

effects. Nevertheless, for shaping future hypotheses and methodological choices, it is 
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worth considering the implications of these findings, especially given their divergence 

from the prior literature. Anxiety has been often been discussed in regard to elicitation 

of increased sympathetic activation  (Friedman & Thayer, 1998a). As such, I predicted 

that as activation/connectivity across the ‘defensive response network’ increases (in 

particular, amygdala, dmPFC, and insula), so would sympathetic activation (and 

consequently, heart rate). However, anxiety also appears to dampen the 

parasympathetic branch of the autonomic nervous system. Notably, parasympathetic 

withdrawal may occur more rapidly than increases in sympathetic activity (Critchley, 

2009). One interpretation, is thus that decreased associations between neural 

responding and heart rate could arise due to withdrawal of parasympathetic control. 

In the control condition, amygdala-prefrontal circuitry may be associated with 

parasympathetic slowing of the heart. Conversely, in the anxiogenic condition, there 

may be a ‘releasing of the brake’; amygdala-prefrontal circuitry may no longer 

instructing the parasympathetic branch to attenuate cardiac responses. Yet, this would 

still not explain the discrepancy with the prior literature. 

An alternative interpretation is that effects were not necessarily driven by the 

suspenseful condition, but instead by the control condition. The non-suspenseful 

control condition, ‘Partly Cloudy’, contained positively valenced content. Positively 

valenced stimuli (e.g., happy faces) can promote cardiac acceleration, albeit this is of 

a typically weaker magnitude than negative valenced stimuli (Critchley, 2005). 

Nonetheless, an alternative interpretation is that these effects do not pertain to anxiety, 

but rather the impact of positive mood on increasing sympathetic activation (and 

conversely, heart rate). 

My final interpretation is that these effects were relevant to anxiety, but did not 

arise due to top-down entrainment of autonomic responding from the brain. Instead, 

these results could have arisen as a function of bottom-up, interoceptive processes. 

This is especially important to consider given my findings (chapter 6) that did not 

provide evidence of the same suspenseful movie being associated with altered 

autonomic responses. It is thus possible that suspenseful movie watching reduces 

peoples’ attention to internal bodily signals. For instance, one prior task-based study 

indicates that promoting attention to bodily signals (i.e., respiration) engages 

amygdala-prefrontal regions (Doll et al., 2016). It is therefore possible that the 

presented neural-autonomic coherence measures may be sensitive to such 
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interoceptive awareness. If a key purpose of anxiety to attend to potential threats in 

the environment (Mobbs et al., 2015), engagement with the stimulus in the anxiogenic 

condition could have detracted individuals awareness of their own bodily signals, such 

as heart rate. In order to disentangle these effects, future research should seek to 

generalize these effects to other movies, use other measures of neural/autonomic 

responding, and consider active manipulations of autonomic balance in order to draw 

stronger causal inference. 

I have now embedded my findings within the prior literature. However, the 

implications of this thesis are not limited to specific neurobiological models of anxiety. 

I now discuss broader implications from this work in relation to the framing and 

conceptualization of anxiety, how movies might be useful for development of 

prediction-oriented research, and its implications for clinical settings. 

 



 

171 

Figure 8.1. Illustrative summary of chapter findings. I tested associations between trait 

anxiety and amygdala-prefrontal connectivity. I failed to find an association in the 

context of face perception during movies (chapter 2), I did find evidence for an 

association in regard to suspense during movies (chapter 3), and these effects were 

not apparent at rest (chapter 4). I also failed to find an evidence of trait anxiety 

impacting autonomic responses to suspenseful movies (chapter 6), but did find 

suspenseful movies impact neural-autonomic communication (chapter 7). dmPFC = 

dorsomedial prefrontal cortex. 
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The Source of Threat Matters 

In this thesis, I have discussed specific discrepancies between findings when using 

different state anxiety manipulations. Between traditional experimental paradigms, 

such as threat of shock vs CO2 challenges, there are inconsistencies; for example, in 

how trait anxiety biases the perception of faces (Doty et al., 2013; Dyer et al., 2022; 

Robinson et al., 2012). When comparing traditional paradigms to this thesis, there are 

also clear discrepancies. As highlighted previously, there are suggestions that states 

of anxiety (using traditional paradigms) are associated with increased communication 

between the brain and the autonomic nervous system (Abend et al., 2022; Makovac, 

Meeten, Watson, Herman, et al., 2016); yet, in suspenseful movies, I noted decreased 

communication. In addition to how ecologically-rich experimental procedures are, this 

speaks to a much broader point regarding how anxiety is induced and studied. Anxiety 

has typically been discussed as a general response to uncertain threat. However, 

different sources of threat might evoke different neurobiological responses. 

Is suspense actually a naturalistic analogue to threat of shock? Threat of shock 

is not typically thought of as a desirable experience, while many people actively seek 

out anxiogenic media such as horror movies (Bantinaki, 2012). Threat of shock poses 

a direct, personal threat to an individual. Suspense-elicited anxiety is driven by 

potential harm to characters in a movie. Distinctions such as self vs other threat (which 

could also relate to empathy) may be one of the core factors underlying potential 

inconsistencies between threat of shock studies and the findings in the present thesis. 

For instance, when threat is personally directed, there could be a tuning of attention 

toward one’s own bodily signals in order to monitor physical health. When threat is 

directed at others, perhaps such interoceptive awareness is not as necessary. It is 

therefore plausible that different modalities of anxiety induction elicit different 

neurobiological responses. 

There is no doubt that threat of shock effectively induces anxiety, as has been 

repeatedly validated with self-report measures (Robinson et al., 2012). However, 

perhaps there needs to be a push toward more refined contextualization of findings in 

regard to specific modalities of anxiety induction. That is, moving the focus away from 

general states of anxiety, toward more refined discussions of how specific sources of 

anxiety impact the brain and behavior. For instance, personally directed physical threat 
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may interact with trait anxiety during the anticipation of the threat. However, as I 

discuss in chapter 3, perhaps trait anxiety is more strongly associated with responses 

in the aftermath of suspenseful scenes. This may relate to divergences in how some 

experience positive affect following such scenes, while others remain in a state of 

anxiety (Clasen et al., 2018). This would also be in line with different diagnostic 

categories of pathological anxiety; for instance, some being more general (generalized 

anxiety disorder) while others are more social (social anxiety disorder). Future 

research should seek to explicitly test discrepancies between sources of anxiety. One 

possible avenue could even be to explore this within movies; for instance, by testing 

the impact of anxiety as induced by uncertain physical vs social harm to characters. 

 

Brain-Behavior Prediction 

The present thesis was theoretically-motivated. For example, much of my hypothesis-

testing was centered on an ‘aversive amplification’ hypothesis of amygdala-dmPFC 

function that posited this circuit as driving attentional biases toward threat. In order to 

investigate whether this was engaged in more naturalistic contexts (compared to threat 

of shock), I tested whether anxiety was associated with amygdala-dmPFC responses 

in movie-watching. Not all anxiety research is necessarily aligned with said goals of 

informing specific neurobiological models of anxiety per se. Another avenue of 

neuroscience research has been focusing on phenotypic prediction, which might 

confer benefits to the diagnosis and guidance of treatment for psychopathology 

(Dhamala et al., 2023; Parkes et al., 2020). These studies are often predicated on 

data-driven analyses of resting-state data to predict individual phenotypes, such as 

trait anxiety. A frequent, primary goal of said studies is to improve the accuracy of 

prediction algorithms to detect psychiatric symptoms (Dhamala et al., 2023; Parkes et 

al., 2020). Yet, resting-state derived predictive modelling of anxiety has yet to reveal 

successful, replicable results (Boeke et al., 2020). 

 Movie fMRI-derived connectivity measures have been demonstrated as 

outperforming resting-state based prediction of cognitive function (Finn & Bandettini, 

2021). In relation to anxiety, I demonstrated that suspenseful movie-watching can elicit 

neurobiological individual differences in trait anxiety that are not apparent at rest. In 

this thesis, I did not analyze the data with prediction as a goal. This is because 
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multivariate, data-driven analyses of fMRI data can result in model parameters being 

difficult to interpretable in regard to brain activation/connectivity (Haufe et al., 2014). 

This could have hindered theoretical interpretation. At present, I am not aware of any 

research using movie fMRI data to target prediction of trait/pathological anxiety 

specifically. Given findings from this thesis, a useful first step for future studies could 

be to compare the relative utility of resting-state vs suspenseful movie fMRI data in the 

prediction of trait/pathological anxiety. 

 

Clinical Evaluations and Interventions for Anxiety 

If one goal of research into anxiety is to understand the biological and psychological 

processes anxious individuals engage with in day to day life, it is of utmost importance 

that experimental findings are tested in contexts that represent such daily experiences. 

Not just for our own theoretical interpretations, but because these studies hold impact 

outside of academia. In the context of clinical applications, the need for ecologically-

rich anxiety research holds implications in both the assessment of pathological 

anxiety, as well the development of interventions.  

There is currently a move in psychiatry research toward clinical translation of 

biological and cognitive measures to assess the impact of anxiety on the brain and 

cognition (in line with Research Domain Criteria, Cuthbert & Insel, 2013; Insel et al., 

2010). Traditional task-based fMRI designs, such as face perception paradigms, are 

being used as biomarkers in clinical research to assess the efficacy of anxiolytic 

medication and psychological therapy (Gingnell et al., 2016). Yet, the present results 

highlight such tasks may not fully encapsulate the ways in which anxiety is manifesting 

and impacting an individual outside of these specific tasks. Therefore, there is a need 

to re-evaluate neuroimaging measures which assess the neural correlates and impact 

of anxiety on brain function in clinical contexts. Movie fMRI seems like a distant 

procedure for use in clinical assessment, but its development for clinical settings is 

already underway in other domains, such as presurgical language mapping (Yao et 

al., 2022). This thesis posits that piloting movie fMRI in future clinical trials is a novel 

and potentially useful endeavor that may yield clinically meaningful insights into the 

underlying mechanisms of anxiety disorders. 
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The motivation for validating findings from the anxiety literature in ecologically-

rich settings also extends to the development of treatments. Therapeutic interventions 

are designed to alleviate anxiety in people’s daily lives. Yet, only approximately half of 

those with anxiety disorders will respond to initial psychological/pharmacological 

treatment (Ansara, 2020; Clark, 2018; NHS Digital, 2022). These interventions are 

selected and developed based on our current evidence base. For instance, in recent 

decades, pharmacological agents (i.e., anxiolytic medication) have been synthesized 

with specific biological targets in mind that are derived from findings in basic research 

(Sartori & Singewald, 2019). In turn, traditional methods, such as fMRI-measured brain 

responses to static faces, are then employed in clinical trials to test whether anxiolytic 

medication is acting on hypothesized neural responses (Gingnell et al., 2016). If the 

research used to form the basis of therapeutic development does not fully or 

appropriately encapsulate the biological substrates of anxiety (i.e., due to a lack of 

ecological validity), this indicates there may be a need for potential re-evaluation in 

regard to the paradigms used to identify novel treatment targets for clinical 

interventions in anxiety. It may be fruitful that—alongside traditional cognitive 

paradigms—movie-watching is formally considered in developmental pipelines for 

therapeutic intervention (e.g., anxiolytic medication). 

 

8.3 Limitations and Considerations 

How Naturalistic are Movies? 

This thesis was motivated with the need for extending anxiety research to more 

naturalistic settings. As such, I used a relatively more ecologically-rich procedure, 

movie-watching. However, this fundamental assumption of ecological validity should 

be scrutinized: are movies actually ‘naturalistic’? Movie paradigms have only started 

to gain popular attention in recent years. There have been multiple calls for its 

widespread use to provide ecologically-rich settings in which to study mental 

processes more representative of everyday life (Eickhoff et al., 2020; Sonkusare et 

al., 2019; Vanderwal et al., 2019; Vigliocco et al., 2023). On the other hand, some 

have argued that movies should not by default be considered representative of 

everyday life (Grall & Finn, 2022). Movie scenes are built on the foundation of finely 

curated, artistic script content, lighting, set designs, camera angles/distance, video 
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editing, acting, sound, and more. Dependent on the purpose and goal of a movie, 

these directing decisions are made to engage and entertain audiences, but were not 

explicitly designed to represent everyday experiences per se. As such, the type of 

content relating to dialogue, sets, acting, and more cannot automatically be assumed 

to be representative of how people view the world in their everyday lives. 

The present thesis contained a range of movie stimuli, but a suspenseful 

grayscale clip from the 1960’s, ‘Bang! You’re dead’, was used for 3 of the studies 

(chapters 3, 6, and 7). By asking participants to provide ongoing behavioral ratings of 

anxiety (chapter 6), I validated that this was useful for evoking states of anxiety. 

However, is this specific stimulus representative of conditions outside the laboratory? 

With currently available evidence and limitations on neuroimaging, there is not clear 

answer yet. It is important to understand that ecological validity occurs on multiple 

continuums. Movies are not a complete solution to ecological validity, but rather may 

serve as a stepping stone toward naturalistic generalizability. Only by combining 

evidence from movie-watching with other approaches, such as wearable 

neuroimaging devices employed outside the laboratory (e.g., OPM-MEG and fNIRS; 

Boto et al., 2018; Piper et al., 2014), can we start to build a better understanding of 

anxiety-dependent neurobiological responses that are consistent across contexts. 

Finally, it is important to acknowledge that movie-watching is—arguably—a 

naturalistic behavior in and of itself. The average person in the UK consumes ~5 hours 

of TV/Video content a day (Ofcom, 2022). Given that so many people spend a 

significant proportion of their day consuming video media, it could still be considered 

a worthwhile naturalistic behavior to study in and of itself, even if perception of such 

stimuli does not generalize to other settings. All things considered, it is important for 

researchers to consider the extent to which their stimuli may be representative of other 

environments, and to discuss findings accordingly. Careful consideration should be 

given to how and why a movie stimulus may be useful and ecologically-valid for 

addressing a research question. 

 

Analytical Considerations for Movie-Based Anxiety Research 

An advantage of movie paradigms is that they offer a platform in which data can be 

flexibly analyzed (more so than task and rest) to evaluate a broad range of mental 
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process, from fundamental sensory systems to emotion. Moreover, the data can be 

approached from a variety of analytic perspectives. My conclusions throughout this 

thesis need to be contextualized within methodological decisions. Such analytical 

choices typically entail a degree of compromising either model sensitivity or 

interpretability. This is of course not specific to movie data. However, movies are 

socially/emotionally rich, complex, multisensory stimuli. Employing interpretable 

models to capture such complex stimuli is challenging and can make inferences 

toward the null especially difficult. Below, I review three key techniques (feature-based 

GLM, seed-based functional connectivity, and intersubject representational similarity 

analysis) in light of my findings. 

 Feature-based GLM has been a popular tool in cognitive neuroscience 

research since it was one of the first approaches to be widely adopted as a tool for 

analyzing task-based fMRI data (Friston et al., 1994). This approach relies on 

numerous assumptions, such as when and how the brain responds to stimuli. When 

tasks are purposefully curated, there can be greater confidence in such assumptions. 

For instance, by interleaving stimuli with a blank screen for several seconds, 

hemodynamic responses can be more confidently attributed to processing of specific 

stimuli. However, when applying this to movie data, such an approach is challenging 

as stimulus-specific properties in movies (e.g., nuanced fluctuations in socio-

emotional context) can be difficult to model with confidence (Vanderwal et al., 2019). 

In chapter 2, I report that this approach revealed consistent main effects of expected 

brain activations in response to faces (fusiform gyrus) and spoken language (primary 

auditory cortex). Therefore, this approach does seem to offer utility for capturing 

within-subject responses to visual/auditory features of movies. While I did observe 

some between-subjects interactions for activation to stimuli and trait anxiety, these 

were small clusters of activation outside my hypothesized regions. This does not 

discount the implementation of feature-based modelling to study anxiety with movie 

data, but my results must be understood within model assumptions; in this instance, 

invariance of responses over time (e.g., activation to faces across a movie). Such an 

assumption may result in false negatives, as the modelling may fail to capture anxiety-

relevant, contextual modulations of brain responses. Indeed, chapter 3 outlined there 

may well be interactions between trait anxiety, ongoing suspense, and brain 

responses. With this in mind, I encourage future studies to continue using such an 
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approach, especially when investigating within-subject responses to stimuli. However, 

careful consideration of the content of movie stimuli (e.g., fluctuations in suspense, 

specific emotional expressions, language) should be made when adopting such an 

approach for investigating the impact of trait anxiety on brain responses. 

 I also made use of seed-based functional connectivity. Unlike feature-based 

GLM, this approach makes fewer assumptions about neural time courses as the 

modelling is driven by the brain data (rather than by assumed hemodynamic 

responses to stimuli). This was employed as such a data-driven approach might have 

been more sensitive to detecting brain-anxiety relationships. I failed to find evidence 

of robust associations between brain connectivity and self-reported trait anxiety 

(though did report one correlation with a behavioral measure threat vigilance). One 

possibility is that the very fact that it relies on minimal assumptions means statistical 

sensitivity is lost. This approach essentially ignores time-locked content and 

concatenates data across the movie into connectivity metrics for each subject. 

Consequently, different subjects’ connectivity measures could be driven by different 

stimuli/timings in the movie, making functional connectivity measures less sensitive to 

associations with trait anxiety. This may be appropriate for short video clips which 

consistently elicit specific affective states, but less appropriate when dealing with full-

length movies which vary in the types of emotions they evoke. An alternative, is the 

use of dynamic connectivity measures, though these require further 

processing/modelling (e.g., implemented as part of intersubject correlation, as in 

chapter 3). Because of this, and in light of the findings from the present thesis, I 

encourage anxiety researchers to be particularly careful when using seed-based 

functional connectivity for movie fMRI, ensuring there is adequate justification for such 

an approach. 

Lastly, I adopted a hybrid approach, intersubject representational similarity 

analysis, for the study of individual differences in trait anxiety. This analysis operates 

by comparing pairwise similarities in trait anxiety measures with pairwise similarities 

in neural, physiological, and/or behavioral time series. This can be applied to movie 

data due to the time-locked nature of the stimuli (participants are watching the same 

movie, so time series can be compared). This can confer a benefit to sensitivity, as it 

does not make assumptions about what specific features are associated with 

individual differences in trait anxiety. In chapter 6, this approach proved fruitful in 
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detecting associations between trait anxiety symptomatology and subjective 

responses to a suspenseful movie (continuous ratings of state anxiety); however, this 

effect was not apparent when using standard trait anxiety measures (sum of 

responses to an anxiety questionnaire).  

Future movie fMRI anxiety research using intersubject representational 

similarity analysis should consider approaches which don’t assume linear (or 

monotonic) increases in brain activation alongside trait anxiety sum scores. 

Specifically, when constructing psychological similarity matrices, symptom-level data 

should be a key consideration. The key advantage for implementing this as part of 

intersubject representational similarity analysis (as opposed to within-subject 

modelling) is that it does not require dimensionality reduction (e.g., transdiagnostic 

factor analyses; Wise et al., 2023), as participants symptom-level data can be directly 

contrasted between participants. 

A disadvantage of intersubject representational similarity analysis is that there 

can be a loss to theoretical specificity (compared to feature-based GLM). It can be 

inferred that trait anxiety-relevant idiosyncrasies do arise during movie-watching. 

However, which features of the movie may be driving these effects is unknown (at 

least, with how it was implemented within my thesis). Moreover, the lack of feature-

based modelling could, in some instances, also obscure effects. Exactly because 

intersubject representational similarity analysis does not make assumptions regarding 

time points that drive effects, it weights every data point in a time series equally. If a 

movie is only eliciting anxiety-relevant responses for a small period of time (e.g., 10% 

of the movie), it is possible that the remainder of irrelevant data points (e.g., 90% of 

the movie) may mask effects. This is especially important context for null results. In 

chapter 3, I failed to find an association between trait anxiety and movie-wide brain 

similarity measures. Any inferences toward the null need to be contextualized in the 

fact that brain time series are compared across the entirety of movie stimuli and does 

not exclude the possibility of shorter, discrete idiosyncratic responses (which may 

arise in response to suspense, as reported in the TR by TR analysis of chapter 3). 

I have outlined some of the advantages and disadvantages of three methods 

for analyzing movie data in light of findings from my experimental chapters. Choice of 

analysis should be primarily dependent on the research question of interest and relies 
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on some compromise between model interpretability vs sensitivity. Given the lack of 

movie studies investigating anxiety, I believe it is too early a stage whereby strong 

inferences should be drawn from singular analyses of movie data. Instead, I believe it 

will be beneficial for future studies to implement multiple techniques in parallel.  

Data-driven approaches may help provide a basic characterizations of brain 

responses to movies (e.g., whole-brain connectivity measures for different scenes) 

which can then be used to guide further hypothesis-testing in independent 

datasets/different movies (e.g., selecting a subset of functional connections we think 

show strongest responses to anxiogenic scenes). Additionally, employing multiple 

techniques in tandem may help to curtail specific assumptions that constrain analyses 

when relying on single techniques. For instance, in chapter 7, I employed three 

different techniques for approximating neural-autonomic communication. This was 

due to a lack of strong priors as to the temporal relationship between central and 

autonomic nervous systems. By using complimentary techniques alongside each 

other, we can guide future research to refine such methods (e.g., what assumptions 

to make regarding lags between neural and cardiac responses). 

 

Open Movie Data for Anxiety Research 

The study of individual differences in brain functions necessitates particularly large 

sample sizes (Marek et al., 2022), which require significant financing and time. So I 

could comprehensively address a range of questions within funding/time constraints, 

I made use of appropriate, open datasets to test my predictions in all but one of my 

chapters. However, the use of open datasets imposes certain restrictions and 

considerations, some specific to anxiety research and some more general. Below, I 

discuss the implications of these restrictions on measures of trait anxiety and 

neuroimaging, as well as the utility of preregistering secondary analyses. 

 

Trait Anxiety Measures 

In chapters 2-4, I investigated associations between trait anxiety and brain responses. 

By using these open datasets, I was not able to select specific trait anxiety measures 

used. Chapter 2’s datasets (Naturalistic Neuroimaging Database and Human 
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Connectome Project; Aliko et al., 2020; Van Essen et al., 2013) made use of the NIH 

Toolbox (NIH Toolbox, n.d.). The NIH toolbox is a proprietary software that delivers a 

battery of assessments to measures cognition and trait affect. It makes use of adaptive 

questionnaires that typically comprise fewer questions than more standardized 

questionnaires of trait anxiety that are employed in clinical research, such as the 

hospital anxiety and depression scale or state-trait anxiety inventory (Spielberger, 

1983; Zigmond & Snaith, 1983). There has been some validation of the affect scales 

(Salsman et al., 2013), but not nearly as much as standardizes clinical questionnaires 

which are used in the diagnosis of pathological anxiety. Therefore, the trait anxiety 

scales used chapters 2 and 3 might hold poor psychometric properties which gave rise 

to null findings. Because this was openly available data, I was not able to guide design 

and so there were no alternatives which may have provided more reliable and valid 

measures of trait anxiety. 

 In chapter 6 (a dataset I collected in-house), I demonstrated that specific trait 

anxiety symptoms correspond more strongly to subjective states of anxiety than do 

overall trait anxiety sum scores on questionnaires. A re-analysis of the data in chapters 

2-4 might have revealed whether such symptom-specific dimensions significantly 

correlate with brain activity in instances wherein I used trait anxiety summary scores. 

Yet, the adaptive questionnaires employed in chapter 2 meant that symptom-data 

could not be integrated due to different participants having different questions, making 

their item-level responses not directly comparable. The dataset used in chapters 3 and 

4 (Cam-CAN; Shafto et al., 2014; Taylor et al., 2017) did make use of a standardized 

self-report anxiety questionnaire (hospital anxiety and depression scale, (Zigmond & 

Snaith, 1983). However, the publicly available version of the dataset only contains 

summary scores. This highlights that such restrictions imposed by open data can 

hinder the ability to employ certain techniques, such as symptom-level analyses.  

A similar limitation was also case for measures of threat vigilance in chapters 2 

and 3. Threat vigilance measures were derived from drift-diffusion modelling (DDM) of 

accuracy/reaction times to fearful facial expressions. However, the only available data 

were summary measures collapsed across trials (average accuracy/reaction times to 

facial expressions). Consequently, I employed a simplified version of drift-diffusion 

modelling that deals with trial averages, E-Z DDM (Wagenmakers et al., 2007). Drift 

rate parameters generated by EZ-DDM have been demonstrated to correlate highly 
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with drift rates derived from trial-level DDM (r = ~.9; Wagenmakers et al., 2007). 

However, the availability of complete trial-level data may have given slightly greater 

sensitivity to detecting associations with brain connectivity. This might be especially 

important in the case of chapter 4 which only detected resting-state functional 

connectivity to correlate with one measure of threat vigilance (amygdala-

periaqueductal gray connectivity).  

Given that my hypotheses in chapters 2-6 were centered on trait anxiety, it is 

also important to consider how these datasets recruited participants. All of the datasets 

I used did not have trait anxiety as a primary focus for data collection. In many 

instances of cognitive function, such as working memory ability, this may potentially 

not matter in the context of recruitment, as random sampling will help recruit a 

heterogeneous sample. On the other hand, individuals demonstrating particularly high 

levels of trait anxiety have been shown to often avoid volunteering for fMRI studies 

(Charpentier et al., 2021). This is exemplified in chapter 4, wherein only 42 out of the 

639 participants in chapter 4 scored in the moderate-to-severe category of trait anxiety 

(HADS-A >= 11; Stern, 2014). If trait anxiety is a key measure of interest, one 

approach is to purposefully recruit participants scoring high in trait anxiety which can 

help generate a wide distribution of scores on trait anxiety measures. This can improve 

statistical sensitivity and allows inferences to be made that generalize to higher levels 

of trait anxiety. For addressing my research questions, using primary datasets which 

purposefully recruited more participants at the moderate-to-severe end of trait anxiety 

scales could have provided greater sensitivity and allowed generalizability to higher 

levels of trait anxiety. Therefore, a key limitation of using open datasets for the study 

of trait anxiety can be the lack of appropriate sampling. 

 

Neuroimaging Measures 

The constraints imposed by the use of open data also extend to fMRI measurement. 

The four open fMRI datasets I used contained large variability in scanner strength, 

ranging from 1.5 to 7 Tesla. The data from chapters 3 and 4 was collected on a 3T 

scanner and had relatively large voxel sizes (3 x 3 x 4.4mm). The use of a higher 

scanner strength (e.g., 7T) may have allowed for more precise measurement of small, 

subcortical regions in the ‘defensive response network’, such as the periaqueductal 
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gray (Huggins et al., 2021). Moreover, scanner strength does not just influence 

spatial/temporal resolution of echo planar imaging (EPI), but also shapes how factors 

such as susceptibility artifacts, physiological/thermal noise, and field inhomogeneities 

impact images (Fera et al., 2004; Moser et al., 2012; Triantafyllou et al., 2005; van der 

Zwaag et al., 2009). This can make direct comparisons between images collected at 

different field strengths difficult due to inconsistencies in signal-to-noise ratios. In 

chapter 2 (figure 2.4), I noted significant differences in general amygdala-whole brain 

functional connectivity profiles. This, in part, may have been driven by differences in 

field strength.  

 Likewise, the EPI sequence parameters varied significantly between and within 

datasets. For instance, the HCP and Caltech Conte Center (chapter 2 and 7) datasets 

used multiband accelerations of 5 and 6 respectively, while the Cam-CAN dataset 

(chapters 3 and 4) did not make use of any multi-slice acquisition. Multiband 

acceleration may hold detrimental impacts on signal-to-noise in subcortex (Bouyagoub 

et al., 2021; Todd et al., 2016). Given that the amygdala formed a key region for my 

hypothesis-testing, this could have resulted in a loss of statistical sensitivity and might 

be one explanation for null findings in some chapters. The impact of EPI sequence 

parameters is especially illustrated in chapter 2, wherein post-hoc exploratory 

analyses indicated that trait anxiety correlated with amygdala connectivity in runs 

which used anterior-posterior phase encoding, but not posterior-anterior phase 

encoding. 

The differences in scanner strength and sequences exemplify that, in general, 

comparisons of results between chapters that used different datasets should be 

tentative. Moreover, they outline how the datasets used were not optimized especially 

for my regions of interest. If a primary dataset had been collected in-house for studies, 

this might have enabled more precise comparisons between chapters and potential 

increases in sensitivity. For instance, consistent use of multi-echo sequences (as used 

in the Cam-CAN) appears to improves BOLD sensitivity in the amygdala (Posse, 

2012). Had I collected primary datasets for this thesis, implementation of multi-echo 

imaging would have been a key consideration. 
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Preregistration and Open Movie Data 

Open datasets enable data mining from a range of theoretical and analytical 

perspectives. However, repeated analyses on open data hold the potential to inflate 

error rates (Thompson et al., 2020). This might pose a particular problem for movie 

data, wherein analytic flexibility is much higher than rest and task data. This is one of 

the reasons I preregistered every experimental chapter. That is, I uploaded a 

document to the Open Science Foundation (Foster & Deardorff, 2017) detailing 

hypotheses and analysis pipelines online a prior to running the experiments. If studies 

are conducted within a theoretical framework that drives specific predictions, this may 

help to reduce false positive rates (Scheel et al., 2021).  

 Movie paradigms are relatively more novel, especially so in anxiety research. 

Could such constraints on analyses hinder our understanding of how anxiety shapes 

responses to movies? In my experience throughout this thesis, my general answer is 

no. Nevertheless, this thesis has demonstrated the utility of conducting post-hoc 

exploratory analyses that deviate from preregistered tests. One example is in chapter 

3. My planned hypothesis-testing was constrained to amygdala-dmPFC circuitry. 

However, in post-hoc exploratory analyses, I noted a broad range of significant 

associations between trait anxiety, suspense, and connectivity within the ‘defensive 

response network’ which motivated the continued use of this network in further studies 

(like in chapters 4 and 7). Therefore, preregistration may be a useful tool for reducing 

false positive rates but it should not let researchers hinder exploration, especially when 

using such unexplored paradigms like movie-watching. 

Mirroring the analytical discussion in chapter 8.3.2, perhaps a hybrid approach 

might be also useful when multiple, appropriate datasets are available. Non-

preregistered, exploratory, data-driven characterizations of how anxiety impacts 

responses can be established in a single, discovery sample to generate specific 

predictions that can be preregistered for analyses in a separate dataset. One potential 

issue is of course the aforementioned concerns regarding cross-dataset comparisons 

in anxiety and neuroimaging measures. However, this is when datasets which use 

differing movie stimuli are particularly useful (like in the Naturalistic Neuroimaging 

Database and Human Connectome Project). A discovery, then hypothesis-testing 

approach can be employed within datasets. For instance, the Naturalistic 
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Neuroimaging Database showed 10 different movies to participants. Future research 

could look at anxiety and brain activity during movie-watching in non-preregistered 

analyses for a subset of movies. Based on these findings, preregistration can then be 

submitted to test the extent to which effects replicate in other movies. Taken together, 

I strongly recommend future anxiety research does consider the implementation of 

preregistration, while at the same time not allowing this to restrain the implementation 

of discovery and post-hoc exploratory analyses. 

 

8.4 Directions for Future Research 

Mitigating Low-Level Confounds 

As highlighted previously, movies contain purposeful directing and editing choices. To 

a cognitive neuroscientist, these may be considered as inducing low-level perceptual 

confounds. For instance, in chapter 3, I noted that suspenseful dynamics correlated 

with measures of volume, brightness, and faces present on the screen in ‘Bang! You’re 

Dead’. As such, it may be difficult to elucidate the unique contributions of suspense 

compared to features such as overall brightness. However, to a director, this 

collinearity is likely a purposeful choice to elicit a certain response (Grall & Finn, 2022). 

Suspense might be considered a property emerging from the combination of these 

features. Indeed, darkness does appear to facilitate feelings of anxiety and associated 

behaviors (Grillon et al., 1997; Mühlberger et al., 2008). Simply regressing these 

features out may then detract from anxiety-relevant biological/behavioral signals. 

There are two approaches which may be suitable for mitigating such low-level 

confounds. 

Firstly, an added benefit of different movies is that they vary in low-level 

features (and consequently, the collinearity between features). Like my analysis in 

chapter 2, future studies should seek to test the generalizability of results across a 

range of different movies. However, in chapter 7, the suspenseful clip was grayscale, 

while the non-suspenseful control clip had color. In this instance, future studies could 

seek to test whether anxiety impacts neural-autonomic communication after 

controlling for these effects, by testing this relationship across a variety of movies 

stimuli. Secondly, neuroscientists are starting to overcome certain challenges through 

the creation of their own media to probe specific mental processes (Vanderwal et al., 
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2015). To my knowledge, no such media exists for eliciting anxiety specifically. One 

future direction could be the curation of anxiogenic media that attempts to 

orthogonalize sensory features so as to mitigate concerns regarding perceptual 

confounds.  

 

Automated Feature Extraction 

In light of analytical considerations, it may be fruitful for future research to consider 

methods of automated feature extraction. Traditional analytical techniques such as 

feature-based general linear modelling require numerous assumptions about movie 

data. However, movies are incredibly, rich, complex, multisensory stimuli. As such, I 

leaned toward more data-driven approach, which come at a cost of interpretability 

(e.g., which specific features of the movie are driving anxiety-relevant idiosyncrasies). 

I did attempt to capture overarching emotional context by comparing neural responses 

to behavioral ratings of suspense collected from an independent sample. This was for 

a single ~8 minute video clip. However, such an approach will be less practical when 

dealing with longer movies, as well as studies which collect data across a range of 

movies (such as the NNDb; Aliko et al., 2020).  

There are developments in affective computing which attempt to automate the 

extraction of emotional features such as ongoing dynamics of arousal and valence 

using visual and auditory signals from movies (Kuhnke et al., 2020). By using 

automated approaches to characterize emotionally-salient features of movie stimuli, 

future research may be able to rely more so on techniques such as feature-based 

general lineal modelling to derive more precise theoretical interpretations. In the 

context of anxiety, one avenue for future work would be to test whether the relationship 

between trait anxiety and responses to faces in movies may be modulated as a 

function of overall emotional context. 

 

Toward Causal Inference 

Although I have contrasted movie-watching conditions in this thesis, my observations 

are still based on correlations. For instance, this thesis predominantly focused on 

cross-sectional comparisons of trait anxiety. Such designs can be prone to confounds. 
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For instance, in the Cambridge Center for Aging and Neuroscience dataset, I noted 

collinearity of trait anxiety with age (ρ = -.23). This hinders the ability to disentangle 

the unique contributions of these factors in shaping neurobiological responses to 

movies. One approach to tackle this could be through the implementation of 

longitudinal designs. That is, collecting movie-watching data for the same individuals 

across multiple points in time. By using these designs, potential confounds (such as 

demographics) are held more constant. Therefore, by assessing within-subject 

longitudinal trajectories in anxiety, there is stronger confidence as to whether 

neurobiological responses to movies are arising due to anxiety specifically. To my 

knowledge, no studies have collected such data.  

There is of course a potential constraint here; repeated exposure to the same 

movies could bias interpretations. Using mixed designs which counterbalance different 

movie stimuli could help curtail this issue while also increasing confidence in 

generalizability across stimuli. Alternatively, given the associations between trait 

anxiety and (lack of) habituation to stimuli (Blackford et al., 2013; Campbell et al., 

2014; Protopopescu et al., 2005), repeated exposure to the same movies could also 

be an interesting avenue of research in and of itself. Irrespective of design specifics, 

future work implementing longitudinal designs could help validate the extent to which 

findings (especially cross-sectional ones) from the present thesis reflect true 

mechanisms underlying anxiety. 

A complimentary method could also be the implementation of active 

manipulations within movie-watching designs. For instance, cognitive behavioral 

therapy techniques (e.g., mindfulness) could be used to try and dampen states of 

anxiety in response to suspenseful movies, which can then be contrasted with 

neurobiological responses. Another possibility is the use of pharmacological 

manipulation. For instance, sympatholytic medications (e.g., beta-blockers) could be 

administered to help discern the extent to which amygdala-prefrontal circuitry might 

be related to interoceptive awareness during suspenseful movie-watching. Only by 

implementing such manipulations within movie paradigms, a stronger inference can 

be made regarding the causal contributions of certain circuits and physiology to 

anxiety. 
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Pathological Anxiety 

Lastly, the findings throughout the thesis need to be contextualized in terms of 

subclinical anxiety. All studies either investigated subclinical variation in trait anxiety 

or induced state anxiety in healthy individuals. If a core purpose of anxiety research is 

to provide better identification and treatment of relevant disorders, it is important that 

findings always be contrasted to individuals with pathological levels of anxiety. 

Although we can investigate subclinical variation in anxiety, which may hold 

implications for pathological anxiety, translation cannot be assumed; the impact of 

psychopathology on neurocognitive processes can manifest in a qualitatively different 

manner to subclinical symptoms (Ingram & Siegle, 2009). 

There is some research starting to contrast healthy control participants with 

patients. Some movie fMRI data has been collected in participants with diagnoses of 

schizophrenia (Patel et al., 2022; Rikandi et al., 2017), ADHD (Tansey et al., 2022), 

and autism (T. A. W. Bolton et al., 2020). Yet, to my knowledge, there is currently no 

available movie fMRI data for participants with anxiety diagnoses. Therefore, future 

movie fMRI work which explicitly studies patients with anxiety disorders will be needed 

before we can consider whether the present results may be illustrative of pathologically 

severe levels of anxiety. Based on the findings in the present thesis, I particularly 

encourage future research to test whether pathological anxiety manifests in: 1) altered 

amygdala-prefrontal responses to suspenseful dynamics; and 2) reduced neural-

autonomic communication during movies. 

 

8.5 Conclusions 

There is a clear gap in the anxiety literature: we have not ascertained whether our 

current understanding of the neurobiology of anxiety holds true in ecologically-valid 

settings. At the intersection of traditional experimental tasks and completely 

naturalistic studies is movie-watching, which may offer a useful platform for extending 

the research focus of anxiety toward naturalistic settings. As such, I focused on how 

trait and state anxiety may shape neural, subjective, and autonomic responses to 

movies. I provided evidence that trait anxiety does shape neural and subjective 

responses to movies. However, these effects often manifested in a manner 

inconsistent with the prior task-based literature. For instance, trait anxiety was not 
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associated linear increases in amygdala-prefrontal responses to suspense; rather, 

anxiety was associated with greatest responses during low suspense scenes. 

Likewise, I also demonstrated that communication between the brain and the 

autonomic nervous system may be impacted as a function of anxiety during movies. 

However, inconsistent with the prior literature, my results pointed to reduced (instead 

of increased) neural-autonomic communication as a function of anxiety. I have 

demonstrated in this thesis that movie-watching in general offers a useful platform for 

naturalistic anxiety research. Moreover, my results indicate that a potential re-

evaluation of our neurobiological models of anxiety are needed. Traditional tasks may 

not be encapsulating the way in which anxiety impacts peoples’ responses to the world 

outside of such settings. Therefore, my thesis encourages the continued use of movie-

watching as relatively naturalistic platform for studying the neurobiology of anxiety.  
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