Predictiveness and Effectiveness of Story Points in
Agile Software Development

by

Vali Tawosi

A dissertation submitted in fulfilment
of the requirements for the degree of
Doctor of Philosophy
of
University College London

University College London
Department of Computer Science

March 2023

Declaration

[, Vali Tawosi, confirm that the work presented in this thesis is my own. Where
information has been derived from other sources, | confirm that this has been
indicated in the thesis. The work presented in this thesis is original work
undertaken between January 2019 and March 2023 at University College
London.

Parts of this document have been published in peer-reviewed venues. | list
these papers in Section 1.3. They represent Chapters 3, 4, 5, and 6, respectively.

Date: 2nd March 2023
Name: Vali Tawosi
Signature:

Abstract

Agile Software Development (ASD) is one of the most popular iterative
software development methodologies, which takes a different approach from
the conventional sequential methods. Agile methods promise a faster response
to unanticipated changes during development, typically contrasted with
traditional project development, which assumes that software is specifiable and
predictable.

Traditionally, practitioners and researchers have utilised different Functional
Size Measures (FSMs) as the main cost driver to estimate the effort required to
develop a project (Software Effort Estimation — SSE). However, FSM methods
are not easy to use with ASD. Thus, another measure, namely Story Point (SP),
has become popular in this context. SP is a relative unit representing an intuitive
mixture of complexity and the required effort of a user requirement.

Although recent surveys report on a growing trend toward intelligent effort
estimation techniques for ASD, the adoption of these techniques is still limited in
practice. Several factors limit the accuracy and adaptability of these techniques.
The primary factor is the lack of enough noise-free information at the estimation
time, restricting the model’s accuracy and reliability.

This thesis concentrates on SEE for ASD from both the technique and data
perspectives. Under this umbrella, 1 first evaluate two prominent state-of-the-
art works for SP estimation to understand their strengths and weaknesses. |
then introduce and evaluate a novel method for SP estimation based on text
clustering. Next, | investigate the relationship between SP and development time
by conducting a thorough empirical study. Finally, | explore the effectiveness of
SP estimation methods when used to estimate the actual time. To carry out this
research, | have curated the TAWOS (Tawosi Agile Web-based Open-Source)
dataset, which consists of over half a million issues from Agile, open-source
projects. TAWOS has been made publicly available to allow for the reproduction
and extension in future work.

Keywords: Software Effort Estimation, Agile Software Development, Story
Points Estimation

Impact Statement

The production of software is an elaborate engineering process no different from
other engineering disciplines. Yet, the prediction of the effort required to develop
a software project has been challenging for this industry since its inception in
the 1950s. This challenge had grown bigger in the last two decades when the
agile methodologies started estimating effort for individual software tasks rather
than the whole project.

Story point is the most popular unit of effort agile software development
teams use. Consequently, researchers have built several estimation models for
story point estimation using Artificial Intelligence (Al).

In this thesis, | focus on the predictability of story points by these approaches
and the efficacy of story points as an effort measure. The results provide the
research community with a new understanding of the limitations of the current
state-of-the-art. These approaches, despite using advanced deep-learning
models, fail to outperform simple baseline techniques, which do not use any
information from the task itself to make an estimation. This finding may shift
the focus in future work towards exploring new effort drivers instead of the
utilisation of more powerful algorithms. Moreover, via an extensive empirical
study, we show that the human-estimated story points are biased, rendering
them unsuitable as ground truth for training Al-based models. We suggest that
practitioners in the industry and researchers in academia use actual development
time as a ground truth when available.

Furthermore, this thesis provides the software engineering research
community with a holistic and versatile dataset of around half a million software
tasks (a.k.a. issues) collected from several open-source projects, making it
well-suited to several research avenues and cross-analyses therein. This
dataset can foster research in this area by providing the researchers with
easier means to reproduce and extend future work.

Acknowledgements

This document, the culmination of a challenging but rewarding journey called
PhD, could not have been possible without the generous support of several
exceptional individuals to whom | would like to express my sincerest gratitude.

First and foremost, | would like to express my most profound appreciation to
my first supervisor, Professor Federica Sarro, for all the tremendous support,
invaluable guidance, and mentorship she provided me with all along this journey.
I am grateful for her trust in me and her patience with me during times of
uncertainty.

Secondly, | would like to express my gratitude to my second supervisor,
Professor Mark Harman, for his continuous support, encouragement, and sage
advice. Both my supervisors were and will continue to be my greatest source of
inspiration.

| also extend my special thanks to Dr Afnan AlSubaihin for the generous
help and guidance she provided me throughout my PhD. | extend my gratitude
to Rebecca Moussa, my friend and lab mate, for her incredible help and
contributions, and to my other co-author, Dr Alessio Petrozziello, for his
valuable contributions.

I would also like to thank the amazing people in CREST and SSE who
welcomed me to the lab and were always there when | needed help: Professor
William Langdon, Dr Giovani Guizzo, Dr Jie Zhang, Dr Max Hort, Dario Asprone,
Dr Profir-Petru Partachi, Dr Aymeric Bolt, Dr Maria Kechagia, Dr David Kelly,
and everyone else who made my PhD journey more pleasant.

| am incredibly grateful to my parents and siblings, who sacrificed whatever
they could to see me succeed.

Last but certainly not least, a big thanks to the love of my life Dr Fatima
Najibi, whose love gave me strength and her support throughout all the ups and
downs of my PhD, without ever losing her faith in me, made this thesis possible.

Thank you all.

UCL Research Paper Declaration Form:

REFERENCING THE DOCTORAL CANDIDATE'S OWN
PUBLISHED WORK(S)

1. For a research manuscript that has already been published:

(a) What is the title of the manuscript?
A Versatile Dataset of Agile Open Source Software Projects

(b) Please include a link to or doi for the work:
https://doi.org/10.1145/3524842.3528029

(c) Where was the work published?
Proceedings of the 19" International Conference on Mining Software
Repositories (MSR)

(d) Who published the work?
ACM

(e) When was the work published?
17 October 2022
(N List the manuscript’s authors in the order they appear on the
publication:
Vali Tawosi, Afnan Al-Subaihin, Rebecca Moussa, Federica Sarro
(g) Was the work peer-reviewed?
Yes
(h) Have you retained the copyright?
Yes
() Was an earlier form of the manuscript uploaded to a preprint
server (e.g. medRxiv)? If ‘Yes’, please give a link or doi
https://arxiv.org/abs/2202.00979

2. For multi-authored work, please give a statement of contribution
covering all authors:

11

https://doi.org/10.1145/3524842.3528029
https://arxiv.org/abs/2202.00979

Vali Tawosi did the literature review and data gathering, implemented the
software to pull the raw data and extract computed features, curated the
dataset, and wrote the manuscript. Afnan Al-Subaihin contributed to the
writing by reviewing the paper and improving it. Rebecca Moussa helped
review the paper and improve the writing. And Federica Sarro supervised
the project, reviewed the paper, and improved the writing.

3. In which chapter(s) of your thesis can this material be found?
Chapter 3

e-Signatures confirming that the information above is accurate:

Candidate: Vali Tawosi
Date: 6 March 2023

Supervisor signature: Federica Sarro
Date: 6 March 2023

Vali Tawosi 12 UCL - Dept. of Computer Science

UCL Research Paper Declaration Form:

REFERENCING THE DOCTORAL CANDIDATE'S OWN
PUBLISHED WORK(S)

1. For a research manuscript that has already been published:

(a) What is the title of the manuscript?
Agile Effort Estimation: Have We Solved the Problem Yet? Insights
From A Replication Study

(b) Please include a link to or doi for the work:
https://doi.org/10.1109/TSE.2022.3228739

(c) Where was the work published?
IEEE Transactions on Software Engineering (TSE)

(d) Who published the work?
IEEE

(e) When was the work published?
14 December 2022

() List the manuscript’s authors in the order they appear on the
publication:
Vali Tawosi, Rebecca Moussa, Federica Sarro

(g) Was the work peer-reviewed?
Yes

(h) Have you retained the copyright?
Yes

() Was an earlier form of the manuscript uploaded to a preprint
server (e.g. medRxiv)? If ‘Yes’, please give a link or doi
https://arxiv.org/abs/2201.05401

2. For multi-authored work, please give a statement of contribution
covering all authors:

13

https://doi.org/10.1109/TSE.2022.3228739
https://arxiv.org/abs/2201.05401

Vali Tawosi did the literature review, implemented and performed the
experiments, analysed the results, and wrote the manuscript. Rebecca
Moussa helped review the paper and improve the writing, and Federica
Sarro supervised the project, helped design the experiments, reviewed
the paper, and improved the writing.

3. In which chapter(s) of your thesis can this material be found?
Chapter 4

e-Signatures confirming that the information above is accurate:

Candidate: Vali Tawosi
Date: 6 March 2023

Supervisor signature: Federica Sarro
Date: 6 March 2023

Vali Tawosi 14 UCL - Dept. of Computer Science

UCL Research Paper Declaration Form:

REFERENCING THE DOCTORAL CANDIDATE'S OWN
PUBLISHED WORK(S)

1. For a research manuscript that has already been published:

(a) What is the title of the manuscript?
Investigating the Effectiveness of Clustering for Story Point Estimation
(b) Please include a link to or doi for the work:
https://doi.org/10.1109/SANER53432.2022.00101

(c) Where was the work published?
Proceedings of 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER)

(d) Who published the work?
IEEE

(e) When was the work published?
21 July 2022
(N List the manuscript’s authors in the order they appear on the
publication:
Vali Tawosi, Afnan Al-Subaihin, Federica Sarro
(g) Was the work peer-reviewed?
Yes

(h) Have you retained the copyright?
Yes

() Was an earlier form of the manuscript uploaded to a preprint
server (e.g. medRxiv)? If ‘Yes’, please give a link or doi
https://discovery.ucl.ac.uk/id/eprint/10143360/

2. For multi-authored work, please give a statement of contribution
covering all authors:

15

https://doi.org/10.1109/SANER53432.2022.00101
https://discovery.ucl.ac.uk/id/eprint/10143360/

Vali Tawosi did the literature review, implemented and performed the
experiments, analysed the results, and wrote the manuscript. Afnan Al-
Subaihin helped with the implementation of the method, review the paper
and improve the writing, and Federica Sarro supervised the project, helped
design the experiments, reviewed the paper, and improved the writing.

3. In which chapter(s) of your thesis can this material be found?
Chapter 5

e-Signatures confirming that the information above is accurate:

Candidate: Vali Tawosi
Date: 6 March 2023

Supervisor signature: Federica Sarro
Date: 6 March 2023

Vali Tawosi 16 UCL - Dept. of Computer Science

UCL Research Paper Declaration Form:

REFERENCING THE DOCTORAL CANDIDATE'S OWN
PUBLISHED WORK(S)

1. For a research manuscript that has already been published:

(a) What is the title of the manuscript?
On the Relationship Between Story Points and Development Effort in
Agile Open-Source Software

(b) Please include a link to or doi for the work:
https://doi.org/10.1145/3544902.3546238

(c) Where was the work published?
Proceedings of the 16* ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM)
(d) Who published the work?
ACM
(e) When was the work published?
19 September 2022
() List the manuscript’s authors in the order they appear on the
publication:
Vali Tawosi, Rebecca Moussa, Federica Sarro
(g) Was the work peer-reviewed?
Yes

(h) Have you retained the copyright?
Yes

(i) Was an earlier form of the manuscript uploaded to a preprint
server (e.g. medRxiv)? If ‘Yes’, please give a link or doi
https://discovery.ucl.ac.uk/id/eprint/10151116/

2. For multi-authored work, please give a statement of contribution
covering all authors:

17

https://doi.org/10.1145/3544902.3546238
https://discovery.ucl.ac.uk/id/eprint/10151116/

Vali Tawosi did the literature review, implemented and performed the
experiments, analysed the results, and wrote the manuscript. Rebecca
Moussa helped review the paper and improve the writing, and Federica
Sarro supervised the project, helped design the experiments, reviewed
the paper, and improved the writing.

3. In which chapter(s) of your thesis can this material be found?
Chapter 6

e-Signatures confirming that the information above is accurate:

Candidate: Vali Tawosi
Date: 6 March 2023

Supervisor signature: Federica Sarro
Date: 6 March 2023

Vali Tawosi 18 UCL - Dept. of Computer Science

CONTENTS

Declaration
Abstract

Impact Statement
Acknowledgement
List of Figures
List of Tables

1 Introduction
1.1 Problem Statement
1.2 Contributions
1.3 ListofPapers
1.4 OrganisationoftheThesis

2 Literature Review
2.1 Traditional Software Effort Estimation.
2.2 AgilePlanning
2.3 Software Size Measureso
2.4 Agile Effort Estimation
2.5 Story Point as a Cost Driver for Agile Effort Estimation
2.6 Story Pointvs Actual Effort

3 The TAWOS Dataset
3.1 Introduction
3.2 DatasetDescription
3.2.1 DataExtraction
3.22 DataStorage
3.2.3 DataCharacteristics

23

27

29
30
32
33
34

35
35
37
38
39
42
43

CONTENTS

3.24 DataStructure a7
3.2.5 Computed and Derived Fields 49
3.2.6 Extensibility and Maintainability 50
3.3 Originality and Relevance 50
3.4 Research Opportunities 52
3.5 Summary ... e 53
Previous Methods to Estimate Story Points 55
4.1 Introduction 56
4.2 The Deep-SE and TF-IDF-SE Approaches for Agile Effort Estimation 58
42.1 Deep-SE 60
422 TF-IDF-SE e 61
4.3 Empirical Study Design 61
4.3.1 ResearchQuestions 62
432 Data 65
433 Benchmarks 68
4.3.4 Evaluation Measures and Statistical Analysis 68
44 Results. e 70
441 RQ1. SanityCheck 71
442 RQ2.Deep-SEVvsTF-IDF-SE 73
4.4.3 RQ3. Cross-project Estimation 79
4.4.4 RQ4. Augmented TrainingSet 81
4.45 RQ5. Pre-Training Effectiveness 84
45 DISCUSSION o o e e 86
4.6 ThreatstoValidity 88
4.7 Conclusion 90
Clustering Approach to Estimate Story Points 95
5.1 Introduction e 96
5.2 The Proposed Method 97
5.2.1 Text Pre-processing and Topic Modelling 98
522 Clustering. 98
5.2.3 EstimationModels 100
5.3 Empirical Study Design 100
5.3.1 ResearchQuestions 101
532 Data..... 101
5.3.3 EvaluationMeasures 102
5.3.4 Statistical Analysis 102

Vali Tawosi 20 UCL - Dept. of Computer Science

CONTENTS

54 Results. e 103
54.1 RQ1l. SanityCheck 103
5.4.2 RQZ2. Additional Features 105
5.4.3 RQ3. Comparison to the Previous Work 107

5.5 DISCUSSION o e e 109

5.6 ThreatstoValidity 110

5.7 Conclusionand Future Work 110

6 Effectiveness of Story Points in Estimating Effort 113

6.1 Introduction 114

6.2 Background 116
6.2.1 Software Size Measures 116
6.2.2 Jira Workflow and Issue Development Time 116

6.3 Empirical Study Design 119
6.3.1 ResearchQuestions 119
6.3.2 Methodology 120
6.3.3 Data 122

6.4 Results. 123
6.4.1 RQI1. Approximating Issue Development Time 125
6.4.2 RQ2.Correlation 126
6.4.3 RQ3.Consistency 128

6.5 Threatsto Validity 131

6.6 Conclusions 131

7 Predicting Issue Development Time 133

7.1 Introduction 133

7.2 Background 134

7.3 Empirical Study Design 135
7.3.1 ResearchQuestions 135
732 Data 136
7.3.3 EvaluationMeasures 136

7.4 Results. 137
7.4.1 RQLIL. Estimating DevelopmentTime 137
7.4.2 RQ2. Story Point as another Effort-Driver 139

7.5 Threatsto Validity 140

7.6 Conclusion 141

8 Conclusions and Future Work 143

8.1 Findings 143

Vali Tawosi 21 UCL - Dept. of Computer Science

CONTENTS

8.2 Future Work e, 145

Bibliography 163

Vali Tawosi 22 UCL - Dept. of Computer Science

LIST OF FIGURES

2.1

3.1

4.1

5.1

5.2

6.1
6.2

6.3

7.1

Using relative estimated values for user stories with different
sizes. Image source [61].

Entity-Relationship Diagram (ERD) for the TAWOS Issues
Database. e

Proportion of Issue Types in the Tawosi Dataset (a), and the
number of total issues and the number of issues with code
snippet(s) in their description, grouped by issue type, in the
Tawosi dataset (b). Issue types are ordered by their frequency in
descending order from lefttoright.

Perplexity of the LDA topic model per number of topics (i.e., t-
values).
A sample dendrogram of agglomerative hierarchical clustering
of issues (COMPASS project). A sample cut-off line is shown on
the plot, which cuts the dendrogram at level 6, thus producing 6
Clusters.

A generic Jiraworkflow. L oo
A sample Jira task Board showing issues organised according to
their status (i.e., To Do, In-Progress, orDone).
Boxplots of the distribution of development time per SP class for
(a) APIKIT, (b) BE, (c) CLQV, (d) XD, (e) JISWCLOUD, (f) MULE.
The red line depicts a project-specific baseline, drawn based on
the median developmenttime forone SP.

Architecture of GPT2SP [21].

23

48

91

118

130

LIST OF TABLES

3.1

4.1
4.2
4.3

4.4

4.5

4.6

4.7

Descriptive statistics of the TAWOS dataset.

Summary of the Related Work.
Descriptive statistics of the three datasets used in this study.

RQ1.1 and RQ5. Results obtained for the Choet dataset in
RQ1.1.: The column “Rep” shows the replication results, and the
column “Orig" presents the original study results [26], both
obtained by using Deep-SE with the transformed SPs as done in
the original study. The column “CutTrain” shows the results
achieved by applying the transformation only on the training set,
while the column “ICut” shows the results of our replication
without transforming the SPs. We also include in this table the
results for RQ5 “Deep-SElpre-train”, which investigates
Deep-SE without pre-training its lower layers (i.e., word
embedding and LSTM). The best results areinbold.

RQ1.1 and RQ5. Results of the Wilcoxon test (Am effect size in
parentheses) comparing Deep-SE vs baselines (Mean, Median),

vs Deep-SE!pre-train, and vs Deep-SE!cut, on the Choet dataset. 75

RQs 1.2, 2.2, and 5. Results of Deep-SE, Deep-SE!pre-train, TF-
IDF-SE, and baseline estimators (Mean, Median) on the Tawosi
dataset. The bestresultsareinbold.

RQs 1.2, 2.2, and 5. Results of the Wilcoxon test (2112 effect
size in parentheses) comparing Deep-SE vs Deep-SE!pre-train,
Deep-SE vs TF-IDF-SE, Deep-SE vs baseline estimators (Mean,
Median), and TF-IDF-SE vs baseline estimators (Mean, Median)
onthe Tawosidataset.

RQ2.1. Results of the Deep-SE and TF-IDF-SE replication (Rep),
original study [26] (Orig), and the baselines on the Porru dataset.
Best results (among all methods but Deep-SE (Orig) and TF-IDF-
SE (Orig))inbold.

24

78

LIST OF TABLES

48 RQ2.1. Results of the Wilcoxon test (4;, effect size in
parentheses) comparing Deep-SE vs TF-IDF-SE, Deep-SE vs
baselines (Mean, Median), and TF-IDF-SE vs baselines (Mean,
Median) on the Porrudataset. 78

4.9 RQ3.1. Comparing Deep-SE cross-project ((a) within-repository
and (b) cross-repository) SP estimation replication results (Rep)
to the original study results (Orig) [26], and to the baselines. The
results of the Wilcoxon test (Am effect size in parentheses) for
Deep-SE (Rep) vs Mean and Median baselines are shown in
the last column. The best results (among all approaches but
Deep-SE (Orig)) per project are highlighted inbold. 82

4.10 RQ3.2. Comparing the cross-project prediction accuracy (in terms
of MAE) of Deep-SE and the baselines Mean and Median. The
last column shows the result of the Wilcoxon statistical test (/112
Effect size in parentheses) for Deep-SE. The best results are in
bold. 83

4.11 RQA4. Results achieved by Deep-SE on the Tawosi dataset when
the training set is augmented by using older issues from the
repository that the project belongs to (AUG), compared to Deep-
SE’s within-project results from RQ1.2 (WP) and to baseline
estimators. The bestresultsareinbold. 85

4.12 RQ5. Comparing running time and the number of epochs that
each of the methods (i.e., Deep-SE when used with initialization
of weights through pre-training (Deep-SE) and Deep-SE with
random initialization (Deep-SE!pre-train)) needs to converge on
the (a) Choet and (b) Tawosi datasets. The best results are in bold. 87

4.13 Semantically related user stories with different SP values for
Spring XD. Related concepts are highlighted in bold. 89

5.1 RQ1 and RQ2: Win-Loss-Tie results comparing the nine different
combinations of three cluster-building methods and three
estimation strategies for each of the three LHC-SE-based
variants. The best strategy for each variant is highlighted. 104

5.2 RQ1 and RQ3: MAE, MdAE and SA values achieved by LHC-
SE, LHC;-SE, Deep-SE, TF-IDF-SE, and the Mean and Median
baselines. The best values per method and per project are printed
inboldface. 106

Vali Tawosi 25 UCL - Dept. of Computer Science

LIST OF TABLES

5.3 RQ2: Win-Loss-Tie summary of the Wilcoxon test results
comparing the LHC-SE variants with their respective best
strategies from Table 5.1. The best variant is highlighted. 107

5.4 RQ3: Wilcoxon Test results (with Vargha-Delaney effect size in
brackets) comparing LHC;~-SE against each of the previous
work and the baseline methods. 108

5,5 RQ3: Win-Loss-Tie summary of the Wilcoxon test results
comparing LHC-SE against each of the previous work and the
baseline methods. The best method is highlighted 109

6.1 List of projects we analysed for RQ1 (a, and b) and RQs 2-3
(c). Each project’s total number of issues is shown in the Total
Issues column. Before Filter shows the original number of issues
extracted from the TAWOS dataset [27] and After Filter shows
the number of issues remaining after the filtering process as
explained in Section 6.3.3. The other columns show summary
statistics for SP, Timespent and its proxies. 124

6.2 RQ1. Difference between Timespent and the three proxy
measures for development time (i.e., In-Progress Time, Effort
Time, and Resolution Time) in terms of Sum of Absolute Error
(SAE) and significance statistical tests (effect size shown in
brackets). 125

6.3 RQ2. Correlation results between SP and three development time
proxies (p-value in brackets). Medium and strong correlations
are highlighted in orange and red, respectively. 127

6.4 RQ2. Correlation results between SP and Timespent (p-value
in brackets). Medium and strong correlations are highlighted in
orange and [red, respectively. 128

6.5 RQ3. Angles created between the X axis and the linear regression
fit for SP classes against Median In-Progress time when only SP
classes < 5 are considered (Angle (SP< 5)) and when all the
classes are considered (Angle (SP< 100)), and the angle between
the two (Difference). 129

7.1 RQ1: MAE, MdAE and SA values achieved by GPT2-SE, Deep-
SE, LHC-SE, TF-IDF-SE, and the Mean and Median baselines.
The best values per method and per project are printed in boldface.
Errorunitisinhours. 138

Vali Tawosi 26 UCL - Dept. of Computer Science

LIST OF TABLES

7.2 RQ1l: Win-Loss-Tie summary of the Wilcoxon test results
comparing Al-based effort estimation methods estimating
development time against each other and the baseline methods.

The best method is highlighted. 139

7.3 RQZ2. Estimating development time (hours) by GPT2-SE, which
solely uses issue text as input, and GPT2-SE+, which also
exploits human-estimated story points as a cost-driver. The best
values per metric are printed in bold for each project. 140

7.4 RQ3. Results of Wilcoxon Rank-Sum test (Vargha-Delaney effect
size in parentheses) for GPT2-SE+ against GPT2-SE, and the
Median and Mean baselines. 140

Vali Tawosi 27 UCL - Dept. of Computer Science

Chapter 1
Introduction

Like any other engineering discipline, it is crucial for managers of software
projects to know how much time, resources and workforce they will need to
finish the project [1]. However, unfinished, overdue, and over-budgeted
software projects have been distressing the software production industry for
many years [2]. The primary reason for this management pitfall is usually the
miscalculation of the required effort to finish the project in the early stages of
the project development life cycle when the project still has many unknowns,
and the process possesses considerable uncertainty. Both overestimation and
underestimation can cause severe problems for a software production
company. The company might lose a bid or misspend its resources with the
former. While the latter may cause delay, low-quality product, or even failure,
and consequently, unsatisfied customers and financial losses [3]-[5].

Definition 1.1: Software Effort Estimation

The process of estimating the amount of effort needed to develop a
software project is called Software Effort Estimation (SEE).

The problem of unknowns and uncertainties is usually exacerbated by the
subjective estimation of human experts. Human beings have been shown to be
biased thinkers, having limited experience and yet weighting memories that they
recall the most, mixing logic with emotion, and being volatile to other individuals’
opinion [6], which can make their judgement subjective and inconsistent.

One solution to the biased judgement problem is to learn patterns from
factual recorded data from the past and perform automated inference on the
current situation, i.e., use machine intelligent SEE techniques. For more than
three decades, researchers proposed different approaches to intelligent SEE,
from statistical models [7] to Artificial Intelligence (Al) based models [4]. Many

29

CHAPTER 1. INTRODUCTION

of these approaches harvest information from finished projects in the past to
predict the effort of the new ones. This information, which is called cost or effort
drivers, usually are related to the software size [8]. The model takes as input
the cost drivers for a new software project and maps it to a continuous output
value that represents the estimated effort needed to develop the project, usually
in terms of person-hour or person-month.

The approach taken to estimate effort for a software project can vary based
on the development methodology followed to build it. In traditional (i.e., non-
agile) software development methodologies, the estimation is usually done at
the project level [9]; in contrast with newer Agile Software Development (ASD)
methodologies, the estimation is also focused on a much finer-grained iteration
level or even task level. Project-level estimation focuses on estimating the effort
required to complete a whole software project. To this end, Functional Size
Measures (FSM), such as Function Point (FP) [10], or COSMIC Function Point
(CFP) [11], have been usually used as a cost driver [1], [12]-[15]. However,
task-level estimation is interested in estimating the effort needed to complete a
single task which can be the development of a new feature, a requested change,
or a bug repair [1]. In these cases, FSM methods are not easy to use [16]; thus,
another measure, namely Story Point, has become popular [17], [18].

Definition 1.2: Story Point

Story Point (SP) is a relative unit that represents an intuitive mixture of
complexity and required effort of a user story.2

4|n the ASD context, a user story is a user-valued functionality which is specified in
the form of one or a few sentences in the everyday language of the user.

1.1. PROBLEM STATEMENT

With the increasing popularity of agile methodologies in the software industry,
several studies have been conducted to investigate effort estimation in ASD
[19]. Most of these studies focus on story points as the primary metric for the
effort needed to develop software tasks, and propose intelligent SEE models to
estimate it [20]. Such models are envisioned to substitute the expert estimator, or
in a consensus-based method like planning poker, to contribute an estimation as
another member of the estimation team. Building a tool to accurately estimate
the SP value for a task would enable the project manager, as well as the
development team, to provision and plan the development process with higher
confidence and deliver the software on time. However, this attempt to automate

Vali Tawosi 30 UCL - Dept. of Computer Science

CHAPTER 1. INTRODUCTION

the estimation process might interfere with the agile manifesto which emphasises
the value of “individuals and interactions over processes and tools”. Developers
might have a difficult time trusting the estimation of a tool over their own, which
in turn might lead to a reduction in the quality of interactions and a drop in
productivity. To mitigate this potential problem, explainable methods may be
effective. An intelligent SEE model that can explain the reasons behind its
decision (i.e., estimation) will increase the user’s trust and confidence in the
generated estimation [21].

Nevertheless, the adoption of intelligent SEE models is still limited in practice,
as their estimation performance is not acceptable. Most of the studies that
propose such models train them using story points from the previous (delivered)
tasks to estimate story points for the new ones [21]-[26]. However, Usman
et al. [18] found (and recently confirmed by Fernandez-Diego et al. [19]) that
human subjective estimation is the most commonly used approach for story point
estimation in ASD. While the accuracy of the subjective estimation techniques
is sensitive to the practitioners’ expertise and prior experience, thus, prone to
bias. Nevertheless, one of the issues that seem neglected in the literature is
the use of a biased human-estimated effort measure (i.e., story points) as the
gold standard to train intelligent SEE models.

Therefore, considering the central role that story point plays in agile effort
estimation and the possible bias in human expert estimations, this thesis aims at
an empirical investigation of the predictiveness and effectiveness of story points
in ASD. To this end, two main research questions are addressed: (question
A) How effective the state-of-the-art intelligent story point estimation models
are in predicting story points? and (question B) To what extent human expert-
estimated story points are a good indicator of effort in ASD?

To address question A, | evaluate state-of-the-art story point estimation
methods via an extensive empirical evaluation using a large dataset of agile
open source issues, which | have curated for such a purpose. The design and
results of this study are presented in Chapter 4, while the dataset is introduced
in Chapter 3.

In Chapter 5 I introduce a novel approach to estimate story points for ASD
and compare it to the previous methods.

To answer question B, | investigate the relationship between story points
and the ASD task development effort, expressed in terms of time needed to
realise it. The design and results of this study are presented in Chapter 6.

And finally, in Chapter 7, | present the idea of using the unbiased and factual
development time of ASD tasks, instead of story points, to train effort estimation

Vali Tawosi 31 UCL - Dept. of Computer Science

CHAPTER 1. INTRODUCTION

models.

1.2. CONTRIBUTIONS

Addressing the two main research questions posed in the previous section, this
thesis:

1. Investigates the estimation performance of two prominent previous
methods introduced for story point estimation (including the
state-of-the-art deep learning-based method) via a replication study and
reveals that these models are outperformed by naive baseline techniques
for the majority of the cases. This suggests that using complicated
methods does not necessarily produce a more accurate model. The
replication study led to new findings which, in some cases rebutted the
previous findings. This further proves the importance of replication
studies and making replication packages publicly available in order to
support reproduction, replication and extension of previous work.

2. Proposes a new approach based on topic modelling and clustering for
story point estimation, evaluates it using a large dataset of issues, and
compares it to previous approaches. The estimation performance of
the proposed approach is as good as the state-of-the-art and still not
statistically significantly better than the baseline techniques in all cases,
which does not justify its additional complexity.

3. Via an extensive empirical study investigates the relationship between story
points and the development time of software tasks in an open-source ASD
context. The results show that the expert-estimated story point does not
strongly correlate with the development time. Moreover, expert estimation
is not consistent throughout the project. Specifically, expert estimators are
less consistent in estimating user stories with larger than 5 points. These
findings suggest that the expert-estimated story point is biased.

4. Evaluates the efficacy of approaches introduced for story point estimation
in estimating the development time of the open-source software tasks.
The results show that all the investigated methods can estimate the
development time with an average absolute error of less than a single
working day (i.e., 8.5 hours).

5. Provides the agile development effort estimation research community
with a holistic and versatile dataset called the TAWOS (an acronym for

Vali Tawosi 32 UCL - Dept. of Computer Science

CHAPTER 1. INTRODUCTION

Tawosi Agile Web-based Open-Source) dataset that contains a wealth of
information on more than half a million issues (i.e., individual software tasks
including user stories, bugs, etc.) from 44 agile open-source software.
The TAWOS dataset is well-suited to several research avenues and cross-
analyses therein, including effort estimation, issue prioritization, issue
assignment and many more. This dataset is extensively used in this thesis
and made publicly available online for further research and replication
purposes, and curated for future expansions.

6. Adopts Open Science practices by making all the scripts, codes, tools,
and data used for conducting the studies reported in this thesis publicly
available to encourage replication and extension of this work and foster
research in the area of software effort estimation.

1.3. LIST OF PAPERS

Chapters 3 to 6 of this thesis are published in peer-reviewed venues. Hence,
the reader may notice a mixed use of ‘I' and ‘we’ throughout this document.
| continue to use ‘we’ in the paper chapters to acknowledge my co-authors’
contribution, as the publication was the result of the collaboration with them.
| provided the title, list of authors, and venue for each of these papers at the
beginning of the respective chapter. Moreover, the papers are presented as
published in each Chapter except for the removal of some sections to reduce
repetition throughout the thesis and the change in the appearance of some of
the figures and tables that required editing to fit into the thesis format.

The following is the list of papers published so far, in the order they appear
in the thesis:

1. V. Tawosi, F. Sarro, A. Petrozziello, and M. Harman, “Multi-objective
software effort estimation: A replication study,” IEEE Transactions on
Software Engineering (TSE), vol. 48, no. 8, pp. 3185-3205, 20211

2. V. Tawosi, A. Al-Subaihin, R. Moussa, and F. Sarro, “A versatile dataset of
agile open source software projects,” in Proceedings of 19th International
Conference on Mining Software Repositories (MSR), ACM, 2022

3. V. Tawosi, R. Moussa, and F. Sarro, “Agile effort estimation: Have we
solved the problem yet? insights from a replication study,” IEEE
Transactions on Software Engineering (TSE), pp. 1-19, 2022

1This paper reports the result of a replication study performed during the first year of my PhD
and referred to in the last paragraph of Section 2.1.

Vali Tawosi 33 UCL - Dept. of Computer Science

CHAPTER 1. INTRODUCTION

4. V. Tawosi, A. Al-Subaihin, and F. Sarro, “Investigating the effectiveness of
clustering for story point estimation,” in Proceedings of the 29th IEEE
International Conference on Software Analysis, Evolution and
Reengineering (SANER), IEEE, 2022, pp. 816-827

5. V. Tawosi, R. Moussa, and F. Sarro, “On the relationship between story
point and development effort in agile open-source software,” in 16th
ACMY/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), ACM/IEEE, vol. 16, 2022

1.4. ORGANISATION OF THE THESIS

In the remainder of this thesis, | first present the literature on software effort
estimation for both traditional and agile software development methodologies in
Chapter 2.

Chapter 3 presents the TAWOS dataset, which is used throughout this thesis
to evaluate different approaches to story point estimation.

Chapter 4 presents the replication and extension of a prominent previous
study in agile software development effort estimation.

Then, Chapter 5 presents LHC-SE, the text clustering approach to story
point estimation introduced in this thesis, and compares it to the previous work.

Chapter 6 investigates the correlation between the expert-estimated story
points with development time and the consistency of expert estimates
throughout the project. This chapter suggests that intelligent agile effort
estimation approaches should use the development time to train whenever it
was available.

Therefore, Chapter 7 adapts and evaluates all the approaches investigated
in this thesis to train with and estimate the development time.

Finally, Chapter 8 presents the conclusions drawn from the main findings
and provides directions for future work.

Vali Tawosi 34 UCL - Dept. of Computer Science

Chapter 2
Literature Review

This chapter presents a brief history of intelligent software effort estimation,
followed by a literature review of the main subjects investigated in the thesis.

Section 2.1 describes how intelligent SEE systems use the information from
the past to determine the estimated effort for new projects. This section looks
at the problem from the traditional (i.e., non-agile) software development
methodologies’ point of view. Then, Section 2.2 and 2.3 describe the agile
planning and software size measures used in SEE and their evolution,
respectively.

The previous work on task-level effort estimation, which used user stories
to estimate their story point, is discussed in Section 2.4. Section 2.5 presents
studies that used story points as a cost driver to estimate effort. And finally, the
studies investigating the relation between story point and other size and effort
measures are presented in Section 2.6.

2.1. TRADITIONAL SOFTWARE EFFORT ESTIMATION

Early efforts to build an estimation technique sought to find a set of factors
related to the software size and cost and use them to build a formula using
regression analysis [7]. With the advent of intelligent techniques in software effort
estimation, different approaches have been investigated, including analogy-
based techniques (e.g. Categorical Regression [31], Case-Based Reasoning
[32]), Machine Learning techniques (e.g. Classification and Regression Trees
(CART) [33], Artificial Neural Networks [34], Support Vector Regression [35],
Bayesian Networks [36]), Search-Based approaches (e.g. Tabu Search and
Genetic Programming) [5], [37], [38], and combinations of two or more of these
methods (e.g. [39]-{42]).

These approaches usually exploit the relations between available information

35

CHAPTER 2. LITERATURE REVIEW

on a set of past projects to build a model that can be used to predict the effort
for a new project. The information presented in the set (i.e., predictors or cost
drivers) is the factors identified to be related to the effort. This information is
measured on previous projects and stored in a database. Examples of such cost
drivers are the number of files, the number of inputs and outputs, the functional
size of the software, the size of the team, and team experience, etc. A prediction
model takes as input the predictor values for a new project and returns a scalar
value that represents the estimated effort to develop a new software project.

Depending on the prediction approach, the predictors are used in a different
way. For example, a linear regression technique combines the predictors through
a linear equation with coefficients coming from the statistics of the previous
projects, while in Case-Based reasoning, the predictors are exploited to find the
most similar projects from the past, then use the effort measured for the similar
project(s) from the past to predict the effort for the new project.

One of the most successful approaches to building intelligent effort
estimation models for traditional software development is Search-Based
Software Engineering (SBSE) [37]. SBSE reformulates software engineering
problems as search problems. The SBSE solution space is explored using a
search technique equipped with software metrics able to discriminate between
good and bad solutions, which will tend to guide the search towards the optimal
solution(s) [43].

In Search-Based Effort Estimation (SBEE), the optimization method builds
many candidate models and tries to identify the optimal model, i.e., the one
providing the most accurate estimates [44]. Such a model can be described by
the following equation [5]:

EstimatedE f fort = wyop1cq + ... + wy0p,c, + C (2.1)

where c; represents the value of the i*" cost driver, w; its weight, and C represents
a constant, while op; represents the i** mathematical operator (i.e. +, —, x,
etc.) of the model. Any value except for the cost drivers in Equation 2.1 can
be optimized to maximise the model's accuracy. Consequently, the search
space consists of all the models that could possibly be built by varying the
weights and operators in Equation 2.1. Considering the number of project
features and the range of coefficients and operators, the search space can
become dramatically large, which makes this problem suitable to be solved by
search-based approaches.

The fitness of a model is evaluated by its prediction accuracy. In a single

Vali Tawosi 36 UCL - Dept. of Computer Science

CHAPTER 2. LITERATURE REVIEW

objective SBEE, a single measure of accuracy is used to compare different
models and consequently derive the best one [45], [46]. However, in the context
of effort estimation, there are several measures of accuracy, each one focusing
on a different aspect. Since there is no defined way of aggregating different
accuracy measures for SEE, a multi-objective solution is inevitable [47], where
a number of competing measures are optimised simultaneously [5], [48].

Sarro et al. [38] proposed a bi-objective solution named Confidence Guided
Effort Estimation (CoGEE), which maximises the accuracy and minimises the
confidence interval of the estimation error during the model building. CoGEE
outperformed three state-of-the-art intelligent effort estimation methods and
moved the distribution of the error within claimed thresholds for industrial human-
expert-based best practices. Therefore, COGEE has set the state-of-the-art
for multi-objective project-level effort estimation and has been the only one to
achieve human-competitive results thus far.!

As an initial project for my PhD, | replicated Sarro et al.’s work [38]. In this
replication [5], we carried out an empirical study in order to answer the same
research questions posed in the original study by means of the same
experimental design extended by the use of a recent state-of-the-art baseline
benchmark (i.e., LP4EE [49]), four additional variants of multi-objective
evolutionary algorithms under the hood of CoGEE, execution time evaluation of
the different variants, and a completely new and independent implementation of
CoGEE based on a popular Java Evolutionary Computation framework (i.e.,
JMetal [50]), which has decreased the running time by over 99.8% with respect
to the original R version.

2.2. AGILE PLANNING

In software development, agile methodology emerged with an emphasis on
individuals and interactions over processes and tools, working software over
comprehensive documentation, customer collaboration over contract
negotiation, and responding to change over following a plan [51]. Agile
planning, therefore, is influenced by all these four principles.

Agile methodologies use iterative processes to realize incremental delivery
of software functionalities. A software project, thus, is divided into multiple
releases, which can accelerate the product launch into the market. Each release

!Sarro et al. [38] won the ACM SIGEVO 13th Annual (2016) “Humies” Award for
Human-Competitive Results Produced by Genetic and Evolutionary Computation http://
www.human-competitive.org.

Vali Tawosi 37 UCL - Dept. of Computer Science

http://www.human-competitive.org.
http://www.human-competitive.org.

CHAPTER 2. LITERATURE REVIEW

is composed of several one to four weeks-long iterations called Sprints. Short
sprints and frequent releases are favoured because they provide faster feedback
and improve a product’s return on investment [52].

A survey conducted in 2017 identified Scrum as the most popular agile
development method [53]. In Scrum, there are five levels of planning: Portfolio,
Product, Release, Sprint, and Daily planning [52]. At each of these planning
levels, the team may estimate the size of work or effort needed to complete it.
However, the estimation gets more detailed as the planning enters a lower level.
For example, in release planning, the team typically estimates the effort required
for the high-level features that are intended to be included in the upcoming
releases [54]. Estimation at this level is not expected to be as accurate as the
sprint level. In the Sprint planning session, which occurs at the beginning of
each sprint, the specific product Backlog items that the Scrum team will work
on in the next sprint are agreed upon and estimated [55].

Definition 2.1: User Story

A User Story is a user-valued functionality that is specified in the form of
one or a few sentences in the everyday language of the user.

Definition 2.2: Backlog

A Backlog is a breakdown of work that contains an ordered list of user
stories or tasks that a Scrum team maintains for a project.

Sprint planning starts with determining the available capacity of the team to
perform work during the sprint. The capacity can be expressed in the preferred
unit of effort estimation, e.g., story points, ideal days, or effort-hours [52], but it
must be in the same unit used for effort estimation [54].

2.3. SOFTWARE SIZE MEASURES

Albrecht [56] was the first who introduced a disciplined method for measuring
software product size before it was built, called Function Point Analysis (FPA),
based on the functionality that the software product is built to deliver to the
customer. Soon after, he showed that there is a strong correlation between
Function Points and the final effort of a software [10]. Although FPA was
designed to measure software from the single domain of business applications
[57], it is still widely applied in the software production industry [58].

Vali Tawosi 38 UCL - Dept. of Computer Science

CHAPTER 2. LITERATURE REVIEW

COSMIC? Function Points (CFP) is the second generation of software
functional size measurement developed by an international group of software
measurement experts [11]. Unlike FPA, CFP takes non-functional requirements
into consideration as well and is suitable for a broader range of application
domains including, but not limited to, business applications, mobile applications,
real-time software, big-data applications, and service-oriented software [57].
However, in the context of agile software development (particularly Scrum and
Kanban methods), the practitioners introduced and used alternative measures
as agile-specific software size measurement units [52], [59], [60]. The most
popular of these units is called Story Points (SP) [53]. SP is a relative unit that
represents an intuitive mixture of complexity and the required effort of a user
story [59].

Each user story in the backlog is assigned a story point value. There is no
set formula for defining the size of a story. Rather, a story point estimate is
an amalgamation of the amount of effort involved in developing the feature, its
complexity, and the risk inherent in its development process. One of the most
popular methods to estimate backlog items is Planning Poker [53]. Planning
Poker is a consensus-based technique. During a planning poker session, the
team of developers who are working on the product engage in an intense
discussion to expose assumptions, acquire a shared understanding, and size
the work items. User stories estimated during the planning poker session are
grouped or binned together with respect to their effort size [52]. A common
approach to determine the story point value of a user story is to select one
of the smallest stories in the Backlog and assign it one story point. Then the
more complex and extensive user stories get more points relative to their size.
Therefore, the effort required to develop a story that is assigned with five SPs
should be almost five times of a story that is assigned with one SP (see Figure
2.1). Unlike FPA and CFP, SP lacks a disciplined method of measurement;
therefore, the developers use it as a relative measure to keep the relative
difference of stories in size. SP estimation is required to be consistent throughout
the project [59].

2.4. AGILE EFFORT ESTIMATION

During the Sprint planning in Scrum, the estimation is focused on a user story
and task® level [52]. Therefore, the major and most accessible feature at this

2Common Software Measurement International Consortium
3During the sprint planning, some user stories are decomposed into multiple tasks.

Vali Tawosi 39 UCL - Dept. of Computer Science

CHAPTER 2. LITERATURE REVIEW

305m

House GLA London Eye The Gherkin The Shard
Building

Figure 2.1: Using relative estimated values for user stories with different sizes.
Image source [61].

level is the textual description. This requires the automated agile effort estimation
approaches to utilise Natural language Processing (NLP) methods to extract
features from the text.

The first study, published in 2011, is the work of Abrahamsson et al. [22].
They proposed to train a prediction model on 17 features extracted from user
stories, such as the priority and number of the characters in the user story and
15 binary variables representing the occurrence of 15 keywords in the user
stories. These 15 keywords are the 15 most frequent terms in user stories. They
used regression models, Neural Networks (NN), and Support Vector Machines
(SVM) to build estimation models for two industrial case studies, one consisting
of 1,325 user stories and the other of 13 user stories. The best results were
obtained by SVM.

Five years later, Porru et al. [23] proposed to classify user stories into
SP classes. Their approach uses features extracted from 4,908 user story
descriptions recorded in Jira issue reports collected from eight open-source
projects. Specifically, they extract the type of the issue, the component(s)
assigned to it, and the TF-IDF derived from the title and description of the issue.
Their study confirmed Abrahamsson et al.’s findings that the user story and its
length are useful predictors for story point estimation. Their results also suggest
that more than 200 issues are needed for training the classifier to obtain a model

Vali Tawosi 40 UCL - Dept. of Computer Science

CHAPTER 2. LITERATURE REVIEW

with satisfactory accuracy.

In 2018, Scott and Pfahl [25] used developer-related features alongside the
features extracted from 4,142 user stories of eight open-source projects to
estimate the story points using SVM. Developer-related features include the
developer’s reputation, workload, work capacity, and the number of comments.
The results showed that using only developers’ features as input for the SVM
estimator leads it to outperform Random Guessing, Mean, and Median
baseline estimators. This approach also outperformed the two models using
only features extracted from the text of the user story and using a combination
of the developers’ and text features.

At the same time, Soares [24] proposed the use of different NLP techniques
with auto-encoder neural networks to classify user stories based on the
semantic differences in their title in order to estimate their effort in terms of SP.
He used TF/IDF and document embedding with four variants of auto-encoders
and evaluated these models on 3,439 issue reports from six open-source
projects. The results revealed no significant difference in the SP estimation
accuracy of these approaches. Soares speculated that this might be due to the
relative semantic simplicity of issue report titles.

In 2019, Choetkiertikul et al. [26] proposed a new approach to SP estimation
based on the combination of two deep learning architectures to build an end-
to-end prediction system called Deep-SE. They used raw user story text as
input to their system. A word embedding was used to convert each word in
a user story into a fixed-length vector, which is then fed to the deep learning
architecture to map it to a space in which the semantically related stories are
placed close to each other. In the final step, they used a regressor to map
the deep representation into the SP estimate. They evaluated Deep-SE on
23,313 issues from 16 open-source projects and showed that it outperforms both
baseline estimators and Porru et al.’s approach [23] based on Mean Absolute
Error. Both these approaches (i.e., Deep-SE and Porru et al.’s approach) are
investigated in Chapter 4.

Marapelli et al. [62] built a model based on a tree-structured RNN with
Convolutional Neural Network (CNN) to predict SP for user stories. This model
adopts a Bi-directional LSTM (BILSTM), slightly improving Deep-SE'’s prediction
performance. However, Marapelli et al. do not perform a statistical test to show
if the difference is statistically significant.

Subsequently, Abadeer and Sabetzadeh [63] evaluated the effectiveness
of Deep-SE for SP prediction with a commercial dataset of 4,727 user stories
collected from a healthcare data science company. They found that Deep-

Vali Tawosi 41 UCL - Dept. of Computer Science

CHAPTER 2. LITERATURE REVIEW

SE outperforms random guessing, mean and median baselines statistically
significantly, however, with a small effect size.

Recently, Fu and Tantithamthavorn [21] proposed GPT2SP, a
Transformer-based deep learning model for SP estimation of user stories. They
evaluated GPT2SP on the dataset of 23,313 issues shared by Choetkiertikul et
al. [26]. They investigated the performance of their model against Deep-SE for
both within- and cross-project estimation scenarios and found that GPT2SP
outperforms Deep-SE with a 6%-47% improvement over MAE for the
within-project scenario and a 3%-46% improvement for the cross-project
scenarios. However, when we attempted to use the GPT2SP source code
made available by the authors, we found a bug in the computation of the Mean
Absolute Error (MAE), which might have inflated the GPT2SP’s accuracy
reported in the original paper. Our proposed fix has been accepted and merged
into the repository at https://github.com/awsm-research/gpt2sp/pull/2.
The results obtained based on this fix revealed that, in the within-project
scenario, GPT2SP outperforms the median baseline and Deep-SE in only six
cases out of 16, where the difference is statistically significant in only three
cases against the median (two with negligible and one with small effect size),
and two cases against Deep-SE (both with negligible effect size). 4

One important aspect of software engineering data which seems overlooked
in previous work on agile Story Point (SP) estimation is the inherent high
variability in the data, which can hinder the construction of accurate estimation
models [65], [66]. The previous study on traditional software engineering effort
estimation considered this aspect and successfully used clustering techniques
to reduce the variability, and sometimes it led to the construction of more
accurate effort estimation models [65], [67]—-[72]. In Chapter 5, | investigate the
effect of clustering user stories in open-source projects on agile SP estimation.

2.5. STORY POINT AS A COST DRIVER FOR AGILE EFFORT
ESTIMATION

There are studies that leveraged human-estimated story points as a cost driver
to build effort estimation models.

Zia et al. [73] considered human-expert estimated story size and story
complexity to compute SP for user stories, and they used it to estimate the
actual effort and cost for software projects. They introduced a regression-
based model considering the characteristics of agile development. The model

4A technical report describing these results in more detail can be found at [64].

Vali Tawosi 42 UCL - Dept. of Computer Science

https://github.com/awsm-research/gpt2sp/pull/2

CHAPTER 2. LITERATURE REVIEW

was applied to 21 previously developed small software projects and produced
estimations with a mean absolute error of four days. Later, Popli and Chauhan
[74] proposed a similar approach but evaluated the model on one small project.

Ungan et al. [75] investigated the accuracy of multiple linear estimators and
a simple Artificial Neural Network estimator on 10 industrial projects as a case
study. All the projects had their actual effort, and SP recorded by developers and
their CFP were automatically approximated using a tool named CUBIT. Results
showed that when the estimator uses CFP or SP as independent variables, the
accuracy of effort estimation is low or at most acceptable, and none of the two
models is superior to the other.

Raslan et al. [76] proposed a fuzzy logic technique-based effort estimation
framework for user stories. The approach feeds expert-estimated SP alongside
other parameters as input to a trapezoidal membership function to estimate the
actual effort. The model is not evaluated on any real data; however, the authors
designed a framework based on the proposed model in MATLAB to make it
ready for evaluation and possible adoption.

Satapathy et al. [77] used a dataset of 21 projects from the work of Zia et al.
[73] and evaluated the effort estimation accuracy of different machine learning
techniques, namely, Decision Trees (DT), Stochastic Gradient Boosting (SGB),
and Random Forest (RF). Based on the results, the DT model underperformed
the technique previously proposed by Zia et al. [73]. Whereas the SGB and RF
models performed better.

2.6. STORY POINT VS ACTUAL EFFORT

A few studies have investigated the correlation of the estimated story points and
other effort proxies in the literature [16], [26], [78], [79]. However, the correlation
between Story Points, as an undisciplined measure, and Function Point (FP), as
a disciplined method of measuring the software size, has been an open debate
for years since different experiments resulted in opposite findings [78], [79].
The first study assessing the relationship between SP and functional size
measures (FSM) was carried out in 2011 by Santana et al. [16]. The authors of
this study quantitatively analysed the relationship between FP and SP in a case
study involving 2,191 user stories from 18 iterations of an agile software project
developed by a private company. They found a strong positive correlation
between SP and FP (Spearman’s p = 0.71). Subsequently, Huijgens and
Solingen [78] replicated Santana et al.’s work on a different case study and
found a contrasting result. They gathered data from 14 iterations performed by

Vali Tawosi 43 UCL - Dept. of Computer Science

CHAPTER 2. LITERATURE REVIEW

two teams (A and B) in a Dutch banking organization that recorded estimations in
SP and computed the size in FP for all iterations. The results of Spearman’s rank
correlation revealed a medium (—0.36) and strong (—0.60) negative correlation
between SP and FP for Teams A and B, respectively.

SP has also been compared to the COSMIC function points and actual effort.
Salmanoglu et al. [79] compared the correlation of SP and CFP with the actual
effort spent on agile software development. They carried out three case studies
from three large Turkish companies producing software solutions for security,
financial, and telecommunication industries, reporting CFP, SP and the actual
effort measured in person-hours. They plotted SP and CFP values against the
actual effort to measure the linearity of functional size and actual effort and
observed a stronger correlation between CFP and actual effort in comparison
with SP.

Choetkiertikul et al. [26] carried out a preliminary analysis on the relationship
between SP and development time on a set of 16 open-source projects mined
from Jira repositories for a total of 23,313 issues [26]. The main aim of their
study, however, was to build a machine-learning model to estimate SP (see
Section 2.4). They computed development time from the issue changelog by
considering the duration between the time the issue’s status was set to In-
Progress and the time it was set to Resolved. This was regarded by the authors
as the most representative proxy for the actual effort they were able to extract
from the data with respect to the completion time of an issue. However, this
definition also includes the waiting time between development stages as part
of the development time. In Chapter 6, | adopt a similar proxy for the issue
resolution time and use two additional proxies for development time (proposed
in Chapter 3) to take into account the waiting time (which is usually considered
part of the development time) [27]. Choetkiertikul et al. [26] found a positive
correlation between the SP and their proxy for development time with a mean
of 0.47 and 0.51 and a standard deviation of 0.19 and 0.18, according to the
Spearman’s rank and Pearson correlation, respectively. Our investigation on a
larger dataset showed a positive but weaker correlation, especially based on the
Pearson correlation coefficient (Chapter 6). Across the 32 projects investigated
in Chapter 6, we obtained a mean value of 0.40 for Spearman’s p and 0.35 for
Pearson’s r coefficient, with a standard deviation of 0.11 for both.

Vali Tawosi 44 UCL - Dept. of Computer Science

Chapter 3

The TAWOS Dataset

Published as: “A Versatile Dataset of Agile Open Source Software Projects”

By: Vali Tawosi!, Afnan Al-Subaihin!, Rebecca Moussa', and Federica Sarro!

I Department of Computer Science, University College London, United Kingdom

At: The 19" IEEE International Conference on Mining Software Repositories (MSR’22)

Abstract — Agile software development is nowadays a widely adopted practice in
both open-source and industrial software projects. Agile teams typically heavily rely on
issue management tools to document new issues and keep track of outstanding ones,
in addition to storing their technical details, effort estimates, assignment to developers,
and more. Previous work utilised the historical information stored in issue management
systems for various purposes; however, when researchers make their empirical data
public, it is usually relevant solely to the study’s objective. This chapter presents a
more holistic and versatile dataset containing a wealth of information on more than half
a million issues from 44 open-source agile software, making it well-suited to several
research avenues and cross-analyses therein, including effort estimation, issue
prioritization, issue assignment, and many more. We make this data publicly available
on GitHub to facilitate ease of use, maintenance, and extensibility.

3.1. INTRODUCTION

The early 2000s witnessed a surge in the adoption of Agile Software Development
alongside the release of the Agile Software Development Manifesto in 2001 [51]. Agile
technigues boast a faster response to unanticipated alterations that can arise during
development, such as changes in user requirements, development environments, and
delivery deadlines; typically contrasted with traditional ‘plan-based’ project development,
which operates under the assumption that software is specifiable and predictable [80].
Agile Software Development is currently among the most common software development

45

CHAPTER 3. THE TAWOS DATASET

methods in project management [81].

Managing agile software development is commonly aided by an issue tracking tool,
which allows agile teams to log and organize outstanding development tasks (e.g.,
bug fixes, functional and non-functional enhancements), in addition to hosting meta-
data related to these tasks. Issue tracking tools, such as Jira [82], provide a trove of
historical information regarding project evolution that promises great value for Empirical
Software Engineering research. Such data has been employed to address many
software engineering problems such as effort estimation [26], [29], task prioritization
[83]-[85], task assignment [86], task description enhancement [87], iteration planning
[88] and exploring social and human aspects [89]-[92]. However, the data made
available by previous empirical studies are usually mainly relevant solely to the study’s
objective. Therefore, we aim to pave the way for a more holistic and versatile dataset
containing a wealth of information on open-source software projects, which can serve as
a single source for many possible research avenues and enable novel investigations on
the interplay of multiple factors as well as draw observations across multiple research
studies.

We call this dataset the TAWOS! (Tawosi Agile Web-based Open-Source) dataset.
It encompasses data from 13 different repositories and 44 projects, with 508,963 issues
contributed by 208,811 users.

The dataset is publicly hosted on GitHub [93] as a relational database and designed
such that it is amenable to future expansions by the community. Prospective contributors
are welcome to join our effort to maintain, grow and further enhance the database by
issuing a pull request on GitHub.

3.2. DATASET DESCRIPTION

This section describes how the data is sampled from the web, how it is organised into,
and stored as a relational database to ease access and usage, and the essential
characteristics that make it serviceable to several empirical software engineering
research areas.

3.2.1. Data Extraction

This dataset was mined during the latter half of October 2020. The mining process
targeted 13 major open source Jira repositories?: Apache, Appcelerator, Atlassian,
DNNSoftware, Hyperledger, Lsstcorp, Lyrasis DuraSpace, MongoDB, Moodle, MuleSoft,
Spring, Sonatype, and Talendforge. Most of these repositories were employed by

1Tawos means Peacock in several of the middle-eastern languages.

2A repository in Jira is a collection of projects usually under development by a single
company/organisation, or a group of inter-related teams, that share resources and follow
the same organisational regulations.

Vali Tawosi 46 UCL - Dept. of Computer Science

CHAPTER 3. THE TAWOS DATASET

previous work, and they all used Jira as an issue management platform, which ensures
uniformity of structure and availability of information. From each of these repositories,
projects were selected such that they adopt iterative development and record story
points for their issues, thus suggesting that they follow an agile methodology. We
considered projects that have at least 200 issues with recorded story point entries
in order to have enough data to enable statistical analyses resulting in meaningful
conclusions.

A total of 904 projects from the aforementioned repositories were considered,
among which we selected the 44 that satisfy the collection constraints. To extract
issue information, we used the Jira REST Java Client (JRJC) [94]; JRJC was used
alongside our own tool, implemented in Java, to extract further features that are not
implemented in JRJC (see Section 3.2.5).

3.2.2. Data Storage

The final dataset is modelled and stored as a relational database. This enables users
of the dataset to employ SQL for easy horizontal and vertical data sampling in addition
to allowing easier future expansion. We elected to host the dataset in the MySQL
Database Management System as it is free, lightweight, and ubiquitous. The database
can be downloaded from a GitHub repository together with the instructions on how to
install and use it [93].

3.2.3. Data Characteristics

The TAWOS dataset contains 508,963 issues from 44 projects. The projects are diverse
in terms of different project characteristics. Each project contains issues that range from
313 to 66,741 issues. The projects span different programming languages, different
application domains and different team geographical locations. Table 3.1 shows the
number of various elements for each of the projects contained in the dataset currently.
Those include the number of all issues, issues categorised as a bug report, distinct
users (i.e. bug report contributors, etc.), developers, change logs and comments, links
to other issues, components, sprints, versions, and the number of issues with story
points assigned.

3.2.4. Data Structure

Figure 3.1 shows the Entity-Relationship Diagram of the database. The core entity
is the Issue table, which holds the main information about issue reports. Some of its
fields are directly extracted from the issue report, such as the issue type (e.g., story,
bug, improvement), status (e.g., open, in progress, closed), description, etc., whereas
others are derived from the information stored and/or the events that occurred during
the issue’s lifecycle. We elaborate on these derived fields in Section 3.2.5.

Vali Tawosi 47 UCL - Dept. of Computer Science

THE TAWOS DATASET

CHAPTER 3.

Project
——+F P_Key |ID Int

Project_Key String
Name String
URL String
Description String
Start_Date DateTime
Last_Update_Date DateTime

F_Key |Repository_ID Int

Repository

P_Key [ID Int
Name String
Description String
URL String

Sprint

P_Key |ID Int
Jira_ID Int
Name String
State String
Start_Date DateTime
End_Date DateTime
Activated_Date DateTime
Complete_Date DateTime

——(O<|F_Key |Project_ID Int

Issue_Links Issue
P_Key |ID Int ——F{P_Key |ID Int
F_Key |Issue_ID Int > Jira_ID Int
Name String Issue_Key String
Description String URL String
Direction String Title String
F_Key |Target_lssue_ID Int > Description Text
Description_Text Text
User Text
—P_Key |ID Int t ~ M”“”M
——<]F_Key |Project_ID Int
Status String
Resolution String
Hireeizel Vet Creation_Date DateTime
AO<]|F_Key |Affected_Vesion_ID |Int Estimation_Date DateTime
F_Key |Issue_ID Int >0 Resolution_Date DateTime
Fix_Version Last_Updated DateTime
- - Story_Point Double
{O<|F_Key |Fixed_Version_ID Int Timespent Double
F_Key |lssue_ID Int PO~ In_Progress_Minutes Double
Total _Effort_Minutes Double
Resolution_Time_Minute Double
Version Title_Changed_After_Estimation Boolean
“——P_Key |ID Int Description_Changed_After_Estimation Boolean
Jira_ID Int Story_Point_Changed_After_Estimation Boolean
Name String Pull_Request_URL String
Description String [—<|F_Key |Creator_ID Int
Archived Boolean (O<|F_Key |Reporter_ID Int
Released Boolean (O<|F_Key |Assignee_ID Int
Release_Date DateTime ~———(<|F_Key |Sprint_ID Int
F_Key | Project_ID Int Wog HIA F_Key |Project_ID Int

Comment
P_Key |ID Int
Comment Text
Comment_Text Text
Comment_Code | Text
Creation_Date DateTime
[—<]|F_Key |Author_ID Int
<] F_Key |lIssue_ID Int
Change_Log
P_Key |ID Int
From_Value Text PEOPLE,
To_Value Text wﬂm\mm POINT,
From_String Text
To_String Text
Change_Type String
Creation_Date DateTime
(<] F_Key |Author_ID Int
<] F_Key |Issue_ID Int

Issue_Components

Figure 3.1: Entity-Relationship Diagram (ERD) for the TAWOS Issues Database.

F_Key |Issue_ID Int

F_Key |Component_ID Int

Component

P_Key |ID Int
Jira_ID Int
Name String
Description String

F_Key |Project_ID Int

UCL - Dept. of Computer Science

48

Vali Tawosi

CHAPTER 3. THE TAWOS DATASET

Other important tables are Comment and Change_Log tables. Comments hold the
documented discussions of the team around the issue development. Change logs
hold all the changes made by the users on the issue report by recording the field that
received the change, the previous value, the next value and the nature of the change.
Both these tables store the chronological order of the events in the Creation_Date
field. Information about the Sprints, Versions and Components of the issues are also
stored in separate tables. The Issue_Links table captures the links between the issues.
The User table stores all the distinct users who interacted with each project and links
the events and information to their authors and user roles. Any personally identifiable
information of users, like their usernames and emails, are redacted from this dataset.

3.2.5. Computed and Derived Fields

To further enrich the dataset, we have augmented the mined data with several additional
features that are computed or derived from the source Jira repositories, as described
below.

Issue Description Text and Code. The Description field holds the long description
of the user story or bug report, which can contain natural text interleaved with code
shippets or stack traces. To facilitate processing, we separate the code snippets/stack
traces and the natural text describing the issue into the Description_Code and
Description_Text fields, respectively. We maintain the original description in the
Description field. The same is done for the Comment field, from which we extract the
Comment_Code and Comment_Text.

This is motivated by previous work showing that code tokens may have a different

meaning from those found in natural language text, hence ought to be analysed
separately [23], [25], [29].
Resolution Time. The field Resolution_Time_Minutes stores the time span (in
minutes) between when an issue is created and when it is marked as “Resolved”. This
period can be considered an approximation of the time the development team took to
resolve the issue. This is usually the target variable used for bug resolution/fixing time
estimation [95]-[97].

Other proxies for time are provided, such as In_Progress_Time and
Total_Effort_Time, indicating, respectively, the implementation time and the
development (including code review and testing) time.

SP Estimation Date: This field records the time when the Story_Point field of the
Jira issue report was populated by the developer. This information might be useful, for
example, for studies on software effort estimation, in order to properly take into account
the chronological order of the estimates and avoid unrealistic usage of the data as
described in previous studies [98]-[100].

Date and Time. The date and time stored in different Jira repositories may have
different timezones, as the projects usually have contributors from all around the World.

Vali Tawosi 49 UCL - Dept. of Computer Science

CHAPTER 3. THE TAWOS DATASET

Therefore, we converted and stored all dates and times to a unified timezone, namely
the Coordinated Universal Time (UTC).

Field Change Flag. It is important to keep track of the changes developers made
to some of the issue fields. For example, the title and description of the issue are
two important pieces of information used by recent automated approaches to produce
effort estimates [26]; therefore, it is important to know whether these fields have been
edited after the initial estimate was done. The Title_Changed_After_Estimation and
Description_Changed_After_Estimation fields store this flag. We also provide a flag
that shows whether the SP has been changed after the initial estimate. Note that these
flags are based on the change logs of the issue.

Change Type in Change Log. This field is calculated to categorise change log updates
into one of five categories: “STATUS” indicates a change from one status to another in
the Jira workflow of a given issue; “DESCRIPTION” indicates a change to the issue
title or description; “PEOPLE” indicates that the user (Change_Log.Field="assignee’ or
‘reporter’) of the issue was changed; “STORY_POINT” indicates that the Story Point
field of the issue was updated. Any other changes were categorised as “OTHER".

3.2.6. Extensibility and Maintainability

The TAWOS database is designed such that it is easily extensible by attaching additional
information to the corpus. This can help facilitate studying different problems and/or
aspects of the same problem. Sharing and managing the dataset as a GitHub repository
enables us to update, expand and enrich its content, whether by us or by the community
as external contributions (i.e., pull requests). GitHub also guarantees that the information
can be safely stored long-term, thus preventing the issues often faced in previous work
where the data provided are not reachable anymore (e.g., due to the use of a volatile
storing platform such as institutional webpages which change when researchers move
to another institution).

3.3. ORIGINALITY AND RELEVANCE

Previous studies have extracted information from issue reports managed in Jira to build
predictive models for Story Point (SP) estimation in agile software projects [23], [25],
[26], however not all of them have made their data public [23], [25]. Choetkiertikul et
al. [26] shared their data in a replication package [101]; however, it only consists of
features considered in their study (i.e., the issue key, title, description, and story point
of the mined issues).

The dataset presented herein encompasses all the projects considered in previous

Vali Tawosi 50 UCL - Dept. of Computer Science

THE TAWOS DATASET

CHAPTER 3.

¥2.'69 G88'L 620'S zee'e 89G'/92 66£'CT9'T T/8'€20'0T €I€'9 118'802 ¥65'/EC £96'806 | [eyoL
000'T TLE 06 ov 8ce'e 626'LT 9Zr'69T 81T 065 ISv'v S86'ST ener gS31 | sng 801n8S aslidigiug pusiel
4% 6YT el =3 8veE'T Lvv'S 965'0L 86 €65 1L’ ¥29'y eAer adgl ereq Big pusjeL
162 1348 9L T€ 8EV'S T.0'TE €29'€LT 01T 8.Y ¥.€'9 LET'6 ener NAWL Juswabeuen ereq pusfeL | abiojpuslel
€18 89 6L [0)4 88€e'e 18T'9 §95'20T 8y 0ze 08T'C 029'S ener daL uoneledald ereq pusfel
EV8'T Sve rT 88 065'8 8EV'EE £vZ'6ve €T 80L 882'9 GIE'ST eAer oalL Aurend ereq pusjel
S0L'e L€ 99 8T ov6 0zT'y 122'ey 1€ 68T 019 L0L' ener ax ax Buuds
eve ¥ST ¥S T 9ze 616 0.0'L 0t 502 991 86/ ener SSvovlivd sseQeleq :
Sv8'T 191 EVT 16 956'€ 6ST'92 606'89T Z8 968'c Gl6'S 216'6 ener SNX3N SnxaN adAyeuos
€Ly 96 et 6T ST L LET'9T ve for4 L9Y 988 duosener LiMIdv WV 8NN HOSINA
0.T'V vl TIE 621 229't 129'9T 092'e€2 T 6YY'T T2V'S 918'TT ener 31NN 3NN
¥6G'T €L€ TST 16 9GE'ZS 909'18F G61'862'T ¥SS 0£2'2T SSE'TY Tv.'99 | dud 1an | 3|poo| | 9|poON
2ov's 9z VN 9 998'C 6€6'0T 822'702 19 00€ 9€9'C 662'0T 09 OA3 uaaibiang
8. 444 VN L€ ¥80'0F €2Z8'9ET S¥S'0€0'T F4si74 1€8'8 TvE'TT €99'8y ++0 d3ng3s 1anIes 8100 ggobuoy
44 0L 95 €1 8e8 9SL'y €6T'0E 6€ 607 20S 2€0'C ++D XX JoAUp +4D gqgobuoiy
siord 10T el S¢ 2LL 8T0'TT §66'Ch Se 6EV'T 820'T 095'€ ener VAVC JaALp ener
661 LL 16 18 028 1.0'C L19'€C LT 4514 LEL T6L'T ener SSVYdNOD ssedwo)
999 98 L vT 92 VYT 6GG'TT 49 4 v.€ SeT'T eARC | ANOTOVAINd pnojD eing siselk] siselA]
799'02 4 96¢ 652 22L'6T WwL'TL 168'0TE 112 Ll2 1652 906'92 uoyhd nd swabeuew eleq diodssT diooyssT
0zL o€ SL 0T 209 1.6'C Zr8'Te 26 LT 96€ TES'T sny Sl as Apu
996 4 44 62 414 9/5 008'ST 95 v.T 8T¢ €99'T uoyikd LS yroomes
189 9z 9L 9 929'T ¥88'S TIT'OV 65 €eT 928 Tee'e uoyhd AQNI 9poN Apul | 19BpapadAH
9€9 S5 449 14 ZIe'S 950'€2 TI8'TST LSY €82'T 296’ 289'€T 09 avd ouged
€LE 0 Ly 0 00€ ¥€9'T 129'8 79 67T 9T 208 duogener 3g Ja10/dx3 ureyoxoolg
¥6G'C 0L VN VT 99/'t S10'cE 190'L6T €¢ 260'T BIEL 090°'0T #2 NN wiope|d SYNNIBNIOQ | 4axdell NNd
STE 2Lt 81T ST 985 16V'Y Z1e'9¢ o€ 98¢ 99 61S'T duosener A0V somawrelS Aojy
e 0z 29 144 06 697 290'Y S 9¢ €21 €T¢ iduosener NOW3va uowde(Joyess|paddy
§99'% 895 T0E F4S] 0ZT'TT 2Se'es T9E'€8Y T9T 0.T'€ 2vl'ST 6S0'Ce duosener dOWIL MAs wniuent ayL
9or'e 9z1 €91 95 T50'v 088'6T STC' LT €9 759 SSp'e 6.6'S duosener anisiL olpnis Jojess|eaddy | Joress|oddy
068 16 43 (5% 909'T 8ET'6T T96'L0T ST Go9g'e ¢ST'9 GET'8 duosener anisdvy olpnis eueldy
162'T 192 112 9 0TL CTL'L YSY'18 29 TZy Yre'T 650' duosener 20dlL wiope|d d|Iqo winjuel L
v.€ SYT 86 43 88T €€z 956'0T 62 S9T 66¢ Sv9 duogener 110 90BIB)U| BUIT-pUBWIWOD
18V 8 8¢ ST 0.2 GES'T SEY'ST L€ 16 6Yv€ 6EE'T ener algoyd3asn pubiasn
602 0 137 6 06 8¢ S62'67 05 9ST €L€ Yov'T ++0 LANXIN 1BNXIN ayoedy
zle'e 18 122 44 Zre'9 2GT'0€ 6€'80T 414 2¢82'T 168'% LST'OT ++0 SOS3aN SO0saN
ove Sve 60T 6 ¥0'C ¥16'8 €2.'21T V. T.€'C 968'C €€5'S ener 34 ah3ysi4
18€ €9 8y ST 8€€e 652'C 218'se 0z PAZS TES TOS'T ener AOT1D 1ano|n
8¢S T6€ vT STT 0€E'9 8€9'8C T2€'952 20T 2¢60'L 0509 2°STvT ener Nve ooqueg
08¢e 865 0S STT 020z LSP'0eT 656'C9T'T 29 G8G'9E 0£9'0C S9T'vY ARl | YIAYISVHC Janes eile
TG€ oo 0L 144 ¥2L's 00v'se 289'70€ 28T 89¥'ST 2009 298'eT eAel | YIAYISMSC 1aAIaS aIeMyoS uelssepy ueissey
299 12T'T 595 ¥0T TOv'€C 16S'SeT €€9'809'T f4474 G§GL'0e LLv'ST vee'ew eAel | Y3IAYISINOD Janias @auanjjuod
T9€ 0.1 65 99 9.T'8 €LY'VL 1G66'S62 15§ 020'0€ 6EE'8 699'GC ener anoovar pnojo eip
81¢ 89 v, €€ Z6v'y evT'oe 215102 TTe /8T'ST S0S'E 20L'TT ener anoToOMSC pnojo aremyos
4t LT LY LvT ¥69'L §59'v9 6EY'TCE €15 ¥90've T.L0'0T 60¥'E€eC eAef | ANOTO4ANOD pnojD adusnjuoy
vTe 122 a4 0S ¥29' ovy'L 80v'29 S0t €99'c 1¥8'T TIE'Y ener amo pmolid

abenbue]
Sulod AI0IS # SUOISIBA # SluudsS # susuodwoD # SYUIT# Swawwo) # bBoabueyd # siadojprag # slasn# sbng# sanss|# A3y 198l01d aweN 199f0id Aioysoday

Buiwwelboid

aselep SOMVL 8y} Jo sonsiels aanduasaq :T°€ a|qeL

UCL - Dept. of Computer Science

51

Vali Tawosi

CHAPTER 3. THE TAWOS DATASET

studies® [23], [25], [26] augmented with more issues and features.* Furthermore, it
includes 28 additional projects which have never been used by any of these previous
studies.

A total of 31,960 issues from 26 projects stored in the TAWOS dataset has been
used in this thesis to replicate and extend the work by Choetkiertikul et al. [26] (Chapter
4). This sample of issues has also been used to evaluate the effectiveness of clustering
for SP estimation [29] (Chapter 5). A larger sample of 37,440 issues from 37 projects is
also used in a large empirical investigation of the relationship between story points and
actual development time of open-source issues [30] (Chapter 6). And finally, a sample
of 9,806 issues from 15 projects are used to investigate the ability of SP estimation
models to estimate development time in Chapter 7.

We believe that the TAWOS dataset can help expedite the research in the area
of agile software development effort estimation. In addition to providing a unified
benchmark for such studies, it also helps circumvent the challenges faced and the
time consumed when mining such data from the web. For example, we note that
Choetkiertikul et al. [26] could not mine the same data used in the study by Porru et al.
[23], likely because the repositories mined had changed during the time period between
the two studies.

The use of different data in similar studies hinders the immensely useful opportunity
to draw observations from across different studies performed at different times around
a certain subject matter. We hope that our dataset can help the community tackle
this challenge. Although our dataset has been primarily designed to aid in software
engineering estimation tasks, it also includes information relevant to other software
engineering research and is designed to be expanded by other contributors. This allows
and promotes the investigation of a wider range of SE aspects, as discussed in the
next section.

3.4. RESEARCH OPPORTUNITIES

In addition to benefiting effort estimation studies, the TAWOS dataset promises value
to many other areas of software engineering research, including developer productivity
studies, iteration planning and task scheduling.

An important research topic in Requirement Engineering is requirement
prioritization [83], [102], [103], early failure prediction [104], and especially in an
agile setting, the selection of issues for the next iteration [105], [106]. The TAWOS
dataset can support such studies by providing a large collection of issues, with known

3The only exception is the MuleStudio project used by Choetkiertikul et al. [26], for which we
could not find the data source online.

4The TAWOS dataset has 485,650 more issues in total and 46,411 more issues with Story
Points compared to the one shared by Choetkiertikul et al. [26]. It also contains more issues for
each of the 16 projects included in Choetkiertikul et al. [26]'s dataset.

Vali Tawosi 52 UCL - Dept. of Computer Science

CHAPTER 3. THE TAWOS DATASET

priorities and iterations (i.e., Sprints and Releases) coupled with various aspects
providing a full-picture view of the issues, projects and assignees. Additionally, as the
dataset makes historical project evolution from multiple repositories available, it
enables cross-project analysis.

The TAWOS database provides information about the versioning of the software
under development. This information includes the version’s name, description, and
release date and whether it is archived or released. Versions connect to issues via two
relations: Affected versions and Fix versions. The former is the version where a bug or
problem was found, whereas the latter is the version where a feature is released or a
bug is fixed. This information can be used to track the bug’s lifecycle, and possibly if the
link to the pull request which resolves the bug is presented in the Pull_Request_URL
field, it can be tracked to the code. This information opens up avenues of research in
software testing and maintenance.

The TAWOS dataset also contains information on the developer assigned to a given
issue, in addition to various information regarding resolution time and the assignee’s
statistics. Such data enables, for example, the use of machine learning models to
help automatically recommend the best developer for a new issue. Additionally, the
dataset provides other useful information that can be considered for optimising task
assignment, for example, considering developers’ workload [107]. The dataset also
provides the issue status transitions, which can be used to analyse activities and events
to predict the time to fix a bug, or bug triage [95]-[97].

3.5. SUMMARY

In this chapter, | introduced and described the TAWOS dataset, a holistic dataset of
software issues mined from open-source software repositories maintained in Jira. We
have indicated just some of the research avenues for which the TAWOS dataset could
be exploited. We envision that the wealth of information provided, coupled with the
ability for other researchers to participate in the growth of the dataset, will enable
novel research endeavours on the interplay among several and different aspects of
open-source agile software projects. For example, if a researcher uses our dataset to
analyse the corpus of issue comments with regard to developers affects (e.g., emotions,
sentiments, politeness), they can extend the dataset by issuing a pull request and
thereby augmenting the existing data with the results of their investigation (e.g., augment
the comments written by developers with emotions such as surprise, anger, sadness
and fear). This data can be re-used in subsequent research investigating the interplay
between, for example, developer emotions and productivity.

The potential users of this dataset are encouraged to consult our online
documentation [93] in order to understand possible limitations and select data that best
fits the aim of their investigations.

Vali Tawosi 53 UCL - Dept. of Computer Science

Chapter 4

Previous Methods to Estimate
Story Points

Published as: “Agile Effort Estimation: Have We Solved the Problem Yet? Insights
From A Replication Study”

By: Vali Tawosi', Rebecca Moussa', and Federica Sarro*

! Department of Computer Science, University College London, United Kingdom

At: The IEEE Journal of Transactions on Software Engineering (TSE)

Abstract - In the last decade, several studies have explored automated techniques
to estimate the effort of agile software development. In this chapter, we perform a
close replication and extension of a seminal work proposing the use of Deep Learning
for Agile Effort Estimation (namely Deep-SE), which has set the state-of-the-art since.
Specifically, we replicate three of the original research questions aiming at investigating
the effectiveness of Deep-SE for both within-project and cross-project effort estimation.
We benchmark Deep-SE against three baselines (i.e., Random, Mean and Median
effort estimators) and a previously proposed method to estimate agile software project
development effort (dubbed TF-IDF-SE), as done in the original study. To this end, we
use the data from the original study and an additional dataset of 31,960 issues mined
from TAWQOS, as using more data allows us to strengthen confidence in the results
and further mitigate external validity threats. The results of our replication show that
Deep-SE outperforms the Median baseline estimator and TF-IDF-SE in only very few
cases with statistical significance (8/42 and 9/32 cases, respectively), thus confounding
previous findings on the efficacy of Deep-SE. The two additional RQs revealed that
neither augmenting the training set nor pre-training Deep-SE led to an improvement
in its accuracy and convergence speed. These results suggest that using semantic
similarity is not enough to differentiate user stories with respect to their story points;
thus, future work has yet to explore and find new techniques and features that obtain
accurate agile software development estimates.

55

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

4.1. INTRODUCTION

In agile development, the software is realized through repeated iterations called sprints
(usually 2—-4 weeks) and is built in small incremental parts known as releases [59]. The
development team designs, implements, tests, and delivers a distinct product version
or a working release in each sprint. This allows adaptation to changed requirements at
any point during the project life cycle. Accordingly, the development team is required to
complete a number of user-valued functionalities, called user stories, in every sprint
[1], [108]. User stories are specified in the form of one or two sentences in a user’s
everyday language. Because of these small incremental iterations, it is essential for
an agile team to focus on estimating the effort required to complete every single user
story rather than the whole project. This allows them to prioritise the user stories and
to organise and manage the successful completion of sprints. The estimation at this
granularity is referred to as task-level estimation herein.

Story Point (SP) is commonly used to measure the effort needed to implement a
user story [1], [18] and agile teams mainly rely on expert-based estimation [26], [59].
However, similar to traditional software project effort estimation [100], [109], task-level
effort estimation is not immune to the expert’s subjective assessment [18]. Subjective
assessment may not only lead to inaccurate estimations but also, more importantly to
an agile team, may introduce an inconsistency in estimates throughout different sprints.
Thus an intelligent task-level effort estimation technique seems exigent.

Abrahamsson et al. [22] point out the three advantages of using an intelligent task-
level effort estimation technique for agile development. First, an automated technique
can use all the project information available from its inception and the history of the
previous tasks to produce estimations for new ones. Second, the decision of an
automated technique is not influenced nor affected by any pressure from the opinions
of other individuals. Third, an automated estimation is repeatable and predictable; thus,
it will always provide a consistent prediction. One of the readily available information
that intelligent task-level effort estimation techniques can use is the user story, which
is composed of a title and a description of the issue, usually stored in issue-tracking
systems (see Table 4.13 for a few examples of user stories).

For more than a decade, researchers proposed techniques to predict a task’s
required effort in SP using features extracted from user stories [22]-[26], [29]. In most
cases, these studies urged that their model would be a decision support system for
expert estimators in agile teams.

This study explores the methods introduced to estimate story points for agile
development at the task level. We perform a close replication and extension of the
study which had introduced the state-of-the-art, namely Deep-SE! (regarded as the

1Deep-SE has been published in 2019 in IEEE TSE and been cited 143 times (source Google
Scholar) at the time of writing this chapter.

Vali Tawosi 56 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

“original study” in this chapter) [26]. In close replications, the original study’s
conceptual, methodological, and substantive aspects are mostly kept invariant, and
only minor variations are allowed to be introduced [110]. This type of replication serves
as an initial check to see if the findings of the original study hold or can be generalized
in slightly varied conditions, like the validation against a new dataset. If close
replications confirm the findings of an original study, an empirical generalization can be
established [110]-112].

Deep-SE is an end-to-end deep learning-based approach which accepts user story
(i.e., issue title and description of a task recorded in Jira issue management system)
as input and estimates story point as an output. In this work, we replicate three out of
six research questions investigated in the original study.? These research questions
compare Deep-SE to three naive baseline techniques and to another task-level effort
estimation technique introduced by Porru et al. [23] (we refer to it as “TF-IDF-SE”
herein?), and they also investigate the suitability of Deep-SE for cross-project estimation.

Our results show that Deep-SE does not statistically significantly outperform the
Median baseline or TF-IDF-SE in at least half of the projects evaluated in the original
study, which confounds the results of the original study [26]. We also observe that Deep-
SE’s accuracy in cross-project estimation is not better than within-project estimation,
which corroborates the original findings [26].

In addition, we extend the study by evaluating the replicated research questions on
an additional larger and more diverse dataset (consisting of 26 projects with 31,960
user stories in total), which is sampled from the TAWOS dataset [27] (Chapter 3) and
called the Tawosi dataset in this chapter. The extended evaluation of Deep-SE, which
we carried out using the Tawosi dataset, confirmed the findings of our replication and
strengthened the confidence in its results. The results confirmed the conclusion made
in the original study only for one research question (cross-project estimation). As for the
two other research questions (i.e., sanity check and comparison with TF-IDF-SE), we
found variations that led to a different conclusion than the original study’s. We discuss
the possible origin of the variations in Section 4.5.

We also pose two new research questions. The first one aims to investigate how

2Two of the three research questions from the original study, which are not replicated herein,
investigate the usefulness of Deep-SE's internal components by replacing them with simpler
options. Since the original study showed that the best results had been achieved with the
components already used in Deep-SE, we do not replicate these two research questions. The
third research question investigates the performance of Deep-SE in estimating adjusted story
points. They adjust the estimated story points of each issue using various information extracted
from the issue reports after the issue was completed [26]. We did not replicate this research
question since the data used for this research question and the details to extract them were
missing from the replication package provided by the original study [101]. Moreover, the results
in the original paper showed that using the adjusted story point benefited all the methods by
reducing the range of the SP distribution for all projects.

3This approach is called “TF/IDF-SVM” in the published paper. | renamed it to “TF-IDF-SE”
in this chapter to be consistent with the other chapters of this thesis.

Vali Tawosi 57 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

using additional user stories from within-company and across different projects based
on a realistic chronological order can affect Deep-SE’s prediction performance. The
second one explores the effectiveness of an expensive pre-training step used in the
original study on the accuracy of the estimation and the speed of the convergence of
Deep-SE. As stated by the original study, pre-training needs many hours to run and as
many as 50,000 issues (without labels) per repository.*.

The answers to these research questions showed that augmenting the training set
with issues from other projects has no appreciable effect on the prediction accuracy of
Deep-SE. Also, pre-training the lower levels of Deep-SE does not only not significantly
improve its accuracy, but it also does not have a tangible impact on its convergence
speed towards the best solution; thus, this step can be disregarded.

Section 2.4 described previous work proposing intelligent techniques to estimate
story points. Table 4.1 summarises those studies and compares them to this study.

The rest of this chapter is organised as follows. Section 4.2 briefly describes the
structure of Deep-SE and TF-IDF-SE. Section 4.3 describes the design of our replication
study in detail, including the research questions, the data and experimental method
used to address them, and threats to validity. Section 4.4 reports and discusses the
results. Further insights on differences between the results of the original study and
our replication are discussed in Section 4.5. Finally, Section 4.7 concludes the chapter
with a plausible answer to the question “Why couldn’t Deep-SE outperform the baseline
techniques for all the cases?” and suggestions for future work.

4.2. THE DEEP-SE AND TF-IDF-SE APPROACHES FOR
AGILE EFFORT ESTIMATION

This section provides an overview of the two story point effort estimation techniques
used in this study, namely Deep-SE [26] and TF-IDF-SE [23], which make up the current
state-of-the-art in agile effort estimation.

Both Deep-SE [26], and TF-IDF-SE [23] leverage the similarity between the target
user story and previously estimated user stories to come up with an estimation for the
target user story. TF-IDF-SE relies on one of the simplest techniques for text similarity,
namely the term frequency-inverse document frequency (TF/IDF) statistic. On the other
hand, Deep-SE uses advanced techniques in deep learning to exploit the semantic
similarity between user stories. When Choetkiertikul et al. [26] proposed Deep-SE, it
was natural to compare it with TF-IDF-SE. In the following, we provide a brief description
of each approach and refer the reader to the papers where they were proposed originally
for a full description [23], [26].

4A repository in Jira is a collection of projects usually under development within a single
company or a collection of inter-related organisations/teams which share resources and follow
the same organisational regulations.

Vali Tawosi 58 UCL - Dept. of Computer Science

PREVIOUS METHODS TO ESTIMATE STORY POINTS

CHAPTER 4.

[T2t] 1 19A8] 18 UonoIpaId =(%1)a3dd

/[TZT] (3™ uonewnss e 'e) uolewnsT 01 8Ale|8Y Jo4iT Jo apniubeN uesiN = NN /[TZT] 1013 aAnelay jo spniubepy ues = IHNN / [02T] ‘[6TT] AoeIndoy prepuels = vs / Jolg
aINjosqy UeIpaN = JYPI / 1013 8Injosqy uesy = IVIN /[8TT] domiaN AemybiH ua.nday = NMHY / [2TT] ‘[9TT] Aowsy wial 1oys-Buo = WLST /8811 uoisioad = 14 /[STT] 8sakeg aaleN
= @N /[zg] 1noqybieN-1saieaN M =NNM /[TT] YomiaN [einaN = NN / [TH] uoissaifiay 10109A Hoddns = YAS /[ETT] Bulyoen 10108A Moddns = NAS / Buluies sulyoey = JIA :SUONeIABIAQY

[92] "re ¥o ImiaBREOUD
Aq pasn sjaselep ay) 0} uonippe ui ‘syoafoid saullaseq (NAS)
sased |[e ul Apuesyiubis Aleansnels 3S-4Ql-41 924nos-uado 9z wouy suodal anss! 096'TE VS pue wopuey pue 3S-4Ql-41 pue (uoissalbal + NMHY
pue sauljeseq ay) wJiopadino jou seop 3s-dasq 0 Juauodwod pue adA} ‘uondudsep ‘epil ‘IVPW ‘AVIN ‘uelpaN ‘uesiN + LS + Buippaqwa piom) 3s-daaq Apnis siyL
[92] ‘e 18 IIaRILOYD 3s-daaq Bupsauibuz
Apueanyiubis Areansiels Aq pasn soaloid adinos-uado 9T woly pue sauljaseq dSz1d9O pajed 9I/eM)os uo suondesuel] 333|
saul|aseq ay) pue 3s-daaqg swiopadino 4szido suwodas anssi £Te's 40 uonduosap pue L JYIN UeIPSIN pue uea\ Bulureal-daap paseq-iawlojsuel] | ‘zzoz ‘[1z] uoneyiweymue] pue n4
(Mm3y)
sauljaseq sdoys)Iop doualajuo) Bulesulbug
193(0.d [eIsnpul sUo Woly VS pue wopuey pue (uoissaibal + NMHY | stuawaiinbay [euoneulalu] Yyez 3331
saullaseq ay) swiopadino 3s-deaq suodal anssi 2 g/ ‘v J0 uonduosap pue apll ‘IvPN ‘IVIN ‘uelpaN ‘UedN + INLST + Buippaquwia piom) 3s-deaqd | ‘Tz0oz ‘[€9] uepeziages pue lsspeqy
NNM
[e2] 'Te 1@ nuod Aq pasn pue ‘sauljaseq (uoissaibal + NMHY + INLST
sased 1aselep pue ‘syosfoid 891nos-uado 9T woly VS pue wopuey pue + Buippaquwa piom) 35-daaq pajied | Buussuibug aremyos uo suondesuel|
|re ul 3S-4QI-4.L pue ssuljgseq ay swiopadino 3s-deag suodal anssi £T¢ez 4o uonduossp pue sl ‘IvVPN ‘IVIN ‘uelpajy ‘uesiy Buiures|-desp paseq-uoissaifiay | 3331 ‘6T0Z ‘[92] Te 18 IMiapLoyD
sy09lo.d 921n0s-uado xis wouy suodal
Aoeinaoe uonewnsa aNSS| GEY'E JO BM) BY) WOy pAJoRNIXd dInseaw-4
ds BuipseBal Apnis 8y Ul pasn s18poougoINy Jo SlueleA 10103A ydelBesed spiom-jo-Beq painguisip pue |[eday (NN Jopoouzoiny) SYIOMISN [eIN3N UO Ju0D
JuaIayip ay) Buowre adualayip JuedRIUBIS OU puno4 pue J03daA ydesBered Alowsw painguisiq ‘uoisioald INAS Yum 4ai/HL TN paseq-uoieonisse|D lor U] 3331 ‘8102 ‘[2] seleos
syo9loud
salnyea} siadojonap pue [enixa) Jo a2inos-uado 1yBis woiy syodal anssi gy 'y sauljaseq
uoITeuIqWIOd e 10 SaInjes) [enixal Yim IWAS swiopadino WwoJj paloeIIxa sainjes) parejal-ladojanap VS wopuey pue (SINAS Sse[o-omy SS8201d WAISAS pue a1emyos uo
SaiNnyes) pare|al-19dojanap aAl AJUO UM JBYISSe|D INAS any pue ‘yibua) ‘sainyesy 4al/4L pue 3vIN ‘uelpal\l ‘uesiy ajdninw) A paseq-uoredyIsse|D | “Juod Wi ‘810z ‘[Ge] lueid pue Hoos
syoaloud (ssejo pajussaidal Jaded
sanss| 00z Uey) alow jo Buiureny aainos-uado 1ybie woly suodal anssi 806y 1SOW 8y} SW02IN0 SIy} ul ,3S-4QI-4.L, Se 03 palsjal Buuaauibug aremyos ul
[eniul Jaye T9°0 pue 9T°0 Usamiag JHININ Ue Ul synsal 10 Juauodwod pue adA) pue ‘uonduosap ay se s109|8s sl juelen NAS 9yl ‘(NAS ‘Ld | SonAleuy ereq pue S|opo aAndIpald
INAS "8|qisesy si (001 parewoine ue Buisn s Bunewnsy pue 8 ays Jo ybus| pue sainyes) 4dl/dL ErA skeme) ooz ‘dN ‘NNM) TN paseq-uonedyisse|d | uo Juod | ‘970z ‘[ez] ‘e 18 niod
siadojanap jo sarewnss aAndalgns
Jo abuel ay) ui sal| YAS Jo Aoeindoe ay) 19afoid (%S2)a3dd juawainsea|y pue Buuaauibug
18410 8y} ul ‘(4AS) yoeoidde pasodoid ayy ueys janaq s108f04d [eusnpul omy woly spodal REEI (4AS ‘NN aremyos [eouidw3 uo "WAS |
Slom sarewnss aAnaalgns siadojanap ayy 10sfoid suo uj aNnss| gEE'T WOoJ) pajoelixa sainyes) /T ‘JYNIN uonewnss Wadxa ‘uoissalfay) N paseq-uoissaibay | 333| ‘TT0Z ‘[22] Te 19 uossweyelqy
s)nsay ereq alnsea|\ auljaseg yoeoiddy i ERIEIEIEY

"MIOM pale|ay 8yl Jo Arewwns Ty ajgelL

UCL - Dept. of Computer Science

59

Vali Tawosi

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

4.2.1. Deep-SE

Choetkiertikul et al. [26] proposed Deep-SE as a deep learning model to estimate the
story point of a single software task, which is represented by an issue report containing
the title and description of the issue.

Their model is composed of four components: (1) Word Embedding, (2) Document
representation using Long-Short Term Memory (LSTM) [116], [117], (3) Deep
representation using Recurrent Highway Network (RHWN) [118], and (4) Differentiable
Regression.

The first component converts each word in the title and description of issues (i.e.,
user story) into a fixed-length vector (i.e., word embedding). These word vectors serve
as an input sequence to the LSTM layer, which computes a vector representation for
the whole document. The document vector is then fed into the RHWN, which transforms
the document vector multiple times before outputting a final vector which represents
the text. The vector serves as input to the regressor, which predicts the output story
point. The word embedding and LSTM layers are pre-trained without using SP values
to come up with a proper parameter initialization for the main deep structure (referred
to as the pre-trained language models), which helps achieve faster convergence of the
model.

Pre-training leverages two sources of information: the predictability of natural
language and the availability of free texts without labels (e.g., issue reports without
story points). The first source comes from the property of languages that the next word
can be predicted using previous words, thanks to grammar and common expressions
[26]. As per Choetkiertikul et al.’s [26] suggestion, we used the pre-trained language
models that they shared, given that this step takes longer to execute. The pre-trained
language models are trained on a corpus of 50,000 issues selected from each
repository®. The issues are not required to have story points to be included in the
pre-training stage and may also come from projects that are not considered for the SP
estimation study.

Moreover, Deep-SE does not apply any pre-processing on the textual input (i.e.,
title and description) to remove non-natural text like links and code snippets. Thus, we
did not apply any pre-processing in order to perform a close replication.

Furthermore, Deep-SE aims at estimating a value closest to the target SP value. To
this end, it uses a regressor in its last layer; thus, the estimate could be a real number
rather than an integer. Although the use of the Fibonacci series, the T-Shirt size, or the
Planning Poker card set® for SP scales is usually recommended and applied by expert

SNo explanation is given in the original study on how the 50,000 issues are selected. We
noticed that their pre-training dataset takes into use every issue available in a repository until
the number of issues reaches 50,000.

6pPlanning Poker card set includes the following numbers: 0, 0.5, 1, 2, 3, 5, 8, 13, 20, 40,
100, and oo.

Vali Tawosi 60 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

estimation and planning poker practitioners [59], [122], Deep-SE’s estimations would
not follow a Fibonacci scale, and the authors did not round the predicted SPs to the
nearest SP integer value on the Fibonacci scale.

4.2.2. TF-IDF-SE

Porru et al. [23] treat SP estimation as a classification problem. Their idea is to use
the title and description of issues (i.e., user stories) and issue-related data available
at the estimation time (i.e., issue type and component), to build a machine-learning
classifier for estimating the story points required to address an issue. They extract
TF/IDF statistics and user story length from issue reports and use issue type and the
component of the issue to build a dataset in which rows represent issues and columns
are the TF/IDF values alongside the binary values representing the association of an
issue to a type or component. Specifically, they concatenate the title and description
of the issue reports and call it context. They separate the code snippets (if any) from
natural language text in the context and analyse two chunks separately to extract TF/IDF
features. They concatenate three feature sets, two extracted from text and code chunks
and one extracted from issue type and components, before reducing the dimension
by feature selection methods. The selected features are then fed to a Support Vector
Classifier to classify issues into SP classes.

Given that the TF-IDF-SE method treats the task-level effort estimation problem as
a multi-classification one (i.e., each class label is a value in the Fibonacci scale), the
number of classes must be determined a-priory. Thus, its adoption might not be directly
applicable to projects that do not follow the Fibonacci scale [26].

4.3. EMPIRICAL STUDY DESIGN

This section provides a detailed description of the research questions investigated
for the replication and extension of the original study [26], together with the data,
benchmarks, and evaluation methods used to answer these questions. To carry out
both the replication and extended study, we use the implementation and configuration
made publicly available by Choetkiertikul et al. [26] for both Deep-SE and TF-IDF-SE
[101], subject to some alterations needed to fix some errors.” To allow the replication
of our work, our scripts and data are publicly available [123].

’Since Porru et al. [23] did not provide any public implementation for TF-IDF-SE, we use
the one provided by Choetkiertikul et al. [101] Moreover, the link to the replication package
provided in Porru et al. [23] is no longer maintained by the authors and when contacted the
authors were not able to provide us with more data nor tools.

Vali Tawosi 61 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

4.3.1. Research Questions

The first research question asked by Choetkiertikul et al. [26] investigates whether
Deep-SE is a suitable method to estimate story points. To this end, they assess whether
it is able to outperform simpler baseline estimators for within-project estimation (i.e.,
building a prediction model by using past issues of a given project and using such a
model to predict the story points for new issues within the same project).

Specifically, they compare Deep-SE with the Mean and Median baselines and
report the SA values for all three techniques. SA is a measure of their accuracy
performance against Random Guessing (see Sections 4.3.3 and 4.3.4 for the definition
of the benchmarks and the evaluation method). Therefore, in our replication, we
investigate the same research question:

RQ1. Sanity Check: Is Deep-SE suitable for story point estimation?

We evaluate this research question through two sub-questions. We first replicate
the original study by evaluating Deep-SE on the same data used by Choetkiertikul et
al. [26]: RQ1.1. Sanity Check - Replication, where we compare Deep-SE’s accuracy
with baseline estimators and the results reported in the original study.

Second, we extend RQ1.1 by evaluating Deep-SE on a larger dataset comprising
26 projects (see Section 4.3.2 for detail) to further strengthen the confidence in the
results of RQ1: RQ1.2. Sanity Check - Extension.

If we find that Deep-SE outperforms the baseline techniques for RQ1.1 and RQ1.2,
we can confirm the conclusion made in the original study.

Choetkiertikul et al. [26] also compared Deep-SE to the previous state-of-the-art for
within-project estimation proposed by Porru et al. [23] (i.e., TF-IDF-SE). This motivates
our second research question:

RQ2. Deep-SE vs TF-IDF-SE: How does Deep-SE perform against TF-IDF-SE in
story point estimation?

Similarly to RQ1, we investigate two sub-questions for RQ2 by replicating the same
experiment with the same data used in the original study (RQ2.1. Deep-SE vs TF-IDF-
SE - Replication) and by extending it and experimenting with a larger dataset (RQ2.2.
Deep-SE vs TF-IDF-SE - Extension). Deep-SE outperforming TF-IDF-SE for both
RQ2.1 and RQ2.2 will further confirm the conclusion made in the original study.

Another important question tackled by the original study is the performance of
Deep-SE for cross-project estimation, i.e., building a prediction model using issues from
another project and using such a model to predict the story points for the issues of a
new target project for which there are no issues to train an accurate model [23], [26].
Cross-project estimation is generally deemed a more difficult task than within-project
estimation since the training and target projects might be heterogeneous [124]-[126].
Thus, our third research question assesses the ability of Deep-SE in cross-project
estimation, as posed in the original study:

Vali Tawosi 62 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

RQ3. Cross-project Estimation. Is Deep-SE suitable for cross-project estimation?

We tackle this question by replicating the two experiments done by Choetkiertikul
et al. [26] in our first sub-question RQ3.1. Cross-project Estimation - Replication.
Specifically, in the first experiment to train Deep-SE, we use a project belonging to the
same repository of the target project (i.e., cross-project within-repository estimation). In
the second experiment, we use as training data the issues from a project belonging to
a repository different from that of the target project (i.e., cross-project cross-repository
estimation). We replicate this research question with the same pair of source and target
projects and compare the results of Deep-SE to the Mean and Median baselines, as
done in the original study. We observe that Choetkiertikul et al. [26] did not consider the
temporal ordering of the issues’ creation time in collecting issues for their training and
testing sets for this research question. However, previous work on software engineering
prediction models showed that neglecting contextual details (like the temporal ordering
of the data) is a potential threat to the conclusion stability of the study [99], [127],
[128]. In a real-world scenario, one would be able to use only the issues from past
projects to train the model. Thus, all the issues in the training (and validation) set should
precede, in creation time, the earliest created issue from the test set. Surprisingly, for
11 out of 16 experiments, more than 97% of the issues used to train the models in
RQ3.1 was created after the start date of the target project, thus making the use of
Deep-SE in practice infeasible.® Therefore, we extend the original analysis in order to
assess Deep-SE’s performance in a realistic scenario, which takes into account the
chronological order of the data used for cross-project estimation. This motivates our
second sub-question: RQ3.2. Cross-project Estimation - Extension, where we only
use the issues created before the start date of the target project as the cross-project
training data for Deep-SE. We compare the results of Deep-SE with Mean and Median
baseline techniques.

Our next research question focuses on another practical usage scenario: The case
where an engineer needs to estimate the effort for a target project that is new and for
which there are not enough story issues realised yet; thus, there is not enough data
from the project itself to train an accurate deep-learning-based prediction model. As a
result, the data would need to be augmented with the use of external sources. This is
a very common case for deep learning models, which need an abundance of training
data to perform well. Previous work investigates how to augment the training set in
different application domains [129], [130]. Our research question aims at analysing if
augmenting the training set (composed of a few instances from the target project) with
a larger number of issues from other projects helps Deep-SE produce more accurate
estimates:

8Among the five remaining projects, for two of them, 75% and 37% of the issues were created
after the start date of the target projects, and for three (in which MULESOFT was used as the
source or target project) we could not determine the percentage as the start/end time of the
MULESOFT project is not known as this project repository is no longer accessible.

Vali Tawosi 63 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

RQ4. Augmented Training. How does Deep-SE perform when using a training set
augmented with other projects’ issues?

To answer RQ4, we use the same data splits used for RQ1.2, but we add to the
training set historical issues available from all the other projects belonging to the same
repository of the target project (i.e., all projects are within the same organisation), yet
respecting the chronological order of the issues. In particular, we include in the training
set only those issues from other projects within the same repository that is created
before the earliest created issue in the validation set. Therefore, we augment the target
project training data with every issue that a company already had in their repository at
the time of predicting the story points for new issues of a target project. Using more
instances in the training data changes its original distribution; however, the same data
is used to train all approaches, and no transformation is applied to the test set. This
allows for a fair and correct empirical analysis answering RQ4.

Our fifth and last research question investigates a technical aspect of the deep
learning approach proposed by Choetkiertikul et al. [26]: The utility of pre-training
for Deep-SE. Pre-training is described as a way to come up with a good parameter
initialization for Deep-SE without using the labels (i.e., story points). Choetkiertikul
et al. [26] pre-train the lower layers of Deep-SE (i.e., embedding and LSTM layers),
which operate at the word and sentence levels. In the absence of pre-training, the
parameters are typically initialized randomly, but Choetkiertikul et al. [26] stated that
a good initialization (through pre-training of embedding and LSTM layers) allows a
faster convergence towards good solutions. However, their study did not compare the
performance of Deep-SE with and without using such a pre-training step. In this work,
we investigate the actual benefit of using such a pre-training step since pre-training is
very expensive both in terms of running time and amount of data required (Choetkiertikul
et al. report that their pre-training step needs around 50,000 issues to work properly and
took 46 hours and 48 minutes for nine repositories to run[26]). Given these limitations,
if the use of pre-training does not improve the estimation performance (accuracy-wise
and execution time-wise), its usage would not be advisable. This motivates our next
research question:

RQ5. Pre-Training Effectiveness. Does pre-training Deep-SE’s lower levels
improve jts accuracy and/or convergence speed?

To answer this question, we compare Deep-SE with random weight initialization to
Deep-SE initialized with weights tuned by pre-training (i.e., the pre-training step used
by Choetkiertikul et al. [26]).

The comparison is performed on estimation accuracy, running time, and the number
of epochs each performs before converging to an optimal solution.

Vali Tawosi 64 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

4.3.2. Data

To execute a close replication of the research questions to that of the original study, we
adopted the datasets made publicly available by Choetkiertikul et al. [26]. Moreover,
we also gather our own dataset to strengthen our confidence in the results and further
mitigate the threat to the external validity of the study. We explain each of these datasets
in the following, while a summary of the descriptive statistics of all three datasets is in
Table 4.2.

4.3.2.1. The Choetkiertikul Dataset

Choetkiertikul et al. [26] mined 16 open-source projects from nine different repositories
(namely Apache, Appcelerator, DuraSpace, Atlassian, Moodle, Lsstcorp, MuleSoft,
Spring, and Talendforge) and gathered a total number of 23,313 issues (i.e., user
stories) with recorded story points, after filtering out all those issues that had assigned a
story point of zero, or negative, or an unrealistically large value (i.e., greater than 100).
Choetkiertikul et al. collected their dataset on August 8, 2016, and made it publicly
available [101]. We refer to this dataset as the Choet dataset and we use it to answer
RQs 1.1, 3.1, and 5.

4.3.2.2. The Porru Dataset

Choetkiertikul et al. [26] also collected eight open-source projects stored in six open-
source repositories, aiming at benchmarking Deep-SE against Porru’'s TF-IDF-SE
approach using a common dataset.®

In total, the Porru dataset, as collected by Choetkiertikul et al. [26], [101], contains
4,904 issues. Among these eight projects, six are common with the Choet dataset (i.e.,
TIMOB, TISTUD, APSTUD, MESOS, MULE, and XD), although they contain a different
subset of issues as Porru et al. applied a set of more restrictive filtering criteria than
those used by Choetkiertikul et al. in building the Choet dataset [26]. These criteria
are as follows: (1) Story points must have been assigned once and never updated
afterwards. Updated story points may mean that the information provided in the issue
report had misleading information, and they do not want to confuse the classifier with
noisy input. (2) The issue must be addressed. Issues not addressed are likely unstable;
hence, they might confuse the classifier. (3) Once the story points are assigned, the
informative fields of the issue (i) must be already set and (ii) their value must not have
been changed afterwards. They define informative fields used as dependent variables
for classification, including Issue Type, Description, Summary, and Component(s). (4)
The values in the story points field must correspond to one of those included in the

®The dataset used in Porru et al. [23] is not publicly available, so Choetkiertikul et al. [26]
re-collected it by closely following the approach described in their paper [23]. This dataset
slightly differs from the original dataset [23] in the number of issues.

Vali Tawosi 65 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

Planning Poker cards set.

Choetkiertikul et al. made their version of the Porru dataset publicly available [101].
We refer to this dataset as the Porru dataset. We used this dataset to answer RQ2.1.

4.3.2.3. The Tawosi Dataset

In our empirical study, we also used issues extracted from the TAWOS dataset [27],
which contains over 500,000 issues coming from 44 open-source projects found in 13
Jira repositories. Specifically, we sampled from TAWOS all those issues having an SP
value specified and then filtered out all those that do not meet the criteria recommended
by Porru et al. [23] (see Section 4.3.2.2) as they are more restrictive than those used
by Choetkiertikul et al. [26], and could be more effective in removing noisy data points
[23]. Our sample resulted in a total of 31,960 issues coming from 26 different projects
(each having more than 200 issues). We will refer to this sample as the Tawosi dataset
herein. The Tawosi data is available in our online replication package [123], and we
used it in our empirical study to answer RQs 1.2, 2.2, 3.2, and 4.

The 26 projects in the Tawosi dataset belong to 13 different Jira repositories. Eleven
of these 13 repositories were used by either Choetkiertikul et al. [26] or Porru et al.
[23] and other previous work [24], [25], and the two additional ones, Hyperledger and
MongoDB, were used in related work [88].

Twelve of the 26 projects in the Tawosi dataset are in common with the Choet
dataset; however, they have a different number of issues, as we collected the data more
recently and applied Porru’s filtration criteria.1® In addition, the Tawosi dataset includes
14 more projects (ALOY, CLI, DAEMON, TIDOC, CONFCLOUD, CONFSERVER, DNN,
FAB, STL, COMPASS, SERVER, EVG, NEXUS, and TDP) with a total of 10,506 issues.
Four projects in the Choet dataset (with a total of 2,087 issues) are not included in
the Tawosi dataset: Three of them (i.e., USERGRID, BAM, and JRESERVER) were
left with less than 200 issues after applying the Porru’s filter, thus removed from the
Tawosi dataset; while the MULESTUDIO project was no longer available on Jira when
the TAWOS dataset was collected.

The Tawosi dataset contains all eight projects included in Porru’s dataset, with
11,029 more issues. Moreover, the Tawosi dataset includes 18 additional projects with
respect to Porru’s dataset, with a total number of 16,027 additional issues.

OFour projects in our dataset have more issues than the same projects in the Choet dataset
(4,652 additional issues in total for the TIMOB, DM, MDL, and MULE projects). This is due
to the new issues created in these projects since Choet collected issues for their dataset. On
the other hand, eight projects in our dataset have a smaller number of issues than the same
projects in the Choet dataset (4,424 fewer issues in total for the MESOS, TISTUD, APSTUD,
CLOV, DURACLOUD, XD, TDQ, and TESB projects). This is due to the more restrictive issue
filtration policy that we followed in this study.

Vali Tawosi 66 UCL - Dept. of Computer Science

PREVIOUS METHODS TO ESTIMATE STORY POINTS

CHAPTER 4.

| vo6'y | | ete'ee | | 096'TE | | [eloL
0ST ¢ 9Tz €T T |898 SYT 2 €Tz €T 0 |O0EL as3l (31) gs3 pusreL
6TS G 266 Oy T |TI8ET |99F G 109 Or O |6S8 daL (a1) Anend eyeq pusfer | abiojpusieL
Y8T 2 1€2 €T 0 | Ti¥ dal uoneseda.d ereq pusfel
80C ¢ L'z 8 0 |ovv €E € 0L€ Or T |9z5t |95¢ € 9T€ 0z 0 |T1I8 ax (ax) axbunds Bunds
980 T €TT 8 0 lozv 28T T 0T OF 0 |[Ser't SNX3aN shxaN s,2dAreuos adAreuos
6€S G o9 ve 1T zeL olanis3annn (sw) oipms 8y HOSAINW
eve € e €1 0 |o18 19€ S 067 T2 T |688 e € 88 €T 0 |SE6'C NN (W) 3N
S9TZ 8 ¥SST 00T T |99TT |188T § 08'TT 00T O |¥6E'T Jan (aw) sipoo |poon
980 T T 8 0 |ves'z BYE] usaiblang
oz ¢ 852 0Z 0 |61 IENVER Janiss 810D gqgobuoi
S8T € s5e 8 T |09z SSVYdINOD ssedwo)
099T /S6 00T T [/99% |/89 2 S0€ 00T 0 |718€'s Wa (wa) uawabeuen ereq dio%ss
61T 2 602 S 0 |90z 1S UIOOWMES | |6 odH
0ze ¢ 692 Or 0 |€oe av4 ougey
€02 T ETZ 9T T [999 0LT T 2T 02 0 |oIE ano1ovind (0q) pnojoeing | soedseing
2T 2 16T €T 0 |998 952 2 S0Z 00T 0 |%¥90°2 NNQ NNQ | 2/emyosSNNG
15 € €y 02 T |2SE EEACERELS (If) 412180 e1RQ PUR JOAISS BIIC
€6T € gre €T 0 |95k YINYISANOD IIusD ereq pue JoAISS 80usN|uod
vzez ¢ 162 €T 0 |vEe ano104NO0D pNojD 82uBNU0D ueIssepy
G659 ¢ 657 o7 T 78€ €0TT ¢ €€'G 00T O |9ge AOT1D (AD) 18n010
v ¢ re 02 1 125 Avd (ag) ooqueg
6192 S 68'9T S9.'9 0 | 009 0TS & 2€9 ve T |19¢'C |2€e S 89 02 0 |[SI6'S FONIL (1) wnueyy
89'¢ ¢ 8S¢ OF O G00'T 20dlL uoneluawnooqg
9.€ G 856 €T T |so¢ NOW3va uowseq
o€z € 8T'e €I 0 |€62 110 80eldJU| BulT-pueWIWOD | Jojess|eaddy
85, 8 9/, 00T O |9€e G6'S 8 208 OF T |6c8 6T. 8 €6'. 00T O |9i¥ anisdy (dv) o1pnis eueldy
6.7 S €SS T T | 2T'T |€€€ G ¥96 Oy T |616C |€2€ S 8y'S Or 0 |¥62'C anisiL (Sv) olpnis Joressj@addy
€T € T2€ €T 0 |Tve AOTY Aollv
7 7 orT € 8z 8 1T 7 28y 7 7 7 ardoyasN (9n) pubiasn ayoedy
STz ¢ 8z €I 0 |vse e € 60€ Oy T |089T |+¥T2 € STE €T 0 |€IsT SOSaN (3w) sosa
pis UBIDON UBB XBW c__\imm:mw_tsm UBIDON UBBN XE c__\,_f%ww_tEw UBIDON UBB XEN c__\imm:ww_t |
uiod Aiois i | Wiod Aioig i i lulod Kiois i | koy ([92] ul pash uoneIAsIqaY) Gm._en_i fiousoday
[9z] 10serep nuod | [oz] 18serep J20UD | laselep 1someL | 7

"ApN1S SIY) Ul pasn slaselep aaiyl ayl Jo sansnels aanduosaq :2'v ajqeL

UCL - Dept. of Computer Science

67

Vali Tawosi

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

4.3.2.4. Validation Approach

Similarly to the original study, to perform within project estimation (i.e., for RQs 1, 2,
and 5), for all datasets, we sorted the issues in each project in ascending order of their
creation time and used the 60% oldest issues as the training set, 20% as the validation
set and the newest 20% as the testing set, as has been done in the previous studies.
This is because, in a real-world scenario, estimation for a new issue is made by using
knowledge from the estimations of past issues. In particular, for RQs 1.1, 2.1, and 5,
which are close replications, we used the same data splits used by Choetkiertikul et al.
[26] to avoid any possible bias in the data that might be introduced by using a different
sampling.

For RQ3 (cross-project estimation), the original study does not clarify how the data
was split. Thus, we apply the same rate they used for RQ1.1 and divided the source
project into three-forth (75%) train and one-fourth (25%) validation sets (following the
60% train-20% validation split rate) and used all issues of the target project as the test
set.

Finally, for RQ4 (augmented training set), we use the same train-validation-test as
RQ1.2, but we augmented the training set with additional issues from different projects
within the same repository of the target one.

4.3.3. Benchmarks

As done in the original study, we use three commonly used baseline estimation
techniques, i.e., Random Guessing, Mean, and Median estimators to benchmark
Deep-SE.

Random Guessing (RG) is a naive method that simply assigns the story point of a
randomly selected issue to the target issue [119]. More formally, Random Guessing
predicts a story point value y for the target case issue; by random sampling (with equal
probability) all the remaining n — 1 cases and taking y = r; where r is the story point
of the randomly drawn issue, from 1...n | issue, # issue; [119]. This method does not
need any parameter estimation and any prediction system is expected to outperform it
over time, otherwise, the prediction system would not be using any information about
the target case. The results for RG are in the online appendix [123].

Mean and Median Effort are two baseline benchmarks commonly used for effort
estimation techniques [38], [131], [132]. Specifically, the mean or median story point of
the past issues is used as the predicted story point for a new issue.

4.3.4. Evaluation Measures and Statistical Analysis

Several measures have been used in the software effort estimation literature to measure
the accuracy of the estimation models. These measures are generally built upon

Vali Tawosi 68 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

the error (or absolute error) between the predicted value and the actual value (i.e.,
| Actual.value — Predicted.valuel).

Similarly to the original study, we discuss all results of our study based on the Mean
Absolute Error (MAE) measure, while we report the Median Absolute Error (MdAE) and
Standard Accuracy (SA) values in our online appendix for completeness [123].

These measures (defined in Equations 4.1, 4.2 and 4.3) are standardised
measures which are not biased towards under- or over-estimates and which have been
recommended in previous work [38], [119], [120].

Across n issues, the MAE and MdAE are computed as follows:

1 n
MAFE = — E lactual; — predicted;| (4.1)
n
i=1

MdAE = Medz'an?zl{\actuali — predictedi]} (4.2)

where actual; is the actual effort from the historical data, predicted; is the predicted
effort by the method and n is the number of issues in a given project.

S A is recommended as a standard measure to compare multiple prediction models
against each other [119]. It is based on MAE and is defined as follows:

MAE,,
SA = (1 - MAEpg) % 100 (4.3)

where M AE,, is the M AFE of the approach p; being evaluated and M AE,, isthe M AE
of a large number (usually 1,000 runs) of random guesses.

For a prediction model p; which outperforms random guessing in terms of accuracy,
S A will produce a number in the range [0, 1]. An S A value closer to zero means that
the predictor p; is performing just a little better than random guessing [38], [119]. For a
prediction model which is outperformed by random guessing S A will produce a negative
value. For a high-performance prediction model M AFE and M dAFE should be lower and
S A should be higher than the competitors.

To check if the difference in the results achieved by the two methods is statistically
significant, we performed the Wilcoxon Ranked-Sum test (a.k.a. Mann—-Whitney U test)
on the distribution of the absolute errors produced by the methods under investigation.
Specifically, we used a one-sided Wilcoxon test with a confidence limit of « = 0.05 to
check the following Null Hypothesis:

Hypothesis 4.3.1: Null Hypothesis

The distribution of absolute errors produced by the two prediction models P; and
P; are not different.

If the test rejects the Null Hypothesis, the alternative hypothesis would be accepted:

Vali Tawosi 69 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

Hypothesis 4.3.2: Alternative Hypothesis

The distribution of absolute errors produced by the P; are different from those
provided by the P;.

Specifically, we performed a one-sided test since we are interested in knowing if
a given model (i.e., Deep-SE) would commit a smaller estimation error than another
model. In such a case, the one-sided p-value interpretation would be straightforward. To
mitigate the risk of incorrectly rejecting the Null Hypothesis (i.e., Type | error) [100], we
also analyse how the results would be when the Bonferroni correction is applied to cater
for multiple hypothesis testing (i.e., the confidence limit is set as o/ K, where K is the
number of hypotheses). Therefore, herein we report the original p-value results of the
Wilcoxon test (see Tables 4.4, 4.6, 4.8, 4.9, and 4.10). While, we analyse and discuss
the results both using the confidence limit of o = 0.05 and the Bonferroni corrected one
(o = 0.025), where applicable.

We also use a standardised non-parametric effect size measure (i.e., the Vargha
Delaney’s A, statistic) to assess the practical magnitude of the difference between two
methods, as recommended in previous work [38], [100], [133]. For two algorithms A
and B, the A;, measures the probability of A performing better than B with respect to a
performance measure. A, is computed using Equation (4.4), where R is the rank sum
of the first data group being compared, and m and n are the number of observations in
the first and second data sample, respectively.

. (& — mtl)
Ay = % (4.9)

Based on Equation (4.4), if two algorithms are equally good, A1, = 0.5. Respectively,
Ay higher than 0.5 signifies that the first algorithm is more likely to produce better
predictions. The effect size is considered negligible for A}, < 0.6 (represented by an
‘N’), small (S) for 0.6 < A1, < 0.7, medium (M) for 0.7 < A;5 < 0.8, and large (L) for

Aq5 > 0.8, although these thresholds are not definitive [38]. We do not transform the
Ay, as we are interested in any improvement achieved by the methods [38], [134].

To perform the above analyses, we used the Wilcoxon Rank-Sum test and Vargha
Delaney’s A, effect size available from the stats library in R v. 4.0.1 [135].

4.4. RESULTS

This section presents the results and discusses the answers to the research questions.

Vali Tawosi 70 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

4.4.1. RQI1. Sanity Check

4.4.1.1. RQL1.1. - Replication

Results: In Table 4.3, under the column “Rep”, we report the results obtained by
Deep-SE and the baseline estimators (i.e., Mean and Median) on the Choet dataset
in our replication study. Below we analyse and discuss the results based on the MAE
measure.

We can observe that Deep-SE generally outperforms the Mean baseline estimator,
obtaining lower MAE values on 14 out of the 16 projects (i.e., 88%) investigated in our
replication study. The differences in 11 of them (i.e., 69%) are statistically significant,
with two projects having a medium effect size, six having small, and three having
negligible ones, as shown in Table 4.4. However, when Deep-SE is compared to the
Median estimator, results reveal that the former obtains lower MAE values on 8 out of
the 16 projects under study (i.e., 50%), with the differences being statistically significant
in only 4 cases (25%) with the effect size being small in one case and negligible in the
remaining three cases. All these cases remain statistically significant when considering
the Bonferroni correction.

Discussion: These results are not in complete accordance with those obtained in
the original study, where it is shown that Deep-SE achieves lower MAE values than
both baseline techniques for all 16 projects (see the Orig column in Table 4.3) with
statistically significant differences in 14 and 15 out of the 16 cases when compared to
the Median and Mean estimators, respectively.

Variation in the results due to the use of stochastic techniques, such as deep
learning, can be acceptable to some extent [5]. In fact, the variation we observed in
the MAE values achieved for Deep-SE in the original study and this replication can
be attributed to such a stochastic nature. However, the difference observed between
the results of the baseline techniques reported in the original study and this replication
suggests unjustifiable discrepancies since the baseline techniques are deterministic
and should always yield the same results given the same datasets. Therefore, we
further investigated the origin of such discrepancies by analysing the results and code
provided in the original study’s replication package and by contacting the authors. We
found that the likely cause for these discrepancies is a fault in the computation of the
MAE and MdAE of the baseline estimators and the original study’s use of a possibly
different approach for random guessing. Section 4.5 provides a detailed explanation of
these causes.

Moreover, while investigating the implementation provided for Deep-SE, we noticed
that Deep-SE performs a transformation on the distribution of the SPs in the pre-
processing stage (see Section 4.5 for more details). This transformation is applied to
the SP distribution of each project before being split into training/validation/test sets;

Vali Tawosi 71 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

however, this pre-processing is hot mentioned in the paper.

To further investigate the effect of such a transformation on the results, we used
Deep-SE with the original SPs (i.e., without transforming its distribution), and we report
the results in Table 4.3 under the !ICut column. Our results show that, in this case,
all estimators generally perform worse. Specifically Deep-SE!/Cut obtains worse MAE
values than those it obtains when the transformation is applied in our replication study
(Rep) in 15 cases (94%), with the difference being statistically significant in four of
them (27%) and the effect size being small in one and negligible in the remaining three.
While, the Mean and Median estimators perform worse in 16 (100%) and 14 (88%)
cases, respectively with the remaining two cases being equivalent. The difference is
statistically significant in 12 cases compared to the Mean estimator with medium effect
size in 2, small in 7, and negligible in 2 cases. While, when compared to the Median
estimator, the difference is not statistically significant for any of the cases.

We also observe differences between the results shown in Table 4.3 /Cut and the
original study (Orig): Deep-SE performs worse without applying the SP transformation
in all 16 cases considered; whereas the Mean and Median estimators obtain worse
MAE values in 6 (38%) and 4 (25%) cases, respectively.

When we compare the performance of Deep-SE to that of Mean and Median when
no transformation is applied, i.e., !Cut), we observe that Deep-SE outperforms the
Mean and Median in 15 and 6 cases, respectively. Out of the 15 cases, the difference
between Deep-SE/Cut and Mean is statistically significant in 12 cases, with a medium
effect size in 3 and a small one in the remaining 9 cases. As for the Median estimator,
out of the 6 cases, only 2 cases show statistically significant differences with a small
effect size in one and a negligible effect size in the other. If we consider the Bonferroni
correction, all 12 cases for the Mean estimator are still statistically significant, while
the number of statistically significant cases for the Median estimator drops to just one
having a small effect size.

We conclude that the transformation induces the techniques to produce a lower
absolute error by reducing the range of the SP distribution of the entire dataset (including
the test set), therefore suggesting more optimistic results than the ones that could be
achieved in practice, where the test set is not available at prediction time. Indeed, when
we train Deep-SE while correctly applying the transformation on the training set only
(column CutTrain in Table 4.3), we find that in the majority of the cases (12 out of 16),
its performance deteriorates; however, the difference is statistically significant in only
one of these 12 cases with a negligible effect size.

In this study, we apply the transformation on the SP distributions for research
questions RQ1.1 and RQ5 for replication purposes, while we use the original SP values
to answer the remaining RQs (i.e., Deep-SE!Cut is the variant used in the remaining

RQs).

Vali Tawosi 72 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

4.4.1.2. RQ 1.2 - Extension

To answer RQ 1.2, we benchmark Deep-SE against the Mean and Median estimators
using the Tawosi dataset.

The results reported in Table 4.5 show that Deep-SE outperforms Mean in 20 out
of 26 cases (77%). However, the difference in absolute error is statistically significant
in 16 (62%), with four cases having a negligible effect size, seven cases having a
small effect size, two medium ones, and the remaining three having a large effect size
as shown in Table 4.6. When compared to the Median estimator, Deep-SE obtains
lower (better) MAE values in 10 out of the 26 cases investigated (38%), and only four
(15%) show statistically significant differences, with one having a large effect size, one
small, and the other two having a negligible effect size. As for the remaining cases,
we observe that the Median estimator outperforms Deep-SE in 11 out of 26 projects
(42%) and obtains the same MAE values in five other cases (20%). When considering
the Bonferroni correction, the number of statistically significant differences does not
change for the Mean estimator, while for the Median estimator, this number drops to
two cases only, one with negligible and one with a large effect size.

Overall, the results obtained for RQs 1.1-RQ1.2 show:

Answer to RQ1: Deep-SE statistically significantly outperform the baseline
estimators in only 42% of the cases for within-project estimation and therefore
does not pass the sanity check.

4.4.2. RQ2. Deep-SE vs TF-IDF-SE

4.4.2.1. RQ2.1 - Replication

The original study evaluated Deep-SE and TF-IDF-SE on the Porru dataset and found
that Deep-SE outperformed TF-IDF-SE for all eight projects under investigation.

To answer RQ2.1, we replicate the same experiment with the same data used in
the original study.

Table 4.7 shows the results we obtained in our replication study using Deep-SE
(i.e., Deep-SE (Rep)) and TF-IDF-SE (Rep)), together with the results obtained by the
original study (Deep-SE (Orig) and TF-IDF-SE (Orig), shaded in grey).

First of all, we observe that in our replication of TF-IDF-SE, we obtain exactly
the same results as Choetkiertikul et al. [26] (i.e., the TF-IDF-SE results are fully
reproducible), whereas the results we obtained for Deep-SE are different from those
obtained in the original study [26]. Deep-SE outperforms TF-IDF-SE in six out of
eight projects (75%) and, among these, the difference is statistically significant in four
projects (i.e., MULE, XD, DNN and NEXUS), all with a small effect size (Table 4.8).

Vali Tawosi 73 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

Table 4.3: RQ1.1 and RQ5. Results obtained for the Choet dataset in RQ1.1.:
The column “Rep” shows the replication results, and the column
“Orig" presents the original study results [26], both obtained by using
Deep-SE with the transformed SPs as done in the original study.
The column “CutTrain” shows the results achieved by applying the
transformation only on the training set, while the column “ICut” shows
the results of our replication without transforming the SPs. We also
include in this table the results for RQ5 “Deep-SE!pre-train”, which
investigates Deep-SE without pre-training its lower layers (i.e., word
embedding and LSTM). The best results are in bold.

Project Method Rep CutTrain !Cut Orig \ Project Method Rep CutTrain !Cut Orig \
MESOS Deep-SE 1.05 1.15 112 1.02 | DURACLOUD Deep-SE 0.64 0.71 0.82 0.68

Deep-SE!pre-train - 1.02 Deep-SE!pre-train 0.68

Mean 111 122 141 164 Mean 0.73 0.82 1.00 1.30

Median 11 122 122 1.73 Median 0.76 0.82 0.82 0.73
USERGRID Deep-SE 1.06 1.18 1.18 1.03 | DM Deep-SE 3.70 5.88 5.86 3.77

Deep-SE!pre-train 1.11 Deep-SE!pre-train 3.91

Mean 1.09 121 119 1.48 Mean 4.89 7.14 8.66 5.29

Median 1.03 1.15 1.15 1.60 Median 4.28 6.19 6.19 4.82
TISTUD Deep-SE 141 143 1.42 1.36 | MDL Deep-SE 6.89 6.89 7.89 5.97

Deep-SE!pre-train 1.42 Deep-SElpre-train 8.05

Mean 1.52 155 191 2.08 Mean 10.19 10.19 12.63 10.90

Median 1.28 130 130 1.84 Median 6.59 6.59 6.59 7.18
APSTUD Deep-SE 3.57 4.09 4.14 271 | MULE Deep-SE 2.26 253 259 218

Deep-SE!pre-train 3.15 Deep-SEl!pre-train 2.30

Mean 2.95 3.48 3.59 3.15 Mean 2.22 249 260 259

Median 3.08 361 361 3.71 Median 221 247 247 2.69
TIMOB Deep-SE 2.10 2.19 2.09 1.97 | MULESTUDIO Deep-SE 3.12 3.66 367 3.23

Deep-SE!pre-train 2.04 Deep-SE!pre-train 3.24

Mean 2.53 2.62 3.02 3.05 Mean 3.22 370 3.74 334

Median 1.94 2.04 2.04 247 Median 3.18 3.66 3.66 3.30
BAM Deep-SE 0.80 0.80 0.81 0.74 | XD Deep-SE 1.66 1.63 170 1.63

Deep-SE!pre-train 0.77 Deep-SE!pre-train 1.58

Mean 1.03 1.03 122 175 Mean 1.88 191 205 227

Median 0.75 0.75 0.75 1.32 Median 1.68 171 171 2.07
CLov Deep-SE 2.46 3.75 3.39 2.11 | TDQ Deep-SE 2.88 290 361 297

Deep-SEl!pre-train 2.37 Deep-SE!pre-train 2.94

Mean 2.97 426 457 3.49 Mean 4.08 425 456 481

Median 2.42 3.71 371 284 Median 3.15 331 331 387
JSWSERVER Deep-SE 1.57 1.77 170 1.38 | TESB Deep-SE 0.61 0.85 0.90 0.64

Deep-SE!pre-train 1.58 Deep-SEl!pre-train 0.63

Mean 1.86 2.07 2.40 2.48 Mean 0.71 1.00 104 114

Median 2.10 231 231 293 Median 0.70 0.92 0.92 1.16

Vali Tawosi 74 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

Table 4.4: RQ1.1 and RQ5. Results of the Wilcoxon test (/Lg effect size in
parentheses) comparing Deep-SE vs baselines (Mean, Median), vs
Deep-SE!pre-train, and vs Deep-SE!cut, on the Choet dataset.

. Deep-SE vs.

Project

Mean Median | Deep-SE!pre-train | Deep-SE!Cut
MESOS 0.139 (0.52) _ 0.182 (0.52) _ 0.592 (0.49) | 0.528 (0.50) _
USERGRID 0.440 (0.51) _ 0.955 (0.43) _ 0.318 (0.52) _ | 0.419 (0.51) _
TISTUD 0.015 (0.54) N 1.000 (0.39) _ 0.734 (0.49) _ | 0.622 (0.49) _
APSTUD 0.979 (0.44) _ 0.960 (0.45) _ 0.953 (0.45) | 0.352(0.51) _
TIMOB <0.001 (0.60) S 0.999 (0.44) _ 0.893 (0.48) _ | 0.947 (0.47) _
BAM <0.001 (0.64) S 0.886 (0.45) _ 0.617 (0.49) | 0.568 (0.49) _
cLoV <0.001 (0.68) S 0.063 (0.57) _ 0.782 (0.46) _ | 0.678 (0.48) _
JSWSERVER 0.018 (0.60) S 0.003 (0.63) S 0.368 (0.52) _ 0.637 (0.48) _
DURACLOUD 0.012 (0.58) N 0.936 (0.45) _ 0.690 (0.48) _ | 0.134 (0.54) _
DM <0.001 (0.66) S 0.013 (0.53) N 0.007 (0.53) N | 0.019 (0.53) N
MDL <0.001 (0.75)M 0.517 (0.50) | <0.001 (0.58) N | <0.001 (0.59) N
MULE 0.572 (0.49) _ 0.658 (0.49) _ 0.532 (0.50) _ | 0.160 (0.53) _
MULESTUDIO 0.428 (0.51) _ 0.442 (0.50) _ 0.362 (0.51) _ | 0.370(0.51) _
XD <0.001 (0.58) N 0.266 (0.51) _ 0.991 (0.46) | 0.399 (0.50) _
TDQ <0.001 (0.70) M 0.009 (0.56) N 0.219 (0.52) _ | <0.001 (0.60) S
TESB <0.001 (0.60) S 0.012 (0.57) N 0.233(0.52) _ | 0.019(0.56) N

Table 4.5: RQs 1.2, 2.2, and 5. Results of Deep-SE, Deep-SE!pre-train, TF-IDF-
SE, and baseline estimators (Mean, Median) on the Tawosi dataset.
The best results are in bold.

Project \ Deep-SE Deep-SE!pre-train TF-IDF-SE Mean Median
MESOS 1.34 1.43 1.34 1.37 1.34
ALOY 1.51 1.71 144 2.23 1.44
TISTUD 1.63 1.68 151 2.01 1.51
APSTUD 4.31 4.15 3.99 4.00 3.99
CLI 1.76 1.58 298 214 1.77
DAEMON 3.29 3.00 274 275 2.74
TIDOC 2.72 3.26 3.03 299 2.77
TIMOB 241 2.49 253 255 2.53
CLOV 3.78 3.89 4.04 5.93 4.01
CONFCLOUD 1.48 1.44 1.33 1.49 1.33
CONFSERVER 0.91 0.96 096 1.35 0.96
DNN 0.72 0.72 0.79 0.80 0.71
DURACLOUD 0.68 0.74 0.68 0.67 0.68
FAB 0.86 0.75 1.10 1.9 0.67
STL 1.18 1.20 0.84 0.97 0.95
DM 1.61 1.65 149 2.60 1.61
COMPASS 1.63 1.66 1.38 1.48 1.38
SERVER 0.89 0.87 0.93 1.56 0.85
EVG 0.63 0.62 0.69 0.68 0.69
MDL 3.55 5.08 6.31 14.54 6.31
MULE 2.24 2.22 3.58 279 2.24
NEXUS 1.08 1.05 1.17 111 1.17
XD 1.45 1.42 201 1.65 1.55
TDP 0.99 0.98 0.99 117 0.99
TDQ 2.47 2.92 5.05 4.20 2.88
TESB 1.15 1.09 0.97 0.99 0.98
Vali Tawosi 75 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

Table 4.6: RQs 1.2, 2.2, and 5. Results of the Wilcoxon test (A, effect size in parentheses) comparing Deep-SE vs Deep-
SE!pre-train, Deep-SE vs TF-IDF-SE, Deep-SE vs baseline estimators (Mean, Median), and TF-IDF-SE vs baseline
estimators (Mean, Median) on the Tawosi dataset.

Proi Deep-SE vs | TF-IDF-SE vs
roject

Deep-SE!pre-train | TF-IDF-SE | Mean Median | Mean Median
MESOS 0.242 (0.52) | 0.826(0.48) | 0.441(0.50) _ 0.826 (0.48) | 0.003 (0.56)N 0.500 (0.50) _
ALOY 0.253 (0.54) _ | 0.910 (0.42) _ | <0.001 (0.69) S 0.910 (0.42) _ | <0.001 (0.70)M 0.501 (0.50) _
TISTUD 0.034 (0.53) N | 1.000 (0.40) _ | <0.001(0.62) S 1.000 (0.40) | <0.001(0.63)S 0.500 (0.50) _
APSTUD 0.645 (0.48) | 0.814(0.46) | 0.763(0.47) _ 0.814(0.46) | 0.370(0.51) _ 0.501 (0.50) _
CcLI 0.779 (0.46) _ | <0.001 (0.74) M | 0.016 (0.61)S 0.249 (0.54) | 1.000 (0.31) _ 1.000 (0.26) _
DAEMON 0.520 (0.50) | 0.659 (0.47) | 0.618(0.48) 0.659 (0.47) | 0.629 (0.48) _ 0.502 (0.50) _
TIDOC 0.008 (0.57) N | 0.521 (0.50) _| <0.001 (0.60) S 0.141 (0.53) | <0.001 (0.60)S 0.746 (0.48) _
TIMOB 0.272 (0.51) _ | 0.303(0.51) | 0.050(0.52) 0.303(0.51) | 0.032(0.53)N 0.500 (0.50) _
CcLOV 0.070 (0.57) _ | 0.817(0.46) | <0.001 (0.85)L 0.026 (0.60) S | <0.001 (0.81)L 0.030 (0.59) N
CONFCLOUD 0.427 (0.51) _ | 0.822(0.45) | 0.497(0.50) _ 0.822 (0.45) | 0.029(0.61)S 0.501 (0.50) _
CONFSERVER 0.359 (0.52) _ | 0.869 (0.45) _ | <0.001 (0.65)S 0.869 (0.45) | <0.001(0.65)S 0.501 (0.50) _
DNN 0.642 (0.49) _ | 0.848(0.48) _ | <0.001 (0.57) N 0.370 (0.51) _ | <0.001(0.67)S 0.614 (0.49) _
DURACLOUD 0.341(0.52) _ | 0.949 (0.42) | 0.125(0.56) _ 0.949 (0.42) | 0.181(0.55) _ 0.501 (0.50) _
FAB 0.882(0.44) | 0.220(0.54) | 0.013(0.61)S 0.995 (0.37) | <0.001 (0.68) S 0.997 (0.37) _
STL 0.405 (0.52) _ | 0.997 (0.33) | 0.857 (0.43) _ 0.892 (0.42) _ | <0.001 (0.70)M 0.050 (0.59) _
DM 0.684 (0.49) | 1.000(0.39) | <0.001(0.80)L 0.687 (0.49) | <0.001 (0.83)L <0.001 (0.58) N
COMPASS 0.331(0.52) | 0.898(0.43) | 0.665(0.48) 0.898 (0.43) | 0.229(0.54) 0.501 (0.50) _
SERVER 0.844 (0.46) _ | 0.593(0.49) | <0.001 (0.75)M 0.322 (0.52) _| <0.001 (0.80)L 0.483 (0.50) _
EVG 0.767 (0.49) | 0.025(0.53)N | 0.019 (0.54)N 0.025 (0.53) N | 0.989 (0.46) _ 0.500 (0.50) _
MDL <0.001 (0.67) S | <0.001 (0.83) L | <0.001 (1.00)L <0.001 (0.83)L | <0.001(1.00)L 0.500 (0.50) _
MULE 0.564 (0.50) _ | <0.001 (0.61) S | <0.001 (0.65)S 0.079 (0.52) | 0.674(0.49) _ 1.000 (0.39) _
NEXUS 0.853 (0.47) _ | 0.847(0.48) | 0.539(0.50) _ 0.847 (0.48) | 0.573(0.50) _ 0.500 (0.50) _
XD 0.800 (0.47) _ | 0.055(0.55) | 0.014 (0.57)N 0.691(0.48) | 0.218(0.52) _ 0.990 (0.43) _
TDP 0.735(0.47) _ | 0.355(0.52) | 0.012(0.59)N 0.355(0.52) | 0.008(0.60)S 0.501 (0.50) _
TDQ 0.003 (0.59) N | <0.001 (0.81) L | <0.001 (0.77) M 0.006 (0.58) N | 1.000(0.35) _ 1.000 (0.21) _
TESB 0.640 (0.49) | 0.989 (0.42) | 0.961(0.44) _ 0.976(0.43) | 0.002(0.59)N 0.406 (0.51) _

UCL - Dept. of Computer Science

76

Vali Tawosi

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

These results contradict those reported in the original study, where Deep-SE was found
to be significantly better than TF-IDF-SE for all eight projects investigated.

For completeness, although not included in the original work, we also compare
the results of Deep-SE and TF-IDF-SE on the Porru dataset to the Mean and Median
baseline estimators. We can observe that there is a difference in the results of the
original study and those we obtain in our replication for all eight projects considered.
When compared to the baseline estimators, Deep-SE(Rep) outperforms Mean in seven
out of eight (88%) cases with the differences in four of them being statistically significant
and the effect size being negligible in one case, small in one case and large in two
other cases. Deep-SE obtains better MAEs than Median in four projects (50%), out of
which two show statistical significance with a small effect size. When we consider the
Bonferroni correction, the number of cases where the difference with Mean remains
significant drops to three (one with small and two with large effect size). The same
observation holds instead for the comparison with the Median estimator under the
Bonferroni correction.

4.4.2.2. RQ2.2 - Extension

Table 4.5 shows the results obtained by Deep-SE and TF-IDF-SE on the Tawosi dataset.

We observe that Deep-SE performs better than TF-IDF-SE on 14 out of 26 projects
(54%) and worse on nine projects (34%). Both perform equally well on the remaining
three projects (12%). However, in the cases where Deep-SE outperforms TF-IDF-SE,
the difference in absolute errors is statistically significant in only five out of 14 cases
(19% of all cases). Among those, the effect size is large in two cases, medium in
one, small in one and negligible in one (see Table 4.6). For the cases where Deep-SE
performs worse than TF-IDF-SE, the difference in absolute errors is significant in four
out of nine cases (15%), one having a negligible effect size and the remaining three
having a small one.

Overall, these results strengthen our confidence in the conclusion of RQ2.1 by
confirming a small difference between the results of these two techniques.

Answer to RQ2: Deep-SE statistically significantly outperforms TF-IDF-SE in
only five out of 26 cases (19%), whereas it provides statistically significantly
worse results in four cases (15%). Therefore, we cannot conclude that Deep-SE
outperforms TF-IDF-SE for all projects herein.

Vali Tawosi 77 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

Table 4.7: RQ2.1. Results of the Deep-SE and TF-IDF-SE replication (Rep),
original study [26] (Orig), and the baselines on the Porru dataset.
Best results (among all methods but Deep-SE (Orig) and TF-IDF-SE
(Orig)) in bold.

Deep-SE TF-IDF-SE

Deep-SE TF-IDF-SE

Project (Rep) (Rep) Mean Median (Orig) (Orig)
TIMOB 7.36 1.76 20.08 1.76 1.44 1.76
TISTUD 1.36 1.28 1.87 1.28 1.04 1.28
APSTUD 5.52 5.69 5.59 5.69 2.67 5.69
MESOS 1.08 123 1.24 0.84 0.76 1.23
MULE 3.27 3.37 322 3.07 2.32 3.37
XD 1.23 1.86 1.24 1.34 1.00 1.86
DNN 0.69 1.08 0.72 1.08 0.47 1.08
NEXUS 0.30 0.39 0.72 0.39 0.21 0.39

Table 4.8: RQ2.1. Results of the Wilcoxon test (A;, effect size in parentheses)
comparing Deep-SE vs TF-IDF-SE, Deep-SE vs baselines (Mean,

Median), and TF-IDF-SE vs baselines (Mean, Median) on the Porru

dataset.

Project _DSeP-SEVs. | TF-IDF-SE vs.

TF-IDF-SE | Mean Median | Mean Median
TIMOB 0.968 (0.43) _ | <0.001 (0.99)L 0.968 (0.43) _ | <0.001 (1.00) L 0.500 (0.50) _
TISTUD 1.000 (0.38) _ | <0.001 (0.67) S 1.000 (0.38) _ | <0.001 (0.64) S 0.500 (0.50) _
APSTUD 0.366 (0.52) | 0.413(0.52) _ 0.366 (0.52) | 0.666 (0.48) 0.501 (0.50) _
MESOS 0.486 (0.50) _ | 0.087 (0.57) _ 0.996 (0.37) _ | <0.001(0.66) S 0.989 (0.40) _
MULE 0.043 (0.55) S| 0.039 (0.56) N 0.080 (0.55) | 0.990 (0.43) _ 0.997 (0.41) _
XD 0.005 (0.61) S| 0.280(0.53) _ 0.238(0.53) | 0.987 (0.41) _ 0.995 (0.39) _
DNN <0.001 (0.62) S | 0.150 (0.53) _ <0.001 (0.62) S| 1.000 (0.38) _ 0.500 (0.50) _
NEXUS <0.001 (0.63) S | <0.001 (0.91) L <0.001 (0.64) S | <0.001 (0.76) M 0.501 (0.50) _
Vali Tawosi 78 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

4.4.3. RQ3. Cross-project Estimation

4.4.3.1. RQ3.1- Replication

Following the original study, we performed two different types of experiments in order
to investigate the effectiveness of Deep-SE for cross-project SP estimation.

The first experiment is characterised by the fact that Deep-SE is trained by using
SP contained only in projects belonging to the same repository of the target project (i.e.,
within-repository; for example, Deep-SE trained on MESOS and tested on USERGRID,
where both belong to Apache repository), while in the second experiment, we train
Deep-SE by using SPs contained only in projects belonging to a different repository
(i.e., cross-repository; for example Deep-SE trained on MESOS from Apache repository
and tested on MULE, which belongs to MuleSoft repository).

We observe that the results we obtained by using Deep-SE both for the within-
repository and cross-repository experiments are different from those recorded in the
original study. Specifically, the MAE values obtained in our within-repository replication
are higher (worse) than those reported in the original study in seven out of the eight
(88%) projects (see Table 4.9a). Whereas the MAE values we obtain in the cross-
repository replication are higher than those reported in the original study only for four
out of eight (50%) projects (see Table 4.9b). The difference between Rep and Orig
might have two reasons. The first might be the use of the SP transformation in the
original study, as further explained in Section 4.5. The second reason can be the
train-validation-test split rates, as two projects are involved in train, validation, and
testing, and the original study did not mention how they split the data for this RQ. We
kept the same splitting ratio for train and validation as explained in Section 4.3.2.4.

When we compare the results obtained by Deep-SE for cross-project estimation
when it is trained with within-repository data (Table 4.9a) vs training it with cross-
repository data (Table 4.9b), we can observe that the latter (i.e. training Deep-SE with
data from projects belonging to the same repository of the target project) generally
provides lower MAE values. Specifically, the MAE values of Deep-SE (Rep) within-
repository are lower than those of Deep-SE (Rep) cross-repository in six out of eight
cases, whereas, in the remaining two, they are very close. These results corroborate
the observation made in the original study, where the within-repository training was
found more beneficial than the cross-repository for all cases (i.e., Deep-SE (Orig) within-
repository provides always lower MAE than Deep-SE (Orig) cross-repository). This can
be explained by the fact that different organisations may apply different policies for SP
estimation [18].

While the original study did not benchmark Deep-SE with the Mean and Median
baselines for this RQ, we believe these are, as well, necessary benchmarks for this
scenario. The results of this comparison are reported in Tables 4.9a and 4.9b. In

Vali Tawosi 79 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

the within-repository scenario, Deep-SE performs better than the Mean estimator in
four out of the eight cases (50%) studied with statistically significant differences with a
negligible effect size in three and a small one in one case (see the last column of Table
4.9a). Whereas, Deep-SE outperforms Median in three cases (38%), with the difference
being statistically significant in two of these cases and the effect size being small for
one and negligible for the other. In the cross-repository training scenario (Table 4.9b),
Deep-SE statistically significantly outperforms the Mean estimator in six out of eight
cases (75%), with a large effect size in three of them, medium in one, and small in two
cases. This is due to the different distributions of the SP values in the source and target
projects. The difference between the MAE values achieved by the Mean estimator
and those of Deep-SE are higher for the cases in which the difference in the mean
SP values of the source and target projects is larger (see Table 4.2). While compared
to the Median estimator, our results show that Deep-SE obtains better MAE values in
two cases out of eight (25%), with the difference being statistically significant and the
effect size being small in both cases. If we consider the Bonferroni correction, these
observations still hold. Overall, Deep-SE outperforms the Mean and Median estimators
for both scenarios, with a statistically significant difference in 10 and 4 out of 16 cases
(63% and 25%), respectively.

Finally, we comment on the use of Deep-SE for within-project estimation versus its
use for cross-project estimation by observing that, overall, Deep-SE is more effective
for the former. In fact, the estimation accuracy achieved by Deep-SE on the same set of
target projects (i.e., USERGRID, MESOS, APSTUD, TIMOB, TISTUD, MULESTUDIO,
MULE when trained based on within-project — see Table 4.3) is always higher than
the accuracy of Deep-SE when trained with cross-project with both within- or cross-
repository (see Table 4.9). This confirms the original study’s findings: Deep-SE is more
suitable for within-project estimation than for cross-project estimation.

4.4.3.2. RQ3.2 - Extension

For this research question, we exploit issues from projects belonging to the same
repository as the target project to form a training/validation set. Therefore, we can only
use those repositories in the Tawosi dataset that contain more than one project (i.e.,
Appcelerator, Atlassian, Hyperledger, MongoDB, and Talendforge). These repositories
contain 18 projects in total. For each of these 18 projects (as target projects), we
combine all the issues from all the other projects belonging to the same repository to
form the training/validation set (as the training source). We then remove the issues
created after the target project’s start date from the training/validation set. For 13
out of 18 target projects, this leaves us with a source issue set containing less than
200 issues. We remove these target projects from our experiments, as previous work
showed training with less than 200 issues might not result in a stable model [23]. Thus,
we investigate five projects for this research question: ALOY with 1,620 issues as the

Vali Tawosi 80 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

training source, CLI with 3,383 issues, DAEMON with 5,587 issues, TIDOC with 335
issues, and TDP with 1,410 issues. We split these source issue sets into 75%-25%
train-validation sets and use them for training Deep-SE. The resulting model is used to
estimate all the issues in the target projects.

Table 4.10 reports the results of our experiments. Based on the MAE, we can
observe that Deep-SE always provides better results than the Mean estimator but with
a statistically significant difference only in three of them. Whereas, Deep-SE performs
worse than the Median estimator in all five cases, with the difference being statistically
significant in two cases (TIDOC and TDP) and the effect size being negligible. If we
consider the Bonferroni correction, the same observations hold.

These results corroborate the conclusion drawn in RQ3.1: Deep-SE does not always
provide more accurate cross-project SP estimations than baseline estimators. Moreover,
our results for RQ3.2 highlight that when Deep-SE is used in a realistic scenario, taking
into account the chronological order of the issues, its prediction performance worsens.

Answer to RQ3: Deep-SE is less effective for cross-project SP estimation with
respect to within-project SP estimation.

4.4.4. RQ4. Augmented Training Set

To augment the training sets used in RQ1.2, we exploit issues from projects belonging
to the same repository as the target project in the Tawosi dataset. Similarly to RQ3.2,
this limits us to 18 projects in the Appcelerator, Atlassian, Hyperledger, MongoDB, and
Talendforge repositories.

Applying the augmentation resulted in an increase in the size of the training set for
all 18 target projects, ranging between 63.2 times for TIDOC and 1.4 times for SERVER
(10.5 times on average over 18 projects). This experiment mimics a real-world scenario
in which a company uses issues from all its projects (past and present) to train Deep-SE
and use it for story point estimation of new issues.

Note that this is different from RQ3.2, where Deep-SE did not use any issues from
the target project for training, while herein, we keep the original 60%-20% train-validation
sets from the target project and only augment the training set with available issues from
other projects™. This is to examine whether Deep-SE’s estimation performance will
increase if more training data become available to it.

Table 4.11 shows the results we obtained after augmenting the training set for 18
projects (indicated by “AUG” as the column header). This table also shows the results of
Deep-SE estimating SP for the same projects by only using within-project issues (under
the WP column). We also report the results of the baseline estimators to verify whether

INote that we only include those issues from other projects that are resolved before the
creation of the first issue in the test set.

Vali Tawosi 81 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

Table 4.9: RQ3.1. Comparing Deep-SE cross-project ((a) within-repository and (b) cross-repository) SP estimation replication
results (Rep) to the original study results (Orig) [26], and to the baselines. The results of the Wilcoxon test (4,
effect size in parentheses) for Deep-SE (Rep) vs Mean and Median baselines are shown in the last column. The
best results (among all approaches but Deep-SE (Orig)) per project are highlighted in bold.

(a) Within-Repository Training 7 (b) Cross-Repository Training

Source Target Method MAE Deep-SE (Rep) vs. 7 Source Target Method MAE Deep-SE (Rep) vs.
Deep-SE (Orig) 1.07 Deep-SE (Orig) 1.57

MESOS USERGRID Deep-SE (Rep) 1.16 TISTUD USERGRID Deep-SE (Rep) 3.47

(ME) (UG) Mean 1.02 1.000 (0.42) _ | (AS) (UG) Mean 3.08 1.000 (0.42) _
Median 0.89 1.000 (0.37) _ Median 2.30 1.000 (0.27) _
Deep-SE (Orig) 1.14 Deep-SE (Orig) 2.08

USERGRID MESOS Deep-SE (Rep) 1.51 TISTUD MESOS Deep-SE (Rep) 3.18

(UG) (ME) Mean 1.52 0.282 (0.51) _ | (AS) (ME) Mean 3.28 0.011 (0.52) N
Median 1.50 0.802 (0.49) _ Median 2.58 1.000 (0.39) _
Deep-SE (Orig) 2.75 Deep-SE (Orig) 5.37

TISTUD APSTUD Deep-SE (Rep) 4.37 MDL APSTUD Deep-SE (Rep) 5.03

(AS) (AP) Mean 4.27 0.918 (0.48) _ | (MD) (AP) Mean 9.84 <0.001 (0.81) L
Median 4.38 0.573 (0.50) _ Median 3.97 1.000 (0.43) _
Deep-SE (Orig) 1.99 Deep-SE (Orig) 6.36

TISTUD TIMOB Deep-SE (Rep) 3.38 MDL TIMOB Deep-SE 3.34

(AS) (T1) Mean 3.45 <0.001 (0.54) N | (MD) (T1) Mean 11.19 <0.001 (0.92) L
Median 3.17 1.000 (0.45) _ Median 4.19 <0.001 (0.63) S
Deep-SE (Orig) 2.85 Deep-SE (Orig) 5.55

APSTUD TISTUD Deep-SE (Rep) 2.70 MDL TISTUD Deep-SE (Rep) 2.64

(AP) (AS) Mean 3.38 <0.001 (0.59) N | (MD) (AS) Mean 11.45 <0.001 (0.97) L
Median 3.17 <0.001 (0.56) N Median 3.17 <0.001 (0.58) N
Deep-SE (Orig) 3.41 Deep-SE (Orig) 2.67

APSTUD TIMOB Deep-SE (Rep) 3.51 DM TIMOB Deep-SE (Rep) 3.81

(AP)) Mean 4.36 <0.001 (0.64) S | (DM) (TI) Mean 5.61 <0.001 (0.72) M
Median 4.19 <0.001 (0.62) S Median 3.46 1.000 (0.45) _
Deep-SE (Orig) 3.14 Deep-SE (Orig) 4.24

MULE MULESTUDIO Deep-SE (Rep) 3.64 USERGRID MULESTUDIO Deep-SE (Rep) 3.95

(MU) (MS) Mean 3.34 0.775 (0.49) _ | (UG) (MS) Mean 4.04 0.008 (0.54) N
Median 3.26 0.997 (0.46) _ Median 3.91 0.917 (0.48) _
Deep-SE (Orig) 2.31 Deep-SE (Orig) 2.70

MULESTUDIO MULE Deep-SE (Rep) 2.77 MESOS MULE Deep-SE (Rep) 3.20

(MS) (MU) Mean 3.05 0.004 (0.54) N | (ME) (ML) Mean 2.89 0.999 (0.46) _
Median 2.60 0.997 (0.46) _ Median 2.92 1.000 (0.45) _

UCL - Dept. of Computer Science

82

Vali Tawosi

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

Table 4.10: RQ3.2. Comparing the cross-project prediction accuracy (in terms
of MAE) of Deep-SE and the baselines Mean and Median. The last
column shows the result of the Wilcoxon statistical test (/Lg Effect
size in parentheses) for Deep-SE. The best results are in bold.

Source Target Method MAE Deep-SE vs
APSTUD, ALOY Deep-SE 2.15
TIDOC, TIMOB, Mean 2.83 <0.001(0.67) S
TISTUD Median 2.10 0.770 (0.48) _
ALOY, APSTUD, CLI Deep-SE 2.72
TIDOC, TIMOB, Mean 2.80 0.089 (0.53) _
TISTUD Median 2.38 0.940 (0.46) _
ALOY, CLlI, DAEMON Deep-SE 2.95
APSTUD, TIDOC, Mean 3.04 0.166 (0.53) _
TIMOB, TISTUD Median 2.89 0.526 (0.50) _
APSTUD, TIMOB, TIDOC Deep-SE 2.53
TISTUD Mean 2.91 <0.001(0.64)S
Median 245 0.006 (0.53) N
TDQ, TESB TDP Deep-SE 1.60
Mean 2.46 <0.001 (0.75) M

Median 153 0.021 (0.54) N

augmenting the training set helps Deep-SE outperform the baselines on projects where
Mean and Median had previously performed better in within-project estimation. Results
show that Deep-SE performs better on only five out of 18 projects (28%) when the
training set is augmented. On the other hand, its performance deteriorates on 12
projects (67%) and remains the same on a single project (CONFCLOUD).

We looked for common features among the projects that benefited from the
augmentation or those which did not, but we could not find any emerging pattern.
Specifically, we looked into their application domain, project size, amount of augmented
data with respect to the project’s original size, and the respective repository.

The analysis of the Wilcoxon test on Deep-SE for within-project vs augmentation
showed that the difference in the distribution of the errors produced by the two variants
is statistically significant in five projects (ALOY, TIDOC, TISTUD, EVG, TDQ) with a
medium effect size in ALOY and negligible with the others.

Deep-SE’s performance with respect to Mean and Median remains almost
unchanged when the augmented data is used. In fact, on the one hand, Deep-SE
(AUG) outperforms the baselines on five projects (i.e., ALOY, COMPASS, SERVER,
TDP, and TESB), while Deep-SE (WP) was outperformed by the baselines on these
five projects (see RQ2.2). However, on the other hand, the performance of Deep-SE
(AUG) becomes worse than that of the baseline techniques on four projects (i.e.,
TISTUD, CONFSERVER, EVG, TDQ), while Deep-SE (WP) performs better than the

Vali Tawosi 83 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

baselines on these same four projects (see RQ2.2).

Answer to RQ4: Augmenting the training set with issues from within-company
projects had no steady positive or negative effect on Deep-SE’s accuracy.

4.45. RQ5. Pre-Training Effectiveness

Tables 4.3 and 4.5 show the performance of Deep-SE with and without pre-training
(Deep-SE vs Deep-SE!pre-train) on the Choet and the Tawosi datasets, respectively. We
can observe that pre-training does not always improve Deep-SE’s estimation accuracy.
Specifically, Deep-SE with random initialization (i.e., Deep-SE!pre-train) obtained better
MAE values, although with a small difference, for six out of 16 (38%) projects from the
Choet dataset (TIMOB, APSTUD, BAM, CLOV, MESOS, XD).

The results of the Wilcoxon test (Table 4.4) show that the difference in the estimation
accuracy of Deep-SE with and without pre-training is statistically significant (in favour of
pre-training) for two of the projects (DM and MDL) with a negligible effect size.1? On the
Tawosi dataset (Table 4.5), Deep-SE without pre-training performs similarly or better
than Deep-SE in 13 out of 26 projects (50%), among which the difference in errors
produced by the two variants is statistically significant on four projects only (TISTUD,
TIDOC, MDL, TDQ) with a negligible/small effect size (Table 4.6).

Having seen the trivial effect of pre-training in improving the accuracy of Deep-SE
for SP estimation, we checked whether it at least helps Deep-SE converge faster
to the best solution. To this end, we compare the running time and the number of
epochs (Table 4.12) required by the two variants to converge to the best solution on the
validation set before the early stopping criterion is met (i.e., ten consecutive epochs
with no improvements in the validation loss function).

We can observe that the running time of Deep-SE with random initialization (i.e.,
Deep-SE!pre-train) is slightly smaller than its pre-trained variant in 33 out of the 42 cases
(79%) studied. When checking for statistical differences between the distribution of the
running time of the two variants, the results of the Wilcoxon test show p — value =0.956
for the Choet dataset and p — value =0.791 for the Tawosi dataset, indicating that we
cannot accept the alternative hypothesis that these results are statically significant
different. Similarly, the comparison between the number of epochs does not reveal
any significant difference (p — value = 0.830), although on average, Deep-SE without
pre-training took slightly fewer epochs to converge (see Table 4.12).

Overall, the results show that using the pre-trained embedding weights and LSTM
layer does not enhance Deep-SE’s accuracy or convergence speed; thus, it can be

2Note that on the other hand, the difference in the estimation accuracy is statistically significant
in favour of random initialization (without pre-training) for two projects (APSTUD and XD),
however, with a negligible effect size.

Vali Tawosi 84 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

Table 4.11: RQ4. Results achieved by Deep-SE on the Tawosi dataset when the
training set is augmented by using older issues from the repository
that the project belongs to (AUG), compared to Deep-SE’s within-
project results from RQ1.2 (WP) and to baseline estimators. The
best results are in bold.

Project Method L Project Method L
AUG WP AUG WP
ALOY Deep-SE 2.59 151 CONFSERVER Deep-SE 1.04 0.91
Mean 3.13 2.23 Mean 1.95 1.35
Median 280 1.44 Median 0.96 0.96
TISTUD Deep-SE 1.73 1.63 FAB Deep-SE 0.87 0.86
Mean 191 2.01 Mean 1.00 1.19
Median 151 151 Median 0.67 0.67
APSTUD Deep-SE 449 431 STL Deep-SE 1.10 1.18
Mean 4.02 4.00 Mean 1.24 0.97
Median 402 3.99 Median 0.95 0.95
CLI Deep-SE 2.04 1.76 COMPASS Deep-SE 1.43 1.63
Mean 3.19 2.14 Mean 1.89 1.48
Median 298 1.77 Median 1.81 1.38
DAEMON Deep-SE 3.10 3.29 SERVER Deep-SE 0.83 0.89
Mean 2.76 2.75 Mean 0.85 1.56
Median 274 2.74 Median 0.85 0.85
TIDOC Deep-SE 3.35 2.72 EVG Deep-SE 0.68 0.63
Mean 3.47 2.99 Mean 0.66 0.68
Median 3.42 2.77 Median 0.65 0.69
TIMOB Deep-SE 2.46 241 TDP Deep-SE 1.07 0.99
Mean 2.62 2.55 Mean 2.27 1.17
Median 253 2.53 Median 1.47 0.99
CLoV Deep-SE 3.71 3.78 TDQ Deep-SE 2.83 2.47
Mean 5.35 5.93 Mean 2.82 4.20
Median 401 4.01 Median 2.22 2.88
CONFCLOUD Deep-SE 1.48 1.48 TESB Deep-SE 1.19 1.15
Mean 2.32 1.49 Mean 2.52 0.99
Median 1.33 1.33 Median 1.29 0.98

Vali Tawosi 85 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

skipped to save the high cost required by such a pre-training procedure.

Answer to RQ5: Pre-training the lower layer of Deep-SE with user stories from
other projects has a negligible effect in improving its SP estimation accuracy or
convergence speed; thus, it can be skipped.

4.5. DISCUSSION

In some cases, the replication of the work by Choetkiertikul et al. [26] provided different
results from the original study. In RQ1.1, we found that the results achieved for Deep-SE
and the baselines differ from that of the original study. Moreover, in RQ2.1, although
the results obtained in this study for TF-IDF-SE matched those reported in the original
study, we found differences in the results of Deep-SE between the two studies. Finally,
in RQ3.1, we observed differences in the results of Deep-SE between the replication
and the original study. However, they support the same conclusion as the one made in
the original study.

In order to investigate the causes of the discrepancies: (i) an independent reviewer
checked the modifications and fixes performed on the original source code and results
to make sure it is correct, (ii) checked the source code and results included in the
replication package provided by the authors [101]; (iii) contacted the authors of the
original study. In the following, the possible reasons for observing different results are
discussed.

First of all, we notice a discrepancy in the results reported for the baseline estimators,
namely Mean and Median. These naive baselines are deterministic, and therefore we
do expect them to achieve the same results when applied to the same data. However,
this was not the case, and further investigation suggests that there may have been
a misuse of these estimators in the original study. Indeed, the results of the original
study are reproducible only by adding one (1.0) to the Mean and Median story point
estimates. Since this addition modifies the original estimates of the baselines, it leads to
an incorrect absolute error computation on the test set. This modification of the original
estimates is not described or justified in the original paper nor in the more general effort
estimation literature. As such, we conclude that it should not be used. Therefore, for all
the RQs investigated in this study, we report the correct results for the Mean and Median
estimators based on the definition given in the literature as described in Section 4.3.4.

By investigating the source code made publicly available by the authors [101], we
also found a discrepancy between the description of Deep-SE provided in the paper
and its implementation as included in their replication package. In fact, the Python
implementation for Deep-SE applies a transformation on the SP distribution before
using it for training, validation, and testing. Through this transformation, all the original
story points falling above a certain threshold (i.e., 90" percentile of the distribution)

Vali Tawosi 86 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

96°9TT T8'6TT 7 - - uesiy
Tv0's SIT'e | ves'or £12'6T [ejoL
() 61T 0S€ 99% das3l
LTT STT veY 601 oalL
oTT oTT 6€2C c1e ddl
60T 0TT 08e 991 ax
90T 90T 9¢9 09 SNX3AN
V1T TIT S6v'T 98G'T 1NN
9CT cTT 6TL 2e8 TdIN
ST €LT 196'T 12V’ 9A3 811 18510 |- - uesiN
6et L0t £0g 9Le HIAHZS L€8'T es8'T | 9ze'or £85'0T fejoL
LTT TLT 99T 6S¢ SSVYdINOD
0TT 01T TT2'2 r6'e na €ectT 4% 14514 SEV das3l
SIT 9TT €T 19T 11S 4 11T 629 €9 oaL
10T 81T 2.T v1e av4 60T 80T SIV'T eev'T ax
VT €T YA ¥4 2.2 ano1ovdna 20T 01T ot1€ 0ce olanLs3Tnin
90T /1T 268 €6T'T NNa TIT LTT STV 6cv 1NN
60T 413 T9C €0€ d3AYISANOD 91T Tt ees 99§ 1an
80T LTT 0ST 6.1 ano124NOD 01T 61T €L6'T 821c Ale
TTT GCT LT2 6EC ANO1D LIT 0ct 0ce 6¢€ ano1ovdna
ZT1T oTT €6.'T 8/T'2 dONIL 144" €TT 6. 98T HINIISMSC
STT 80T 981 T09 20diL STT €ctr {114 0T¢ AOT1O
8¢T TET 6vT 86T NOW3vd 80T 20T eve eve AV4d
80T 0ET 79T 9¢¢ 110 90T 60T S06 0S6 dONIL
Tt f4A) TS¢ LTE adn.isdv 0TT €eT €9¢ 214 anisdv
90T 90T 9/€'T Tv9'T anisiL 11T 60T 892'T 212'T anisiL
61T 11T 65T T AOTV 6¢T vTT 09¢ ove argod3asn
91T TiT (172 vv8 SOS3N 60T STT c0L LS. SOS3N
ures-audigs-deag 3s-deaq | uren-aidigs-desg 3s-deaq | uren-audigs-deaa 3s-deaq | uren-audigs-deaq 3s-deaq |

109l01d 108014

yood3

(spuo2as) awi Buluuny i

yood3

(spuooas) awiL Buluuny |

UuM pasn usym 3s-daaq “*a°1) spoyiaw ayl Jo yoes eyl syooda Jo Jaquinu ay) pue awin Buiuuni Buredwo) 'sOY :ZT'¥ algel

19selep Isome] (q)

19seep 120y (e)

‘P|0Q Ul aJe S)Nsal 1saq ay ‘slaselep Isome] (q) pue 180y) (e) ay) uo abiaAuod 0] spasu
((uren-aidjgs-doaq) uonezifeniul wopuel Yyum 3s-daaq pue (3s-deaq) buluren-aid ybnouays siybiom Jo uonezijeniul

UCL - Dept. of Computer Science

87

Vali Tawosi

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

are replaced with a smaller cap value (specifically, with the value falling in the 90"
percentile). With this transformation in place, for example, in the DM project, 319 issues
with SP values between 25 and 100 are set to 21 in the training set. The same happens
for 68 issues from the test set.

The following caveats arise using such a transformation: (i) it is not mentioned in the
original paper [26], which can render future replications and/or adoption of the method
non-consistent or unreliable; (ii) the replication results (RQ1) show that without applying
this pre-processing step, an estimation technique tends to perform generally worse.
(iii) the current source code applies the pre-processing step to the entire dataset (i.e.,
before splitting it into training, validation, and test sets). However, while applying such
a transformation on the training set might be acceptable, it should not be applied on the
test set since it can undermine the validation process by inflating its accuracy, given
that in real-world settings, the test set is unknown and such a transformation cannot
be applied at prediction time. The corresponding author of the original study explained
to us that they performed this pre-processing to investigate the effect of eliminating
outliers from the training set, but it was not their intention to apply it to the test set.

Therefore, we conclude that using the code as provided in the replication package
might lead users, unaware of the application of such a transformation in the code, to
unjustly/unfairly compare Deep-SE with other approaches which do not include this
pre-processing step.

This may be the case of recent work by Abadeer and Sabetzadeh [63] that used
Deep-SE with a dataset of industrial projects. Adopting the Deep-SE’s implementation,
as provided in the replication package, will automatically apply the transformation to the
entire dataset before training, validation, and testing. It will replace all those SPs with a
value of 13 (4% of the issues) with a value of 8. Therefore, Deep-SE may produce a
lower (better) MAE than the baselines in case they are used on non-transformed data.
The same issue appears in Fu and Tantithamthavorn’s work [21], where they compare
their proposed model to Deep-SE.

Based on the above observations, for replication purposes, we reported the result
of Deep-SE both with and without transformed SPs for RQ1.1 and with transformation
for RQ5. Whereas, for RQ1.2, RQ2, RQ3, and RQ4, we report the results of Deep-SE
without transformation.

4.6. THREATS TO VALIDITY

Our study is a close replication and extension of previous work on task-level software
effort estimation[26]. Thus, it shares some of the threats to the validity of the original
study but also has implemented further mitigation. We followed best practices for
designing the replication and reporting findings in a sound way [110]-[112], [136], [137].

In the original study, the authors expressed their concern about basing their ground

Vali Tawosi 88 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

Table 4.13: Semantically related user stories with different SP values for Spring
XD. Related concepts are highlighted in bold.

Issue Key Type Title Description Story Point

XD-2347 Technical Task Document Kafka As a user, I'd like to refer to documentation in wiki so that 2
message bus | can setup and configure Kafka as a message bus as

recommended.

XD-2361 Story Pre-allocate partitions As a user, | want Spring XD’s message bus to be able to pre- 8
for Kafka message bus allocate partitions between nodes when a stream is deployed,

so that rebalancing doesn’t happen when a container crashes
and/or it's redeployed.

XD-3164 Story Kafka bus defaults As a developer, | want to be able to override Kafka bus defaults 3
configurable at for module consumers and producers, so that | can finely
producer/consumer tune performance and behaviour. Such properties should
level include -autoCommitEnabled, queueSize, maxWait, fetchSize

for consumers- batchSize, batchTimeout for producers.

XD-3516 Story Document partitioning As an s-c-d user, I'd like to have documentation on deployment 2
through deployment manifest, so | could refer to the relevant bits on partitions. I'd
properties like to understand how stream with e...

XD-3740 Bug Kafka message bus The maxWait property from server.yml in the message bus 1

maxWait property is
not set up

section for kafka is not propagated through the code, it is
ignored.

truth on the most likely biased human-estimated story points [30]. However, they
argued that Deep-SE is trained to imitate human beings with respect to estimations by
reproducing an estimate that human engineers would be able to derive. For this aim,
story points sufficiently serve the purpose. Moreover, whenever an unbiased ground
truth is available, Deep-SE can be trained on the new target variable.

To minimize threats to conclusion validity, the original study, and similarly, our study,
used unbiased accuracy performance measures and applied statistical tests by checking
all the required assumptions. Besides, in our study, we checked by performing a peer-
code-review that the implementation of all estimation approaches and the computation
of the accuracy measures adhere to their original definitions.

To mitigate the external validity, like the original study, we collected data from real-
world open-source projects to evaluate the methods. Although these projects differ
greatly in size, complexity, and developer community, we cannot claim that they are
representative of all kinds of software projects. Especially there are differences between
open-source and commercial software projects. A key difference that may affect the
estimation of story points is the behaviour of contributors, developers, and the project’s
stakeholders. Itis expected that in an industrial setting for a commercial software project,
the user stories are written in a more cohesive and disciplined manner, thus, providing
more useful information and containing less noise. Hence, further investigation of
commercial projects from industrial software companies is needed to strengthen the
conclusions made in this study.

Santos et al. [112] showed that sampling error and (un)intentional contextual
modifications in experimental settings can produce different results, leading to an
unsuccessful reproduction of results. To avoid such errors and modifications, we made
sure that for the replicated RQs, we use the same data and train-validation-test as the

Vali Tawosi 89 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

ones used in the original study. We also made sure that all the projects have more than
200 observations, thus mitigating the threat of obtaining unstable p-values and effect
sizes due to undersampling [112]. To ensure that we keep the experimental setting
consistent with the original study, we followed the procedures outlined in their paper.
Furthermore, for both Deep-SE and TF-IDF-SE, we used the implementation provided
by Choetkiertikul et al. [26]. The only changes we made are to amend and fix errors
found in the implementation of the baseline techniques and evaluation metrics
according to the definition recommended in the literature (see Section 4.5).

Our scripts and dataset are publicly available at [123].

4.7. CONCLUSION

Considering the variations observed between the replication and the original study [26],
we cannot confirm all conclusions made in the original study for RQs1-2. We found that
Deep-SE does not outperform the Median baseline for all projects (RQ1) and is not
always statistically significantly better than TF-IDF-SE (RQZ2). Moreover, the statistical
test performed on the distribution of the absolute errors obtained by Median estimator
vs Deep-SE and TF-IDF-SE, respectively, showed that the null hypothesis cannot be
rejected (i.e. the MAEs are different) for over half of the projects investigated (RQ2.1). A
broader experiment with the Tawosi dataset (RQ2.2), which contains a larger number of
projects and issues, showed that the results of these methods are significantly different
in only one-fifth of the cases.

Furthermore, we observed that Deep-SE is not so effective for cross-project
estimation (RQ3), thus confirming the conclusion made in the original study. Using
other additional projects for training Deep-SE or augmenting the training set with
issues from other projects developed within the same repository does not improve its
prediction performance statistically significantly (RQ4). We also showed that
pre-training the lower layers of Deep-SE, which demands a large number of issues and
takes a long time to execute, does not significantly affect its accuracy or convergence
(RQ5).

Overall, our study reveals that current approaches to Agile Software Effort Estimation,
which in essence try to find semantic similarities between user stories to estimate effort,
very often fail to provide statistically significantly better estimations than a naive baseline
technique like the Median estimator. This suggests that semantic similarity between
user stories might not be sufficient, or even effective, for issue-level effort estimation.
For instance, it is possible that two user stories that discuss the same concept (thus
are semantically related) demand different amounts of effort to be resolved (e.g., one
asks for a new feature to be implemented, and the other requires a small change in an
already implemented feature). Table 4.13 shows an example of five semantically related
user stories from the Spring XD project. As we can see, these semantically similar user

Vali Tawosi 90 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

Issue Types
Bug (44.4%) bug p
/ Story
Improvement

Task

New Feature
Enhancement Request
Work Item
Sub-task
Technical task
Suggestion
Epic

Build Failure
Documentation
Problem Ticket
Backlog Task
mmm Technical Debt
- Question

B Incident

~— [Workltem (1.7%)| = Wish

Enhancement Request (2.3%)

[New Feature (6.3%)

S

IRRRnRnnnnnnn

Improvement (13.6%) 4

Task (8.6%) /

(@)

Number of Total Issues and Number of Issues with Code Snippet in their Description Per Issue Type

16000 §
14000 pu _ _
12000 W #Issues M # Issues with Code Snippet
10000
8000 ©
6000 r— 2
< < o
4000 2 g
2000 s e .03 .5, 5 =L o= oo
@S BS BRS o 0 g s A3 ¥ R 34 B S 2.4 06 wo ~meo o«
0 oY e D7 O TN e e H o @ o @ N e
o QL& o e S F & @& S S S N
N o & <& %@" R ‘03@9 \y;z?’ N I.b@" £ (& o;,\% \0‘2‘9 e‘"oo . \bef\ Ny
& NSRRI S & & @
&G & Y T T S
N <
&6‘ B\ oo Q¢ &S
A
N
<<§\

(b)

Figure 4.1: Proportion of Issue Types in the Tawosi Dataset (a), and the number
of total issues and the number of issues with code snippet(s) in their
description, grouped by issue type, in the Tawosi dataset (b). Issue
types are ordered by their frequency in descending order from left
to right.

Vali Tawosi 91 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

stories are estimated to have different story points. It means that the distribution of the
story points in the groups of semantically related user stories is not necessarily different
from the distribution of the story points in the set of all user stories in the project. In other
words, using semantic similarity does not seem effective in discriminating user stories
with regard to their story point. That is a possible explanation for why methods like
Deep-SE and TF-IDF-SE, which rely on semantic similarities between user stories to
make a mapping between the groups of similar user stories and their story points, fail to
perform better than the Median estimator. Future work might devise and experiment with
additional effort drivers extracted from issue reports in order to achieve more accurate
effort estimates.

Moreover, future work can investigate the effect of pre-processing the textual input
(i.e., titte and description), for example, to remove non-natural text like links and code
snippets. In fact, the current version of Deep-SE indeed does not perform any pre-
processing; however, we observed that 6,107 issues in the Tawosi dataset (which
accounts for 19.11% of all issues in this dataset) contain code snippets or stack traces
in their description (see our online appendix [123] for a break down of this information
per issue type). The presence of such information may hinder Deep-SE’s learning ability
and could be investigated in future work.

We also observe that Deep-SE is trained using issues of different types such as
Bug, Story, Improvement, etc., (see in Figure 4.1a the proportion of the different issue
types in the Tawosi dataset). Therefore, the structure and content of the issues used
as training data in both the original and replication study are heterogeneous, which
can hinder the learning ability of the model. For instance, we observe that there is
a statistically significant difference between the length of the description of Bug and
Story issue types (two-sided Wilcoxon test p — value = 2.2e—16 with a medium (0.72)
effect size). As mentioned earlier, 19.11% of the issues in the Tawosi dataset have
code snippets or stack traces in their description (see Figure 4.1b for the number of
issue reports including code snippet in their description, along with the total number of
issues for each issue type group). Although in both studies, Deep-SE uses a limited
number of tokens (specifically, 100 tokens) from the beginning of the issue context (i.e.,
titte+description) to train and test, it would be interesting to investigate and compare in
future work the performance of the model trained on all issues vs a model trained on
one issue type at a time (e.g., bug report).

We hope that the results of our study will encourage further work aiming at improving
methods for Agile Software Effort Estimation, as well as further prove the importance
of replication studies and making replication packages publicly available in order to
support reproduction, replication and extension of previous work: “If | have seen further
[than others], it is by standing on the shoulders of giants."3

3Newton, Isaac. "Letter from Sir Isaac Newton to Robert Hooke". Historical Society of
Pennsylvania. Retrieved 7 June 2018.

Vali Tawosi 92 UCL - Dept. of Computer Science

CHAPTER 4. PREVIOUS METHODS TO ESTIMATE STORY POINTS

In the next chapter, | will investigate a clustering-based method for SP estimation,
which is not only simpler but its decision can also be explained to the end user, something
that most Deep Learning-based models lack.

Vali Tawosi 93 UCL - Dept. of Computer Science

Chapter 5

Clustering Approach to Estimate
Story Points

Published as: “Investigating the Effectiveness of Clustering for Story Point Estimation”
By: Vali Tawosi!, Afnan Al-Subaihin', and Federica Sarro*

I Department of Computer Science, University College London, United Kingdom

At: The 29th IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER’22)

Abstract - In the previous chapter, we saw that Deep-SE, a Deep-learning based
model for SP estimation was not able to outperform the much simpler Median baseline
method for all the projects investigated statistically significantly. This chapter presents
a new approach for SP estimation based on analysing textual features of software
issues by employing latent Dirichlet allocation (LDA) and clustering. LDA is first used
to represent issue reports in a new space of generated topics. Then, hierarchical
clustering is used to agglomerate issues into clusters based on their topic similarities.
Next, estimation models are built using the issues in each cluster. Finally, the closest
cluster to the new coming issue is identified, and the model from that cluster is used to
estimate the SP. This approach is evaluated on the Tawosi dataset from the previous
chapter (see Section 4.3.2.3), a dataset of 26 open source projects with a total of 31,960
issues, and compared against both baselines and Deep-SE.

The results show that the estimation performance of our proposed approach is
as good as the state-of-the-art. However, none of these approaches is statistically
significantly better than more naive estimators in all cases, which does not justify their
additional complexity.

95

CHAPTER 5. CLUSTERING APPROACH TO ESTIMATE STORY POINTS

5.1. INTRODUCTION

In agile development, Story Point (SP) is a commonly used measure of the complexity
and required effort of completing a software development task, be it an implementation,
perfective or corrective maintenance task [1], [59]. Teams typically carry out assigning
story points to these tasks in order to plan for the content of upcoming sprints. To
this end, teams mainly rely on expert estimation methods like Planning Poker and
Delphi [18]. However, expert judgment has been shown to be prone to bias due to its
reliance on subjective assessment [5], [100], [109]. This motivated several research
endeavours to find automated ways to predict story points of a task given its features
with the aim of avoiding inaccurate estimations by human judgement, in addition to,
and more importantly to an agile team, producing consistent estimations throughout
the project’s lifecycle.

Task descriptions (referred to as user stories in agile development) are a convenient
information source for both humans and automated SP estimators. This information,
which is usually conveyed via a few sentences written in natural language by product
owners, developers, or users, is available upon the creation of a new task. Most SP
estimation techniques study the similarities between the task at hand and the previously
completed tasks to decide on the SP value of the new task [22]-[26], [53].

On the other hand, previous studies in software effort estimation showed that
software engineering data often contain a large amount of variability [65], [66]; as
previously shown in the literature for traditional software effort estimation [65], [67]-[72].

Therefore, in order to help reduce such variability, this chapter proposes and
investigates the suitability of a novel clustering-based model to estimate the SP values
of new issues. We dubbed this approach LDA-based Hierarchical Clustering for Story
point Estimation (LHC-SE), hereafter.

The proposed approach, LHC-SE, relies on the similarities of historical issue
descriptions by grouping them into coherent clusters that maximize their prediction
power. These clusters are formed by representing issues as vectors of their
LDA-extracted topics; the estimation of SP for a new issue is then inferred from the SP
scores of issues in its assigned cluster. The results of three SP assignments
(estimation models) are reported based on the resulting clusters: first is assigning the
issue at hand the mean SP of the issues in its assigned cluster; second, the median of
the aforementioned; and finally, assigning it the SP of the issue deemed most similar.

To the best of our knowledge, this study is the first to investigate whether clustering
can help improve SP estimation accuracy by reducing the variance in the issue
descriptors. This is motivated by the observations made in previous work on traditional
software effort estimation where clustering techniques are employed to reduce the
variability, which often leads to the construction of more accurate effort estimation

ILatent Dirichlet allocation

Vali Tawosi 96 UCL - Dept. of Computer Science

CHAPTER 5. CLUSTERING APPROACH TO ESTIMATE STORY POINTS

models [65], [67]-[71], [124], [126]. Previous work that uses clustering mainly uses it to
group projects according to attributes that are pertinent to the task of effort estimation
(i.e., cost drivers), such as size measures or manager/team experience. Whereas this
study uses clustering to group the issue reports according to their topic. This makes
the approach independent from the cost-drivers used as the basis for the estimation.
Furthermore, this study employs the largest dataset (26 open-source projects and a
total of 31,960 issues) used for SP estimation thus far (i.e., the Tawosi dataset,
described in Section 4.3.2.3).

Similar to the previous chapter, the SP values estimated by human experts are
used as the ground truth to evaluate the accuracy of the estimation model. Accuracy is
measured by using robust measures; hamely, the mean and median absolute errors of
the estimations and the relative improvement over random guessing [119].

The results show that clustering issues based on their topic similarity (i.e., LHC-
SE) improves the accuracy of estimation over Random Guessing and Mean baseline
method, with statistical significance. While it is comparable to the state-of-the-art SP
methods proposed in the literature, we also observed that the Median baseline estimator
achieves similar accuracy as our model and the state-of-the-art on this dataset. We
discuss these results and our observations in Section 5.5. The scripts and data we
used in this study can be found online [138].

5.2. THE PROPOSED METHOD

The proposed method relies on clustering similarly described issues, such that, given
an issue with an unknown SP score, its score can be derived from the SP scores of the
issues deemed most similar to it (i.e., issues that reside in the same cluster).

In order to carry out the clustering, the similarities among issues need to be measured
based on their natural language description. To this end, issues are represented as
vectors in a numerical vector space, such that the distance among issues could be
used as a proxy for issue similarity. This study uses topic modelling, namely, Latent
Dirichlet Allocation (LDA); which uses statistical models to infer a set of topics in textual
documents and represents the documents as the set of probabilities of their relevance
to each of the inferred topics [139], [140].

Equipped with a numerical representation of issues in a vector space, a clustering
algorithm can be employed to group similar issues together. Many clustering techniques
require the choice of k (number of clusters) to be known a priori, which is usually
unknown for software engineering data [68]. In order to enable the discovery of a
suitable %, we use hierarchical clustering, which produces a dendrogram that can be
efficiently investigated for the most suitable cut-off point [141]. In this study, this choice
of k is guided by estimation accuracy on a validation subset of the dataset. Using
the resulting clusters, when a new issue needs to be assigned an SP score, it is first

Vali Tawosi 97 UCL - Dept. of Computer Science

CHAPTER 5. CLUSTERING APPROACH TO ESTIMATE STORY POINTS

converted to a vector using the pre-existing LDA model. Afterwards, the most suitable
cluster for the issue is identified as the one to which the closest issue belongs. Once the
cluster of most similar issues is identified, the model reports the results of first assigning
the issue mean SP scores of issues in the similar cluster, the median, and finally, simply
assigning the issue the SP score of the most similar issue in the historical dataset.

5.2.1. Text Pre-processing and Topic Modelling

To capture the context of issue reports and their purpose, the title and the description
of the issue are combined, dubbed the issue-context hereafter. In order to create a
vector representation of the issue context, first, basic text cleaning and pre-processing
operations are performed on the text. Specifically, the URLSs, code snippets, and all
non-alphanumeric characters are removed from the issue context, the text is converted
to lowercase, punctuation and English stop-words are removed, and finally, the words
with less than two characters are removed. No stemming is performed on the tokens, as
previous work showed that it is prone to over-stemming, which may lower the accuracy
of the results [142].

To generate an LDA topic model, we first join all the pre-processed training issue
contexts from a designated training subset of issues for all 26 projects used in this
study to build a large corpus. The training corpus was then fed into the LDA topic
modelling algorithm (using the topicmodels library in R). In order to set the number of
topics t needed by the generative model, a range of ¢ values is explored to find the
t that produces a model with the minimum perplexity. The perplexity was evaluated
using the validation subset of the dataset, which was not included in the initial model
generation. The used LDA technique employs Gibbs sampling [143] to identify topics in
the corpus, the o and § parameters were setto 1/t and 0.1, respectively. Fig. 5.1 shows
the perplexity of the models built for different ¢ values. As we can see, the model with
the least perplexity is produced with 2,265 topics. The generated topic model is then
used to generate posterior probabilities for issues in the testing subset of the dataset;
thus representing each issue as the vector of all topics such that each cell in the vector
represents the relatedness of the issue to the respective topic.

5.2.2. Clustering

Given the generated vector space of the issues in the dataset, a clustering algorithm is
used to cluster similar issues, with regard to their topics, into cohesive clusters. This is
done using agglomerative hierarchical clustering (using Ward'’s linkage criterion [144]
and cosine as a distance measure). This generates a dendrogram of the clustering
options for each k. This dendrogram can be explored at various cut-off points. A sample
dendrogram for the COMPASS project is shown in Fig. 5.2.

In order to discover the most suitable &, we perform a simple greedy search to find

Vali Tawosi 98 UCL - Dept. of Computer Science

CHAPTER 5. CLUSTERING APPROACH TO ESTIMATE STORY POINTS

Perplexity
30000 32000 34000 36000 38000 40000
| | | | | |
o

28000
|
o
o

0 500 1000 1500 2000 2500

Number of topics

Figure 5.1: Perplexity of the LDA topic model per number of topics (i.e., t¢-
values).

Cluster Dendrogram for the COMPASS Project

cut-off level (k = 6)

Distance Measure
2
|

Issue—Context Distance Vectors

Figure 5.2: A sample dendrogram of agglomerative hierarchical clustering of
issues (COMPASS project). A sample cut-off line is shown on
the plot, which cuts the dendrogram at level 6, thus producing 6
clusters.

Vali Tawosi 99 UCL - Dept. of Computer Science

CHAPTER 5. CLUSTERING APPROACH TO ESTIMATE STORY POINTS

the cut-off point that generates the clustering solution that would produce the most
accurate estimation models.

We investigate three strategies for selecting the most suitable cut-off k: (a) a & which
when used, the estimation models of the resulting clustering produce the lowest Mean
Absolute Error (i.e., MAE-based strategy), (b) a k£ which when used, the estimation
models produce the lowest Median Absolute Error (i.e., MJAE-based strategy), and
(c) a k which when used, the resulting clusters have the highest silhouette index (i.e.,
Silhouette-based strategy). The silhouette index is an internal measure of cluster quality
by calculating how similar are the issues to each other in their own cluster (cohesion)
compared to other clusters (separation) [145]. To evaluate the first two strategies, MAE
and MdAE are calculated over the validation subset of the dataset. A range of different
k values is examined per project, starting from 3 to 0.9 x [with % increments, where
[is the size of the training set. One k value is selected per project using each of the
three strategies, and experiments are performed with all three strategies.

5.2.3. Estimation Models

Once a clustering solution is selected, an SP estimation model is built using issues in
each cluster. Three models are investigated: (a) Cluster Mean-based and (b) Cluster
Median-based estimators, which return the mean/median SP of all the issues in the
cluster, respectively; and (c) Closest Point-based estimator, which returns the SP value
of the closest issue to the queried issue, as the estimated SP.

Given a new issue, the previously generated topic model is used to compute the
posterior probabilities of the issue-context. Then, its cosine distance from all the issues
used in the training phase is computed to determine the closest cluster to the issue at
hand. Then, the estimation model of that cluster is used to estimate the SP value for
the new issue.

5.3. EMPIRICAL STUDY DESIGN

In order to evaluate the performance of LHC-SE, we investigate the accuracy of the
SP estimation models it produces. Additionally, we explore whether additional features
help improve the estimation accuracy of the clustering approach. Finally, we compare
the resulting performance with other state-of-the-art techniques in SP effort estimation
using natural language. To answer these questions, the Tawosi dataset from the
previous chapter (see Section 4.3.2.3) is used to train, evaluate and validate the models.
Following is a detailed report of the empirical study design.

Vali Tawosi 100 UCL - Dept. of Computer Science

CHAPTER 5. CLUSTERING APPROACH TO ESTIMATE STORY POINTS

5.3.1. Research Questions

We investigate three research questions to assess the effectiveness of LHC-SE, against
the baseline methods and previous work.

RQ1. Sanity Check Does clustering of issue reports based on their textual
similarities help accurately estimate story points?

To see whether the proposed approach is a suitable method for estimating story
points, we compare it against baseline estimators. Specifically, we compare LHC-SE
to Random guessing, Mean and Median baselines. Mean and Median baselines are
simple models used for sanity checks; they mainly involve assigning the issue at hand
the mean and median SP over all previous issues, respectively.

To be accepted as a suitable estimation method, LHC-SE should be able to
outperform these baseline techniques.

RQ2. Additional Features Can additional features help improve the estimation
accuracy of the clustering approach?

In a further investigation, the LDA-generated topic probabilities extracted from the
issue context are augmented with additional features in the vector space. In particular,
we add two features that are available when the issue is created: the issue type (e.g.,
story, improvement, bug, etc.) and the component(s) from which the issue rose (e.g.,
Ul, Runtime, DSL, etc.). Since type and component are categorical variables, we use
a one-hot encoding to convert them to numerical features to be able to exploit them
with our approach. We also add issue report length, which is the number of characters
used to describe the issue. This can serve as an indicator of the complexity of the
issue. Adding these features creates a new variant of our model, we call it LHCo-SE
to distinguish it from the base LHC-SE model.

Furthermore, we add TF-IDF features to LHC-SE features to see if they help
the clustering approach achieve more coherent clusters, thus improving its estimation
accuracy. We refer to this variant as LHCr¢irrrpr-SE.

RQ3. Comparison to the Previous Work How does the clustering approach
compare to the existing SP estimation approaches?

To answer this question, the best variant of the clustering approach-based model
is compared to two previous works (introduced in the previous chapter), including a
state-of-the-art deep-learning-based model for SP estimation. Specifically, we compare
the estimation accuracy of our approach to TF-IDF-SE and Deep-SE (see description
of these approaches in Section 4.2).

5.3.2. Data

A large number of issues were extracted from the TAWOS dataset [27] (Chapter 3) to
evaluate the proposed approach. Specifically, we use the same sample of issues used
in the previous chapter, to be able to compare the proposed approach to TF-IDF-SE

Vali Tawosi 101 UCL - Dept. of Computer Science

CHAPTER 5. CLUSTERING APPROACH TO ESTIMATE STORY POINTS

and Deep-SE on a common dataset. For a description of how this sample is extracted
from the TAWOS dataset see Section 4.3.2.3. Table 4.2 shows the descriptive statistics
of the Tawosi dataset.

Similar to the validation method used in the previous chapter, for each project, the
issues are ordered in ascending order with respect to their creation time, and split into
three subsets (namely, training, validation, and testing) with a ratio of 60%:20%:20%,
thereby using the older issues for training and newer issues for testing.

5.3.3. Evaluation Measures

Similar to previous studies on software effort estimation, we use measurements that are
built upon the absolute error between the predicted value and the actual value. These
measures are the Mean Absolute Error (MAE), the Median Absolute Error (MdAE), and
the Standard Accuracy (SA) (see Section 4.3.4 for description and definition).

5.3.4. Statistical Analysis

To check if the difference in the results achieved by two methods is statistically significant,
a non-parametric statistical test is performed. Specifically, the Wilcoxon Ranked-Sum
test (a.k.a. Mann—Whitney U test) [146] with confidence limit at « = 0.05, corrected
with Bonferroni, is applied on the distribution of the absolute errors produced by the
methods under investigation. We tested the hypothesis:

Hypothesis 5.3.1: Null Hypothesis

The distribution of absolute errors produced by two prediction models P; and P;
are not different.

A one-way Wilcoxon test is performed; hence, if the test rejects the null hypothesis,
the alternative hypothesis is accepted:

Hypothesis 5.3.2: Alternative Hypothesis

The distribution of absolute errors produced by the P; are lower than those
produced by the P;.

As done in previous work [40], [49], [147], [148], we use the win-loss-tie counting for
summarising the results of the Wilcoxon test, as follows: if the distribution 7 is statistically
significantly better (less) than j according to the Wilcoxon test we update win; and
lossj, otherwise we increment tie; and tie;.

To measure the effect size of the difference, the Vargha Delaney’s A, measure is
used [133], which is a standardised non-parametric effect size measurement, to assess
the effect size of the difference between two methods [38], [133]. For two algorithms

Vali Tawosi 102 UCL - Dept. of Computer Science

CHAPTER 5. CLUSTERING APPROACH TO ESTIMATE STORY POINTS

1 and 2, A;, measures the probability of 1 performing better than 2 with respect to a
performance measure (see Section 4.3.4 for definition). Similar to the boundaries set in
the previous chapter, the effect size is considered negligible for 0.6 < A5 (indicated by
an ‘N’ beside its value), small (S) for 0.6 < A5 < 0.7, medium (M) for 0.7 < A5 < 0.8,
and large (L) for A, > 0.8, although these thresholds are not definitive [5].

5.4. RESULTS

This section presents the results of the empirical study for each of the proposed research
guestions.

5.4.1. RQI1. Sanity Check

Identifying the best LHC-SE model: As described in Sections 5.2.2 and 5.2.3, this
study explores the use of LHC-SE with three different cluster-forming strategies and
three estimators, for a total of nine different LHC-SE estimation models. Before
comparing LHC-SE to the baselines, we study which combination of cluster forming
and estimation strategies works best with LHC-SE. To this end, these nine strategies
are compared against each other based on the Wilcoxon Rank-Sum test and the
results are summarised using the win-loss-tie approach explained in Section 5.3.4. The
results are shown in Table 5.1, where for each method, the rows and columns
represent the nine strategies, and each cell contains the humber of cases (out of 26
projects) the strategy in the row won/lost/tied against the strategy in the column.
Specifically, a win is counted if the strategy in the row produces statistically significantly
lower absolute errors than the strategy in the column.

Based on the results shown in Table 5.1 (RQ1), we can observe that the MAE-based
k-selection strategy with Cluster Median estimation model wins most of the times (117
wins, 1 loss, and 90 ties). Thus, we select this combination of strategy and estimation
model for LHC-SE to compare with the baselines.

Sanity Check: Table 5.2 shows the MAE and SA values achieved by LHC-SE and
the baselines. The MdAE values are also reported for completeness.

We can observe that 24 out of 26 SA values for LHC-SE are positive, which means
that LHC-SE outperforms the Random Guessing (RG) baseline in 24 cases (exceptions
are the STL and DURACLOUD projects). For all these 24 cases, the difference between
the absolute errors produced by LHC-SE and RG is statistically significant in favour of
LHC-SE, and 12 cases also showed a large or medium effect size, while the remaining
showed a small or negligible one.

LHC-SE achieves a good performance against the Mean baseline as well. It
outperforms the Mean estimator in 20 cases while underperforming in only 6 cases.
From these 20 cases, the improvement is statistically significant in 18 cases, with a
large effect size in 5 cases and a small or negligible one in the rest. However, against

Vali Tawosi 103 UCL - Dept. of Computer Science

CLUSTERING APPROACH TO ESTIMATE STORY POINTS

CHAPTER 5.

Table 5.1: RQ1 and RQ2: Win-Loss-Tie results comparing the nine different combinations of three cluster-building methods
and three estimation strategies for each of the three LHC-SE-based variants. The best strategy for each variant is
highlighted.

RQ | | Win/Loss/Tie |
| Method | LHC-SE |
k-selection strategy MAE-based MdAE-based Silhouette-based
Estimator Closest Point Cluster Mean Cluster Median | Closest Point Cluster Mean Cluster Median | Closest Point Cluster Mean Cluster Median | Summary
Closest Point 38|15 0]20]6 00|26 31914 0]20]6 0]0]26 21618 01412 8771123
b MAE-based Cluster Mean | 8]3]15 01719 83|15 05|21 011719 83|15 0|5]21 01313 2466|118
€ |, Cluster Median | 20|06 171019 20]0]6 160110 1]1]24 20|06 18|0|8 5|0]21 117|190
@ Closest Point | 0]0]26 31815 0]20]6 31914 0]20]6 0]0]26 21618 01412 81771123
e MdAE-based Cluster Mean | 93|14 5|0 21 0]16]10 93|14 0]16]10 9|3|14 0|5]21 0]13]13 32|59|117
= Cluster Median | 20|06 171019 11124 2010|6 16|01 10 20|06 161010 3|0(|23 113|194
Closest Point | 0]0]26 31815 0]20]6 0]0|26 31914 0]20]6 21618 01412 877123
Silhouette-based ~ Cluster Mean | 62|18 50|21 0]18]8 6]2]18 5|0]21 0]16]10 6]2]18 01214 2852|128
Cluster Median | 13| 0| 13 13|0]13 0]5]21 13|0(13 131013 0]3]23 13|10 13 12|10 14 7718123
| Method LHC7¢-SE
k-selection strategy MAE-based MdAE-based Silhouette-based
Estimator Closest Point Cluster Mean Cluster Median | Closest Point Cluster Mean Cluster Median | Closest Point Cluster Mean Cluster Median | Sum
Closest Point 31617 0]16]10 10|25 41616 011719 110(25 3|5]|18 011719 1267|129
8 MAE-based Cluster Mean | 6]3]17 0]13]13 5|5|16 21321 1114|111 5|4]17 51219 111411 25|58 125
E |w Cluster Median | 16 | 0 | 10 13|0]13 16 0] 10 16|01 10 31122 15|10 11 18|0|8 4|1]21 101]2]| 105
%]
.W Closest Point 0|1]|25 5|6]15 01610 71613 11178 0|0]|26 5|6|15 0|16]10 18|68 122
(@) MdAE-based Cluster Mean 64|16 32|21 01610 57|14 1]15|10 5|6]15 71316 1|15]|10 2868|112
m Cluster Median | 17 |0 |9 1411|121 11322 17118 15|1]10 171118 171118 21|23 1001|9199
Closest Point | 0125 45|17 0]15|11 0]0]26 6|5]15 11178 415|117 0]1719 15|65 | 128
Silhouette-based ~ Cluster Mean | 5|3 |18 2|5]19 0]18]8 5|5|16 3|7|16 1]17|8 5|4|17 11178 2276|110
Cluster Median | 17|09 141|111 14|21 16010 15|11 10 1]2]23 17109 17118 989|101
i Method LHCycirripr-SE
k-selection strategy MAE-based MdAE-based Silhouette-based
Estimator Closest Point Cluster Mean Cluster Median | Closest Point Cluster Mean Cluster Median | Closest Point Cluster Mean Cluster Median | Sum
Closest Point 411319 0]20]6 00|26 4112|110 1]121]4 0]0]26 511219 1120|5 15|98 95
S |y MAE-based Cluster Mean | 13|49 011719 131419 5|5]|16 1]181|7 131419 51219 21177 52|71|85
T | L Cluster Median | 20| 0|6 171019 2010]6 171019 01|25 20|06 171019 2|2|22 113|392
Q
m Closest Point 0|0|26 41139 0/20]|6 4|12]10 1]121|4 0|0]|26 5|12|9 1120|5 1519895
5 MdAE-based Cluster Mean 12|4|10 5|5]16 0|171]9 12410 11187 12410 71415 2|117|7 51|73|84
S Cluster Median | 21| 1|4 17|1|8 10|25 21|14 1817 21|14 1817 2|1]23 119782
5 Closest Point | 0]0]26 411319 0]20]|6 0]0]26 4112110 11214 5|12|9 11205 15|98 95
Silhouette-based ~ Cluster Mean | 12519 2|5]19 0]17]9 12|5]|9 4|7|15 1187 12|59 11196 448183
Cluster Median | 20 | 1|5 16]2|8 21222 20|1|5 171217 112]23 20|1]5 19]1|6 1151281

UCL - Dept. of Computer Science

104

Vali Tawosi

CHAPTER 5. CLUSTERING APPROACH TO ESTIMATE STORY POINTS

the Median estimator, LHC-SE performs rather poorly, albeit with a negligible effect
size. Although LHC-SE outperforms the Median estimator in 10 cases, the Median
estimator outperforms LHC-SE in the remaining 16 cases. Nonetheless, the results of
the Wilcoxon test reveal that the difference in the estimation performance of these two
methods is statistically significant in only three cases, one in favour of LHC-SE and two
in favour of the Median baseline.

These results show that LHC-SE outperforms RG and Mean baselines in the majority
of the cases but emerges shoulder-to-shoulder with the Median baseline. This motivates
checking whether augmenting the feature set of LHC-SE increases its accuracy (RQ2).

Answer to RQ1: LHC-SE easily outperforms Random Guessing and Mean
baselines, and performs similarly to the Median baseline.

5.4.2. RQ2. Additional Features

To answer this question, the base LHC-SE model from RQ1 is compared to two other
variants (i.e., LHCy<-SE which incorporates issue length, type, and components, and
LHCrc+rrrpr-SE which incorporates the aforementioned in addition to TF-IDF scores
for each issue).

Identifying the best strategies: Similar to RQ1, we first identify which combination
of cluster forming and estimation strategies works best with each of the two additional
variants. The middle and last rows of Table 5.1 show the win-loss-tie scores of the
two variants (i.e., LHCpc-SE and LHCrcrrrpr-SE) for different k-selection and
estimation strategies, with respect to their Wilcoxon test results. We can observe that
the best combination for LHC~-SE is the MAE-based k-selection with Cluster Median
estimation, achieving the highest score (101 wins, 2 losses, and 105 ties). Whereas, for
LHCrcyrrrpr-SE the MdAE-based k-selection with Cluster Median estimator scores
highest.

Comparing LHC-SE variants: Using the strategy that works the best for each
variant, we compare the three LHC-based variants (each with their best performing
strategy) in Table 5.3. As we can see, the three models score very close to one another
(they draw a tie in almost all the cases). Specifically, LHC-SE and LHC~-SE perform
similarly (each beats the other on two projects, and are tie on the others). However,
LHCr¢-SE is better than LHC o777 pr-SE in more cases, and therefore it scores the
highest number of wins among the three. So, we select LHC1¢-SE for the comparison
against existing SP estimation approaches (RQ3).

Answer to RQ2: Using type, component(s) and report length of issues, in addition
to their LDA topics, help LHCc-SE perform better.

Vali Tawosi 105 UCL - Dept. of Computer Science

CHAPTER 5. CLUSTERING APPROACH TO ESTIMATE STORY POINTS

Table 5.2: RQ1 and RQ3: MAE, MdAE and SA values achieved by LHC-
SE, LHC-SE, Deep-SE, TF-IDF-SE, and the Mean and Median
baselines. The best values per method and per project are printed

in bold face.
Project Method MAE MdAE SA Project Method MAE MdAE SA Project Method MAE MdAE SA
MESOS LHC-SE 1.34 1.00 34.38 CONFCLOUD LHC-SE 1.34 1.00 40.41 SERVER LHC-SE 0.85 1.00 59.47
LHC;¢-SE 1.33 1.00 34.63 LHCr¢-SE 1.37 1.00 39.04 LHC;--SE 0.85 1.00 59.47
Deep-SE 1.34 1.12 34.07 Deep-SE 1.48 0.93 33.89 Deep-SE 0.89 0.71 57.60
TF-IDF-SE 1.34 1.00 34.38 TF-IDF-SE 1.33 1.00 40.86 TF-IDF-SE 0.93 1.00 55.88
Mean 1.37 1.08 32.72 Mean 1.49 1.23 33.65 Mean 1.56 1.86 25.99
Median 1.34 1.00 34.38 Median 1.33 1.00 40.87 Median 0.85 1.00 59.46
ALOY LHC-SE 1.84 2.00 26.57 CONFSERVER LHC-SE 0.96 1.00 49.64 MDL LHC-SE 6.31 7.00 57.30
LHC;¢-SE 2.28 2.00 9.01 LHC;«-SE 0.96 1.00 49.64 LHC;¢-SE 6.31 7.00 57.30
Deep-SE 1.51 1.28 39.67 Deep-SE 0.91 0.64 52.28 Deep-SE 3.55 2.77 76.00
TF-IDF-SE 1.44 2.00 4253 TF-IDF-SE 0.96 1.00 49.64 TF-IDF-SE 6.31 7.00 57.30
Mean 2.23 217 10.84 Mean 1.35 145 29.17 Mean 1454 1523 158
Median 1.44 2.00 42.53 Median 0.96 1.00 49.64 Median 6.31 7.00 57.30
APSTUD LHC-SE 4.14 3.00 30.20 DNN LHC-SE 0.71 1.00 42.60 MULE LHC-SE 2.27 2.00 37.11
LHC,--SE 3.99 3.00 32.81 LHCy¢-SE 0.71 1.00 42.60 LHC,¢-SE 2.60 3.00 28.16
Deep-SE 4.31 270 2737 Deep-SE 0.72 0.69 41.69 Deep-SE 2.24 1.68 37.95
TF-IDF-SE 3.99 3.00 32.81 TF-IDF-SE 0.79 100 36.13 TF-IDF-SE 358 200 081
Mean 4.00 249 3272 Mean 0.80 0.88 35.28 Mean 2.79 3.18 22.68
Median 3.99 3.00 32.81 Median 0.71 1.00 42.60 Median 2.24 2.00 38.05
CLI LHC-SE 1.87 2.00 29.32 FAB LHC-SE 0.67 1.00 69.75 NEXUS LHC-SE 1.14 1.00 22.52
LHC,--SE 1.76 2.00 33.35 LHC;c-SE 0.65 1.00 70.47 LHC;¢-SE 1.22 1.00 16.88
Deep-SE 1.76 1.30 33.44 Deep-SE 0.86 0.71 61.06 Deep-SE 1.08 0.88 26.56
TF-IDF-SE 2.98 3.00 -12.84 TF-IDF-SE 1.10 1.00 50.31 TF-IDF-SE 1.17 1.00 20.68
Mean 2.14 2.61 18.93 Mean 1.19 1.10 46.21 Mean 111 0.58 24.69
Median 1.77 2.00 33.04 Median 0.67 1.00 69.75 Median 1.17 1.00 20.68
DAEMON LHC-SE 2.81 3.00 32.09 STL LHC-SE 1.28 1.00 -6.77 XD LHC-SE 1.54 1.00 39.53
LHC,¢-SE 2.74 3.00 33.81 LHC7¢-SE 0.95 1.00 20.41 LHC;¢-SE 1.50 1.00 40.85
Deep-SE 3.29 2.00 20.55 Deep-SE 1.18 112 191 Deep-SE 1.45 1.16 43.06
TF-IDF-SE 2.74 3.00 33.81 TF-IDF-SE 0.84 0.00 30.12 TF-IDF-SE 2.01 2.00 20.82
Mean 2.75 275 3353 Mean 0.97 1.02 19.32 Mean 1.65 1.72 34.89
Median 2.74 3.00 33.81 Median 0.95 1.00 20.41 Median 1.55 1.00 39.05
TIDOC LHC-SE 2.79 1.00 2348 DM LHC-SE 1.56 1.00 53.87 TDP LHC-SE 1.00 1.00 37.08
LHC;¢-SE 3.65 200 -0.30 LHC;¢-SE 1.52 1.00 54.94 LHC;«-SE 1.03 1.00 35.44
Deep-SE 2.72 1.19 25.35 Deep-SE 1.61 0.89 5241 Deep-SE 0.99 0.81 37.69
TF-IDF-SE 3.03 1.00 16.69 TF-IDF-SE 1.49 1.00 55.71 TF-IDF-SE 0.99 1.00 37.74
Mean 2.99 259 18.00 Mean 2.60 243 22.83 Mean 1.17 1.38 26.26
Median 2.77 1.00 24.03 Median 1.61 1.00 52.19 Median 0.99 1.00 37.74
TIMOB LHC-SE 2.53 2.00 30.70 DURACLOUD LHC-SE 1.25 1.00 -9.65 TDQ LHC-SE 3.52 3.00 27.60
LHC,--SE 2.48 2.00 3212 LHC7c-SE 0.68 1.00 39.94 LHCrc-SE 2.92 3.00 40.01
Deep-SE 241 1.81 33.90 Deep-SE 0.68 0.58 39.90 Deep-SE 2.47 223 49.14
TF-IDF-SE 2.53 2.00 30.70 TF-IDF-SE 0.68 1.00 39.94 TF-IDF-SE 5.05 5.00 -3.95
Mean 2.55 1.81 30.23 Mean 0.67 0.85 41.13 Mean 4.20 3.82 13.65
Median 2.53 2.00 30.70 Median 0.68 1.00 39.94 Median 2.88 3.00 40.72
TISTUD LHC-SE 1.51 2.00 51.89 COMPASS LHC-SE 1.38 2.00 28.54 TESB LHC-SE 0.99 1.00 32.56
LHC;¢-SE 1.51 2.00 51.89 LHC;c-SE 1.30 1.00 32.46 LHC;¢-SE 1.04 1.00 29.31
Deep-SE 1.63 1.38 48.08 Deep-SE 1.63 1.34 15.25 Deep-SE 1.15 0.73 21.36
TF-IDF-SE 1.51 2.00 51.89 TF-IDF-SE 1.38 2.00 28.54 TF-IDF-SE 0.97 1.00 33.95
Mean 2.01 216 35.93 Mean 1.48 1.63 23.05 Mean 0.99 0.99 32.71
Median 1.51 2.00 51.89 Median 1.38 2.00 28.54 Median 0.98 1.00 33.02
CcLov LHC-SE 3.88 2.00 46.35 EVG LHC-SE 0.60 1.00 22.69
LHC;¢-SE 4.23 150 41.55 LHC;¢-SE 0.62 1.00 19.97
Deep-SE 3.78 1.05 47.73 Deep-SE 0.63 0.54 19.39
TF-IDF-SE 4.04 1.00 44.15 TF-IDF-SE 0.69 1.00 10.67
Mean 5.93 5.30 18.06 Mean 0.68 0.56 12.98
Median 4.01 2.00 4455 Median 0.69 1.00 10.67

Vali Tawosi 106 UCL - Dept. of Computer Science

CHAPTER 5. CLUSTERING APPROACH TO ESTIMATE STORY POINTS

Table 5.3: RQ2: Win-Loss-Tie summary of the Wilcoxon test results comparing
the LHC-SE variants with their respective best strategies from Table
5.1. The best variant is highlighted.

\ Win/Loss/Tie \
Method | LHC-SE LHCy¢-SE LHCrcurripr-SE | Summary
LHC-SE 2|2|22 1]2]23 3|4|45
LHC;c-SE 22|22 2|1]23 4|3|45
LHCrcyrripr-SE | 211123 1]2]23 33|46

5.4.3. RQ3. Comparison to the Previous Work

Since LHC¢-SE was found to be the best performing variant among the models
investigated (see RQ2), we compare it against the state-of-the-art.

Table 5.2 shows the MAE and SA values achieved by LHC¢-SE, Deep-SE, TF-
IDF-SE, and the Mean and Median baselines (the MdAE values are also reported,
for completeness). We observe that LHC--SE achieves a better (lower) MAE than
Deep-SE in 14 out of 26 cases, while Deep-SE achieves a better MAE in 12 cases.
LHCr-SE outperforms TF-IDF-SE in 15 cases, whereas it is outperformed in the
remaining 11 cases. LHC~-SE achieves better MAE values than those achieved by
Mean in 21 cases. It achieves better MAEs than the Median estimator, in 14 cases, and
slightly worse in 12.

It is worth noting that in some cases the MAE values are very close (e.g., the MULE
project in Table 5.2), showing that achieving a lower MAE does not guarantee that a
method performs statistically significantly better than the other. For this reason, we also
provide the p-values and effect sizes of the statistical tests performed on LHCo-SE
against the other methods per project in Table 5.4 and, then summarise these results
as win-loss-tie in Table 5.5.

Based on the results reported in Table 5.4, we observe that LHC;-SE performs
statistically significantly better than Deep-SE for five projects (i.e., TISTUD, FAB, DM,
COMPASS, and EVG); however, the effect size for all five cases is negligible or small.
Similarly, LHCr-SE performs statistically significantly better than the Median estimator
in two projects (i.e., DM and EVG), but the effect size for both cases is negligible.
Compared to TF-IDF-SE, LHCy-SE showed statistically significant improvement for
five projects (i.e., CLI, FAB, EVG, MULE, and TDQ), in two cases with a medium
effect size, in one case with a small one, and in the remaining two cases with a
negligible one. Against the Mean estimator, LHC¢-SE shows a significant improvement.
Particularly, from 19 projects for which LHCp-SE produces statistically significantly
better estimations, the difference shows a large effect size in four cases, a medium effect
size in two, a small effect size in seven, and a negligible effect size in the remaining
six cases. Finally, compared to the RG baseline, LHC;<-SE shows a statistically
significant difference for all projects but one. Among the 25 projects in which LHC¢-SE

Vali Tawosi 107 UCL - Dept. of Computer Science

CHAPTER 5. CLUSTERING APPROACH TO ESTIMATE STORY POINTS

outperforms RG, 11 cases show a large effect size, eight cases show a medium, four
cases a small, and two cases show a negligible effect size.

Based on the win-loss-tie summary (Table 5.5), we can conclude that LHC+-SE
scores are very close to Deep-SE and Median estimator, though it is ahead by two and
one wins, respectively. Considering the scores achieved by LHC~-SE against the
other methods (see first row Table 5.5), we can also observe that LHC~-SE never
wins less than it loses to the other methods.

Overall, these results show that our proposed method outperforms RG and Mean
baselines statistically significantly and matches the accuracy of the state-of-the-art,
while slightly enhancing it in some cases, it does not perform worse in most of the cases.
It also performs as good as the Median estimator.

Answer to RQ3: LHCrc-SE matches the accuracy of the state-of-the-art, while
slightly enhancing it in some cases, it does not perform worse in most of the
cases.

Table 5.4: RQ3: Wilcoxon Test results (with Vargha-Delaney effect size in

brackets) comparing LHC--SE against each of the previous work
and the baseline methods.

Project LHCr¢-SE vs.

Deep-SE TF-IDF-SE Mean Median Random
MESOS 0.147 (0.52) _ 0.420 (0.50) _ 0.001 (0.57) N 0.420 (0.50) _ <0.001 (0.73) M
ALOY 0.992 (0.36) _ 0.999 (0.33) _ 0.435(0.51) _ 0.999 (0.33) _ 0.167 (0.56) _
APSTUD 0.186 (0.54) _ 0.501 (0.50) _ 0.370 (0.51) _ 0.501 (0.50) _ <0.001 (0.73) M
CLI 0.736 (0.47) _ <0.001 (0.74) M 0.030 (0.60) S 0.466 (0.50) _ <0.001 (0.75) M
DAEMON 0.344 (0.53) _ 0.502 (0.50) _ 0.629 (0.48) _ 0.502 (0.50) _ <0.001 (0.77) M
TIDOC 0.826 (0.47) _ 0.869 (0.47) _ 0.002 (0.58) N 0.873 (0.47) _ <0.001 (0.70) M
TIMOB 0.563 (0.50) _ 0.121 (0.52) _ 0.048 (0.52) N 0.121 (0.52) _ <0.001 (0.73) M
TISTUD <0.001 (0.60) S 0.500 (0.50) _ <0.001(0.63)S 0.500 (0.50) _ <0.001 (0.84) L
cLov 0.920 (0.43) _ 0.949 (0.42) <0.001(0.75)M 0.301(0.53) _ <0.001 (0.81) L
CONFCLOUD 0.497 (0.50) _ 0.552(0.49) _ 0.036(0.60)S 0.552(0.49) _ <0.001 (0.81) L
CONFSERVER 0.132 (0.55) _ 0.501(0.50) _ <0.001 (0.65)S 0.501 (0.50) _ <0.001 (0.77) M
DNN 0.630(0.49) _ 0.386 (0.51) _ <0.001 (0.69)S 0.500 (0.50) _ <0.001 (0.82) L
FAB 0.003 (0.64) S 0.002 (0.64) S <0.001(0.83)L 0.435(0.51) _ <0.001 (0.95) L
STL 0.110 (0.58) _ 0.951(0.41) _ 0.007 (0.65)S 0.502 (0.50) _ 0.003 (0.67) S
DM <0.001 (0.56) N 1.000 (0.46) _ <0.001 (0.83) L <0.001 (0.54) N <0.001 (0.93) L
DURACLOUD 0.052 (0.58) _ 0.501(0.50) _ 0.181(0.55) _ 0.501 (0.50) _ <0.001 (0.69) S
COMPASS 0.043 (0.60) S 0.403 (0.51) _ 0.112(0.57) _ 0.403(0.51) _ 0.004 (0.65) S
EVG 0.034 (0.53) N 0.008 (0.54) N 0.045(0.53)S 0.008 (0.54) N 0.015 (0.54) N
SERVER 0.413 (0.51) _ 0.481 (0.50) _ <0.001 (0.80) L 0.422 (0.51) _ <0.001 (0.91) L
MDL 1.000 (0.17) _ 0.500 (0.50) _ <0.001 (1.00)L 0.500 (0.50) _ <0.001 (1.00) L
MULE 1.000 (0.41) _ <0.001 (0.57) N <0.001 (0.59) N 1.000 (0.41) _ <0.001 (0.77) M
NEXUS 0.721 (0.49) _ 0.892(0.47) _ 0.897 (0.47) _ 0.892 (0.47) _ <0.001 (0.59) N
XD 0.626 (0.49) _ 0.056 (0.55) _ 0.005(0.58) N 0.774 (0.48) _ <0.001 (0.84) L
TDP 0.613 (0.49) _ 0.564 (0.49) _ 0.016 (0.59) N 0.564 (0.49) _ <0.001 (0.82) L
TDQ 0.995 (0.42) _ <0.001 (0.79)M <0.001 (0.67) M 0.516 (0.50) _ <0.001 (0.84) L
TESB 0.105 (0.54) _ 0.817(0.47) _ 0.056(0.55) _ 0.753(0.48) _ <0.001 (0.67) S

Vali Tawosi 108 UCL - Dept. of Computer Science

CHAPTER 5. CLUSTERING APPROACH TO ESTIMATE STORY POINTS

Table 5.5: RQ3: Win-Loss-Tie summary of the Wilcoxon test results comparing
LHCrc-SE against each of the previous work and the baseline
methods. The best method is highlighted

\ Win/Loss/Tie \
Method \ LHCrc-SE Deep-SE TFI/DF-SE Mean Median Random \ Summary
LHC.-SE 5|4|17 5|3]|18 19|10|7 2|2|22 25|0|1|56|9 |65
Deep-SE | 4|5]17 54117 16]1]|9 43|19 25|0]|1|54|13]|63
TF-IDF-SE | 25|19 45|17 16|3|7 25|19 23|3|0|47]|21|62
Mean 0119]7 1|16|9 3|16]|7 1/20|5 24|0]2|29]|71|30
Median 2|12]22 3/4|19 53|18 20)1|5 25|1]|0|55|11|64
Random 0]25]1 0[25]1 3|23]|0 02412 1]25]0 4 |122|4

5.5. DISCUSSION

Our results show that LDA is able to capture information latent in the issue context to
enable the clustering algorithm to form useful clusters for story point estimation.

In RQ1, we analysed LHC-SE, which solely uses LDA-generated posterior topic
probabilities. This approach outperforms random guessing in all cases and the Mean
baseline in 77% of the cases, based on the MAE values. However, the Median
baseline performs as good as LHC-SE. We should note that the Median baseline is
also performing better than all other methods investigated in this study (see Table 5.5),
including the two previous works (TF-IDF-SE and Deep-SE), though both are more
sophisticated methods.

RQ2 results show that augmenting LDA-generated posterior topic probabilities with
extra features from issue reports helps the clustering algorithm to form a better clustering
solution, thus improving the estimation accuracy, though marginally (see Table 5.3). In
fact, the addition of TF-IDF weights to the feature set (i.e., LHCrc1+7rrrpr-SE) showed
improvements over LHC-SE; however, the accuracy of LHC ey rrrpr-SE was slightly
lower than those achieved by LHCr-SE. These results suggest that adding more
discriminating attributes to the feature set can help the clustering algorithm form even
higher-quality clusters.

Finally, RQ3 results reveal that LHC¢-SE never performs worse than the other
benchmarks (e.g., the Median baseline and Deep-SE). However, considering the level
of complexity of the model, the time and resources consumed to build it, and the
interpretability of the models built, the Median estimator can be viewed as the more
favourable model so far that can be used in practice.

We note that the fact that a naive estimation approach, such as the Median one,
provides comparable and, in some cases, even better results than much more
sophisticated techniques like deep learning and LDA strongly indicates that the
research advances made so far are unsatisfactory. This also suggests that future
research on story point estimation might need to pay more attention to the data rather

Vali Tawosi 109 UCL - Dept. of Computer Science

CHAPTER 5. CLUSTERING APPROACH TO ESTIMATE STORY POINTS

than the estimation technique when building prediction models [69]. In fact, issue
reports, especially in open-source projects, are not usually written in a structured or
formal way; thus, they can be very noisy and it is possible that by using tailored text
pre-processing and data cleaning, the accuracy of the proposed model can be
improved. On the other hand, improving the quality of the user stories written by the
authors of the issue report (for example, by providing them with accurate guidelines or
training) could yield less noisy data for model building, thus, improving the estimation
accuracy. Besides, additional features can be extracted in order to aid prediction
models in seeking more accurate estimations.

We believe that sharing these findings provides the research community with the
knowledge needed to develop alternative strategies and evolve better solutions for story
point estimation.

5.6. THREATS TO VALIDITY

Like previous studies, we use human-estimated story points as the ground truth, which
might be biased. On the one hand, this is mitigated by the clustering of similar issues
based on their description, hence augmenting the estimations of several human
estimators. On the other hand, these values can be viewed as a placeholder that is
used to test the model’s ability to estimate SP based on historical issues’ scores
(wherever their origin might be). The model, therefore, can be trained on an unbiased
target value when it is available (for example, the real-time spent on issue
development). Currently, given the available dataset, our model can imitate human
experts assisting them in their estimation at its best.

To minimize threats to conclusion validity, we carefully selected unbiased accuracy
performance measures and applied statistical tests to rule out small differences.

The dataset we used represents a wide range of real-world projects. However,
we cannot claim that our dataset is representative of all software projects. All our
projects are collected from open-source repositories, which can differ from industrial
projects in many aspects. A key difference that may affect the estimation of story
points is the behaviour of contributors, developers, and project stakeholders. It is also
expected that in a commercial project setting, issue reports may be written in a more
disciplined environment, thus, providing more useful information and containing less
noise. Therefore, further investigation of commercial projects from industrial software
companies is needed to validate the conclusions made in this study.

5.7. CONCLUSION AND FUTURE WORK

In this study, we investigate a novel clustering-based model to estimate Story Point
(SP), dubbed LHC-SE.
The idea behind LHC-SE is to leverage the similarity of issues, measured using

Vali Tawosi 110 UCL - Dept. of Computer Science

CHAPTER 5. CLUSTERING APPROACH TO ESTIMATE STORY POINTS

the similarity of LDA-generated topic space of issue descriptions and agglomerative
hierarchical clustering, to estimate the SP of a new issue based on the past most similar
issues. This model works on the premise that clustering similar data points together
helps reduce variance and, thus, increases the accuracy of any model built upon them.

To assess the effectiveness of our proposal we have carried out a thorough empirical
study benchmarking LHC-SE'’s performance against those of both baselines and state-
of-the-art approaches for SP estimation on the largest corpus of open-source projects
used in the literature to date.

The results showed that the use of LHC-SE allows us to achieve comparable
results with the state-of-the-art (i.e., based on the Wilcoxon test results, it is statistically
significantly better in 5 cases, worse in 4 and tie in the remaining 17 cases). On the
other end, our results also surprisingly reveal that both LHC-SE and the state-of-the-art
are comparable to some naive estimators, such as simply assigning the median SP of
previous issues; therefore, their additional complexity does not seem warranted.

We hope that these findings encourage researchers to develop alternative
strategies and evolve better ideas for story point estimation. In future work, we suggest
investigating:

* More advanced data analysis and cleaning prior to model building.

« Utilizing other contextual text representation models recently introduced in NLP
research instead of LDA.

 Collecting and using additional effort-informative features available in, or derivable
from, issue reports.

» Training machine learning methods on each cluster instead of baseline estimators
used in this study.

» Exploring other distance measures for clustering instead of cosine similarity;
and/or other clustering techniques instead of agglomerative hierarchical
clustering.

Vali Tawosi 111 UCL - Dept. of Computer Science

Chapter 6

Effectiveness of Story Points in
Estimating Effort

Published as: “On the Relationship Between Story Point and Development Effort in
Agile Open-Source Software”

By: Vali Tawosi'!, Rebecca Moussa', and Federica Sarro!

I Department of Computer Science, University College London, United Kingdom

At: The 16th International Symposium on Empirical Software Engineering and
Measurement (ESEM’'22)

Abstract - Previous work has provided some initial evidence that Story Point (SP)
estimated by human experts may not accurately reflect the effort needed to realise
agile software projects. In this study, we aim to shed further light on the relationship
between SP and agile software development efforts to understand the extent to which
human-estimated SP is a good indicator of user story development effort expressed
in terms of time needed to realise it. To this end, we carry out a thorough empirical
study involving a total of 37,440 unique user stories from 37 different open-source
projects publicly available in the TAWOS dataset. For these user stories, we investigate
the correlation between the issue development time! (or its approximation when the
actual time is not available) and the SP estimated by human experts by using three
widely-used correlation statistics (i.e., Pearson, Kendall, and Spearman). Furthermore,
we investigate SP estimations made by the human experts in order to assess the extent
to which they are consistent in their estimations throughout the project, i.e., we assess
whether the development time of the issues is proportionate to the SP assigned to them.
The average results across the three correlation measures reveal that the correlation
between the human-expert estimated SP and the approximated development time is
strong for only 7% of the projects investigated and medium (58%) or low (35%) for
the remaining ones. Similar results are obtained when the actual development time

LEquivalent to effort in person-hour.

113

CHAPTER 6. EFFECTIVENESS OF STORY POINTS IN ESTIMATING EFFORT

is considered. Our empirical study also reveals that the estimation made is often not
consistent throughout the project, and the human estimator tends to misestimate in 78%
of the cases. Our empirical results suggest that SP might not be an accurate indicator
of open-source agile software development effort expressed in terms of development
time. The impact of its use as an indicator of effort should be explored in future work,
for example, as a cost driver in automated effort estimation models or as the prediction
target.

6.1. INTRODUCTION

Software Effort Estimation (SEE) is a crucial activity for managing, planning, and
monitoring software projects [1]. Without an accurate estimation of the effort required
to develop software, budget and schedule overrun seem inevitable [8], [149]. SEE
research has mainly focused on estimating the effort required to develop a whole project
(i.e., project-level estimation). To this end, Functional Size Measures (FSM), such as
Function Point (FP) [10], or COSMIC Function Point (CFP) [11], have been usually
used as a cost driver to estimate traditional software development effort [1], [12]-[15].

The advent of Agile Software Development (ASD) methodologies [51] has shifted
the focus towards estimating the effort of developing smaller units of software, like a
new feature or change. In these cases, FSM methods are not easy to use [16] and
another measure, namely Story Point (SP), has become popular in the context of ASD
[18]. SP is a relative unit that represents an intuitive mixture of complexity and required
effort of a user story (a.k.a. issue) [1], [17]. 2

However, previous studies have shown that the accuracy of the SP estimate is
sensitive to the practitioners’ expertise and, thus, prone to bias. According to Usman
et al. [150], who surveyed 60 engineers experienced in Agile Effort Estimation, the
estimates of around half of the agile teams were inaccurate by a factor of 25% or more.
Using inaccurate SP could result in iteration mismanagement and wrong prioritization
of tasks, which in turn can lead to customer dissatisfaction or even project failure.
Moreover, since human-expert estimated SP has been used as a cost driver to train
automated estimation models [73]-[77], [151] or as a prediction target [21], [23]-[26],
[28], [29], [62], [63], researchers and practitioners need to be aware if they are using
inaccurate SP as this might impact the accuracy of these models.

Previous case studies have provided discordant results on whether SP can
accurately capture software size and effort [16], [26], [78], [79], and to date, there is not
enough empirical evidence on this matter. This work aims to fill this gap by carrying out
a thorough large-scale empirical study investigating the extent to which using Story
Point reflects the effort needed to develop a user story (i.e., issue development time).

2A user story is a user-valued functionality which is specified in the form of one or two
sentences in the everyday language of the user.

Vali Tawosi 114 UCL - Dept. of Computer Science

CHAPTER 6. EFFECTIVENESS OF STORY POINTS IN ESTIMATING EFFORT

To this end, we analyse 37,440 user stories coming from 37 agile software projects
tracked with Jira [82], which are available in the TAWOS dataset [27]. To the best of
our knowledge, this is the largest empirical study to date to investigate the relationship
between SP and effort in agile open-source projects. In particular, we aim to answer
the question What is the relationship between the SP estimated for a given issue and
its actual development time? Since developers do not always record the actual time
they spent on the development of an issue [27] in the issue tracking system, we
compare three different proxies for the development time computed using the issue
changelog® in order to answer the question: To what extent can we approximate the
actual development time as reported by the developers? Furthermore, since one would
expect issue development time to be proportionate to the story point assigned to a
certain issue, we also aim to answer How consistent is the assignment of SP
throughout a project?

The results of our empirical study show that among the three proxies, there is
one which more closely reflects the development time as recorded by the developers,
namely the InProgress development time. Moreover, we found that the correlation
between this issue development time and human-expert estimated SP is medium or
low for 93% of the projects we investigated. These results are in line with those we
obtained using the recorded development time rather than the proxy, and they highlight
that SP is not an accurate indicator of the software development effort. Moreover,
we found that the human-expert estimation is not consistent throughout the projects.
Although SP can remain useful for agile teams to organize and plan their iterations,
these results raise awareness that the inaccuracy observed in the SP might be carried
out into those automated effort estimation models that use SP as a cost driver to predict
issue development time. Moreover, recent studies have proposed the use of machine
learning approaches to predict SP for issues based on historical human-estimated
SP. This means that such approaches learn to imitate human-expert estimations at
best which in itself might be misleading of the actual effort needed to realise an issue.
Further work is needed to understand the extent to which the use of inaccurate SP
impact automated effort estimation models, and whether the use of development time
(actual or proxies for it) can provide the engineers and managers with more reliable
and accurate models.

The rest of this chapter is organised as follows. Section 6.2 provides some
background for those readers who are not familiar with software size and effort
measures, and issue tracking systems. Sections 6.3 and 6.4 present the design and
results of our empirical study, respectively. Final remarks and future work are
discussed in Section 6.6.

3The history of changes in the issue’s attributes.

Vali Tawosi 115 UCL - Dept. of Computer Science

CHAPTER 6. EFFECTIVENESS OF STORY POINTS IN ESTIMATING EFFORT

6.2. BACKGROUND

In this section, we briefly introduce the most common software functional size and effort
measures proposed in the literature. We also give some background on Jira, the issue
tracking system used by the projects analysed in this study, and describe three proxy
measures for issue development time [27].

6.2.1. Software Size Measures

Albrecht was the first to introduce a disciplined method for measuring software product
size, called Function Point Analysis (FPA), based on the functionality the software
productis built to deliver to the customer [56]. Soon after, he showed that there is a strong
correlation between Function Points and the final effort of a software [10]. Although
FPA was designed to measure software from the domain of business applications [57],
it is still widely applied in the software production industry [58].

COSMIC* Function Point (CFP) method belongs to the second generation of
software functional size methods [11]. CFP also takes non-functional requirements into
consideration and is suitable for a broader range of application domains including, but
not limited to, business applications, web applications, mobile applications, real-time
software, and service-oriented software [14], [15], [57], [152].

In the context of agile software development, practitioners have introduced and
used Story Point (SP) as an agile-specific software size measurement unit [59]. Unlike
FPA and CFP, SP does not follow a method of measurement; therefore, developers
use them as a relative measure to keep the relative difference of stories in size by
assigning a point value to each user story. One common approach to determine the
story point value of a user story is to select one of the smallest stories in the Backlog®
and assign it with one story point. Then the more complex and larger user stories get
more points considering their size [59]. So any user story that is assigned two SPs
is twice as large as a user story that is assigned one SP. SP estimations need to be
consistent throughout the project.

6.2.2. Jira Workflow and Issue Development Time

Jira [82] is a widely-used issue-tracking system that supports agile development [153].
Using Jira, the development teams can record their estimated story point and the time
taken for the development of the issue.

Although Jira Software has provided teams with specific fields to record the actual
effort (i.e., time) spent on an issue, usually the developers do not use this feature to
log their work. Thus, identifying the actual time spent to develop an issue might be

4Common Software Measurement International Consortium
SBacklog is a breakdown of work containing an ordered list of user stories that an agile team
maintains for a project.

Vali Tawosi 116 UCL - Dept. of Computer Science

CHAPTER 6. EFFECTIVENESS OF STORY POINTS IN ESTIMATING EFFORT

() @

Reopen

assigned

RESOLVED

Start Working

Set Relsolution

Stop Working Automatically

IN PROGRESS

Figure 6.1: A generic Jira workflow.

challenging. Nonetheless, previous work [26], [27] derived an approximation of the
actual development time from the transitions recorded in the change log of the issues
in the Jira repository.

Jira Workflow: In Jira projects, issues transition through stages of work —from
creation to completion— following a path. This path is called workflow. Figure 6.1
shows a generic Jira workflow that could be used to track issue transitions and calculate
approximate time spent on issue development.

The life cycle of an issue starts at the time of its creation (the grey circle in the
workflow). When the issue is considered to be developed, its status changes into a To
Do state (1). This is when the issue gets assigned to a developer. When the developer
starts working on an issue, he/she changes its status to In-Progress (2). The developer
is given the option to stop working (3) and restart it again (2) at any time.

When the development is finished, the developer changes the issue’s status to
Done (4), and Jira automatically populates the Resolution field (5). Also, the developer
can set the Resolution field at any time during the life cycle of the issue (indicated by
the dashed lines). The Resolution field can be populated with one of the several labels
predefined in the workflow (usually but not necessarily with statuses defined within the
Done category), e.g., Fixed, Completed, Closed, Delivered, Invalid, Duplicate, Won't
Fix, Rejected, and Cancelled, depending on the project and issue type.

Jira recognises an issue as Resolved if the Resolution field is populated. By default

Vali Tawosi 117 UCL - Dept. of Computer Science

CHAPTER 6. EFFECTIVENESS OF STORY POINTS IN ESTIMATING EFFORT

Mars Landing!

QUICK FILTERS: ~ Only My Issues Recently Updated
T0DO IN PROGRESS DONE
(111]
& TIS-10 e TIS-1 Q T3)
Complete ignition tests Spaceship tracker app updates Enter the landing trajectory into the landing module
=
2] "B
& TIs-15 O TIS-2 - Hs4)
Get Hubble working again Verify the landing site Send the pre-landing report to Earth
Space Exploration Mars Landing Mars Landing
Q Q=n
TIS-16) TS
Research the Space Exploration project Cleanup the landing site
Space Exploration
Q Q=2
TIS-17 a
Design a new rocket Z
Space Exploration
Q
TIS-6 =
Hire the team u
Q=

»

Figure 6.2: A sample Jira task Board showing issues organised according to
their status (i.e., To Do, In-Progress, or Done).

Resolved means that the issue is in a closed state and no more work is needed to
be done. But in many workflows Resolved is not an ultimate state. For instance, in a
custom workflow, once the issue is resolved there might be an inspection which decides
if the solution provided is sufficient and/or corrects —the review process— before the
issue can be closed (6). If the solution is not accepted, the issue will then be reopened
and it would need to be addressed again (7). Ultimately, an issue might be reopened
after it has been closed (8), although this is rare.

Issue Development Time: The workflow is typically specific to the work processes
within an organization/team. Indeed, Jira provides organizations with the ability to
create customised workflows and statuses for each project and issue type. This makes
it difficult to create a general method to calculate the time by observing issue transitions.
However, a custom status defined in a custom workflow has to belong to one of these
three categories: To Do, In-Progress, and Done. Jira mandates the use of these
categories and employs them internally to identify the column under which each issue
should be listed in the software task board (Figure 6.2). Therefore, one can base the
time calculation on these three categories. Specifically, using the status categories,
one can identify the transitions of the issues between the time they were set to be in
progress, stopped progress, or accomplished.

Based on the above workflow, we have defined the following three proxies for issue
development time.

In-Progress Time is defined as the duration in which an issue has been in the

Vali Tawosi 118 UCL - Dept. of Computer Science

CHAPTER 6. EFFECTIVENESS OF STORY POINTS IN ESTIMATING EFFORT

“In-Progress” status. In most projects, the “In-Progress” status is used by developers to
mark the time that they spend on the implementation of an issue. Hence, In-Progress
Time might not include any time spent on testing, reviewing or discussion.®

Effort Time is defined as the duration in which an issue has been in any of the
statuses categorised as In-Progress. This definition can be interpreted as a more
realistic proxy for the effort since it includes time spent for implementation, testing,
reviewing, discussions, etc., as the Effort Time considers all the time that an issue
spends under any status from the In-Progress category.’

Resolution Time is defined as the duration required for an issue to be resolved
(equivalent to the elapsed time). As we can see in Figure 6.1, an issue status can be set
to Resolved at any point in its life cycle. This definition aims at capturing the amount of
time it takes for an issue to be resolved. To this end, we consider the duration between
the time an issue was created until it is Resolved [27]. This is the definition used in the
literature to measure the time to fix an issue [95]-[97]. This proxy slightly differs from
the one used in the work of Choetkiertikul et al. [26], as it also takes into account the
time between the creation of the issue and the first time it was set to an In-Progress
status. Whereas the proxy used by Choetkiertikul et al. considers the duration between
the time an issue was first set to an In-Progress status and the time that it was resolved.

6.3. EMPIRICAL STUDY DESIGN

In this section, we describe the research questions posed in our study and the dataset,
methods and statistical tests used to answer these questions.

6.3.1. Research Questions

Story point, as a measure of effort, is expected to have a positive correlation with the
actual time needed to realise a software.

In this study, we aim to investigate the correlation between the estimated story
point and the actual effort. As the actual effort is rarely recorded in an issue report,
we analysed three proxies for the development time based on the Jira workflow as
described in Section 6.2.2. Therefore, our first research question assesses which of
these proxies is a good approximation of the actual effort.

RQ1. Approximating Issue Development Time: To what extent can proxies be

5Note that there is always a status named In-Progress within the In-Progress category, teams
can add other statuses into this category based on their issue ecosystem. For instance, in a
project which has In-Progress, Test, and Review statuses defined in the In-Progress category,
the issue may transition from one status to another until it passes all the required stages before
it is closed (i.e., set to Done). This is showed by a recursive arrow for the In-Progress status in
Figure 6.1.

"To identify the category of each status in each project, we queried the metadata of each
project’s repository by using the REST API provided by Jira [27].

Vali Tawosi 119 UCL - Dept. of Computer Science

CHAPTER 6. EFFECTIVENESS OF STORY POINTS IN ESTIMATING EFFORT

used to approximate the development time logged by the developers?

Once we assess whether these proxies provide a satisfactory approximation, we
move to investigate the correlation between the story point and the actual effort (i.e.,
each of the three proxies proposed):

RQ2. Correlation: What is the relationship between an issue’s story point and its
development time?

To answer this question, we use three widely known correlation statistics to verify the
relationship between the SP and each of the three proxies we used for approximating
the development time (see Section 6.2.2).

SP is a relative measure by definition, and relativeness refers to the amount of
work that one story point represents. It can differ from project to project and from team
to team. This rate (i.e., one story point ratio with respect to the amount of effort in
person-hour) might be affected by aspects such as the experience of the team, the
programming language and the technology used for development. This rate is used to
compute the team’s productivity and make the story point scale specific to each team.
However, within a project, the estimation team should remain consistent throughout the
project with respect to the unit of work that a story point represents. In other words, the
amount of work considered for a story point should be kept the same until the end of
the project, and all the issues should be measured with that same unit. Nevertheless,
keeping this rate consistent is challenging for any team. This phenomenon justifies the
rationale for our third and last research question, which emphasises the variance of the
time for each SP:

RQ3. SP Consistency: How consistent is the assignment of story points throughout
a project?

To answer this question, we rely on a visual representation to identify any deviation
between the actual data and an ideal trajectory of consistency in SP estimation derived
from the data itself, as further explained in Section 6.3.2.

6.3.2. Methodology

To answer RQ1, we compare the Timespent value with the time as measured by each
of the proxies for each issue and compute the absolute error one would commit had a
proxy been used rather than the actual value. Specifically, to measure the resemblance
of the three proxy measures to Timespent, we compute the Sum of Absolute Errors
(SAE) between each of the proxies and the Timespent for the issues contained in
each project. SAE is computed as follows: SAE =)" | |P; — T'S;| , where n is the
number of issues in the project with reported Timespent values, T'S; is the Timespent
value for issue i, and P; is each of the values of the development time proxies for
issue i, obtained from the TAWOS dataset [27]. The proxy with the minimum SAE
is the most representative of the Timespent. Then we apply statistical significance
tests on the distribution of each of the proxies against Timespent to verify whether the

Vali Tawosi 120 UCL - Dept. of Computer Science

CHAPTER 6. EFFECTIVENESS OF STORY POINTS IN ESTIMATING EFFORT

difference between them is statistically significant. Specifically, we used the Wilcoxon
Rank-Sum test (a.k.a. Mann—-Whitney U test) [154] to check for statistical differences.
The confidence limit is initially set to o = 0.05 and is corrected for multiple hypotheses
using the standard Bonferroni correction (a/ K, where K is the number of hypotheses).
To answer RQ1, we tested the following null hypothesis:

Hypothesis 6.3.1: Null Hypothesis

The distribution of the Timespent is not different from that of the proxy P,.

We perform a two-sided hypothesis test; thus, for those cases where the null
hypothesis is rejected, the following alternative hypothesis is accepted:

Hypothesis 6.3.2: Alternative Hypothesis

The distribution of the Timespent is different from that of the proxy P,.

To measure the effect size of the difference, we use Vargha Delaney’s A,
measure, which is a standardised non-parametric effect size measurement, to assess
how meaningful the difference between the two distributions is [133]. According to
Vargha Delaney’s effect size, if the two distributions are very similar Aj; = 0.5.
Respectively, an Alg closer to 1 means that the two distributions are not similar. The
effect size is considered negligible for 0.6 < A, (indicated by an ‘N’ beside its value),
small (S) for 0.6 < A;5 < 0.7, medium (M) for 0.7 < A;5 < 0.8, and large (L) for
Ay > 0.8 (the same boundaries used in the previous chapters).

To answer RQ2, we apply three correlation statistics to our data: the Pearson r
correlation coefficient [155], the Spearman’s p rank correlation [156], and Kendall's 7
rank correlation [157]. The Pearson correlation test measures the linear correlation
between two variables, while Spearman’s and Kendall's correlation tests are statistics
used to measure the ordinal association between two samples and assess how well the
relationship between two variables can be described using a monotonic function [158].
Unlike Pearson’s r which considers the value of the data points, Spearman’s p and
Kendall's = work with ranks of data points which makes them less sensitive to strong
outliers that lie in the tails of both samples [159]. All three correlation statistics range
from +1 to —1, where +1 indicates a perfect correlation and —1 indicates a perfect
inverse correlation. A non-correlation is indicated by a 0. Although both Spearman’s p
and Kendall's 7 measure rank correlation, they cannot be compared directly with one
another since they have different scales. Gilpin [160] describes the ratio of p to 7 to be
almost 1.5 for most of the range. The two get close to each other as their magnitude
increases towards the limits (i.e., both approaching +1 or —1) and when they both
approach zero. We use Cohen’s standard [146], [161] for interpreting the correlation
coefficients to determine the strength of the relationship. Based on this, correlation

Vali Tawosi 121 UCL - Dept. of Computer Science

CHAPTER 6. EFFECTIVENESS OF STORY POINTS IN ESTIMATING EFFORT

coefficients between 0.10 and 0.29 represent a small association, coefficients between
0.30 and 0.49 represent a medium association, and coefficients equal to or greater than
0.50 represent a large association. To perform the correlation, we used the cor.test
method available in R version 4.0.1. Both Spearman’s and Kendall’s correlation statistic
implementations used in this study can handle ties in the data points.

To answer RQ3, we group all the issues that have been assigned the same story
point of value <X> (i.e., story point <class X>) in the same class. Then we analyse
the boxplots of the time spent on each issue for the distinct classes to understand if
the time distribution in story point classes is hormal, which would indicate a normal
distribution of the error for story point estimation in each class. To investigate consistency,
we observe the median point in the distribution of development time per SP class.
We use the median point as it is not affected by extreme values. For a project with
inconsistent SP estimations, the median development time will be affected (misplaced
from ideal trajectory) due to many miss-classifications of smaller or bigger tasks in a
specific SP class; or, from another point of view, issues estimated to have the same
SP do not agree on the same (or similar) development time. In an ideal scenario, the
median of distribution of the development time in story point classes should have a
linear relationship with the value of the story point. For instance, the median of the
development time for issues assigned with story point five should be five times larger
than the median of the development time for issues assigned with story point one.
Should this linear relationship hold for all of the issues in story point classes, we can
assert that story point estimations are consistent throughout a project. To test this, we
show the trajectory of this linear relation to visualise the degree of consistency.

6.3.3. Data

We sample data from the TAWOS dataset version 1.0 [27] (Chapter 3. We used SQL
queries to sample issues from this database®. Below we describe, in detail, how we
sample the set of projects investigated in this study.

To answer our first research question (i.e., RQ1), we analyse those projects from
the TAWOS dataset that have recorded the actual development time in the Timespent
field of Jira. Hence, we selected all the resolved issues (i.e., we filter out all those that
are not addressed) and have the Timespent field populated. Then, we removed all
issues having a Timespent value lower than two minutes as done in previous work
[163], to reduce noise in the data. After applying such filtering, we retained all those
projects with at least 100 issues each. This resulted in a sample of 9,806 issues from
15 projects. Descriptive statistics of this set, which is used to answer RQ1, are provided
in Table 6.1a.

As most of the issues recorded either one of the Timespent or SP, in order to answer

8The queries used to sample the data are publicly available in our online appendix [162].

Vali Tawosi 122 UCL - Dept. of Computer Science

CHAPTER 6. EFFECTIVENESS OF STORY POINTS IN ESTIMATING EFFORT

RQ2 and RQ3, we also sampled another set of issues.® To this end, we filtered out
from the TAWOS data all those issues that are not addressed and those that have
been assigned with SP less than 1 and greater than 100, as done in previous work
[26], to reduce the presence of data that is not relevant to the purpose of our empirical
study. Moreover, we noticed that a considerable number of the issues in some of
the projects have a proxy time equal to zero. After a careful manual inspection, we
found that there are issues which never transitioned to an In-Progress status. Thus
they had been closed immediately after being created or opened. These cases may
correspond to issues where developers had already worked on the issue before tracking
the corresponding record in Jira created for the mere purpose of recording issues. In
order to reduce the bias introduced by these cases, and in accordance with the filter
used for RQ1, we removed all the issues with In-Progress time in less than two minutes,
which corresponded to a total of 34.47% of the issues sampled from the TAWOS dataset.
Furthermore, we filtered out issues with outlying values of In-Progress time to minimise
the effect of extreme values in our results.1 We, therefore, retained projects with at
least 100 issues after filtering out unwanted ones, which left us with 58.33% of the
initially sampled data, corresponding to a total of 28,608 issues from 32 projects (equal
to 44.11% of all the issues with recorded SP in 32 projects under investigation). To
identify the outliers, we used the Interquartile Range (IQR). The IQR, which is equal
to the difference between the 75 and 25 percentiles of the distribution of the data
points, is multiplied by 1.5. The resulting value is subtracted from and added to the first
and third quartiles, respectively, to get the lower and upper fences (a.k.a. Tukey fences).
The data points falling outside the lower and upper fences are considered outliers and
removed from the dataset. The resulting data has been used to answer RQ2 and RQ3.
Descriptive statistics of this sampled dataset can be found in Table 6.1c. Note that a
total of 621 issues from the open-source data sampled for RQ1 are also in the sample
used for RQ2 and RQ3. Therefore, the total number of unique user stories sampled
from the TAWOS dataset is equal to 37,440 extracted from 37 different open-source
projects.

6.4. RESULTS

This section presents the results we have obtained in answering the research questions
described in Section 6.3.1.

9Since RQ1 aimed at examining the approximation of the three proxies to the recorded
Timespent values, and there, the analysis is independent of the SP values; therefore, we can
use a different sample for RQ2 and RQ3 without loss of generality.

ONote that we did not filter out issues with regards to their development time proxy values
from the sample used in RQ1, since the aim of RQL1 is to examine the approximation of the
proxies to the recorded Timespent values.

Vali Tawosi 123 UCL - Dept. of Computer Science

CHAPTER 6. EFFECTIVENESS OF STORY POINTS IN ESTIMATING EFFORT

Table 6.1: List of projects we analysed for RQ1 (a, and b) and RQs 2-3 (c).
Each project’s total number of issues is shown in the Total Issues
column. Before Filter shows the original number of issues extracted
from the TAWOS dataset [27] and After Filter shows the number of
issues remaining after the filtering process as explained in Section
6.3.3. The other columns show summary statistics for SP, Timespent
and its proxies.

@

Repository | Project Key | Total Issues __'SSues with Timespent | Timespent (minutes)
Before Filter After Filter ‘ Min Max Mean Median SD
Crowd CwD 4,311 222 220 2 4,800 468.36 240 729.33
Jira Software Cloud JSWCLOUD 11,702 255 244 | 30 2,220 383.70 300 368.79
Jira Software Server JSWSERVER 12,862 262 257 | 30 3,600 394.01 180 535.28
Atlassian Jira Server JRASERVER 44,165 990 981 5 24,622 298.01 120 941.64
Bamboo BAM 14,252 524 521 5 8,460 392.57 240 694.73
Clover CLOV 1,501 106 106 2 4,801 605.87 240 906.33
FishEye FE 5,533 634 612 2 8,782 265.36 112 638.94
Appcelerator Titanium Mobile Platform TIDOC 3,059 714 711 5 11,040 307.01 120 626.55
Lsstcorp Data management DM 26,506 191 190 5 24,000 934.08 480 1,847.11
Sonatype Nexus NEXUS 9,912 1,356 1,348 2 4,560 189.26 90 327.95
Talend Data Quality TDQ 15,315 2,054 2,053 | 10 18,960 764.44 480 1,144.12
Talend Data Preparation TDP 5,670 219 193 | 10 6,660 723.85 300 1,027.93
Talendforge Talend Data Management TMDM 9,137 1,650 1,648 3 5760 541.33 360 625.69
Talend Big Data TBD 4,624 193 191 5 5700 712.36 360 943.00
Talend Enterprise Service Bus TESB 15,985 436 178 | 60 2,760 268.66 180 289.30
Total 184,534 9,806 9,453 |
Repository - Project Key In-Progress Time (minutes) Effort Time (minutes) | Resolution Time (minutes)
Min Max Mean Median SD Min Max Mean Median SD | Min Max Mean Median sb
Crowd cwp 0 1,401,053 13,258.70 445 101509.06 0 1,401,053 1734150 21225 102,618.99| 7 2,724,297 185866.38 20,4655 436,488.49
Jira Software Cloud JSWCLOUD 0 219,603 2,873.85 1185 1435233 0 220,762 2,878.60 1185 1442437 | 0 1968722 5269143 5750 253,296.60
Jira Software Server JSWSERVER 0 192,687 4,030.39 0 17,67950 0 192,687 4,030.39 0 1767950 | O 1434770 4663384 5998 127,654.65
Atlassian Jira Server JRASERVER 0 216201 2,167.55 0 1213901 0 248570 334593 0 1824828 | O 4,387,661 14536386 11,644 416,982.46
Bamboo BAM 0 2278726 11,8445 288 10341546 0 455765 1284510 4253 30,649.80 | 1 2635279 7865398 20,072 222,346.01
Clover cLov 0 259569 15619.25 1915 4253341 0 260,743 21,726.25 73645 4342066 O 1350621 85252.67 30,2895 171,444.39
FishEye FE 0 4771423 1470604 945 19522017 0 4,771,423 3841101 11,1785 257,383.61| 6 4,797,823 167,097.20 34,210 536,889.66
Appcelerator _Titanium Mobile Platform TIDOC 0 579203 783901 276 3212150 0 579,203 1007192 1,399 38,699.95| 0 2,463,988 131,868.77 25699 303,406.05
Lsstcorp Data DM 0 1,695993 29.921.76 1445 14588095 0 1,849.990 54,467.54 87245 222,79599| O 1,850,092 7240515 19,1665 223,627.89
Sonatype _ Nexus NEXUS 0 495244 2,310.59 0 2150177 0 495244 237053 0 2152001 0 5068853 42,930.46 4,658 202,515.39
Talend Data Quality TOQ 0 165637 511009 1174 1162238 0 016623 42,361.35 11562 94,348.85| 1 4,002,454 179,687.61 42,085 438,753.36
Talend Data Preparation TDP 0 137132 763241 1604 1579127 O 162,678 25879.64 16936 29,052.18| 1 903,339 10658519 60,215 141,153.18
Talendforge Talend Data Management TMDM 0 1,031,320 501947 14595 27,701.47 0 1,231,065 4349223 19125 87,717.66| 0 2902016 98,187.55 27,414 228,29161
Talend Big Data TBD 0 152267 453972 1131 1273624 0 1,751,027 103679.79 56,685 192,330.37 | 263 1,751,054 119,209.97 53,074 22741131
Talend Enterprise Service Bus TESB 0 2,391,610 1684847 1472 179,097.87 0 2,391,610 3168099 1490 24150085| O 2,480,801 2516478 5380.5 186,888.34
(c)
Repository Project Key Total Issues # Issues with SP Story Point In-Progress Time (minutes)
Before Filter After Filter Min Max Mean Median StD | Min Max Mean Median StD
Jira Software Cloud JSWCLOUD 11,702 318 185 1 20 419 3 358 2 21,931 521230 2,945 5,267.85
Confluence Server CONFSERVER 42,324 662 362 1 13 3.03 3 173 2 24847 451135 15595 5,922.60
Atlassian Jira Software Server JSWSERVER 12,862 351 208 1 20 419 3 351 2 18,864 4,696.80 2,831 4,749.70
Bamboo BAM 14,252 528 302 1 20 247 2 218 2 20,524 4,104.67 14555 5,048.14
Clover cLov 1,501 387 146 1 20 348 2 409| 2 30293 570054 2848 6,655.53
Apache Mesos MESOS 10,157 3,272 1,157 1 13 332 3 208 2 39,861 6,311.93 1,616 8,922.99
Usergrid USERGRID 1,339 487 162 1 8 262 3 141| 2 21,657 4,905.17 2,950.5 4,898.76
Titanium Mobile Platform TIDOC 3,059 1,297 628 1 40 428 3 414 2 46,257 6,771.88 1,553 10,171.09
Aptana Studio APSTUD 8,135 890 302 1 40 7.92 8 513 3 6,915 1,222.96 340 1,618.00
Appcelerator ~Appcelerator Studio TISTUD 5,979 3,406 1,918 1 34 569 5 414 2 5,243 817.76 182 1,159.13
The Titanium SDK TIMOB 22,059 4,665 1,753 1 21 556 5 270 2 14,255 1,927.80 240.5 3,137.66
Appcelerator Daemon DAEMON 313 242 131 1 99 957 8 11.03 2 26,184 3,403.00 379 6,141.23
DNN Tracker DotNetNuke Platform DNN 10,060 2,594 1,122 1 14 218 2 146 2 9,553 1,371.70 199 2,268.66
Blockchain Explorer BE 802 373 239 1 13 301 3 177 2 33120 8387.12 5,754 8,061.10
Fabric FAB 13,682 636 235 1 24 285 2 271 2 64,394 11,464.59 7,021 13,734.58
Hyperledger Indy Node INDY 2,321 681 438 1 13 321 3 173 2 38453 935724 71905 8,693.04
Sawtooth STL 1,663 966 646 1 8 238 2 130| 2 40392 11,375.65 8799 9,660.83
Indy SDK IS 1,531 720 418 1 13 391 3 213 2 22,384 4,986.39 2,917 5,339.56
Lsstcorp Lsstcorp Data management DM 26,506 20,664 9,019 1 100 6.16 32 958 2 105,126 18,290.56 8,083 24,287.98
Lyrasis Lyrasis Dura Cloud DURACLOUD 1,125 666 243 1 13 2.05 2 155 2 24,555 4,253.40 1,363 5,881.14
Compass COMPASS 1,791 499 275 1 8 343 3 173 3 50,363 10,583.59 4,351 13,403.21
MongoDB C++ driver CXX 2,032 224 105 1 4 135 1 065 2 14,917 245821 1,098 3,587.64
MongoDB Core Server SERVER 48,663 784 418 1 42 253 2 276| 2 18577 3,081.26 1056 4,419.22
Evergreen EVG 10,299 5,402 1,674 1 8 194 2 110 2 10,949 2,116.95 1,155 2,742.38
Mulesoft Mule] MULE 11,816 4,170 2,105 1 21 495 4 352 2 22,982 5,195.96 3,179 5,394.67
Mule APIkit APIKIT 886 473 284 1 13 314 3 230 2 17,755 3522.79 1,640 4,242.36
Sonatype Nexus NEXUS 9,912 1,845 421 1 15 156 1 122 2 11,467 2,054.11 518 2,811.87
Spring XD XD 3,707 3,705 1,602 1 24 337 3 248 2 20,942 416057 1,680.5 5,038.44
Talend Data Quality TDQ 15,315 1,843 1151 1 40 520 5 428| 2 27457 616118 3945 6,663.57
Talendforge Talend Data Preparation TDP 5,670 813 473 1 18 224 2 172 2 48,922 10,373.10 7,181 11,139.64
Talend Data Management TMDM 9,137 297 177 1 8 242 2 160 3 20,046 4,795.11 2,996 4,781.31
Talend Enterprise Service Bus TESB 15,985 1,000 309 1 13 228 2 151 2 47,937 11,166.68 8,370 11,427.15
Total 326,585 64,860 28,608

Vali Tawosi 124 UCL - Dept. of Computer Science

CHAPTER 6. EFFECTIVENESS OF STORY POINTS IN ESTIMATING EFFORT

Table 6.2: RQ1. Difference between Timespent and the three proxy measures
for development time (i.e., In-Progress Time, Effort Time, and
Resolution Time) in terms of Sum of Absolute Error (SAE) and
significance statistical tests (effect size shown in brackets).

Proi | SAE with Timespent (minutes) | Timespent vs.
roject

\ In-Progress Time Effort Time Resolution Time \ In-Progress Time Effort Time Resolution Time
CWD 2,909,699 3,796,762 40,790,437 <0.001 (0.40) <0.001 (0.60) <0.001 (0.95)
JSWCLOUD 666,291 667,450 12,776,147 0.285 (0.47) 0.285 (0.47) <0.001 (0.80)
JSWSERVER 1,024,283 1,024,283 11,903,893 <0.001 (0.23) <0.001 (0.23) <0.001 (0.72)
JRASERVER 2,230,661 3,389,772 142,334,494 <0.001 (0.26) <0.001 (0.25) <0.001 (0.92)
BAM 5,784,351 6,565,644 40,777,437 0.361 (0.52) <0.001 (0.68) <0.001 (0.96)
CLOV 1,641,549 2,261,458 8,973,869 0.872 (0.49) <0.001 (0.67) <0.001 (0.93)
FE 8,961,125 23,375,131 102,102,251 0.968 (0.50) <0.001 (0.86) <0.001 (0.99)
TIDOC 5,501,120 7,703,434 93,548,470 0.085 (0.53) <0.001 (0.61) <0.001 (0.96)
DM 5,578,740 10,194,085 13,588,070 0.043 (0.56) <0.001 (0.77) <0.001 (0.91)
NEXUS 3,114,794 3,193,031 57,646,533 <0.001 (0.31) <0.001 (0.32) <0.001 (0.85)
TDQ 9,568,980 85,743,427 367,355,182 <0.001 (0.54) <0.001 (0.82) <0.001 (0.96)
TDP 1,358,593 4,863,758 20,432,471 <0.001 (0.67) <0.001 (0.91) <0.001 (0.98)
TMDM 7,521,187 70,814,422 160,926,609 <0.001 (0.65) <0.001 (0.92) <0.001 (0.96)
TBD 784,328 19,667,618 22,633,044 0.020 (0.57) <0.001 (0.99) <0.001 (0.99)
TESB 2,963,686 5,602,799 4,438,478 <0.001 (0.70) <0.001 (0.72) <0.001 (0.80)

6.4.1. RQI1. Approximating Issue Development Time

Table 6.2 shows the SAE values computed for the three proxies with respect to the
Timespent value. We can observe that, among the three proxies under study, In-
Progress Time has the smallest error for all projects. However, while this indicates
that In-Progress Time is the most representative of Timespent, the magnitude of the
absolute errors shows that all three proxies have large differences with Timespent.
This is due to the fact that the Timespent field, which stores the aggregated amount of
time spent on the development of the issue, is computed as the sum of the work hours
logged by the developers on the issue. The proxies obtained from the TAWOS dataset
are the aggregation of the duration between points in the timeline for an issue’s status
change, so they take into account the idle time that a developer might pause working
but not change the status. For example, if an issue’s status remains unchanged for a
week but a developer works five hours a day on the task, they may log 25 hours for
Timespent, while the proxies would take into account the number of days (in progress,
or to resolution) in order to measure development time. Hence, the proxy may be
multiple times greater than the actual Timespent. However, this difference in magnitude
does not affect the correlation results.

Overall, considering all limitations of getting a close approximation of the actual
effort in open source projects, these proxies are the most representative we could obtain
from the data.

In order to verify whether the differences between Timespent and each of the
three proxies are statistically significant, we revert to the Wilcoxon test. The results
of this test are presented in Table 6.2 (last three columns). Since we are interested in
any difference between each pair of distribution sets, we use a two-sided alternative

Vali Tawosi 125 UCL - Dept. of Computer Science

CHAPTER 6. EFFECTIVENESS OF STORY POINTS IN ESTIMATING EFFORT

hypothesis, therefore a comparison of P; vs P; results in the same p-value as the
comparison of P; vs P;. As revealed by the results, the difference in the distributions
of Timespent and In-Progress is significant in eight out of 15 projects, all with small or
negligible effect size, except for the TESB project, for which the effect size is medium.
However, the difference between Timespent and the Effort time proxy is significant in
14 out of 15 cases, with ISWCLOUD being the only exception given that the recorded
Effort time is very close to In-Progress time in most of the issues belonging to this project.
Moreover, the difference is significant for all the cases when comparing Timespent with
the Resolution time. Out of 30 cases of statistical tests on Effort Time and Resolution
Time, 19 cases show a large effect size, three cases a medium effect size, and 7 cases
a small or negligible effect size.

As a result, we only consider In-Progress in our subsequent research questions
given that it is the most representative of Timespent compared to the other two proxies.

6.4.2. RQ2. Correlation

The results of three correlation statistics (RQ2) are shown in Table 6.3. We also reported
the p-value for each correlation coefficient.

For all projects, Kendall's 7 is consistent with Spearman’s p in the scale and
confidence level. However, if we consider Gilpin’s 7 to p conversion table [160], we
would expect a higher p. For example, in the case of the CONFSERVER project (see
Table 6.3), Gilpin’s table maps a 7 = 0.26 to p = 0.38, while our data lead to a p = 0.34.
The rationale behind this is the fact that Kendall's 7 is the proportion of the concordant
to discordant pairs while Spearman’s p considers the variance in the ranks. Hence, as
we obtain a p smaller than expected (indicated by p to 7 rate) it shows the high
variance in the ranks of the data, to which Spearman is sensitive, but Kendall is not.
This high variance in the ranks is a sign of misclassification of many issues by human
estimators in wrong SP classes, thus an error in the estimation.

The Pearson correlation coefficient is lower than Spearman’s p for 24 projects (75%
of the cases), indicating that the relationship between the story point and development
time is not usually linear.

As we can observe, the correlation denoted by Spearman’s p for In-Progress time
is low in six out of 32 cases, medium in 21 cases and strong for only five cases. The
strongest positive correlation appears to be in projects DAEMON, INDY, JSWCLOUD,
JSWSERVER, and DURACLOUD. Looking at the p-value of Spearman'’s p, we find that
the confidence level is above 99% for 30 out of the 32 projects under study (94% of the
cases).

As a subsequent analysis, we computed the three correlation statistics on all the
issues from the TAWOS dataset that have reported both the SP and Timespent values.
This resulted in a total of 697 issues from four projects (specifically, 128 issues from DM,
303 issues from TDQ, 104 issues from TMDM, and 162 issues from MDL). Although

Vali Tawosi 126 UCL - Dept. of Computer Science

EFFECTIVENESS OF STORY POINTS IN ESTIMATING EFFORT

CHAPTER 6.

100 TT°0 ¥T°0 €T0 0T'0 ¥T°0 TT0 800 TT0 as
S0°0 ¥T°0 6T0 ST0 520 €20 G€0 T€0 or'0 uean
0zZ'0 1€0 61'0 110 110 290 99°0 80 290 XeW
L0°0- 90°0- 80°0- S0°0- €0°0 ¥0°0 210 ¥1°0 8T°0 Ul

(596'0) 000 (6000) TT0 (€T0°0) ¥T°0 | (¥T¥'0)S0°0- (0TS0) €00 (20S0) 00 | (T00°0>) ¥2'0 (T00°0>) 92°0 = (T00°0>) E€°0 as3L

(8¥8°0) T0'0- (T0£°0) 90°0- (292°0) 80°0- | (2T2’0)60°0 (6200)2T0 (T€00)9T0 | (2000)€z0 (STOO)¥T0 (9T0°0) 8T 0 QWL

(0zz'0)900 (1000)2T0 (T000)9T0| (¥00°0)€T0 (T000>)6T0 (T000>)SZ0 | (T00°0>) €20 (T00°0>) £2°0 (T00°0>) 9€°0 dal

(7¥1°0) ¥0'0- (T00°0>) 80'0 (T00°0>) TT0 | (T00°0>) €ET'0 (T00°0>) 6T0 (T00°0>) 220 | (T00°0>) 90 (T00°0>) 2Z€'0 (T00°0>) #¥7°0 oal

(€000) 80°0 (100°0>) TZ'0 (T00°0>) 82°0 | (T00°0>) 60°0 (T00°0>) 220 = (T00°0>) 9¢°0 | (T00°0>) 8€'0 (T00°0>) TE0 (T00°0>) TH7'0 ax

(sTT°'0)80'0 (T00°0>)8T'0 (TO0'0>) €20 | (€80°0)80°0 (TO0'0)2T0 (TOO'0) 9T'0 | (TOO'0>) S2'0 (T00'0>) 6T'0 (TOO'0>) G20 SNX3AN

(992°0) £0'0 (100°0>) TZ'0 (T00°0>) 820 | (S000) £T°0 (T00°0>) 92°0 (T00°0>) G€0 | (T00°0>) 0€'0 (T00°0>) 82°0 (T00°0>) LEO LiMIdY

(€0°0) G0°0- (T00°0>) 20'0 (T00°0>) 0T'0 | (T00°0>) L0 (T00°0>) 9€'0 (T00°0>) 8%°0 | (T00°0>) 67°0 (T00°0>) 9€'0 (T00°0>) 8%7°0 IINN

(t00'0>) TT°0 (100°0>) 22’0 (T000>) 820 | (200°0) 200 (T00°0>) 92°0 (TO0°0>) €0 | (T00°0>) 820 (T00°0>) 820 (TO00>) 9€°0 oAT

(8T2°0) 900 (T00°0>) €€'0 (T00°0>) €v'0 | (2000) ST'O (T00°0>) 6£0 = (T00°0>) TS0 | (T00°0>) 62°0 (T00°0>) L0 (T00°0>) 6170 ENNSES

(LS¥'0) £000 (906°0) TO'0 (906°0) TO'0 | (866°0) 000 (T000) 920 (T00°0) 2€0 | (T00°0>) 920 (9000) 220 (S00°0) L2°0 XX

(€zz'0) L000 (€200)0T0 (¥20°0) ¥T°0 | (T00°0>) TZ'0 (T000>) 8T0 (T00°0>) 20 | (T00°0>) S2'0 (T00°0>) €20 (T00°0>) 0€0 SSVYdWOD

(95T°0) 60°0 (T00°0>) €2°0 (T00°0>) 62°0 | (T00°0>) 9%°0 (T00°0>) T+'0 | (T00°0>) 250 | (T00°0>) L¥'0 (T00°0>) T¥'0 (T00°0>) 250 | ANO1IOVINA

(100°0>) £T°'0 (T000>) T€0 (T00°0>) 20 | (T00°0>) 8T°'0 (T00°0>) ¥€'0 (T00°0>) 9¥°0 | (T00°0>) 2’0 (T00'0>) 950 (TO00>) 6¥°0 na

(9¥00) 0T'0 (T00°0>) 6T°0 (T00°0>) 520 | (T00°0>) 92°0 (T00°0>) 82°0 (T00°0>) 80 | (T00°0>) €7'0 (T00°0>) 8€'0 (T00°0>) 6170 Sl

(€000) zT'0 (T000>) 920 (T000>) €0 | (2v0°0)80°0 (T000>)TE0 (T00°0>)0r 0 | (T00°0>) 60 (T000>)2€0 (T00°0>) Tt7'0 1S

(100°0) 9T0 (¥000) 0T'0 (¥00°0) ¥T1°0 | (T00°0>) 82°0 ' (T00°0>) G€'0 (T00°0>) S0 | (T00°0>) €50 (T00°0>) ##7'0 = (T00°0>) 950 AQNI

(2000) 0z'0 (T00°0>) €0 (T00°0>)6+°0 | (T00°0)TZ'0 (T00°0>)8€0 (T00°0>) 0S50 | (T00°0>) 90 (T00°0>) 8€'0 (T00°0>) 6170 avd

(9¥2'0) 80'0 (100°0>) 02'0 (T00°0>) 820 | (£200)TT0 (T000>) 220 (1000>) 620 | (T000)TZ0 (20000)ST0 (€00°0)6T0 39

(2700) 90°0- (#96'0) 000 (226'0) 000 | (¥92°0) €0°0 (T00°0>) 220 (T00°0>) 62°0 | (T00°0>) 220 (T000>) G20 (T00°0>) 2E0 NNa

(gev'0) 200 (1000>) T€0 (T00°0>) 270 | (810°0) T2'0 (T00°0>) Z¥°0 | (T00°0>) 29°0 | (T00°0>) 99°0 (T00°0>) 870 = (T00°0>) 29°0 NOW3ava

(610°0) S0°0 (T00°0>) 0T'0 (T00°0>) €T°0 | (6T¥0) 200 (T00°0>)0T'0 (TO00>) €T°0 | (T00'0>) €20 (T00°0>) 220 (T00'0>) 820 dONIL

(9€0°0) 50°0 (T00°0>) €T°0 (T00°0>) LT°0 | (S00°0) 00 (T00°0>) £2°0 (T00°0>) S€°0 | (T00°0>) 50 (T00°0>) €60 (T00°0>) 2¥7'0 anisiL

(zv00)2zT0 (T000) ¥T'0 (200°0) 8T°0 | (T00°0>) 0O¥'0 (T00°0>) 62°0 (T00°0>) 80 | (T00°0>) 0O¥'0 (T00°0>) 00 (T00°0>) 8€'0 an.isdy

(¥60°0) L00- (T20°0) 200 (¥€0°0)80°0 | (820°0) £0°0 ' (T00°0>)9¢'0 (T00°0>) 6+°0 | (T00°0>) £Z'0 ' (T00°0>) 90 (T00°0>) 8%°0 20dlL

(£z80) 200 (222°0)200- (959°0) ¥0°0-| (6€T0)2T0 (80000)9T0 (€T00) 020 | (6€T0)2T0 (800°0)9T0 (€T0°0) 020 algoy3sn

(z2'0) ¥0'0 (100°0>) 2T'0 (T00°0>) 9T°0 | (T00°0>) 0OT'0 (T00°0>) 62°0 = (T00°0>) 80 | (T00°0>) 50 (T00°0>) 0€'0 (T00°0>) 00 SOS3N

(#02°0) €0°0- (692°0) 200 (682°0) 600 | (T000>) 6€°0 (T00°0>) €60 (T00°0>) €70 | (T00°0>) ¥#'0 (T00°0>) ¥€'0 (T00°0>) S0 AOT1D

(2690) 20'0- (856'0) 000 (6¥6°0) 000 | (9€0°0) 2T°0 (T00°0>) 9T'0 (T00°0>) TZ'0 | (T00°0>) G€'0 (T00°0>) 82°0 (T00°0>) GE'0 Avd

(52200200 (2000)ST0 (2000) TZ'0 | (06T°0)60°0 (T000>)TZ0 (T00°0>)620 | (T000>) 670 (T000>) 070 (T00°0>) €SO | HIAHISMSC

(189°0) 20'0- (€20'0)60°0 (020°0) 2T°0 | (T25°0) €0°0- (¥90°0) 200 (¥90°0) 0T'0 | (T00°0>) 92°0 (T00°0>) 92°0 ' (TO0'0>) ¥€°0 | HINHISANOD

(€15°0) G0'0- (800°0) ¥T'0 (900°0) 020 | (8€2°0)60°0 (T00°0>) €20 (T00°0>) 00 | (T00°0>) L7'0 (T00°0>) T#'0 | (T00°0>) #S0 anoTOMSC

. uoslead L s|lepuay d s,uewleads i L uosiead Ls|repuay d s,uewleads i .. uosread Ls|lepuay ¢ s,uewleads i

1104 AI0)S YIIM UONE[LI0D BWIL UONNI0SaY | 1ul0d AI0IS Ylm UONE|aLI0D Bwil MoYT | Juiod AIOIS UM Uoe|a110D auwi] ssaiBoid-uj | 18foid

‘Al@Anoadsal ‘[pall pue abuelso ul palybiybiy ase suone|allod
Buoas pue wnipaly “(s1exoeIq Ul anjea-d) saixoid awil JuswdodAsp 831yl pue 4S usamiaq S)nsal uoneaiio)d 2Oy €9 a|qel

UCL - Dept. of Computer Science

127

Vali Tawosi

CHAPTER 6. EFFECTIVENESS OF STORY POINTS IN ESTIMATING EFFORT

Table 6.4: RQ2. Correlation results between SP and Timespent (p-value in
brackets). Medium and strong correlations are highlighted in orange

and red , respectively.

Project Timespent Correlation with Story Point

Spearman’s p Kendall's 7 Pearson r

DM 0.33 (<0.001) 0.28 (<0.001) 0.35 (<0.001)
MDL 0.34(<0.001) 0.27 (<0.001) 0.11 (0.179)
TDQ 0.64(<0.001) 0.52(<0.001) 0.61 (<0.001)
TMDM 0.03 (0.729) 0.03 (0.688) 0.28 (0.004)

the number of such issues is not prevalent, it indicates how much the results of RQ2
can be resembled by actual development time values (i.e., Timespent).

The result of this correlation analysis is shown in Table 6.4. As we can see, only
one out of four projects showed a strong correlation with respect to all three statistics.
Of the other three projects, two show a medium range Spearman’s p and one a medium
range Pearson’s r coefficient. For the rest of the cases (i.e., 50%), a low correlation is
obtained between SP values and actual Timespent.

6.4.3. RQ3. Consistency

Figure 6.3 shows the boxplots of the development time distribution for each story
point value for six sample projects.’*. As previously explained (Section 6.3.2), for an
acceptable story point estimation error, each of these boxplots should resemble a normal
distribution, and the relation between the median of each box should be proportional
to the value of the story point class. The ideal projection of median development time
per each SP class is depicted by a line connecting the diamonds in Figure 6.3. This
projection is computed by multiplying the SP value with the median development time
for all issues estimated to have one story point.

From the boxplots, we can observe that this proportion does not hold for most of
the classes. Besides, the distribution of each class tends to be heavily tailed. This
observation is confirmed by the Shapiro-Wilk test [164], which has revealed that the
data is not normally distributed for any of the projects [162]. Specifically, only for seven
projects out of the 32 under study, the median development time per SP class (depicted
by the median line inside each boxplot) falls in the vicinity of the ideal projected value
(for example, see projects CLOV and JSWCLOUD in Figure 6.3). For four other projects,
the projection line falls well above the actual median development time (e.g., the BE
project in Figure 6.3), indicating an overestimation. While for the remaining 21 projects,
the projection line falls well below the actual median development time (e.g., the APIKIT,
XD and MULE projects in Figure 6.3). This high number shows the tendency for human

"pue to space, the boxplots for all projects can be found in our online appendix [162].

Vali Tawosi 128 UCL - Dept. of Computer Science

CHAPTER 6. EFFECTIVENESS OF STORY POINTS IN ESTIMATING EFFORT

Table 6.5: RQ3. Angles created between the X axis and the linear regression
fit for SP classes against Median In-Progress time when only SP
classes < 5 are considered (Angle (SP< 5)) and when all the classes
are considered (Angle (SP< 100)), and the angle between the two

(Difference).
Project Angle (SP< 5) Angle (SP< 100) Difference \ Project Angle (SP< 5) Angle (SP< 100) Difference
JSWCLOUD 40.41° 24.22° 16.19° | STL 65.47° 54.82° 10.65°
CONFSERVER 48.35° 20.77° 27.58° | IS 46.96° 25.49° 21.47°
JSWSERVER 41.12° 24.48° 16.64° | DM 75.48° 26.95° 48.53°
BAM 57.40° 21.57° 35.83° | DURACLOUD 56.49° 46.08° 10.41°
CLOV 57.51° 22.65° 34.86° | COMPASS 47.02° 59.73° 12.71°
MESOS 54.04° 39.22° 14.82° | CXX 64.53° 64.53° 0.00°
USERGRID 26.17° 38.78° 12.61° | SERVER 30.39° 7.43° 22.96°
TIDOC 23.57° 23.73° 0.16° | EVG 36.15° 24.12° 12.03°
APSTUD -4.67° 5.71° 10.38° | MULE 29.20° 31.42° 2.22°
TISTUD 0.72° 7.78° 7.06° | APIKIT 19.81° 20.73° 0.92°
TIMOB 1.45° 6.79° 5.34° | NEXUS 17.80° 23.40° 5.60°
DAEMON 1.40° 11.14° 9.74° | XD 31.91° 17.83° 14.08°
DNN 26.08° 7.92° 18.16° | TDQ 50.19° 11.11° 39.08°
BE 48.00° 45.96° 2.04° | TDP 63.45° -0.90° 64.35°
FAB 78.33° 19.39° 58.94° | TMDM 32.77° 37.86° 5.09°
INDY 66.94° 63.87° 3.07° | TESB 69.70° 7.97° 61.73°

experts to generally underestimate the time required to complete a certain task.

We further analyse this phenomenon by fitting a regression line to each class’s
median development time against the story point’s value. We then fit another regression
line considering only the classes of SP with values less than five. As the angle between
these two lines widens, the consistency between story point classes becomes lower.
In contrast, if these two lines are aligned together for a project, we can say that the
consistency of estimation in lower SP classes is maintained for higher SP classes. This
is based on the premise that human experts are better at estimating smaller tasks
than bigger ones. Plots of the regression fit for all projects can be found in our online
appendix [162].

We also report, in Table 6.5, the angles each of these lines creates with the x-axis
as well as the deviation in the trajectory (i.e., the difference between the two angles).

We can observe that the angle between the two lines is wider than 12.5° for more
than half the projects (53% of the cases). This signifies that there is a notable shift
in the trajectory of the regression fit of those projects taking into account the median
development time for the higher SP classes. Thus, the scale in which the issues in the
higher SP classes are estimated is inconsistent with those in the smaller SP classes.
Therefore, based on these observations, we recommend that development teams
consider breaking down bigger issues into smaller ones before they attempt to estimate
the story point.

It is also worth noting that using data consisting of estimated SP to train a predictive
model would result in that model imitating human expert misestimates and, therefore,
possibly achieving biased results.

Vali Tawosi 129 UCL - Dept. of Computer Science

CHAPTER 6. EFFECTIVENESS OF STORY POINTS IN ESTIMATING EFFORT

AAAAAA

‘‘‘‘‘‘‘‘‘

(d) XD (e) JISWCLOUD (f) MULE

Figure 6.3: Boxplots of the distribution of development time per SP class for
(a) APIKIT, (b) BE, (c) CLOV, (d) XD, (e) JSWCLOUD, (f) MULE.
The red line depicts a project-specific baseline, drawn based on
the median development time for one SP.

Vali Tawosi 130 UCL - Dept. of Computer Science

CHAPTER 6. EFFECTIVENESS OF STORY POINTS IN ESTIMATING EFFORT

6.5. THREATS TO VALIDITY

To mitigate construct validity threats we use data from real-world projects, which have
been carefully curated and used in previous work [27]—-[29]. The story point values are
predicted by human experts and recorded in the Jira issue repository. However, the
values we use as the actual time are extracted from the issue change-log, based on
the issue transitions recorded in the repository throughout the development process.
We are aware that these time values might not accurately represent the actual effort
spent on developing an issue, and we mitigated this threat by considering three
different approximations (i.e., In-Progress time, Effort time, and Resolution time), each
capturing different aspects of the actual effort. We also used the actual development
time recorded for issues to investigate the extent to which these proxies resemble the
actual development time. Data points which are likely to be noisy, such as issues that
have not been fully resolved or issues with less than 2 minutes of recorded
development time, were filtered out from the dataset before any analysis, as described
in Section 6.3.3.

Using proxies of the development time instead of the actual time might also be a
threat to the internal validity of this study. In other words, the low correlation between
SP and the proxies might be because of an unrepresentative proxy and not the expert
misestimation. We mitigate this threat by conducting the same correlation analysis with
the actual development time recorded by the developers where this was available.

With regard to the conclusion validity, we used three well-known correlation statistics
and reported the corresponding p-value. To investigate the similarity of the proxies to
the actual development time, we used the Sum of Absolute Errors and examined the
statistical difference between the absolute error distributions by applying the Wilcoxon
Rank-Sum test with all required assumptions checked, following best practice for effort
estimation studies [119].

To mitigate external validity threats we used a large set of 37 projects which differ in
size, application domain, programming language, and development team. Although we
used such a diverse dataset, all the projects are open-source and the results might not
be generalizable to other contexts.

6.6. CONCLUSIONS

We have studied the relationship between human-expert estimated Story Point (SP)
and the time required by the developers to realise a given issue (i.e., development time)
on a large sample of open-source user stories sampled from the TAWOS public dataset
[27], which consists of 37 software projects for different application domains, diversified
in size and characteristics, resulting in a total of 37,440 unique issues.

The results of this empirical study showed that among the three proxies for
development time studied herein, In-Progress time is the most representative of the

Vali Tawosi 131 UCL - Dept. of Computer Science

CHAPTER 6. EFFECTIVENESS OF STORY POINTS IN ESTIMATING EFFORT

development time recorded by the developers. When considering its correlation with
human-expert estimated SP, we found that for the majority of the projects, such a
correlation is low (35%) or medium (58%). Analysing the correlation between SP and
the actual development time unveiled a similar outcome: SP showed a low (50%) or
medium (25%) correlation with Timespent. We also found that the majority of the
investigated projects (25 out of 32) lack consistent human-expert estimations for SP.
The consistency starts to wear when the issues are estimated to be bigger than five
points, thereby suggesting that human estimators are not accurate at assessing the
size of the issues that need five times or more effort than an issue worth a single story
point. To overcome this issue, agile teams can try to break down all tasks/issues
estimated to be bigger than five SP into smaller ones.

The above results provide empirical evidence that human-expert estimated SP might
not be a good indicator for the issue development effort of agile open-source projects.
This might render any machine-learnt effort estimation model, which learns from human-
expert estimated SP, vulnerable to the same bias, and its impact should be taken into
account in future work. It would be interesting, for example, to assess if more accurate
effort estimation models can be obtained by using the development time instead of SP
as a cost driver. Moreover, future work could replicate our study by considering industrial
projects to expand the understanding beyond the open-source realm investigated herein.
Also, future work could involve expert-certified FSM measurers to compute the FP and
CFP of the user stories available in the TAWOS dataset so that one could carry out a
large-scale empirical study analysing the correlation between SP, FP, CFP, and actual
development time.

In order to allow for replication and extension of our work, we make our data and
scripts publicly available [162].

Vali Tawosi 132 UCL - Dept. of Computer Science

Chapter 7
Predicting Issue Development Time

Abstract - In Chapter 6, we saw that story points are not a strong indicator of actual
software effort. Therefore, their usage as the ground truth to build predictive models
should be dealt with with caution. As an alternative, an Al-based effort estimation model
may leverage the development time of resolved tasks instead of their story points. In
this chapter, | aim to use the development time of agile tasks to train effort estimation
models. | build these models using the same approaches developed for story point
estimation and evaluated in previous chapters of this thesis. Specifically, | use GPT2SP,
Deep-SE, LHC-SE, and TF-IDF-SE and the three baseline estimators (Median, Mean,
and Random Guessing). Results show that all four Al-based methods can estimate the
development time with an average absolute error of less than 8.5 hours for 11 out of 15
(73%) projects investigated.

7.1. INTRODUCTION

Although story points may be useful for agile teams to manage sprints and prioritize user
stories, they are not a strong indicator of the development time needed to deliver the
user stories. Biased with their experience, the human estimators, be it as an individual
or in a group, tend to under- or overestimate most of the time [30]. Therefore, relying
on a human estimator’s output to build automated estimation models will most likely
lead to a biased model that imitates human bias.

This chapter investigates the predictive performance of the state-of-the-art effort
estimation models when they are trained on and used to estimate the development time
(equivalent to effort in person-hour) instead of story points. To this end, four Machine-
Learning (ML) based models are adapted to carry out the experiments. Three of the
models are those used in previous chapters to estimate story points (hamely, TF-IDF-SE
[23], and Deep-SE [26] from Chapter 4, and LHC-SE [29] from Chapter 5). The other
method included in the experiments is GPT2SP, a transformer-based deep learning
method which has been published more recently [21]. Details about this new method

133

CHAPTER 7. PREDICTING ISSUE DEVELOPMENT TIME

are provided in Section 7.2. To be consistent in naming the methods and to reflect the
modification perform on GPT2SP, | refer to the modified variant as GPT2-SE in this
chapter, with SE standing for Software Effort estimation. The three baseline estimators
(Random Guessing, Mean and Median baselines) are also included in experiments to
measure the performance of the four ML models against simple baselines.

The rest of this chapter is organised as follows. Section 7.2 briefly introduces
GPT2SP and its architecture. Section 7.3 describes the study’s design, including the
research questions, the dataset and the experimental method used to address them.
Section 7.4 reports and discusses the results, and Section 7.5 discusses the threats
to the validity of the study. Finally, Section 7.6 concludes the chapter and provides
suggestions for future work.

7.2. BACKGROUND

This section provides a brief introduction to GPT2SP and its architecture.

Fu and Tantithamthavorn [21] have recently proposed GPT2SP, a
Transformer-based deep learning model for SP estimation of user stories. They
introduce three structural and design improvements over Deep-SE: First, instead of
word-level tokenization, GPT2SP employs a byte- pair-encoding subword tokenization
which splits rare words into subword units, reducing the vocabulary size to almost
one-fourth. Second, unlike Deep-SE, which needed pre-training® on project-specific
data, GPT2SP is already a pre-trained model that can generate meaningful embedding
for any project. And third, GPT2SP uses GPT-2 architecture [165] with a masked
multi-head self-attention mechanism [166], allowing it to capture the relationship
among words better while considering the context of a given word and its position in
the sequence.

Figure 7.1 shows an overview of GPT2SP’s architecture. Given an issue report,
GPT2SP performs sub-word tokenisation using a byte-pairs encoding (BPE) approach
(Step 1). In this step, GPT2SP leverages the GPT-2 pre-trained language model to
produce subword-tokenized issues. Then, GPT2SP performs a word and positional
encoding in order to generate an embedding vector of each word and its position in
the issue and then uses GPT-2’s stacking transformer decoder architecture to output
the issue report as a vectorised representation. The vectorised output is then fed to a
Multi-Layer Perceptron (MLP) to estimate the story point for the given issue (Step 2).

Fue and Tantithamthavorn [21] empirically evaluated the performance of GPT2SP
on Choetkiertikul's dataset [26], including 16 projects with a total of 23,313 issues
(details in Section 4.3.2.1). They benchmarked GPT2SP against two baselines (namely
the Mean and Median estimators) and Deep-SE for both within- and cross-project

INote that in Chapter 4 we observed that pre-training had a non-significant effect on the
estimation performance of Deep-SE.

Vali Tawosi 134 UCL - Dept. of Computer Science

CHAPTER 7. PREDICTING ISSUE DEVELOPMENT TIME

Model Buildin

Training Phase

C MLP

1 Regressor
| “

Masked Multi-Head Feed-Forward
Self-Attention Neural Network

Positional
Encoding

p
QT FEE
Subword Exp___ Postl Te8x2304 768x768 oax o7z

Training Data / \ Tokenized

(Issues + SPs) Merge Subword Issues

Operations Vocabularies

Tokenizer Subword
Testing Data Tokenized

Storypoint ——yp
Estimation Story Point)]

= -
Model | — 4] Agile
Inspection Practitioners

(Issues) Issues Supporting
GPT2SP Model Examples

Inference Phase

Figure 7.1: Architecture of GPT2SP [21].

estimation scenarios and evaluated the extent to which each component of GPT2SP
contributes towards the accuracy of the SP estimates.

Their results show that GPT2SP outperforms Deep-SE with a 6%-47% improvement
over MAE for the within-project scenario and a 3%-46% improvement for the cross-
project scenarios. However, the attempt to use the GPT2SP source code made available
by Fu and Tantithamthavorn to reproduce their experiments resulted in the discovery
of a bug in the computation of the Mean Absolute Error (MAE), which may have
inflated the GPT2SP’s accuracy reported in their work. A pull request issued by the
author of this thesis to fix such a bug was accepted and merged into their repository
at https://github.com/awsm-research/gpt2sp/pull/2. Further details and results
about this replication can be found at [64].

7.3. EMPIRICAL STUDY DESIGN

7.3.1. Research Questions

The intelligent agile effort estimation methods are designed to draw an analogy between
the given task and similar tasks completed in the past to come to an estimation. Because
of the mechanism they work with, these models should be able to be trained on and
estimate the effort regardless of its unit. Therefore, by adapting their implementation
to use development time instead of story points, they should be able to predict the
development time. The first research question investigates this:

RQ1. Estimating Development Time: Are the ML-based models built to estimate
story points suitable for estimating development time?

To answer this research question, four-story point estimation models (namely,
TF-IDF-SE, Deep-SE, LHC-SE?, and GPT2-SE) have been used to estimate the
development time for issues from agile projects. Implementation and configurations for
all four algorithms are kept unchanged from the original setups. However, the target
variable is changed from story points to the development time (in hours). The mean
and median absolute errors produced by each of these models are compared against

2| use LHC¢-SE from Chapter 5 as the best performing LHC-SE variant.

Vali Tawosi 135 UCL - Dept. of Computer Science

https://github.com/awsm-research/gpt2sp/pull/2

CHAPTER 7. PREDICTING ISSUE DEVELOPMENT TIME

each other and that of the baseline estimators (i.e., Random Guessing, Mean and
Median).

Although story points are shown to be biased and not a strong indicator of the
development effort, they may serve as an auxiliary cost driver to it. In a further
investigation, | analyse the effect (positive or negative) story points can have on
development time estimation, should they be used as a cost-driver alongside the input
features:

RQ2. SP as another Cost-Driver: Does using SP as another cost-driver alongside
the other input features improve the estimation accuracy of automated agile effort
estimation models?

To answer this research question, | edit the estimation model’s implementation in
order to input the story point of the target issue as another independent variable besides
the issue text and evaluate its estimation performance in comparison with the original
model.

7.3.2. Data

| sample data from the TAWOS dataset version 1.0 [27] (Chapter 3). To answer RQL1, |
use the same set of projects and issues we used to answer RQ1 from Chapter 6, as this
sample includes only resolved issues with recorded development time in the Timespent
field of Jira, with a Timespent value of more than two minutes (Section 6.3.3 in Chapter
6). This dataset has 9,806 issues from 15 projects. Descriptive statistics of this set are
provided in Table 6.1a.

To answer RQ2, | need issues that have reported both the SP and Timespent values.
Therefore | use the subset of issues used in the second part of RQ2 from Chapter
6. This sample includes 697 issues from four projects (specifically, 128 issues from
DM, 303 from TDQ, 104 from TMDM, and 162 from MDL). The correlation between
Timespent and SP for this subset of issues is reported in Table 6.4.

7.3.3. Evaluation Measures

To evaluate the capability of the models under investigation, | compare their predictive
performance against random guessing by reporting their Standard Accuracy (SA). The
models are compared to the Mean and Median baselines and one another by their
Mean and Median Absolute Errors (MAE and MdAE). See Section 4.3.4 for definitions
and equations of SA, MAE and MdAE.

To distinguish between the methods that produce statistically significantly different
results, | use the Wilcoxon Rank-Sum test (a.k.a. Mann—-Whitney U test). Specifically,
| test for the Null Hypothesis 4.3.1 (Chapter 4, page 69), and in case it was rejected,
the Alternative Hypothesis 4.3.2 is accepted. | also use a standardised non-parametric
effect size measure (i.e., the Vargha Delaney’s A, statistic) to assess the practical

Vali Tawosi 136 UCL - Dept. of Computer Science

CHAPTER 7. PREDICTING ISSUE DEVELOPMENT TIME

magnitude of the difference between the predictive performance of every two methods
(Equation 4.4). The effect size is considered negligible for 0.6 < A, (indicated by an
‘N’ beside its value), small (S) for 0.6 < A5 < 0.7, medium (M) for 0.7 < A5 < 0.8, and
large (L) for A1, > 0.8 (the same boundaries used in the previous chapters).

7.4. RESULTS

7.4.1. RQ1. Estimating Development Time

The results of the four Al-based methods (including two Deep Learning methods)
alongside two baseline estimators are shown in Table 7.1. The Standard Accuracy (SA)
column shows the improvement of each of these methods against Random Guessing.
The SA value for all methods is positive (outperforming Random Guessing) except for
TF-IDF-SE on JSWCLOUD and TMDM. Nevertheless, TF-IDF-SE also achieves the
lowest (best) MAE for five out of 15 projects (33%), the highest number among all the
methods. This shows that TF-IDF-SE has the highest variance in results for different
projects.

Considering the other methods, GPT2-SE and Deep-SE achieve the best MAE on
three projects each (20%), LHC-SE achieves the best MAE in one project (7%), and the
Median estimator in four projects (27%). The Mean estimator and Random Guessing
never achieve the best MAE on any of the 15 projects under investigation. TF-IDF-SE
and the Median estimator achieve the same best MAE on one project (i.e., BAM).

Considering that the unit for error is in hours, we can see that the best MAE achieved
for 14 out of 15 projects is under 8.5 hours which is considered a typical working day
for a software developer [167], [168].2 This means that using these models to estimate
the development time could be very useful in practice due to their low error.

However, to compare these models, we cannot rely solely on comparing their
MAE values, as these results show that, in many cases, they achieve a very similar
result. Therefore, | consider the statistical significance of the difference between the
distributions of the absolute errors of each pair of methods as the determinative factor.

Table 7.2 shows the win-loss-tie statistics for each pair of estimation methods. In
this table, each cell entry shows three values in order:

1. for how many cases (out of 15 projects) the method in the row produced a
statistically significantly lower absolute error than the method in the column (i.e.,
the method in the row wins with a p — value < 0.05 for a one-way test)

2. for how many cases the method in the column produced a statistically significantly
lower absolute error than the method in the row (i.e., the method in the row loses
with a p — value < 0.05 for a one-way test in favour of the method in the column)

3The MAE for more than half the projects (8 out of 15) is less than or equal to four hours.

Vali Tawosi 137 UCL - Dept. of Computer Science

CHAPTER 7. PREDICTING ISSUE DEVELOPMENT TIME

Table 7.1: RQ1: MAE, MdAE and SA values achieved by GPT2-SE, Deep-SE, LHC-SE, TF-IDF-SE, and the Mean and Median
baselines. The best values per method and per project are printed in boldface. Error unit is in hours.

Project Method MAE MdAE SA 7 Project Method MAE MdAE SA 7 Project Method MAE MdAE SA
GPT2-SE 4.95 3.53 49.52 GPT2-SE 460 501 6242 GPT2-SE 1145 562 26.96
Deep-SE 4.86 3.71 50.39 Deep-SE 3.12 252 74.47 Deep-SE 11.46 5.59 26.89
CWD LHC-SE 497 4.00 49.28 cLOV LHC-SE 6.54 7.37 46.53 DO LHC-SE 1250 5.75 20.24
TF-IDF-SE 5.69 3.00 41.99 TF-IDF-SE 2.04 0.73 83.34 TF-IDF-SE 14.89 7.00 5.01
Median 4.88 3.42 50.20 Median 5.07 5.43 5857 Median 11.88 3.75 24.24
Mean 7.16 7.53 26.93 Mean 11.00 12.50 10.08 Mean 11.69 6.76 25.43
GPT2-SE 3.47 2.22 41.80 GPT2-SE 0.81 0.57 85.09 GPT2-SE 6.56 3.49 51.76
Deep-SE 3.71 2.66 37.77 Deep-SE 1.18 1.15 78.42 Deep-SE 6.21 3.72 54.35
LHC-SE 3.53 2.00 40.68 LHC-SE 1.63 1.75 70.23 LHC-SE 8.03 4.00 40.98
JSWCLOUD TF-IDF-SE 6.49 7.00 -9.05 FE TF-IDF-SE 0.73 0.73 86.59 TbP TF-IDF-SE 8.68 7.00 36.24
Median 3.53 2.00 40.67 Median 247 270 54.79 Median 6.34 3.75 53.38
Mean 4.62 428 22.35 Mean 5.24 555 394 Mean 8.41 9.45 38.22
GPT2-SE 6.41 1.59 27.08 GPT2-SE 3.20 1.40 50.14 GPT2-SE 7.38 453 28.31
Deep-SE 6.49 2.13 26.17 Deep-SE 3.43 1.46 46.60 Deep-SE 7.24 451 29.64
LHC-SE 6.43 2.00 26.85 LHC-SE 3.06 1.63 52.28 LHC-SE 8.33 4.00 19.11
JSWSERVER TF-IDF-SE 6.67 2.00 24.17 TIboC TF-IDF-SE 3.61 1.08 43.84 TMDM TF-IDF-SE 10.60 7.00 -2.95
Median 6.39 2.00 27.39 Median 3.19 1.75 50.33 Median 8.33 4.00 19.11
Mean 7.15 4.36 18.70 Mean 5.11 4.63 20.38 Mean 7.26 4.86 29.42
GPT2-SE 2.69 1.15 55.39 GPT2-SE 775 6.34 52.89 GPT2-SE 8.16 3.42 34.66
Deep-SE 2.67 1.58 55.64 Deep-SE 769 6.13 53.23 Deep-SE 8.06 4.09 35.45
LHC-SE 2.73 150 54.75 LHC-SE 7.79 7.00 5259 LHC-SE 8.14 500 34.84
JRASERVER 1t brse 264 100 5622 | PV TFIDF-SE 7.62 6.00 53.68 | '°0 TF-IDF-SE 7.79 345 37.64
Median 2.73 150 54.75 Median 779 7.00 5259 Median 7.69 3.00 38.44
Mean 4.62 4,96 23.35 Mean 10.79 9.84 34.39 Mean 9.43 8.10 24.50
GPT2-SE 4.04 226 45.44 GPT2-SE 2.31 1.76 36.01 GPT2-SE 2.80 1.08 39.30
Deep-SE 4.12 1.75 44.35 Deep-SE 2.54 1.79 29.78 Deep-SE 2.83 1.33 38.58
LHC-SE 4.01 2.00 45.86 LHC-SE 2.32 1.00 35.79 LHC-SE 2.80 1.50 39.21
BAM TF-IDF-SE 4.00 2.00 45.99 NEXUS TF-IDF-SE 2.95 1.53 18.48 TESB TF-IDF-SE 3.66 2.00 20.62
Median 4.00 2.00 45.99 Median 225 0.75 37.90 Median 3.08 2.00 33.22
Mean 5.22 4.63 29.44 Mean 2.56 1.94 29.18 Mean 3.55 3.00 22.94

UCL - Dept. of Computer Science

138

Vali Tawosi

CHAPTER 7. PREDICTING ISSUE DEVELOPMENT TIME

3. for how many cases the difference between the distributions of the absolute errors
produced by the two methods are not statistically significantly different (i.e., the
two methods have a tie)

The “"Summary” column sums up the number of times a method in the row wins,
loses, or has a tie against all the other methods. This column shows that GPT2-SE
holds first place with the highest number of wins (39) and the lowest number of losses
(6). However, the difference is still very small for Al-based methods and the Median
baseline. The Median baseline stands in second place with an equal number of wins
with GPT2-SE (39) but only two more losses (8). Deep-SE is the third model, with 36
wins and eight losses.

These results show that all the Al-based methods investigated here are capable of
estimating the development time within an absolute error of a few hours. Meanwhile,
we should note that the Median baseline estimator is still among the best methods for
agile effort estimation (in line with the previous results in Chapter 4 and 5).

Table 7.2: RQ1: Win-Loss-Tie summary of the Wilcoxon test results comparing
Al-based effort estimation methods estimating development time
against each other and the baseline methods. The best method is

highlighted.
| Win | Loss | Tie | |
Method | GPT2-SE Deep-SE LHC-SE TFIDF-SE Median Mean Random | Summary | Rank
GPT2-SE [21] 2|1]12 21|12 4|2]9 2|2|11 14|0|1 15|00 |39 6]45| 1
Deep-SE [26] |1]2]12 211112 3(3|9 2|2|11 13|0|2 15|0|0|36| 8|46 | 3
LHC-SE[29] |1|2]|12 1]2]12 4|4|7 1]2|12 13|0|2 15|0|0|35|10]|45| 4
TFIDF-SE[23] | 214]|9 3|3|9 4|47 3|4|8 9|3|3 13|1|1|34|19|37| 5
Median 202111 2]2|11 2|1|12 4|3|8 14|0]1 15|00 |39| 8|43 | 2
Mean 0[14|1 0]13]2 0]13|2 3]9|3 0[14]1 13|0]2|16|63|11 | 6
Random 0]15|/0 0]15|0 0]15]|0 1|13|1 0|15|0 0]13]2 1186]3 | 7

7.4.2. RQZ2. Story Point as another Effort-Driver

To investigate this research question, | use GPT2-SE, as it is ranked the best-performing
method in RQ1. The GPT2-SE’s implementation is adapted to accept the story point
of the target issue as another input and concatenate it to the vector output of the
GPT-2 transformer before it is fed to the MLP component (stage 2c in Figure 7.1).
The estimation performance of the model then is compared to that of the original
implementation, which uses only issue text as input. | call the new variant GPT2-SE+.

Results in Table 7.3 show that the MAE and MdAE produced by GPT2-SE+ are
lower than that of GPT2-SE for all four open-source projects, which means that the
addition of story points to the feature vector has a positive effect on the estimation
accuracy of the GPT2-SE model. Nevertheless, the results of the Wilcoxon Rank-Sum
test on the distribution of the absolute errors produced by each of these models in Table
7.4 shows that the improvement in estimation accuracy is not statistically significant for

Vali Tawosi 139 UCL - Dept. of Computer Science

CHAPTER 7. PREDICTING ISSUE DEVELOPMENT TIME

Table 7.3: RQ2. Estimating development time (hours) by GPT2-SE, which
solely uses issue text as input, and GPT2-SE+, which also exploits
human-estimated story points as a cost-driver. The best values per
metric are printed in bold for each project.

Project Method MAE MdAE SA \ Project Method MAE MdAE SA
GPT2-SE+ 6.70 4,22 34.63 \ GPT2-SE+ 16.92 5.62 25.97
DM GPT2-SE 6.91 5.98 32.64 TDQ GPT2-SE 17.22 8.48 24.67
Median 6.57 5.00 35.89 Median 18.72 5.00 18.11
Mean 6.99 463 31.78 Mean 17.92 9.96 21.62
GPT2-SE+ 11.50 4.23 48.49 \ GPT2-SE+ 9.55 5.14 18.66
MDL GPT2-SE 11.69 6.16 47.66 | TMmpDMm GPT2-SE 9.70 5.27 17.31
Median 11.39 4,98 48.97 Median 9.78 6.00 16.65
Mean 18.09 15,58 18.97 Mean 8.68 4.27 26.03

Table 7.4: RQ3. Results of Wilcoxon Rank-Sum test (Vargha-Delaney effect
size in parentheses) for GPT2-SE+ against GPT2-SE, and the
Median and Mean baselines.

Project | Method | GPT2-SE+ GPT2-SE Median Mean

DM GPT2-SE+ vs - 0.453 (0.51) _ 0.469 (0.51) _ 0.154 (0.58) _
GPT2-SEvs | 0.554 (0.49) _ - 0.476 (0.51) _ 0.434 (0.51) _

vpL | GPT2-SE+vs - 0.115 (0.59) _ 0.379 (0.52) _ <0.001 (0.84) L
GPT2-SEvs | 0.888 (0.41) _ - 0.808 (0.44) _ <0.001 (0.81) L

TDQ | GPT2-SE+vs - 0.263 (0.53) _ 0.468 (0.50) _ 0.068 (0.58) _
GPT2-SEvs | 0.739 (0.47) _ - 0.705 (0.47) _ 0.206 (0.54) _

MpM | GPT2-SE+ vs - 0.402 (0.52) _ 0.380 (0.53) _ 0.655 (0.47) _
GPT2-SEvs | 0.608 (0.48) _ - 0.463 (0.51) _ 0.730 (0.45) _

any of the cases, and its improvement significance did not change against any of the
baselines. Indeed, out of four projects, the Median baseline achieves the best MAE for
two projects, the Mean baseline in one project and GPT2-SE+ for the one remaining
project, non with a statistically significant difference.

In conclusion, these results suggest that although story points improve the estimation
accuracy of the GPT2-SE model, there is no evidence to support a statistically significant
difference, due to the Wilcoxon test results.

7.5. THREATS TO VALIDITY

This chapter uses Timespent value recorded for issues as the ground truth. The
Timspent value is usually recorded by the developer who has developed and resolved
the issue. Therefore, it is the closest value to the development time of the issue that
could be collected from the dataset. However, this value might still not be accurate

Vali Tawosi 140 UCL - Dept. of Computer Science

CHAPTER 7. PREDICTING ISSUE DEVELOPMENT TIME

or honest. As stated in Section 5.6, and showed in this chapter, these values can be
viewed as a placeholder used to test the model’s ability to estimate the target variable
(wherever their origin might be). Therefore, when available, the model can be trained
on a more accurate target value.

| carefully selected unbiased accuracy performance measures to minimise threats
to conclusion validity and applied statistical tests to rule out small differences.

The dataset used in this study represents a wide range of real-world projects.
However, | cannot claim that this dataset is representative of all software projects.
Especially the dataset used to investigate RQ2 is a relatively small dataset, as few
issues in the TAWOS dataset have reported both story points and Timespent values.
Furthermore, all projects investigated are collected from open-source repositories,
which can differ from industrial projects in many aspects. A key difference that may
affect the reliability of the Timespent values (i.e., our target variable), and therefore
the estimation of development time, is the behaviour of contributors, developers, and
project stakeholders. It is also expected that issue reports may be written in a more
disciplined environment in a commercial project setting, thus providing more useful
information and containing less noise. Therefore, further investigation of commercial
projects from industrial software companies is needed to validate the conclusions made
in this study.

7.6. CONCLUSION

In this chapter, | leveraged the state-of-the-art methods in story point estimation to
train with and estimate the development time. Specifically, | adapted four Al-based
estimation methods (including two deep-learning models) to estimate Timespent value
for issues, the total time developers spent on developing issues.

The results showed that all these methods could estimate the development time
with an average absolute error of a few hours. Although the Al-based models showed
similar performance, the Median baseline estimator has achieved the second-best
performance among all the methods, outperformed by only GPT2-SE, the recently
introduced transformer-based deep-learning method.

Furthermore, supplementing the text input to GPT2-SE with the human-estimated
story point of the issue introduced a marginal improvement to the estimation performance
of the model. However, the improvement was not statistically significant.

Further analysis with more inclusive data from both open-source and industrial
projects is needed to strengthen or rectify the conclusions achieved in this study.
Evidently, leveraging the advancements in natural language processing, intelligent
agile effort estimation models are becoming more effective in building accurate and
useful estimation models. However, they still are not able to outperform a naive baseline
model like the Median estimator statistically significantly in all cases. Therefore, further

Vali Tawosi 141 UCL - Dept. of Computer Science

CHAPTER 7. PREDICTING ISSUE DEVELOPMENT TIME

investigation with different approaches, including utilising more effective cost drivers,
might lead future work to a better solution.

Vali Tawosi 142 UCL - Dept. of Computer Science

Chapter 8
Conclusions and Future Work

This thesis aims to shed light on an important issue which can affect the success and
usability of intelligent effort estimation models proposed for agile software development.

Estimating the effort required to develop software has always been a challenging
task. In particular, agile software development methodologies face additional challenges
in this matter due to several factors, including high tolerance to changes in requirements
during the development that these methodologies promise, very fine-grained tasks which
make it difficult to measure the size of the software unit to be produced, unstructured and
noisy description of the requirements, and lack of documentation for some of the effort
drivers. Nevertheless, several studies proposed different approaches for estimating
story points as an indicator of the effort needed to develop software tasks.

Via large empirical studies, this thesis finds that the story points are not easily
predictable by intelligent estimation models proposed so far, nor they are much effective
in measuring the development effort of software tasks in agile. The human-estimated
story points carry the bias of their estimators, which makes them improper as a target
variable for the intelligent estimation models. In the following, | first outline the main
findings of this thesis and then discuss the possible future directions of this research.

8.1. FINDINGS

Chapter 4 replicates prominent intelligent story point estimation approaches, including
the state-of-the-art deep-learning models. The findings show that none of the available
approaches is able to outperform a naive baseline technigue like the Median estimator.
The novel clustering-based approach introduced in Chapter 5, which works on the
premise that clustering similar data points together helps reduce variance and
increases the accuracy of any model built upon them, achieved a similar result. All
these approaches, which in essence try to find semantic similarities between user
stories to estimate effort, very often fail to provide better estimations than the baselines.
Therefore, their additional complexity does not seem justified. This suggests that

143

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

semantic similarity between user stories might not be sufficient, or even effective, for
agile effort estimation.

Chapter 6 studied the relationship between human-expert estimated story points
and the time required by the developers to realise a task. This relationship is found
to be low or medium for most of the projects (93% with proxies and 75% with actual
development time). This study also found that the majority of the investigated projects
(78%) lack consistent human-expert estimations for story points. These results provide
empirical evidence that human-expert estimated story points might be biased and,
thus, are not a good indicator for the issue development effort of agile open-source
projects. Therefore, any intelligent effort estimation model, which learns from human-
expert estimated story points, should consider the impact of such bias in their output. A
solution can be avoiding the utilisation of story points altogether and instead training
the models on the actual development time and estimating the development time.

Chapter 7 explored the usability of the current approaches proposed for story point
estimation in the estimation of the actual development time. The findings indicate
that all these methods could estimate the actual development time with an average
absolute error of a few hours. However, the Median baseline estimator still achieved
a comparable result (second-best place among all the methods investigated). Even
supplementing the text input to GPT2-SE (the transformer-based estimation method)
with the human-estimated story point of the issue introduced only a marginal non-
significant improvement to the estimation performance of the model.

Moreover, the experiments conducted in Chapter 4 of this thesis further proved the
importance of replication studies and making replication packages publicly available in
order to support reproduction, replication and extension of previous work. A few small
and honest bugs in the implementation of the previous methods inflated their
estimation performance above their actual capability, fostering the research in a
misguided direction. Acknowledging that even advanced deep-learning models, relying
on the textual information of issue description, fail to outperform a baseline method that
does not use any information may infer that such information does not provide
adequate leverage for effort estimation. Therefore, using a more powerful technique to
identify similar issues from the past solely based on their description would not be as
helpful as looking into other sources of information to identify and use more effective
effort drivers.

Another outcome of this thesis is the collection and curation of a large and rich
dataset of issues from open-source projects (Chapter 3) that can be instrumental in
enabling the research community to pursue further research in this line and to repeat,
replicate, and extend the previous work that used this dataset. All the scripts and codes
used in this thesis are also available online to expedite future work.

Vali Tawosi 144 UCL - Dept. of Computer Science

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.2. FUTURE WORK

Each chapter of this thesis laid directions for future work. Some of the most important
ones are as follows.

Future work might devise and experiment with additional effort drivers extracted
from issue reports in order to achieve more accurate effort estimates. These effort
drivers can be project-, people-, or organisation-related features. For example, previous
work showed that the developers’ reputation, experience, and workload are among the
effective effort drivers [25], [169].

In this work (Chapters 6 and 7), | considered the development time recorded by the
developers (i.e., Timsepent) as a proxy for effort. | made sure that the issues used for
our empirical evaluation had only one developer working on them. As such, Timsepent
represents their effort (in person-hours). In projects where more than one developer
may work on the same issue simultaneously, this time may present merely the elapsed
time and might not accurately capture the overall effort spent by the developers working
on a given issue. Future work should take this into consideration when quantifying and
using development time in their research.

More advanced data analysis and cleaning prior to the model building may become
effective when using textual input. Issue descriptions can be very noisy and include
unnecessary information that can mislead the training model, especially when the
current models use only a limited number of tokens from the beginning of the issue
description. One promising avenue may be to identify and extract the most important
points of the description to be used in the estimation process in combination with other
effort drivers.

Moreover, all the research conducted in this thesis used open-source projects that
may not be representative of standard agile practices. Therefore, further analysis
with more inclusive data from both open-source and industrial projects is needed to
strengthen or rectify the conclusions achieved in this thesis.

Furthermore, the explainability of the model’s decision can be crucial in the
acceptance of intelligent agile effort estimation models in practice. Future work may
invest more in this important aspect of the proposed models [21], [63].

I hope that the results reported in this thesis will encourage further work aiming at
improving methods for agile software effort estimation.

Vali Tawosi 145 UCL - Dept. of Computer Science

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

A. Trendowicz and R. Jeffery, “Software project effort estimation,”
Foundations and Best Practice Guidelines for Success, Constructive
Cost Model-COCOMO pags, pp. 277-293, 2014.

T. Rajala and H. Aaltonen, “Reasons for the failure of information
technology projects in the public sector,” The Palgrave handbook of the
public servant, pp. 1075-1093, 2021.

K. Dejaeger, W. Verbeke, D. Martens, and B. Baesens, “Data mining
techniques for software effort estimation: A comparative study,” IEEE
Transactions on Software Engineering, vol. 38, no. 2, pp. 375-397, 2011.

J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic literature review of
machine learning based software development effort estimation models,”
Information and Software Technology, vol. 54, no. 1, pp. 41-59, 2012.

V. Tawosi, F. Sarro, A. Petrozziello, and M. Harman, “Multi-objective
software effort estimation: A replication study,” IEEE Transactions on
Software Engineering (TSE), vol. 48, no. 8, pp. 3185-3205, 2021.

R. F. Korte, “Biases in decision making and implications for human
resource development,” Advances in Developing Human Resources,
vol. 5, no. 4, pp. 440-457, 2003.

B. W. Boehm, “Software engineering economics,” IEEE Transactions on
Software Engineering, no. 1, pp. 4-21, 1984.

I. Sommerville, Software Engineering GE. Pearson Australia Pty Limited,
2016.

R. S. Pressman, Software engineering: a practitioner’s approach.
Palgrave MacMillan, 2005.

A. J. Albrecht and J. E. Gaffney, “Software function, source lines of code,
and development effort prediction: A software science validation,” IEEE
Transactions on Software Engineering, no. 6, pp. 639—648, 1983.

147

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

C. Symons, “The COSMIC method for measuring the work-output
component of productivity,” in Rethinking Productivity in Software
Engineering, Springer, 2019, pp. 191-204.

S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro, “Assessing the
effectiveness of approximate functional sizing approaches for effort
estimation,” Information and Software Technology, vol. 123, p. 106 308,
2020.

F. Ferrucci, C. Gravino, P. Salza, and F. Sarro, “Investigating functional
and code size measures for mobile applications,” in Proceedings of
Euromicro Conference on Software Engineering and Advanced
Applications, 2015, pp. 365—-368.

S. Abrahdo, L. D. Marco, F. Ferrucci, J. Gbmez, C. Gravino, and F. Sarro,
“Definition and evaluation of a COSMIC measurement procedure for
sizing web applications in a model-driven development environment,”
Information and Software Technology, vol. 104, pp. 144-161, 2018.

S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro, “Web effort
estimation: Function point analysis vs. COSMIC,” Information and
Software Technology, vol. 72, pp. 90-109, 2016.

C. Santana, F. Leoneo, A. Vasconcelos, and C. Gusmao, “Using function
points in agile projects,” in International Conference on Agile Software
Development, Springer, 2011, pp. 176-191.

K. Beck and M. Fowler, Planning extreme programming. Addison-Wesley
Professional, 2001.

M. Usman, E. Mendes, F. Weidt, and R. Britto, “Effort estimation in agile
software development: A systematic literature review,” in PROMISE,
2014, pp. 82-91.

M. Fernandez-Diego, E. R. Méndez, F. Gonzalez-Ladron-De-Guevara,
S. Abrahéo, and E. Insfran, “An update on effort estimation in agile
software development: A systematic literature review,” IEEE Access,
vol. 8, pp. 166 768-166 800, 2020.

B. Alsaadi and K. Saeedi, “Data-driven effort estimation techniques of
agile user stories: A systematic literature review,” Artificial Intelligence
Review, pp. 1-32, 2022.

Vali Tawosi 148 UCL - Dept. of Computer Science

BIBLIOGRAPHY

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

M. Fu and C. Tantithamthavorn, “GPT2SP: A transformer-based agile
story point estimation approach,” IEEE Transactions on Software
Engineering, 2022.

P. Abrahamsson, I. Fronza, R. Moser, J. Vlasenko, and W. Pedrycz,
“Predicting development effort from user stories,” in 2011 International
Symposium on Empirical Software Engineering and Measurement, IEEE,
2011, pp. 400-403.

S. Porru, A. Murgia, S. Demeyer, M. Marchesi, and R. Tonelli, “Estimating
story points from issue reports,” in PROMISE, 2016, pp. 1-10.

R. G. Soares, “Effort estimation via text classification and autoencoders,
in 2018 International Joint Conference on Neural Networks (IJCNN),
IEEE, 2018, pp. 01-08.

E. Scott and D. Pfahl, “Using developers’ features to estimate story
points,” in Proceedings of the 2018 International Conference on Software
and System Process, 2018, pp. 106-110.

M. Choetkiertikul, H. K. Dam, T. Tran, T. Pham, A. Ghose, and T. Menzies,
“A deep learning model for estimating story points,” IEEE Transactions
on Software Engineering, vol. 45, no. 7, pp. 637-656, 2019. doi: 10.
1109/TSE.2018.2792473.

V. Tawosi, A. Al-Subaihin, R. Moussa, and F. Sarro, “A versatile dataset of
agile open source software projects,” in Proceedings of 19th International
Conference on Mining Software Repositories (MSR), ACM, 2022.

V. Tawosi, R. Moussa, and F. Sarro, “Agile effort estimation: Have we
solved the problem yet? insights from a replication study,” IEEE
Transactions on Software Engineering (TSE), pp. 1-19, 2022.

V. Tawosi, A. Al-Subaihin, and F. Sarro, “Investigating the effectiveness
of clustering for story point estimation,” in Proceedings of the 29th IEEE
International Conference on Software Analysis, Evolution and
Reengineering (SANER), IEEE, 2022, pp. 816-827.

V. Tawosi, R. Moussa, and F. Sarro, “On the relationship between story
point and development effort in agile open-source software,” in 16th
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), ACM/IEEE, vol. 16, 2022.

Vali Tawosi 149 UCL - Dept. of Computer Science

https://doi.org/10.1109/TSE.2018.2792473
https://doi.org/10.1109/TSE.2018.2792473

BIBLIOGRAPHY

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

L. Angelis, I. Stamelos, and M. Morisio, “Building a software cost
estimation model based on categorical data,” in Proceedings Seventh
International Software Metrics Symposium, IEEE, 2001, pp. 4-15.

M. Shepperd and C. Schofield, “Estimating software project effort using
analogies,” IEEE Transactions on Software Engineering, vol. 23, no. 11,
pp. 736-743, 1997.

E. Kocaguneli, T. Menzies, J. Keung, D. Cok, and R. Madachy, “Active
learning and effort estimation: Finding the essential content of software
effort estimation data,” IEEE Transactions on Software Engineering,
vol. 39, no. 8, pp. 1040-1053, 2012.

G. Wittig and G. Finnie, “Estimating software development effort with
connectionist models,” Information and Software Technology, vol. 39,
no. 7, pp. 469-476, 1997.

A. L. Oliveira, “Estimation of software project effort with support vector
regression,” Neurocomputing, vol. 69, no. 13-15, pp. 1749-1753, 2006.

S. Chulani, B. Boehm, and B. Steece, “Bayesian analysis of empirical
software engineering cost models,” IEEE Transactions on Software
Engineering, vol. 25, no. 4, pp. 573-583, 1999.

F. Ferrucci, M. Harman, and F. Sarro, “Search-based software project
management,” in Software Project Management in a Changing World,
Springer, 2014, pp. 373-399.

F. Sarro, A. Petrozziello, and M. Harman, “Multi-objective software effort
estimation,” in 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE), IEEE, 2016, pp. 619-630.

E. Kocaguneli, A. Tosun, and A. Bener, “Al-based models for software
effort estimation,” in 2010 36th EUROMICRO Conference on Software
Engineering and Advanced Applications, |IEEE, 2010, pp. 323-326.

E. Kocaguneli, T. Menzies, and J. W. Keung, “On the value of ensemble
effort estimation,” IEEE Transactions on Software Engineering, vol. 38,
no. 6, pp. 1403-1416, 2011.

A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, F. Sarro, and E.
Mendes, “Using tabu search to configure support vector regression for
effort estimation,” Empirical Software Engineering, vol. 18, pp. 506-546,
2013.

Vali Tawosi 150 UCL - Dept. of Computer Science

BIBLIOGRAPHY

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, F. Sarro, and
E. Mendes, “How effective is tabu search to configure support vector
regression for effort estimation?” In Proceedings of the 6th international
conference on predictive models in software engineering, 2010,
pp. 1-10.

M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Computing
Surveys (CSUR), vol. 45, no. 1, pp. 1-61, 2012.

F. Sarro, “Search-based approaches for software development effort
estimation,” in Proceedings of the 12th International Conference on
Product Focused Software Development and Process Improvement,
2011, pp. 38-43.

C. J. Burgess and M. Lefley, “Can genetic programming improve software
effort estimation? a comparative evaluation,” Information and software
technology, vol. 43, no. 14, pp. 863—-873, 2001.

F. Ferrucci, C. Gravino, R. Oliveto, and F. Sarro, “Genetic programming
for effort estimation: An analysis of the impact of different fithess
functions,” in 2nd International Symposium on Search Based Software
Engineering, IEEE, 2010, pp. 89-98.

F. Ferrucci, C. Gravino, and F. Sarro, “How multi-objective genetic
programming is effective for software development effort estimation?” In
International Symposium on Search Based Software Engineering,
Springer, 2011, pp. 274-275.

M. Harman, P. McMinn, J. T. De Souza, and S. Yoo, “Search based
software engineering: Techniques, taxonomy, tutorial,” in Empirical
software engineering and verification, Springer, 2010, pp. 1-59.

F. Sarro and A. Petrozziello, “Linear programming as a baseline for
software effort estimation,” ACM transactions on software engineering
and methodology (TOSEM), vol. 27, no. 3, pp. 1-28, 2018.

A. J. Nebro, J. J. Durillo, and M. Vergne, “Redesigning the jmetal multi-
objective optimization framework,” in Proceedings of the companion
publication of the 2015 annual conference on genetic and evolutionary
computation, 2015, pp. 1093-1100.

M. Fowler, J. Highsmith, et al., “The agile manifesto,” Software
Development, vol. 9, no. 8, pp. 28-35, 2001.

Vali Tawosi 151 UCL - Dept. of Computer Science

BIBLIOGRAPHY

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]

[61]

[62]

K. S. Rubin, Essential Scrum: A practical guide to the most popular Agile
process. Addison-Wesley, 2012.

M. Usman, J. Borstler, and K. Petersen, “An effort estimation taxonomy
for agile software development,” International Journal of Software
Engineering and Knowledge Engineering, vol. 27, no. 04, pp. 641-674,
2017.

O. Oni and E. Letier, “Analyzing uncertainty in release planning: A
method and experiment for fixed-date release cycles,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 31, no. 2, pp. 1-39, 2021.

K. Schwaber and J. Sutherland, “The scrum guide. 2020,” Scrum Alliance,
2020.

A. J. Albrecht, “Measuring application development productivity,” in Proc.
Joint Share, Guide, and IBM Application Development Symposium, 1979,
1979.

C. Symons, A. Abran, C. Ebert, and F. Vogelezang, “Measurement of
software size: Advances made by the cosmic community,” in 2016 Joint
Conference of the International Workshop on Software Measurement
and the International Conference on Software Process and Product
Measurement (IWSM-MENSURA), IEEE, 2016, pp. 75-86.

S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro, “Web effort
estimation: Function point analysis vs. COSMIC,” Information and
Software Technology, vol. 72, pp. 90-109, 2016.

M. Cohn, Agile Estimating and Planning. Pearson Education, 2005.

H. Kniberg and M. Skarin, Kanban and Scrum-making the most of both.
Lulu. com, 2010.

J. Bowes, Agile concepts: Estimating and planning poker, May 2017.
[Online]. Available: https : / /manifesto . co.uk/agile - concepts -

estimating-planning-poker/.

B. Marapelli, A. Carie, and S. M. Islam, “RNN-CNN MODEL: A
bi-directional long short-term memory deep learning network for story
point estimation,” in 2020 5th International Conference on Innovative
Technologies in Intelligent Systems and Industrial Applications
(CITISIA), IEEE, 2020, pp. 1-7.

Vali Tawosi 152 UCL - Dept. of Computer Science

https://manifesto.co.uk/agile-concepts-estimating-planning-poker/
https://manifesto.co.uk/agile-concepts-estimating-planning-poker/

BIBLIOGRAPHY

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

M. Abadeer and M. Sabetzadeh, “Machine learning-based estimation
of story points in agile development: Industrial experience and lessons
learned,” in 2021 IEEE 29th International Requirements Engineering
Conference Workshops (REW), IEEE, 2021, pp. 106-115.

V. Tawosi, R. Moussa, and F. Sarro, Agile effort estimation: Have we
solved the problem yet? insights from a second replication study
(GPT2SP replication report), 2022. doi: 10.48550/ARXIV.2209.00437.
[Online]. Available: https://arxiv.org/abs/2209.00437.

N. Bettenburg, M. Nagappan, and A. E. Hassan, “Think locally, act
globally: Improving defect and effort prediction models,” in 2012 9th
IEEE Working Conference on Mining Software Repositories (MSR),
IEEE, 2012, pp. 60-69.

G. Nagpal, M. Uddin, and A. Kaur, “Analyzing software effort estimation
using k-means clustered regression approach,” ACM SIGSOFT Software
Engineering Notes, vol. 38, no. 1, pp. 1-9, 2013.

V. K. Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim, and E. Khatibi,
“Increasing the accuracy of software development effort estimation using
projects clustering,” IET software, vol. 6, no. 6, pp. 461-473, 2012.

L. L. Minku and S. Hou, “Clustering Dycom: An online cross-company
software effort estimation study,” in Proceedings of the 13th
International Conference on Predictive Models and Data Analytics in
Software Engineering, 2017, pp. 12-21.

T. Menzies, Y. Yang, G. Mathew, B. Boehm, and J. Hihn, “Negative
results for software effort estimation,” Empirical Software Engineering,
vol. 22, no. 5, pp. 2658-2683, 2017.

J. J. C. Gallego, D. Rodriéguez, M. A. Sicilia, M. G. Rubio, and A. G.
Crespo, “Software project effort estimation based on multiple parametric
models generated through data clustering,” Journal of Computer Science
and Technology, vol. 22, no. 3, pp. 371-378, 2007.

T. Menzies, A. Butcher, D. Cok, et al., “Local versus global lessons for
defect prediction and effort estimation,” IEEE Transactions on software
engineering, vol. 39, no. 6, pp. 822-834, 2012.

S.-J. Huang, N.-H. Chiu, and Y.-J. Liu, “A comparative evaluation on the
accuracies of software effort estimates from clustered data,” Information
and Software Technology, vol. 50, no. 9-10, pp. 879-888, 2008.

Vali Tawosi 153 UCL - Dept. of Computer Science

https://doi.org/10.48550/ARXIV.2209.00437
https://arxiv.org/abs/2209.00437

BIBLIOGRAPHY

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

S. K. T. Ziauddin and S. Zia, “An effort estimation model for agile
software development,” Advances in computer science and its
applications (ACSA), vol. 2, no. 1, pp. 314-324, 2012.

R. Popli and N. Chauhan, “Cost and effort estimation in agile software
development,” in 2014 international conference on reliability optimization
and information technology (ICROIT), IEEE, 2014, pp. 57-61.

E. Ungan, N. Cizmeli, and O. Demirdrs, “Comparison of functional size
based estimation and story points, based on effort estimation
effectiveness in scrum projects,” in 2014 40th EUROMICRO
Conference on Software Engineering and Advanced Applications, IEEE,
2014, pp. 77-80.

A. T. Raslan, N. R. Darwish, and H. A. Hefny, “Towards a fuzzy based
framework for effort estimation in agile software development,”
International Journal of Computer Science and Information Security,
vol. 13, no. 1, p. 37, 2015.

S. M. Satapathy and S. K. Rath, “Empirical assessment of machine
learning models for agile software development effort estimation using
story points,” Innovations in Systems and Software Engineering, vol. 13,
no. 2, pp. 191-200, 2017.

H. Huijgens and R. v. Solingen, “A replicated study on correlating agile
team velocity measured in function and story points,” in Proceedings of
the 5th International Workshop on Emerging Trends in Software Metrics,
2014, pp. 30-36.

M. Salmanoglu, T. Hacaloglu, and O. Demirors, “Effort estimation for
agile software development: Comparative case studies using COSMIC
functional size measurement and story points,” in Proceedings of the 27th
International Workshop on Software Measurement and 12th International
Conference on Software Process and Product Measurement, 2017,
pp. 41-49.

T. Dyba and T. Dingsgyr, “Empirical studies of agile software
development: A systematic review,” Information and Software
Technology, vol. 50, no. 9, pp. 833-859, 2008, issn: 0950-5849. doi:
https://doi.org/10.1016/j.infsof.2008.01.006.

Vali Tawosi 154 UCL - Dept. of Computer Science

https://doi.org/https://doi.org/10.1016/j.infsof.2008.01.006

BIBLIOGRAPHY

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

M. A. Langley, “Success Rates Rise - 2017 9th Global Project
Management Survey,” Tech. Rep., 2017. [Online]. Available:
https : / / WWW . pmi . org/ -
/media / pmi / documents / public / pdf / learning / thought -
leadership/pulse/pulse-of-the-profession-2017.pdf.

Jira Issue & Project Tracking Software | Atlassian. [Online]. Available:
https://www.atlassian.com/software/jira (visited on 01/21/2022).

Q. Umer, H. Liu, and I. lllahi, “CNN-based automatic prioritization of bug
reports,” IEEE Transactions on Reliability, vol. 69, no. 4, pp. 1341-1354,
20109.

C. Gavidia-Calderon, F. Sarro, M. Harman, and E. T. Barr, “The
assessor’s dilemma: Improving bug repair via empirical game theory,”
IEEE Transactions on Software Engineering, vol. 47, no. 10,
pp. 2143-2161, 2021. doi: 10.1109/TSE.2019.2944608.

Y. Huang, J. Wang, S. Wang, Z. Liu, D. Wang, and Q. Wang,
“Characterizing and predicting good first issues,” in Proceedings of the
15th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2021, pp. 1-12.

S. Mani, A. Sankaran, and R. Aralikatte, “Deeptriage: Exploring the
effectiveness of deep learning for bug triaging,” in Proceedings of the
ACM India Joint International Conference on Data Science and
Management of Data, 2019, pp. 171-179.

O. Chaparro, J. Lu, F. Zampetti, et al., “Detecting missing information
in bug descriptions,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, 2017, pp. 396—-407.

M. Choetkiertikul, H. K. Dam, T. Tran, A. Ghose, and J. Grundy,
“Predicting delivery capability in iterative software development,” IEEE
Transactions on Software Engineering, vol. 44, no. 6, pp. 551-573,
2017.

M. Ortu, G. Destefanis, B. Adams, A. Murgia, M. Marchesi, and
R. Tonelli, “The jira repository dataset: Understanding social aspects of
software development,” ser. PROMISE '15, Beijing, China: Association
for Computing Machinery, 2015, isbn: 9781450337151. doi:
10.1145/2810146.2810147.

Vali Tawosi 155 UCL - Dept. of Computer Science

https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pulse-of-the-profession-2017.pdf
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pulse-of-the-profession-2017.pdf
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pulse-of-the-profession-2017.pdf
https://www.atlassian.com/software/jira
https://doi.org/10.1109/TSE.2019.2944608
https://doi.org/10.1145/2810146.2810147

BIBLIOGRAPHY

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

M. Ortu, A. Murgia, G. Destefanis, et al., “The emotional side of software
developers in jira,” in 2016 IEEE/ACM 13th Working Conference on
Mining Software Repositories (MSR), IEEE, 2016, pp. 480-483.

A. Valdez, H. Oktaba, H. Gbmez, and A. Vizcaléno, “Sentiment analysis
in jira software repositories,” in 2020 8th International Conference in
Software Engineering Research and Innovation (CONISOFT), IEEE,
2020, pp. 254-259.

T. Zhang, B. Xu, F. Thung, S. A. Haryono, D. Lo, and L. Jiang,
“Sentiment analysis for software engineering: How far can pre-trained
transformer models go?” In 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME), IEEE, 2020, pp. 70-80.

V. Tawosi, A. Alsubaihin, M. Rebecca, and F. Sarro, The TAWOS dataset.
[Online]. Available: https://github. com/SOLAR - group/TAWOS . git
(visited on 01/27/2022).

The Jira REST Java Client, Version 5.2.0. [Online]. Available: https:
//mvnrepository.com/artifact/com.atlassian. jira/jira-rest-
java-client-app/5.2.0 (visited on 01/24/2022).

R. Sepahvand, R. Akbari, and S. Hashemi, “Predicting the bug fixing
time using word embedding and deep long short term memories,” IET
Software, vol. 14, no. 3, pp. 203-212, 2020.

Y. Lee, S. Lee, C.-G. Lee, I. Yeom, and H. Woo, “Continual prediction
of bug-fix time using deep learning-based activity stream embedding,”
IEEE Access, vol. 8, pp. 10503-10515, 2020.

M. Habayeb, S. S. Murtaza, A. Miranskyy, and A. B. Bener, “On the use of
hidden markov model to predict the time to fix bugs,” IEEE Transactions
on Software Engineering, vol. 44, no. 12, pp. 1224-1244, 2017.

M. Jimenez, R. Rwemalika, M. Papadakis, F. Sarro, Y. Le Traon, and
M. Harman, “The importance of accounting for real-world labelling when
predicting software vulnerabilities,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2019,
pp. 695-705.

A. A. Bangash, H. Sahar, A. Hindle, and K. Ali, “On the time-based
conclusion stability of cross-project defect prediction models,” Empirical
Software Engineering, vol. 25, no. 6, pp. 5047-5083, 2020.

Vali Tawosi 156 UCL - Dept. of Computer Science

https://github.com/SOLAR-group/TAWOS.git
https://mvnrepository.com/artifact/com.atlassian.jira/jira-rest-java-client-app/5.2.0
https://mvnrepository.com/artifact/com.atlassian.jira/jira-rest-java-client-app/5.2.0
https://mvnrepository.com/artifact/com.atlassian.jira/jira-rest-java-client-app/5.2.0

BIBLIOGRAPHY

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

F. Sarro, R. Moussa, A. Petrozziello, and M. Harman, “Learning from
mistakes: Machine learning enhanced human expert effort estimates,”
IEEE Transactions on Software Engineering, 2020.

Source Code and data for "A Deep Learning Model for Estimating Story
Points" - GitHub. [Online]. Available: https://github.com/morakotch/
datasets / tree / master / storypoint / IEEE , 20TSE2018 (visited on
12/03/2020).

M. lzadi, K. Akbari, and A. Heydarnoori, “Predicting the objective and
priority of issue reports in software repositories,” Empirical Software
Engineering, vol. 27, no. 2, p. 50, 2022.

R. H. Al-Ta’ani and R. Razali, “A framework for requirements prioritisation
process in an agile software development environment: Empirical study,”
International Journal on Advanced Science, Engineering and Information
Technology, vol. 6, no. 6, pp. 846856, 2016.

C. Fitzgerald, E. Letier, and A. Finkelstein, “Early failure prediction in
feature request management systems: An extended study,”
Requirements Engineering, vol. 17, pp. 117-132, 2012.

L. Li, M. Harman, E. Letier, and Y. Zhang, “Robust next release problem:
Handling uncertainty during optimization,” in Proceedings of the 2014
Annual Conference on Genetic and Evolutionary Computation, 2014,
pp. 1247-1254.

J. J. Durillo, Y. Zhang, E. Alba, M. Harman, and A. J. Nebro, “A study of
the bi-objective next release problem,” Empirical Software Engineering,
vol. 16, no. 1, pp. 29-60, 2011.

W. H. A. Al-Zubaidi, P. Thongtanunam, H. K. Dam, C. Tantithamthavorn,
and A. Ghose, “Workload-aware reviewer recommendation using a multi-
objective search-based approach,” in Proceedings of the 16th ACM
International Conference on Predictive Models and Data Analytics in
Software Engineering, 2020, pp. 21-30.

K. Beck and M. Fowler, Planning Extreme Programming, 1st. Boston, MA,
USA: Addison-Wesley Longman Publishing, 2000, isbn: 0201710919.

M. Jgrgensen, “A review of studies on expert estimation of software
development effort,” JSS, vol. 70, no. 1-2, pp. 37-60, 2004.

Vali Tawosi 157 UCL - Dept. of Computer Science

https://github.com/morakotch/datasets/tree/master/storypoint/IEEE%20TSE2018
https://github.com/morakotch/datasets/tree/master/storypoint/IEEE%20TSE2018

BIBLIOGRAPHY

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

M. D. Uncles and S. Kwok, “Designing research with in-built differentiated
replication,” Journal of Business Research, vol. 66, no. 9, pp. 1398-1405,
2013.

N. Juristo and O. S. Gomez, “Replication of software engineering
experiments,” in Empirical software engineering and verification,
Springer, 2010, pp. 60-88.

A. Santos, S. Vegas, M. Oivo, and N. Juristo, “Comparing the results of
replications in software engineering,” Empirical Software Engineering,
vol. 26, pp. 1-41, 2021.

S. Suthaharan, “Support vector machine,” in Machine Learning Models
and Algorithms for Big Data Classification: Thinking with Examples for
Effective Learning. Boston, MA: Springer US, 2016, pp. 207-235, isbn:
978-1-4899-7641-3. doi: 10.1007/978-1-4899-7641-3_9.

D. F. Specht, “Probabilistic neural networks,” Neural Networks, vol. 3,
no. 1, pp. 109-118, 1990.

I. Rish et al., “An empirical study of the naive bayes classifier,” in IJCAI
2001 workshop on empirical methods in artificial intelligence, vol. 3, 2001,
pp. 41-46.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with LSTM,” Neural Computation, 1999.

T. Pham, T. Tran, D. Phung, and S. Venkatesh, “Faster training of very
deep networks via p-norm gates,” in 2016 23rd International Conference
on Pattern Recognition (ICPR), IEEE, 2016, pp. 3542—-3547.

M. Shepperd and S. MacDonell, “Evaluating prediction systems in
software project estimation,” Information and Software Technology,
vol. 54, no. 8, pp. 820-827, 2012.

W. B. Langdon, J. Dolado, F. Sarro, and M. Harman, “Exact mean
absolute error of baseline predictor, MARPO,” Information and Software
Technology, vol. 73, pp. 16-18, 2016.

B. A. Kitchenham, L. M. Pickard, S. G. MacDonell, and M. J. Shepperd,
“What accuracy statistics really measure,” IEEE Software, vol. 148, no. 3,
pp. 81-85, 2001.

Vali Tawosi 158 UCL - Dept. of Computer Science

https://doi.org/10.1007/978-1-4899-7641-3_9

BIBLIOGRAPHY

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

S. K. T. Ziauddin and S. Zia, “An effort estimation model for agile
software development,” Advances in Computer Science and its
Applications (ACSA), vol. 2, no. 1, pp. 314-324, 2012.

Deep-SE, fixed Python source code, TF/IDF-SE Python source code, and
the datasets used in Chapter 4. [Online]. Available: https://figshare.
com/s/709c7e18c52e4264b70e (visited on 11/25/2021).

E. Mendes, M. Kalinowski, D. Martins, F. Ferrucci, and F. Sarro,
“Cross-vs. within-company cost estimation studies revisited: An
extended systematic review,” in Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering,
2014, pp. 1-10.

L. Minku, F. Sarro, E. Mendes, and F. Ferrucci, “How to make best use
of cross-company data for web effort estimation?” In 2015 ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement (ESEM), IEEE, 2015, pp. 1-10.

F. Ferrucci, E. Mendes, and F. Sarro, “Web effort estimation: The value
of cross-company data set compared to single-company data set,” in
PROMISE, ACM, 2012, pp. 29-38.

M. Jimenez, R. Rwemalika, M. Papadakis, F. Sarro, Y. Le Traon, and
M. Harman, “The importance of accounting for real-world labelling when
predicting software vulnerabilities,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2019,
pp. 695-705.

D. Falessi, J. Huang, L. Narayana, J. F. Thai, and B. Turhan, “On the
need of preserving order of data when validating within-project defect
classifiers,” Empirical Software Engineering, vol. 25, pp. 4805-4830,
2020.

L. Taylor and G. Nitschke, “Improving deep learning with generic data
augmentation,” pp. 1542-1547, 2018.

A. Mikotajczyk and M. Grochowski, “Data augmentation for improving
deep learning in image classification problem,” in 2018 international
interdisciplinary PhD workshop (IIPhDW), IEEE, 2018, pp. 117-122.

Vali Tawosi 159 UCL - Dept. of Computer Science

https://figshare.com/s/709c7e18c52e4264b70e
https://figshare.com/s/709c7e18c52e4264b70e

BIBLIOGRAPHY

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

N. Mittas, I. Mamalikidis, and L. Angelis, “A framework for comparing
multiple cost estimation methods using an automated visualization
toolkit,” Information and Software Technology, vol. 57, pp. 310-328,
2015.

P. A. Whigham, C. A. Owen, and S. G. Macdonell, “A baseline model for
software effort estimation,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 24, no. 3, pp. 1-11, 2015.

A. Arcuri and L. Briand, “A hitchhiker’'s guide to statistical tests for
assessing randomized algorithms in software engineering,” Software
Testing, Verification and Reliability, vol. 24, no. 3, pp. 219-250, 2014.

G. Neumann, M. Harman, and S. Poulding, “Transformed vargha-delaney
effect size,” in International Symposium on Search Based Software
Engineering, Springer, 2015, pp. 318-324.

R: The R Project for Statistical Computing, V. 4.0.1, 2020. [Online].
Available: https://www.r-project.org/ (visited on 02/02/2021).

F. Shull, V. Basili, J. Carver, et al., “Replicating software engineering
experiments: Addressing the tacit knowledge problem,” in Proceedings
international symposium on empirical software engineering, |IEEE, 2002,
pp. 7-16.

J. C. Carver, “Towards reporting guidelines for experimental replications:
A proposal,” in 1st international workshop on replication in empirical
software engineering, vol. 1, 2010, pp. 1-4.

V. Tawosi, A. Al-Subaihin, and F. Sarro, Investigating the Effectiveness
of Clustering for Story Point Estimation — Replication Package. [Online].
Available: https://github. com/SOLAR-group/LHC-SE.git (visited on
06/03/2022).

D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal
of Machine Learning Research, vol. 3, no. Jan, pp. 993-1022, 2003.

A. Al-Subaihin, F. Sarro, S. Black, and L. Capra, “Empirical comparison
of text-based mobile apps similarity measurement techniques,” Empirical
Software Engineering, vol. 24, no. 6, pp. 3290-3315, 2019.

A. A. Al-Subaihin, F. Sarro, S. Black, et al., “Clustering mobile apps
based on mined textual features,” in Proceedings of the 10th ACM/IEEE
international symposium on empirical software engineering and
measurement, 2016, pp. 1-10.

Vali Tawosi 160 UCL - Dept. of Computer Science

https://www.r-project.org/
https://github.com/SOLAR-group/LHC-SE.git

BIBLIOGRAPHY

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

F. Ebrahimi, M. Tushev, and A. Mahmoud, “Classifying mobile
applications using word embeddings,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 31, no. 2, pp. 1-30, 2021.

T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proceedings of
the National Academy of Sciences, vol. 101, no. suppl_1, pp. 5228-5235,
2004.

F. Murtagh and P. Legendre, “Ward's hierarchical agglomerative
clustering method: Which algorithms implement ward’s criterion?”
Journal of Classification, vol. 31, no. 3, pp. 274-295, 2014.

A. Starczewski and A. Krzyzak, “Performance evaluation of the
silhouette index,” in International conference on artificial intelligence
and soft computing, Springer, 2015, pp. 49-58.

J. Cohen, Statistical power analysis for the behavioral sciences.
Routledge, 2013.

F. Sarro, F. Ferrucci, M. Harman, A. Manna, and J. Ren, “Adaptive
multi-objective evolutionary algorithms for overtime planning in software
projects,” IEEE Transactions on Software Engineering, vol. 43, no. 10,
pp. 898-917, 2017.

F. Sarro, M. Harman, Y. Jia, and Y. Zhang, “Customer rating reactions can
be predicted purely using app features,” in 2018 IEEE 26th International
Requirements Engineering Conference (RE), IEEE, 2018, pp. 76-87.

M. Gammage, “Why your IT project may be riskier than you think,”
Harvard Business Review, vol. 89, no. 11, pp. 22-22, 2011.

M. Usman, E. Mendes, and J. Borstler, “Effort estimation in agile software
development: A survey on the state of the practice,” in Proceedings of the
19th international conference on Evaluation and Assessment in Software
Engineering, 2015, pp. 1-10.

A. E. D. Hamouda, “Using agile story points as an estimation technique in
CMMI organizations,” in 2014 Agile Conference, IEEE, 2014, pp. 16-23.

F. Ferrucci, C. Gravino, P. Salza, and F. Sarro, “Investigating functional
and code size measures for mobile applications: A replicated study,”
in Product-Focused Software Process Improvement, P. Abrahamsson,
L. Corral, M. Oivo, and B. Russo, Eds., Cham: Springer International
Publishing, 2015, pp. 271-287, isbn: 978-3-319-26844-6.

Vali Tawosi 161 UCL - Dept. of Computer Science

BIBLIOGRAPHY

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

M. Ortu, G. Destefanis, B. Adams, A. Murgia, M. Marchesi, and R. Tonelli,
“The jira repository dataset: Understanding social aspects of software
development,” in Proceedings of the 11th international conference on
predictive models and data analytics in software engineering, 2015,
pp. 1-4.

P. E. McKnight and J. Najab, “Mann-Whitney U Test,” The Corsini
Encyclopedia of Psychology, pp. 1-1, 2010.

K. Pearson, Notes on regression and inheritance in the case of two
parents proceedings of the royal society of london, 58, 240-242, 1895.

C. Spearman, “The proof and measurement of association between two
things.,” pp. 72-101, 1961.

M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30,
no. 1/2, pp. 81-93, 1938.

S. Boslaugh, Statistics in a nutshell: A desktop quick reference. " O'Reilly
Media, Inc.", 2012.

C. Croux and C. Dehon, “Influence functions of the spearman and kendall
correlation measures,” Statistical methods & applications, vol. 19, no. 4,
pp. 497-515, 2010.

A. R. Gilpin, “Table for conversion of kendall's tau to spearman’s rho
within the context of measures of magnitude of effect for meta-analysis,”
Educational and psychological measurement, vol. 53, no. 1, pp. 87-92,
1993.

J. F. Hemphill, “Interpreting the magnitudes of correlation coefficients.,”
American Psychologist, vol. 58, pp. 78-79, 2003.

V. Tawosi, R. Moussa, and F. Sarro, Online Appendix containing Data and
R Scripts for “On the Relationship Between Story Point and Development
Effort in Agile Open-Source Software”, 2022. [Online]. Available: https:
//github.com/SOLAR-group/SPvsDevelopmentEffort.git (visited on
04/29/2022).

J. M. Zhang, F. Li, D. Hao, et al., “A study of bug resolution characteristics
in popular programming languages,” IEEE Transactions on Software
Engineering, vol. 47, no. 12, pp. 2684-2697, 2019.

J. P. Royston, “An extension of Shapiro and Wilk’'s W test for normality
to large samples,” Journal of the Royal Statistical Society: Series C
(Applied Statistics), vol. 31, no. 2, pp. 115-124, 1982.

Vali Tawosi 162 UCL - Dept. of Computer Science

https://github.com/SOLAR-group/SPvsDevelopmentEffort.git
https://github.com/SOLAR-group/SPvsDevelopmentEffort.git

BIBLIOGRAPHY

[165]

[166]

[167]

[168]

[169]

A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al., “Improving
language understanding by generative pre-training,” 2018.

A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

A. N. Meyer, E. T. Barr, C. Bird, and T. Zimmermann, “Today was a
good day: The daily life of software developers,” IEEE Transactions on
Software Engineering, vol. 47, no. 5, pp. 863-880, 2019.

A. N. Meyer, L. E. Barton, G. C. Murphy, T. Zimmermann, and T. Fritz,
“The work life of developers: Activities, switches and perceived
productivity,” IEEE Transactions on Software Engineering, vol. 43,
no. 12, pp. 1178-1193, 2017.

S. Alamir, P. Z. R. Silva, A. Pozanco, et al., “A planning approach to agile
project management. The Jira Planner,” FinPlan 2021, p. 1, 2021.

Vali Tawosi 163 UCL - Dept. of Computer Science

	Declaration
	Abstract
	Impact Statement
	Acknowledgement
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Contributions
	List of Papers
	Organisation of the Thesis

	Literature Review
	Traditional Software Effort Estimation
	Agile Planning
	Software Size Measures
	Agile Effort Estimation
	Story Point as a Cost Driver for Agile Effort Estimation
	Story Point vs Actual Effort

	The TAWOS Dataset
	Introduction
	Dataset Description
	Data Extraction
	Data Storage
	Data Characteristics
	Data Structure
	Computed and Derived Fields
	Extensibility and Maintainability

	Originality and Relevance
	Research Opportunities
	Summary

	Previous Methods to Estimate Story Points
	Introduction
	The Deep-SE and TF-IDF-SE Approaches for Agile Effort Estimation
	Deep-SE
	TF-IDF-SE

	Empirical Study Design
	Research Questions
	Data
	Benchmarks
	Evaluation Measures and Statistical Analysis

	Results
	RQ1. Sanity Check
	RQ2. Deep-SE vs TF-IDF-SE
	RQ3. Cross-project Estimation
	RQ4. Augmented Training Set
	RQ5. Pre-Training Effectiveness

	Discussion
	Threats to Validity
	Conclusion

	Clustering Approach to Estimate Story Points
	Introduction
	The Proposed Method
	Text Pre-processing and Topic Modelling
	Clustering
	Estimation Models

	Empirical Study Design
	Research Questions
	Data
	Evaluation Measures
	Statistical Analysis

	Results
	RQ1. Sanity Check
	RQ2. Additional Features
	RQ3. Comparison to the Previous Work

	Discussion
	Threats to Validity
	Conclusion and Future Work

	Effectiveness of Story Points in Estimating Effort
	Introduction
	Background
	Software Size Measures
	Jira Workflow and Issue Development Time

	Empirical Study Design
	Research Questions
	Methodology
	Data

	Results
	RQ1. Approximating Issue Development Time
	RQ2. Correlation
	RQ3. Consistency

	Threats to Validity
	Conclusions

	Predicting Issue Development Time
	Introduction
	Background
	Empirical Study Design
	Research Questions
	Data
	Evaluation Measures

	Results
	RQ1. Estimating Development Time
	RQ2. Story Point as another Effort-Driver

	Threats to Validity
	Conclusion

	Conclusions and Future Work
	Findings
	Future Work

	Bibliography

