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Abstract

The work carried out in this thesis has been motivated by the promising applicability

of photonic nanostructures in optical communications, internet data centers (ICD) and

biosensing, to name a few. In particular, the dispersion and nonlinear engineering that

silicon photonic crystal waveguides (Si-PhCWGs) and diamond-fin waveguides allow, can

be exploited in the design of important photonic components, such as frequency comb

generators, Raman amplifiers or filters. Within such objectives, we present rigorous and

comprehensive theoretical models where all relevant linear and nonlinear optical effects,

including modal dispersion, waveguide loss, free-carrier (FC), Kerr and Raman effects

are considered. In the case of the newly developed subwavelength diamond-fin waveg-

uides, we complete a detailed characterization of their dispersion and nonlinear optical

properties, along with an analysis of pulsed dynamics in these structures. As a relevant

application, we demonstrate how these waveguides can be employed to efficiently gener-

ate soliton frequency combs in the visible spectral domain. With regards to Si-PhCWGs,

we firstly explore the effect of stimulated Raman scattering in the slow-light regime, and

demonstrate that signal amplification without pulse distortion can be achieved. Secondly,

we add photonic crystal cavities (PhCCs) alongside the Si-PhCWG, with the associated

inter-cavity coupling and waveguide-cavity interactions. Therefore, we describe a novel

mathematical model and its corresponding computational tool that solves the dynamics

of the forwards and backwards propagating pulses, the energy in the cavities and the FCs

at the waveguide and at the cavities. Finally, we show the potential practical use of the

model by simulating a photonic drop-filter with back reflection nulling.



Impact statement

The theoretical work carried out in this thesis has led to interesting discoveries that could

bring different benefits both to academia and industry.

On the one hand, the impact that this work could have in academia is centered

mainly on the application of new numerical methods to solve complex mathematical

problems, thus bringing broad benefits, since these methods could be employed into

various disciplines or applied sciencies. Indeed, the methods and algorithms described,

developed and demonstrated throughout this work can serve as example or source of

ideas to students and researchers who may have the challenge to solve similar problems.

In addition, this thesis can help Master or PhD students to understand the linear and

nonlinear physics involved in the propagation of pulses through photonic waveguides,

which is key to effectively manage the capabilities and limitations that are important at

system level.

On the other hand, with regards to the impact outside academia, different topics

deserve to be mentioned.

Firstly, the work described in Chapter 4 could motivate the development of diamond

photonic platforms, which we have demonstrated that can enable key nonlinear functions

in the visible spectral domain. This would be an appealing alternative to well-established,

more mature photonic platforms, such as silicon-on-insulator, silicon nitride, or compound

semiconductor on-insulator. Importantly, the subwavelength diamond waveguides we

have studied could enable the development of photonic systems that incorporate cheaper

light sources, such as vertical-cavity surface-emitting lasers (VCSELs) at 850 nm, exten-
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sively used in data centers, therefore helping the photonics industry to become more cost-

effective. Furthermore, the work in this thesis on the frequency comb generator based on

diamond-fin ring resonator could bring attention towards the development of diamond

photonics for nonlinear applications. All the above could also facilitate the establishment

of this platform for quantum computing, which is believed to be one of the future core

applications of diamond.

Secondly, the results shown in Chapter 5 could encourage photonic designers, foundries

and chip manufacturers to exploit Raman amplification in silicon photonic chips, which

could dramatically change the current industrial ecosystem in which the need of fabricat-

ing complex heterogeneous structures made of photonic integrated circuits from different

technologies is required in order to fill the gap that silicon has in light generation due to

having an indirect bandgap. Note that this would become an important development ap-

plicable to multiple practical fields where silicon photonics have been the most successful

commercial platform.

Finally, the comprehensive mathematical model described in Chapter 6 could be ben-

eficial to photonic design and simulation software companies, who could take some of

the concepts and ideas employed here in order to enhance the fidelity on their platforms

to the complex physics involved in these problems. More specifically, although several

approaches have been applied to similar problems, these have been limited to continuous

wave signals or do not include free-carrier (FC) dynamics. On the contrary, in this work

we present a novel methodology which is applicable to pulse propagation and incorporates

the key effects of FCs in both the waveguide and cavities situated alongside it, including

FC dispersion and FC absorption, as well as, two-photon-absorption (TPA), the non-

linear Kerr effect and the waveguide dispersive effects. Furthermore, the employment

of this model to analyse the scenario consisting on photonic crystal cavities alongside a

photonic crystal waveguide could benefit different applications, from biosensing, given the

light-matter interaction can be enhanced through the use of photonic crystals, to com-

munications, since these structures could be employed to design filters or delay lines.
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Chapter 1

Introduction

Several reasons have inspired the intense research in photonics during the last two decades,

mainly under the scope of networks-on-chip (NoC) applications. These applications in-

clude telecommunication systems, where avoiding the need to do optical-electrical con-

versions (and viceversa) to amplify the signal after travelling via optical fiber for some

distance would make the overall system efficiency increase considerably; also biological

sensors, where non-intrusive techniques to measure certain body molecules by controlling

the light-skin interaction would facilitate and speed-up the diagnostic process; and, finally,

Internet data centers (ICD) and high-performance computing (HPC), where the electrical

interconnects have already shown important disadvantages such as poor bandwidth, large

power dissipation and crosstalk between nearby electrical paths. Photonics, which spans

the generation, manipulation and detection of light, provides the technological ground

most suitable to solve all these problems [1, 2, 3, 4].

Since the early days of integrated photonics, on-chip optical devices such as switches

or modulators had been built using semiconductors of the III-V bands due to their direct

bandgap, e.g. allowing direct integration of light sources, high index of refraction and

nonlinear properties [5, 6]. However, since III-V semiconductors are chemically incompat-

ible with silicon complementary metal-oxyde semiconductor (CMOS) processing, a lot of

attention was moved towards silicon photonics, which was rapidly considered a promising
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platform to enable a cost-effective electronic-photonic integration. Furthermore, silicon

provides a transparent window covering the entire telecommunication spectrum, and it

also has a high refractive index, allowing the design of high-index contrast silicon pho-

tonic waveguides (Si-PhWGs), which produce a tight confinement of the electromagnetic

field and therefore enhance the optical nonlinearities [7]. Based on this context, the

design of CMOS-compatible, silicon photonic components for multiple applications can

be found in the literature [8, 9]. Silicon-on-insulator (SOI) is the material of choice

for passive photonic integrated circuits (PIC) which include multi-mode interferometers

(MMI), directional couplers or mode converters, to name a few [10]. On the downside,

silicon has an indirect bandgap, meaning that active building blocks such as lasers can

not be easily realized in this technology. Despite of this, extensive research has been

applied to demonstrate that Si-PhWGs can be used to enable key nonlinear processes,

such as Raman amplification [11, 12], soliton propagation [13], supercontinuum gener-

ation [14], frequency conversion [15], modulation instability [16] and pulse compression

[17, 18], among others. Furthermore, recent advances in the field include high speed

silicon-based modulators, silicon/germanium detectors and integration of light sources

by incorporating III-V active regions via special processes[19, 20].

Regardless of the positive results mentioned above, the need for smaller size, higher

effiency and device versatility to respond to different applications, did encourage the

research in photonic crystals (PhCs). Indeed, PhCs allow the design of dispersion en-

gineered PhWGs while maximising the nonlinear effects through the exploitation of the

slow-light regime [21]. Photonic crystals can enable these properties by introducing more

adjustable dimensions. The way to do this consists on creating a periodic pattern in the

photonic circuit, separating regions of different dielectric constants usually by a length

a quarter the operating optical wavelength. This can be understood by considering the

Fresnel reflections ocurring at subsequent interfaces between the different materials, which

would interfere constructively after propagating an optical path length of half a wave-

length, resulting in a strong reflection. Interestingly, depending on how the periodic
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dielectric medium is defined, the device could be used for multiple purposes, from the

design of ultra-small, narrow-band filters [22, 23] to omnidirectional mirrors, waveguides

and bends [24, 25, 26]. In particular, this is possible thanks to the wide tuning of the

group-velocity (GV) vg of the propagating modes that PhCs allow. For instance, as we

will show later on this work, the effectiveness of signal amplification based on stimu-

lated Raman scattering can dramatically change with different values of the GV for the

two optical modes taking place in the process. Particularly remarkable is the slow-light

regime, where light-matter interaction is enhanced and both the linear and non-linear op-

tical effects become substantially important [27, 28, 29, 30]. Indeed, relevant applications

have emerged around the control over slow-light, such as optical buffering or time domain

processing of optical signals [31, 32, 33]. Within this context, we present in this work the

development of comprehensive numerical methods and computational tools that enable

the analysis of linear and nonlinear pulsed dynamics in dispersion-engineered PhC struc-

tures. In particular, our analysis show that Raman amplification in silicon PhC waveg-

uides (Si-PhCWGs) can outperform those appearing in the literature with amplification

efficiencies one order of magnitude higher. In addition, with our novel methodology to

analyse structures combining Si-PhCWGs and silicon PhC cavities (Si-PhCCs), we have

shown how optical filters with minimised back-reflection can be implemented, therefore

demonstrating the added-value our tools can have in the design of these components. It is

noteworthy that the analysis we perform is focused on pulsed signals which is the typical

scenario in the field of optical interconnects. For instance, considering the currently used

common data rate of 25 Gb/s per wavelength with non-return-to-zero (NRZ) modulation,

the signal shape is based on pulses as short as 40 ps width. In our simulations, we use

pulse widths of this magnitude and also of few times shorter, which may be appreciated

as relevant information for future faster interconnect standards.

Having understood the importance of silicon photonics in nowadays and future tech-

nologies, it is worth mentioning that commercial integrated optics are close to becoming

a reality. In terms of fabrication, the most popular, efficient and precise technique to fab-
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ricate CMOS nanophotonic structures is deep ultraviolet (UV) lithography [34], which

can be used for both Si-PhWGs and Si-PhCWGs. As mentioned before, CMOS tech-

nology can integrate digital/analog electronic and nanophotonic elements, which can be

achieved by simply adding extra masks into the CMOS processing flow. For instance,

only an additional mask is required to integrate waveguides and electro-/thermo-optical

modulators because the same silicon photonic layer is shared with the CMOS positive

channel field-effect transistors (pFETs) and negative channel FETs (nFETs) [35]. Fur-

thermore, similar to common surface-mounted electrical components, the package of the

silicon CMOS nanophotonics chip can be terminated with a standard ball grid array

(BGA) and then use flip-chip bonding techniques directly onto a laminate PCB board

[36]. As an example, Figure 1.1 shows the packaging of an electronic chip flip-chip bonded

on a silicon photonic device in this case [37].

Figure 1.1: Silicon photonic wafer with an electronic IC (driver) packaging flip-flop
bonded on top. The inset shows the interface between the electronic and the photonic
worlds, in this case via a AgSnCu solder cap to form the bond between the devices [37].

An alternative solution other than PhCs to enable dispersion engineering in waveg-

uides consists on creating sub-micron features in the waveguide structure. In Ref. [38],

a review of optical properties of subwavelength waveguides is presented. While well-

established, more mature photonic platforms, such as silicon-on-insulator [39], silicon
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nitride [40], or compound semiconductor on-insulator [41] can be employed for this pur-

pose, diamond is an appealing alternative to enable dispersion-engineered devices and

applications in the visible spectrum. Indeed, diamond photonics offer important comple-

mentary advantages to silicon. Firstly, a large transparent window from UV to IR which

extends the range offered by silicon while at the same time presenting strong third-order

nonlinearity such as the Kerr effect. And secondly, great thermal properties combined

with controllable colour centers which are important for quantum computing. In fact,

quantum computing is believed to be the core application of future diamond photonic

devices [42]. Based on these motivations, we present in this thesis our research about

sub-wavelength nanostructures made of synthetic diamond, and the numerical methods

we have developed to solve the nonlinear pulsed dynamics along them. Here, we con-

centrate on the first highlighted properties of diamond, e.g. being transparent at visible

wavelengths and the strong nonlinearity, and we target the application of microring res-

onators based on diamond photonic waveguides to generate frequency combs at these

wavelengths, which is a critical functionality in modern communication systems [43],

biological sensors [44] and spectroscopy [45].

Having introduced the general topics we cover in this work, we describe in the next

two sections of this introductory chapter the main objectives of this work and how the

thesis is structured.

1.1 Main objectives of the work

The main objective of this work has been the development of rigorous, generic and com-

prehensive mathematical models to study the linear and nonlinear pulsed dynamic effects

in dispersion engineered photonic nanostructures. Under this umbrella, we have targeted

two different types of nanostructures: sub-micron diamond-fin waveguides and Si-PhCs,

which, as justified in the previous section, are relevant candidates for the development of

integrated photonic devices that could satisfy multiple applications.
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With respect to diamond-fin waveguides, our objective has been to prove the applica-

bility of these waveguides for dispersion engineered nonlinear processes such as frequency

comb generation in a microring resonator. Therefore, a numerical method has been devel-

oped to solve the externally-driven NLSE governing the pulsed dynamics in this scenario.

Regarding Si-PhCs, we have tackled two scenarios with increasing complexity. Firstly,

we have completed an in-depth study of Raman interaction in one-dimensional Si-PhC

slab waveguides. Comprehensive numerical simulations have been performed to show the

broad range of linear and nonlinear effects that determine the propagation of optical pulses

through these waveguides, including self-phase modulation (SPM), two-photon absorption

(TPA), free-carrier (FC) dynamics and group-velocity-dispersion (GVD), combined with

the interaction between pulses via stimulated Raman scattering. In particular, we have

concentrated on comparing how the fast-light and the slow-light regimes importantly

influence the Raman dynamics alongside the waveguide, and we have demonstrated that

clear amplification can be achieved.

In the second scenario, we have added Si-PhCCs alongside the Si-PhCWG which

now incorporates the interaction between waveguide and cavity modes. This, indeed,

increases considerably the problem complexity due to, for instance, the appearance of

back-propagating pulses, FC dynamics both in the waveguide and in the cavities, and

frequency dispersion effects caused by the waveguide-cavity coupling. In this case, not

only the novel mathematical model to solve this type of problem has been described

in detail, but also the computational algorithm developed, which is characterised by an

original way of discretizing and solving the whole set of nonlinear differential equations.

Last but not least, the model has been used to simulate a Si-PhC drop-filter with back

reflection nulling.

Indeed, the mathematical models derived and utilised in this thesis are systems of

complex, nonlinear, differential equations which are derived following the coupled mode

theory (CMT) and then solved computationally by the use of certain numerical methods.

Depending on the physical problem they represent and whether the relations between
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unknowns are linear or nonlinear, different computational algorithms have been employed.

Precisely, two main numerical methods can be highlighted: the split-step Fourier (SSF)

method and the Newton-Raphson method for nonlinear systems of equations.

On the one hand, the SSF method can generically be used to solve nonlinear Schrödinger

(NLS) equations [46], which, in our case, describe the pulse dynamics in diamond-fin

waveguides and silicon photonic (crystal) waveguides, including more complex scenarios

where Raman interaction is studied. The SSF method has been applied where there are

no backward propagating optical waves, so that the computational solution is found step

by step along a physical direction.

On the other hand, when adding cavities alongside a waveguide, which couple energy

from and to propagating modes, backwards propagation has to be included. In this

scenario, the system of NLS equations have been solved by the use of Newton-Raphson

method, that is able to find the solution of all unknowns in all time and spatial simulation

points at the same time.

Additionally, with respect to the frequency comb generation based on diamond-fin

waveguides, the Newton-Raphson method has been employed to solve the set of equations

arising from a discrete Fourier transform (DFT) method that is applied to the externally-

driven NLSE that governs the physics of such problem.

In order to help the reader acquire a broader view on these topics, the structure of

the thesis is outlined in the following subsection.

1.2 Outline

The thesis has been structured in the following manner:

The purpose of Chapter 2 is to present the context of this work, the background

knowledge required to follow the rest of the chapters and, also, to describe the compu-

tational methods and simulations tools that have been employed. With this in mind, we

start describing Maxwell equations for macroscopic media, followed by introducing the
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concept of photonic crystals and how these can be modified to fabricate waveguides, e.g.

by introducing line defects in the periodic lattice, and cavities, e.g. by introducing local

defects. Once this is explained, we review the linear and nonlinear optical effects in pho-

tonic waveguides, in this case applied to silicon, which is of especial importance in order

to understand how silicon photonics can be employed in a broad set of applications. Right

after, we include a brief introduction to diamond photonics and its applications. Finally,

we complete the chapter with a description of the numerical methods and simulation

software tools developed and employed along this work.

In Chapter 3, we present the fundamental theoretical model we use to obtain the

nonlinear Schrödinger (NLS) equations that mathematically describe the pulse dynamics

in the scenarios under interest. For simplicity, we apply it to a generic silicon nanowire

assumed to operate in single-mode propagation. This is of relevance since it helps the

reader to better understand how the models in following chapters have been derived.

Within Chapter 4, we focus on sub-micron dispersion-engineered photonic waveguides

based on diamond. More precisely, in this chapter we explore the designing tunability

of novel diamond-fin waveguides, how they can operate in specific dispersive regimes,

and we demonstrate how these waveguides can be used for supercontinuum generation,

soliton propagation and generation of frequency combs.

Continuing with Chapter 5, we explore the effect of stimulated Raman scattering in

one-dimensional Si-PhCWGs. We derive a mathematical model which describes the evo-

lution of the interacting optical pulses, namely pump and signal, within a Raman-active

medium and incorporate all relevant linear optical effects, including modal dispersion,

waveguide loss, free-carrier (FC) dispersion and FC absorption, and nonlinear optical ef-

fects such as self- and cross-phase modulation (SPM, XPM). Following this approach, we

present the results of numerical simulations for several combinations of pump and signal

modes for which we vary their group velocities. In particular, we show how the device

behaves differently when the pump and the signal are both in the slow-light regime, when

they are in the fast-light regime and when the pump is in the slow-light and the signal
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in the fast-light regime. Furthermore, our results reveal the importance of the walk-off

length between pulses, which no doubt is one of the key parameters to take into account

when designing and fabricating Si-PhCWGs for parametric Raman amplification.

In the last part of the thesis, which is contained in Chapter 6, we study the pulse

dynamics in silicon photonic crystal waveguides with photonic crystal cavities placed

alongside it. We present in detail the derivation of the theoretical model and the cor-

responding implementation as a computational tool to solve this problem. In this case,

apart from the linear and nonlinear optical effects included in previous models, the dy-

namics take into account inter-cavity coupling and waveguide-cavity interactions, as well

as counter-propagating waveguide modes. Based on this, we employ the simulation plat-

form to study the pulse dynamics in a silicon photonic crystal system consisting of a

couple of high-Q cavities placed alongside a waveguide where a slow-light mode propa-

gates, for which our model predicts this system can potentially be used as a photonic

drop-filter.

Finally, in Chapter 7, we conclude this work highlighting the main contributions to

the fields of silicon and diamond photonics as well as discussing future perspectives of

this work.



Chapter 2

Background concepts

In this chapter we present the main theoretical concepts required for the reader to un-

derstand the technical results contained in this thesis. Among the theoretical tools we

present the Maxwell equations, introduce the concept of photonic crystals and outline

their physical properties, and discuss the optical properties of photonic nanowires made

of silicon or diamond.

2.1 Introduction

A thorough knowledge of how pulses propagate in photonic nanowires is of paramount

importance in order to design photonic systems on the chip. The bulk of this work is

built around this knowledge, which is applied both to silicon and diamond nanowires.

With respect to the former, silicon provides nearly perfect transparency in the spec-

tral region extending from 1.2 µm to mid-infrared (mid-IR) regime [9, 47, 48]. To date,

it has been demonstated the fabrication of small-loss, ultra compact, passive and active

silicon photonic components. Indeed, silicon nanowires with ultra-small cross sections

can be fabricated to enhance nonlinear optical effects thanks to the strong optical field

confinement they create. Interesting phenomena such as third-order dispersion (TOD),

two-photon absorption (TPA) and self-phase modulation (SPM) can lead to the devel-
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opment of new applications not considered before [49]. Furthermore, understanding the

theory around silicon photonic crystals (PhC) is undoubtly of high relevance due to their

ability to control the light propagation. This is because, since any optical nanowire

induces linear and nonlinear optical effects onto the propagating light, PhCs could be

employed to reduce these effects to their minimum or take advantage of them to comply

with the requirements of particular applications. Equally important, PhCs can facilitate

the design of optical cavities with high Q factors, which could be used in the design of

optical filters.

Regarding the latter, diamond possess very interesting optical properties such as large

transparency window, ranging from ultraviolet (UV) to far-infrared (IR), very small op-

tical absorption losses, and it can be synthesized with a high refractive index, ndi ≈ 2.4,

thus enabling enhanced optical waveguides mode confinement in a broad spectral range

extending from 500 nm to 1000 nm. Equally important for its applications to active pho-

tonic devices, diamond possesses key nonlinear optical properties, including large Kerr

nonlinearity that can be employed to frequency conversion and comb generation devices,

and also strong Raman interaction at the operating wavelengths of ∼2 µm and with pump

laser wavelengths in the telecom band at around ∼1.6 µm [50]. These important optical

properties are accompanied by excellent thermal properties: firstly, synthetic diamond

shows a high thermal conductivity, achieved via vibrations of its crystal lattice, in the

order of 22 W/(cmK); secondly, it has a low thermo-optic coefficient; and, furthermore,

it owns a thermal expansion coefficient which is half of silicon’s, i.e. in the order of 1

ppm change in volume per Kelvin. These properties render it an ideal material for high-

power applications and integration of electro-optic systems. In addition, this material

has emerged as a promising low-temperature platform for quantum computing because

of the possibility to create defects (color centers) in the crystal lattice. In particular, the

nitrogen-vacancy (NV) centers are used for single photon emitters, perhaps one of the

future core applications of diamond [51]. These NV centers are created by replacing a

diamond atom by a nitrogen atom and its neighbour atom is left vacant. When a photon
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interacts with the diamond lattice, the NV center sees a certain electron spin, i.e. the

quantum bit can be stored in the electron spin of the NV center, with a long lifetime.

Moreover, this electron spin can be controlled using radiofrequency (RF) or microwave

fields, adding quantum logic. Finally, the information exchanged between the NV spin

and an output photon can be collected. For this collection, integrated diamond photonic

waveguides are important, since, compared with fiber optic counterparts, the loss through

total internal reflection is reduced.

In this chapter we aim to provide the theoretical background for the entire work in the

thesis, introducing and describing all the technical concepts that will be required to follow

adequately the rest of the chapters. To this end, we begin by presenting the macroscopic

Maxwell equations which govern the propagation of light in photonic devices, so that the

reader becomes familiar with some of the properties of the electromagnetic field, dielectric

media and electric polarization. We then continue with the introduction to PhCs, which

bring a plethora of possibilities when designing optical devices thanks to the control

of light they allow by the use of periodic dielectric lattices. After understanding how

PhC can be used to create similar elements to those very well-known in high-frequency

electronic circuits, such as waveguides or resonators, all most relevant linear and non-

linear charactersitics of silicon nano wires will be described, given the potential of silicon

as a key enabler for the integration of electronics and photonics on the same chip. We

then continue with a technological survey of silicon and diamond photonics applications,

ranging from wavelength-division multiplex (WDM) receivers to programmable photonic

processors and pulse compression for ultra-fast optical interconnects. Finally, we complete

the chapter by describing the main numerical methods and software tools that have been

employed in this work.
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2.2 Maxwell equations for macroscopic media

The Maxwell equations are at the center of solving any electromagnetic problem. By

applying the Maxwell equations to a certain physical scenario and solving them, all

electromagnetic modes supported by that specific medium are obtained. For macroscopic

media, i.e. considering the matter far away from the atomic scale charges and quantum

phenomena, the general form of the Maxwell equations in the frequency domain assuming

a dielectric medium with no current densities (J = 0) nor free charges (ρ = 0), is as

follows:

∇× E(r, ω) = iωµH(r, ω), (2.1a)

∇×H(r, ω) = −iω[εc(r, ω)E(r, ω) + P(r, ω)], (2.1b)

∇ ·H(r, ω) = 0 (2.1c)

∇ · [εc(r, ω)E(r, ω) + P(r, ω)] = 0 (2.1d)

where from top to bottom are the Faraday‘s law of induction, the Ampere‘s circuital law,

the Gauss‘s law for magnetism and the Gauss‘s flux theorem. In these equations, P(r, ω)

is the electric polarization of the medium or polarization density, εc(r, ω) = ε0εr(r, ω)

describes the dielectric media, µ is the magnetic permeability, which is assumed to be

the vacuum permeability µ0 for the materials used in this work, and E and H are the

electric and magnetic fields. Note that the polarization term can contain every effect

that produces changes on the refractive index of the media, for instance, caused by

photogenerated free carriers (FCs), Raman scattering and Kerr effects, which will be

described later in the chapter. In fact, Maxwell equations can also be presented with the

displacement field D(r, ω) = εc(r, ω)E(r, ω) + P(r, ω), which is the generalization of the

electric field under the effect of the dielectric media.

The polarization term, as previoulsy said, will be a contribution of linear and nonlinear

41



effects:

P(r, ω) = δPlin(r, t) + δPnl(r, t), (2.2)

where the first term can represent the linear change of the dielectric constant whereas

the second term represents the non-linear change of it, i.e. the dielectric constant will

vary non-linearly with the electric field. In more detail,

P(r, ω) = ε0χ̂
(1)(r, ω)E + ε0χ̂

(2)(r, ω) : EE + ε0χ̂
(3)(r, ω)

...EEE +O(E4), (2.3)

where χ̂(n)(r, ω) are the n-order nonlinear susceptibilities of the medium and depend on

the structure of the crystal. For instance, in the case of silica fibres they are represented

as scalar variables, but in the case of silicon crystal the χ̂(n) is a (n+ 1)th-rank tensor.

There is a conventional way to write how the nonlinear susceptibilities are physically

related to the interacting optical frequencies [52]. Ignoring their spatial dependence,

the second and third-order nonlinear susceptibilities can be specified as χ̂(2)(ω3;ω1, ω2)

and χ̂(3)(ω4;ω1, ω2, ω3), respectively. For the second-order susceptibility tensor, the in-

formation within the brackets can be understood as follows: photons at frequency ω1

and ω2 interacting in a nonlinear medium produce photons at ω3 = ω1 + ω2. In other

words, photons at frequencies ω1 and ω2 are destroyed and a photon of frequency ω3 is

simultaneously created in a single quantum-mechanical process. From the perspective of

atomic energy levels, the absorption of radiation at ω1 and ω2 leverage the energy level

of the atom from its ground state to a virtual level. Since these virtual levels are not

energy eigen-levels of the free atom, but rather represent the combined energy of one of

the energy eigenstates of the atom and of one or more photons of the radiation field,

the simultaneously generated radiation at ω3 makes that atom come back to a real level.

Based on this, the first component before the semi-colon specifies the result of the photon

interaction within the nonlinear medium or, in other words, the frequency of the photon

generated by the nonlinear interaction, whereas the two or more following components

after the semi-colon explain the interaction itself. Note also that the electric field vectors
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multiplying the nonlinear susceptibilities are affected by this convention, that is, each of

them will be evaluated at the corresponding interacting frequency in sequential order.

To illustrate how Maxwell equations are used, we can assume we have an infinite

dielectric medium with constant values for the permittivity (εc) and permeability (µ) in

all spatial points and for all frequencies, i.e. there is no dispersion. Then, applying the

curl operator to Eq. 2.1a, we obtain:

∇×∇× E(r, ω) = iωµ∇×H(r, ω) (2.4)

which can be simplified by introducing Eq. 2.1b as:

∇×∇× E(r, ω) = µεcω
2E(r, ω) (2.5)

Finally, using the vector relation ∇× (∇×A) = ∇(∇·A)−∇2A, where A is any vector

function of r, Eq. 2.5 can now be written as:

∇2E(r, ω) + µεcω
2E(r, ω) = 0 (2.6)

where we have made use of Eq. 2.1d with no polarization term. Eq. 2.6 is the electro-

magnetic wave equation for the electric field in the frequency domain, which takes the

form of the Helmholtz equation. For the solution of a plane wave, this is the field follows

the form E(r, ω) = a exp(ik · r + iωt) with wave vector k, the factor µεcω
2 must be equal

to the absolute square value of the wave vector, i.e. |k|2 = k2 = µεcω
2, which implies a

phase velocity of ν ≡ ω/k = 1/
√
εcµ. The phase velocity can also be expressed in terms

of the refractive index, n, and the speed of light in vacuum, c, as v = c/n, which leads

to the expression for the refractive index, n =
√
εrµr. For the magnetic field, a similar

derivation can be followed.
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2.3 Introduction to photonic crystals

A crystal is an arrangement of atoms or molecules in a periodic pattern, which is also

called the crystal lattice. Depending on the material these structures are made of, they

can present different conduction properties. Indeed, electrons propagating at a certain

direction and with a certain energy may be able to travel through the crystal lattice

without scattering. Similarly, other electrons with a different energy may have prohibited

their propagation through the lattice. In this case, it is said there is a band-gap or a gap

in the energy band structure of the crystal. In photonics, the concept of crystals can be

emulated by synthetizing the periodic pattern of atoms or molecules by a periodic pattern

of macroscopic media with differing dielectric constants, this is εc is a periodic function.

Depending on how different these dielectric contants are and how they are arranged to

form the desired periodicity, the photons travelling through the media will experience

similar phenomena as the ones described for electrons, which would allow the design of

devices for multiple different purposes, from ultra-small, narrow-band filters [22, 23] to

omnidirectional mirrors, waveguides and bends [24, 25, 26].

As with any material, an electromagnetic field interacting with a photonic crystal will

behave differently depending on the frequency and wave vector that characterizes the

field. This leads us to introduce the following terms to describe these field configurations:

localized modes, which are those electromagnetic fields that are confined within the crys-

tal; extended or leaky modes, which are those that extend into both the crystal and the

air or any other material surrounding it; and the evanescent modes, which correspond to

cases where there exist a band-gap and the field frequency falls within it, which makes the

modes wave amplitude decay exponentially into the crystal. The photonic band structure

is the representation of all these possible modes for a specific photonic crystal. Since the

lattice of a photonic crystal will be periodic in one or more directions, the band structure

is obtained by solving Maxwell’s equations for the unit cell, which is the repeated unit of

the periodic dielectric system.
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As an example, and taking into account we will focus on this structure in future

chapters, Figure 2.1 shows a photonic crystal slab with a hexagonal lattice (sometimes

referred to as triangular lattice). The slab is made of a dielectric material and is sur-

rounded by homogeneous media. The hexagonal lattice is obtained by making holes in

the dielectric slab, providing a 2D periodicity or discrete translational symmetry in z

and y directions, while its finite thickness in x direction enables index guiding if the

sourrounded medium has lower dielectric constant. The primitive lattice vectors can be

defined as a1 =
√

3
2
aẑ + a

2
ŷ and a2 =

√
3

2
aẑ − a

2
ŷ, for which the corresponding reciprocal

lattice vectors are b1 = 2π
a
√

3
ẑ+ 2π

a
ŷ and b2 = 2π

a
√

3
ẑ− 2π

a
ŷ. The light yellow area highlights

the unit cell area which should be used to obtain the band structure of the crystal.

Due to the discrete periodicity in z and y directions, it is known that the field for these

components will be the result of the product of a plane wave with a periodic function.

Figure 2.1: Top: 2D view of hexagonal lattice with a as lattice constant and r being the
radius of the holes. The area in yellow represents the lattice unit cell. Middle: 3D view
of hexagonal lattice slab and unit cell as above. Bottom: First or irreducible Brillouin
zone (blue area) and lattice vectors corresponding to the hexagonal lattice.
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This is the so called Bloch‘s theorem and, is expressed as:

E(r) ∝ uk(r)eik·r. (2.7)

Since the dielectric in z and y is invariant under translations through a multitude of

lattice vectors R = la1 +ma2 for some integers l and m, the primitive reciprocal lattice

vectors (b1,b2) are defined so that ai · bj = 2πδij. In the case of the PhC slab of

Figure 2.1, the wave vectors kz and ky are periodic by kz = kz + lb1 · ẑ = kz + 2π
a
√

3
and

ky = ky+mb2 · ŷ = ky+m2π
a

, being a the lattice constant and l, m arbitrary integers. This

leads us to introduce the concept of irreducible Brillouin zone, obtained through these

reciprocal lattice vectors as shown at the bottom of Figure 2.1. It can be realised that,

by rotation or symmetry, the irreducible Brillouin zone can represent any lattice vector

within the hexagon. The points represented are given the following values: Γ = (0, 0),

M = (0, π
a
)and K = (−2π

3a
, 2π

3a
).

Any modes with kx = 0, i.e. that propagate strictly in the yz plane, are invariant

under reflections through the x = 0 plane. This allows us to classify the modes into

TE-like (the dominant components of the electric field are those in the yz plane and

the dominant one of the magnetic field is normal to that plane, this is Hx) and TM-

like (the dominant components of the magnetic field are those in the yz plane and the

dominant one of the electric field is Ex). Figure 2.2 shows the band structure of the

hexagonal lattice after solving the problem for the unit cell in the plane-wave expansion

(PWE) electromagnetic solver MPB [53]. The following parameters have been used:

polarization, TE-like; height of the slab, h = 0.6a; radius of the holes, r = 0.29a; and

slab index of refraction, n = 3.4807 of silicon. The dashed curve has been included to

represent the light line, which separates the index-guided modes (under the line) from

the extended modes (above the line). Indeed, the modes laying under the light cone are

kept within the slab by index guiding, while the Poynting vector of the extended or leaky

modes have the component in the transverse direction different from zero. However, we
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can also notice there is a band-gap between frequencies 0.2426 and 0.2706 where light

can not propagate trough the crystal. The slab thickness plays a very important role in

the size of the band-gap. When the slab thickness is too small, the step in frequency

between two consecutive bands increases, which makes all bands move above the light

line and become weakly guided. However, when the slab thickness is too big, the higher

order modes rather than the fundamental mode are pulled down in frequency and the

gap decreases. Thus, if the purpose of the design is to obtain the widest band-gap, an

optimal thickness must be used, which is approximately half an effective wavelength.

This effective wavelength can be obtained by finding the electromagnetic solution of a

material whose effective dielectric constant is calculated by the spatial average of the

original dielectric profile weighted by the field profile.

2.3.1 Photonic crystal waveguides

Photonic crystal waveguides (PhCWG) can be designed by introducing a line defect in

the periodic lattice as shown on Figure 2.3 a). That is, from the original structure in

Figure 2.1, we have introduced a line defect by removing the holes of one of the rows in z

direction. By doing this, we can confine light in x direction via index guiding and confine

light in y direction by using the two remaining hexagonal periodic lattices at both sides

to prohibit energy propagation in that direction. The consequence of the line defect in

the band diagram is that two guided modes are formed into the band-gap.

In Figure 2.3 a), the yellow area highlights the new unit cell that has been used in

MPB in order to obtain the band structure, which is shown in b). In this case, the band

diagram is projected into the longitudinal z-axis, through which two guided modes can

propagate and which lay within the band-gap. Finally, we show in the left (right) plot

of subfigure c) at the bottom the amplitude of the normalized magnetic field Hx of the

y-odd (y-even) mode, calculated in the plane x = 0 for group index ng = c/vg = 6.91,

where vg is the group velocity. Note that y-odd refers to the fact that the mode profile

has opposite sign under symmetry inversion through the y = 0 plane, while y-even means
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Figure 2.2: TE-like band diagram corresponding to the hexagonal lattice of Figure 2.1
with the radius of the holes being r = 0.29a, the height of the slab being h = 0.6a and
the slab made of silicon with index of refraction n = 3.4807. There are 5 bands below
the light cone (dashed line) for which index guiding applies within the slab. All points
above the light cone are extended modes. The maximum bandgap happens between the
fundamental and second bands, where the gap-midgap ratio is of ∆ω

ωm
= 0.1091, being ωm

the frequency at the middle of the bandgap.

the mode is invariant under symmetry inversion through the y = 0 plane. The higher

frequency mode shows a more complex pattern, with more zero-crossings, than the lower

frequency mode, which is a typical characteristic in any waveguide. This can be explained

by the electromagnetic variational theorem which implies that the lowest-frequency mode

corresponds to the field pattern that minimizes the electromagnetic energy functional [24].

Indeed, when the electric field is concentrated in the regions of higher dielectric constant

and the amount of spatial oscillations is minimised, this energy functional is minimised

as well.
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2.3.2 Photonic crystal cavities

In a similar way to how waveguides are designed by applying line defects in the original

periodic lattice, photonic crystal cavities can be created as shown in Figure 2.4. In this

case, we introduce a local defect, which can be achieved simply by removing a single hole

or, alternatively, a series of holes but within a limited area. Figure 2.4 shows that five of

the holes have been removed from the original hexagonal lattice from Figure 2.1.

0.3 0.35 0.4 0.45 0.5
kza/2π

0.2

0.25

0.3

ω
a/
2π

c=
a/
λ Pump (even)

Signal (odd)

b)

a)

Band 1 (even) 

Fundamental (odd) 

Fundamental (odd) Band 1 (even) c) 

Figure 2.3: (a) Geometry of the silicon W1 PhCWG. The height of the slab is h = 0.6a
and the radius of the holes is r = 0.29a. (b) Projected band structure into the longitudinal
z-axis. Dark magenta and light brown areas correspond to slab leaky and guiding modes,
respectively. The red and blue curves represent the guiding modes of the 1D waveguides.
(c)Representation of guided modes in the Si-PhC slab waveguide. Left (right) panel
shows the amplitude of the normalized magnetic field Hx of the y-odd (y-even) mode,
calculated in the plane x = 0 for group index ng = c

vg
= 6.91.
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Figure 2.4: This figure shows the cavity structure based on the same hexagonal lattice
slab of Figure 2.1. Five holes have been removed in order to create a localized mode.
Additionally, the holes at the edge have been slightly displaced by Sl to enhance the Q
factor of the cavity [54].

Now, the defect modes out of the modified structure are not perfectly localized, but

they are leaky modes. Indeed, the resulting modes are resonances which couple energy

into light cone modes with same frequency. The physical effect can be explained through

the quality factor, Q = ω0

γ
, where ω0 is the frequency of the cavity mode and γ is the rate

of energy loss. The Q factor is, in fact, the number of optical periods that elapse before

the energy in the cavity decays by e−2π. In order to improve the Q factor, the original

holes at the edges have been slightly displaced as it can be noticed in Figure 2.4.

Figure 2.5 shows the resulting cavity modes in the band diagram by solving the

structure using BandSOLVE [55]. The resonant frequency and Q factors are obtained by

using the finite-difference time-domain (FDTD) simulation software MEEP [56]. For the

mode at lower frequency, the Q factor obtained is Q = 1.12× 105, while for the mode

at higher frequency, this is Q = 1804. Since these modes do not propagate through a

specific direction, but remain localized at the same position, they become just straight

lines in the diagram. As mentioned before, the part of these lines crossing the light line,

which is shown in grey, represent the coupling of energy into the extended states of the

light cone. Similarly to waveguide modes, the field patterns of higher frequency modes

contain more zero-crossings than the lower frequency modes.
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Figure 2.5: Band diagram corresponding to the structure from Figure 2.4 [54], where
two localized modes or cavity modes have appeared at the middle of the bandgap. The
height of the silicon slab is h = 0.6a and the radius of the holes is r = 0.29a, whereas the
displacement parameter Sl = 0.15a.

2.4 Linear optical properties of silicon photonic wires

Silicon photonic wires (SPWs), used as a general term to specify any kind of silicon

waveguide with submicrometer cross-section, e.g. typically in the order of 450 nm width

by 220 nm height, are characterized by strong optical dispersion due to the high-index

contrast and the small dimensions they have, which cause a strong confinement of the

electromagnetic field. Indeed, when the operating wavelength is bigger than the waveg-

uide core size, waveguide dispersion dominates. This is contrary to what happens for

optical fibers, where the intrinsic or material dispersion dominates since the wavelength

is smaller than the fiber core size. Thus, controlling the dispersion of pulses propagating

in SPWs is a key enabler for many applications, see section 2.6. In this part of the chap-

ter we concentrate on explaining the most relevant dispersion effects in SPWs, which can

be clasified in group velocity dispersion (GVD) effects and third-order dispersion (TOD)

effects.

When the wave vector is projected along the propagation direction in a waveguide,
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the variable β is normally used to represent the propagation constant and its frequency

dispersion. In the case of the Si-PhCWG in Figure 2.3, since light propagates along the z-

axis, the component kz of the wave vector is renamed as β(ω) = kz(ω). By expanding β(ω)

in Taylor series, we can determine the dispersion effects through the various expansion

coefficients:

β(ω) = β0 + (ω − ω0)β1 +
1

2
(ω − ω0)2β2 +

1

6
(ω − ω0)3β3 +O(ω4), (2.8)

where ω0 is the frequency of the waveguide mode, β0 is the propagation constant and the

series coefficients are defined as βn = ∂nβ(ω)
∂ωn

. It can be understood that the dependence

of β(ω) on the frequency is implicitly determined by the band diagram. Consequently,

the Taylor coefficients can be obtained by numerically calculating the derivatives of these

curves.

Apart from the propagation constant β0 = β(ω = ω0) already introduced, the first

order coefficient β1 determines the group velocity of the mode. Specifically, β1 = 1
vg

, where

vg is the group velocity. Similarly, β2 represents the GVD which generally results in pulse

broadening, and β3 determines the TOD effect. These coefficients are key parameters

that define the optical pulses propagation in an optical medium.

2.4.1 Group velocity dispersion effects

The GVD effects are related to coefficient β2 of Eq. (2.8). This coefficient represents

the group velocity frequency dispersion, which affects the width of the pulse propagating

through the medium. The GVD effect is quantified by the dispersion parameter D,

defined as:

D =
∂β1

∂λ
= −2πc

λ2
β2. (2.9)

The variation of the group velocity with the optical wavelength means that the frequency

components of a pulse will travel at different speeds through the SPW, which for the

normal GVD region (β2 > 0) will make the pulse broaden the longer the distance it
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travels. For this particular case, the higher wavelength components (red light) travel

faster than lower wavelength components (blue light). However, when β2 < 0, this

is referred as anomalous GVD (AGVD) region, and in this case the lower wavelength

components travel faster than the higher wavelength components, which has the effect

of compressing the pulse. Based on this, one way of minimizing the effect of GVD is

designing the SPW through the dimensions and/or aspect ratio of the core [57, 58, 59, 60]

in order to achieve a zero GVD (ZGVD) at the central wavelength of the pulse.

2.4.2 Third-order dispersion effects

The most important effect of TOD in SPW is the asymmetric shape the optical pulse

acquires after a certain propagation distance. Contrary to GVD, which makes the pulse

shape change symmetrically, TOD produce asymmetries in the sidelobes of the pulse,

which, obviously, has the same consequence on the spectra. To make it clear, when

β3 > 0, several ripples can appear at the trailing edge of the pulse whereas in the case

when β3 < 0 these appear at the leading edge of the pulse.

For SPW, the TOD effect is only noticeable in pulses whose widths are in the femtosec-

ond range. This will be understood in further chapters when the concept of dispersion

length is introduced.

2.5 Nonlinear optical properties of silicon photonic

wires

Nonlinear optical properties are included in Maxwell equations by the polarization term,

whose series expansion is expressed by the use of susceptibility tensors, as already in-

troduced in Eq. (2.3). The first-order susceptibility tensor is of the order of unity for

condensed matter, e.g. silicon and other dielectrics, whereas the higher order suscep-

tibility tensors are much smaller and will depend on the crystalographic properties of

53



the material. In the case of crystalline silicon, which is a centrosymmetric crystal, i.e.

its crystal lattice is invariant to an inversion symmetry transformation, the second-order

nonlinear susceptibility, χ̂(2), cancels. Consequently, the first and most important non-

linear susceptibility for silicon is χ̂(3), whose origin comes from two different physical

contributions explained in the following subsections.

2.5.1 Kerr and two-photon-absorption effects

There exist an electronic contribution in the third-order nonlinear susceptibility of silicon

given by the Kerr and TPA (two photon absorption) effects, which contribute to the real

and imaginary parts of χ̂(3), respectively. As explained in [61], considering the fact that

silicon belongs to the m3m crystal point group, and that this crystal satisfies the Kleinman

symmetry relations, the frequency dispersion of the electronic nonlinearity tensor can be

neglected[62]. Moreover, the electronic nonlinearity has just one independent element,

which is χ̂eiiii = 2.30 · 10−19 + i7.01 · 10−20 m2V−2, and the relations χ̂eiiii = 2.36χ̂eiijj and

χ̂eiijj = χ̂eijij = χ̂eijji apply [52].

On the one hand, the Kerr effect is given by the nonlinear electronic polarizability of

silicon, i.e. bound charges that are polarized by the presence of an electromagnetic field

and which is assumed to have an instantaneous response (approximately few femtosec-

onds). The Kerr effect is related to the intensity dependent refractive index or n2, which

in form of equation,

n = n0 + 2n2|E|2, (2.10)

where n0 is the usual “weak field” refractive index. This means that the pulse will

experience a phase shift when interacting with the optical medium, commonly referred

as self-phase modulation (SPM), and which will increase as the pulse propagates.

Having introduced the GVD and the SPM effects, we now move on to explain the

concept of soliton. This term refers to any optical field that does not change during

propagation thanks to the balance between the GVD and the SPM effects in the medium.
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In more detail, when the pulse experiences AGVD, i.e. β2 < 0, and the strengths of both

GVD and SPM effects are equal, one effect will exactly cancel the other and the pulse

will preserve its temporal and spectral profile even over long propagation distances.

In our mathematical models, SPM will be expressed through the real part of the third-

order electronic nonlinear susceptibility in the form χ̂e(ω;ω,−ω, ω). SPM is a parametric

process since the initial and final quantum-mechanical states of the system are identical.

In SPM, two photons at frequency ω are absorbed and remove the population from the

ground state to a virtual level from where a new pair of photons is generated so the

population comes back to the initial real level. In this conventional notation, the minus

sign after the semicolon means generation, whereas the positive sign means absorption.

Note that the negative frequency makes one of the electric field vectors multiplying the

nonlinear susceptibility being complex conjugate. Figure 2.6 (a) shows schematically

the nonlinear interaction between photons at the same frequency corresponding to SPM.

The Kerr effect is also responsible for XPM or cross-phase modulation. In this case, one

ω1 ω1 

ω1 ω1 

ω1 ω1 

ω2 ω2 

a) SPM b) XPM 

Figure 2.6: (a) SPM nonlinear process, showing how two photons of frequency ω1 in-
teracting with a Kerr nonlinear medium get absorbed and, simultaneously, the medium
responds in a similar way generating two photons at the same frequency. (b) Equivalent
process for XPM where signals at two different frequencies co-propagate in the medium.

pulse propagating at a certain frequency can induce a change of the refractive index at

other frequency, leading to the phase shift of other pulses propagating at that different

frequency. Describing it with the third-order nonlinear susceptibility tensor, the XPM

interaction happens for photons at different frequencies, which means that the frequency

combinations ω1 = ω2 − ω2 + ω1 or ω2 = ω1 − ω1 + ω2 would be applicable. The XPM

process is shown in Figure 2.6 (b).

On the other hand, the second electronic contribution is related to the TPA coeffi-
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cient or βTPA, which, since it contributes to the imaginary part of χ̂(3), will lead to loss

of energy. In fact, TPA is a process where two photons are absorbed simultaneously

from the optical pulse and free electrons-hole pairs (so called free carriers, FC) are gen-

erated. Actually, these FC will not only absorb light, but will also induce an additional

wavelength-dependent change in the refractive index. The density of FCs generated by

the pulse along the SPW will not remain constant as free carriers can recombine. Indeed,

silicon is characterized by a FC relaxation time τc of the order of nanoseconds. This

means that, for pulse widths larger than the relaxation time, the free carrier density

will contribute strongly to pulse reshaping, particularly on the trailing edge of the pulse

because the leading part of it will generate the FC first and then the trailing part will

experience the resulting induced change on the refractive index.

In the case of free carrier absorption (FCA) and the intrisic loss, their contribution in

the polarization term can be expressed as linearly dependent with the electrical field as

follows:

δPlin(r, t) = [δεfc(r) + δεloss(r)] E(r, t), (2.11)

where as shown in Ref. [63]:

δεfc(r) =
(

2ε0nδnfc + i
ε0cn

ω
αfc

)
Σ(r), (2.12a)

δεloss(r) = i
ε0cn

ω
αinΣ(r). (2.12b)

where it has been assumed the medium response is nearly instantaneous. In detail,

αin is the intrinsic loss coefficient of the waveguide. It is known that the intrinsic loss

coefficient accounts mainly for the amount of photons that are lost due to the waveguide

wall roughness. Σ(r) is a characteristic function used to take into account only the regions

where FCs can be generated, this is Σ = 1 in the silicon regions and Σ = 0 otherwise.

Following the Drude model, the FC-induced change of the index of refraction, δnfc, and
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the FC absorption coefficient, αfc, are given by [64]:

δnfc = − e2

2ε0nω
2

(
Ne

mce

+
N0.8
h

mch

)
, (2.13a)

αfc =
e3

ε0cnω
2

(
Ne

µem2
ce

+
Nh

µhm2
ch

)
, (2.13b)

where e is the the electron charge, Ne (Nh) is the induced variation of the electrons (holes)

density, mce = 0.26m0 (mch = 0.39m0) is the conductivity effective mass of the electrons

(holes), with m0 the mass of the electron, and µe (µh) is the electron (hole) mobility.

Similarly as in Ref. [61], we will assume that Ne = Nh ≡ N and we will neglect the

dispersion of δnfc and αfc since the pulse durations we consider (tens of ps) are much

larger than the temporal response of the medium (few fs).

As we explained at the beginning of this section, TPA effect is related to the imaginary

part of χ̂e, and it is indeed in the calculation of the induced variation of electrons/holes

density where the imaginary part of χ̂e is used. This will be understood in the following

chapters where we derive the free carriers dynamics equations to obtain the value of N

at every step in the propagated distance.

2.5.2 Raman effect

In silicon, there exists an additional third-order nonlinear optical process that couples

photons and phonons, the latter being the quanta of vibrational mechanical energy asso-

ciated to the lattice, and which is known as Raman effect. When a photon of frequency

ωp propagates in a Raman-active medium, it can get annihilated which, simultaneously,

generate a Stokes photon of ωs < ωp, while leaving the crystal lattice vibrating in an

excited state with energy ~ωR. The Raman vibrational frequency ωR will vary for each

different material [52]. A Raman anti-Stokes process can also occur, this is when the

photon of ωp is annihilated by the pre-excited lattice vibrating at ωR, which generates

an anti-Stokes photon of ωs > ωp. However, the anti-Stokes components are typically

orders of magnitude less intense than the Stokes components, therefore such scenario will
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Figure 2.7: Stimulated Raman scattering process for the Stokes case. A photon of fre-
quency ωp propagating in a Raman-active medium gets annihilated and, simultaneously,
produces a Stokes photon of ωs < ωp while leaving the atom of the crystal vibrating in
an excited state with energy ~ωR = ~Ω.

not be considered in this thesis. Figure 2.7 shows the just described Raman scattering

process. For crystalline silicon, this vibrational frequency is found to be ωR
2π

= 15.6 THz

[65]. However, this is not a pure frequency component, but it occupies a spectral width

of ∆ω/2π = 105 GHz, which corresponds with a response time of τ ∼ 10 ps. This

suggests, indeed, that intra-pulse Raman effects in crystalline silicon are not possible,

since broad spectral pulses with spectral widths around Raman’s would impose temporal

widths below 100 fs, much lower than the Raman response time.

Similar to the electronic nonlinearity, the Raman response can be modelled as a third-

order susceptibility tensor, χ̂R, whose real part will drive a change in the refractive index

the optical modes are probing, and whose imaginary part will lead to the depletion on

one of the interacting modes and the amplification of the other. As per Ref. [66], the

generic form of the third-order susceptibility tensor takes the following form:

χ̂Rijkl(Ω) =
πNν

3~
∑
σ

ωσ(αij,σαkl,σ + αik,σαlj,σ)

ω2
σ − Ω2 + 2iΩ∆ω

, (2.14)

where Ω = ωp − ωs, Nν is the number of phonons per unit volume, ωσ is the vibra-

tional resonant frequency, and αij,σ are matrix elements given by the derivatives of the

polarizability tensor α̂ with respect to the coordinate of each of the Raman-active optical

phonons σ. Given the symmetry properties of crystalline silicon, which belongs to the
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irreducible representation Γ25′, it can be found that the Raman tensor has just one inde-

pendent component for i = k and j = l, that is χ̂R1212, with the other non-zero elements

given by χ̂Riijj = 0.5χ̂Rijij [66].

It must be highlighted that, even though the spectral width of the Raman response

can not be ignored, when the temporal widths of the interacting pulses are similar to

the Raman response time, this can be just evaluated at the resonant frequency Ω = ωR.

If this is satisfied, the Raman susceptibility would become pure imaginary with χ̂Rijij =

−iχ̂R = −i11.2 · 10−18 m2V −2, where i, j = 1, 2, 3 [67]. Furthermore, we also note that in

future chapters we will consider that the silicon waveguides are fabricated along the [11̂0]

direction, which favors the cleaving of silicon during the fabrication stage. This means

that a rotational matrix operation will be applied to the susceptibility tensor.

2.6 Applications of silicon photonics

Silicon photonics are appearing more and more often as the most suitable technology

to develop integrated optical circuits, especially because its potential to be a low cost

technology and its high compatibility with CMOS platforms. Silicon photonics are to be

a fundamental part of the development of the next generation of computers and digital

signal processors (DSPs). There have been impressive demonstrations already of the po-

tential of programmable photonic processors made of single-mode silicon nanowires and

controllable Mach-Zehnder interferometers (MZI) to study artificial neural networks or

transport of quantum particles [68, 69]. Figure 2.8 [70] shows an artistic top view of a

programmable photonic processor chip with more than two hundred phase shifters and

beam splitters to control the amplitude and phase of beams at the waveguides intersec-

tions. This type of chip, which performs linear operations on signals could be potentially

used to replace the electronic DSPs currently in the market when greater bandwidth ca-

pacity is required. In fact, not only an increase in bandwidth, but also a decrease in mass

and weight could be key advantages to electronic DSPs that are used in spacecrafts, for
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instance, to feed beamforming antenna elements by controlling the amplitude and phase

of the optical signals within the chip.

Figure 2.8: Artistic top view of a programmable photonic processor chip implementing a
mesh of interconnected waveguides via MZIs, which are controlled by the phase shifters
shown in red [70].

Silicon photonics are also great candidates to develop nonlinear devices that could be

employed to generate and process optical signals, including amplification, modulation or

frequency mixing. A good set of practical applications include [71]: supercontinuum gen-

eration, also called ultrabroadband spectra generation, makes use of the nonlinear SPM

effect and is used in optical coherence tomography [72] and wavelength-division multi-

plexing (WDM) for single laser sources [73], among others; light amplification through

the Raman effect, which we demonstrate it is possible in Chapter 5 of this work, even

beyond the previously reported gains in the telecommunication regions [11, 74, 75] and

the mid-infrared region [76]; wavelength-conversion via four-wave mixing (FWM) [77] or

even modulation conversion by XPM [78]; and photonic sensing for health care, indus-

trial applications or public safety, which is based on optical-matter interaction via the

evanescent field out of a waveguide or a resonator, pertaining a detectable change on the

optical field [79, 80].

An interesting application for WDM consists in combining the use of waveguides

and cavities or resonators as follows [71]: firstly, by taking advantage of the SPM effect
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through a long input waveguide, a narrow bandwidth optical pulse is broadened; and,

secondly, by filtering different wavelengths through the resonators, these wavelengths are

then extracted to the output waveguides which are coupled to the resonators. In fact,

the mathematical model we present in Chapter 6 could be further developed to account

for this type of application.

Applications that require more control over the optical modes lead to the inclusion

into the optical circuit of silicon photonic crystals (Si-PhCs), which have clear advantages

when the application under interest requires dispersion-engineered propagation [81], all-

directions optical reflectors or strong light confinement. Especially remarkable is the

design of Si-PhCs to exploit the numerous potential applications of slow-light propaga-

tion, which ranges from time-domain all-optical processing to data buffering and optical

switches. Even if slow-light devices bring difficult challenges such as important high-order

dispersion effects, several approaches have been demonstrated to eliminate this problem.

For instance, by combining two or more photonic crystals with opposite GVD dispersion

characteristics [82, 83]. In these cases, the chirped term of the silicon photonic crystal

waveguide makes reference to the use of structural parameters that are gradually tuned

along the length of the device so that the guided-mode band is smoothly coupled from

one part to the other. Other approaches include zero-dispersion engineered devices made

of several consecutive photonic crystal cavities [84].

Another important application of GVD-controlled devices is pulse compression. This

technique can be used, for example, to increase the information capacity of connections in

a computer. Recent studies [85] show that tapered silicon photonic waveguides can com-

press optical pulses by taking advantage of the strong dependence of the linear and non-

linear optical coefficients on the waveguide transverse cross-section. More interestingly,

despite the challenges of high-order dispersion effects mentioned before, Si-PhCWGs have

been dispersion-engineered to demonstrate pulse compression in slow-light regime [86].

In summary, we have shown how silicon photonics seem to be the strongest candi-

date for integrated optics, mainly due to the possibility to fabricate waveguides with
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sub-micron transverse size, strong confinement of the optical modes and high nonlinear

effects. Silicon photonic crystals help further to introduce dispersion-engineered devices

and high-Q cavities, contributing in overall to a wide set of functional devices for the

future technologies.

2.7 Introduction to diamond photonics and its ap-

plications

Despite the huge popularity that silicon photonics have reached and which we have cov-

ered in previous sections, in this work we also study diamond as a very promising material

for photonic devices. Synthetic diamond presents numerous attractive properties for on-

chip optical communications [42, 87, 88]. Among others, it offers a large transparency

window, ranging from UV to far IR, with low absorption losses; it can be synthetized

with a high refractive index of ndi ≈ 2.4 enhancing the optical mode confinement in

waveguides in the range of wavelengths from λ = 500 nm to λ = 1000 nm; its nonlinear

properties are substantially important to enable Raman interaction, frequency conver-

sion and comb generation; and furthermore it can be used for high power applications

thanks to its excellent thermal properties, being a good thermal conductor with a low

thermo-optic coefficient and low thermal expansion coefficient.

Diamond’s crystal lattice presents inversion symmetry, which makes the lowest-order

non-zero nonlinear susceptibility to be χ̂(3). The electronic nonlinearity, resulting from a

deformation of the lattice electron cloud at high incident electric field intensities, has 3

independent coefficients for diamond, which is a typical characteristic of cubic crystals.

The relationship between the 3 independent coefficients is χ̂3
1111 = 3χ̂3

1221 = 3χ̂3
1122 [87].

Regarding the Raman nonlinearity of diamond, which is characterized by a vibrational

frequency of the medium ωr = 39.99 THz, it can be 20 times stronger than its electronic

nonlinearity, which makes it very attractive for the development of Raman lasers.

In the recent years, there has been one application which has brought the greatest
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part of the attention to this novel photonic material: quantum optics. Colour centres

are special defects in diamond that can act as quantum emitters of light. These defects

function as bright single-photon sources (SPSs) at room temperature which can escape

the crystal without absorption. Thanks to the numerous colour centres of diamond,

which potentially can be precisely controlled, diamond has emerged as a promising low-

temperature material for quantum computing, and this is, perhaps, the core application

of future diamond photonic devices [42].

However, on the topic of this work, one of the most interesting benefits of diamond

is its broad transparency window which includes visible light. This would permit the

development of photonic devices that could operate with cheaper light sources such as

VCSELs at 850 nm, which are extensively employed in data centers. Moreover, the

nonlinear refractive index of diamond is relatively high for visible wavelenghts (n2 =

1.3 · 10−19 m2 W−1) [88]. If this is combined with the low absorption losses and the non-

existent two-photon absorption process, diamond-based waveguides are great candidates

for the design of microring resonators for frequency comb generation, for which the round-

trip loss must be minimised in order to offer high quality factors while the nonlinearity has

to be strong enough so the soliton condition is satisfied. Based on all this, and due to the

thermal properties introduced above, diamond-based waveguides would enable the design

of high quality-factor, temperature-insensitive, microring resonators for the generation of

combs at visible bands. Along these bases, in this thesis we present our study in the use

of novel diamond fin waveguides for on-chip comb generation.

Kerr solitons are the main responsible behind frequency comb generation based on

microring resonators. The optical field inside the microring resonator can be mathemat-

ically modelled as an externally pumped NLSE, whose stable solution corresponds to a

train of Kerr solitons repeating at the cavity round-trip time, which is naturally trans-

lated to a comb in the frequency domain with a frequency-spectral-range (FSR) equal to

the inverse of the round-trip time.

The main applications where microcombs are widely employed are microwave photonic
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signal generation and WDM systems [89]. While the latter was discussed in Section 2.6,

the idea behind the microwave signal generation is to mix in a photodetector two or

more lines of a comb source which is characterised by a certain FSR, so every two lines

mixed in the photodetector will produce a microwave signal at the frequency equal to the

spacing betweent the two lines. Therefore, the microwave frequency output can range

from the FSR to a multiple number of times the FSR. The concept of this microwave

signal generation method is exploited in Ref. [89]. In this case, a continuous wave optical

carrier is guided through the bus waveguide which then couples into the microring where

the solitons are formed at a repetition rate of 20 GHz. The comb is then fed into a

photodetector where the multiple lines are mixed and a microwave signal at 20 GHz is

generated.

2.8 Numerical methods and simulation software

2.8.1 Split-step Fourier method

The computational method chosen to solve the coupled NLS system of equations that

will be derived in the following chapters is the split-step Fourier method (SSF). The

SSF method is categorized as a pseudospectral numerical method which uses the fast

Fourier transform (FFT) [90] to achieve higher computational speeds than time-domain

techniques. However, as mentioned before, the SSF method can only solve one-directional

propagation.

In order to explain how it works, we consider a simpler NLS equation,

∂A(z, T )

∂z
= (D̂ + N̂)A(z, T ), (2.15)

which describes the evolution with distance -z- of the amplitude -A- of an optical mode,

and where the operator D̂ accounts for linear effects such as dispersion and absorption

and the operator N̂ represents nonlinear effects including free-carrier absorption and free-
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carrier change of index of refraction. Note also a change of variable has been applied so

T = t − z
vg

. Typical forms of the linear and nonlinear operators for silicon photonic

nanowires or silicon photonic crystal waveguides are as follows:

D̂ =
β2

2

∂2

∂T 2
+ i

β3

6

∂3

∂T 3
− icκ

2nvg
αin, (2.16)

N̂ = −γP0|A|2 −
icκ

2nvg
αFC −

ωκ

nvg
δnFC , (2.17)

where the terms αFC and δnFC , even if they seem to be linearly related to the pulse

amplitude, they depend on the free-carrier generation which is proportional to the square

power of the mode.

The solution of Eq. 2.15 has the following form:

A(z, T ) = A(0, T )e(D̂+N̂)z (2.18)

Now, writing Eq. 2.15 only over a small distance h, we could assume that D̂ and N̂

act independently, so that Eq. 2.18 is modified as follows:

A(z + h, T ) ' ehD̂ehN̂A(z, T ). (2.19)

The nonlinear term N̂ is z-dependent because it is proportional to the pulse amplitude

A(z, T ) and to its square absolute value, including to the free carriers density at that z-

point. Thus, the nonlinear term should be defined as:

e
∫ z+h
z N̂(z′)dz′ ' e

h
2

[N̂(z)+N̂(z+h)], (2.20)

where the trapezoidal rule for the integral is applied. Alternatively, and especially if

including the FC effects in the nonlinear term as we do, using a Runge-Kutta method to

solve the differential equation ∂A
∂z

= N̂A is preferred for this step.

Finally, the equation is symmetrized to improve the accuracy of the SSF algorithm,

65



achieving an order of accuracy of O(h3),

A(z + h, T ) ' e
h
2
D̂e

h
2

[N̂(z)+N̂(z+h)]e
h
2
D̂A(z, T ). (2.21)

Based on this and moving from right to left in Eq. 2.21, the SSF algorithm starts

calculating the dispersion contribution in the first h
2

step by transforming into the fre-

quency domain the dispersion parameter D̂ and the pulse shape A(z, T ), which simplifies

the calculation. The result is taken back to the time domain and it is multiplied by the

nonlinear factor at the midplane z + h
2

which represents the effect of nonlinearities over

the whole segment h. The nonlinear part can be calculated in the time domain because

it does not involve derivatives over time of the pulse amplitude. Note that the integral of

the nonlinear term is computed before this step by using the pulse value just obtained at

z+ h
2
. Finally, the result of it is transformed into the frequency domain and the remaining

linear effects are applied for another h
2

step.

As with many other numerical methods to solve mathematical equations, SSF implic-

itly imposes periodic boundary conditions at the boundaries of the computational time

window, although perfectly absorbing boundary conditions can be used as well. As a rule

of thumb, in our simulations we chose the computational time window at least 30 times

the value of the input pulse width. This way we ensure that any temporal or spectral

broadening of the pulse due to linear and nonlinear dispersion can fit within the time

window. Another issue is the choice of the number of temporal points, which, due to the

use of the FFT in the SSF method, must be a power of 2 and large enough so that the

time resolution is suitable for the specific problem. Similarly, the step size h must be

small enough to achieve the required accuracy.
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2.8.2 Newton-Raphson method for nonlinear systems of equa-

tions

The Newton-Raphson method is one of the most powerful and general methods for solving

nonlinear systems of equations. It is a multidimensional root finding algorithm that

generally converges fast to the solution, especially if a good initial guess is used.

Following the discretization procedure described in Chapter 6 (see also Ref. [91] for

details about the numerical implementation), our set of equations to be solved consists

of M = (P − 1)(N − 2) + c2(N − 2) + 4(N − 1) +NP nonlinear equations, with the same

number of unknowns. These equations will have the general form:

Fi(Un,p
+ , Un,p

− , Un
1 , U

n
2 ,N n,p

w ,N n
1 ,N n

2 ) = 0, (2.22)

where i = 1, 2...,M , n = 1, 2, ..., N , p = 1, 2, ..., P and the upper indexes n and p label the

specific time and distance grid points, respectively, at which the unknowns are evaluated.

In addition, a set of boundary conditions are used, as explained in Chapter 6.

We denote by F and x the vectors constructed from the functions Fi and unknowns

xi, respectively. In the neighborhood of x, the functions Fi can be expanded in Taylor

series as follows:

Fi(x + δx) = Fi(x) +
M∑
j=1

∂Fi
∂xj

δxj +O(‖δx‖2). (2.23)

If we introduce the Jacobian matrix as,

Jij =
∂Fi
∂xj

, (2.24)

and keep only the linear terms in δx, Eq. (2.23) can be recast in the following form:

F(x + δx) = F(x) + J δx. (2.25)
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If we now impose the condition F(x+δx) = 0, we obtain the following expression, which

is used iteratively to obtain, at each step, the corrections of the unknowns δx that move

all functions closer to zero,

J δx = −F . (2.26)

In a practical implementation, the algorithm starts with an initial guess x0, which is

used to evaluate the vector function F and the Jacobian matrix J at x = x0. Then, the

matrix system of equations (2.26) is solved, and its solution δx1 is used to calculate the

input vector of unknowns corrections at the second iteration, x1 = x0 + δx1. These steps

are then repeated until the algorithm converges. If the algorithm converges, upon each

iteration the norm F = ‖F‖2 must decrease. If, at some iteration, it does not decrease,

a backtracking technique is used. This means that the new unknowns vector will be

updated with a set of corrections in the Newton path, but after reducing the step size,

namely xnew = xold + λδxnew, with 0 < λ ≤ 1.

Even though the Newton-Raphson method requires large computing resources for the

problem we want to solve, it shows a great efficiency in finding the roots even when the

initial guess is not particularly close to the actual solution. Obviously, using boundary

conditions guided by the proper physics of the problem greatly improves the convergence

of this method.

2.8.3 Discrete Fourier transform method for externally-driven

NLSE

In order to solve the equation which governs the physics inside a microring resonator, as

shown in Chapter 4, here we describe the numerical method that can be implemented to

obtain the steady-state solution of such problem.

The equation under interest is an externally-driven NLSE which for simplicity now

68



only contains up to second order dispersion terms:

∂a(t, τ)

∂t
=
−α′ − iδ0

tR
a(t, τ)− L

vgtR

∂a(t, τ)

∂τ
−iLβ2

2tR

∂2a(t, τ)

∂τ 2
+
iγL

tR
|a(t, τ)|2a(t, τ)+

√
θ

tR
ain(τ),

(2.27)

where α′ = α+θ
2

, tR is the roundtrip time, δ0 is the detuning of the microring resonance

closest to the driving field, θ is the coupling of the driving field in the microring, and

α = L
cκαin
nvg

. (2.28)

The steady-state solution of Eq. 2.27 corresponds to the case when
∂a(t, τ)
∂t

= 0, i.e.

we can just consider the τ dependency in the field amplitude.

The unknown a(τ) will have the form of a pulse which repeats periodically with tR,

therefore we will define it using the N-point discrete inverse Fourier transform (IDFT) as

follows:

a(τ) =
1

N

N−1∑
k=0

Ake
−i2πkτ
N . (2.29)

Similarly, the driving field, which is a continuous wave signal, takes the form:

ain(τ) =
1

N

N−1∑
k=0

Ain,ke
−i2πkτ
N , (2.30)

where Ain,k = Ainδk,N/2, being Ain an input parameter.

Based on the above expressions, we apply the IDFT to the steady-state solution of

Eq. 2.27, obtaining:

N−1∑
k=0

e
−i2πkτ
N

[
−α′ − iδ0

tR
Ak +

iL2πk

vgtRN
Ak +

iLβ2(2πk)2

2tRN2
Ak+ (2.31)

iγL

tR

1

N2

N−1∑
l=0

N−1∑
m=0

AkA
∗
lAme

−i2π(−l+m)τ
N +

√
θ

tR
Ainδk,N/2

]
= 0.
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Now we multiply it by e
i2πjτ
N and integrate in τ :

∫
τ

(N−1∑
k=0

e
−i2π(k−j)τ

N

[
−α′ − iδ0

tR
Ak +

iL2πk

vgtRN
Ak +

iLβ2(2πk)2

2tRN2
Ak+ (2.32)

iγL

tR

1

N2

N−1∑
l=0

N−1∑
m=0

AkA
∗
lAme

−i2π(−l+m)τ
N +

√
θ

tR
Ainδk,N/2

])
dτ = 0.

We can arrange the above expression as follows:

N−1∑
k=0

[
−α′ − iδ0

tR
Ak +

iL2πk

vgtRN
Ak +

iLβ2(2πk)2

2tRN2
Ak +

√
θ

tR
Ainδk,N/2

] ∫
τ

e
−i2π(k−j)τ

N dτ+

(2.33)

N−1∑
k=0

[
iγL

tR

1

N2

N−1∑
l=0

N−1∑
m=0

AkA
∗
lAm

∫
τ

e
−i2π(k−j−l+m)τ

N dτ

]
= 0.

The integration of exponentials can be substituted by Kronecker delta functions,

N−1∑
k=0

[
−α′ − iδ0

tR
Ak +

iL2πk

vgtRN
Ak +

iLβ2(2πk)2

2tRN2
Ak +

√
θ

tR
Ainδk,N/2

]
δk,j+ (2.34)

N−1∑
k=0

[
iγL

tR

1

N2

N−1∑
l=0

N−1∑
m=0

AkA
∗
lAmδk+m,j+l

]
= 0.

Therefore, we can define the following functions for each index j:

Fj =

[
−α′ − iδ0

tR
+
iL2πj

vgtRN
+
iLβ2(2πj)2

2tRN2

]
Aj +

√
θ

tR
Ainδj,N/2+ (2.35)

iγL

tR

1

N2

N−1∑
k=0

N−1∑
l=0

N−1∑
m=0

AkA
∗
lAmδk+m,j+l.

The Newton-Raphson method that was described in subsection 2.8.2 is then employed

to solve the system of nonlinear equations Fj. Precisely, we can write:

Fj(A + δA) = Fj(A) +
N−1∑
p=0

∂Fj
∂Ap

Ap +O(δA2), (2.36)
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where the derivatives
∂Fj
∂Ap

define the Jacobian matrix.

In fact, since the unknowns are complex variables, the unknown vector A will be of

length 2N to accommodate the complex conjugate variables. Similarly, the number of

functions Fj will be equal to 2N so half of them will correspond to the functions complex

conjugates. Thus, the Jacobian matrix will be characterised by a size equal to 2N x 2N ,

where the diagonal will contain both linear and nonlinear terms and the non-diagonal

elements will contain only nonlinear terms. Based on this, the Jacobian matrix can be

fully described by the following terms:

∂Fj
∂Ap
|j=p =

−α′ − iδ0

tR
+
iL2πj

vgtRN
+
iLβ2(2πj)2

2tRN2
+
iγL

tR

2

N2

∑
m

|Am|2, (2.37)

∂Fj
∂Ap
|j 6=p =

iγL

tR

2

N2

∑
m≥j−p

A∗m+p−jAm, (2.38)

∂F ∗j
∂A∗p
|j=p =

−α′ − iδ0

tR
− iL2πj

vgtRN
− iLβ2(2πj)2

2tRN2
− iγL

tR

2

N2

∑
m

|Am|2, (2.39)

∂F ∗j
∂A∗p
|j 6=p = −iγL

tR

2

N2

∑
m≥j−p

Am+p−jA
∗
m, (2.40)

∂Fj
∂A∗p
|j 6=p =

iγL

tR

1

N2

∑
k≤p+j

Ap+j−kAk, (2.41)
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∂F ∗j
∂Ap
|j 6=p = −iγL

tR

1

N2

∑
k≤p+j

A∗p+j−kA
∗
k. (2.42)

To validate the derived numerical method, we have simulated the same scenario ap-

pearing in Fig. 2 of Ref. [92], which corresponds to a 3.8 mm diameter MgF2 whispering

gallery mode resonator with a 40 µm mode-field diameter and parameters Q = 1.90 · 109;

FSR = 18.2 GHz; γ = 0.032 W1km1; β2 = 13 ps2km1; α = θ = 1.75·105; Pin = 55.6 mW;

L = 11.9 mm; δ0 = 0.0012. In Fig.2.9 we plot the frequency and time domain results

which tightly match the results published in Ref. [92].

Time [ps] 
-1 -2 0 1 2 

0.14 
0.12 
0.1 

0.08 
0.06 
0.04 
0.02 

0 

P
ow

er
 [W

] 

Figure 2.9: Simulation results of a 3.8 mm diameter MgF2 whispering gallery mode
resonator with a 40 µm mode-field diameter and parameters Q = 1.90 · 109; FSR =
18.2 GHz; γ = 0.032 W1km1; β2 = 13 ps2km1; α = θ = 1.75 · 105; Pin = 55.6 mW;
L = 11.9 mm; δ0 = 0.0012.

2.8.4 Modified split-step Fourier method for externally-driven

NLSE

Equation (2.27) can also be solved using a modified version of the split-step Fourier

method described in subsection 2.8.1.

In this case, the distance steps are replaced by time steps which can include multiple
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roundtrips. For each roundtrip, all linear and nonlinear terms used are averaged by

the microring length L. Note all terms appearing in Eq. (2.27) are dimensionless which

means each step will correspond to an integer number of roundtrips rather than a physical

length.

In order to introduce the pump term, one can exploit the step when the linear effects

are applied by multiplying to the signal components in the frequency domain. As such,

the constant power of the pump can be added at the corresponding frequency component.

While this method has a particular advantage compared with the stationary DFT

method described previously, which is the possibility of watching the evolution of the

comb until it reaches the stationary stage, it requires considerably more computational

time. In addition, investigating the transient stage of the comb is not very relevant

thinking in practical terms. Therefore, the simulations presented in Chapter 4 have been

performed by using the stationary DFT method.

2.8.5 Simulation software

The simulation work as part of this thesis has been carried out by using different simu-

lation software tools which we proceed to describe below.

Firstly, software tools based on the finite-difference frequency-domain (FDFD) method

have been employed to solve Maxwell’s equations in the frequency domain, using fully-

vectorial and three-dimensional methods. FDFD works by expressing Maxwell’s equa-

tions as Ax = ω2Bx, which is an eigenproblem with eigenvectors x and eigenvalues ω2.

By fixing the wavevector k, FDFD tools are capable to obtain the band structure ω(k)

and the corresponding electromagnetic fields. Based on this, two FDFD software tools

have been used: MIT Photonic Bands (MPB), a free and open-source simulation software

package for calculating band diagrams and electromagnetic modes of periodic dielectric

structures, and Rsoft BandSOLVE, a commercially available photonic band solver. Both

tools use the plane wave expansion (PWE) algorithm to perform band computations on

photonic crystal structures. The PWE method consists on expanding both the electro-
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magnetic fields and the dielectric profile in terms of the Fourier series components along

the reciprocal lattice vector, which are then used into the curl-curl relation in order to

obtain the eigen equation. In other words, it computes definite-frequency eigenstates,

also called harmonic modes, for arbitrary wavevectors. In this thesis, MPB has been

employed to obtain the dispersion relations and electromagnetic modes of the photonic

crystal waveguides presented in Chapters 5 and 6, while Rsoft BandSOLVE has been

employed to validate the correct use of MPB by comparing the band diagrams obtained

from both tools for the same photonic crystal structure.

In addition to these FDFD methods, the finite element method (FEM) has been em-

ployed to obtain the modes and dispersion curves of the diamond photonic waveguide

presented in Chapter 4. The FEM method is widely known in many engineering disci-

plines and it is based on discretizing the space dimensions in a finite number of geometric

elements, for instance triangles or rectangles, in such a way the unknown functions are

approximated on those elements. In consequence, the problem results into a large sys-

tem of equations which can then be solved by using different methods. FEM also solves

Maxwell’s equations in the frequency domain, on a frequency by frequency basis. In this

case, Rsoft FemSIM has been used. This is a generalized full-vector electromagnetic mode

solver based on the FEM that can calculate any number of transverse or cavity modes of

an arbitrary structure on a non-uniform mesh.

Several Matlab programs have been written in order to calculate complex coefficients

used in the various models, including the nonlinear Kerr and Raman terms and the higher

order group velocity dispersion terms. In addition, the discrete Fourier transform method

for externally-driven NLSE presented above has been fully implemmented in Matlab.

Two main simulation tools developed in C++ have been developed for this work,

in particular for solving the NLSE appearing in Chapters 5 and 6. Both the split-step

Fourier method and the Newton-Raphson method for nonlinear systems of equations

presented above have been implemented in this platform.



Chapter 3

Fundamental theoretical model for

pulse propagation in a silicon

photonic nanowire

3.1 Introduction

In this chapter we derive the nonlinear Schrödinger (NLS) equation that describes the

pulse propagation through a single mode silicon photonic waveguide, showing the ori-

gin of the linear and nonlinear optical effects introduced in Chapter 2. Starting from

Maxwell equations and making use of the Lorentz reciprocity theorem, the differential

NLS equation that describes the pulse dynamics through the waveguide, including the

FC rate equation, will be obtained.

This chapter should be the reference to the methodology used to derive our math-

ematical models. In this case, since it is applied to a simple scenario considering just

a single optical pulse, it will facilitate the understanding of the models derived in fol-

lowing chapters, which add more complexities, such as nonlinear interaction between

several pulses, Raman nonlinear effect or interaction with cavities alongside the waveg-

uide. Actually, a similar mathematical approach is applied either for silicon nanowires

75



or for silicon PhCWGs, just keeping in mind that the propagating modes for the latter

follow a periodic relation along the waveguide as per Bloch’s theorem.

It is important to stress here that the main differences with respect to the propagation

equations for standard fibre optics [46]. Indeed, as already mentioned, silicon nonlinear

optical susceptibilities are tensors, due to the anisotropic nature of this material, whereas

for isotropic glass fibres these are scalar variables. Additionally, the nonlinear susceptibil-

ities are highly dependent on the field confined within the waveguide, which is especially

high for silicon, thus increasing the complexity to the problem to be solved.

3.2 Single pulse propagating through a silicon pho-

tonic waveguide

The Maxwell equations are the starting point of solving an electromagnetic problem.

Their solution in the frequency domain over the photonic structure of interest will result

in all the guiding modes with frequency ω that can be excited in that specific struc-

ture. In this chapter, the structure of interest is a silicon photonic wire (SPW), which

is represented in Fig. 3.1. It is built of a rectangular silicon core, oriented along the

[11̂0] crystallographic direction, and burried into a SiO2 substrate, around 1 µm thick.

In practice, a 45◦ cleavage plane of Si is applied to achieve high-quality end facets. The

dimensions, h -height- and w -width- of the silicon core, are in submicron region. Single-

mode SPWs typically have dimensions of 200 to 300 nm in height and 400 to 500 nm

in width. A0 is the transverse area of the silicon core, which will appear as a relevant

element in the NLS equations derived in this chapter.

Assuming an external perturbation represented by the polarization term Ppert(r, ω),

the form of the Maxwell equations becomes as follows:

∇× E(r, ω) = iωµH(r, ω), (3.1a)

∇×H(r, ω) = −iω[εc(r, ω)E(r, ω) + Ppert(r, ω)], (3.1b)
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Figure 3.1: Sketch of silicon photonic nanowire burried in SiO2.

where E(r, ω) and H(r, ω) are the electric and magnetic field of the propagating mode,

εc(r, ω) describes the dielectric constants composing the waveguide and µ is the magnetic

permeability. The total polarization of the mode, Ppert, is expressed as the sum of linear

and nonlinear polarizations as in Chapter 2:

Ppert(r, ω) = ε0χ̂
(1)(r, ω) · E + ε0χ̂

(3)(r, ω)
...EEE +O(E4), (3.2)

where ε0χ̂
(1) determines the linear part of the polarization, χ̂(2) vanishes for silicon and

χ̂(3) determines the nonlinear component of the polarization. Thus, defining the linear

polarization as Plinear = ε0χ̂
(1) · E = δεc · E, and considering only the electronic nonlin-

earity as a third-order nonlinear polarization, i.e. Pnonlinear = ε0χ̂
e(r, ω)

...EEE, the total

polarization is expressed as follows:

Ppert = Plinear + Pnonlinear = δεc · E + ε0χ̂
e(ω;ω,−ω, ω)

...E(r, ω)E∗(r, ω)E(r, ω), (3.3)

where the linear part of it was detailed in Chapter 2 from Eq.(2.11) to (2.13), and

χ̂e(ω;ω,−ω, ω) is the conventional notation for the third-order susceptibility tensor of

silicon as explained in Chapter 2 as well, and which in this case is only related to SPM

and TPA effects taking into account we assume we have just a narrow-band single pulse

propagating through the waveguide and that the sum-frequencies processes are not phase
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matched.

The theoretical method we use to derive the NLS equations starts by considering an

unperturbed scenario where the nonlinear polarization vector is equal to zero and, then,

a second scenario characterized by a polarization vector where the different linear and

nonlinear effects are introduced. Once we have the fields for both scenarios described, we

will apply the Lorentz reciprocity theorem to continue our derivation.

In the case of the unperturbed scenario, we can simply assume we have just a guiding

mode whose frequency is ω0 and which is an exact solution of the Maxwell equations (5.2)

with Ppert = 0. We will refer to (Ea,Ha) ≡ (E0,H0) as the electromagnetic fields in the

unperturbed waveguide, being in frequency domain:

E0(r, ω0) =
1√
P0

e0(r, ω0)eiβ0z, (3.4a)

H0(r, ω0) =
1√
P0

h0(r, ω0)eiβ0z, (3.4b)

where β0 is the propagation constant and P0 is the power carried by the mode, meaning

the cross-sectional components of the electromagnetic field e0 and h0 can be normalized.

The following relations applies for P0:

1

4

∫
A∞

(e0 × h∗0 + e∗0 × h0) · ẑdA = P0, (3.5a)

P0 = Wvg, (3.5b)

W =
1

2

∫
A∞

εc|e0(r, ω)|2dA, (3.5c)

where A∞ is a transverse cross-section extending to infinity, and W is the energy density

of the mode in which we have assumed no frequency dispersion for the dielectric constant.

Note also we have assumed the electric and magnetic energies of the mode are equal.

We refer now to the electromagnetic fields in the perturbed waveguide, (Eb,Hb) ≡
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(E,H), described as follows:

E(r, ω) =
1√
P0

a(z, ω)e0(r, ω)eiβz, (3.6a)

H(r, ω) =
1√
P0

a(z, ω)h0(r, ω)eiβz, (3.6b)

where ω is a generic frequency and where a(z, ω) represents the modified mode amplitudes

due to the perturbations included. This means that the total energy carried by the

electromagnetic field (E,H) of the perturbed waveguide is |a(z, ω)|2.

The Lorentz reciprocity theorem can be used to relate the electromagnetic fields of the

unperturbed and perturbed scenarios of above. To this end, let us begin by considering

the following integral identity, which can be easily derived from the divergence theorem:

∮
∂S

F · ndl +
∂

∂z

∫
S

F · ẑdS =

∫
S

∇ · FdS, (3.7)

where F is an arbitrary vector field, S is the transverse section at position, z, and ∂S

is the boundary of S. Note that this is the divergence theorem applied to a waveguide,

which can be read as the flux of the field vector F escaping through the cross-section

borders (line integral), in addition to the flux escaping transversally the cross-section

along the propagation direction in the waveguide, must be equal to the outflow rate of

the vector field F, which is equivalent to the surface integral of the divergence of F over

the area inside the boundary of S.

We now define the field F as F = Eb×H∗a+E∗a×Hb, and assuming that the transverse

section, S, is extended to infinity, the line integral in Eq. (3.7) vanishes, because the

waveguide modes decay exponentially to zero at infinity. At this point, we make use of

the Maxwell’s equations and the vector identity ∇· (A×B) = B · (∇×A)−A · (∇×B)

to derive the r.h.s of Eq. (3.7), which beomes as follows:

∂

∂z

∫
S

F · ẑdS = iµ0(ωb − ωa)
∫
S

H∗a ·HbdS
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+ i

∫
S

(ωbεb − ωaεa)E∗a · EbdS. (3.8)

Using Eq. 3.5a and taking into account the propagating constant and mode profile

in the perturbed scenario will remain unchanged, the left term of Eq. 3.8 becomes as

follows,

∂

∂z

∫
S

F · ẑdS = 4
∂a(z, ω)

∂z
. (3.9)

Similarly, it can be demonstrated that the right term of Eq. 3.8 becomes

iµ0(ωb − ωa)
∫
S

H∗a ·HbdS + i

∫
S

(ωbεb − ωaεa)E∗a · EbdS =

i
a(z, ω)

P0

[∫
S

(µ0(ω − ω0))|h0|2dS +

∫
S

(ωε(ω)− ω0ε(ω0))|e0|2dS
]
. (3.10)

Then, by making Eq. 3.9 equal to Eq. 3.10 and adding the polarization term, the following

expression can be found:

∂a(z, ω)

∂z
= a(z, ω)B(z, ω) +

iω

4

∫
S

E∗aPpert(ω)dS, (3.11)

where

B(z, ω) =
i

4P0

[∫
S

(µ0(ω − ω0))|h0|2dS +

∫
S

(ωε(ω)− ω0ε(ω0))|e0|2dS
]
, (3.12)

and the second term on the right can be obtained by deriving ∇ · (Eb ×H∗a + E∗a ×Hb)

for Ea = E0 and Eb following Maxwell equations with the polarization term.

The next step is to expand Eq. 3.12 in Taylor series around ω0, which becomes:

B(z, ω) ≡
∑
n≥1

iβn
n!

(ω − ω0)n, (3.13)
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where we define,

β1(z) =
δ(z)

vg
, (3.14)

βn(z) = δ(z)
∂n−1

∂ωn−1

(
1

vg

)
, n ≥ 2. (3.15)

Note that vg is the group velocity of the propagating mode and that the function δ(z)

can be averaged over the propagation distance, becoming equal to one. The higher order

Taylor coefficients correspond to those shown on Eq. 2.8 in Chapter 2, i.e. β2 is the GVD

coefficient and β3 is the TOD coefficient. Higher order may normally be discarded.

At this point, we derive the polarization term by sectioning Ppert in two parts: firstly,

the linear polarization Plin = δεFC ·Eb part as per Drude‘s model, and then the nonlinear

polarization part Pnlin(r, ω) = ε0χ̂
e(ω)

...Eb(ω) ·E∗b(ω) ·Eb(ω) using the electronic nonlinear

susceptibilty. Although, in our calculations, we employ the full susceptility tensor, it is

worth explaining the concept of the effective nonlinear susceptibility, defined by [39]:

χ̂eeff = χ̂e1122

[
(â∗ · b̂)(ĉ · d̂)+(â∗ · ĉ)(b̂ · d̂)+(â∗ · d̂)(b̂ · ĉ)

]
+(χ̂e1111− χ̂e1122)

3∑
i=1

â∗i b̂iĉid̂i, (3.16)

where â is a unit vector along the direction of the induced polarization, b̂, ĉ, and d̂ are

unit vectors along the polarization direction of the interacting fields, and âi, b̂i, âi, and d̂i

are the direction cosines of these unit vectors. Since the effective nonlinear susceptibility

is related to the intensity dependent refractive index n2 and the TPA coefficient βTPA as

follows,

ω

c
n2 +

i

2
βTPA =

3ω

4ε0c2n2
χ̂eeff , (3.17)

this is, indeed, a way to measure the actual nonlinear susceptibility of the material.

Eventually, we must convert the equations to the time domain, so the nonlinear po-

larization term becomes:

δPnlin(r, t) =
1

2
[δP

(+)
nlin(r, t) + c.c.] = ε0χ̂

e(r, t)
...Eb(r, t)Eb(r, t)Eb(r, t), (3.18)
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where c.c. means complex conjugate and for which we define the electric field b in time

domain as

Eb(r, t) =
1

2
A(z, t)

e0(r, ωm)√
P0

ei(β0z−ω0t) + c.c. (3.19)

Now, the unknown A(z, t) is obtained by applying the inverse Fourier transform to a(z, ω):

A(z, t) =
1

2π

∫ ∞
0

a(z, ω)e−i(ω−ω0)tdω, (3.20)

and the following relations have to be considered also:

∫ ∞
0

ωa(z, ω)e−i(ω−ω0)tdω ≈ ω0A(z, t), (3.21)∫ ∞
0

(ω − ω0)na(z, ω)e−i(ω−ω0)tdω =

(
i
∂

∂t

)n
A(z, t). (3.22)

At this point, we employ all expressions above and we arrive to the final NLS equation:

i

[
∂A

∂z
+

1

vg

∂A

∂t

]
− β2

2

∂2A

∂t2
− iβ3

6

∂3A

∂t3
= (3.23)

− ω0δnfcκ(z)

nvg
A− icκ(z)

2nvg
(αfc + αin)A− γ(z)|A|2A,

where κ is the overlap integral between the guiding section and the spatial field of the

propagating mode and γ is the nonlinearity responsible for SPM on the pulse dynamics.

More in detail,

κ(z) =
ε0n

2

2W

∫
Snl

|e0(ω)|2dS, (3.24a)

γ(z) =
3ωε0
16v2

g

1

W 2

∫
Snl

e∗0(ω) · χ̂e(ω,−ω, ω)
...e0(ω)e∗0(ω)e0(ω)dS, (3.24b)

Finally, the last step of the derivation consists of formulating the FCs rate equation,
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which describes the FCs dynamics in silicon waveguides and which will be coupled to the

NLS equation Eq. 3.23. By discarding all terms in Eq. 3.23 that do not contribute to

TPA, this is all linear terms, the NLS equation is simplified as follows:

∂A

∂z
= iγ(z)|A|2A, (3.25)

Then, on one hand, we multiply both sides of the equation by the complex conjugate

of the mode amplitude A,

A∗
∂A

∂z
= iγ(z)|A|4, (3.26)

and, on the other hand, we apply the complex conjugate at both sides of Eq. 3.25 and

then multiply it by A,

A
∂A∗

∂z
= −iγ∗(z)|A|4, (3.27)

the sum of Eq. 3.26 and Eq. 3.27 gives as result:

∂|A|2

∂z
= −γ(z)′′|A|4. (3.28)

To finish with, considering the energy required to generate an electron-hole pair is

2~ω, we convert the loss of energy per unit of distance into the number of electron-hole

pairs generated via the absorption of two photons of same frequency, and we include it

into the following rate equation:

∂N

∂t
= −N

τc
+

γ′′

2ω~A0

|A|4, (3.29)

where τc is the characteristic lifetime of FCs, γ′′ is the imaginary part of the nonlinear

susceptibility term of equation Eq. 4.2b. and ~ is the reduced Planck’s constant.

It shall be noted that only a fraction of the power of the electromagnetic mode con-

tributes to the generation of free carriers as the mode profile only partially overlaps with

the silicon waveguide. The characteristic lifetime, for silicon nanowires commonly used



for photonic applications, varies from sub-nanosecond to tens of nanoseconds, while for

silicon photonic crystal slab waveguides is in the range of few hundred of picoseconds.
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Chapter 4

Nonlinear optics in diamond-fin

photonic nanowires: soliton

formation and frequency comb

generation

4.1 Introduction

Synthetic diamond is becoming an increasingly fashionable material platform for on-

chip optical communications, particularly due to its attractive classical and quantum

optical properties [42, 87, 88]. Central among these remarkable optical properties are its

large transparency window, ranging from ultraviolet (UV) to far-infrared (IR), very small

optical absorption losses, and it can be synthesized with a high refractive index, ndi ≈ 2.4,

thus enabling enhanced optical waveguides mode confinement in a broad spectral range

extending from 500 nm to 1000 nm. Equally important for its applications to active

photonic devices, diamond possesses key nonlinear optical properties, including large Kerr

nonlinearity that can be employed to frequency conversion and comb generation devices,

and also strong Raman interaction at the operating wavelengths of ∼2 µm and with pump
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laser wavelengths in the telecom band at around ∼1.6 µm [50]. These important optical

properties are accompanied by excellent thermal properties, synthetic diamond being

good thermal conductor with low thermo-optic coefficient and low thermal expansion

coefficient, properties that render it an ideal material for high-power applications and

integration of electro-optic systems. In addition, due to the numerous color centers of

diamond, which potentially can be precisely controlled, this material has emerged as a

promising low-temperature platform for quantum computing, perhaps one of the future

core applications of diamond [51].

The functionality of diamond is greatly broadened by the fact that photonic struc-

tures with subwavelength features, such as subwavelength waveguides, can be readily

implemented in this platform (for a review of optical properties of subwavelength waveg-

uides the reader is referred to Ref. [38]). This enables dispersion-engineered devices and

applications in the visible spectrum and therefore makes diamond photonics an appeal-

ing alternative to well-established, more mature photonic platforms, such as silicon-on-

insulator [39], silicon nitride [40], or compound semiconductor on-insulator [41]. For

example, subwavelength diamond waveguides would enable the development of photonic

systems that incorporate cheaper light sources, such as vertical-cavity surface-emitting

lasers (VCSELs) at 850 nm, which are extensively used in data centers [93]. Moreover, the

relatively large nonlinear refractive index coefficient of diamond in the visible spectrum,

i.e. n2 = 1.3×10−19 m2 W−1 [88], in conjunction with the fact that it has an extremely

small two-photon absorption coefficient, would enable the implementation of high quality-

factor, temperature-insensitive, microring resonators [94] for the efficient generation of

frequency combs in these frequency bands. This would further increase the interest in

on-chip frequency comb generation [95], which is a key functionality widely employed

in microwave photonic signal generation and wavelength-division multiplexing systems

[89, 96, 97].

Motivated by these ideas, here we study pulsed dynamics in subwavelength diamond-

fin waveguides, a recently developed type of diamond waveguide which, apart from the
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advantages already highlighted, could improve the seamless integration with very large-

scale integration (VLSI) electronics for on-chip optical communications [98]. This is

because, in silicon photonics, the buried-oxide-layer (BOX) thickness required for optical

confinement is much larger than the optimum for VLSI electronics. On the contrary, with

this type of waveguide design, the confinement layer allows for the removal of the BOX.

Specifically, we demonstrate that diamond-fin waveguides can be designed to possess

zero group-velocity dispersion (GVD) points, thus enabling soliton formation and efficient

supercontinuum generation in ultracompact photonic devices, the latter being recently

demonstrated [99]. To illustrate the versatility of this type of optical waveguide, we

demonstrate that frequency comb generation can be readily implemented using such

photonic structures.

The chapter is organized as follows. In the next section we present the structure of

the investigated waveguide and the frequency dispersion properties of its optical modes.

Then, in Section 3, we introduce a theoretical model that describes the optical pulse

dynamics upon propagation in diamond fin waveguides. Furthermore, in Section 4 we

discuss two applications of our diamond fin waveguides, namely soliton formation and

frequency comb generation. Finally, in the last section we summarize the main conclusions

of our study.

4.2 Waveguide structure and mode dispersion prop-

erties

The waveguide considered in this work, and which has been proposed in Ref. [98], is

schematically shown in Fig. 4.1(a). It is a single-mode uniform waveguide consisting of a

diamond substrate, from which a diamond light guiding fin of width w rises to a height

hfin = hb+t+h through lithography plus etching processes. A silicon dioxide buffer layer

is grown from the substrate up to height hb for which low-index growth and planarization

processes are employed. On top of it, the edge of the fin wall rises by t + h, where t is
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the thickness of a silicon nitride layer used to increase the refractive index contrast and

thus enhance the field confinement. This is created by high-index growth and low-index

etching processes.

With buffer layers thicker than about 1 µm, the propagation losses due to substrate

leakage can be reduced below 0.15 dB cm−1 [98]. In Fig. 4.1(b), we show the waveguide

cross-section with hb = 1 µm, h = 350 nm, t = 200 nm, and w = 200 nm. For these

waveguide parameters, we employed the finite-element method implemented in Synop-

sys’s commercially available software FemSIM [55] to compute the optical guiding modes

supported by the structure. The spatial profile of the dominant component (Ex) of the

quasi-TE mode, calculated for λ = 637 nm, is also depicted in Fig. 4.1(b). At this wave-

length, the effective refractive index is neff = 2.129.

We investigate four waveguide designs, labeled A, B, C, and D, defined by the pa-

rameters: w was 200 nm, 300 nm, 400 nm, and 500 nm, h was 350 nm, 350 nm, 500 nm,

and 600 nm, and hb was 1 µm, 2.2 µm, 3.5 µm, and 7 µm, respectively. Overall, the varia-

tion of these three parameters satisfied the objective of demonstrating broadly different
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Figure 4.1: (a) Schematics of a diamond fin waveguide, consisting of a diamond substrate,
a diamond light-guiding fin of width w, a silicon dioxide buffer layer of height hb, and a
silicon nitride layer of thickness t. (b) Spatial profile of the Ex-component of the quasi-
TE mode (Hx and Hz components are very weak but not completely zero) supported by
the optical waveguide. (c) Photonic circuit model for the frequency comb generation, in
which a bus waveguide is coupled back and forth with a ring resonator of circumference L.
The cavity boundary conditions are also included. The input electric field has a fraction
θ of its power coupled to the ring. After propagating through a roundtrip, the field has
been modified by the linear and nonlinear effects through the length L and phase shifted
by φ0. At that point, the fraction of power that does not couple back to the waveguide,
interferes with the input field.
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dispersion behaviours, including the crossing of the zero-GVD line, and mode confine-

ment levels. While the width w and the height h + t of the fin are varied up to a point

to ensure single-mode operation, the key parameter we were interested to evaluate for

different values was the buffer height hb. This one can be increased in order to mini-

mize the energy leakage down through the buffer, which maximises the nonlinear effects

and minimises the propagation loss, but always within a limit due to fabrication con-

siderations. In practice, waveguides with aspect ratios as large as 10:1 can be readily

fabricated using anisotropic inductively coupled plasma reactive ion etching, so that our

choice for the waveguide configuration is relevant from a practical point of view. For all

these cases we computed the following waveguide dispersion coefficients: the first-order

dispersion coefficient, β1 = dβ/dω = 1/vg, where β and vg are the propagation constant

and group-velocity (GV), respectively, the GVD coefficient, β2 = d2β/dω2, and the third-

order dispersion (TOD) coefficient, β3 = d3β/dω3; the frequency dependence of these

coefficients are plotted in Fig. 4.2. We can notice that the most sensitive wavelength

region is between 500 nm and 700 nm, this is because the effective wavelength of the

propagating mode for those wavelengths is similar to the parameters w and h.

Figure 4.2(b) deserves particular attention as it illustrates that it is possible to design

waveguides with β2 < 0 (e.g. waveguides B, C, and D), which can support soliton

propagation and efficient four-wave mixing, as well as waveguides that possess zero-

GVD points defined by β2(ω) = 0 (e.g. waveguides B and C ), which enable efficient

supercontinuum generation. Especially of interest is the waveguide B, since it shows

the smallest vg for the widest wavelength range, which suggests it provides broadband

enhanced Kerr nonlinearity.

A sensitivity analysis of the effective index on the key design parameters was per-

formed in order to show the tolerance against potential fabrication errors. The depen-

dence of the effective index on waveguide width and buffer height, determined for designs

B and C, are plotted in Figs. 4.3(a), 4.3(b) and 4.3(c), 4.3(d), respectively. The results

summarized in these plots suggest that the variation of the effective index and, conse-
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(b) 

(c) 

(a) 

Figure 4.2: (a), (b), (c) Group index, second-order dispersion coefficient, and third-order
dispersion coefficient, respectively, determined for four diamond-fin waveguides. The
colors blue, red, green, and black correspond to the designs A, B, C, and D, respectively,
described in the text of the chapter.

quently, of the waveguide mode, is very small for both waveguides B and C. Note that,

in this study, the wavelength is fixed to 750 nm; in addition, the width used for the study

of the impact of height variations is the nominal width for each waveguide as detailed

earlier, and similar applies for the analysis of the variation of the width, e.g. the height

employed is the nominal value for each waveguide.

4.3 Theoretical model and simulation of pulse dy-

namics

Within the standard slowly-varying envelope approximation, the pulse dynamics in the

diamond-fin waveguide is described by the well-known nonlinear Schrödinger equation
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(d) (c) 

Figure 4.3: Dependence of the effective index on the waveguide width w and buffer height
hb, determined for the designs B (top panels) and C (bottom panels).

(NLSE):
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u+ γP0|u|2u = 0, (4.1)

where τ = t/T0 and u = a(z, τ)/
√
P0, with t, z, and a being the time, propagation

distance, and pulse envelope, respectively, and T0 and P0 are the input pulse width and

peak power, respectively. In Eq. (4.1), αin = 1 cm−1 is the intrinsic loss of diamond [87],

while the waveguide loss is obtained through the overlap integral κ, and γ is the nonlinear

waveguide coefficient. These quantities are defined as [63, 100]:

κ =
ε0n

2
di

2W

∫
Swg

|e(ω)|2dS, (4.2a)

γ =
3ωε0
16v2

g

1

W 2

∫
Swg

e∗(ω)χ̂(3)(ω)
...e(ω)e∗(ω)e(ω)dS, (4.2b)

where e(r;ω) is the electric field component of the optical mode, W the energy den-

sity of the mode, and χ̂(3)(ω) ≡ χ̂(3,e)(ω;ω,−ω, ω) is the the third-order (electronic)
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susceptibility tensor of diamond. As diamond has cubic crystal lattice, χ̂(3) has three

independent components. The relationships between these 3 independent components

are χ̂
(3)
1111 = 3χ̂

(3)
1221 = 3χ̂

(3)
1122 [87], so that in the case of diamond χ̂(3) has only one in-

dependent component. The corresponding Kerr coefficient is similar or larger than that

of commonly used nonlinear optical materials, e.g. silica (n2 ∼ 2.5×10−20 m2 W−1), SiN

(n2 ∼ 2.5×10−19 m2 W−1) [101], and SiC (n2 ∼ 5×10−18 m2 W−1).

There are several reasons why in our study we considered only the Kerr nonlinearity of

diamond: i) The main characteristic of the waveguide investigated in our work is that it is

made of diamond, so that we primarily investigate the influence of the optical nonlinearity

of diamond on pulse propagation in such waveguides. ii) In principle, one could use a

covering layer made of a different material or a waveguide configuration in which this

layer is absent altogether, and therefore there could be many potential contributions to

the effective nonlinear optical coefficient of the waveguide. The particular configuration

of the diamond waveguide studied in this chapter was inspired by the results reported in

Ref. [98], e.g. tight field confinement in the order of κ ≈ 0.7 at the same time as small

substrate leakage of 0.15 dB/cm or less, and where the fabrication of such waveguides is

discussed. iii) The optical mode is mostly confined in the diamond region, so that the

contribution from the SiN layer can be omitted. Thus, whereas the confinement factor,

κ, is smaller than in the SOI configuration, where κ > 0.95 can be readily achieved, a

confinement factor κ > 0.7 can still be obtained without even trying to optimize the

waveguide configuration. Moreover, the fact that a relatively small amount of optical

field spills into the SiN region does not negatively affect the nonlinear optical properties

of the waveguide because SiN has a large Kerr coefficient, too, and therefore the optical

field that propagates in the SiN region contributes to nonlinearly induced phase shifts.

iv) Finally, the contribution of the silica region to the waveguide nonlinearity can be

neglected, too, since the Kerr nonlinearity of silica is much weaker than that of diamond.

As a consequence of all these ideas, the overlap integrals in Eqs. (4.2) were restricted to

the diamond cross-section area.
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The frequency dependence of the nonlinear coefficient, γ, and waveguide loss coef-

ficient α = cκαin/(2ndivg) defined in Eqs. (4.2) are shown in Fig. 4.4. Note that the

mode confinement decreases (less of the optical field is contained inside the waveguide)

as the wavelength increases, a property that affects both waveguide coefficients. This is

true particularly in the case of the waveguide with the smallest transverse cross-section

(A, blue curves), whose coefficients γ and α decrease significantly when the wavelength

increases.

The data presented in Fig. 4.4 also guided our choice for the waveguide design we

considered in more detail in our study. Thus, to be suitable for nonlinear optical applica-

tions, a waveguide must have large nonlinear optical coefficient and small loss coefficient.

Among our four waveguides the design B best satisfies these requirements, so that in

what follows we restrict our analysis to this waveguide.

Before discussing applications of these diamond fin waveguides, we would like to

explain why we can neglect the influence on pulse dynamics of two nonlinear optical

effects often included in the NLSE Eq. (4.1), namely the self-steepening (SS) effect and

stimulated Raman scattering (SRS). To this end, let us consider first the contribution

of SS effects to the pulse evolution. Following the approach introduced in [102], we

calculated the shock time, τs =
∂ln(γ)
∂ω

, which quantifies the strength of SS effects. To

(a) (b) 

Figure 4.4: (a) Frequency dispersion of the nonlinear waveguide coefficient. (b) Waveg-
uide loss coefficient vs. wavelength. The colors blue, red, green, and black correspond to
designs A, B, C, and D, respectively.
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(a) (b) 

Figure 4.5: (a) Dependence on wavelength of the nonlinear refractive index n2 of diamond.
(b) Shock time parameter of the diamond waveguide (design B), with contributions from
both material and waveguide dispersion being included.

do this, we have included in the calculation of the nonlinear waveguide coefficient γ the

contribution of the material dispersion n2(ω), taken from [103] and plotted in Fig. 4.5(a),

as well as that of the waveguide dispersion shown in Fig. 4.4(a). The results of these

calculations are depicted in Fig. 4.5(b). They demonstrate that τs . 0.6 fs, which means

that for pulses with width of tens of fs, as those considered in this work, SS effects can

be neglected.

Furthermore, we have similarly assessed the relevance of the SRS effects on pulse

dynamics by calculating the characteristic time TR, which quantifies the Raman effect

contribution to pulse reshaping. Specifically, this contribution can be accounted for by

adding to Eq. (4.1) the term −γP0
TR
T0
u
∂|u|2
∂τ

, where T0 and TR =
∫∞

0
tR(t)dt are the pulse

width and the first moment of the nonlinear response function, R(t), respectively. Using

the expression given in Ref. [104] for the nonlinear response function of diamond, this is

R(t) =
τ21 +τ22
τ1τ22

e
−t
τ2 sin( t

τ1
), we obtain the following relation:

TR =

∫ ∞
0

tR(t)dt =
2τ2

1 + ( τ2
τ1

)2
∼ 2

τ 2
1

τ2

, (4.3)

where the parameters τ1 ≈ 4 fs and τ2 ≈ 5.7 ps are the vibrational period and the decay

time of the Raman response in diamond, respectively. Using these specific values of τ1 and
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τ2 in Eq. (4.3) and a pulse with T0 = 10 fs one obtains TRT0
= 5.6× 10−4 � 1. This leads

us to conclude that the SRS effects can be neglected, too. By comparison, in the case of

optical fibers and for the same pulse parameters TRT0
= 0.81 (for optical fibers τ1 ≈ 12.2 fs

and τ2 ≈ 32 fs), which explains why in that case SRS effects must be incorporated in the

theoretical model.

4.4 Applications to soliton formation and frequency

comb generation

In what follows, we will illustrate how the diamond-fin waveguides analyzed in the pre-

ceding section can be used to implement important nonlinear optics applications, namely

pulse reshaping, soliton generation, and frequency comb generation. To begin with,

we consider the waveguide design B and select the wavelength λ = 665 nm, which is

in the anomalous dispersion regime (β2 < 0) but close to the zero-GVD point. This

ensures that key nonlinear optical phenomena, such as soliton formation and supercon-

tinuum generation, can be achieved. At this wavelength, the waveguide parameters are

ng = c/vg = 2.5, β2 = −0.043 ps2 m−1, β3 = −5.6× 10−5 ps3 m−1, α = 0.262 cm−1, and

γ = 1.687 W−1 m−1. Using these parameters, we first determined the pulse dynamics in a

waveguide with length Lwg = 5 cm, by integrating Eq. (4.1) with the standard split-step

Fourier method [46]. More specifically, we seek to determine the input pulse parameters,

i.e P0 and T0, for which phenomena such as soliton formation and spectral broadening

occur.

The temporal pulse profiles calculated for several z-distances are depicted in Fig. 4.6(a).

These calculations correspond to a case when we launched in the waveguide a Gaussian

pulse with input peak power larger than the soliton formation threshold power. Specif-

ically, we chose an input pulse width of T0 = 25 fs, meaning that the dispersion length

is LD = T 2
0 /|β2| = 1.5 cm < Lwg, and input power P0 = 60 W. Under these condi-

tions, the power threshold for soliton formation, defined by the relation LD = Lnl, where
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(c) 

(a) (b) 

Figure 4.6: (a) Temporal pulse profiles at different propagation lengths for a Gaussian
input pulse with P0 = 60 W and T0 = 25 fs. Inset shows the output pulse and its sech-fit.
(b) Output pulse profile determined for different pulse widths and P0 = 60 W. (c) Output
pulse spectra for different input peak powers when T0 = 10 ps. In all cases, Lwg = 5 cm.

Lnl = 1/(γP0) is the nonlinearity length, is Pth = 40 W < P0. These numerical simula-

tions show that the input pulse evolves into a soliton superimposed on a pedestal, that

is the well-known scenario of soliton formation at peak powers larger than the soliton

threshold power. Note that for our parameters Lwg � L′D, where L′D = T 3
0 /|β3| = 28 cm

is the TOD length, so that the pulse shape remains symmetric upon propagation.

In Fig. 4.6(b) we illustrate how the temporal pulse profile at the waveguide output

changes when varying the input pulse width. Thus, when T0 = 12 fs, the dispersion

length (LD = 0.3 cm) is considerably smaller than Lnl and Lwg, which means that large

pulse broadening is achieved. In addition, L′D = 3 cm < Lwg, so that TOD effects
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lead to pulse asymmetry. By contrast, when T0 = 50 fs, LD = 5.8 cm is comparable

with Lwg, meaning that in this case both dispersive and nonlinear effects influence the

pulse dynamics. Furthermore, we illustrate in Fig. 4.6(c) that significant pulse spectral

broadening can be achieved in the same waveguide length by using broader input pulses

with larger input peak power, so that SPM effects become dominant in determining

the pulse evolution. For example, the emergence of spectral modulations upon pulse

propagation, for a pulse with T0 = 10 ps can be clearly observed when the pulse peak

power increases from 1 W to 1 kW.

From a practical point of view, perhaps an even more important application of

diamond-fin waveguides, which we demonstrate in what follows, is frequency comb gener-

ation. This nonlinear optical phenomenon can be traced to the generation of dissipative

solitons in optically driven Kerr cavities [105, 106, 107, 108, 109]. In particular, the non-

linear partial differential equation describing the evolution of the slowly-varying envelope

of the electric component of an optical field propagating in an optical material with Kerr

nonlinearity and driven by a continuous-wave (CW) monochromatic optical field, the so-

called Lugiato-Lefever equation (LLE), was first derived in the context of optically driven

nonlinear optical cavities [110] and shown to govern the generation of dissipative solitons.

The temporal version of the LLE has been formulated in [111] and later extended to op-

tical cavities containing nonlinear left-handed materials [112]. Its generalisation to an

externally pumped NLSE with boundary conditions, a model relevant to the device we

will investigate in what follows, has been first derived in Ref. [113].

To demonstrate frequency comb generation in a diamond-waveguide device as the

one shown in Fig. 4.1(c), we consider a microring resonator of length L coupled to a

straight optical bus, both made of diamond-fin waveguides. The boundary conditions for

our model are provided in Fig. 4.1(c), whereas the externally pumped NLSE describing

the pulse propagation in the microring [92] (and which establishes a link between the
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dissipative soliton formation and frequency comb generation) is given below:

tr
L

∂a(t, τ)

∂t
=

√
θ

L
ain(τ)− α′ + iδ

L
a(t, τ)− 1

vg

∂a(t, τ)

∂τ
− iβ2

2

∂2a(t, τ)

∂τ 2

+
β3

6

∂3a(t, τ)

∂τ 3
+ iγ|a(t, τ)|2a(t, τ). (4.4)

In this equation, the variable z has been substituted by a temporal variable equivalent

to a number m of roundtrips, i.e. t = mtr, α
′ = (αr + θ)/2, with αr = αL, θ is

the coupling constant of the driving field into the microring, and δ is the detuning of

the microring resonance closest to the frequency of the driving field. The associated

boundary conditions describe the coherent superposition of the field incoming from the

pump and the field propagating inside the microring. More precisely, they show that the

field starting the round m+ 1 can be viewed as being equal to the in-coupled pump field

plus the part of the field from the previous round m that has not escaped out of the

microring. This latter field has accumulated with respect to the pump field during the

round trip the linear phase φ0.

The steady-state solution of Eq. (4.4) consists of a train of solitons with repetition

time equal to the cavity round-trip time. This is equivalent to a comb in the frequency

domain, with a frequency-spectral-range equal to the inverse of the round-trip time.

To find the steady-state solution of Eq. (4.4), we impose the condition
∂a(t, τ)
∂t

= 0.

The resulting equation, whose solution only depends on τ , is solved by combining a

discrete Fourier transform (DFT) method with the Newton-Raphson algorithm for solving

nonlinear systems of equations. It is important to note that the DFT method requires the

use of wavelength dependent waveguide coefficients, so that the coefficients c/vg, β2, β3,

γ, and α are incorporated in the numerical method as wavelength dependent functions.

Following this approach, we considered a microring resonator based on waveguide B, of

length L = 628 µm and operating at λ = 665 nm. For simplicity, we assumed that θ = αr,

i.e. the system operates in the under-coupling regime [114], and the detuning parameter

was set to δ = 0.05. Note this assumption can be justified as the microring radius of
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Figure 4.7: (a) Simulated frequency comb spectra for a microring of length L = 628 µm
based on waveguide design B. The inset demonstrates the flatness of the comb around
the driving wavelength. (b) Temporal pulse profile within the microring. The inset shows
the variation of the CW background intensity with the input power.

100 µm is large enough to avoid a tight coupling gap spacing, and especially narrower

than the fin width, by comparing it with smaller microrings found in the literature [115].

The spectra and pulse shapes are shown in Figs. 4.7(a) and 4.7(b), respectively. They

demonstrate that diamond-fin waveguides can be used to generate frequency combs in

visible range reaching close to one octave-span. The pulse train building up inside the

microring sits onto a CW background and has width of∼15 fs. Achieving such short pulses

is made possible by the large nonlinearity (γ) of the system, which induces significant

spectral broadening and thus the excitation of a large number of optical modes of the

microring. Our simulations reveal that the lowest input power required to reach the

steady state is Pin ≈ 0.5 W. When Pin increases, the comb is hardly affected, but the

driving wavelength is slightly redshifted. In the time domain, increased Pin leads to larger

CW background.

As a final observation, we mention that the NLSE Eq. (4.4) can be used directly to

investigate the formation and evolution of the comb towards its stationary state [92], but

this method would have required considerably more computational time without gaining

much in return. Inasmuch as our study is geared towards applications to nonlinear optics

of ultrasmall diamond waveguides, the specific nature of the soliton formation during

the build-up process is not particularly relevant for the properties of the final frequency

comb that is generated. In fact, this is why we chose to employ in our simulations a
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numerical method tailored for computing directly the steady-state solution, and as such

a method not suitable for the analysis of the transient regime. The advantage of our

method, which is particularly relevant for practical application, is that it allows one to

investigate extremely broad frequency combs as a very large number of spectral modes

can be incorporated at minimum computational cost.

4.5 Conclusion

To conclude, we have presented the design of diamond-fin waveguides and analyzed in

detail their linear and nonlinear optical properties. In particular, we have determined

the frequency dependence of the main linear and nonlinear optical coefficients of the

waveguides and analyzed the dependence of these parameters on the waveguide geometry.

To do that, we have explored how three key waveguide parameters, namely the fin width

w, the fin height h + t and the buffer height hb affect the optical mode supported by

the structure, and its frequency dependence. Precisely, we have targeted designs that

cross the zero-GVD line, so negative GVD can be exploited for soliton propagation,

and we have observed that there is a sweet spot in the range of practical hb values in

which the energy leakage down through the buffer is minimised over the wavelength range

under interest, while maximising the nonlinear effects. Therefore, by selecting one of the

proposed waveguide designs with these optimum characteristics, we have simulated the

pulsed dynamics through these structures by means of a comprehensive mathematical

model based on NLSE. The results of our investigations suggest that these structures

can enable efficient soliton formation and propagation and, potentially, supercontinuum

generation. In addition, we have demonstrated how these waveguides can be employed

to generate frequency combs operating in the visible spectral domain. Importantly, our

simulations show that it is possible to generate almost one octave span stable combs in

the visible range with input continuous-wave powers as low as 0.5 W.



Chapter 5

Raman amplification and pulse

dynamics in silicon photonic crystal

waveguides

5.1 Introduction

Several applications have inspired the huge research in photonics during the last two

decades, but one that outstands clearly is the development of optical interconnects for

chip-to-chip and intra-chip communications. The main reasons behind research in this

area are the preceived limitations of electrical interconnects, such as poor bandwidth,

large power dissipation, need for impedance matching or crosstalk between electrical paths

[1, 2]. In contrast, optical interconnects are found capable of solving all of these challenges,

including also that they can be developed in smaller form factors. On-chip optical devices

such as switches or modulators have been already built using semiconductors of the III-V

bands due to their high nonlinear optical properties [5, 6]. Nevertheless, silicon photonic

waveguides (Si-PhWGs) have become a very good alternative to these devices since the

high refractive index of silicon allows the design of high-index contrast waveguides, which

also enhances the nonlinearities by a good confinement of the electromagnetic field [7].
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Furthermore, given the transparent window of this material, which covers the entire

telecommunication spectra, electronic and optical domains can be brought together into

the same chip and CMOS-compatible designs can become realistic for several applications

[8, 9]. Among many other breakthroughs, it has been proved that Si-PhWGs can be

designed to synthesize key nonlinear processes such as Raman amplification [11, 12],

soliton [13] and supercontinuum [14] generation, frequency conversion [15], modulation

instability [16] and pulse compression [17, 18], between others. However, Si-PhWGs lack

of engineering flexibility when a specific application requires the tuning of their optical

properties.

A promising solution to this problem is the introduction of Photonic crystals (PhCs),

which incorporate more designable dimensions. The way to do this consists on creating a

periodic pattern in the photonic circuit, separating regions of different dielectric constants

by a length similar to the operating optical wavelength. Certainly, depending how the

periodic dielectric medium is defined, the device could be used for multiple different

purposes, from the design of ultra-small, narrow-band filters [22, 23] to omnidirectional

mirrors, waveguides and bends [24, 25, 26]. In particular, this is possible thanks to the

wide tuning of the group-velocity (GV) vg of the propagating modes that PhCs allow.

Especially remarkable is the slow-light regime, where light-matter interaction is enhanced

and both the linear and non-linear optical effects become substantially important [27, 28,

29, 30]. In fact, very interesting applications have emerged around the control over slow-

light, such as optical buffering or time domain processing of optical signals [31, 32, 33].

By taking advantage of this notable property of PhCs, in this chapter we study how

the result of pump-to-signal amplification based on stimulated Raman scattering can dra-

matically change with different values of the GV for the two optical modes taking place in

the process. Raman scattering is the result of the interaction between two pulses at fre-

quencies ω1 and ω2 whose spectral difference is close to the Raman vibrational frequency

of the medium. In the practice, a source of light (pump) interacts with the medium and

excites new frequency components (Stokes or signal) by a third order nonlinear effect.
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Exactly at resonance, the nonlinear Raman susceptibility is pure imaginary, which can

be translated into pump depletion and signal amplification. Whereas Raman scattering

has been intensively investigated in PhC fibers [116, 117], in silicon waveguides with

uniform cross-section [63], and also several studies have been carried out on silicon PhC

waveguides (Si-PhCWGs) [118, 119], a complete study of Raman interaction in the latter

combined with all relevant linear and nonlinear optical effects on the pulse dynamics, is

not available yet.

In more detail, we present a comprehensive theoretical model that rigorously predicts

the effect of stimulated Raman scattering on Si-PhCWGs. Our model integrates the Ra-

man process with linear optical effects, which includes group-velocity dispersion (GVD),

waveguide loss, FC dispersion (FCD) and FC absorption (FCA), and with nonlinear op-

tical effects such as self-phase modulation (SPM), cross-phase modulation (XPM) and

two-photon absorption (TPA). Importantly, we show with accuracy the mathematical

derivation of the Raman nonlinear coefficients for the Si-PhCWG under interest. We

also illustrate how our model can be employed to investigate various phenomena related

to Raman interaction when the pump and the signal are in different GV regimes: slow

pump - slow signal, fast pump - fast signal and slow pump - fast signal. Indeed, this is a

noteworthy example of how completely different scenarios can be encountered in the same

Si-PhCWG. Last but not least, we conlclude the discussion demostrating how relevant

characteristic parameters such as the walk-off length between pulses can dramatically

affect the pulse dynamics along the waveguide.

From this introduction onwards, the chapter is organized as follows. We begin with a

brief theoretical overview of stimulated Raman scattering, including the description of the

nonlinear tensor used to mathematically represent this process. Then, in Section 5.3, we

incorporate the description and modal analysis of the Si-PhCWG considered for this work,

with some emphasis into the linear dispersive effects that are present in the propagating

optical modes. In Section 5.4, we derive the mathematical model based on coupled

non-Linear Schrödinger equations that will allow us to study the interaction between
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pulses, as well as we introduce the concept of linear and nonlinear characteristic lengths.

Subsequently, in Section 5.5, we discuss the results of numerical simulations for different

combinations of pump and signal modes. Eventually, we conclude this chapter with a

summary of the main findings and the implications to future developments in this research

area.

5.2 Theory of stimulated Raman scattering

The Raman response is considered a third-order nonlinear optical process that couples

photons (quanta of light energy) and phonons (quanta of vibrational mechanical energy).

In stimulated Raman scattering, a photon of frequency ωp interacting with a Raman

medium is annihilated and, as a consequence, leaves an atom of the crystal vibrating in

an excited state with energy ~ωR, which will vary for each different material. Eventually,

the vibrational state of the phonon will produce a Stokes photon at ωs = ωp − ωR or an

anti-Stokes photon at ωs = ωp + ωR, although the latter is less likely due to the higher

energy levels involved [52]. For crystalline silicon, this vibrational frequency is found to

be ωR
2π

= 15.6 THz [65]. However, this is not a pure frequency component, but it occupies

a spectral width of ∆ω/2π = 105 GHz, which corresponds with a response time of τ ∼ 10

ps. This suggests, indeed, that intra-pulse Raman effects in crystalline silicon are not

possible, since broad spectral pulses with spectral widths around Raman’s would impose

temporal widths below 100 fs, much lower than the Raman response time.

As any other nonlinear process, the Raman response can be modeled as a susceptibility

tensor. As per [120], the generic form of the third-order susceptibility tensor can be

written as:

χ̂Rijkl(Ω) =
πNν

3~
∑
σ

ωσ(αij,σαkl,σ + αik,σαlj,σ)

ω2
σ − Ω2 + 2iΩ∆ω

, (5.1)

where Ω = ωp − ωs, Nν is the number of phonons per unit volume, ωσ is the vi-
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brational resonant frequency, and αij,σ are matrix elements given by the derivatives of

the polarizability tensor α̂ with respect to the coordinate of each of the Raman-active

optical phonons σ. Given the symmetrical nature of crystalline silicon, which belongs

to the irreducible representation Γ25′, it can be found that the Raman tensor has just

one independent component for i = k and j = l, this is χ̂R1212, with the other non-zero

elements given by χ̂Riijj = 0.5χ̂Rijij [66].

It must be highlighted that the real part of these nonlinear susceptibilities will drive

a change in the refractive index the optical modes are perceiving, whereas the imaginary

part leads to depletion on one of the interacting modes and amplification on the other.

Even though the spectral width of the Raman response can not be ignored, when the

temporal widths of the interacting pulses are similar to the Raman response time, this

can be just evaluated at the resonant frequency Ω = ωR. If this is satisfied, the Raman

susceptibility would become pure imaginary with χ̂Rijij = −iχ̂R = −i11.2 · 10−18 m2V −2,

where i, j = 1, 2, 3 [67]. Furthermore, we must also clarify that we will only consider

Raman scattering along the [11̂0] direction, which we assume is the direction the devices

are fabricated along with and which, indeed, favors the cleaving of silicon during the

fabrication stage.

5.3 Description of the photonic crystal waveguide

In this section we describe the geometrical and material properties of the Si-PhCWG

structure considered for this work, which is commonly denoted as “W1 PhCWG”. Based

on the model presented in [118], the PhC structure is made by removing the central

row in a honeycomb-type periodic lattice of air holes, built within a homogeneous silicon

slab. Figure 5.1 shows, via subfigures (a) and (b), the geometry of the referred structure

and the projected bands of the guided modes that it supports, respectively. The index

of refraction considered for the silicon slab is nSi ≡ n = 3.48, its height is h = 0.6a

and the radius of the holes is r = 0.29a, where a is the lattice constant of the crystal.
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Figure 5.1: (a) Geometry of the silicon W1 PhCWG. The height of the slab is h = 0.6a
and the radius of the holes is r = 0.29a. (b) Projected band structure into the longitudinal
z-axis. Dark magenta and light brown areas correspond to slab leaky and guiding modes,
respectively. The red and blue curves represent the guiding modes of the 1D waveguides.
(c)Representation of guided modes in the Si-PhC slab waveguide. Left (right) panel
shows the amplitude of the normalized magnetic field Hx of the y-odd (y-even) mode,
calculated in the plane x = 0 for group index ng = c

vg
= 6.91.

The figure at the bottom shows an example of a guided mode at kz = 0.678π
a

and with

group velocity vg = 0.1448c, being c the speed of light at vacuum. It clearly confirms the

good confinement of the electromagnetic field within the missing row of the PhC, which

enhances the non-linear effects.

The photonic band structure of the PhC and its waveguide modes have been obtained

with the plane-wave expansion (PWE) electromagnetic solver MPB [53]. The calculations

carried out by this tool are consistent with the Bloch’s theorem, which, based on the

structure presented in this chapter, states that the optical modes of the waveguide vary

in all directions except with periodic translations along the z axis [24]. Consequently,

the propagation constant kz can be restricted just to the first Brillouin zone, which

corresponds to kz ∈ [−π/a, π/a]. Note also that, due to practical reasons, our analysis

has been focused only to in-plane wave propagation, i.e. explicitly guided modes. The

structure analysed is a supercell with dimensions 6a× 19
√

3/2a× a along the x-, y-, and

z-axis, respectively. Additionally, the computational grid is chosen to be a/60, a
√

3/120,
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Figure 5.2: (a), (b), (c), and (d) Wavelength dependence of waveguide dispersion co-
efficients ng, β2, β3, and β4, respectively, determined for the even and odd modes with
a = 388 nm. The dashed line in (a) represents the distinction between slow (below
line) and fast (above line) regimes. The circles, squares and triangles illustrates the
three different scenarios we analyze in this chapter: slow-slow, fast-fast and slow-fast,
respectively.

and a/60, for x, y, and z, respectively. As Figure 5.1(b) presents, the waveguide has two

fundamental TE-like optical guiding modes located in the band-gap of the unperturbed

PhC, one y-even and the other one y-odd.

The mathematical derivation of the coupled-mode equations that governs the pulse

dynamics, which is described in the following section, employs a mapping between the

dispersion coefficients of the waveguide modes and the linear terms of the NLS equations.

These coefficients are calculated in the form of βn = dnkz/dω
n and some of them are

directly related to physical properties. The first-order dispersion coefficient is related

to the group velocity (GV) of the pulse as it propagates. In particular, it is defined as

β1 = 1/vg and it is, obviously, the parameter that will allow us to experiment with slow-
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or fast-light modes. In consequence, the second-order coefficient quantifies the group-

velocity dispersion (GVD) or how much the temporal profile of the pulse will broaden. If

a pulse is strongly affected by GVD, its temporal profile will be broadened symmetrically.

However, if it is affected by the third-order dispersion (TOD) parameter, the pulse shape

will acquire a antisymmetrical shape. Figure 5.2 illustrates the wavelength dependance

of the four first dispersion coefficients of our Si-PhCWG with a = 388 nm. In the top

figure, we have also included a reference line through which we differentiate between slow-

and fast-light regimes. The threshold value we assume is vg/c = 0.05 or ng = 20, that is

all greater values than this group index threshold will be considered as slow-light. Based

on this, we have defined three study cases we focus on in this chapter. From now on,

circles in figures will correspond to the slow-slow study case; squares will represent the

fast-fast study case; and triangles will be mapped with the slow-fast study case, that is

the pump will propagate in slow-light regime and the signal will do it in fast-light regime.

Regarding the second-, third- and fourth-order dispersion coefficients, we can see they

tend to infinity when the GV gets closer to zero. In particular, the even mode contains

two slow-light regions, whereas the odd mode has only one. Finally, we can also notice

that the even mode can have both positive and negative GVD, whereas the odd mode

has normal GVD (β2 > 0) throughout.

5.4 Derivation of the mathematical model

This section is devoted to the derivation of a system of coupled-mode equations used to

predict the evolution of two optical pulses that mutually interact in a Si-PhCWG as they

propagate together. Not only the Raman interaction, but several other linear and non-

linear effects, including the impact of photogenerated FCs, will be considered into the

model. The couple-mode equations we derive are based on the generic model developed

in Ref. [63] for transversally uniform Si-PhWGs and in Ref. [100] for Si-PhCWGs. It

is also important to clarify now that the model presented relays on several assumptions

108



that match with common experimental setups. In fact, we follow the same assumptions

as made in Ref. [61]. Since the generic model of coupled-mode equations for an arbitrary

number of optical pulses was exhaustively detailed in Ref. [61], we will simplify the

derivation for M = 2 guiding modes, which correspond to the pump and the signal in

this case. Moreover, we will assume there is only one frequency excited for each mode,

that is ωp for the pump and ωs for the signal, and whose spectral difference matches the

Raman vibrational frequency of crystalline silicon, this is ωp−ωs
2π

= ωR
2π

= 15.6 THz.

5.4.1 Optical modes of photonic crystal waveguides

Applying the frequency domain form of Maxwell equations over the Si-PhCWG under

interest will result in all the guiding modes with frequency ω that can be excited in

this structure. Assuming an external perturbation represented by the polarization term

Ppert(r, ω), the form of the Maxwell equations becomes as follows:

∇× E(r, ω) = iωµH(r, ω), (5.2a)

∇×H(r, ω) = −iω[εc(r, ω)E(r, ω) + Ppert(r, ω)], (5.2b)

where εc(r, ω) describes the dielectric constants composing the structure of our Si-PhC, µ

is the magnetic permeability, which will be assumed to be µ = µ0 for silicon, and E and

H are the electric and magnetic fields, respectively. For our study in this chapter, Ppert

will contain the sum of polarizations that include the refractive index change induced by

photogenerated FCs, the Raman effect and the Kerr effects.

In order to derive the effect of external perturbations on the optical modes of the

PhCWG, we begin by considering the unperturbed system, this is for Ppert = 0. As

we clarified previously, we will assume the unperturbed structure supports two guiding

modes, which correspond to the pump and the signal, and whose frequencies are ωp and

ωs, respectively. These guiding modes are exact solutions of the Maxwell equations (5.2)
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with Ppert = 0. Thus, we can write the fields as follows:

Ep(r, ωp) = ep(r, ωp)e
iβpz, (5.3a)

Hp(r, ωp) = hp(r, ωp)e
iβpz, (5.3b)

Es(r, ωs) = es(r, ωs)e
iβsz, (5.3c)

Hs(r, ωs) = hs(r, ωs)e
iβsz, (5.3d)

where βp and βs are the propagation constants of the pump and signal modes, respec-

tively. Following the Bloch’s theorem, the mode amplitudes ep(r, ωp) and es(r, ωs) will be

periodic along the longitudinal axis of the waveguide, this is the z axis in our coordinate

system, with period a.

Following the convention in Ref. [121, 122], we define the power carried by each guiding

mode as:

Pi =
Wi

a
vg =

W el
i +Wmag

i

a
vg, (5.4)

where Wi = W el
i +Wmag

i and

W el
i =

1

4

∫
Vcell

∂

∂ω
(ωεc)|ei(r, ω)|2dV, (5.5a)

Wmag
i =

1

4

∫
Vcell

µ0|hi(r, ω)|2dV, (5.5b)

are the electric and magnetic energy of the pump (i ≡ p) and signal (i ≡ s) modes,

respectively, and Vcell is the volume of the unit cell of the PhC. We can assume that

the frequency dispersion of εc in Eq. (5.5a) for PhC waveguides is neglectful since the

waveguide dispersion is much larger than the material dispersion.

5.4.2 Perturbations of the photonic crystal waveguide

The polarization term Ppert(r, ω) in Eq. (5.2b), which describes the perturbation δε(r, ω)

on the dielectric constant the optical modes are truly perceiving as they propagate
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through the waveguide, becomes different to zero if we consider the photogeneration

of FCs, the Raman effect and the Kerr effects. Thus, we define the polarization term as

we did in Chapter 2 Eq. 2.2, with the sum of the contributions of each of these effects

and where the nonlinear polarization term is δPnl(r, t) = δPR(r, t) + δPK(r, t).

The linear term in Eq. 2.2 is considered as a linear effect because it does not depend on

the square of the field intensity, like the other two do. In this case, δPlin(r, t) represents

the linear change of the dielectric constant due to the generation of FCs, the absorption

of energy by these FCs and also the loss of energy caused by defects in the waveguide

walls. Assuming the medium response is nearly instantaneous, we can write the linear

contribution as we did in Chapter 2 Eqs. 2.11 to 2.13. Note that the intrinsic loss

appearing in these equations will be translated into the corresponding linear propagation

loss for each mode once we introduce the overlap integral parameter κi later on. In our

simulations, we will consider the intrinsic loss to be αdBin = 40 dB/cm, which corresponds

to αin = 9.21 cm−1.

The Raman and Kerr nonlinear terms are both described by third-order susceptibilities

that, in general, are related to the electromagnetic field as follows:

δPR(r, t) = ε0χ̂
R(r)

...E(r, t)E(r, t)E(r, t), (5.6a)

δPK(r, t) = ε0χ̂
K(r)

...E(r, t)E(r, t)E(r, t). (5.6b)

In relation to the Raman term, as already indicated in Section 5.2, we will consider

the scenario when pump and signal are exactly at Raman resonance. In the case of the

Kerr nonlinearity, this term will normally contain both real and imaginary parts different

from zero. The first one represents nonlinear processes such as SPM, XPM and FWM.

On the contrary, the imaginary part will describe TPA and XAM mechanisms that will

impact the electron and holes densities N . As explained in Ref. [61], considering again

the fact that silicon belongs to the m3m crystal point group, that this crystal satisfies

the Kleinman symmetry relations, that the frequency dispersion of the Kerr tensor can
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be neglected due to the pulse widths we use and, final but not least, bringing the result

of experimental studies [62], it is totally acceptable to assume the Kerr nonlinearity has

just one independent element, which is χ̂Kiiii = 2.30 · 10−19 + i7.01 · 10−20 m2/V 2, and that

the relations χ̂Kiiii = 2.36χ̂Kiijj and χ̂Kiijj = χ̂Kijij = χ̂Kijji apply [52].

5.4.3 Coupled-mode equations for the optical field

By applying the Lorentz reciprocity theorem, we can derive the two coupled-mode equa-

tions that will describe the propagation of pump and signal pulses along the Si-PhCWG

[63, 100, 121, 123]. This method consists on defining two solutions to the Maxwell equa-

tions (5.2), one for the unperturbed system, [Ea(r, ωa),Ha(r, ωa)], and another one for

the perturbed system, [Eb(r, ωb),Hb(r, ωb)]. These actually suggest that the spatial dis-

tribution of the dielectric constant is different from system a to system b. In more detail,

assuming the material dispersion can be neglected, the dielectric constant for system a

can be written as εa = εc(r) and the corresponding one for the perturbed system b can

be formulated as εa = εc(r) + δε(r, ω). Applying now the Lorentz integral identity as it

was explained in Chapter 3,

∫
S

∇ · FdS =
∂

∂z

∫
S

F · ẑdS +

∮
∂S

F · ndl, (5.7)

where F = Eb×H∗a + E∗a×Hb, S is the transverse section at a longitudinal point, z, and

∂S is the boundary of S, we can make use of the Maxwell equations and the following

expression can be found:

∂

∂z

∫
S

F · ẑdS = iµ0(ωb − ωa)
∫
S

H∗a ·HbdS

+ i

∫
S

(ωbεb − ωaεa)E∗a · EbdS −
∮
∂S

F · ndl. (5.8)

At this point, we focus the derivation to the specific scenario we want to study. In our

case, a quasi-monochromatic pump wave at frequency ωp is propagated in our crystalline
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Si medium, which is a Raman-active solid medium. Consequently, it will produce a

scattered Stokes signal at a lower frequency ωs. Assuming we have a single mode at

each of the frequencies and that they propagate forwards, the fields for the unperturbed

scenario take the following form:

Ea(r, ωi) =
ei(r, ωi)√

Pi
eiβiz, (5.9a)

Ha(r, ωi) =
hi(r, ωi)√

Pi
eiβiz, (5.9b)

where i = p, s for the pump and the signal, respectively.

Introducing now the perturbation into the system, the set of equations become:

Eb(r, ω) =

ap(z, ω)
ep(r, ωp)√

Pp
eiβpz + as(z, ω)

es(r, ωs)√
Ps

eiβsz, (5.10a)

Hb(r, ω) =

ap(z, ω)
hp(r, ωp)√

Pp
eiβpz + as(z, ω)

hs(r, ωs)√
Ps

eiβsz, (5.10b)

where the mode amplitudes ai(z, ω), with i = p, s, represent the change in the original

fields due to the perturbations included, and are measured in units of
√
W .

As indicated earlier, the basis of the model used in this chapter can be referred to the

generic mathematical formulation previously published in Ref. [61], so here we simply

focus on the derivation of the Raman contribution. However, we shall summarize the

process we follow to obtain the coupled-mode equations. Initially, the fields given by

Eqs. (5.9) and Eqs. (5.10) are inserted in the Lorentz equation (5.8), in which we can

neglect the line integral since it cancels for exponentially decaying guiding modes. Once

we have the system of coupled equations in the frequency domain, we apply the Fourier

transform to convert it to the time domain. It is important to clarify here that, in order to

obtain the model in the time domain, we assume that both the time-dependent fields and
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polarization can be decomposed into two components, one containing positive frequencies

and the other containing negative frequencies. This means that the electromagnetic fields

are given by:

E(r, t) =
1

2

∫ ∞
0

∑
i=p,s

ai(z, ω)
ei(r, ωi)√

Pi

× ei(βiz−ωt)dω + c.c. ≡ 1

2

[
E(+)(r, t) + E(−)(r, t)

]
, (5.11a)

H(r, t) =
1

2

∫ ∞
0

∑
i=p,s

ai(z, ω)
hi(r, ωi)√

Pi

× ei(βiz−ωt)dω + c.c. ≡ 1

2

[
H(+)(r, t) + H(−)(r, t)

]
, (5.11b)

where E(+)(r, t), H(+)(r, t) and E(−)(r, t), H(−)(r, t) are the positive and negative fre-

quency parts of the spectrum, respectively. Similarly, the polarization term can be written

as:

Ppert(r, t) =
1

2

∫ ∞
0

Ppert(r, ω)e−iωtdω + c.c.

≡ 1

2

[
P

(+)
pert(r, t) + P

(−)
pert(r, t)

]
. (5.12)

Eventually, after some mathematical manipulations and discarding the fast time-

varying terms, this approach take us to the following time-domain coupled-mode equa-

tions for the envelopes of the pump and signal pulses:

∂Ai(z, t)

∂z
= i
∑
q≥1

βq,i
q!

(
i
∂

∂t

)q
Ai(z, t)

+
iωie

−i(βiz−ωit)

4
√
Pi

∫
S

e∗i ·P
(+)
pert(r, t)dS, (5.13)

where:

Ai(z, t) =

∫ ∞
0

ai(z, ω)e−i(ω−ωi)tdω, (5.14)
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are the envelopes of the interacting pulses in the time domain, and

(5.15)

β1,i =
1

vg,i
, (5.16)

βn,i =
∂n−1β1,i

∂ωn−1
, n ≥ 2, (5.17)

are the nth order dispersion coefficients. Please note that from now on, the subindexes i

and j represent the pump mode (p) or the signal mode (s), with i 6= j when appearing

both in the same formula.

To continue with the derivation, we introduce the time domain linear and nonlinear

polarizations into the last term of Eq. 5.13. As mentioned before, we will just focus on

the derivation for the nonlinear Raman polarization. To do this, we write the Raman

term following the common convention in the bibliography [124]:

δPR,i(r, t) =
3

2
ε0[χ̂R(−ωR)

...E(r, ωs)E
∗(r, ωs)E(r, ωp)δ(ω − ωp)+

χ̂R(ωR)
...E(r, ωp)E

∗(r, ωp)E(r, ωs)δ(ω − ωs)] =

3

2
ε0χ̂

R(ωj − ωi)
...ej(r, ωj)e

∗
j(r, ωj)ei(r, ωi)|Aj|2Ai

ei(βiz−ωit)

Pj
√
Pi

. (5.18)

We now derive the Raman contribution by introducing Eq. 5.18 into the last term of

Eq. 5.13 and again discarding the fast time-varying terms,

iωie
−i(βiz−ωit)

4
√
Pi

∫
S

e∗i · δPR,i(r, t)dS = i2γiR|Aj|2Ai, (5.19)

where:

γiR(z) =
3ωiε0a

2

16vg,ivg,j

1

WiWj

∫
Snl

e∗i · χ̂R(ωj − ωi)
...ej(r, ωj)e

∗
j(r, ωj)ei(r, ωi)dS. (5.20)
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After including the effect of photogenerated FCs on the pulse dynamics as in Ref. [61],

we obtain the final coupled-mode equations for the pump and the signal combined with

the carrier dynamics rate equation:

i

[
∂Ap
∂z

+
1

vg,p

∂Ap
∂t

]
− β2,p

2

∂2Ap
∂t2

− β3,p

6

∂3Ap
∂t3

+
ωpδnfcκp(z)

nvg,p
Ap +

icκp(z)

2nvg,p
(αfc + αin)Ap+[

γp(z)|Ap|2 + 2γps(z)|As|2
]
Ap + 2γpR|As|

2Ap = 0, (5.21a)

i

[
∂As
∂z

+
1

vg,s

∂As
∂t

]
− β2,s

2

∂2As
∂t2

β3,s

6

∂3As
∂t3

+
ωsδnfcκs(z)

nvg,s
As +

icκs(z)

2nvg,s
(αfc + αin)As+[

γs(z)|As|2 + 2γsp(z)|Ap|2
]
As + 2γsR|Ap|2As = 0, (5.21b)

∂N

∂t
= −N

τc
+

1

~Awg

∑
i=p,s

[
γ′′i (z)

ωi
|Ai|4 +

∑
j = p, s

j 6= i

4γ′′ij(z)

ωi + ωj
|Ai|2|Aj|2

]
, (5.21c)

where τc ≈ 500 ps is the FC recombination time in Si-PhCWGs [125], the effective trans-

verse area of the region in which FCs are generated has been assumed to be the waveguide

transverse area Awg = ah and the ′′ refers to the imaginary part of the nonlinear coef-

ficients. Note that degenerate and non-degenerate TPA effects are implicit in Eq. 5.21c

via the imaginary parts of the nonlinear susceptibilities [126]. In more detail, the whole

set of linear and nonlinear coefficients in Eqs. (5.21) are defined as follows:

κi(z) =
ε0an

2

2Wi

∫
Snl

|ei(ωi)|2dS, (5.22a)

γi(z) =
3ωiε0a

2

16v2
g,i

1

W̄ 2
i

∫
Snl

e∗i (ωi) · χ̂K(ωi,−ωi, ωi)
...ei(ωi)e

∗
i (ωi)ei(ωi)dS, (5.22b)

γij(z) =
3ωiε0a

2

16vg,ivg,j

1

W̄iW̄j

∫
Snl

e∗i (ωi) · χ̂K(ωj,−ωj, ωi)
...ej(ωj)e

∗
j(ωj)ei(ωi)dS, (5.22c)

γiR(z) =
3ωiε0a

2

16vg,ivg,j

1

WiWj

∫
Snl

e∗i · χ̂R(ωj − ωi)
...ej(r, ωj)e

∗
j(r, ωj)ei(r, ωi)dS, (5.22d)

where Snl(z) is the transverse area of the region filled with nonlinear material, κi measures
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the grade of confinement of the field in the nonlinear region, γi corresponds to the SPM

effect and contributes to the TPA process with its imaginary part, γij is related to the

XPM effect and to the XAM process with its imaginary part and γiR corresponds to the

Raman effect.

5.4.4 Characteristic lengths

Despite of the considerable complexity of the coupled-mode equations we obtained to

investigate the properties of Raman interaction in Si-PhCWGs, one can easily identify

the key effects that will disturb the propagating pulses by defining characteristic lengths

[39]. These indicators can be used to measure the strength of the different linear and

nonlinear effects based on a certain waveguide length and, also, the input power. In

order to derive them, let us normalize the system of coupled-mode equations Eqs. 5.21

by applying the change of variable t = T0τ , where T0 is the pulses’ temporal widths, and

the nth derivative term over time becomes:

∂

∂tn
=

1

T n0

∂

∂τn
. (5.23)

Since the variation with the distance of the optical modes Ai is still included in the

normalized coupled-mode equations by the ∂Ai
∂z

term, it is trivial to understand that the

inverse of each factor multiplying the optical modes’ envelope or its derivatives will own

units of distance. Consequently, we define the following characteristic lengths:

LD =
T 2

0

|β2|
, (5.24a)

L′D =
T 3

0

|β3|
, (5.24b)

LSPM,i =
1

|γi|P0,i

, (5.24c)

LXPM,i =
1

2|γij|P0,j

, (5.24d)

LR,i =
1

2|γiR|P0,j

, (5.24e)

117



where, respectively, these are named second order dispersion length, third order dispersion

length, SPM length, XPM length and Raman length. Note that, from now on, we will

just make reference to the Raman length from the signal point of view, this is LR = LR,s.

Last but not least, we shall introduce as well the concept of walk-off length between

pulses, which is related to the fact that each pulse will propagate through the waveg-

uide more slowly or more rapidly depending on their respective wavelengths. Although

we could assume the pump and signal pulses could be simultaneously launched into the

waveguide input, they will eventually get separated after some distance. Precisely, the

Raman and Kerr cross-interaction between the pulses will have an effect only when they

are overlapping. Therefore, the walk-off length is an important indicator as it measures

the distance from which we can assume the pulses have separated from each other, and

consequently, the distance from which we can expect almost no further interaction be-

tween them. Similarly as shown in [46], the walk-off length is defined as follows:

Lw−off =
T0

| 1
vg,p
− 1

vg,s
|
. (5.25)

For the remaining of the chapter, these characteristic lengths we have just defined will

be frequently employed in order to help with the understanding and explanation of the

different results.

5.5 Simulation results and discussion

In this section we illustrate how our theoretical model can be used to investigate various

phenomena related to Raman interaction in Si-PhCWGs. In particular, we define three

study cases which are characterised by different combinations of group velocities for the

pump and the signal. As mentioned in section 5.3 and shown in Fig. 5.2, in the first study

case we simulate the Si-PhCWG when both pulses belong to the slow-light regime; in the

second study case we will set up both pulses in the fast-light regime, while, in the third

study case, we will employ a pump in the slow-light regime and a signal in the fast-light
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regime.

In terms of the selected algorithm to solve the system of equations Eqs. 5.21, we

have used a combination between the split-step Fourier method [46] and a fifth-order

Runge-Kuta method for the integration of the FCs terms in the nonlinear term. Even

though our mathematical model accounts for the z-dependence on the linear and nonlinear

coefficients, we will average them over the lattice constant length, since as shown in the

appendix of Ref. [61], the results obtained with this simplified model are comparable to

the ones obtained by the original models.

This section is divided into two parts. On the one hand, the first part will show the

simulation results for each of the three study cases based on the same Si-PhCWG, e.g.

the lattice constant will be fixed to a = 388 nm for all cases, so we will concentrate our

investigation in understanding the effects of changing the pulse width T0. Indeed, this

investigation indirectly demonstrates one of the main advantages of these photonic crystal

structures: this is, the same device can support different group velocity combinations

between the pump and the signal without varying its geometry and dimensions. On the

other hand, in the second part of this section, we will discuss about the effects of varying

the walk-off length between pulses. In this case, the lattice constant of the device will be

allowed to vary for each scenario.

5.5.1 Results of study cases in the same Si-PhCWG

Let us consider our Si-PhCWG with a = 388 nm. Following section 5.4.4, we start

analyzing in figure Fig. 5.3 the second- and third-order dispersion lengths for the pump

and the signal against various pulse widths, T0. The black dashed line represents the

reference waveguide length we take into account on our simulations, being Lwg = 500

µm, which is a standard fabrication length. The circles, squares and triangles illustrate

the three study cases we analyze in this chapter: slow pump - slow signal, fast pump -

fast signal and slow pump - fast signal, respectively.

Based on the above values, the slow-slow study case corresponds to a strong dispersion
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Figure 5.3: Second-order (up) and third-order (bottom) dispersion lengths for the pump
and the signal for different pulse widths and a = 388 nm. The circles, squares and
triangles illustrate the three different scenarios we analyze in this chapter: slow-slow,
fast-fast and slow-fast, respectively. The dashed black line represents the waveguide
length, Lwg = 500 µm.

regime for the signal, both for second and third order effects, while the pump experiments

also considerable second order effects. For the slow-fast case, the pump propagation is

mainly affected by second order dispersion effects, especially for the shortest pulse width,

while the signal is in a weak dispersive regime. Finally, in the fast-fast case, both pump

and signal are in a weak dispersive regime.

Regarding to the nonlinear lengths, in Fig. 5.4 we plot their dependance with the

pulse peak powers for the three study cases. Similarly as we found for the dispersion

lengths, the nonlinear effects are much stronger for the slow-slow case. This is due to the

effective nonlinear susceptibilities depending inversely with the group velocities. We can

also notice that the Raman effect is clearly present in all scenarios for waveguide lengths

below half a millimeter. However, the SPM effect will be mainly present in the pump and

the XPM effect in the signal, due to the fact we are assuming initial pump peak powers

more than two orders of magnitude bigger than signal peak powers.

The evolution of pump and signal pulses in the time domain for the slow-slow study

case is shown in Fig. 5.5, up and bottom, respectively. The NLS equations have been

120



Figure 5.4: Pulses peak powers dependance of the Raman, SPM and XPM nonlinear
lengths for the different study cases with a = 388 nm. The dashed black line represents
the waveguide length, Lwg = 500 µm.

solved against the following initial conditions: pulse width, T0 = 7 ps, signal peak power,

P0s(z = 0) = 5× 10−4 W and pump peak power, P0p(z = 0) = 0.22 W. Under these con-

ditions, Raman is the leading effect in the pulse dynamics, considering that the weaker

SPM and XPM terms are even more diminished by the strong attenuation of the waveg-

uide as the pulses propagate. However, another important effect is the walk-off length

between pulses, which for this scenario is Lw−off = 27.8µm. This explains the early

splitting between pump and signal on Fig. 5.5b). In fact, it should be indicated at this

point that the simulations have been carried out by applying a change of variable with

temporal reference to the pump, i.e. t− z
vg,p

= T0τ . This is why the pump pulse evolves

during the entire simulation domain over the τ = 0 point, whereas the signal pulse moves

away from it. The most noteworthy outcomes from this scenario are as follows. Primar-

ily, we observe that the signal amplification grows very fast, thanks to the high value
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Figure 5.5: Pulse evolution in the time domain for T0 = 7 ps, P0s(z = 0) = 5× 10−4 W
and P0p(z = 0) = 0.22 W. Results obtained for the slow-slow study case.

of the effective Raman susceptibility, and achieves its maximum before the pulses get

separated. The eighth capture of the pump pulse along z illustrates how the pump gets

depleted mostly by its trailling edge because it travels faster than the signal. Secondly, if

we consider the wavelength domain, this actually means that the smaller wavelengths of

the signal are interacting with the bigger wavelengths of the pump, whose consequence

is a shift of the signal’s frequency towards bigger wavelengths [46]. This is clearly seen in

the signal’s spectra of Fig. 5.6 at around z = 100 µm. Certainly, even though the pulses

are getting more and more separated, the pump is still able to effectively transfer energy

to a certain region of the signal’s leading edge while this moves away.

By calculating the Raman amplification efficiency at the output of the waveguide, e.g.

at z = Lwg, based on the following equation:

η[dB] = 10 log

[∫∞
−∞ |As(z = Lwg, t)|2dt∫∞
−∞ |As(z = 0, t)|2dt

]
, (5.26)

we evaluate the Raman amplification dependence on the pump peak power for different

pulse widths in Fig. 5.7. Here we show the efficiency of the energy transferred from

the pump to the signal, leading to various interesting phenomena we proceed to explain.

Firstly, for very low pump peak powers, the efficiency strongly relies on the pulse width.
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Figure 5.6: (a),(b) Evolution of pump and signal spectra along the waveguide, respec-
tively. Results obtained under the same conditions as in Fig. 5.5.

The broader the pulse width is, the more interaction will occur between both pulses

and the more Raman amplification will be achieved. However, due to the poor initial

pump peak power, the waveguide losses will clearly outstand the Raman amplification

and the signal level at the waveguide output will be very poor. The curves evolve linearly

but, interestingly, with higher slopes for the narrower pulses. Indeed, we can notice the

amplification for narrower pulses overcome those for broader pulses. The explanation is

based on a perfect balance between the increased Raman factor due to the increase in

peak power and the pulse broadening due to dispersive effects. Precisely, the narrower

the pulse width is, the earlier the temporal dispersion will occur, which as shown in

Fig. 5.3 is stronger for the signal. The next characteristic we observe is the appearance of

a second contribution to the amplification efficiency η, mostly noticeable in the curve for

T0 = 10 ps when there is a change of slope. This is due to the effective transfer of energy

from the trailling edge of the pump pulse to the leading edge of the signal pulse, as was

shown in Fig. 5.5 and which leads to a maximum of energy transfer to the signal. After

this inflexion point, all curves evolve towards a stable tendency. Certainly, just after this

maximum, the Raman factor becomes so strong that the pump gets depleted very fast,

up to the point that the trailling edge of the pump can no longer transfer energy to the
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Figure 5.7: Pump peak power dependence of Raman amplification for different pulse
widths. Results obtained for study case 1 (slow-slow), under same conditions as in
Fig. 5.5.

leading edge of the signal.

Having shown the complex slow-slow scenario given by the strong nonlinear effects

and certainly influencing dispersive effects, we move on the opposite case, this is when

both the pump and the signal are in fast-light regimes. In this case, the dispersive effects

will not play an important role. Additionally, both pulses own a very similar group

velocity, such as the walk-off length is several times bigger than the waveguide length,

this is Lw−off = 4.6 mm for a pulse width of T0 = 5 ps. Under these conditions, we show

in Fig. 5.8 the pulses evolution in the time domain when P0s(z = 0) = 5 × 10−4 W and

P0p(z = 0) = 1 W. Even though the Raman coefficient is much smaller than in the slow-

slow case, consequently establishing a slower transfer of energy, the interaction between

pulses occur along the entire waveguide, which clearly contributes to a noticeable signal

amplification. We can also highlight that the pump depletion is just given in the middle

of the pulse since the pulses do not walk-off from each other.

With regards to the evolution of the spectra, this scenario can be used to illustrate

clearly the effects of SPM and XPM. On the one hand, as indicated in Fig. 5.4, the pump

was expected to show the consequences of SPM after propagating through the waveguide

when using peak powers above 0.5 W, approximately. By using an initial pump peak
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Figure 5.8: Pulse evolution in the time domain for T0 = 5 ps, P0s(z = 0) = 5× 10−4 W
and P0p(z = 0) = 1 W. Results obtained for the fast-fast study case.

power of P0p(z = 0) = 1 W, even considering the depletion of power due to the Raman

effect, we can clearly map the SPM effect with the two sidelobes appearing on Fig. 5.9a).

On the other hand, the signal was expected to show XPM for pump peak powers above

0.7 W, approximately. Indeed, there are two sidelobes that can be seen on Fig. 5.9b)

which are the consequences of this effect.

Figure 5.9: (a),(b) Evolution of pump and signal spectra along the waveguide, respec-
tively. Results obtained under the same conditions as in Fig. 5.8.

To finish with the second study case, in Fig. 5.10 we plot the efficiency of the energy

transfer from the pump to the signal for various pump peak powers. This figure clearly
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Figure 5.10: Pump peak power dependence of Raman amplification for different pulse
widths. Results obtained for study case 2 (fast-fast), under same conditions as in Fig. 5.8.

states that this scenario is almost independent on the pulse widths used. Indeed, these

efficiency curves correspond to classic amplification traces with a linearly growing region

and a saturated tendency due to the rapid depletion of the pump. We should highlight

that this scenario appears to be a potential candidate for designs of integrated optical

Raman amplifiers, with efficiencies of 48 dB/(mmW), one order of magnitude above those

experimentally or theoretically reported in the literature (see Refs. [12, 57]). Note that,

although we are classifying this scenario as a fast-light one for both pump and signal, the

group indexes of the modes in this Si-PhCWG are about three times bigger than those

in conventional SOI rib and strip waveguides.

Once we have presented the results of the two opposite scenarios, we proceed with the

last study case, in which we set the pump in the slow-light regime and the signal in the

fast-light regime as a compromise situation. The signal and pump initial peak powers have

been chosen P0s(z = 0) = 5× 10−4 W and P0p(z = 0) = 3.25 W, respectively, and a pulse

width of T0 = 5 ps makes the walk-off length between pulses Lw−off = 76.25 µm. Since the

signal is faster than the pump, we observe in Fig. 5.11 that the signal moves away from the

pump in the opposite direction compared to Fig. 5.5. Indeed, the pump now gets depleted

by its leading edge and the signal gets more energy on its trailing edge. Regarding the

126



Figure 5.11: Pulse evolution in the time domain for T0 = 5 ps, P0s(z = 0) = 5× 10−4 W
and P0p(z = 0) = 3.25 W. Results obtained for the slow-fast study case.

evolution of pump and signal spectra, we should firstly note that the bigger wavelengths

of the pump are interacting also with the bigger wavelengths of the signal. In Fig. 5.12

we observe that both the pump and the signal have an asymmetric spectra. Actually,

the ripples appearing on one side of the pump’s spectra are given by a strong SPM, but

this is only affecting to one side of the spectrum since the other side is being depleted.

In the signal, we can also observe that the pulse is shifted towards smaller wavelengths,

on the contrary to the slow-slow case. Additionally, a single ripple due to XPM is found

on bigger wavelengths, which is also in line with our previous explanations. The pump

peak power used in the scenario represented by Fig.5.11 corresponds to the crossing point

between curves in Fig. 5.13. After this crossing point, the curve for the smallest pulse

width goes over the other two. This behavior is noteworthy and is associated to two facts:

firstly, the higher the pump peak power is, the stronger the Raman effect becomes and the

earlier the total pump depletion occurs before the signal moves away; and secondly, the

second-order dispersion effect on the pump is stronger for narrower pulses. Both reasons

contribute to the smaller pulse widths overcoming the amplification achieved with the

broader ones. Clearly, the pulse width is a key parameter that can change the dynamics
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Figure 5.12: (a),(b) Evolution of pump and signal spectra along the waveguide, respec-
tively. Results obtained under the same conditions as in Fig. 5.11.

more strongly than in the fast-fast case. This is due, again, to the short walk-off length

between pulses.

5.5.2 Tuning the walk-off length between pulses

In the second part of this section we aim to study the effect of the walk-off length between

pulses by modifying the lattice constant of the PhC structure we have been using so far.

This is, indeed, of high interest given the relevancy of this parameter over the behavior of

pulses along the waveguide. The procedure we have developed begins by selecting one of

the scenarios shown for each study case and then tuning the group velocity of one of the

modes. Obviously, when changing the group velocity and, consequently, the frequency of

the chosen mode, the lattice constant of the PhC must be recalculated in order to satisfy

Raman resonance frequency, this is:

Ωp − Ωs =
fR · a
c

, (5.27)

where c is the speed of light at the vacuum and fR = 15.6 THz.
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Figure 5.13: Pump peak power dependence of Raman amplification for different pulse
widths. Results obtained for study case 3 (slow-fast), under same conditions as in
Fig. 5.11.

Starting with the slow-slow study case, we fix the signal mode to Ωs = 0.2582 and

vg,s
c

= 0.01. Thus, the pump mode is modified to the new modes shown in Table 5.1.

As we can observe, we are bringing the pump group velocity closer to the signal’s in

order to increase the walk-off length. This can be done by reducing the lattice constant

of the PhC. Fig. 5.14 shows the pump peak power dependence of Raman amplification

for the different walk-off lengths when choosing a pulse width T0 = 10 ps and an initial

signal peak power P0s = 5 × 10−4 W. It is noteworthy to explain what is happening at

around P0p = 0.35 W. Comparing the curves from the bottom to the top, we can notice

that for smaller lattice constants, there is no peak. This can be explained since the

smaller the lattice constant is, the slower the pump becomes, which makes the Raman

coefficient grow and the pump gets depleted earlier. If the pump peak power is too high,

the Raman coefficient grows so much that the pump gets depleted very soon and there

Table 5.1

pump mode Ωp
vg,p
c

Lw−off
T0

[m/s] a [nm]

Original mode 0.2784 0.0407 3.97× 106 388
Tuned mode 1 0.2781 0.0297 4.52× 106 383
Tuned mode 2 0.2779 0.0181 6.72× 106 379
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Figure 5.14: Pump peak power dependence of Raman amplification efficiency for differ-
ent walk-off lengths. Smaller lattice constants are equivalent to slower pumps. Results
obtained for study case slow-slow, with P0s = 5×10−4 W, T0 = 10 ps and Lwg = 400 µm.

is not remaining power to build the second signal that appeared in Fig. 5.5b). If the

pump peak power is too small, the second signal is not built because there is just lack of

power. However, for the right peak power, as soon as there is a balanced rate between the

pump depletion speed and the walk-off between pulses, a second signal is created and the

amplification curve shows a peak. In terms of spectra, the smaller the lattice constant

is, i.e. the slower the pump is, the more important are the non-linear terms, so the more

sidelobes will appear in the spectra.

The fast-fast scenario has been modified as shown in Table 5.2 to show the effects

of the walk-off length between pulses. In this case, the pump mode has been fixed to

Ωp = 0.2807 and vg,p
c

= 0.0739 and the signal mode has been moved towards higher

group velocities. This means that now we are making the two modes more different in

terms of group velocity by reducing the lattice constant, so the walk-off length will be

reduced as well. We must note that, due to the closeness between group velocities in

Table 5.2

signal mode Ωs
vg,s
c

Lw−off
T0

[m/s] a [nm]

Original mode 0.2605 0.076 9.27× 108 388
Tuned mode 1 0.2609 0.0864 1.5× 108 381
Tuned mode 2 0.263 0.1334 4.96× 107 340
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the initial situation, very little changes in the lattice constant will notably modify the

walk-off length. For instance, by just reducing the lattice constant in 7 nm, there is a

reduction of more than six times in the walk-off length between the original scenario and

the first modified scenario. However, after this particular region, the walk-off length is

not so variable with the lattice constant value, so the reduction in the walk-off length

between the second and third scenarios are of three times, approximately, for a difference

in the lattice constant of 41 nm.

Given the long walk-off lengths of this scenario, we have set up our simulations for

a waveguide length of Lwg = 1 mm. In Fig. 5.15 we plot the efficiency of Raman am-

plification for P0,s = 5 × 10−4 W and T0 = 10 ps, with the three different cases we have

included in Table 5.2. We can observe that the smaller the lattice constant is, the faster

the signal travels, and the flatter the amplification growth is. The effect of the walk-off

length is the most interesting fact. Since the pump does not only get depleted by the

middle of the pulse, but also by one side, the amplification efficiency is improved because

there is more energy transferred.

Figure 5.15: Pump peak power dependence of Raman amplification efficiency for differ-
ent walk-off lengths. Smaller lattice constants are equivalent to faster signals. Results
obtained for study case fast-fast, with P0s = 5× 10−4 W, T0 = 10 ps and Lwg = 1 mm.

For the slow-fast case, we have kept the pump mode unvaried, being Ωp = 0.2873 and

vg,p
c

= 0.0398. The different signals follow the characteristics shown in Table 5.3, where
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it can be noticed that we are using bigger lattice constants to reduce the signal’s group

velocity and bring it closer to the pump’s.

We have ran the simulations using a signal peak power of P0s = 5 × 10−4 W and a

waveguide length of Lwg = 400 µm. In Fig. 5.16 we illustrate the efficiency of Raman

amplification for the selected signals. We must clarify that, in order to show the behaviors

for different enough walk-off lengths, we have not fixed the pulse width for the three

scenarios, but we have used T0 = 5 ps for a = 388 nm, T0 = 10 ps for a = 479 nm

and T0 = 20 ps for a = 515 nm. Based on this, we can observe that the slower we

make the signal, i.e. the longer the walk-off length becomes, the earlier the Raman

saturation point is reached. Furthermore, it is noticeable that, for pump peak powers

below 0.2 W, the amplification at the end of the waveguide is higher for faster signals.

This can be explained since, even though the pump is transferring energy more slowly,

the energy of one of the pulse sides is being transferred also due to the walk-off between

pump and signal. However, for pump peak powers between 0.2 W and 2 W, the strength

of the Raman factor is clearly determined by the group velocities and by the Raman

susceptibilities. Thus, the Raman factors for the three scenarios are so different now that

the walk-off length is not a key differentiator any more, and the amplification efficiency

becomes clearly better for slower signals. Eventually, when the pump peak power is

increased enough, this parameter becomes again the key contributor in the value of the

Raman factor. In other words, the differences in the signal’s group velocity and in the

Raman susceptibilities for the different scenarios are not as important as before, but it

is the pump peak power. Consequently, the walk-off between pulses is again the main

responsible of the growth of the energy transfer. In terms of spectra, the slower the signal

Table 5.3

signal mode Ωs
vg,s
c

Lw−off
T0

[m/s] a [nm]

Original mode 0.2669 0.1827 15.25× 106 388
Tuned mode 1 0.2624 0.1216 17.74× 106 479
Tuned mode 2 0.2605 0.0757 25.14× 106 515
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becomes, the more XPM occurs towards the pump and the more SPM affects the signal.
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Figure 5.16: Pump peak power dependence of Raman amplification efficiency for differ-
ent walk-off lengths. Bigger lattice constants are equivalent to slower signals. Results
obtained for study case slow-fast, with P0s = 5× 10−4 W and Lwg = 400 µm. The pulse
widths used are T0 = 5 ps for a = 388 nm, T0 = 10 ps for a = 479 nm and T0 = 20 ps for
a = 515 nm.

5.6 Conclusion

To conclude with this chapter, we have derived a comprehensive theoretical model which

describes Raman amplification in one-dimensional photonic crystal slab waveguides made

of silicon. Based on non-linear Schrödinger equations (NLSE), our model rigorously

incorporate all key linear and nonlinear optical effects affecting the optical pulse dynamics,

including modal dispersion, free-carrier absorption, self- and cross-phase modulation,

two-photon absorption and Raman scattering. The characteristic lengths associated with

each of these effects have been exhaustively explained and taken into account for the

simulations given the valuable information they provide.

In order to make practical use of the mathematical model developed in this chapter,

we have investigated the behavior of these devices for different combinations of pump

and signal modes and demonstrated that clear signal amplification can be achieved. To
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do so, we have firstly studied the effect of the group velocities (slow- or fast-light) by

quantifying the energy transfer from pump to signal, also varying the input pulse width

and peak power. The different scenarios have been simulated over the same device (same

value for the lattice constant), which highlights how versatile PhCWGs can be by simply

tuning the operating frequency. The most relevant result out of these is clearly the fast-

fast scenario, in which energy transfer efficiencies of 48 dB/(mmW), independent on the

input pulse width, have been shown. These figures are one order of magnitude above those

found in the literature, which can be explained since, even for the fast-fast scenario, the

group indexes of the modes in this Si-PhCWG are about three times bigger than those

in conventional SOI rib and strip waveguides.

Secondly, we have focused on the impact the walk-off length between pulses has on the

energy transfer efficiency curves for the same study cases, but now modifying the lattice

constant of the photonic crystal. Indeed, our simulations show the importance of the

walk-off length, which, for instance, must be clearly bigger than the waveguide length if

it is required to amplify the signal and conserve its pulse shape simultaneously. For each

study case, we have demonstrated how differently the device can perform depending on

the value of the key parameters involved. Interestingly, the key observation can be done

on the fast-fast scenario again, in which we have demonstrated that the energy transfer

efficiency is quite insensitive to changes in the lattice constant value which, in practice,

means the device would be very stable over fabrication accuracies. Precisely, we have

shown that high gain values can be achieved even by varying the lattice constant several

tens of nm.

As a final remark, in this work we have illustrated how important trade-offs between

all design variables are required in order to succeed with the desired device behaviour.

Within this framework, we aimed to set some reference scenarios for the development of

active Si-PhCWGs, taking the proposed theoretical model as a reference to understand

and compare measurements made on real devices.



Chapter 6

Cavity-waveguide interaction in

silicon photonic crystals

6.1 Introduction

Achieving a seamless integration of photonics and electronics, a prerequisite for imple-

menting many of the modern networks-on-chip (NoC) architectures, has recently been

a powerful driver of research in photonics. In particular, it is envisioned that optical

interconnects [2, 3, 4], the backbones of optical NoCs, would not be hampered by the

limitations associated to copper-based electrical interconnects, e.g., poor bandwidth, large

power dissipation at high frequencies due to track losses, need for impedance matching,

and crosstalk between electrical paths [1, 127]. One of the proposed material platform to

successfully implement optical interconnects was III-V semiconductors [6, 128]. Despite

their high-index of refraction property, which facilitates a strong confinement of the opti-

cal field, and large optical nonlinearity required for efficient all-optical signal processing,

various restrictions imposed by the corresponding fabrication processes makes it difficult

to integrate these semiconductor materials with current electronic circuitry.

In this context, silicon photonics has emerged as a key material platform, which

enables a seamless integration of photonics and electronics. Indeed, given that the trans-
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parency window of silicon covers the entire optical telecommunication spectrum, elec-

tronic and optical domains can be brought together into the same chip. In particular,

CMOS-compatible designs have been demonstrated in several application areas related

to NoCs [7, 9, 8]. In this context, a key photonic device is the silicon photonic waveg-

uide (Si-PhWG), which represents the backbone of on-chip optical networks. Unlike its

counterparts made of III-V semiconductors, fabrication of silicon photonic nanowires is

CMOS-compatible. Equally important, the high-index contrast provided by the silicon-

on-insulator (SOI) material platform ensures a high degree of confinement of the optical

field and, consequently a significantly reduced device footprint. An additional advantage

offered by the optical field enhancement in SOI devices is that nonlinear optical effects,

which are particularly important for all-optical signal processing, are dramatically en-

hanced [7]. In particular, key nonlinear processes in Si-PhWGs have been demonstrated,

including Raman amplification [11, 12, 63], soliton [13] and supercontinuum [14] genera-

tion, frequency conversion [15], modulation instability [16], and pulse compression [17, 18].

For a review of nonlinear optics in silicon photonic nanowires see Refs. [39, 129, 130, 131].

Although Si-PhWGs with uniform cross-section are much more dispersive than silica-

based optical waveguides, such as optical fibers, their frequency dispersion cannot be

varied too much, e.g. by varying their geometrical parameters. This, in turn, limits the

potential for miniaturization of photonic devices containing Si-PhWGs. Photonic crystals

(PhCs) can mitigate this drawback as the optical dispersion coefficients of silicon PhC

waveguides (Si-PhCWGs) with size comparable to that of Si-PhWGs with uniform cross-

section can be orders of magnitude larger than those of the latter ones. These ideas have

been implemented in a broad array of photonic devices based on PhCs, from narrow-band

optical filters [22, 23] to omnidirectional mirrors, waveguides, and bends [24, 25, 26].

Tuning the geometrical parameters of a Si-PhCWG allows one not only to achieve

orders-of-magnitude variation of the waveguide dispersion coefficients but also to reach

the so-called slow-light (SL) regime in which the group-velocity (GV), vg, of the optical

modes is significantly smaller that the speed of light, c, i.e., c/vg � 1. In this SL regime
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the light-matter interaction is strongly enhanced and both the linear and nonlinear optical

effects increase substantially [27, 28, 29, 30]. In particular, important applications based

on the control of light propagation in the SL regime, including optical buffering or time

domain processing of optical signals [31, 32, 33].

In this chapter, we explore the complex interaction between high-Q photonic crystal

cavities and slow-light Si-PhCWG modes. The effect of placing a number of cavities

alongside the waveguide not only affects the forwards propagating mode by coupling

energy back and forth, but also produces the appearance of backwards propagating pulses.

In our case, we are interested in studying the cavity-waveguide interaction on a Si-PhC

slab with hexagonal lattice as shown in Fig. 6.1, where the ideal hexagonal lattice has

been modified by adding a line defect to allow guided modes (appearance of defect bands)

and local defects to create resonant cavities which couple energy between themselves and

between them and the waveguide. For this purpose, a more complex theoretical model

to the ones described in Chapters 3 and 5 has to be derived and, similarly, a different

approach in the computational method is necessary. In the literature, several approaches

have been applied to similar problems [132, 133, 134, 135], but have been limited to

continuous wave signals or do not include free-carrier (FC) dynamics. In this work we

h 

a 

Figure 6.1: Illustration of the photonic crystal structure under interest, in which a line
defect in the crystal lattice is created to allow guided modes, and local defects are created
to form a cavity. The slab dimensions are h = 0.6a, r = 0.29a, with a the lattice constant
of the phtonic crystal.
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present a novel methodology which is applicable to pulse propagation and incorporates

the key effects of FCs in the cavities and waveguide modes, such as FC dispersion and FC

absorption, as well as, two-photon-absorption (TPA), the nonlinear Kerr effect and the

waveguide dispersive effects. Furthermore, we demonstrate how it is possible to obtain

the value of all unknowns together by computationally solving the matrix system of

coupled nonlinear Schrödinger equations (NLSE) using the Newton-Raphson technique

for nonlinear systems of partial differential equations.

This chapter is divided in the following way. Beginning with the next section, 6.2, we

describe the Si-PhC slab considered for this work and how this is modified to create a

waveguide and a cavity, for which we present the electromagnetic modes these support.

After that, the description of the theoretical model has been structured in two parts:

firstly, we define the main properties of the PhC waveguides and PhC cavities modes;

while, secondly, we derive in detail the mathematical model, including the FC dynamics

equations, plus the simplification and normalization of the whole system. In the sub-

sequent section, 6.6, we explain how the mathematical model has been discretized so it

can be entered into the computational domain, as well as the algorithm used to solve

the equations. The chapter follows with the simulation results section 6.7, in which, in

particular, we solve the pulse dynamics of forward- and backward-propagating pulses,

both in time and frequency domains; the time dependence of the energy at each cavity;

and the FC dynamics in the cavities and waveguide. Moreover, the influence of different

system parameters, such as the separation between cavities, the distance between cavities

and waveguide, and the width of the input pulse, is investigated, too. In particular, we

illustrate how the computational tool can be employed to find the optimum separation

between cavities that minimizes the amplitude of the backward-propagating pulse at the

input.
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6.2 Description of the photonic system

The Si-PhC structure considered in this work consists of a honeycomb-type periodic

lattice of air holes with radius, r, perforated in a homogeneous silicon slab of thickness, h.

The lattice constant of the PhC is a. A one-dimensional (1D) PhC waveguide commonly

called W1-PhCWG is created in this structure by filling in a row of lattice holes, thus

creating a so-called line defect. Photonic crystal cavities (PhCCs), on the other hand,

are created by filling in a certain number of holes, and can be viewed as 0D defects in

the ideal lattice. A schematic representation of a structure consisting of two interacting

PhC cavities coupled to a PhCWG is presented in Fig. 6.2(a). In this figure, the blue

arrows indicate the optical coupling between the PhCWG and PhCCs, whereas the red

arrow indicate the optical coupling between cavities. Furthermore, we assume that the

center-to-center distance between the cavities is lp.

The photonic band structure of the periodic crystal, the frequency dispersion of the

waveguide modes and their field profiles, as well as the frequency of the cavity modes and

their field profiles have been computed using the plane-wave expansion (PWE) method

implemented in MPB [53], a freely available electromagnetic solver. All these calcula-

tions were validated with BandSOLVE [55], a commercially available software. In ad-

dition, the Q-factor of the PhCCs has been determined using the finite-difference time-

domain method (FDTD) implemented in MEEP [56], a freely available software. In

the PWE-based calculations we use supercells with size along the x-, y-, and z-axis of

6a× 19
√

3/2a× a, respectively, for the PhCWG, and 6a× 6
√

3a× 17a, respectively, for

the PhCC. Additionally, the computational grid in the FDTD calculations was chosen

to be a/60, a
√

3/120, and a/60, for the x-, y-, and z-axis, respectively. Note that in

order to control and enhance the Q-factor of the PhCCs the centers of the holes at their

edges have been outwardly shifted by s = 0.15a. Unless otherwise specified, in all of the

following calculations the index of refraction of silicon was nSi ≡ n = 3.48, a = 333 nm,

h = 0.6a, and r = 0.29a.
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Figure 6.2: (a) Schematic representation of a photonic structure consisting of two inter-
acting photonic crystal cavities coupled to a photonic crystal waveguide. (b) Projected
band structure of the photonic crystal slab and dispersion curves of the two photonic crys-
tal waveguide modes. The insets represent the field profiles for the two photonic crystal
waveguide modes, specifically the normalized amplitude of the magnetic field component,
Hx, calculated for kz = 0.435, in the plane x = 0. (c) Transverse-magnetic band struc-
ture of the photonic crystal slab and the two photonic crystal cavity modes. The Ey field
profile of the cavity modes are shown in the right panels.

The PhCWG has two TE-like optical guiding modes located in the band-gap of the

unperturbed PhC, one y-even and the other y-odd. The frequency dispersion curves

of the two modes are presented in Fig. 6.2(b), the corresponding spatial profile of the

normalized amplitude of the magnetic field component, Hx, calculated for kz = 0.435, in

the plane x = 0, is presented in the insets. In the following analysis, we consider a cavity

mode with normalized frequency ω̄c = 0.2605, the corresponding Q-factor of the cavity

being Qc = 1.17 × 105. Here, ω̄ = a/λ is the normalized frequency. In the SL regime,

for the same normalized frequency ω̄c = 0.2605 and normalized wave vector kz = 0.435
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the waveguide mode has group-velocity of vg = 0.0121c and corresponding group-index

ng = c/vg = 82.64.

The transverse-magnetic (TM) band diagram of the PhC slab is presented in Fig. 6.2(c),

as well as the optical modes of the PhCC. The band diagram shows a frequency bandgap,

and two cavity modes with frequencies ω1 = 1572.5 THz (ω̄1 = 0.2605) and ω2 =

1474.6 THz (ω̄2 = 0.2778) located in this bandgap. Note that the two cavity modes

are separated by the Raman frequency of silicon, ω1−ω2 = ΩSi = 2π× 15.6 THz, so that

the PhCCs can be employed for Raman amplification [137]. In this chapter, however,

this matter is not considered any further, given the problem complexity is already very

high without including the Raman effect and that this is the first time this theoretical

model is developed and demonstrated.

The permittivity of the system, εs(r), can be decomposed in several alternative ways.

Thus, if one considers the cavities to be a perturbation of the waveguide, one can write:

εs(r) = εw(r) +
Nc∑
p=1

εdp(r), (6.1)

where Nc is the number of cavities, εw(r) is the permittivity distribution defining the

waveguide, and εdp(r) describes the dielectric cylinders filling the holes of the pth cavity.

In Fig. 6.3 we present the graphical illustration of this dielectric system. It can be seen

that the distribution of εdp(r) also includes the displacement of the holes at the edges of

the cavity so as to increase the mode Q-factor. An alternative way to decompose εs(r)

is:

εs(r) = εp(r) +
∑
q 6=p

εdq(r) + εdw(r), (6.2)

where εp(r) is the permittivity distribution defining the pth cavity and εdw(r) describes

the dielectric cylinders filling the holes of the waveguide.
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Figure 6.3: Schematic illustration of the decomposition of the permittivity of the waveg-
uide/cavity system (εs(r), top panel) either as a PhC waveguide, εw(r), and the dielectric
cylinders filling the holes of the PhC cavities (middle panels) or a certain pth PhC cavity,
εp(r), p = 1, . . . , Nc, and the dielectric cylinders filling the holes of the remaining PhC
cavities and the PhC waveguide (bottom panels).

6.3 Optical properties of silicon PhC waveguides and

PhC cavities

In this section we briefly review the properties of optical modes of PhC waveguides and

PhC cavities, as well as the linear and nonlinear perturbations that occur upon light

propagation in silicon PhC waveguides and light interaction with silicon PhC cavities.

6.3.1 Main properties of optical modes of PhC waveguides and

PhC cavities

The electric and magnetic fields of the mode of an isolated 1D PhCWG can be expressed

in the following form, respectively:

Eβ(r, ω) =
eα(r, ω)√

P
eiαβ(ω)z, (6.3a)

Hβ(r, ω) =
hα(r, ω)√

P
eiαβ(ω)z, (6.3b)
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where α indicates the direction of mode propagation, namely α = +1 (α = −1) for

forward (backward) propagating modes for e−iωt harmonic time dependence of the fields,

and P is a normalization constant. If we choose this normalization constant such that

1

4

∫
A∞

(e∗α × hα + eα × h∗α) · ẑdA = αP, (6.4)

where A∞ is a transverse cross-section extending to infinity, the mode {Eβ,Hβ} in

Eq. (6.3) carries 1 W along the longitudinal z-axis. In the absence of optical losses

(the crystal permittivity is real-valued function) the forwards and backwards propagat-

ing modes are related by the following relations:

e+ = e∗−; h+ = −h∗−, (6.5)

The mode power is related to the mode energy contained in one unit cell, W , and the

group velocity, vg, via the relation [121, 122]:

P =
W
a
vg =

Wel +Wmag

a
vg, (6.6)

where W = Wel +Wmag is the sum between the electric (Wel) and magnetic (Wmag)

energy in the mode. These quantities are defined as:

Wel =
1

4

∫
Vcell

∂

∂ω
(ωεw)|eα(r, ω)|2dV, (6.7a)

Wmag =
1

4

∫
Vcell

µ0|hα(r, ω)|2dV, (6.7b)

where εw(r, ω)) is the permittivity of the PhC waveguide and Vcell is the volume of the

unit cell.

The optical modes of the PhCCs can be expressed as

Em(r, ω) =
em(r, ω)√

Wm

, (6.8a)
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Hm(r, ω) =
hm(r, ω)√

Wm

, (6.8b)

where m is the mod index and Wm is a normalization constant. If one chooses this

normalization constant as

Wm =
1

4

∫
Vcell

[
∂

∂ω
(ωεc)|em(r, ω)|2 + µ0|hm(r, ω)|2

]
dV, (6.9)

where εc(r, ω) is the permittivity of the PhC cavity, a cavity mode defined by Eqs. (6.8)

contains an amount of energy equal to 1 J.

6.3.2 Linear and nonlinear perturbations in silicon PhC waveg-

uides and PhC cavities

Due to the photogeneration of FCs and nonlinear optical effects, the dielectric constant

of Si-PhCWGs undergoes a certain local variation, δε(r), upon the propagation of op-

tical pulses in the waveguide. This variation is related to a perturbation polarization,

Ppert(r, t), which, considering the nature of the perturbation, can be divided in two com-

ponents: a linear part, δPlin(r, t), originating from the linear change of the dielectric

constant via generation of FCs and a nonlinear component, δPnl(r, t), that accounts for

the nonlinearly induced variation of the index of refraction.

Assuming an instantaneous response of the medium, the linear contribution to Ppert,

δPlin(r, t), is written as we did in Chapter 2 Eqs. 2.11 to 2.13.

The nonlinear contribution to Ppert, δPnl(r, t), is described by a third-order nonlinear

susceptibility, χ̂(3)(r), and can be written as:

δPnl(r, t) = ε0χ̂
(3)(r)

...E(r, t)E(r, t)E(r, t). (6.10)

The real part of the susceptibility χ̂(3) describes parametric optical processes in which

the energy of the photons involved in the process is conserved, such as SPM, XPM, and
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FWM, while the imaginary part of χ̂(3) corresponds to non-conservative processes like

TPA and XAM. Note that in this study we neglect the stimulated Raman scattering

effect as it is assumed that the frequencies of the interacting pulses do not satisfy the

condition required for an efficient, resonant Raman interaction.

Since silicon belongs to the crystallographic point groupm3m, the susceptibility tensor

χ̂(3) has 21 nonzero elements, of which only 4 are independent: χ
(3)
1111, χ

(3)
1122, χ

(3)
1212, and

χ
(3)
1221 [52]. In addition, the frequency dispersion of the nonlinear susceptibility can be

neglected as we consider optical pulses with duration of a few picoseconds or larger.

Therefore, the Kleinman symmetry relations imply that χ
(3)
1122 = χ

(3)
1212 = χ

(3)
1221. Moreover,

experimental studies have shown that χ
(3)
1111 = 2.36χ

(3)
1122 [62] within a broad frequency

range. Therefore, the nonlinear optical effects considered here can be described by only

one element of the tensor χ̂(3).

Because of fabrication considerations, in many instances the waveguide is not aligned

with any of the crystal principal axes and as such these axes are different from the coor-

dinate axes in which the optical modes are calculated. Therefore, one has to transform

the tensor χ̂(3) from the crystal principal axes into the coordinate system in which the

optical modes are calculated [63],

χ
(3)
ijkl = RiαRjβRkγRlδχ

′(3)
αβγδ, (6.11)

where χ̂′(3) is the nonlinear susceptibility in the crystal principal axes and R̂ is the

rotation matrix that transforms one coordinate system into the other. In our case, R̂ is

the rotation matrix that transforms the crystal principal axes to the laboratory system

of coordinates.
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6.4 Derivation of the equations describing the opti-

cal field and free-carriers dynamics

In this section, we derive the set of equations that governs the dynamics of the optical

field in the system of a Si-PhCWG coupled to optical cavities, as well as the corresponding

FC dynamics in the system. To simplify the derivation, we consider only two cavities,

referred to as c1 and c2, whose resonant frequencies are ω1 and ω2, respectively. However,

the mathematical model derived here can be easily extended to the general case of an

arbitrary number of cavities. Furthermore, we assume that the Si-PhCWG operates in

a single-mode regime, the carrier frequency of the pulse propagating in the waveguide

being ωw.

Our theoretical model rigorously describes the main linear and nonlinear optical phe-

nomena pertaining to this photonic system. Thus, the linear phenomena can be divided

in two classes, those related to the passive interaction between the optical field and sil-

icon and those related to the linear interaction between the optical field and FCs. To

be more specific, the optical pulse dynamics in the waveguide is affected by dispersive

effects as well as the linear coupling with the cavities, whereas, reversely, the optical field

in the cavities is affected by the linear coupling with the waveguide. Furthermore, the

optical field in the waveguide and cavities generate FCs in the waveguide and cavities,

respectively, which leads to a variation of the index of refraction and, consequently, a

FCs-mediated self-interaction of the corresponding optical fields. Finally, the evanescent

part of the optical field in the waveguide induces a variation of the FCs in the cavities,

and vice-versa, an effect that leads to FC-induced linear coupling between the optical

fields in the waveguide and cavities.

Regarding the nonlinear optical effects that governs the optical field dynamics in

our system, they can be classified as nonlinear self- and cross-interactions. Thus, the

forward- and back-ward propagation pulses in the waveguide and the optical field in

the cavities are affected by the self-induced variations of the index of refraction in the
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waveguide and cavities, respectively, via the Kerr effect. Furthermore, the forward- and

backward-propagating pulses in the waveguide are coupled via cross-phase modulation

effects. Finally, another type of cross-phase modulation interaction is between the optical

field propagating in the waveguide and those in the cavities. Thus, the evanescent part

of the optical field in the waveguide induces a variation of the index of refraction in

the cavities, and vice-versa, which induces nonlinear coupling via Kerr effect between

the optical fields in the waveguide and cavities. It should be noted that not all these

linear and nonlinear effects have comparative strengths, so that part of our analysis is to

estimate which are the dominant ones and in which conditions.

In the remaining of this chapter, we will derive the dynamical equations for the am-

plitude of the waveguide modes by assuming that the FC and nonlinear optical effects

as well as the perturbations represented by the optical cavities act on the unperturbed

waveguide modes. Similarly, we will derive the time dependence of the cavity mode ampli-

tudes by considering that the waveguide modes, FC and nonlinear effects perturbatively

affect the unperturbed cavity modes. Finally, we employ energy conservation arguments

to determine the dynamics of the FC density in the waveguide and cavities.

6.4.1 Dynamical equations for the evolution of waveguide mode

amplitudes

In order to derive the system of equations governing the dynamics of the amplitudes of

the optical waveguide modes, we employ the conjugated form of the Lorentz reciprocity

theorem [63, 100, 121, 123, 136]. To this end, let us begin by considering the following

integral identity, which can be easily derived from the divergence theorem:

∫
S

∇ · FdS =
∂

∂z

∫
S

F · ẑdS +

∮
∂S

F · ndl, (6.12)

where F is an arbitrary vector field, S is the transverse section at position, z, and ∂S

is the boundary of S. If we define the field F as F = Eb × H∗a + E∗a × Hb, where
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[Ea(r, ωa),Ha(r, ωa)] and [Eb(r, ωb),Hb(r, ωb)] are two solutions of the Maxwell equations

corresponding to two electromagnetic systems described by the permittivities, εa(r, ωa)

and εb(r, ωb), respectively, one can readily demonstrate that Eq. (6.12) can be cast in the

following form:

∂

∂z

∫
S

F · ẑdS +

∮
∂S

F · ndl = iµ0(ωb − ωa)
∫
S

H∗a ·HbdS

+ i

∫
S

(ωbεb − ωaεa)E∗a · EbdS. (6.13)

Note that in deriving this relation we used Maxwell equations for harmonic fields with

time dependence of e−iωt.

Now we choose the two electromagnetic systems and the corresponding solutions of

the Maxwell equations. As the first system we choose an unperturbed PhC waveguide

described by the permittivity, εa(r) = εw(r), and an unperturbed optical mode given by

Eq. (6.3):

Ea(r, ωa) =
eα(r, ω̄)√

P
eiαβ̄z, (6.14a)

Ha(r, ωa) =
hα(r, ω̄)√

P
eiαβ̄z, (6.14b)

where α = 1 and α = −1 corespond to forward- and backward-propagating modes,

respectively, ω̄ = ωa is the carrier frequency, and β̄ = β(ω̄). The second electromagnetic

system is the full system consisting of the waveguide and optical cavities, described by

εb(r) = εs(r) + δεs(r), with εs(r) decomposed as per Eq. (6.1), and perturbed by linear

and nonlinear optical effects described by the perturbation, δεs(r). In this second case,

we choose the frequency ωb = ω, such that ω ≈ ω̄. The corresponding perturbed solution

is expressed as a superposition of waveguide and cavity modes:

Eb(r, ωb) =
∑
σ=±1

aσ(z, ω)
eσ(r, ω̄)√

P
eiσβ̄z
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+
Nc∑
p=1

ap(ω)
ep(r, ω̄p)√

Wp

, (6.15a)

Hb(r, ωb) =
∑
σ=±1

aσ(z, ω)
hσ(r, ω̄)√

P
eiσβ̄z

+
Nc∑
p=1

ap(ω)
hp(r, ω̄p)√

Wp

, (6.15b)

where aσ(z, ω) represent the slowly-varying amplitudes of the forward- (σ = +) and

backward-propagating (σ = −) waveguide modes and ap(ω) and ω̄p are the amplitude

and resonance frequency of the optical mode of the pth cavity, respectively. Note that in

order to achieve an efficient coupling between the waveguide and cavities, the condition

ω̄p ' ω̄ must be fulfilled.

If the transverse section, S, is extended to infinity, the line integral in the l.h.s. of

Eq. (6.13) vanishes because both the waveguide and cavity modes decay exponentially to

zero at infinity. Therefore, with the definitions introduced in Eqs. (6.14) and Eqs. (6.15),

the l.h.s. of Eq. (6.13) ca be written as:

∂

∂z

∫
S∞

F · ẑdS = 4α
∂aα(z)

∂z
(6.16)

+
Nc∑
p=1

ap√
PWp

∂

∂z

∫
S∞

[ep × h∗α + e∗α × hp] e
−iαβ̄zdS,

where the orthogonality relations for the waveguide modes have been used. This equation

can be further simplified if one uses the Lorentz theorem expressed in Eq. (6.13), written

for a waveguide mode described by Eqs. (6.14) (the “a” fields) and permittivity εa(r) =

εw(r) and a cavity mode given by Eqs. (6.8) (the “b” fields) and permittivity εb(r) = εp(r).

With this choice, Eq. (6.13) becomes:

∂

∂z

∫
S∞

[ep × h∗α + e∗α × hp] e
−iαβ̄zdS = ie−iαβ̄z (6.17)

×
∫
S∞

[µ0(ω̄p − ω̄)h∗α · hp + (ω̄pε̄p − ω̄ε̄w)e∗α · ep] dS,
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where ε̄p = εp(r, ω̄p) and ε̄w = εw(r, ω̄). By combining Eqs. (6.16) and (6.17) one arrives

to the relation:

∂

∂z

∫
S∞

F · ẑdS = 4α
∂aα(z)

∂z
+ i

Nc∑
p=1

ap
e−iαβ̄z√
PWp

(6.18)

×
∫
S∞

[µ0(ω̄p − ω̄)h∗α · hp + (ω̄pε̄p − ω̄ε̄w)e∗α · ep] dS.

On the other hand, by inserting Eqs. (6.14) and (6.15) in the r.h.s. of Eq. (6.13), one

arrives to the following relation:

i

∫
S∞

[µ0(ωb − ωa)H∗a ·Hb + (ωbεb − ωaεa)E∗a · Eb] dS

= i
∑
σ=±1

aσ
ei(σ−α)β̄z

P

∫
S∞

[µ0(ω − ω̄)h∗α · hσ

+(ωεs + ωδεs − ω̄ε̄w)e∗α · eσ] dS + i
Nc∑
p=1

ap
e−iαβ̄z√
PWp

×
∫
S∞

[µ0(ω − ω̄)h∗α · hp + (ωεs + ωδεs − ω̄ε̄w)e∗α · ep] dS. (6.19)

Combining Eqs. (6.13), Eqs. (6.18), and (6.19), we obtain the equation describing the

dynamics of the waveguide field amplitudes in the frequency domain:

α
∂aα
∂z

= i
∑
σ=±1

aσ
ei(σ−α)β̄z

4P

∫
S∞

[µ0(ω − ω̄)h∗α · hσ

+(ωεs − ω̄ε̄w)e∗α · eσ] dS + i

Nc∑
p=1

ap
e−iαβ̄z

4
√
PWp

×
∫
S∞

[µ0(ω − ω̄p)h∗α · hp + (ωεs − ω̄pε̄p)e∗α · ep] dS

+ i
ω

4

∫
S∞

e∗α√
P
e−iαβ̄z · δεs

(∑
σ=±1

aσ
eσ√
P
eiσβ̄z

+
Nc∑
p=1

ap
ep√
Wp

)
dS. (6.20)

Note that the integrand in the last term of the r.h.s. of this equation represents the scalar
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product between the unperturbed waveguide mode and the perturbation polarization,

namely E∗α ·Ppert.

Using Eq. (6.1), we can derive the following relation:

ωεs − ω̄ε̄w = ωεw − ω̄ε̄w + ω

Nc∑
p=1

εdp

=
∑
n≥1

(ω − ω̄)n

n!

∂n(ωεw)

∂ωn

∣∣∣∣
ω̄

+ ω
Nc∑
p=1

εdp. (6.21)

Similarly, Eq. (6.2) can be used to establish the following equation:

ωεs − ω̄pε̄p = ωεp − ω̄pε̄p + ω
∑
q 6=p

εdq + ωεdw

=
∑
n≥1

(ω − ω̄p)n

n!

∂n(ωεp)

∂ωn

∣∣∣∣
ω̄p

+ ωε̃dp + ωεdw. (6.22)

Here, we have introduced the notation ε̃dp =
∑

q 6=p ε
d
q , which describes all the cylinders

filling the holes of the cavities, except for those defining the pth cavity.

Inserting Eqs. (6.21) and (6.22) in Eq. (6.20), one can write the equation governing

the dependence of the waveguide mode amplitudes on the propagation distance as:

α
∂aα
∂z

= i
∑
n≥1

(ω − ω̄)n
β

(n)
α

n!
aα + i

∑
σ 6=α

∑
n≥1

(ω − ω̄)n
β

(n)
ασ

n!
aσ

+ iω
∑
σ

cασaσ + i
Nc∑
p=1

(ω − ω̄p)ccα,pap + iω
Nc∑
p=1

cwα,pap

+ iω
Nc∑
p=1

cα,pap + i
ω

4

∫
S∞

E∗α ·PpertdS. (6.23)

The dispersion coefficients β
(n)
α and β

(n)
ασ in this equation are the nth order, z-dependent,

mode dispersion and cross-mode dispersion coefficients, respectively, and are defined by
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the following formulae:

β(1)
α (z) =

δα(z)

vg,α
, (6.24a)

β(n)
α (z) = δα(z)

∂n−1

∂ωn−1

(
1

vg,α

)
, n ≥ 2, (6.24b)

where

δα(z) =
a

4W

∫
S∞

[
µ0|hα|2 +

∂(ωεw)

∂ω

∣∣∣∣
ω̄

|eα|2
]
dS, (6.25)

and

β(1)
ασ (z) =

aei(σ−α)β̄z

4vgW

∫
S∞

[µ0h
∗
α · hσ

+
∂(ωεw)

∂ω

∣∣∣∣
ω̄

e∗α · eσ
]
dS, α 6= σ, (6.26a)

β(n)
ασ (z) =

∂n−1β
(1)
ασ

∂ωn−1
, n ≥ 2, α 6= σ. (6.26b)

Since 1
a

∫ z0+z

z0
δα(z)dz = 1, one can easily see that the averaged dispersion coefficient, de-

fined as β̃
(1)
α ≡ 1

a

∫ z0+z

z0
β

(1)
α (z)dz = 1

vg,α
, is the first-order waveguide dispersion coefficient

characterizing waveguides with uniform cross-section.

Moreover, the coupling coefficients in Eq. (6.23) are defined as:

cασ(z) =
aei(σ−α)β̄z

4vgW

∫
S∞

(
Nc∑
p=1

εdp

)
e∗α · eσdS, (6.27a)

ccα,p(z) =
e−iαβ̄z

4
√
PWp

∫
S∞

[µ0h
∗
α · hp

+
∂(ωεp)

∂ω

∣∣∣∣
ω̄p

e∗α · ep

]
dS, (6.27b)

cwα,p(z) =
e−iαβ̄z

4
√
PWp

∫
S∞

εdwe∗α · epdS, (6.27c)

cα,p(z) =
e−iαβ̄z

4
√
PWp

∫
S∞

ε̃dpe
∗
α · epdS. (6.27d)

152



They describe the linear optical coupling between the optical waveguide modes and be-

tween the waveguide modes and cavities, which is solely due to perturbations in the

configuration of the PhC. In particular, cασ quantifies the strength of the coupling be-

tween the α- and σ-mode, mediated by the presence of the cavities, ccα,p describes the

frequency dispersion of the coupling between the waveguide mode and the mode of the

pth cavity, cwα,p describes the strength of the coupling between the waveguide mode and

the mode of the pth cavity, and cα,p quantifies the influence of all the cavities other than

the pth cavity onto the coupling between the waveguide mode and the mode of the pth

cavity. The contribution from the qth cavity to the latter coefficient is negligibly small

if the distance between the pth and qth cavities is relatively large, as in this case the

overlap between the functions εdq(r) and ep(r) is vanishingly small.

In the last two steps of our derivation we first evaluate the contribution of the last

term in Eq. (6.23) on the mode amplitude dynamics then transform this equation in the

time domain. The perturbation polarization can be decomposed as the sum between

the contribution of the linear polarization, induced by FC generation and intrinsic loss,

and the nonlinear polarization. The variation of the permittivity related to the former

contribution to the perturbation polarization can be written as:

δεlin = δεfc + δεloss = δεfc,w +
Nc∑
p=1

δεdfc,p + δεloss, (6.28)

where the permittivity perturbation due to the generation of FCs, δεfc, has been decom-

posed in a way similar to that indicated by Eq. (6.1). The first two terms in the r.h.s. of

Eq. (6.28) are defined as:

δεfc,w(r) =
(

2ε0nδn
w
fc + i

ε0cn

ω
αwfc

)
Σw(r), (6.29a)

Nc∑
p=1

δεdfc,p =
Nc∑
p=1

(
2ε0nδn

p
fc + i

ε0cn

ω
αpfc

)
Σd
p(r) ≡ δε̃dfc(r), (6.29b)

where δnwfc and αwfc are the variation of the index of refraction and FC loss coefficient
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induced by the FCs generated in the waveguide region, δnpfc and αpfc are, respectively,

have similar meaning but they correspond to the perturbation domain that defines the pth

cavity, and Σw(r) and Σd
p(r) are the characteristic functions associated to the waveguide

domain and the perturbation domain that defines the pth cavity, respectively (see also

Fig. 6.3). The quantities δnwfc and αwfc depend on the FC density in the waveguide,

Nw(z, t), whereas δnpfc and αpfc are related to the FC density in the pth cavity, Np(t),

as described by Eqs. (2.13). The FC density in the waveguide region can be written

as Nw(z, t) = N+(z, t) + N−(z, t), where N±(z, t) are the FC densities generated by the

forward- and backward-propagating modes.

Based on these considerations, the contribution of the linear part of the perturbation

polarization, δPlin, to the r.h.s. of Eqs. (6.23) can be expressed as:

i
ω

4

∫
S∞

E∗α · δPlindS = i
ωe−iαβ̄z

4
√
P

∫
S∞

δεline
∗
α

·

[∑
σ=±1

aσ
eσ√
P
eiσβ̄z +

Nc∑
p=1

ap
ep√
Wp

]
dS

= iω

[∑
σ=±1

(θwασ + θcασ) aσ +
Nc∑
p=1

(
θwα,p + θcα,p

)
ap

]
, (6.30)

where the coefficients in this equation are defined as:

θwασ(z) =
aei(σ−α)β̄z

4vgW

∫
S∞

(δεfc,w + δεloss) e∗α · eσdS, (6.31a)

θcασ(z) =
aei(σ−α)β̄z

4vgW

∫
S∞

δε̃dfce
∗
α · eσdS, (6.31b)

θwα,p(z) =
e−iαβ̄z

4
√
PWp

∫
S∞

(δεfc,w + δεloss) e∗α · epdS, (6.31c)

θcα,p(z) =
e−iαβ̄z

4
√
PWp

∫
S∞

δε̃dfce
∗
α · epdS. (6.31d)

In these equations, θwασ describes the coupling between the waveguide modes via the

intrinsic loss and FCs generated in the waveguide region, θcασ measures the mutual inter-

action between the waveguide modes mediated by the FCs generated in the cavities, θwα,p
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quantifies the strength of the coupling between the waveguide modes and the mode of

the pth cavity via the intrinsic loss and FCs generated in the waveguide region, and θcα,p

determines the coupling between the waveguide modes and the mode of the pth cavity

via the FCs generated in all of the cavities. Because of the evanescent nature of the cavity

modes, this last effect is chiefly determined by the FCs generated in the pth cavity.

The contribution of the nonlinear polarization, δPnl, to the r.h.s. of Eqs. (6.23) can

more conveniently be calculated directly in the time domain. For this, we introduce first

the time-domain envelopes of the waveguide and cavity modes, Aα(z, t), α = ±1, and

Ap(t), p = 1, . . . , Nc, defined by the relations:

Aα(z, t) =

∫ ∞
0

aα(z, ω)e−i(ω−ω̄)tdω, α = ±1, (6.32a)

Ap(t) =

∫ ∞
0

ap(ω)e−i(ω−ω̄p)tdω, p = 1, . . . , Nc. (6.32b)

Note that in these relations the carrier frequencies, ω̄ and ω̄p, have been incorporated

in the Fourier transform, so that the amplitudes Aα(z, t) and Ap(t) vary slowly in time.

Since the fast-varying term eiαβ̄z has also been factored out, Aα(z, t) is a slowly-varying

function with the propagation distance, z, too.

With these definitions, the optical field in the coupled waveguide-cavities system can

be expressed as:

E(r, t) =
1

2

[∑
σ=±1

eσ(r, ω̄)√
P

ei(σβ̄z−ω̄t)Aσ(z, t)

+
Nc∑
p=1

ep(r, ω̄p)√
Wp

e−iω̄ptAp(t)

]
+ c.c. ≡ 1

2

[∑
σ=±1

E(+)
σ (r, t)

+
Nc∑
p=1

E(+)
p (r, t)

]
+ c.c., (6.33)

where “c.c.” stands for complex conjugate and the positive- and negative-frequency parts

of the spectrum have been explicitly separated.

Inserting this formula in Eq. (6.10), one can easily derive the expression for the non-

155



linear polarization that affects the waveguide modes:

δPnl,w(r, t) =
3

4
ε0χ̂

(3)(r)
...
{
E(+)
w (r, t)

[
E(+)
w (r, t)E(−)

w (r, t)

+2
Nc∑
p=1

E(+)
p (r, t)E(−)

p (r, t)

]
+

Nc∑
p=1

E(+)
p (r, t)

[
E(+)
p (r, t)E(−)

p (r, t) + 2E(+)
w (r, t)E(−)

w (r, t)
]}
, (6.34)

where E
(±)
w (r, t) =

∑
σ=±1 E

(±)
σ (r, t) is the total field in the waveguide oscillating at the

carrier frequency, ±ω̄. In this formula, the first and third terms describe self-modulation

effects, whereas the second and last terms govern the cross-phase interactions between

the fields in the waveguide and cavities.

Regarding Eq. (6.34), two observations are needed to better clarify the assumptions

on which it is based. First, we retained terms oscillating at the carrier frequency of the

waveguide pulses, ω̄, and the frequencies of the cavities, ω̄p, p = 1, . . . , Nc, because we

assumed that the difference between these frequencies is very small. Second, we neglected

the cross-phase modulation effects associated to the fields of different cavities because of

the evanescent nature of the cavity modes.

We now have all the ingredients needed to establish the formula that describes the

dynamics of the waveguide mode amplitudes. Thus, by Fourier transforming Eq. (6.23)

to the time domain and using Eq. (6.30) and Eq. (6.34), we arrive to the following partial

differential equation for the waveguide mode amplitudes, Aα(z, t), α = ±1:

iα
∂Aα
∂z

+
∑
n≥1

β
(n)
α

n!

(
i
∂

∂t

)n
Aα +

∑
σ 6=α

∑
n≥1

β
(n)
ασ

n!

(
i
∂

∂t

)n
Aσ

+
∑
σ=±1

ω̄ (cασ + θwασ + θcασ)Aσ +
Nc∑
p=1

e−i(ω̄p−ω̄)t

×
[
ccα,pi

dAp
dt

+ ω̄p
(
cwα,p + cα,p + θwα,p + θcα,p

)
Ap

]
+
∑
~σ

γα,~σAσ1Aσ2A
∗
σ3

+ 2
∑
σ=±1

(
Nc∑
p=1

γα,σp|Ap|2
)
Aσ
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+
Nc∑
p=1

e−i(ω̄p−ω̄)t

[
2
∑

σ1,σ2=±1

γα,σ1σ2pAσ1A
∗
σ2

+ γα,p|Ap|2
]
Ap = 0, (6.35)

where the notation
∑
~σ

≡
∑
σ1=±1

∑
σ2=±1

∑
σ3=±1

has been introduced. In this equation, the non-

linear coefficients that describe the nonlinear interactions between the waveguide modes

and between waveguide and cavity modes are defined as:

γα,~σ(z) =
3ε0ω̄a

2ei(σ1+σ2−σ3−α)β̄z

16v2
gW2

∫
S∞

e∗α · χ̂(3)...eσ1eσ2e
∗
σ3
dS, (6.36a)

γα,σp(z) =
3ε0ω̄ae

i(σ−α)β̄z

16vgWWp

∫
S∞

e∗α · χ̂(3)...eσepe
∗
pdS, (6.36b)

γα,σ1σ2p(z) =
3ε0ω̄a

3/2ei(σ1−σ2−α)β̄z

16v
3/2
g W

√
WWp

∫
S∞

e∗α · χ̂(3)...eσ1e
∗
σ2

e∗pdS, (6.36c)

γα,p(z) =
3ε0ω̄a

1/2e−iαβ̄z

16v
1/2
g Wp

√
WWp

∫
S∞

e∗α · χ̂(3)...e∗pepe
∗
pdS. (6.36d)

More specifically, γα,~σ describes the four-wave mixing of waveguide modes, γα,σp and

γα,σ1σ2p quantify the strength of the cross-phase modulation between waveguide and cavity

modes, whereas γα,p describes the influence on the waveguide modes of the Kerr effects

induced in the pth cavity.

The nonlinear optical coefficients defined by Eqs. (6.36) depend on the propagation

distance, z, through the phase factors multiplying the integrals and the integrals them-

selves. The latter dependence is due to the fact that the waveguide and cavity modes

are z-dependent. The phase factors are rapidly oscillating functions and therefore the

nonlinear coefficients are negligibly small except when the interacting modes are phase-

matched. For example, the first nonlinear coefficient in Eqs. (6.36) can be neglected

except when the phase-matching condition σ1 + σ2− σ3−α = 0 is satisfied. Incidentally,

the phase factors of the last two nonlinear optical coefficients cannot be phase matched,

and therefore the corresponding terms in Eq. (6.35) can be neglected. Moreover, the

values of the integrals in Eqs. (6.36) are maximized when there is an optimum overlap
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between the optical fields. As a result, the dominant nonlinear coefficient is γα,~σ and its

maximum value is attained when the interacting modes are phase-matched.

It should be noted that when Fourier transforming Eq. (6.23) to the time domain we

used the following relations, which can be easily established:

∫ ∞
0

ωaσe
−i(ω−ω̄)t dω =i

∂Aσ
∂t

+ ω̄Aσ ' ω̄Aσ, (6.37a)∫ ∞
0

ωape
−i(ω−ω̄)t dω =

(
i
dAp
dt

+ ω̄pAp

)
e−i(ω̄p−ω̄)t

' ω̄Ape
−i(ω̄p−ω̄)t. (6.37b)

6.4.2 Dynamical equations for the evolution of cavity mode am-

plitudes

We now switch our attention to the derivation of the equations describing the time evolu-

tion of the cavity mode amplitudes. As in the previous case, we use the conjugated form

of the Lorentz theorem applied for two electromagnetic configurations: the first configu-

ration (“a”) corresponds to the isolated qth cavity described by the fields in Eqs. (6.8)

and permittivity εa(r) = εq(r), whereas the second configuration (“b”) corresponds to the

coupled waveguide-cavity system and is characterized by the fields given in Eqs. (6.15)

and permittivity εb(r) = εs(r) + δεs(r). The frequency in the two configurations is ω̄q and

ω, respectively.

More specifically, the permittivity distribution of the coupled waveguide-cavities sys-

tem, expressed in terms of the qth cavity, takes the following form:

εs(r) = εq(r) +
∑
r 6=q

εdr(r) + εdw(r)

= εq(r) + ε̃dq(r) + εdw, (6.38)

which describes all the cavities other than the qth cavity and the waveguide as perturba-

tions to the unperturbed system. Then, the dielectric function for the perturbed system
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configuration is εb = εs(r, ω)+δεs(r, ω), whereby δεs(r, ω) describes the influence of linear

and nonlinear polarization effects.

We now choose a domain, Vq, centered on the qth cavity, which is large enough that

the fields of the cavity mode become vanishingly small on its boundary, ∂Vq. Then, the

divergence theorem applied to the vector field F = Eb × H∗a + E∗a × Hb leads to the

following relation: ∫
Vq

∇ · FdV =

∮
∂Vq

F · dS = 0. (6.39)

Using the Maxwell equations for harmonic fields, we can cast this equation to the

form:

∫
Vq

[µ0(ωb − ωa)H∗a ·Hb + (ωbεb − ωaεa)E∗a · Eb] dr = 0. (6.40)

With the specific expressions for the “a” and “b” fields, given by Eqs. (6.8) and Eqs. (6.15),

respectively, this equation can be written as:

µ0(ω − ω̄q)

(∑
σ=±1

∫
Vq

aσe
iσβ̄z√
PWq

h∗q · hσdr

+
Nc∑
p=1

ap

∫
Vq

1√
WqWp

h∗q · hpdr

)
+
∑
σ=±1

∫
Vq

aσe
iσβ̄z√
PWq

× (ωεs + ωδεs − ω̄q ε̄q)e∗q · eσdr +
Nc∑
p=1

ap

∫
V∞

1√
WqWp

× (ωεs + ωδεs − ω̄q ε̄q)e∗q · epdr = 0. (6.41)

The integral of an arbitrary vector function, A(r), over the volume Vq can be expressed

as
∫
Vq

A(r)dr =
∫ lq
−lq

∫
S∞

A(r)dzdS, where S∞ is the transverse cross-section of the qth

cavity and 2lq is the length of the qth cavity along the z-axis.

Let us now rewrite Eq. (6.22) in terms of the qth cavity, namely:

ωεs − ω̄q ε̄q =
∑
n≥1

(ω − ω̄q)n

n!

∂n(ωεq)

∂ωn

∣∣∣∣
ω̄q

+ ωε̃dq + ωεdw. (6.42)
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Then, by inserting Eq. (6.42) into Eq. (6.41), we arrive at the following equation:

i(ω − ω̄q)
∑
σ=±1

∫ lq

−lq
Cc
σ,q(z)aσdz + iω

∑
σ=±1

∫ lq

−lq
Cw
σ,q(z)aσdz

+ iω
∑
σ=±1

∫ lq

−lq
Cσ,q(z)aσdz + i(ω − ω̄q)

Nc∑
p=1

Cqpap

+ iω

Nc∑
p=1

(Cc
q,p + Cw

qp)ap +
iω

4
√
Wq

∫
Vq

e∗q ·PpertdV = 0, (6.43)

where we have used the fact that

Ppert = δεs

(∑
σ=±1

aσ
eσ√
P
eiσβ̄z +

Nc∑
p=1

ap
ep√
Wp

)
.

The coefficients appearing in Eq. (6.43) are defined as follows:

Cc
σ,q(z) =

eiσβ̄z

4
√
PWq

∫
S∞

[
µ0h

∗
q · hσ +

∂(ωεq)

∂ω

∣∣∣∣
ω̄q

e∗q · eσ

]
dS, (6.44a)

Cw
σ,q(z) =

eiσβ̄z

4
√
PWq

∫
S∞

εdwe∗q · eσdS, (6.44b)

Cσ,q(z) =
eiσβ̃z

4
√
PWp

∫
S∞

ε̃dqe
∗
q · eσdS, (6.44c)

Cqp =
1

4
√
WqWp

∫
Vq

[
µ0h

∗
q · hp +

∂(ωεq)

∂ω

∣∣∣∣
ω̄q

e∗q · ep

]
dV, (6.44d)

Cc
q,p =

1

4
√
WqWp

∫
Vq

ε̃dqe
∗
q · epdV, (6.44e)

Cw
qp =

1

4
√
WqWp

∫
Vq

εdwe∗q · epdV. (6.44f)

By comparing Eqs. (6.27) and Eqs. (6.44) one can see that the coefficients c’s and C’s

satisfy the following relations: ccσ,q = Cc∗
σ,q, c

w
σ,q = Cw∗

σ,q , and cσ,q = C∗σ,q.

The coefficients defined by Eqs. (6.44) describe the coupling between the optical mode

of the qth cavity and the waveguide mode, as well as the coupling between the optical

mode of the qth cavity and the optical modes of the remaining cavities. Thus, Cc
σ,q

determines the frequency dispersion of the optical coupling between the waveguide mode
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and the optical mode of the qth cavity, Cw
σ,q quantifies the strength of the coupling between

the waveguide mode and the optical mode of the qth cavity, mediated by the waveguide,

Cσ,q determines the coupling between the waveguide mode and the optical mode of the

qth cavity, mediated by the perturbation of all of the cavities, except the qth cavity,

Cqp determines the frequency dispersion of the optical coupling between the qth and pth

cavity modes, Cc
q,p quantifies the strength of the coupling between the qth and pth cavity

modes, mediated by all of the cavities except the qth one, and Cw
qp measures the strength

of the coupling between the qth and pth cavity modes, mediated by the waveguide.

Similarly to the approach used to treat the dynamics of the waveguide mode ampli-

tudes, we express the variation of the linear part of the electric permittivity, δεlin, as

follows:

δεlin = δεfc + δεloss = δεfc,q + δε̃dfc,q + δεdfc,w + δεloss, (6.45)

in which δεfc,q, δε̃
d
fc,q, and δεdfc,w are the variations of the permittivity due to the FCs

generated inside the qth cavity, in the cylinders defining all the cavities except the qth

one, and in the cylinders that form the waveguide, respectively. By using Eq. (6.45), the

linear part of the polarization term in Eq. (6.43) can be written as:

iω

4
√
Wq

∫
Vq

e∗q · δPlindV = iω

{∑
σ=±1

∫ lq

−lq

[
θcq,σ(z) + θq,σ(z)

+ θwq,σ(z)
]
aσdz +

Nc∑
p=1

(θcqp + θqp + θwqp)ap

}
, (6.46)

where the corresponding coefficients are defined as below:

θcq,σ(z) =
eiσβ̄z

4
√
PWq

∫
S∞

(δεfc,q + δεloss)e
∗
q · eσdS, (6.47a)

θq,σ(z) =
eiσβ̄z

4
√
PWq

∫
S∞

δε̃dfc,qe
∗
q · eσdS, (6.47b)

θwq,σ(z) =
eiσβ̄z

4
√
PWq

∫
S∞

δεdfc,we∗q · eσdS, (6.47c)

161



θcqp =
1

4
√
WqWp

∫
Vq

(δεfc,q + δεloss)e
∗
q · epdV, (6.47d)

θqp =
1

4
√
WqWp

∫
Vq

δε̃dfc,qe
∗
q · epdV, (6.47e)

θwqp =
1

4
√
WqWp

∫
Vq

δεdfc,we∗q · epdV, (6.47f)

The coefficients defined by the equations above have the following physical meaning:

θcq,σ describes the coupling between the optical mode of the qth cavity and the waveguide

mode via the FCs generated in the cavity and the intrinsic loss in Si, θq,σ represents the

coupling between the optical mode of the qth cavity and the waveguide mode, mediated

by the FCs generated in the cylinders defining all the cavities in the system, except the

qth one, θwq,σ quantifies the strength of the coupling between the optical mode of the qth

cavity and the waveguide mode, mediated by the FCs generated in the cylinders defining

the waveguide, θcqp describes the coupling between the optical modes of the qth and pth

cavities via the FCs generated in the qth cavity and the intrinsic loss in Si, θqp represents

the coupling between the optical modes of the qth and pth cavities, mediated by the FCs

generated in the cylinders defining all the cavities in the system, except the qth one, and

θwqp quantifies the strength of the coupling between the optical mode of the qth cavity

and the waveguide mode, mediated by the FCs generated in the cylinders defining the

waveguide.

It should be noted that, due to the evanescent nature of the cavity modes, the coeffi-

cients θcqp, θqp, and θwqp are vanishingly small when the qth and pth cavities are separated

by a relatively large distance. Moreover, the coupling coefficients defined by Eqs. (6.47)

depend explicitly on the cavity modes eq and ep, as well as the waveguide mode eσ;

however, they depend implicitly on all of the optical modes present in the system as all

these optical modes generate FCs.

Similarly to the case of the nonlinear polarization affecting the waveguide modes,

described by Eq. (6.34), the nonlinear polarization affecting the qth cavity, δPq
nl,c(r, t),
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can be expresses as:

δPq
nl,c(r, t) =

3

4
ε0χ̂

(3)(r)
...
{
E(+)
q (r, t)

[
E(+)
q (r, t)E(−)

q (r, t)

+2E(+)
w (r, t)E(−)

w (r, t)
]

+ E(+)
w (r, t)

[
E(+)
w (r, t)E(−)

w (r, t)

+2E(+)
q (r, t)E(−)

q (r, t)
]}
. (6.48)

In this equation, the first and the third terms describe self-phase modulation effects in the

qth cavity and waveguide, respectively, whereas the second and last terms describe cross-

phase modulation effects between the optical mode of the qth cavity and the waveguide

mode. Note that the cross-phase modulation effects between the cavity modes can be

neglected due to their evanescent nature.

We now have all the ingredients needed to establish the equation governing the dy-

namics of the amplitudes of the cavity modes. To this end, we insert Eq. (6.46) and

Eq. (6.48) in Eq. (6.43) and Fourier transform the resulting equation into the time do-

main. Upon performing these mathematical manipulations, we arrive at the following

equation, which holds for q = 1, . . . , Nc:

Nc∑
p=1

e−i(ω̄p−ω̄q)t
{
Cqp

[
i
dAp
dt

+ (ω̄p − ω̄q)Ap
]

+ω̄p(C
c
q,p + Cw

qp + θcqp + θqp + θwqp)Ap
}

+
∑
σ=±1

e−i(ω̄−ω̄q)t

×
∫ lq

−lq
dz

{
Cc
σ,q(z)

[
i
dAσ
dt

+ (ω̄ − ω̄q)Aσ
]

+ ω̄
[
Cw
σ,q(z) + Cσ,q(z) + θcq,σ(z) + θq,σ(z) + θwq,σ(z)

]
Aσ
}

+ Γq,q|Aq|2Aq + 2

[∫ lq

−lq
dz

∑
σ1,σ2=±1

Γq,σ1σ2q(z)Aσ1A
∗
σ2

]
Aq

+ e−i(ω̄−ω̄q)t

{∫ lq

−lq
dz
∑
~σ

Γq,~σ(z)Aσ1A
∗
σ2
Aσ3

+2

[∫ lq

−lq
dz
∑
σ=±1

Γq,σ(z)Aσ

]
|Aq|2

}
= 0, (6.49)
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where the nonlinear optical coefficients Γ’s entering in this equation are defined as:

Γq,q =
3ε0ω̄q
16W 2

q

∫
Vq

e∗q · χ̂(3)...e∗qeqe
∗
qdV, (6.50a)

Γq,σ1σ2q(z) =
3ε0ω̄qae

i(σ1−σ2)β̄z

16vgWWq

∫
S∞

e∗q · χ̂(3)...eσ1e
∗
σ2

e∗qdS, (6.50b)

Γq,~σ(z) =
3ε0ω̄qa

3/2ei(σ1−σ2+σ3)β̄z

16(vgW)3/2W
1/2
q

∫
S∞

e∗q · χ̂(3)...eσ1e
∗
σ2

eσ3dS, (6.50c)

Γq,σ(z) =
3ε0ω̄qae

iσβ̄z

16vgWWq

∫
S∞

e∗q · χ̂(3)...eσeqe
∗
qdS, (6.50d)

From a physical point of view, Γq,q describes the Kerr effect on the optical mode of

the qth cavity, Γq,σ1σ2q and Γq,σ quantify the strength of the cross-phase modulation

between waveguide mode and the cavity mode of the qth cavity, whereas Γq,~σ describes the

influence on the cavity mode of the qth cavity induced by four-wave mixing interactions

of the waveguide modes.

Upon performing the integrals over the variable z, the system of equations defined

by Eqs. (6.49) reduces to a system of coupled ordinary-differential equations describing

the dynamics of the cavity mode amplitudes. It should be noted, however, that the

amplitudes of the waveguide modes enter explicitly in this system, as the waveguide and

cavity modes are linearly and nonlinearly coupled. As a further comment, note that when

Fourier transforming Eq. (6.43) to the time domain we used the following relations, which

can be easily demonstrated:

∫ ∞
0

ωape
−i(ω−ω̄q)t dω =

(
i
dAp
dt

+ ω̄pAp

)
e−i(ω̄p−ω̄q)t

' ω̄pApe
−i(ω̄p−ω̄q)t, (6.51a)∫ ∞

0

ωaσe
−i(ω−ω̄q)t dω =

(
i
∂Aσ
∂t

+ ω̄Aσ

)
e−i(ω̄−ω̄q)t

' ω̄Aσe
−i(ω̄−ω̄q)t. (6.51b)
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6.4.3 Dynamical equations for the evolution of free carriers

The final step in the development of our theoretical model consists in establishing a set

of equations that describe the dynamics of FCs generated in the waveguide and cavities;

we denote these quantities by Nw(z, t) and Np(t), p = 1, . . . , Nc, respectively. To this

end, we use the fact that FCs are generated through two-photon absorption, namely we

impose the condition that the energy absorbed due to TPA is equal to the energy needed

to generate the FCs in the waveguide and cavities [63, 39].

Let us consider first the evolution of FCs in the waveguide. Thus, let us omit for now

all linear terms in Eq. (6.35), as they do not contribute to TPA, and perform the following

calculations: first, multiply Eq. (6.35) by αA∗α, then multiply the complex conjugate of

Eq. (6.35) by αAα, subtract the two resulting equations, and finally sum over the subscript

α. The result of these mathematical manipulations can be cast in the following form:

∑
α=±1

∂|Aα|2

∂z
= −2Im

[∑
α=±1

∑
~σ

αγα,~σ(z)Aσ1Aσ2A
∗
σ3
A∗α

]
. (6.52)

The sum on the l.h.s. of Eq. (6.52) is equal to the total optical power transferred

to the FCs in the weveguide, within the distance dz. To calculate the corresponding

infinitesimal volume dV in which these carriers are generated as a result of the energy

transfer, we introduce the nonlinear effective area of the waveguide mode, Anl (see also

Ref. [100]):

Anl(z) =

[∫
Snl
|Re (eα × h∗α) | dS

]2∫
Snl
|Re (eα × h∗α) |2 dS

. (6.53)

In this equation, the integrals are performed only over the Si regions as only in such

domains FCs are generated. Moreover, although we kept in this definition the subscript

α, the nonlinear effective area of the waveguide mode does not depend on the propagation

direction of the mode.

Since the electron-hole pairs are generated via TPA, for the creation of each such pair,

165



it is required an amount of energy that is equal to 2~ω̄. As a result, the carriers dynamics

in the waveguide is governed by the following rate equation:

∂Nw(z, t)

∂t
=− Nw(z, t)

τc
+

1

~ω̄Anl

(6.54)

× Im

[∑
α=±1

∑
~σ

αγα,~σ(z)Aσ1Aσ2A
∗
σ3
A∗α

]
,

where τc is the recombination time.

We now move on to develop the system of equations describing the carrier dynamics

inside the optical cavities. As in the case of the FCs in the optical waveguide, we assume

that the FCs in the qth cavity are generated via TPA occuring in the same qth cavity,

where q = 1, . . . , Nc. In other words, nonlinear cross-absorption modulation effects

between cavities and between cavities and waveguide are neglected. Then, following a

similar procedure as the one used to establish Eq. (6.52), we can easily derive the following

equation, which describes the energy transfer from the optical field in the qth cavity to

the FCs generated inside the cavity:

d|Aq|2

dt
= −2Γ′′q,q|Aq|4, q = 1, . . . , Nc, (6.55)

where we denoted by z′′ the imaginary part of the complex number, z. Again, since the

generation of each electron-hole pair in the qth cavity requires an amount of energy equal

to 2~ω̄q, the time evolution of the FC denity in the qth cavity, Nq(t), is described by the

following rate equation:

dNq(t)

dt
= −Nq(t)

τc
+

Γ′′q,q
~ω̄qVnl,q

|Aq|4, q = 1, . . . , Nc, (6.56)

where Vnl,q is the nonlinear effective volume of the qth cavity. It can be defined in a
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similar manner to the nonlinear effective area of the waveguide, namely

Vnl,q =

[∫
Vnl
|eq(r)|2 dV

]2∫
Vnl
|eq(r)|4 dV

, (6.57)

where the integrals are performed only over the Si regions.

This concludes the derivation of the theoretical model describing the dynamics of the

coupled optical fields of the cavities and waveguide, dynamics that in turn is coupled

to the dynamics of the FCs generated inside the cavities and in the waveguide. More

specifically, in practice one solves the coupled system of nonlinear differential equations

consisting of Eq. (6.35), Eq. (6.49), Eq. (6.54), and Eq. (6.56).

6.5 Application to the case of a PhC waveguide cou-

pled to two PhC cavities

In this section we illustrate how our formalism developed in the preceding section can be

applied to a particular case of interest, namely that of a PhC waveguide coupled to two

PhC cavities. To describe this photonic configuration in a convenient manner the system

of coupled equations describing the dynamics of the optical fields and FCs are simplified

in the following way: Firstly, since Nc = 2, all sums over the cavity index are replaced

by the corresponding terms. Secondly, we normalize all functions and variables defining

the system of coupled equations that we aim to solve, so that its numerical integration

becomes more facile. To this end, we introduce a normalized distance, ζ = z/a, a

normalized time, τ = t/T0, where T0 is the characteristic width of the pulses in the

waveguide, the normalized frequency defined as Ω = ωT0, the normalized envelopes of

the pulses propagating in the waveguide, U± = A±/
√
P0, where P0 is the peak power of

the input pulse, and U1,2 = A1,2/
√
E0, where E0 is a characteristic energy stored in the

PhC cavities. The specific value of this physical quantity, which can be viewed as the unit

for the energy contained in the optical cavities, can be chosen as the threshold beyond
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which nonlinear optical effects in the cavities can no longer be neglected. With these

simplifications, the equations governing the dynamics of the waveguide mode amplitudes

and amplitudes of the cavity modes are:

i

(
∂U+

∂ζ
+

a

T0vg

∂U+

∂τ

)
− aβ2

2T 2
0

∂2U+

∂τ 2
+

Ω̄a

T0

(c++ + θw++)U+

+ aP0

[
γ+,+++|U+|2 + (γ+,+−− + γ+,−+−)|U−|2

]
U+

+

√
E0a√
P0T0

{[
Ω̄1

(
cw+,1 + θw+,1

)
U1 + icc+,1

dU1

dτ

]
e−i(Ω̄1−Ω̄)τ

+

[
Ω̄2

(
cw+,2 + θw+,2

)
U2 + icc+,2

dU2

dτ

]
e−i(Ω̄2−Ω̄)τ

}
= 0, (6.58a)

i

(
−∂U−
∂ζ

+
a

T0vg

∂U−
∂τ

)
− aβ2

2T 2
0

∂2U−
∂τ 2

+
Ω̄a

T0

(c−− + θw−−)U−

+ aP0

[
γ−,−−−|U−|2 + (γ−,−++ + γ−,+−+)|U+|2

]
U−

+

√
E0a√
P0T0

{[
Ω̄1

(
cw−,1 + θw−,1

)
U1 + icc−,1

dU1

dτ

]
e−i(Ω̄1−Ω̄)τ

+

[
Ω̄2

(
cw−,2 + θw−,2

)
U2 + icc−,2

dU2

dτ

]
e−i(Ω̄2−Ω̄)τ

}
= 0, (6.58b)

and

i

(
∂U1

∂τ
+

Ω̄1

Q1

U1

)
+ Ω̄1(Cw

11 + θc11)U1 + Ω̄1E0Γ1,1|U1|2U1

+ e−i(Ω̄−Ω̄1)τ

√
P0

E0

{
C̄c

+,1

[
i
∂U+

∂τ
+ (Ω̄− Ω̄1)U+

]
+Ω̄(C̄w

+,1 + θ̄c1,+)U+ + C̄c
−,1

[
i
∂U−
∂τ

+ (Ω̄− Ω̄1)U−

]
+ Ω̄(C̄w

−,1 + θ̄c1,−)U−

}
= 0, (6.59a)

i

(
∂U2

∂τ
+

Ω̄2

Q2

U2

)
+ Ω̄2(Cw

22 + θc22)U2 + Ω̄2E0Γ2,2|U2|2U2

+ e−i(Ω̄−Ω̄2)τ

√
P0

E0

{
C̄c

+,2

[
i
∂U+

∂τ
+ (Ω̄− Ω̄2)U+

]
+Ω̄(C̄w

+,2 + θ̄c2,+)U+ + C̄c
−,2

[
i
∂U−
∂τ

+ (Ω̄− Ω̄2)U−

]
+ Ω̄(C̄w

−,2 + θ̄c2,−)U−

}
= 0, (6.59b)
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respectively. In the equations above the following coupling coefficients have been defined:

C̄c,w
σ,q =

∫ lq

−lq
Cc,w
σ,q (z) dz; θ̄wq,σ =

∫ lq

−lq
θwq,σ(z) dz, (6.60)

where σ = ±1 and q = 1, 2. To introduce these definitions we used the fact that the

pulse envelopes U±(z, t) vary slowly with the propagation distance, z, so that they can

be treated as constants in the integrals in Eq. (6.49).

Note that our coupled-mode theory does not account for the optical field radiated by

the cavity, so that we introduced this effect in Eqs. (6.59) via the quality(Q)-factors Q1,2

of the cavities. Moreover, in the equations above we have kept only the dominant coupling

coefficients, both in the case of coupling coefficients C’s defined by the perturbation of the

system permittivity as well as θ’s coupling coefficients determined by the generation of

FCs. In fact, the coupling coefficients C’s are much larger than the coupling coefficients

θ’s as the latter ones are determined by relatively small variations of the permittivity of

the Si, with typical values being δεfc . 10−2.

A further assumption made in order to simplify the equations governing the dynamics

of the waveguide mode amplitudes and amplitudes of the cavity modes was that the

cavities are relatively far from each other so that their linear coupling due to the overlap

of the evanescent cavity modes can be neglected. We note, however, that our model

does describe a linear coupling mechanism between the optical cavities, namely via the

optical pulses propagating in the waveguide in the region located between the two optical

cavities.

The weak overlap between the optical fields of the cavities also ensures that the

corresponding cross-phase modulation effects can be neglected. In addition, the cavity

and waveguide modes are evanescently coupled, so that the cross-phase modulations

effects induced by the overlapping modes can be neglected, too. As a result of these

considerations, we set Γq,σ1σ2q = Γq,~σ = Γq,σ = 0, where q = 1, 2 and σ, σ1,2 = ±1. As

a final remark regarding the equations governing the dynamics of the waveguide mode
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amplitudes and amplitudes of the cavity modes we note that the symmetry properties of

the nonlinear coefficients γ’s imply that γ+,+−− = γ+,−+− and γ−,−++ = γ−,+−+.

To conclude this section, we consider now the system of equations governing the dy-

namics of FCs generated in the optical cavities and waveguide. To this end, we normalize

the FCs in the optical waveguide, Nw = Nw/N0, and optical cavities, N1,2 = N1,2/N0,

where N0 is a certain characteristic carrier density. For example, one can define the

value of N0 such that the corresponding induced variation of the index of refraction, δnfc,

as given by Eq. (2.13a), has a certain value commonly encountered in experiments, say

δnfc = 10−3. With these definitions, the rate equations Eq. (6.54) and Eq. (6.56) become,

respectively:

∂Nw
∂τ

=− Nw
τc

+
P 2

0

~Ω̄AnlN0

[
γ′′+,+++|U+|4 + γ′′−,−−−|U−|4

+2
(
γ′′+,+−− + γ′′−,−++

)
|U+|2|U−|2

]
, (6.61a)

dNq
dτ

=− Nq
τc

+
E2

0Γ′′q,q
~Ω̄qVnl,qN0

|Uq|4, q = 1, 2, (6.61b)

where τc = tc/T0 is the normalized recombination time. Note that the last rate equations

for the optical cavities provide a convenient way to choose the characteristic energy E0

(which can have a different value for each cavity). Thus, with N0 fixed as discussed

before, we choose E0 such that each cavity is at steady-state. In other words, we impose

the conditions that ∂Nq
∂τ

= 0 when Nq = N0 and |Uq| = 1, with q = 1, 2.

The system of equations (6.58), (6.59), and (6.61) describes the coupled dynamics

of the optical fields and FCs in an PhC waveguide coupled to two optical PhC cavities.

It takes into account a series of linear and nonlinear optical effects, including linear

coupling and FC-induced coupling between the waveguide and cavities, group-velocity

dispersion and FC-induced dispersion of forward- and backward-propagation pulses in

the waveguide, FC recombination effects, the self-phase and cross-phase modulation of

optical pulses in the waveguide, as well as two-photon absorption and cross-absorption

modulation effects. In the next section, we present the numerical method we used to
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solve this system of equations.

6.6 Computational method

In order to solve numerically the system of equations describing the coupled dynamics

of the optical fields and FCs in an PhC waveguide coupled to optical PhC cavities, one

chooses a computational grid in variables ζ and τ and discretize Eqs. (6.58), (6.59), and

(6.61) on this computational grid. In addition, appropriate boundary conditions for the

optical fields and FC densities must be imposed.

The normalized distance, ζ, is divided in N points, so that the normalized distance

resolution will be

∆ζ =
Lsim

N − 1
, (6.62)

with Lsim being the total normalized distance within which the waveguide and cavities

are located. Moreover, the τ variable is similarly divided in M points, which implies a

normalized time resolution of

∆τ =
τsim

M − 1
, (6.63)

where τsim the total normalized simulation time. The result of this discretization proce-

dure is to create an N ×M computational grid on which the functions U±(ζ, τ), U1,2(τ),

Nw(ζ, τ), and N1,2(τ) are discretized. Guided by the physics of the problem, suitable

boundary conditions are imposed on these functions. An example of this procedure, ap-

plied for the forward-propagating mode, U+(ζ, τ), is schematically illustrated in Fig. 6.4,

where the labels “c1”and “c2”indicate the location of the two optical cavities.

Considering the nature of the boundary conditions in the spatial dimension for the

forward-propagating mode, it should be apparent that the backwards derivative dis-

cretization method should be used for the derivative of U+(ζ, τ), that is:

∂U+(ζ, τ)

∂ζ

∣∣∣∣
ζn

=
U+(ζn, τ)− U+(ζn−1, τ)

∆ζ
+O(∆ζ), (6.64)
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where 1 ≤ n ≤ N − 1. Moreover, a similar formula is used to represent the τ -derivative

of U+(ζ, τ), but with 1 ≤ m ≤ M − 2. Additionally, for the temporal dimension, the

second-order partial derivative is discretized as follows:

∂2U+(ζ, τ)

∂τ 2

∣∣∣∣
τm

=
1

(∆τ)2
[U+(ζ, τm+1)− 2U+(ζ, τm) (6.65)

+U+(ζ, τm−1)] +O
(
(∆τ)2

)
.

Figure 6.4 illustrates some physical conditions we assume are satisfied in our problem.

Firstly, the simulation time τsim must be long enough that the optical power carried by

the forward-propagating pulse at the end of the simulation is negligible. In other words, at

the end of the simulation, no optical power still flows in the forward direction. It should

be noted that the forward-propagating optical pulse can undergo multiple scattering

processes as it interacts with the optical cavities, so that at the output of the waveguide

one can observe multiple pulses. Therefore, the simulation time should take into account

not only the input pulse width and the time the forward-propagating pulse takes to

τ 
ζ c1 c2 

U+(ζ, τ=0) = 0 

U+(ζ, τ=τsim) = 0 

U
+(
ζ=

0,
 τ

) 

Figure 6.4: Schematic illustration of the discretization procedure used in our numerical
method, as applied for the forward-propagating mode, U+(ζ, τ). The afferent boundary
conditions are applied in the regions marked with yellow.
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propagate through waveguide, but also the time needed for the energy coupled into the

cavities to leaked out of the system via radiation or outcoupling into the waveguide modes.

Moreover, we assume that the shape of the input pulse at ζ = 0 is known.

Regarding the dynamics of the backward-propagating pulse, as described by Eq. (6.58b),

we assume that at τ = 0 the power carried by this pulse is zero throughout the system,

that is, we assume that initially only the forward-propagating pulse exist. Another im-

portant point to stress here is that we assume that there is no backward-propagating

pulse beyond the last cavity, c2, i.e. no optical power is reflected at the end faced of the

waveguide.

Given the specific form of Eq. (6.58b), it is apparent that one must use the for-

ward discretization approach for the representation of the ζ-derivative of the backward-

propagating pulse envelope, U−(ζ, τ):

∂U−(ζ, τ)

∂ζ

∣∣∣∣
ζp

=
U−(ζp+1, τ)− U−(ζp, τ)

∆ζ
+O(∆ζ), (6.66)

with p spanning the grid points between the input facet of the waveguide and the location

of the cavity c2. In addition, we used the same forward discretization approach when

representing the time derivatives.

With respect to the dynamics of the cavity modes described by Eqs. (6.59), the

discretization scheme is much simpler since the mode amplitudes only depend on time.

In particular, we used the backward derivative method to discretize the amplitudes of

the cavity modes. The boundary conditions in this case refer to the initial values of the

mode amplitudes, which, for the sake of simplicity, are set to be equal to zero in all our

simulations.

Finally, Eqs. (6.61) describing the FCs dynamics in the waveguide and cavities are

discretized using the backward derivative method. As boundary conditions, we assume

that initially the FC density in the waveguide and cavities is equal to zero, that is,

Nw(ζ, τ = 0) = N1(τ = 0) = N2(τ = 0) = 0.
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The nonlinear system of equations obtained after the discretization of Eqs. (6.58),

(6.59), and (6.61) was solved using the Newton-Raphson method, the corresponding

computer code being developed in C++ using LAPACK libraries [138]; the algorithm is

described in the Chapter 2, subsection 2.8.2. The algorithm requires as input all coupling

coefficients, which have been calculated in Matlab with data from three computational

tools: BandSOLVE and MEEP, to calculate the mode profile and Q-factors of the optical

cavities, respectively, and MPB to calculate the spatial profile of the waveguide modes.

In order to illustrate some physical properties of cerain quantities defining our theoret-

ical model, we present in Fig. 6.5 the dependence on distance of some of the key coupling

coefficients. Firstly, we can observe that the c++ coefficient is different from zero only

in the regions where the optical cavities are located. Interestingly enough, the c++ co-

efficient becomes negative in the regions corresponding to the holes at the cavity edges,

which have been slightly displaced so as to improve the Q-factor, and it is positive where

the silicon cylinders have been inserted to create the cavities. This coefficient, which is

a real-valued function, models the optical coupling between the waveguide modes, me-
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Figure 6.5: Top to bottom panels show the dependance on distance z of coupling coef-
ficients c++, Cc

+,1 (blue is real part, red is imaginary part), and Cw
+,1 (blue is real part,

red is imaginary part), respectively. The cavity-cavity separation is dcc = 20a and the
cavity-waveguide separation is dcw = 2.5a

√
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diated by the presence of the cavities. The other two coupling coefficients presented in

Fig. 6.5, Cc
+,1 and Cw

+,1, are complex-valued functions and are different from zero only at

the location of the first cavity. These two coefficients model the frequency dispersion and

the strength of the energy transfer from the cavity back to the waveguide mode.

6.7 Simulation results and discussion

In this section, we employ the theoretical model and numerical method developed in the

preceding two sections and investigate the optical response of the system consisting of

an optical PhC waveguide coupled to two PhC optical cavities. In particular, we assume

that an input pulse with width T0 is launched into the PhC waveguide and calculate

the spatial and temporal dependence of the forward- and backward-propagating pulses

in the waveguide and the corresponding FC density, as well as the temporal evolution

of the optical fields and FC density in the two optical cavities. We also investigate the

dependence of the optical response of the waveguide-cavities system on the key system

parameters, including the pulse width T0, the frequency detuning between the two optical

cavities, ∆ωc = |ω1 − ω2|, the separation between the cavities and the waveguide, dcw,

and the inter-cavity separation distance, dcc.

In all numerical simulations presented in what follows, we assume that the distance

between the input facet of the waveguide and the center of the first cavity is equal to

20a. In addition, we assume that the same distance separates the second cavity and the

output facet of the waveguide. The presence of these waveguide segments ensures the

pulse dynamics are not perturbed by the input and output ends of the waveguide.

Figure 6.6 shows the spectra and temporal profiles of the forward- and backward-

propagating pulses for a first scenario we analyse, namely a case in which the input pulse

width is T0 = 10 ps and peak power P0 = 1 mW, the two optical cavities are identical

and are separated by a distance dcc = 20a, and the cavity-waveguide separation distance

is dcw = 2.5a
√

3, corresponding to four rows of holes between the waveguide and the
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cavities. Moreover, the wavelength of the input pulse and the resonance wavelength of

the two cavities were λ0 = 1278.34 nm and λ1 = λ2 = 1278.31 nm, respectively. This

scenario is of particular interest because, as we will demonstrate later on, it corresponds

to the optimum optical coupling between the waveguide and the cavities.

Before we discuss the results summarized in Fig. 6.6, we would like to clarify a few

ideas regarding the radiative characteristics of the two optical cavities, as quantified by

their Q-factor. Thus, there are three loss channels that quantitatively determine the

value of the cavity Q-factor: the radiative channel representing the energy lost through
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Figure 6.6: Dispersion maps of the temporal profile and spectra as well as the output
temporal profile and spectra of (a) forward and (b) backward-propagating pulses. Note
that the output forward- (backward-propagating) pulse is calculated at the output (input)
port of the waveguide.
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radiation into continuum, characterized by a Q-factor Q0,p, the energy leaked into the

optical waveguide defines the Q-factor Qw,p, which is quantified by the coupling coefficient

Cw
pp, whereas the energy absorbed in carrier recombination processes determines the Q-

factor Qfc,p, quantified by the coupling coefficient θcpp, where p = 1, 2. Therefore, the

cavity Q-factor can be expressed as:

1

Qp

=
1

Q0,p

+
1

Qw,p

+
1

Qfc,p

, p = 1, 2. (6.67)

The cavity Q-factor, Qp, can be extracted from the width of the spectrum of the

optical field in the cavity, via the relation Qp = ωp/∆ω, where ∆ω is the FWHM of

the power spectrum. With this definition, our calculations showed that Qp = 27147.

This means that the characteristic time over which the optical cavity loses its energy is

∆t = 2Qp/ωp = 36.8 ps. Moreover, Q0,p can be determined numerically from the time

evolution of the optical power stored in an isolated cavity, whereas Qw,p can be calculated

using the coupling coefficient, Cw
pp, the combined contribution of these two loss channels

being quantified by an equivalent Q-factor of 27514. From these results we can therefore

conclude that the Q-factor associated to the FCs loss is Qfc,p = 229630. In other words,

the optical losses and, implicitly, the coupling coefficient θcpp, can be neglected.

Let us now return to the results presented in Fig. 6.6 and discuss the physics they

reveal. Thus, regarding the forward-propagating pulse, it can be seen in Fig. 6.6(a) that

due to the various loss mechanisms, including propagation loss, FCA, and coupling to

the cavities, by the time the pulse reached the waveguide output its optical peak power

had decreased by more than 40 %. Moreover, the second, weaker pulse formed at its tail

end is due to the energy radiated back into the waveguide by the two cavities. The pulse

interaction with the cavity can be also observed in its spectrum, where the wavelength

of the dip at the top of the pulse occurs at the resonance wavelength of the cavity.

The dispersion map of the forward-propagating pulse, shown in Fig. 6.6(a), provides

a more detailed picture of the interaction between the optical pulse and cavities. Thus,
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it can be seen that the first cavity, centered at L1 = 6.66 µm, begins to distort the

pulse once it propagates beyond a distance of 4 µm, whereas the second cavity, located

at L2 = 13.32 µm, further deepens the dip formed at the center of the pulse starting from

about 14 µm onwards. This pulse dynamics also shows that the pulse starts to interact

with a cavity when is within a few lattice constants from the cavity center, which is

explained by the fact the cavities have a size of a few lattice constants.

Regarding the backward-propagating pulse, whose temporal and spectral properties

are presented in Fig. 6.6(b), it can be clearly seen that it is chiefly generated from the

energy leaking from the two optical cavities into the waveguide. Indeed, the pulse builds

up steeply as the forward-propagating pulse reaches the first cavity, which is followed by a

slow, exponential decay at the tail end of the pulse, similar to the time dependence of the

energy decrease in the cavity. The corresponding spectrum shows the wavelength of the

peak power is equal to the resonance wavelength of the cavities and implicitly coincides

with the wavelength of the dip in the spectrum of the forward-propagating pulse. These

conclusions are validated by the dispersion maps presented in Fig. 6.6(b), which show that

the backward-propagating pulse begins to build up primarily at the location of the first

cavity although a weaker contribution from the second cavity can be observed, too. One

can also see that the pulse decays as it propagates towards the input of the waveguide,

which is due to the loss mechanisms we just discussed.

Deeper insights into the temporal and spectral characteristics of an optical pulse are

provided by the pulse spectrogram S(ζ;λ, t), defined as the Fourier transform of the

product between the optical pulse at a certain propagation distance and a delayed refer-

ence pulse, usually taken to be the input pulse. Mathematically, this physical quantity

is expressed by the following formula:

S(ζ;λ, t) =

∣∣∣∣∫ U+(ζ, τ)U+(ζin, τ − t)ei
2πc
λ
τ dτ

∣∣∣∣ . (6.68)

The spectrogram of the forward-propagating pulse, calculated at the propagation dis-
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tance corresponding to the output port of the waveguide, is shown in Fig. 6.7. This figure

shows that there exist a tail of optical power extending towards longer times, which is due

to the exponential decay of the energy contained into the two cavities into the forward-

propagating optical mode. This tail contains slightly blue-shifted spectral components,

as compared to the wavelength of the input pulse and resonance wavelength of the cavi-

ties. This effect can be explained by the fact that the presence of the waveguide induces

a small spectral blue-shift of the cavity resonance wavelength, from λp = 1278.31 nm to

λ′p = 1278.28 nm.

λ 
(n

m
)

Time (ps)
−50 0 50 100 1501278.2

1278.25

1278.3

1278.35

1278.4

Figure 6.7: Spectrogram of the forward-propagating pulse, calculated at the propagation
distance corresponding to the output port of the waveguide.

We now shift our attention to the optical field in the two cavities, whose dynamics

are illustrate in Fig. 6.8. In our calculations, we assumed that the characteristic energy

was E0 = 28.04 fJ. The data plotted in Fig. 6.8 show that, as expected, the maximum of

the field amplitude is larger for the first cavity, as the excitation pulse has a larger peak

power at the location of the first cavity. Moreover, the inset in Fig. 6.8, where we plot the

real part of the field amplitude in the two cavities, shows that there is a phase difference

between the field oscillations, which is due to the time needed for the excitation pulse to

travel the distance separating the two cavities. Figure 6.8 also reveals a good agreement

between the decay rate of the energy contained in the cavities and their Q-factor.

The plots in Figs. 6.9(a) and 6.9(b) represent the time evolution of the FC densities

179



a) 

b) 

U
1 

U
2 

1 

-0.24 -0.23 -0.22 -0.21 -0.2 -0.19 -0.18 -0.17
Time (ps)

-0.1

-0.05

0

0.05

0.1

Figure 6.8: (a), (b) Time dependence of the real part of the normalized amplitudes U1

and U2, respectively. The black curves represent the field envelopes. The inset represents
a zoomed-in temporal region and shows the real part of U1 (blue) and U2 (red).

in the waveguide and the two cavities, respectively. It can be seen from these figures

that the largest FC density in the waveguide is at the input port, as at that location

the peak power of the input optical pulse has the largest value. From there on, the FC

density decreases along the waveguide due to the absorption of the excitation pulse. One

can also observe that once the excitation pulse passes a certain point the FC density

starts to decay exponentially due to FC recombination processes, as suggested by the

rate equations describing the FC densities. This decay trend is somewhat distorted

at around 5 µm, where the optical power of the backward-propagating pulse reaches its

largest value. Regarding the FC density in the cavities, one can observe that, as expected,

the FC density in the first cavity starts to build up before FCs begin to be generated
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inside the second cavity.

The ratio between the maximum number of FCs created inside each cavity can be

easily computed from the following relation,

|U1,max|4

|U2,max|4
= 1.6691, (6.69)

which exactly matches the difference between the maximum number of FCs at each cavity,

this is:

|U1,max|4

|U2,max|4
=
N1,max

N2,max

. (6.70)

We consider now the case in which there is a certain detuning between the resonance

frequency of the two cavities. Thus, we assume that the wavelength of the input optical

-50 0 50 100 150 200
Time (ps)

0

0.2

0.4

0.6

0.8

1

1.2

N
c

10-4

D
is

ta
nc

e 
(m

)

Time (ps)

Nm

 

 

−50 0 50 100 150 200 2500

0.5

1

1.5

x 10−5

0

0.5

1

1.5

2

2.5

3

3.5

x 10−6

a) 

b) 

D
is

ta
nc

e 
(µ

m
) 

5 

10 

15 

Time (ps) 

1 

2 

Figure 6.9: (a), (b) Temporal evolution of the FC density in the waveguide and the two
cavities, respectively. The densities are normalized to the characteristic density value
N0 = 7.343× 1024 m−3.
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pulse is λ0 = 1278.34 nm, its pulse width is T0 = 5 ps, and the resonance wavelengths of

the two cavities are λ1 = 1278.25 nm and λ2 = 1278.37 nm.

In Fig. 6.10, we summarize the results of our analysis of the pulse dynamics in this

scenario. It can be seen in this figure that the spectrum of the forward-propagating pulse

(top panes) displays two dips, almost symmetrically located with respect to the center of

the spectrum, the corresponding wavelengths being equal to the resonance wavelengths of

the two cavities. Moreover, the spectrum of the backward-propagating pulse, determined

at the input port of the waveguide (bottom panel), contains two peaks, which are located

at the resonance wavelength of the cavities. This illustrates the fact that the backward-

propagation pulse is chiefly generated by the two cavities whose energy out-couples into

the waveguide. In addition, the amplitude of the two spectral peaks differ from each

other, with more energy being contained in the peak originating from the first cavity.

0

0.25

0.5

0.75

|U
+|

1278.1 1278.2 1278.3 1278.4 1278.5
 (nm)

0

0.01

0.02

|U
-|

~ 
~ 

Figure 6.10: Transmission (top panel) and reflection (bottom panel) spectra for λ0 =
1278.34 nm, λ1 = 1278.25 nm, λ2 = 1278.37 nm, and T0 = 5 ps.

The influence of the width of the input pulse on the system dynamics becomes particu-

larly important when it is comparable to the characteristic decay time of the energy stored

in the cavities. This decay time can be controlled by varying the separation distance be-

tween cavities and waveguide, as in this case one varies the cavity-waveguide coupling

coefficient, Cw
pp, with p = 1, 2. In particular, by reducing the distance between the cavity

and waveguide to dcw = 2
√

3a, the coupling coefficient becomes Cw
pp = 1.5693× 10−4.

As a result, the Q-factor of the cavities becomes Qp = 6028.3, which implies a charac-
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teristic time of 8.17 ps. Based on these considerations, we varied the pulse width in our

simulations from 2 ps to 30 ps.

The results regarding the system dynamics corresponding to different values of the

width of the input pulse are presented in Fig. 6.11, where we show, from the top to the

bottom panels, the evolution over time of the forward-propagating pulse at the output

port of the waveguide, the backward-propagating pulse at the input port, and the energy

contained in the two cavities, respectively. For each panel, black, red, purple, and blue

lines correspond to T0 = 30 ps, T0 = 20 ps, T0 = 10 ps, and T0 = 2 ps, respectively.

It can be observed from the plots presented in Fig. 6.11 that, when the pulse width

T0 is much smaller than the characteristic decay time of the cavity energy, the optical

field at the input port consists of a series of short pulses, which are created as a result

of several roundtrips performed by the optical field in the waveguide region between the

cavities, roundtrips induced by wave scattering from the two cavities. In particular, the

two most pronounced peaks correspond to the first reflected pulse from the first cavity

and the first reflected pulse from the second cavity. This conclusion is validated by

the dynamics of the optical field in the cavities. Thus, the energy in the cavities does

not decrease monotonously and exponentially, an additional pulse being observed after

the initial energy build up. The optical field evolution in the waveguide and cavities is

different when the pulse width increases, as in this case the energy transfer from the

input pulse to the cavity modes is done adiabatically. Moreover, it can be seen that,

as the width of the input pulse decreases the pulse shape at the output port becomes

increasingly more asymmetric.

Another important parameter that affects the optical response of the waveguide-

cavities system is the distance between the waveguide and cavities. To illustrate this

influence, we show in Fig. 6.12 the spectra of the transmitted and reflected optical

pulses, determined when the waveguide and cavities are separated by two, four, and

six holes, namely dcw = 1.5a
√

3, dcw = 2.5a
√

3 and dcw = 3.5a
√

3, respectively. In

this case, the pulse wavelength was equal to the resonance wavelength of the cavities,
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Figure 6.11: From top to bottom: effect of varying the pulse width on the forward pulse
amplitude at the output port, the backwards pulse amplitude at the input port, the
amplitude of the energy function in the first cavity and the amplitude of the energy
function in the second cavity, respectively. Black lines correspond to T0 = 30 ps, red to
T0 = 20 ps , purple to T0 = 10 ps and blue to T0 = 2 ps.

λ0 = λ1 = λ2 = 1278.31 nm.

To understand the results presented in Fig. 6.12 one has to take into account the

perturbation of the cavity mode by the presence of the waveguide. As a result of this

interaction, the resonance wavelength of the cavities is blue-shifted according to the

formula:

ω′p = ωp(1 + Cw
pp), p = 1, 2, (6.71)

where ω′p is the resonance frequency of the perturbed cavity. The closer the cavities are
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Figure 6.12: Spectra of the transmitted (top panel) and reflected (bottom panel) pulses,
determined for different values of the separation distance between the waveguide and
cavities and for λ0 = λ1 = λ2 = 1278.31 nm.

to the waveguide, the larger the frequency detuning is. As we just discussed, another

consequence of decreasing dcw is that the cavity Q-factor decreases, too.

Based on these ideas, the features of the spectra presented in Fig. 6.12 can be under-

stood as follows. When the waveguide and cavities are separated by just two rows (blue

curves), the cavity Q-factor is so small that the cavity bandwidth completely overlaps

with the spectrum of the input pulse and consequently no filtering effect are observed.

Moreover, when the separation distance between the waveguide and cavities is increased

to four rows (red curves), a cavity filtering effect becomes apparent. Importantly, in this

case the spectrum of the transmitted pulse has two peaks, one at the wavelength of the

input pulse, λ0 = 1278.31 nm, and one at a blue-shifted value of the resonance wave-

length of the cavity, λ′ = 1278.28 nm. Finally, when the separation distance between the

waveguide and cavities is further increased to six rows (black curves), there is very weak

coupling between the waveguide and cavities, so that the spectrum of the transmitted

pulse is very similar to that of the input pulse, whereas a very weak pulse is observed in

the input port. This indicates that a vanishingly small amount of energy is transferred

to the cavities.

The last issue we investigate in this section is the dependence of the optical properties

185



of the waveguide-cavities system on the center-to-center inter-cavity distance, dcc. In

particular, we seek to find optimize the separation distance so that the power of the

reflected optical signal at the input port is minimized. This optimization process can be

performed by simply imposing the condition that the successive reflected pulses arrive at

the input port with a phase difference equal to an odd number of π, that is:

2βL1 = 2βL1 + 2βdcc ± nπ, (6.72)

where β is the propagation constant of the forward- and backward-propagating modes,

L1 is the distance to the first cavity, L2 is the distance to the second cavity, dcc = L2−L1,

and n = 1, 3, 5, . . .. If we now choose the inter-cavity separation distance to be a multiple

of the lattice constant, dcc = ma with m an integer, Eq. (6.72) becomes:

2βma± nπ = 0. (6.73)

Using in this equation the system parameter values a = 333 nm, λ0 = 1278.34 nm,

and β = 8.1993× 106 m−1, we find that the value of m closest to an integer number is

m = 18.9852 and corresponds to n = 33. Based on this analysis, we performed several

simulations in which the waveguide-cavities separation distance was fixed to four rows

and varied the inter-cavity separation distance from dcc = 15a to dcc = 26a. We did not

decreased any further the separation distance because we wanted to make sure that the

cavity-cavity optical coupling remains negligible.

In Fig. 6.13 we show the dependence on dcc of the transmission and reflection coeffi-

cients. Regarding the reflection coefficient, its minimum is achieved for dcc = 18a, closely

the value predicted by Eq. (6.73). The transmission coefficient, on the other hand, only

slightly changes with dcc. Finally, the insets presented in Fig. 6.13 show the temporal and

spectral dispersion maps of the reflected pulse, determined for the values of dcc indicated

by the arrows. These maps clearly demonstrate the difference between the two scenarios,

namely the destructive and constructive interference between consecutive pulses arriving
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at the input port.

6.8 Conclusion

In summary, we have developed and discussed a novel, comprehensive, and rigorous math-

ematical model that describes the optical pulsed dynamics in a silicon photonic system

consisting of a photonic crystal waveguide coupled to a set of optical photonic crystal

cavities. Our model captures all relevant linear and nonlinear optical effects occurring

in the physical system, including group-velocity dispersion, cross-mode disperion, intrin-

sic and free-carrier absorption, free-carrier dispersion, self- and cross-phase modulation,

two-photon absorption, and cross-absorption modulation. Our model has been developed

from first principles within the framework of the coupled-mode theory and accurately de-
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scribes the coupled dynamics of the optical fields and free-carriers photogenerated in the

optical waveguide and optical cavities. The mathematical model has been implemented

in a computer code that allowed us to investigate the dynamics of the optical field and

free-carries in our optical system.

To illustrate the versatility of our theoretical model and its numerical implementa-

tion, we have used it for a particular optical system consisting of an optical waveguide

coupled to two optical cavities. Several configurations of this optical system have been

considered, namely a case in which the two optical frequencies have the same resonance

frequency, a configuration in which the two optical cavities are spectrally detuned, a set

of configurations for which the separation distance between the waveguide and the two

cavities varies, a case in which the inter-cavity separation distance was tuned so as to

cancel the reflected optical pulse, and a set of calculations in which the dependence of

the optical response of the system on the temporal width of the input pulse have been

established. Out of all the results presented from these investigations, the most relevant

one, which also exhibits the in-depth insights that our theoretical model can provide,

is the one depicted in Fig. 6.11. In there, we have shown how the practical use of the

photonic structure may be limited by the input pulse width, which is of interest for ap-

plications in communications. Precisely, as the width of the input pulse decreases, the

energy in the cavities does not decrease monotonously and exponentially, but additional

pulses are observed after the initial energy build up. As a consequence the pulse shape at

the output port becomes increasingly more asymmetric. Overall, the physical behaviour

of the photonic structure is dictated mainly by three parameters: the characteristic decay

time of the cavity energy, which can be critical when the input pulse width is similar,

appearing most sensitive; the separation between cavity and waveguide, which should not

be too large in order to efficiently couple energy from the waveguide but not too short

in order to maintain the lifetime of the cavity resonance; and, the separation between

cavities in order to produce the desired pulse response while controlling the strength of

back reflections. Indeed, this analysis has allowed us to show that the waveguide-cavities
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system can be effectively used as a drop-filter, thus illustrating the practical importance

of our study. Before we conclude, we would like to stress that the analysis presented in

this work is not restricted to silicon devices, but can be easily modified to describe optical

system made of other semiconductor materials.



Chapter 7

Conclusions and future work

During the last decades, silicon photonics have proven to be the most attractive tech-

nology for the development of integrated optical chips with applications in telecommu-

nications, data centres and bio-sensing. A huge research has focused on the design of

photonic building blocks taking advantage of the linear and nonlinear characteristics of

silicon. Furthermore, based on the fact that current communication systems employ op-

tical pulses as the way of transferring bits from one element to another in the network,

the linear and nonlinear dynamic effects on the pulses propagating through a waveguide

must be predicted when designing a photonic device or system. Dispersion engineering

techniques enable the designers to adjust the functionality of these devices and tailor

them to satisfy the application requirements by controlling the strength and frequency

dependence of the linear and nonlinear effects. One relevant technique consists of produc-

ing a photonic crystal lattice and, then, modify it to create waveguides or cavities. With

this approach, apart from allowing a good degree of versatility in the design, operation in

the slow-light regime is enabled, where very interesting phenomena occur. Alternatively

to photonic crystals, photonic waveguides can be designed with sub-wavelength features

in order to shape the linear dispersion and to enhance the nonlinear effects. Within this

context, in this work we have focused on the development of rigorous mathematical mod-

els to analyse the linear and nonlinear pulsed dynamics in photonic nanostructures, and
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especially applied to photonic crystals made of silicon and sub-wavelength waveguides

made of diamond.

With regards to the former, this study has explored the pulse dynamics when the

structure has been designed for Raman amplification and when several cavities, acting

as resonators, are placed alongside the waveguide. In contrast with the majority of the

already published work in the field of photonics, both scenarios contain the intrinsic

difficulty of having more than one optical pulses travelling along the waveguide, even in

counter-propagating directions. Therefore, the numerical methods developed in this work

to find the solution to these complex problems require the right computational algorithm

depending on the scenario. Whereas an already known computational method has been

employed for the study of Raman amplification, the cavity-waveguide interaction work

has inspired a new tailored algorithm not applied before for these type of problems. It

is worth mentioning that this work has determined the key requirements for achieving

efficient Raman amplification in silicon photonic crystal waveguides.

With respect to the latter, this work has demonstrated how synthetic diamond-fin

waveguides can enable efficient soliton formation and propagation and, potentially, su-

percontinuum generation. In addition, we have demonstrated how these waveguides can

be employed to generate frequency combs operating in the visible spectral domain. Im-

portantly, our simulations show that it is possible to generate almost one octave span

stable combs in the visible range with input continuous-wave powers as low as 0.5 W.

In the following sections, we present the contributions of this thesis to the research in

silicon and diamond photonics as well as the future prospects and potential new projects.

7.1 Contributions to the field

As mentioned above, the work carried out in this thesis has been centred in unfolding the

understanding of nonlinear pulsed dynamics in microstructured photonic materials, with

attention to those that enable dispersion engineering and, also, present high nonlinear
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interactions. Indeed, with the controlled co-existence of the linear and nonlinear effects,

different photonic functions can be implemented by the same or similar structure. To this

end, photonic crystals and waveguides characterised by subwavelength features, which can

help satisfy the dispersion engineering requirement, are combined with highly nonlinear

materials like silicon and diamond. Following this motivation, we have presented the

mathematical formalism needed to analyse the pulsed dynamics in these structures, which

may help researchers and photonic designers working in the field.

Regarding the study of pulsed dynamics in subwavelength diamond-fin waveguides,

the initial objective was to help the investigation of nonlinear processes on real devices

that were being fabricated by University of Pennsylvania, with whom we were collabo-

rating at the beginning of this work. Rapidly, relevant results were obtained related to

the nonlinear effects on pulses travelling through these type of waveguides. This made us

set up the new goal of demonstrating their applicability for frequency comb generation,

which may be the key practical contribution from this chapter.

With respect to the work around Si-PhCWGs as a Raman-enabled medium, the most

important contribution may be that clear amplification in the order of few tens of dB

can be achieved thanks to the tight mode confinement and slow group velocity that

PhCWGs allow. However, it has been demonstrated the importance of the walk-off length

between pulses. Indeed, the walk-off length must be clearly bigger than the waveguide

length if it is required to amplify the signal and conserve its pulse shape simultaneously.

Additionally, it has been provided a deep study based on different combinations of group

velocity regimes for the pump and the signal for Raman amplification. The results can set

some reference scenarios for the development of active Si-PhCWGs, taking the proposed

theoretical model as a reference to understand and compare measurements made on real

devices.

Finally, in the context of the Si-PhC cavity-waveguide study, the generic mathematical

formalism that has been presented can help solve more complex problems where forwards

and backwards pulses interact with photonic cavities. An original numerical method
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to solve the resulting set of nonlinear differential equations has been presented, which

is able to find the solution in time and space of all the unknowns simultaneously. By

applying this model to a Si-PhC nanostructure with cavities alongside a waveguide, we

have shown how it could be employed to analyse the use of these structures to design

photonic components such as filters or delay lines, for instance.

7.2 Future perspective

The theoretical models developed in this work so far have revealed the added value to the

design process they can provide, so more compact simulation platforms that could easily

be embedded in commercial software in the field of photonics would definitely be very

convenient for researchers and designers. Especially for the cavity-waveguide simulation

tool, which requires important computer resources given the large matrix system needed

to be solved, it would be beneficial to improve the current developed source code, which

employs LAPACK libraries, into the parallel version of these.

With respect to the diamond-fin waveguide work, and continuing the investigation of

frequency comb generation, it may be relevant to study different waveguide-ring coupling

regimes, i.e. under-, critical and over-coupling, and find the most interesting results, in

terms of comb span and power efficiency, out of all these. Another line of investigation

could be centred in changing the material of the fin by another with higher index of

refraction, for instance replacing diamond by silicon or silicon-nitride and determine

whether these subwavelength structures could improve some aspects of the currently

existing designs.

Future work may also integrate the Si-PhCWG model with several cavities in the

structure, where all the linear and nonlinear effects, including Raman, are combined

with tunneling through localized states. Clearly, adding Raman effect into the cavity-

waveguide study, e.g. merging Chapters 5 and 6, would be a natural research work

in continuation of this thesis. Indeed, it would be interesting to study how Raman
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amplification could be enhanced by the use of cavities alongside the waveguide. For

instance, using the filtering nature of cavities to correct undesired frequency components

that appear throughout the propagation of the pulses in the waveguide due to SPM or

XPM effects.

With regards to the cavity-waveguide tool on its own, it could readily be used to

evaluate inter-pulse interaction, for instance by running the simulation with a few number

of pulses as input, separated by a certain amount of time. Generally, it would be of interest

to employ the developed cavity-waveguide tool to design practical devices by varying the

modal characteristics of the waveguide and cavities, the number of the latter, and also

the relative position between all elements. For instance, one idea would be to employ the

tool in order to find the right configuration for the device to be used as an integrated

optical buffer.

As a final point, it would be relevant to analyse, by employing similar CMT formalisms

as we have done in this work, the pulsed dynamics in arrays of dispersion-engineered

photonic waveguides. These structures are of interest since they are being proposed to

increase the capacity of optical interconnects (mode-division-multiplexing [97]) as well as

to spatially separate modes [139].
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