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Abstract

This thesis considers the problem of binary matrix completion with side information

in the online setting and the applications thereof. The side information provides ad-

ditional information on the rows and columns and can yield improved results com-

pared to when such information is not available. We present efficient and general

algorithms in transductive and inductive models. The performance guarantees that

we prove are with respect to the matrix complexity measures of the max-norm and

the margin complexity. We apply our bounds to the hypothesis class of biclustered

matrices. Such matrices can be permuted through the rows and columns into ho-

mogeneous latent blocks. This class is a natural choice for our problem since the

margin complexity and max-norm of these matrices have an upper bound that is

easy to interpret in terms of the latent dimensions. We also apply our algorithms

to a novel online multitask setting with RKHS hypothesis classes. In this setting,

each task is partitioned in a sequence of segments, where a hypothesis is associated

with each segment. Our algorithms are designed to exploit the scenario where the

number of associated hypotheses is much smaller than the number of segments. We

prove performance guarantees that hold for any segmentation of the tasks and any

association of hypotheses to the segments. In the single-task setting, this is analo-

gous to switching with long-term memory in the sense of [Bousquet and Warmuth;

2003].



Impact Statement

Matrix completion is a mathematical problem that has applications ranging from

e-commerce to computer vision. Its most notable application area is possibly that

of recommendation systems, popularized by the Netflix challenge. As the demand

for such applications rise, it is natural that algorithms become increasingly better

adapted to the different needs for each application. In this thesis, we cater for one

such need; we develop online algorithms which are particularly suited for the case

where additional information is given about the rows and the columns of the ma-

trix. There are direct applications for the problem that we solve, such as movie

recommendation systems where we have user demographics and movie metadata.

However, we also identify another less evident application: multitask learning

with memory. This setting is applicable when multiple learning agents collaborate

in changing but recurring environments. Examples include drones working together

to identify environmental waste, and servers attempting to identify suspicious activ-

ity in networks. Aside from having useful applications, the setting is novel which

could spark further ideas in the research community.

Regardless of the exact application, the algorithms and bounds that we develop

are contributions to the field of theoretical machine learning. With the rise of ma-

chine learning and its ubiquity in many domains, a good theoretical understanding

remains important to avoid any pitfalls. For instance, our algorithm cannot fare too

badly, even when presented with adversarial data. This characteristic makes the

algorithm more robust against adversarial attacks.
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Chapter 1
Introduction

The matrix completion problem arises in numerous application areas, including the

well-known “Netflix challenge” [1] and more generally, collaborative filtering [2].

Crudely speaking, the aim is to recover the missing entries of a given matrix. When

applied to the Netflix challenge, the rows of the matrix represent the users of the

platform while the columns represent the movies that can be recommended to these

users. Each entry of the matrix would then be a numerical value which indicates

whether the corresponding user likes the movie. The value could be continuous

or categorical, commensurate with the strength of preference, or it could be binary,

where a ‘1’ encodes a positive response and a ‘0’ indicates a negative response. This

problem is not fully defined in the absence of further constraints. In collaborative

filtering, it is further assumed that the matrix is of low rank, which assumes clusters

of similar users and movies. Since the rank is non-convex, the nuclear or trace norm

is often used as a convex proxy for the rank. However, the use of the max norm as a

proxy has also been gaining traction [3] and in this thesis, we have bounds in terms

of the margin complexity and the max norm.

As for many learning tasks, we can formulate both batch and online learning

variants of this problem. In the batch setting, all the known entries are accessible

to the learner from the onset, and the task is to predict all the missing entries. The

online learning setting instead proceeds in trials, where on each trial, only a single

matrix entry is considered. For this entry, the learner gives a prediction, receives
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feedback and then incurs a loss. In this thesis, we will focus on the online variant

of the problem.

In many situations, we may have access to additional information on the rows

and columns, the side information. Reverting back to the Netflix example, this infor-

mation could be derived from demographic data from the users and movie metadata.

The side information is hoped to aid the learner, resulting in improved performance

guarantees. We consider side information with kernel functions which output the

similarity between the users (or equivalently the movies). These functions could be

derived from graph Laplacians, or be standard kernels such as the Gaussian kernel.

1.1 Problem Statement
The general problem that we consider is binary matrix completion with side infor-

mation in the online setting. First we introduce the setting without side information.

On each trial t = 1, . . . ,T :

1. the learner is queried by the environment to predict matrix entry (it, jt)

2. the learner predicts a label ŷt ∈ {−1, 1}

3. the learner receives a label yt ∈ {−1, 1} from the environment and

4. a mistake is incurred if yt , ŷt.

The aim is to minimize the number of mistakes. With the introduction of side infor-

mation, the learner not only receives the entry (it, jt) at each trial but also additional

information on the rows and columns. We consider both transductive and inductive

models. In the former model, we are given the side information of all the rows and

columns completely in advance as a pair of positive definite matrices. One of these

informs the similarity between the rows, and the other for the columns. The limi-

tation with this model is that we cannot introduce new rows or columns during the

learning process. The inductive model bypasses this limitation by only giving two

kernel functions in advance, which again inform the similarity between the rows and

the columns respectively. As learning proceeds, we are asked to predict elements
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from the domains of the row and column kernel functions. The mapping of the do-

main of the kernel functions to the rows and columns of the matrix is thus created

on the go. When the domains of the kernel functions are infinite-dimensional, there

are no restrictions on the number of rows and columns.

We will consider two forms of performance guarantees. The first is an upper

bound on the number of mistakes as a function of a comparator matrix U ∈ <m×n,

under the assumption that sign(Uit jt) = yt for all t ∈ [T ]. This assumption is also

denoted the realizability assumption, and is violated for instance when the received

labels yt are noisy and hence do not exactly correspond to the entries in U . The

second is an upper bound on the expected c-regret,
∑T

t=1 E[yt , ŷt] − c(U )
∑T

t=1[yt ,

Uit jt], where the expectation is with respect to the learner’s internal randomization.

Contrary to the mistake bound, such a guarantee is indicative of a robustness to

noise. As is standard in online learning, the guarantees that we provide do not

require probabilistic assumptions on how the environment generates the instances

or their labels; in fact this process may even be adversarial. The only restriction on

the environment for the regret bound to hold is that the label yt cannot depend on

the learner’s prediction ŷt. In the case of the mistake bound, this requirement is not

even necessary.

In this thesis, we consider variants of the matrix exponentiated gradient (MEG)

algorithm [4] and the matrix gradient descent (MGD) algorithm [5, 6]. In particular,

we will present efficient, polynomial-time algorithms that perform online matrix

completion with side information in both transductive and inductive models, and

provide meaningful performance guarantees. The MEG-based algorithms offer su-

perior performance guarantees at the expense of a higher run-time. We also discuss

the applications on matrices with a latent block structure and online multitask learn-

ing with long-term memory. The contents of the thesis are based on the following

publications:

1. Mark Herbster, Stephen Pasteris, and Lisa Tse. Online matrix completion

with side information. Neural Information Processing Systems, (33), 2020

2. Mark Herbster, Stephen Pasteris, and Lisa Tse. Online multitask learning
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with long-term memory. Neural Information Processing Systems, (33), 2020

1.2 Thesis Structure

Chapter 2: Background

This chapter includes short introductions and brief literature reviews on the key

areas of the thesis. Since all the algorithms presented in the thesis consider the

online setting, we introduce the general field of online learning along with some

representative works. We also review other works that perform matrix completion

in the online setting. Finally, we discuss matrix completion algorithms in the batch

setting, as this setting has an extensive body of work that consider side information.

Chapter 3: General Algorithms and Bounds

In Chapter 3, we give our base transductive and inductive algorithms for online

binary matrix completion with side information. We prove regret bounds, in ad-

dition to mistake bounds for a MEG-based algorithm and a MGD-based algorithm

in Theorems 1 and 4 respectively. The MEG-based algorithm has improved mis-

take bounds at the expense of a higher time complexity. We also prove that the

transductive and inductive algorithms are prediction-equivalent, so that the bounds

for the transductive algorithms hold for their inductive counterparts. The bounds

hold for general comparator matrices and are written in terms of the max-norm and

margin complexity. The chapter presents the results in [7] with the minor modifica-

tion that the chapter gives performance guarantees for real-valued instead of binary

comparator matrices. This is useful in the application of the Gaussian kernel on

biclustered matrices (Section 4.5.2) and the analysis in the main theorem of Chap-

ter 5. While most of the chapter is written in collaboration with Mark Herbster and

Stephen Pasteris, Sections 3.2.2 and 3.4 are my own work.

Chapter 4: Latent Block Structure

In Chapter 4, we give an interpretation of the bounds for the hypothesis class of bi-

clustered matrices in Theorem 57. These matrices have a latent block structure and

we consider various forms of side information, such as graph side information in the
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transductive setting and vectors in<d in the inductive setting. The chapter is based

on the contents of [7], which is written in collaboration with Mark Herbster and

Stephen Pasteris. Sections 4.5.2, 4.5.3 and 4.6.2 are extensions to the publication

and my own work.

Chapter 5: Online Multitask Learning with Long-Term Memory

In Chapter 5, we apply our inductive algorithm to solve the problem of multitask

learning with long-term memory on RKHS hypothesis classes. In this treatment, an

alternative interpretation is used for Theorem 57 through Theorem 71. This chapter

extends the contents of [8], so that all results hold for functions with a bounded,

continuous range instead of the binary range in [8]. The original publication is

written in collaboration with Mark Herbster and Stephen Pasteris, but the extension

to continuous RKHS functions and Section 5.4 are my own work.

1.3 Notation
For any positive integer m, we define [m] := {1, 2, . . . ,m}. For any predicate

[pred] := 1 if pred is true and equals 0 otherwise, and [x]+ := x[x > 0]. We

define the hinge loss at margin γ as Lγhi(y1, y2) = 1
γ
[γ− y1y2]+, and the zero-one loss

as L01(y1, y2) := [y1 , y2].

We denote the inner product of vectors x,w ∈ <n as both 〈x,w〉 = x · w =∑n
i=1 xiwi, and the norm as ‖w‖ =

√
〈w,w〉. The ith coordinate m-dimensional

vector is denoted ei
m := ([ j = i]) j∈[m]; we will often abbreviate the notation and use

ei on the assumption that the dimensionality of the space may be inferred. More

generally, the xth-coordinate vector is denoted ex
X := ([x = z])z∈X; we commonly

abbreviate this to ex.

For vectors p ∈ <m and q ∈ <n we define [p; q] ∈ <m+n to be the concate-

nation of p and q, which we regard as a column vector. Hence [p; q]>[p̄; q̄] =

p>p̄ + q>q̄. We let<m×n be the set of all m × n real-valued matrices. If X ∈ <m×n

then Xi denotes the i-th n-dimensional row vector and the (i, j)th entry of X is Xi j.

We define X+ and X> to be its pseudoinverse and transpose, respectively. The

trace norm of a matrix X ∈ <m×n is ‖X‖1 = tr(
√
X>X), where

√
· indicates the
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unique positive square root of a positive semi-definite matrix, and tr(·) denotes the

trace of a square matrix. This is given by tr(Y ) =
∑n

i=1 Yii for Y ∈ <n×n. The

m × m identity matrix is denoted Im. In addition, we define Sm to be the set of

m×m symmetric matrices and let Sm
+ and Sm

++ be the subset of positive semidefinite

and strictly positive definite matrices respectively. Recall that the set of symmetric

matrices Sm
+ has the following partial ordering: for every M ,N ∈ Sm

+ , we say that

M �N if and only ifN −M ∈ Sm
+ . We also define the squared radius ofM ∈ Sm

+

as RM := maxi∈[m] M+
ii , where the nomenclature comes from an identical term that

arises in the kernel perceptron bound as per Novikoff’s Theorem [76].

For every matrix U ∈ <m×n, we define SP(U ) = {V ∈ <m×n : ∀i jVi jUi j > 0},

the set of matrices which are sign consistent withU . We also define SP1(U ) = {V ∈

<m×n : ∀i jVi j sign(Ui j) ≥ 1}, that is the set of matrices which are sign consistent

with U with a margin of at least one.

The max-norm (or γ2 norm [9]) of a matrix U ∈ <m×n is defined by

‖U‖max := min
PQ>=U

{
max
1≤i≤m

‖Pi‖ × max
1≤ j≤n

∥∥∥Q j

∥∥∥} , (1.1)

where the minimum is over all matrices P ∈ <m×d, Q ∈ <n×d and ev-

ery integer d. For more intuition, we recall that the trace norm of a ma-

trix U , given by the sum of the singular values, can be written as ||U ||tr =

minPQ>=U

{√∑
1≤i≤m ‖Pi‖

2
√∑

1≤ j≤n

∥∥∥Q j

∥∥∥2
}

. Hence, the trace norm constrains the

sum instead of the maximum over the row norms of P and Q, giving a more uni-

form constraint (for more details, see [53]). A related notion that has been used to

study binary matrices is the margin complexity. The margin complexity of a matrix

U ∈ <m×n is

mc(U ) := min
V ∈SP1(U )

‖V ‖max = min
PQ>∈SP(U )

max
i j

‖Pi‖
∥∥∥Q j

∥∥∥
|〈Pi,Q j〉|

. (1.2)

Observe that for U ∈ {−1, 1}m×n, 1 ≤ mc(U ) ≤ ‖U‖max ≤ min(
√

m,
√

n), where

the lower bound follows from the right hand side of (1.2) and the upper bound

follows since we may decompose U = UIn or as U = ImU . Note there may be
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a large gap between the margin complexity and the max-norm. In [9] a matrix in

U ∈ {−1, 1}n×n was given such that mc(U ) = log n and ‖U‖max = Θ(
√

n/log n).

We denote the classes of m × d row-normalized and block expansion matrices as

Nm,d := {P̂ ⊂ <m×d :
∥∥∥P̂i

∥∥∥ = 1, i ∈ [m]} and Bm,d := {R ⊂ {0, 1}m×d : ‖Ri‖ =

1, i ∈ [m], rank(R) = d}, respectively. Block expansion matrices may be seen as a

generalization of permutation matrices, additionally duplicating rows (columns) by

left (right) multiplication. We define the quasi-dimension of a matrix U ∈ <m×n

with respect toM ∈ Sm
++, N ∈ S

n
++ at margin γ as

D
γ

M ,N (U ) := min
P̂ Q̂>=γU

RM tr
(
P̂ >MP̂

)
+ RN tr

(
Q̂>NQ̂

)
, (1.3)

where the infimum is over all row-normalized matrices P̂ ∈ Nm,d and Q̂ ∈ Nn,d

and every integer d. If the infimum does not exist then Dγ

M ,N (U ) := +∞. We also

define the quasi-area of a matrix U ∈ <m×n with respect to M ∈ Sm
++, N ∈ S

n
++ at

margin γ as

A
γ

M ,N (U ) := min
P̂ Q̂>=γU

RMRN tr
(
P̂ >MP̂

)
tr

(
Q̂>NQ̂

)
, (1.4)

where the infimum is P̂ ∈ Nm,d and Q̂ ∈ Nn,d and every integer d. If the infimum

does not exist then Aγ

M ,N (U ) := +∞. Note that for both the quasi-dimension and

the quasi-area, the infimum exists iff ‖U‖max ≤ 1/γ. Finally note that Dγ

M ,N (U ) =

m + n andAγ

M ,N (U ) = mn if ‖U‖max ≤ 1/γ,M = Im andN = In .

We now introduce notation specific to the graph setting. Let G be an m-vertex

connected, undirected graph with positive weights. The LaplacianL of G is defined

as D − A, where D is the m × m degree matrix and A is the m × m adjacency

matrix. Observe that as G is connected, L is a rank m − 1 matrix with 1 in its

null space. From L we define the (strictly) positive definite PDLaplacian L◦ :=

L+
(

1
m

) (
1
m

)>
R−1

L . Observe that if u ∈ [−1, 1]m then (u>L◦u)RL◦ ≤ 2(u>LuRL+1),

and similarly, (u>Lu)RL ≤
1
2 (u>L◦u)RL◦ (see [10] for details of this construction).

A function K : X × X → < is a strictly positive definite (SPD) kernel iff

for every finite X ⊆ X the matrix K(x, x′)x,x′∈X is symmetric and strictly positive

definite, for example, the Gaussian kernel.
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Background

For the reader’s convenience, we present short introductions on the main subject

areas of this thesis. In Subsection 2.1, we review some of the classical works in

online learning and their derivatives, while positioning our algorithms within this

vast landscape of related works. This is by no means an exhaustive review of the

field, and we encourage the interested reader to peruse references such as [11, 12].

Since we present algorithms for online matrix completion, we proceed by covering

the research in this area in Subsection 2.2.1. The works on matrix completion in the

batch setting are then reviewed in Subsection 2.2.2, which includes more works on

incorporating side information into the problem.

2.1 Online Learning

Online learning is an alternative paradigm to the batch supervised learning setting.

Instead of being given all the training data at the start of the learning process, the

premise of online learning is that the learner receives the training examples sequen-

tially over T trials. On each trial t, the learner observes an instance xt, gives the

prediction ŷt, before the true label yt is revealed and a loss L(ŷt, yt) is incurred. The

goal of the learner is then to minimize the cumulative loss
∑

t∈[T ]L(ŷt, yt). To prove

performance guarantees from here, it is possible to take a probabilistic perspective

and assume that the data sequence is generated through an underlying probabilis-

tic process, perhaps drawn i.i.d. from an unknown distribution. However, we will
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focus on the more dominant approach in online learning where no such assump-

tions are made. In fact, in the worst case the data sequence can even be adversarial.

Given that a potential adversary has free rein over the data generation process, the

performance guarantees that can be given must be restricted in some way. A com-

mon guarantee is an upper bound on the regret, so that the learner is not expected to

perform well in absolute terms, but only relative to a hypothesis classH :

∑
t∈[T ]

L(ŷt, yt) −min
h∈H

∑
t∈[T ]

L(h(xt), yt)

It quantifies the regret that we “feel" for not having predicted with the optimal hy-

pothesis h∗ = argminh∈H
∑

t∈[T ]L(h(xt), yt). The objective is to have an upper bound

on the regret that is sublinear in T , so that in the limit where T → ∞, the regret

tends to zero. If we further assume that minh∈H
∑

t∈[T ]L(h(xt), yt) = 0, also termed

the realizability assumption, we can obtain an arguably more intuitive performance

guarantee: an upper bound on the cumulative loss of the algorithm.

Linear Classification

In the case where the predictions and labels are both binary, i.e., ŷt ∈ {−1, 1} and

yt ∈ {−1, 1}, we have the online binary classification problem. The natural loss to

use is the zero-one loss, given by L01(yt, ŷt) = [yt , ŷt], which simply counts the

number of mistakes. If we assume that the problem is realizable, then we can give

performance guarantees in terms of an upper bound on the number of mistakes. One

of the earliest online classification algorithms is Rosenblatt’s perceptron [5, 6] for

learning binary classifiers with instances xt ∈ <
n. Assuming a linear hypothesis, it

maintains a weight vector wt that initializes as w1 = 0, and predicts according to

ŷt = sign(〈wtxt〉). After receiving the binary label, the weight vector is updated as

follows:

wt+1 = wt + ytxt.

Being one of the earliest learning algorithms, this work has left new research direc-

tions to sprout and bloom in its wake, with a prime example being the emergence of

neural networks [13]. The perceptron algorithm can be kernelized and descriptions
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thereof can be found in [14, 15] amongst others. Another early online classifica-

tion algorithm is the Winnow algorithm [16]. The setting considered by the original

algorithm assumes instances xt ∈ {0, 1}n, binary predictions and labels. Similar to

the perceptron algorithm, it maintains a weight vector which it updates. However,

unlike the additive updates of the perceptron, it has multiplicative updates:

wt+1 = wt exp(−ηytxt),

where η is typically set to 2. The Winnow algorithm excels in particular on the

problem of learning k-literal disjunctions. For this setting, Winnow achieves a

O(k log(n)) mistake bound, whereas the perceptron would only achieve aO(kn) mis-

take bound.

Expert Advice

A related problem is that of prediction with expert advice (for a more in-depth treat-

ment, see [11]). In its classical formulation, we have a set of n “experts” that provide

binary predictions on each trial, given by the examples xt ∈ {−1, 1}n, and again we

consider both binary predictions and labels yt ∈ {−1, 1}. Unlike linear classifica-

tion, where the performance of the algorithm is compared against the optimal linear

combination of the experts’ predictions, in this setting the performance is compared

against that of the best expert. One of the first algorithms to tackle this problem

is the halving algorithm [17, 18], which assumes realizability, i.e., that there exists

an expert in the set that predicts consistently with the labels. The algorithm pre-

dicts according to the majority of the experts. When a mistake is made, more than

half of the experts can be discarded, allowing it to have a mistake bound that scales

logarithmically with the number of experts. The weighted majority algorithm [19]

circumvents the need for the realizability assumption by maintaining weights on the

different experts. Instead of discarding incorrect experts completely, it shrinks the

weights of those experts by multiplying it by a constant β ∈ [0, 1). In the case where

β = 0, we retrieve the halving algorithm. However, when β , 0, the weights are

reduced with an exponential dependence on the number of mistakes. Further de-
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velopments allowed for continuous predictions [19, 20] and continuous labels [21].

The allocation setting is a related setting, where we assign a probability vector over

the experts on each trial, so thatwt ∈ ∆n, where ∆n is the n-dimensional simplex. We

then receive a vector of the losses lt ∈ [0, 1]n, before suffering the loss 〈wt, lt〉. For

this setting, a multiplicative weight update gave rise to the Hedge algorithm [22].

Linear Regression

Although linear classification is an important problem, there are situations where

the labels and predictions may need to be continuous, giving online linear regres-

sion [23]. For this problem, [23] gives two algorithms. The first has a multiplicative

weight update, where the gradient of the loss is exponentiated, similar to the algo-

rithms for prediction with expert advice and the Winnow algorithm. The second

has an additive weight update, with a straightforward gradient descent, similar to

the perceptron update. The authors of [23] also give a motivation for these updates,

where it is shown that the exponentiated gradient update can be rewritten as an

optimization which minimizes the loss with a relative entropy regularizer. This is

contrasted with the gradient descent update as in the perceptron algorithm, which

has an `2-norm regularization term instead.

From a more modern perspective, many online learning algorithms are often

viewed through the unified lens of Online Convex Optimization. In this framework,

the learner predicts a vectorwt from a convex set S on each trial, receives a convex

loss function ft : S → < and then suffers the loss ft(wt). A common algorithm

to tackle this problem is Follow the Regularized Leader (FTRL) (see [12] for an

overview), which outputs a vector that minimizes the cumulative loss and a regular-

ization term characterized by the function R : S → <, i.e.

wt+1 = argmin
w∈S

∑
i∈[t]

fi(w) + R(w).

From this, the Online Mirror Descent framework can be derived by assuming lin-

ear loss functions and simplifying to remove the explicit optimization. It requires

a linking function g : <n → S and initializes θ1 = 0. On each trial, it predicts
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according to wt = g(θt). After that, it updates according to θt+1 = θt − zt where

zt ∈ ∇ ft(wt). The general framework encapsulates the gradient descent and expo-

nentiated gradient algorithms, for which the linking functions typically have a linear

and exponential dependence on θ respectively.

In this thesis, we will introduce algorithms that are instances of the matrix

gradient descent (MGD) and matrix exponentiated gradient (MEG) [4, 24, 25, 26]

algorithms. Being matrix generalizations of the vector algorithms, weight and in-

stance matrices are considered. We adapt this algorithm to our use cases through an

appropriate choice of comparator matrix, matrix embeddings and threshold value.

Similar to the vector equivalents, the matrix algorithms can be motivated by an opti-

mization problem, where the relative entropy regularizer is replaced by the quantum

relative entropy for MEG (see [4, Section 3.1]), and the Frobenius norm instead of

the `2 norm is used for MGD.

2.2 Matrix Completion
Although collaborative filtering popularized matrix completion, the problem was

studied historically due to its other applications. In the online learning setting, early

applications included learning binary relations over two sets [27], where for in-

stance a clinician may want to predict whether a patient is allergic to a certain aller-

gen. In the batch setting, matrix completion was applied in domains such as global

positioning from limited distance information [28], remote sensing [29] where one

attempts to infer a full covariance matrix from incomplete observations of corre-

lations, system design in control [30] and the structure-from-motion problem [31].

From heuristics to more well-motivated algorithms, there are now many works that

propose to solve different variants of the problem. In the following, we will elabo-

rate on some of the representative works in this field.

2.2.1 Online Setting

Early work [27] was targeted at the problem of learning a binary relation between a

set I of cardinality m and another set J of cardinality n. Representing the first set

I as the rows and the other set J as the columns, this could be framed as a m × n



Chapter 2. Background 26

binary matrix completion problem where the entry is 1 if the relation holds true.

This work considers rows that are of k types, where rows of the same type have the

same values for all entries. [32] also considers the noisy setting where rows of the

same row type may not be fully identical to each other and solves it via a variant of

the weighted majority algorithm. It maintains weights for each of the
(

m
2

)
row pairs.

When predicting for a given entry (i, j) ∈ [m]×[n], each of the other rows in [m]\{i}

is taken as an expert whose prediction corresponds to their value of the jth column

entry. If the value is not known, it predicts 1/2. The experts are combined using the

weights for the row pairs of row i and the expert rows.

Regret bounds are subsequently given in [33] for the case of bounded trace

norm matrices. The algorithm is based on the batch method of empirical risk mini-

mization and the regret is given in terms of the Rademacher complexity. Although

efficient, it is not a fully practical algorithm with a higher complexity than FTRL

algorithms. The authors of [25] provide tight upper and lower bounds in terms of

(β, τ) matrices, where β and τ are related to the max-norm and trace-norm respec-

tively. Mistake bounds for binary matrix completion with a matrix exponentiated

gradient algorithm are given in [34], which present a mistake bound in terms of the

margin complexity of the matrix. An FTRL algorithm with the log-determinant reg-

ularizer instead of the quantum relative entropy is considered in [35], and provides

a logarithmic improvement to the bound in [34], at the expense of an apparently

higher computational complexity. Also related are the works on online PCA, which

aim to recover a matrix of a restricted matrix complexity class [36, 37]. None of the

above references consider the problem of side information.

Instances of matrix completion with side information on specific matrix com-

plexity classes include the results in [38, 39]. The authors of [38] give an algorithm

that predicts if vertices in a graph are “similar” and [39] addresses the problem of

a switching graph labeling. In both papers, the side information is provided in the

form of graph Laplacians. In this thesis, we provide generalizations upon these

works in the following capacities. First, the side information considered in this the-

sis can be given as any pair of positive definite matrices in the transductive model
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including (augmented) graph Laplacians and outputs of other kernel functions. In

the inductive model, this is further generalized as the side information is given by

any pair of kernels. Furthermore, we give regret bounds which are also applicable in

the non-realizable case. Finally, the comparator matrix can be an arbitrary matrix.

A noteworthy direction of research which has marginal relevance to our work

builds batch algorithms with incremental updates, see for instance [40, 41, 42, 43,

44, 45, 46, 47, 48]. In these works, a batch algorithm is typically used on an existing

set of instances to recover a matrix estimate, which is then incrementally updated

in an online fashion. These papers do not provide regret or mistake bounds; instead

they provide distribution-dependent guarantees. To achieve this, some papers [42]

present methods to perform incremental SVD updates, such that given a matrix

and the SVD of that matrix, the SVD of the perturbed matrix can be performed

efficiently. Not all of these papers consider the setting where the matrix entry is

sampled uniformly at random. Some such as [43, 46] sample random subsets of

a column at each trial. [49] considers a bandit-like setting where the environment

presents only the row, giving the learner the choice of the column to predict.

2.2.2 Batch Setting

The number of studies on the matrix completion problem in the batch setting greatly

outweigh those in the online setting. The classical approach frames this as an op-

timization problem, where the aim is to find a target matrix that is consistent with

the matrix entries revealed thus far, under the constraint that it is of low rank. This

problem is non-convex, and so a dominant direction of research resorts to convex

relaxation by replacing the rank with a convex surrogate, most commonly the trace-

norm. This is justified by the fact that the trace norm of a matrix with unit spectral

norm is the convex envelope of its rank [50]. This method has shown good prac-

tical performance (see e.g. [51, 52]) and some early works that provide non-trivial

guarantees for matrices with a low trace norm include [51, 53, 54, 55], in which

both approximate and exact recovery of the matrices are considered. These all re-

quire the stringent assumption that the observed subset is sampled uniformly at

random and in fact, in [53], this requirement is shown to be a necessary condition
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to prove generalization error bounds based on the trace-norm for arbitrary matrices.

This has spurred research directed towards replacing the trace norm constraint by a

weighted variant [56, 57], or yet with the max-norm [53, 3]. A different direction

was taken by [58], which considers bounded matrices in a transductive model where

the entries are assumed to be sampled without replacement to give distribution-free

performance guarantees with the trace-norm. Non-convex methods have also been

considered for matrix completion, see e.g. [59, 60, 61].

In the following, we review some works that are concerned with the batch

matrix completion problem with side information. Works on inductive matrix com-

pletion with side information include [62, 63, 64, 65], which allow for predictions

to be made for new rows and columns. In the setting of [62, 63, 64], feature vec-

tors for the rows and the columns are available. For an m × n observed matrix R,

we then have the feature matrices M ∈ <m×p and N ∈ <n×q, where p < n and

q < m and the rows of the feature matrices are the feature vectors. The aim is

to recover a low-rank matrix U ∈ <p×q which is related to the observed matrix

through rank-1 measurements of the form R = MUN >. The works [62, 64] uti-

lize non-convex optimization methods, whereas [63] uses the trace-norm of U as

a regularization term. [65] minimizes over functions in the RKHS space defined

by the tensor product kernel of the kernels over the row and column space. This

is similar to our approach with the MGD algorithm in Section 3.2.2. Some exam-

ples in the transductive setting include [66, 67]. These papers use graph Laplacians

to model the side information. To achieve this, two graph Laplacians are used to

define regularization functionals for both the rows and the columns so that rows

(columns) with similar side information tend to have the same values. In particular,

[67] resembles our approach by applying the Laplacian functionals to the underly-

ing row and column factors directly. An alternate approach is taken in [66], where

the regularization is instead applied to the row space (column space) of the target

matrix.
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General Algorithms and Bounds

In this chapter, we give general online algorithms for binary matrix completion

with side information and prove mistake and regret bounds. The mistake bounds

we prove are of the form Õ
(
D

γ2

)
and O

(
D2

γ2

)
. The term 1

γ2 is analogous to the usual

margin term in SVM (perceptron) bounds. More specifically, if we assume that

there is some factorization of the underlying m × n matrix into PQ>, where the

rows of P are interpreted as “classifiers” in <d and the rows of Q as “instances”

in <d, then γ is the maximum (normalized) margin over all factorizations PQ>

consistent with the observed matrix. The quasi-dimension term D measures the

quality of side information. In the presence of vacuous side information,D = m+n.

We additionally provide a generalization of our algorithm to the inductive setting,

where the number of rows and columns are not specified in advance.

3.1 Introduction

In this chapter, we present our general algorithms for online matrix completion

with side information. We consider both transductive and inductive settings. In the

former setting, the side information is completely specified in advance, whereas in

the latter, the side information is provided in an online fashion. For both settings,

we provide two algorithms. The first is an adapted Matrix Exponentiated Gradient

(MEG) algorithm, where we prove mistake bounds of the form Õ(D/γ2) in terms

of tunable hyperparameters D and γ. The other algorithm is an adapted instance
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of Matrix Gradient Descent (MGD), which suffers from a larger mistake bound

scaling of O(D2/γ2), albeit offering a superior time complexity.

The term 1/γ2 is a parameter of our algorithm which serves as an upper esti-

mate of the squared margin complexity mc(U )2 of the comparator matrix U . The

notion of margin complexity in machine learning was introduced in [68], where

it was used to study the learnability of concept classes via linear embeddings. It

was further studied in [9], and in [53] a detailed study of margin complexity, trace

complexity and rank in the context of statistical bounds for matrix completion was

given. The squared margin complexity is upper bounded by rank. Furthermore, in

Chapter 4 it is explained that if our m × n matrix has a latent block structure with

k × ` homogeneous blocks, then mc(U )2 ≤ min(k, `).

The second term in our bound is the quasi-dimension D which, to the best of

our knowledge, is novel to this work. The quasi-dimension measures the extent to

which the side information is “predictive” of the comparator matrix. In Theorem 57,

Chapter 4, we provide an upper bound on the quasi-dimension, which measures the

predictiveness of the side information when the comparator matrix has a latent block

structure. If there is only vacuous side information, then D = m + n. However, if

there is a k × ` latent block structure and the side information is predictive, then

D ∈ O(k + `); hence our nomenclature “quasi-dimension.”

The chapter is organized as follows. In Section 3.2, we present our matrix com-

pletion algorithms for the transductive setting as well as Theorems 1 and 4 which

characterize their performance. In Section 3.3, we present algorithms for the induc-

tive setting, and Proposition 6, which gives the equivalence of the transductive and

inductive MEG algorithms. We provide a motivation for the update of Algorithm 1

in Section 3.4. Proofs are contained in Section 3.6. In Chapters 4 and 5, we will

apply these bounds to matrices with a latent block structure and to the problem of

online multitask learning with long-term memory respectively.
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3.2 Transductive Matrix Completion
In this section, we discuss Algorithms 1 and 2, which perform transductive matrix

completion with side information. Algorithm 1 corresponds to an adapted Matrix

Exponentiated Gradient (MEG) algorithm [4]. Although the algorithm is a spe-

cial case of MEG, the bounds that we provide do not follow as a special case of

the analysis in [4]. Algorithm 2 corresponds to an adapted Matrix Gradient De-

scent (MGD) algorithm. Our mistake and regret bounds will be in terms of a real-

valued comparator matrix U . In all bounds, when exactly tuned, we have a quasi-

dimension term and a margin complexity or max-norm term. For convenience, we

shall recall the definitions of these quantities below.

The quasi-dimension of a matrix U ∈ <m×n with respect to M ∈ Sm
++, N ∈

Sn
++ at margin γ is

D
γ

M ,N (U ) := min
P̂ Q̂>=γU

RM tr
(
P̂ >MP̂

)
+ RN tr

(
Q̂>NQ̂

)
,

where the infimum is over all row-normalized matrices P̂ ∈ Nm,d and Q̂ ∈ Nn,d

and every integer d. If the infimum does not exist then Dγ

M ,N (U ) := +∞. Unless

otherwise indicated, we assume that (P̂ , Q̂) is the “optimal” factorization which

minimizes the optimization problem in Dγ

M ,N (U ). Recall that this factorization

exists iff ‖U‖max ≤
1
γ
. The max-norm (or γ2 norm [9]) of a matrix U ∈ <m×n is

defined by

‖U‖max := min
PQ>=U

{
max
1≤i≤m

‖Pi‖ × max
1≤ j≤n

∥∥∥Q j

∥∥∥} ,

where the minimum is over all matrices P ∈ <m×d, Q ∈ <n×d and every integer d.

The margin complexity of a matrix U ∈ <m×n is

mc(U ) := min
V ∈SP1(U )

‖V ‖max = min
PQ>∈SP(U )

max
i j

‖Pi‖
∥∥∥Q j

∥∥∥
|〈Pi,Q j〉|

where the minimum is over all matrices P ∈ <m×d,Q ∈ <n×d and every integer d.

3.2.1 MEG Updates

Algorithm 1 is our general MEG algorithm, which can be run using either con-
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Algorithm 1 MEG algorithm for predicting a binary matrix with side information
in the transductive setting.

Parameters: Learning rate: 0 < η , quasi-dimension estimate: 1 ≤ D̂, margin
estimate: 0 < γ ≤ 1, non-conservative flag [non-conservative] ∈ {0, 1} and side
information matricesM ∈ Sm

++, N ∈ S
n
++ with m + n ≥ 3

Initialization: M← ∅ ; W̃ 1 ← D̂

(m+n)I
m+n.

For t = 1, . . . ,T
• Receive pair (it, jt) ∈ [m] × [n].
• Define

X̃ t := xt(xt)> :=
 √M+eit

m
√

2RM

;

√
N+e jt

n
√

2RN

  √M+eit
m

√
2RM

;

√
N+e jt

n
√

2RN

> .
• Predict

Yt∼Uniform(−γ, γ)×[non-conservative] ; ȳt← tr
(
W̃ tX̃ t

)
−1 ; ŷt←sign(ȳt−Yt) .

• Receive label yt ∈ {−1, 1} .
• If yt , ŷt thenM← M ∪ {t}.
• If ytȳt < γ × [non-conservative] then

W̃ t+1 ← exp
(
log(W̃ t) + ηytX̃

t
)
.

• Else W̃ t+1 ← W̃ t.

servative or non-conservative updates, as distinguished by the [non-conservative]

flag. In the case of conservative updates, the algorithm does not require the mar-

gin estimate as an input. In the following theorem, we give mistake and expected

c-regret bounds for Algorithm 1, where c(U ) =
1+maxi, j |Ui j |

2 .

Theorem 1. The expected mistakes of Algorithm 1 with non-conservative updates

([non-conservative] = 1) and parameters D̂ ≥ Dγ

M ,N (U ), η =

√
D̂ log(m+n)

2T , are

bounded by

E[|M|] ≤

(
1 + maxi, j |Ui j|

)
2

∑
t∈[T ]

[yt , sign(Uit jt)] +
3.5
γ

√
D̂ log(m + n)T (3.1)

for all U ∈ ((−∞,−1] ∪ [1,∞))m×n with ‖U‖max ≤ 1/γ.

The mistakes in the realizable case with conservative updates ([non-conservative] =
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0) and parameters η = γ, D̂ ≥ minV ∈SP1(U )D
γ

M ,N (V ) are bounded by,

|M| ≤ 3.6(D̂/γ2) log(m + n) , (3.2)

for all U ∈ <m×n with mc(U ) ≤ 1/γ and yt = sign(Uit jt) for all t ∈ M.

The regret statement of the theorem requires that mini, j |Ui j| ≥ 1. We note

that this is not a restrictive requirement, since we can scale U and γ to obtain

bounds for all U ∈ ((−∞,−a] ∪ [a,∞))m×n where a > 0. In addition, for both

statements, the requirement on 1
γ

in terms of U is superfluous due to the presence

of the quasi-dimension term; if the requirement is not fulfilled, the quasi-dimension

will be infinite as per its definition. We have nevertheless decided to include it for

clarity.

In the special case whereU ∈ {−1, 1}m×n, we obtain the following “true” regret

bound from the c-regret bound in Theorem 1:

E[|M|] ≤
∑
t∈[T ]

[yt , Uit jt] +
3.5
γ

√
D̂ log(m + n)T . (3.3)

It may seem confusing at first that we have derived a regret bound for the 0-1 loss.

However, note that this result is contingent on a strict assumption; the comparator

matrices U must be binary. In fact, our regret bounds follow naturally from hinge

loss regret bounds, which also appear in our analysis. Although a hinge loss regret

bound may appear more familiar to the reader, we have chosen to present our main

results in terms of the 0-1 loss, with the view that it is a more natural choice for

binary comparator matrices. In particular, although Equation (3.1) in Theorem 1

is valid for any real-valued comparator matrix, all its applications in this thesis

will instead derive bounds with binary comparator matrices, where the real-valued

matrix is merely used as a more flexible embedding for the binary matrix. Apart

from allowing for this flexibility, (3.1) can also give tighter bounds as it is possible

for a matrix U ∈ <m×n with maxi, j |Ui j| > 1 to have a smaller max-norm than its

sign matrix U ′ ∈ {SP(U ) ∩ {−1, 1}m×n}, see e.g. [9].

If the side information is vacuous, that isM = Im andN = In, thenD = m+n.
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In this scenario, Equation (3.3) recovers a special case of the analysis of [25] up to

constant factors. In [25], a regret bound for general loss functions for matrix com-

pletion without side information is given for (β, τ)-decomposable matrices. When β

is at its minimum over all possible decompositions, we recover the bound up to con-

stant factors with respect to the zero-one loss. On the algorithmic level, our works

are similar except that the algorithm of [25] contains an additional projection step

that dominates the computation time of the update. With the additional assumption

of realizability, we recover [34, Theorem 3.1]. The term D is difficult to directly

quantify, and we will interpret it further in Chapters 4 and 5 for specific matrix com-

plexity classes and side information. In Chapter 4, we also provide a lower bound

and show that our bound is tight up to logarithmic factors for matrices with a latent

block structure.

The general form of our regret bound of the MEG-based algorithm comes from

a matricization of the regret bound proven for a Winnow-inspired algorithm [16] for

linear classification in the vector case given in [69]. Regret bounds for the MEG al-

gorithm were originally proven in [4]. However, that analysis leads to a D̂2 depen-

dence in the mistake bound, whereas we derive a D̂ scaling, for our more restrictive

setting. Regret bounds with such scaling for linear classification in the vector case

have been previously given in [69] (which themselves are generalisations of the

bounds from Littlestone [16] for learning k-literal disjunctions with O(k log n) mis-

takes). However, to our knowledge, no such regret bounds for MEG are present

in the literature for the matrix case. Our proof uses an amortized analysis of the

quantum relative entropy, followed by an extension of the results in [69] to the

matrix case. We also note that our bound is reminiscent of Novikoff’s perceptron

bound when we consider a factorization of U into PQ> and interpret P as classi-

fiers and Q as instances, as mentioned at the start of the chapter. In that case, the

margin terms are analogous, and the quasi-dimension term bears a resemblance to

the squared radius term in their definitions.

For more intuition, we give more details on the embeddings that we use in the
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analysis for the algorithm. For U ∈ ((−∞,−1] ∪ [1,∞))m×n, we define

Ū := γU , (3.4)

and observe that it has entries at least as large as the margin γ. We cannot apply Ū

directly in the analysis of the MEG algorithm, which requires positive semi-definite

matrices. In what follows, we define Ũ ∈ Sm+n
+ , a positive semi-definite embedding

for Ū used in the analysis of the algorithm. Its relationship with Ū is shown in

Lemma 3. Thus we can understand that if W̃ t = Ũ , the prediction of the algorithm

on trial t is equal to the (it, jt)th entry of Ū .

Definition 2. Define the (m + n) × d matrix Z as

Z :=


√
RM

√
MP̂

√
RN

√
NQ̂

 .
and construct Ũ as,

Ũ := ZZ> =

 RM

√
MP̂P̂ >

√
M

√
RMRN

√
MP̂Q̂>

√
N

√
RMRN

√
NQ̂P̂ >

√
M RN

√
NQ̂Q̂>

√
N

 .
Lemma 3. For all trials t ∈ [T ],

Ūit jt = tr
(
ŨX̃ t

)
− 1

where Ũ is as constructed from Definition 2.

Proof. We have:

tr
(
ŨX̃ t

)
=

(
xt)>Ũxt

=
(
xt)>ZZ>xt

=
∥∥∥(xt)>Z

∥∥∥2
. (3.5)
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Recall that

xt =

 √M+eit
m

√
2RM

;

√
N+e jt

n
√

2RN

 and Z =


√
RM

√
MP̂

√
RN

√
NQ̂


Hence,

(xt)>Z =
(
√
M+eit

m)>
√

2RM

√
RM

√
MP̂ +

(
√
N+e jt

n )>
√

2RN

√
RN

√
NQ̂

=
1
√

2
(eit

m)>
√
M+
√
MP̂ +

1
√

2
(e jt

n )>
√
N+
√
NQ̂

=
1
√

2
(P̂it + Q̂ jt) (3.6)

Thus substituting (3.6) into (3.5) gives,

tr
(
ŨX̃ t

)
=

1
2

∥∥∥P̂it + Q̂ jt

∥∥∥2

=
1
2

(∥∥∥P̂it

∥∥∥2
+ 2〈P̂i, Q̂ jt〉 +

∥∥∥Q̂ jt

∥∥∥2
)

=
(
1 + 〈P̂it , Q̂ jt〉

)
= 1 + Ūit jt .

�

3.2.2 MGD Updates

Algorithm 2 is our transductive MGD algorithm. Unlike Algorithm 1, Algorithm 2

does not require a quasi-dimension estimate D̂. Furthermore, the margin estimate

is not necessary in the case of conservative updates. The mistake and expected

c-regret bounds for Algorithm 2 are presented in Theorem 4.

Theorem 4. The expected mistakes of Algorithm 2 with non-conservative updates

([non-conservative]=1), and learning rate η =

√
D̂2

T , where D̂2 ≥ A
γ

M ,N (U ), are

bounded by

E[|M|] ≤

(
1 + maxi j |Ui j|

)
2

∑
t∈[T ]

[yt , sign(Uit jt)] +
D̂

γ

√
T
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Algorithm 2 MGD algorithm for predicting a binary matrix with side informa-
tion in the transductive setting.
Parameters: Learning rate: 0 < η , margin estimate: 0 < γ ≤ 1, non-conservative

flag [non-conservative] ∈ {0, 1} and side information matrices M ∈ Sm
++, N ∈

Sn
++ with m + n ≥ 3

Initialization: M← ∅ ; W̃ 1 ← 0 .
For t = 1, . . . ,T
• Receive pair (it, jt) ∈ [m] × [n].
• Define

X̃ t :=
1

√
RMRN

√
M+eit(e jt)

>
√
N+. (3.7)

• Predict

Yt∼Uniform(−γ, γ)×[non-conservative] ; ȳt← tr
(
W̃ t(X̃ t)>

)
; ŷt ← sign(ȳt−Yt) .

• Receive label yt ∈ {−1, 1} .
• If yt , ŷt, thenM← M ∪ {t}.
• If ytȳt < γ × [non-conservative] then

W̃ t+1 ← W̃ t + ηytX̃
t. (3.8)

• Else W̃ t+1 ← W̃ t.

for all U ∈ ((−∞,−1] ∪ [1,∞))m×n with ‖U‖max ≤ 1/γ.

The mistakes in the realizable case with conservative updates ([non-conservative]=0)

and learning rate η =

√
D̂2

|M|
, where D̂2 ≥ minV ∈SP1(U )A

γ

M ,N (V ), are bounded by,

|M| ≤
D̂2

γ2 ,

for all U ∈ <m×n with mc(U ) ≤ 1/γ and yt = sign(Uit jt) for all t ∈ M.

The bounds can be rewritten in terms of the quasi-dimension, since

A
γ

M ,N (U ) ≤
(Dγ

M ,N
(U ))2

4 from the inequality 4ab ≤ (a + b)2 for scalars a, b, so

that D̂ ≥
D
γ
M ,N

(U )

2 . After this manipulation, we obtain a mistake bound in the real-

izable case (with exact tuning) of O(D2 mc(U )2). This has a quadratic dependence

on D, which is worse than the linear dependence in Theorem 1 for the MEG algo-

rithm. It may seem prohibitive that tuning the learning rate exactly for the mistake

bound requires knowing the number of mistakes beforehand. However, we can use
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the doubling trick to avoid this. In the special case where U ∈ {−1, 1}m×n,

E[|M|] ≤
∑
t∈M

[yt , Uit , jt] +
D̂

γ

√
T (3.9)

follows directly from the theorem, which gives us an expected regret bound with

c = 1. In the case of vacuous side information, that is M = Im and N = In,

the mistake bound becomes O(mn mc(U )2) which is vacuous since U ∈ <m×n.

Thus the bound is only interesting when the side information provides a significant

improvement to the quasi-dimension term.

The MGD algorithm offers the benefit that the prediction can be computed

through the dual form, as shown in Proposition 5. The dual form computes updates

with a per-trial time complexity of O(min(mn,T )), similar to the direct implementa-

tion which has a complexity of O(mn) when taking advantage of the fact that X̃ t is

of rank 1. Both implementations are superior to the time complexity of O((m + n)3)

for the transductive MEG algorithm.

Proposition 5. The prediction given by Algorithm 2 on trial t can be equivalently

computed through:

ȳt =
η

RMRN

∑
s∈Ut

ysM+
it ,is

N+
jt , js

(3.10)

where Ut : {s : ysȳs < γ[non-conservative], s < t}.

Proof. Recall that ȳt = tr(W̃ tX̃ t), where X̃ t = 1
√
RMRN

√
M+eit(e jt)

>
√
N+. We

observe that W̃ t can be written

W̃ t =
η

√
RMRN

∑
s∈Ut

√
M+eise

>

js

√
N+

Using the linear and cyclic properties of the trace

tr(W̃ t(X̃ t)>) =
η

RMRN

∑
s∈Ut

tr(
√
M+eise

>

js
N+e jte

>

it

√
M+)

=
η

RMRN

∑
s∈Ut

e>itM
+eise

>

js
N+e jt (3.11)
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Recalling thatM andN are symmetric matrices, and that the inverse of a symmetic

matrix is also symmetric, the proposition follows from (3.11). �

It is also possible to run the algorithm using positive semi-definite embeddings

for W̃ t and X̃ t, similar to those in Algorithm 1. By following a similar analysis to

that for Theorem 4, we obtain similar bounds, with the only difference being that

D̂2 ≥ D
γ

M ,N (U )2. The corresponding prediction in the dual form is then given by

ȳt = η
∑
s∈Ut

ys

(
1

2RM

M+
itis

+
1

2RN

N+
itis

)2

. (3.12)

Observe that the predictions given by Equations (3.10) and (3.12) are similar to the

(vector) kernel perceptron, where the kernel is respectively given by the product and

sum squared of the row and column kernels.

3.3 Inductive Matrix Completion
In the previous section, the learner was assumed to have complete foreknowledge

of the side information through the matricesM andN . In the inductive setting, the

learner has instead kernel side information functionsM+ and N+. With complete

foreknowledge of the rows (columns) that will be observed, one may useM+ (N+)

to compute M (N ), which corresponds to an inverse of a submatrix ofM+ (N+).

In the inductive, unlike the transductive setting, we do not have this foreknowledge

and thus cannot compute M (N ) in advance. Notice that the assumption of side

information as kernel functions is not particularly limiting, as for instance the side

information could be provided by vectors in<d and the kernel could be the positive

definite linear kernelKε(x,x′) := 〈x,x′〉 + ε[x = x′].

For the algorithm with MGD updates, it is trivial to generalize to the induc-

tive setting by considering the dual form shown in (3.10), and the corresponding

inductive algorithm retains the same time complexity of O(min(mn,T )). Hence, we

will focus our discussion on MEG updates. Algorithm 3 is prediction-equivalent

to Algorithm 1 with MEG updates up to the value of RM (RN ). In [70], the au-

thors provide very general conditions for the “kernelization” of algorithms with an
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Algorithm 3 Predicting a binary matrix with side information in the inductive
setting.

Parameters: Learning rate: 0 < η, quasi-dimension estimate: 1 ≤ D̂, mar-
gin estimate: 0 < γ ≤ 1, non-conservative flag [non-conservative] ∈ {0, 1},
side-information kernels M+ : I × I → <, N+ : J × J → <, with
RM := maxi∈IM

+(i, i) and RN := max j∈J N
+( j, j), and maximum distinct rows

m and columns n, where m + n ≥ 3.

Initialization: M← ∅ ,U← ∅ ,I1 ← ∅ , J1 ← ∅ .

For t = 1, . . . ,T
• Receive pair (it, jt) ∈ I × J .
• Define

(M t)+ := (M+(ir, is))r,s∈It∪{it} ; (N t)+ := (N+( jr, js))r,s∈J t∪{ jt} ,

X̃ t(s) :=
[
(
√

(M t)+)eis

√
2RM

;
(
√

(N t)+)e js

√
2RN

] [
(
√

(M t)+)eis

√
2RM

;
(
√

(N t)+)e js

√
2RN

]>
,

log(W̃ t)← log
 D̂m + n

 I |It |+|J t |+2 +
∑
s∈U

ηysX̃
t(s) .

• Predict

Yt∼Uniform(−γ, γ)×[non-conservative] ; ȳt← tr
(
W̃ tX̃ t(t)

)
−1 ; ŷt←sign(ȳt−Yt) .

• Receive label yt ∈ {−1, 1} .
• If yt , ŷt thenM← M ∪ {t}.
• If ytȳt < γ × [non-conservative] then

M← M ∪ {t} , It+1 ← It ∪ {it}, and J t+1 ← J t ∪ { jt} .

• Else It+1 ← It and J t+1 ← J t .

emphasis on “matrix” algorithms. They sketch a method to kernelize the Matrix

Exponentiated Gradient algorithm based on the relationship between the eigensys-

tems of the kernel matrix and the Gram matrix. We take a different, more direct

approach, in which we prove its correctness via Proposition 6.

The intuition behind the algorithm is that, although we cannot efficiently em-

bed the row and column kernel functions M+ and N+ as matrices since they are

potentially infinite-dimensional, we may instead work with the embedding corre-

sponding to the currently observed rows and columns, recompute the embedding

on a per-trial basis, and then “replay” all re-embedded past examples to create the
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current hypothesis matrix. The following is our proposition of equivalency, proven

in Section 3.6.3.

Proposition 6. The inductive and transductive algorithms are equivalent up to RM

and RN . Without loss of generality assume IT+1 ⊆ [m] and JT+1 ⊆ [n]. Define

M := ((M+(i′, i′′))i′,i′′∈[m])+ and N := ((N+( j′, j′′)) j′, j′′∈[n])+. Assume that for the

transductive algorithm, the matricesM andN are given whereas for the inductive

algorithm, only the strictly positive definite kernel functions M+ and N+ are pro-

vided. Then, if RM = RM and RN = RN , and if the algorithms receive the same

label and index sequences, then the predictions of the algorithms are the same.

Thus, the only case when the algorithms are different is when RM , RM or

RN , RN . This is a minor inequivalency, as the only resultant difference is in the

term D. Alternatively, if one uses a normalized kernel such as the Gaussian, then

RM = RM = 1.

For Algorithm 1 with MEG updates, we have a per trial time complexity of

O(max(m, n)3); Algorithm 3 has a per trial complexity of O(min(max(m, n)4,T 3)).

In the dominant step on every trial (with an update) of the transductive algo-

rithm, there is an SVD of a (m + n) × (m + n) matrix; thus, the algorithm requires

O(max(m, n)3) time. We split the analysis of the inductive algorithm into two cases.

In the case that max(m, n) � T , the complexity on every trial is dominated by the

sum of up to mn matrices of size up to (m + n)× (m + n) (i.e., in the regret setting we

can collapse terms from multiple observations of the same matrix entry) and thus

has a per-trial complexity of O(max(m, n)4). In the other case, on trial t, we need

O(t3) time since we need to compute the eigendecomposition of three O(t) × O(t)

matrices as well as sum O(t)×O(t) matrices up to t times. Putting together we have

a time complexity of O(min(max(m, n)4,T 3)) per trial.

3.4 Motivation of Update for Algorithm 1
As alluded to in Section 2.2.1, the update rules of online algorithms are often mo-

tivated by the fact that they are the result of an implicit optimization. This typically

aims to find a weight matrix at each time step t that trades off between minimiz-
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ing the loss at that time step and a regularization term which ensures that the new

weight matrix does not stray too far from the weight matrix at the previous time step

t − 1. For the MEG algorithm, the “distance” between the two weight matrices is

measured by the quantum relative entropy (see e.g. [4]). Analogously, many batch

matrix completion algorithms also aim to solve an optimization problem (for ex-

amples, see Section 2.2.2). Similar to the online counterpart, a typical formulation

trades off between minimizing the cumulative loss and a regularization term that is

related to a complexity measure of the weight matrix, such as the trace norm. In this

section, we motivate the update rule in Algorithm 1 by giving an analogous batch

optimization problem.

Let us recall that the prediction of Algorithm 1 before randomization is given

by

ȳt = tr(W̃ tX̃ t) − 1,

where

W̃ t :=


exp

(
log(W̃ t−1) + ηytX̃

t
)

if ytȳt < γ[non-conservative]

W̃ t−1 otherwise,
(3.13)

X̃ t =
1
2
D−1

[
eit

m; e jt
n

] [
eit

m; e jt
n

]>
D−1, (3.14)

W̃ 1 = D̂

m+nI
m+n, D := diag

(√
M
√
RM ,

√
N
√
RN

)
, with row and column side

information matrices M ∈ Sm
+ , and N ∈ Sn

+. For simplicity, we consider non-

conservative updates for the remainder of the section. We can prove similar results

for conservative updates by only considering trials with mistakes.

We furthermore define

X t :=
1
2

[
eit

m; e jt
n

] [
eit

m; e jt
n

]>
,

the modified hinge loss with respect to matrixW ∈ <(m+n)×(m+n)

f t
γ(W ) :=

1
γ

[γ − yt(tr(WX t) − 1)]+,



Chapter 3. General Algorithms and Bounds 43

and the quantum relative entropy for positive semi-definite matrices A and B as

∆(A,B) := tr(A logA −A logB +B −A).

In the following, we present the analogous batch optimization problem

in (3.15). The minimum of this problem, W ∗,t+1
1 , will be shown to be the same as

the minimum of the optimization in (3.16) through Proposition 7. It is then straight-

forward to turn (3.16) into an “online approximate optimization”, given by (3.17).

As shown in Proposition 8, the minimumW ∗,t of this optimization problem relates

to the prediction ȳt in Algorithm 1 through the equation ȳt = tr(W ∗,tX t) − 1. The

optimization problems are as follows:

1.

W ∗,t+1
1 := argmin

W :W=ZZ>,Z=[P ;Q]
∆(RMP

>MP + RNQ
>NQ,

D̂

m + n
Ik)+

ηγ
∑
s∈[t]

f s
γ (W ) −

D̂k
m + n

, (3.15)

where the optimization is over all P ∈ <n×k,Q ∈ <m×k and k.

2.

W ∗,t+1
2 := argmin

W :W ∈Sm+n
+

∆(DWD,DW ∗,1D) + ηγ
∑
s∈[t]

f s
γ (W ) , (3.16)

whereW ∗,1 = D̂

m+nD
−2.

3.

W ∗,t+1 = argmin
W :W ∈Sm+n

+

∆(DWD,DW ∗,tD) + ηγ f t
γ (W ) . (3.17)

Proposition 7. For all t

W ∗,t
1 = W ∗,t

2

whereW ∗,t
1 is defined as in (3.15) andW ∗,t

2 is defined as in (3.16).

Proposition 8. For all t ∈ [T ], the predictions ȳt in Algorithm 1 can be written as

ȳt = tr(W ∗,tX t) − 1,
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whereW ∗,t is as defined in (3.17) and we recall that

X t :=
1
2

[
eit

m; e jt
n

] [
eit

m; e jt
n

]>
.

We now aim to further our understanding of optimization problem 1 in (3.15).

We suggest in the following proposition that the term − D̂k
m+n comes from the fact that

the optimal decomposition into P andQ is not unique.

Proposition 9. Let P ′ := (P ,0) ∈ <m×k′ and Q′ := (Q,0) ∈ <n×k′ , where k′ =

k + c for some arbitrary c > 0. Defining B := RMP
>MP + RNQ

>NQ, B′ =

RM (P ′)>MP ′ + RN (Q′)>NQ′ and a := D̂

m+n , we then have

∆(B, aIk) − ak = ∆(B′, aIk′) − ak′

Proof. We have

∆(B, aIk) = tr(B log(B)) − tr
(
B log

(
aIk

))
+ tr(aIk) − tr(B)

= tr(B log(B)) − log (a) tr(B) − tr(B) + ak

Similarly, we have

∆(B′, aIk′) = tr(B′ log(B′)) − log (a) tr(B′) − tr(B′) + ak′.

Observing that B′ =

B 0

0 0

, we clearly have tr(B′) = tr(B). To evalu-

ate tr(B′ logB′), we observe that for B with eigendecomposition V ΛV >, B′

has the eigendecomposition

V 0

0 A


Λ 0

0 0


V > 0

0 A>

, where A can be any ar-

bitrary c × c orthogonal matrix. Recalling that the B and log(B) have the same

eigensystems, and that the trace of a matrix is the sum of its eigenvalues, we have

tr(B log(B)) = tr(Λ log(Λ)) and tr(B′ log(B′)) = tr(Λ log(Λ))+c limx→0(x log(x)).

Since limx→0 x log(x) = 0, we then have that tr(B log(B)) = tr(B′ log(B′)). This

then gives the proposition. �
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We also observe thatW ∗,t+1
1 can be written as follows

W ∗,t+1
1 = argmin

W :W=ZZ>,Z=[P ;Q]
S (RMP

>MP + RNQ
>NQ) + ηγ

∑
s∈[t]

f s
γ (W ) ,

where S (B) := tr(B log(B)) − log( D̂m+n ) tr(B) − tr(B), which is the negative von

Neumann entropy up to a scalar factor of log( D̂m+n ). When the term S (RMP
>MP +

RNQ
>NQ) is minimized, we have that RMP

>MP +RNQ
>NQ = D̂

m+nI , so that

tr(RMP
>MP + RNQ

>NQ) = D̂ . This is in contrast to when the negative von

Neumann entropy of a matrixA is minimized, in which case we haveA = I .

3.5 Discussion

In this chapter, we presented MEG and MGD algorithms that can be applied in

transductive and inductive settings. The mistake and regret bounds of the MEG al-

gorithms show a superior scaling with the quasi-dimension D, at the expense of a

higher time complexity. Table 3.1 shows an overall comparison of the algorithms in

the transductive and inductive settings. For both settings, the MGD algorithm has

a low per-trial complexity of O(min(mn,T )). As for the MEG algorithm, the time

complexity is cubic or quartic with respect to max(m, n), depending on the setting.

It remains an open problem whether the time complexity of MEG updates can be

further reduced. One possibility is to approximate the update through sketching

methods. Although this has been applied to vector EG algorithms such as [80],

its theoretical effectiveness in the matrix case has not yet been studied in the lit-

erature and it seems to be a challenging problem. Similarly, it may be possible to

apply techniques used in the budget Perceptron algorithms, such as those in [115],

to lower the complexity of the MGD and inductive MEG algorithms. Another direc-

tion is to extend these results to FTRL algorithms with general convex regularizers.

We believe that this should be feasible given that our analysis follows the vector

case closely. The MEG algorithm requires a few parameters, such as the quasi-

dimension estimate D̂. Apart from using the doubling trick, it may be interesting

to investigate whether we can use parameter-free methods (such as [116]) to re-
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Mistake Bound Time Complexity

MEG transductive
O(D

γ2 log(m + n))
O(max(m, n)3)

MEG inductive O(min(max(m, n)4,T 3))
MGD transductive

O(D
2

γ2 )
O(min(mn,T ))

MGD inductive O(min(mn,T ))

Table 3.1: The mistake bounds and per-trial time complexities of the general matrix com-
pletion algorithms.

move this dependence. In the following chapters, we will show how to evaluate the

quasi-dimension termD for various examples. In particular, in Section 4.4.1 of the

following chapter, we will show an example where our MEG bound is tight up to

logarithmic factors.
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3.6 Proofs

3.6.1 Proof of Theorem 1

We first give some preliminaries for the proof. We introduce the quantum relative

entropy, which plays a central role in the amortized analysis of our algorithm.

Definition 10. The quantum relative entropy of symmetric positive semidefinite

square matricesA andB is

∆(A,B) := tr(A log(A) −A log(B) +B −A).

We now present general inequalities for matrices. The following lemma is the

well known Golden-Thompson Inequality, whose proof can be found, for example,

in [71].

Lemma 11 (Golden-Thompson Inequality). For any symmetric matrices A and B

we have,

tr(exp(A +B)) ≤ tr(exp(A) exp(B)) .

Lemma 12. For matrixA ∈ Sd with eigenvalues no less than -1,

I −A +A2 − exp(−A) � 0 .

Proof. LetB := I −A+A2 − exp(−A). Observing thatA,A2 and exp(−A) share

the same set of eigenvectors,

I −A +A2 − exp(−A) = U (I −Λ + Λ2 − exp(−Λ))U >,

where U is the orthogonal matrix and Λ is the diagonal matrix in the eigendecom-

position of A. Therefore, each eigenvalue λB,i of the resulting matrix B can be

written in terms of an eigenvalue λB,i of matrixA for all i ∈ [d],

λB,i = 1 − λA,i + λ2
A,i − exp(−λA,i).
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The positive semidefinite criterion requires that all eigenvalues be non-negative, so

that λB,i ≥ 0. This inequality holds true for λA,i ≥ −1. �

Lemma 13. For any matrix A ∈ Sd
++ and any two matrices B,C ∈ Sd, B � C

implies tr (AB) ≤ tr (AC).

Proof. This follows a parallel argument to the proof for [4, Lemma 2.2]. �

Recall that (P̂ , Q̂) is the “optimal” factorization which minimizes the opti-

mization problem in Dγ

M ,N (U ). Let us define the quasi-dimension with respect to

this factorization

D := RM tr
(
P̂ >MP̂

)
+ RN tr

(
Q̂>NQ̂

)
.

Then, we have thatD = D
γ

M ,N (U ).

Lemma 14. For Ũ as defined in Definition 2, we have that,

tr(Ũ ) = D . (3.18)

Proof.

tr(Ũ ) = tr(ZZ>) = tr



√
RM

√
MP̂

√
RN

√
NQ̂


(
√
RM

√
MP̂

√
RN

√
NQ̂

)>
= RM tr

(√
MP̂P̂ >

√
M >

)
+ RN tr

(√
NQ̂Q̂>

√
N >

)
= RM tr

(
P̂ >MP̂

)
+ RN tr

(
Q̂>NQ̂

)
= D

�

Lemma 15. For all trials t, tr(X̃ t) ≤ 1, and all eigenvalues of X̃ t are in [0, 1].

Proof. Recall that

tr(X̃ t) = tr(xt(xt)>) =

 √M+eit
m

√
2RM

;

√
N+e jt

n
√

2RN

>  √M+eit
m

√
2RM

;

√
N+e jt

n
√

2RN

 .
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Hence ∥∥∥xt
∥∥∥2

=

∥∥∥∥∥∥
√
M+eit

m
√

2RM

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
√
N+e jt

n
√

2RN

∥∥∥∥∥∥
2

and then bounding the first term on the right hand side gives,

∥∥∥∥∥∥
√
M+eit

m
√

2RM

∥∥∥∥∥∥
2

=
1

2RM

(
eit

m

)>
(
√
M+)>

√
M+eit

m ≤
1

2RM

max
i∈[m]

(
eit

m

)>
M+eit

m =
1
2
.

The argument for the second term is parallel. Therefore since it is shown that the

trace of X̃ t is bounded by 1 and that X̃ t is positive definite, this implies that all

eigenvalues of X̃ t are in [0, 1]. �

Proof for regret statement (Equation (3.1))

For the regret statement, we consider non-conservative updates. We recall that Ū :=

γU as defined in (3.4). The assumption that ‖U‖max ≤
1
γ

guarantees the existence

of row-normalized matrices P̂ ∈ <m×d and Q̂ ∈ <n×d that give Ū = P̂ Q̂>.

In the following, we recall the hinge loss as Lγhi(y, ȳ) := 1
γ
[γ − yȳ]+. We define

H t := ∇W̃ t γL
γ
hi(yt, ȳt) = ∇W̃ t

[
γ −

(
yt tr

(
W̃ tX̃ t

)
− 1

)]
, (3.19)

where ∇ denotes the subgradient and where ȳt is as defined in Algorithm 1. When

ytȳt = γ, we will only consider the specific subgradientH t = 0.

Lemma 16. For all t ∈ [T ],

H t = −ytX̃
t
[
γ > yt

(
tr

(
W̃ tX̃ t

)
− 1

)]
.

Proof. Recalling the definition of H t := ∇W̃ tγL
γ
hi(yt, ȳt), observe that when γ >

yt

(
tr

(
W̃ tX̃ t

)
− 1

)
, we have

∇W̃ t γL
γ
hi(yt, ȳt) = ∇W̃ t

[
γ − yt

(
tr

(
W̃ tX̃ t

)
− 1

)]
+

= −yt(X̃ t)> = −ytX̃
t, (3.20)

where we used the fact that ∇A tr (AB) = B>. In the case that γ ≤



Chapter 3. General Algorithms and Bounds 50

yt

(
tr

(
W̃ tX̃ t

)
− 1

)
,

∇W̃ t γL
γ
hi(yt, ȳt) = 0.

�

Lemma 17. For all trials t ∈ [T ] in Algorithm 1, we have for η ∈ (0, 1]:

∆(Ũ , W̃ t) − ∆(Ũ , W̃ t+1) ≥ η
(
tr((W̃ t − Ũ )H t) − η2 tr(W̃ t(H t)2)

)
. (3.21)

Proof. We have:

∆(Ũ , W̃ t) − ∆(Ũ , W̃ t+1) = tr
(
Ũ log W̃ t+1 − Ũ log W̃ t

)
+ tr

(
W̃ t

)
− tr

(
W̃ t+1

)
= −η tr

(
ŨH t

)
+ tr

(
W̃ t

)
− tr

(
elogW̃ t−ηH t)

(3.22)

≥ −η tr
(
ŨH t

)
+ tr

(
W̃ t

)
− tr

(
elogW̃ t

e−ηH
t)

(3.23)

= −η tr
(
ŨH t

)
+ tr

(
W̃ t

(
I − e−ηH

t))
≥ −η tr

(
ŨH t

)
+ tr

(
W̃ t

(
ηH t − η2(H t)2

))
(3.24)

where Equation (3.22) comes from substituting Lemma 16 in the update equation of

the algorithm, Equation (3.23) comes from Lemma 11 and Equation (3.24) comes

from Lemmas 12 and 13. �

Lemma 18. For Algorithm 1, we have for η ∈ (0, 1]:

∑
t∈[T ]

tr
(
(W̃ t − Ũ )H t

)
≤

1
η

tr Ũ log
Ũ (m + n)

eD̂

 + D̂

 +
∑
t∈[T ]

η tr
(
W̃ t(H t)2

)
.

(3.25)

Setting the additional assumptions D̂ ≥ D = tr
(
Ũ

)
≥ 1 and m + n ≥ 3 gives

∑
t∈[T ]

tr
(
(W̃ t − Ũ )H t

)
≤
D̂

η
log (m + n) +

∑
t∈[T ]

η tr
(
W̃ t(H t)2

)
. (3.26)

Proof. We start by proving Equation (3.25). Rearranging Lemma 17 and summing
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over t,

∑
t∈[T ]

(
tr((W̃ t − Ũ )H t)

)
≤

1
η

∑
t∈[T ]

∆(Ũ , W̃ t) − ∆(Ũ , W̃ t+1) + η2 tr
(
W̃ t(H t)2

)
≤

1
η

∆(Ũ , W̃ 1) − ∆(Ũ , W̃ T+1) +
∑
t∈[T ]

η2 tr
(
W̃ t(H t)2

) .
Using the fact that ∆(Ũ , W̃ T+1) ≥ 0 and writing out ∆(Ũ , W̃ 1), we then obtain

Equation (3.25).

To prove Equation (3.26), we attempt to maximize the term tr
(
Ũ log

(
Ũ (m+n)

eD̂

))
+

D̂. Noting that tr
(
Ũ log(aŨ )

)
≤ tr(Ũ ) log

(
tr(aŨ )

)
for a ≥ 0, we then have

tr
Ũ log

Ũ (m + n)

eD̂

 + D̂ ≤ tr(Ũ ) log
 tr(Ũ )(m + n)

eD̂

 + D̂.

The upper bound in the above equation is convex in tr(Ũ ) and hence is maximized

at either boundary {1, D̂}. Comparing the terms, we have

tr
Ũ log

Ũ (m + n)

eD̂

 + D̂ ≤ log
(
m + n

eD̂

)
+ D̂

for tr(Ũ ) = 1 and

tr
Ũ log

Ũ (m + n)

eD̂

 + D̂ ≤ D̂ log(m + n)

for tr(Ũ ) = D̂. We then observe that given the assumptions, D̂ log(m + n) maxi-

mizes, therefore giving the upper bound in Equation (3.26).

�

Lemma 19. For all t ∈ [T ] in Algorithm 1:

tr
(
W̃ t(H t)2

)
≤ γL

γ
hi(yt, ȳt) + γ + 1. (3.27)

Proof. The proof splits into two cases.

Case 1) γ ≤ ytȳt = yt

(
tr

(
W̃ tX̃ t

)
− 1

)
:
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Observe that H t = 0 due to Lemma 16, giving tr
(
W̃ t(H t)2

)
= 0 which

demonstrates (3.27) in this case.

Case 2) γ > ytȳt = yt

(
tr

(
W̃ tX̃ t

)
− 1

)
:

We have that

tr
(
W̃ t(H t)2

)
= tr

(
W̃ t(X̃ t)2

)
≤ tr

(
W̃ tX̃ t

)
, (3.28)

where the first equality comes from the fact H t = −ytX̃
t from Lemma 16 and

the second inequality comes from Lemma 13 and the fact that (X̃ t)2 � X̃ t due to

Lemma 15.

We split case 2 into two further subcases.

Sub-case 1) tr
(
W̃ tX̃ t

)
< γ + 1 (Prediction smaller than margin):

Since the hinge loss is non-negative,

tr
(
W̃ tX̃ t

)
< γL

γ
hi(yt, ȳt) + γ + 1,

lower bounding the L.H.S. by (3.28) demonstrates (3.27).

Sub-case 2) tr
(
W̃ tX̃ t

)
≥ γ + 1 (Prediction larger than margin with mistake):

We have

tr
(
W̃ tX̃ t

)
≤

[
tr

(
W̃ tX̃ t

)
+ γ − 1

]
+
− (γ − 1) ≤

[
tr

(
W̃ tX̃ t

)
+ γ − 1

]
+

+ (γ + 1) .

By the case 2 and sub-case 2 conditions we have that yt = −1, with

γL
γ
hi(−1, ȳt) =

[
γ + tr

(
W̃ tX̃ t

)
− 1

]
+
.

Thus we have

tr
(
W̃ tX̃ t

)
≤ γL

γ
hi(−1, ȳt) + (γ + 1)

and by lower bounding L.H.S. by (3.28) we demonstrate (3.27) and thus the lemma.

�

Lemma 20. For Algorithm 1, assuming that η ∈ (0, 1], D̂ ≥ D = tr
(
Ũ

)
≥ 1 and
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m + n ≥ 3, we have

∑
t∈[T ]

tr
(
(W̃ t − Ũ )H t

)
≤

1
η
D̂ log(m + n) + ηγ

∑
t∈[T ]

L
γ
hi(yt, ȳt) + η(1 + γ)T .

Proof. Combining (3.26) and (3.27) gives the lemma. �

Lemma 21. For Ū := γU , where U ∈ <m×n, mini, j |Ui j| ≥ 1 and ‖U‖max ≤
1
γ

L
γ
hi(yt, Ūit jt) ≤

(
1 + max

i, j
|Ui j|

)
[yt , sign(Uit jt)] ≤

(
1 +

1
γ

)
[yt , sign(Uit jt)]

Proof. We first prove the first inequality. From the definition of the hinge loss and

Ū ,

L
γ
hi(yt, Ūit jt) = L

γ
hi(yt, γUit jt)

=
1
γ

[γ(1 − ytUit jt)]+

= [1 − ytUit jt]+.

In the case that ytUit jt ≥ 0, we have Lγhi(yt, Ūit jt) = [1 − |Uit jt |]+ = 0 since |Uit jt | ≥ 1

by assumption. Otherwise, we have Lγhi(yt, Ūit jt) ≤ 1 + |Uit jt | ≤ 1 + maxi, j |Ui j|. The

first inequality follows by combining these two cases.

For the second inequality, we may further evaluate

max
i, j
|Ui j| = min

PQ>=U
max

i
max

j
|〈Pi,Q j〉|

≤ min
PQ>=U

max
i
||Pi|| max

j
||Q j||

= ‖U‖max.

Using ‖U‖max ≤
1
γ
, we then have maxi, j |Ui j| ≤

1
γ
, from which the second inequality

follows.

�

Now we are ready to introduce the regret bound in terms of the hinge loss for

the deterministic ȳt.
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Lemma 22. The hinge loss of Algorithm 1 with parameters γ ∈ (0, 1], D̂ ≥ D ≥ 1,

η =

√
D̂ log(m+n)

2T , T ≥ 2D̂ log(m + n) and m + n ≥ 3, is bounded by

∑
t∈[T ]

L
γ
hi(yt, ȳt) ≤

∑
t∈[T ]

L
γ
hi(yt, Ūit jt) +

4
γ

√
2D̂ log(m + n)T +

4
γ
D̂ log(m + n) , (3.29)

where we recall that Ū := γU and Ūit jt = tr
(
ŨX̃ t

)
− 1 (see page 35).

Proof. First, we aim to prove the bound

∑
t∈[T ]

(
L
γ
hi(yt, ȳt) − L

γ
hi(yt, Ūit jt)

)
≤

∑
t∈[T ]

tr
(
(W̃ t − Ũ )H t

)
, (3.30)

so that we can apply Lemma 20. Recall H t is defined as the subgradient of

γL
γ
hi(yt, ȳt). Substituting for ȳt gives,

L
γ
hi(yt, ȳt) =

1
γ

[γ − yt(tr
(
W̃ tX̃ t

)
− 1)]+ .

Lemma 3 gives,

L
γ
hi(yt, Ūit jt) =

1
γ

[γ − yt(tr
(
ŨX̃ t

)
− 1)]+ .

Define

ft(Z) :=
1
γ

[γ − yt(tr
(
ZX̃ t

)
− 1)]+

Since Lγhi(yt, ·) is convex and the fact that a convex function applied to a linear

function is again convex, we have that f (·) is convex. We have

∑
t∈[T ]

(
L
γ
hi(yt, ȳt) − L

γ
hi(yt, Ūit jt)

)
=

∑
t∈[T ]

(
ft(W̃ t) − ft(Ũ )

)
≤

∑
t∈[T ]

tr
((
W̃ t − Ũ

)
∇ ft(W̃ )

)
(3.31)

=
∑
t∈[T ]

tr
((
W̃ t − Ũ

)
∇W̃ tL

γ
hi(yt, ȳt)

)
=

1
γ

∑
t∈[T ]

tr
(
(W̃ t − Ũ )H t

)
, (3.32)

where (3.31) follows from the fact that f (A)− f (B) ≤ tr((A−B)∇ f (A)) for a con-
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vex function f and symmetric matrices A,B and (3.32) comes from the definition

ofH t = ∇W̃γL
γ
hi(yt, ȳt) (see (3.19)).

Hence we can apply Lemma 20, which gives the following upper bound for∑
t∈[T ] tr

(
(W̃ t − Ũ )H t

)
:

∑
t∈[T ]

tr
(
(W̃ t − Ũ )H t

)
≤

1
η
D̂ log(m + n) + ηγ

∑
t∈[T ]

L
γ
hi(yt, ȳt) + η(1 + γ)T .

Substituting the above into (3.32) gives,

∑
t∈[T ]

L
γ
hi(yt, ȳt) ≤

∑
t∈[T ]

L
γ
hi(yt, Ūit jt) +

1
γ

1
η
D̂ log(m + n) + ηγ

∑
t∈[T ]

L
γ
hi(yt, ȳt) + η(1 + γ)T


=

(
1

1 − η

) ∑
t∈[T ]

L
γ
hi(yt, Ūit jt) +

1
ηγ
D̂ log(m + n) +

η

γ
(1 + γ)T


≤

(
1

1 − η

) ∑
t∈[T ]

L
γ
hi(yt, Ūit jt) +

1
ηγ
D̂ log(m + n) +

2η
γ

T

 ,
where the final inequality follows since γ ∈ (0, 1].

We observe that η ∈
(
0, 1

2

]
due to the definition of η and the assumption on T .

We apply (1/(1 − x)) ≤ 1 + 2x for x ∈ [0, 1/2] to obtain

∑
t∈[T ]

L
γ
hi(yt, ȳt) ≤ (1 + 2η)

∑
t∈[T ]

L
γ
hi(yt, Ūit jt) +

1
ηγ

(
D̂ log(m + n)

)
+

2η
γ

T


=

(1)︷                         ︸︸                         ︷
(1 + 2η)

∑
t∈[T ]

L
γ
hi(yt, Ūit jt) +

(2)︷              ︸︸              ︷
1
ηγ
D̂ log(m + n) +

(3)︷︸︸︷
2η
γ

T +

(4)︷            ︸︸            ︷
2
γ
D̂ log(m + n) +

(5)︷︸︸︷
4η2

γ
T
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By substituting η =

√
D̂ log(m+n)

2T ,

∑
t∈[T ]

L
γ
hi(yt, ȳt) ≤

(a)︷              ︸︸              ︷∑
t∈[T ]

L
γ
hi(yt, Ūit jt) +

(b)︷                                        ︸︸                                        ︷√
2D̂ log(m + n)

T
·
∑
t∈[T ]

L
γ
hi(yt, Ūit jt) +

(c)︷            ︸︸            ︷
4
γ
D̂ log(m + n) +

(d)︷                    ︸︸                    ︷
2
γ

√
2D̂ log(m + n)T

where (1) = (a) + (b), (2) + (3) = (d), and (4) + (5) = (c). From Lemma 21, we then

have Lγhi(yt, Ūit jt) ≤ 1 + 1
γ
≤ 2

γ
for t ∈ [T ], giving

∑
t∈[T ]

L
γ
hi(yt, ȳt) −

∑
t∈[T ]

L
γ
hi(yt, Ūit jt) ≤

4
γ

√
2D̂ log(m + n)T +

4
γ
D̂ log(m + n).

�

Lemma 23. For yt ∈ {−1, 1}, ȳt ∈ <, Yt ∼ Uniform(−γ, γ), γ ∈ (0, 1] and ŷt :=

sign(ȳt − Yt),

2E[yt , ŷt] ≤ L
γ
hi(yt, ȳt).

Proof. We have

p(ŷt = 1) =


0 if ȳt ≤ −γ

1
2 +

ȳt
2γ if − γ < ȳt ≤ γ

1 if ȳt > γ

and

p(ŷt = −1) =


1 if ȳt ≤ −γ

1
2 −

ȳt
2γ if − γ < ȳt ≤ γ

0 if ȳt > γ.

The possible cases are as follows.

1. If |ȳt| < γ, 2E[yt , ŷt] = L
γ
hi(yt, ȳt). This is since if yt = 1, E[yt , ŷt] = 1

2 −
ȳt
2γ

and Lγhi(yt, ȳt) = 1
γ
(γ − ȳt). Similarly if yt = −1, E[yt , ŷt] = 1

2 +
ȳt
2γ and

L
γ
hi(yt, ȳt) = 1

γ
(γ + ȳt).
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2. If |ȳt| ≥ γ and E[yt , ŷt] = 0, then Lγhi(yt, ȳt) = 1
γ
[γ − |ȳt|]+ = 0.

3. If |ȳt| ≥ γ and E[yt , ŷt] = 1, Lγhi(yt, ȳt) = 1
γ
[γ + |ȳt|]+ ≥

2γ
γ

= 2E[yt , ŷt].

�

Lemma 24. The expected mistakes of Algorithm 1 with parameters γ ∈ (0, 1], D̂ ≥

D ≥ 1, η =

√
D̂ log(m+n)

2T , and m + n ≥ 3, is bounded by

E[|M|] ≤
1
2

∑
t∈[T ]

L
γ
hi(yt, Ūit jt) +

3.5
γ

√
D̂ log(m + n)T , (3.33)

where we recall that Ū := γU and Ūit jt = tr
(
ŨX̃ t

)
− 1 (see page 35).

Proof. Let us consider the following two cases.

1. T ≤ 9D̂ log(m + n).

E[|M|] ≤ T

≤ min(T, 9D̂ log(m + n))

=

√
min(T, 9D̂ log(m + n))2

≤

√
9D̂ log(m + n))T

≤
3
γ

√
D̂ log(m + n))T

where the last inequality holds since γ ∈ (0, 1].

2. T > 9D̂ log(m + n). We apply Lemma 23 to Lemma 22, and obtain

E[|M|] −
1
2

∑
t∈[T ]

L
γ
hi(yt, Ūit jt) ≤

2
γ

√
2D̂ log(m + n)T +

2
γ
D̂ log(m + n)

≤
2
γ

√
2D̂ log(m + n)T +

2
γ

√
(D̂ log(m + n))2

<
2
γ

√
2D̂ log(m + n)T +

2
3γ

√
D̂ log(m + n)T

(3.34)

≤
3.5
γ

√
D̂ log(m + n)T
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where (3.34) applies due to the assumption on T .

Combining the two cases gives the lemma. �

The regret statement of the theorem then follows from Lemma 24 by applying

the first inequality in Lemma 21.

Proof for the mistake bound (Equation (3.2))

In this subsection, we prove the second part of Theorem 1 (Equation (3.2)). To do

so, we prove an intermediate result which implies the theorem:

Lemma 25. The mistakes in the realizable case with conservative updates

([non-conservative] = 0) and parameters η = γ, D̂ ≥ Dγ

M ,N (U ) are bounded

by,

|M| ≤ 3.6(D̂/γ2) log(m + n) , (3.35)

for all U ∈ ((−∞,−1] ∪ [1,∞))m×n with ‖U‖max ≤ 1/γ and yt = sign(Uit jt) for all

t ∈ M.

We now recall the second part of the theorem and show that Lemma 25 implies

this.

The mistakes in the realizable case with conservative updates

([non-conservative] = 0) and parameters η = γ, D̂ ≥ minV ∈SP1(U )D
γ

M ,N (V )

are bounded by,

|M| ≤ 3.6(D̂/γ2) log(m + n) ,

for all U ∈ <m×n with mc(U ) ≤ 1/γ and yt = sign(Uit jt) for all t ∈ M.

Since Lemma 25 holds for all U ∈ ((−∞,−1] ∪ [1,∞))m×n, it also holds for the

comparator matrix V ∗ ∈ argminV ∈SP1(U ′)D
γ

M ,N (V ) where U ′ ∈ <m×n. We have

yt = sign(V∗it jt) = sign(U′it jt) for all t. It now remains to be shown that ‖V ∗‖max ≤ 1/γ

is equivalent to mc(U ′) ≤ 1/γ. It is easy to show that ‖V ∗‖max ≤ 1/γ im-

plies mc(U ′) ≤ 1/γ since we have mc(U ′) ≤ ‖V ∗‖max ≤ 1/γ. To show that

mc(U ′) ≤ 1/γ implies ‖V ∗‖max ≤ 1/γ, we observe that ‖V ∗‖max ≤ 1/γ iff there
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exist P̂ and Q̂ such that P̂ Q̂> = 1
γ
V ∗ . We now show that mc(U ′) ≤ 1/γ im-

plies the existence of such a decomposition for V ∗. The condition mc(U ′) ≤ 1/γ

implies that there exists a V ′ ∈ SP1(U ′) such that ‖V ′‖max ≤ 1/γ. Therefore,

there exist P̂ and Q̂ such that P̂ Q̂> = 1
γ
V ′ and Dγ

M ,N (V ′) is finite. Since

D
γ

M ,N (V ∗) := minV ∈SP1(U )D
γ

M ,N (V ) ≤ Dγ

M ,N (V ′), we have that Dγ

M ,N (V ∗)

must be finite as well, thus implying the existence of a decomposition.

In the remainder of the section, we provide the proof for Lemma 25.

Proof of Lemma 25

Lemma 26. [4, Lemma 2.1] IfA ∈ Sd
+ with eigenvalues in [0, 1] and a ∈ < then:

(1 − ea)A � I − exp(aA)

Lemma 27. For all trials t ∈ M, we have:

∆(Ũ , W̃ t) − ∆(Ũ , W̃ t+1) ≥ ηyt tr
(
ŨX̃ t

)
+ (1 − eηyt) tr

(
W̃ tX̃ t

)
. (3.36)

Proof. We have:

∆(Ũ , W̃ t) − ∆(Ũ , W̃ t+1) = tr
(
Ũ log W̃ t+1 − Ũ log W̃ t

)
+ tr

(
W̃ t

)
− tr

(
W̃ t+1

)
= ηyt tr

(
ŨX̃ t

)
+ tr

(
W̃ t

)
− tr

(
elogW̃ t+ηytX̃

t)
(3.37)

≥ ηyt tr
(
ŨX̃ t

)
+ tr

(
W̃ t

)
− tr

(
elogW̃ t

eηytX̃
t)

(3.38)

= ηyt tr
(
ŨX̃ t

)
+ tr

(
W̃ t

(
I − eηytX̃

t))
≥ ηyt tr

(
ŨX̃ t

)
+ (1 − eηyt) tr

(
W̃ tX̃ t

)
, (3.39)

where Equation (3.37) comes from the update of the algorithm, Equation (3.38)

comes from Lemma 11 and Equation (3.39) comes from Lemma 26 which applies

since, by Lemma 15 all eigenvalues of X̃ t are in [0, 1]. �

Lemma 28. [34, Lemma A.5] For x ∈ [−1, 1],

x2 + x + 1 − ex ≥ (3 − e)x2 .
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We proceed by showing that the “progress” ∆(Ũ , W̃ t) − ∆(Ũ , W̃ t+1) of W̃ t

towards Ũ may be further lower bounded by cγ (see Lemma 29).

Lemma 29. Let c := 3 − e. For all trials t with t ∈ M (under the conditions of

Lemma 32) we have:

∆(Ũ , W̃ t) − ∆(Ũ , W̃ t+1) ≥ cγ2

Proof. By Lemma 3, Ūit jt = tr
(
ŨX̃ t

)
−1 so since yt = sign(Uit , jt) = sign(Ūit jt), and

γ ≤ minit , jt |Ūit jt | by the constraints on U , we have γ ≤ yt

(
tr

(
ŨX̃ t

)
− 1

)
. So when

yt = 1 we have tr
(
ŨX̃ t

)
≥ 1 + γ and when yt = −1 we have tr

(
ŨX̃ t

)
≤ 1 − γ. We

use these inequalities as follows.

First suppose that yt = 1. By Lemma 27 we have:

∆(Ũ , W̃ t) − ∆(Ũ , W̃ t+1) ≥ γ tr
(
ŨX̃ t

)
+ (1 − eγ) tr

(
W̃ tX̃ t

)
≥ γ (1 + γ) + (1 − eγ) tr

(
W̃ tX̃ t

)
≥ γ (1 + γ) + (1 − eγ) (3.40)

= (γ + γ2) + 1 − eγ

≥ cγ2, (3.41)

where Equation (3.41) comes from Lemma 28 and Equation (3.40) comes from the

fact that ŷt = −1 and hence, by the algorithm, tr
(
W̃ tX̃ t

)
≤ 1.

Now suppose that yt = −1. By Lemma 27 we have:

∆(Ũ , W̃ t) − ∆(Ũ , W̃ t+1) ≥ −γ tr
(
ŨX̃ t

)
+

(
1 − e−γ

)
tr

(
W̃ tX̃ t

)
≥ −γ (1 − γ) +

(
1 − e−γ

)
tr

(
W̃ tX̃ t

)
≥ −γ (1 − γ) +

(
1 − e−γ

)
(3.42)

= −γ + γ2 + 1 − e−γ

≥ cγ2, (3.43)

where Equation (3.43) comes from Lemma 28 and Equation (3.42) comes from the
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fact that ŷt = 1 and hence, by the algorithm, tr
(
W̃ tX̃ t

)
≥ 1. �

Lemma 30. We have,

cγ2|M| ≤ ∆(Ũ , W̃ 1) .

Proof. Suppose that we have T trials. Then we have:

∆(Ũ , W̃ 1) ≥ ∆(Ũ , W̃ 1) − ∆(Ũ , W̃ T+1)

=
∑
t∈[T ]

(
∆(Ũ , W̃ t) − ∆(Ũ , W̃ t+1)

)
=

∑
t∈M

(
∆(Ũ , W̃ t) − ∆(Ũ , W̃ t+1)

)
(3.44)

≥
∑
t∈M

cγ2 (3.45)

= cγ2|M|,

where (3.45) follows from (3.44) using Lemma 29. �

Lemma 31. Given that W̃ 1 = D̂ I
m+n we have

∆(Ũ , W̃ 1) ≤ tr
(
Ũ

)
log(m + n) + tr(Ũ ) log

tr(Ũ )

D̂
+ D̂ − tr(Ũ )
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Proof. We have:

∆(Ũ , W̃ 1) = tr
(
Ũ log Ũ

)
− tr

(
Ũ log W̃ 1

)
+ tr

(
W̃ 1

)
− tr(Ũ )

= tr
(
Ũ log Ũ

)
− tr

Ũ log
 D̂m + n

I

 + tr
 D̂m + n

I

 − tr(Ũ )

= tr
(
Ũ log Ũ

)
− tr

Ũ log
 D̂m + n

I

 + D̂ − tr(Ũ )

= tr
(
Ũ log Ũ

)
− tr

Ũ I log
 D̂m + n

 + D̂ − tr(Ũ )

= tr
(
Ũ log Ũ

)
− tr

Ũ log
 D̂m + n

 + D̂ − tr(Ũ ) (3.46)

≤ tr
(
Ũ log(tr(Ũ ))

)
− tr

Ũ log
 D̂m + n

 + D̂ − tr(Ũ ) (3.47)

=

log(tr(Ũ )) − log
 D̂m + n

 tr(Ũ ) + D̂ − tr(Ũ )

= log
 tr(Ũ )(m + n)

D̂

 tr(Ũ ) + D̂ − tr(Ũ ) ,

where (3.47) follows from (3.46), since Ũ := V ΛV −1 where Λ is a diagonal matrix

of the eigenvalues of Ũ . This holds since,

tr(Ũ log Ũ ) = tr(V ΛV −1V log ΛV −1)

= tr(V Λ log ΛV −1)

= tr(Λ log Λ)

=

m+n∑
i=1

λi log(λi)

≤ (
m+n∑
i=1

λi) log(
m+n∑
i=1

λi)

= tr(Ũ log(tr(Ũ ))) .

�

Lemma 32. The mistakes, |M|, of Algorithm 1 with the assumption that yt =

sign(Uit jt) for all t ∈ M and with parameters ‖U‖max ≤ 1/γ, 1 ≤ D̂ and η = γ
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and conservative updates, is bounded above by:

|M| ≤ 3.6
1
γ2

(
D

(
log(m + n) + log

D

D̂

)
+ D̂ − D

)
(3.48)

Proof. Combining Lemmas 30 and 31 gives us

|M| ≤
1
c

1
γ2

tr (Ũ )
log(m + n) + tr(Ũ ) log

tr(Ũ )

D̂
+ D̂ − tr(Ũ )


Using Lemma 14 and upper bounding 1/c by 3.6 then gives the result. �

The theorem statement for the realizable case then follows by setting D̂ ≥ D.

�

3.6.2 Proof of Theorem 4

In this subsection we provide the proofs for the regret and mistake bound statements

for the MGD algorithm. For the mistake bound, we prove the following lemma in

the remainder of the subsection, which implies the bound (see discussion following

Lemma 25, where we can replace the quasi-dimension by the quasi-area).

Lemma 33. The mistakes in the realizable case with conservative updates

([non-conservative]=0) and learning rate η =

√
D̂2

|M|
, where D̂2 ≥ A

γ

M ,N (U ),

are bounded by,

|M| ≤
D̂2

γ2 ,

for all U ∈ ((−∞,−1] ∪ [1,∞))m×n with ‖U‖max ≤ 1/γ and yt = sign(Uit jt) for all

t ∈ M.

For all t ∈ [T ], we define

H t := γ∇W̃ tL
γ
hi(yt, ȳt) [γ × [non-conservative] > ytȳt] , (3.49)

where ∇ denotes the subgradient and we recall that ȳt = tr
(
W̃ t(X̃ t)>

)
, as defined in

Algorithm 2. We also define Ū := γU for U ∈ ((−∞,−1] ∪ [1,∞))m×n and recall

the following lemmas from Section 3.6.1.
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Lemma 21. For Ū := γU , where U ∈ <m×n, mini, j |Ui j| ≥ 1 and

‖U‖max ≤
1
γ

L
γ
hi(yt, Ūit jt) ≤

(
1 + max

i, j
|Ui j|

)
[yt , sign(Uit jt)] ≤

(
1 +

1
γ

)
[yt , sign(Uit jt)]

Lemma 23. For yt ∈ {−1, 1}, ȳt ∈ <, Yt ∼ Uniform(−γ, γ), γ ∈ (0, 1]

and ŷt := sign(ȳt − Yt),

2E[yt , ŷt] ≤ L
γ
hi(yt, ȳt).

Lemma 34. For all t ∈ [T ],

H t = −ytX̃
t [
γ × [non-conservative] > ytȳt

]
.

Proof. When γ× [non-conservative] > ytȳt, we have thatH t = ∇W̃ t γL
γ
hi(yt, ȳt) and

hence

H t = ∇W̃ t

[
γ − yt

(
tr

(
W̃ tX̃ t

)
− 1

)]
+

= ∇W̃ t

(
γ − yt

(
tr

(
W̃ tX̃ t

)
− 1

))
= −ytX̃

t.

When γ × [non-conservative] ≤ ytȳt,H t = 0 by definition. �

Recall that (P̂ , Q̂) is the “optimal” factorization which minimizes the opti-

mization problem in the definition of Dγ

M ,N (U ). Let us define the quasi-area with

respect to this factorization as

A := RMRN tr
(
P̂ >MP̂

)
tr

(
Q̂>NQ̂

)
.

Then, we have thatA = A
γ

M ,N (U ).

Lemma 35.

tr(ŨŨ >) ≤ A
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Proof. We start by proving the equality. Recall that Ũ =
√
RMRN

√
MP̂Q̂>

√
N .

tr(ŨŨ >) = RMRN tr(
√
MP̂Q̂>NQ̂P̂ >

√
M )

from which the equality follows by the cyclic property of the trace. For the inequal-

ity, we bound

RMRN tr(P̂ >MP̂ · Q̂>NQ̂) ≤ RMRN tr(P̂ >MP̂ ) tr(Q̂>NQ̂)

which follows since tr(AB) ≤ tr(A) tr(B) forA,B ∈ S+. �

Lemma 36. For all t ∈ [T ],

tr(X̃ t(X̃ t)>) ≤ 1.

Proof. Recall that

X̃ t =
1

√
RMRN

√
M+eit(e jt)

>
√
N+.

Evaluating

tr(X̃ t(X̃ t)>) =
1

RMRN

tr(
√
M+eit(e jt)

>N+e jt(eit)
>
√
N+)

=
1

RMRN

(eit)
>M+eit(e jt)

>N+e jt

=
1

RMRN

M+
it ,it N

+
jt , jt

≤ 1,

where the inequality comes from the definition of the squared radius: RM :=

maxi∈[m] M+
ii . �

Lemma 37. For all t ∈ [T ],

tr(Ũ (X̃ t)>) = Ūit jt .

Proof. Recall that Ũ =
√
RMRN

√
MP̂Q̂>

√
N and X̃ t = 1

√
RMRN

√
M+eit(e jt)

>
√
N+.
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Then we have

tr(Ũ (X̃ t)>) = tr(
√
MP̂Q̂>e jt(eit)

>
√
M+)

= tr(e>itP̂ Q̂
>e jt)

= (P̂ Q̂>)it , jt

�

We proceed with the typical progress inequality for MGD. For a matrixA, we

define the ||A||F as the Frobenius norm, given by
√

tr(AA>).

Lemma 38. For all t ∈ [T ],

||Ũ − W̃ t||2F − ||Ũ − W̃
t+1||2F = −η2 tr((H t)2) + 2η tr((W̃ t −U )>H t).

Proof. Recalling the update rule and by Lemma 34, we have that for both conser-

vative and non-conservative updates, W̃ t+1 = W̃ t − ηH t. Hence,

||Ũ − W̃ t+1||2F = 〈Ũ − (W̃ t − ηH t), Ũ − (W̃ t − ηH t)〉

= ||Ũ − W̃ t||2F + η2 tr(H t(H t)>) − 2η tr((W̃ t − Ũ )>H t). (3.50)

The lemma then follows by rearranging Equation (3.50). �

Lemma 39. For Algorithm 2 with non-conservative updates, assuming that η =√
D̂2

T and D̂2 ≥ A ≥ 1,

∑
t∈[T ]

tr((W̃ t − Ũ )>H t) ≤
√
D̂2T

In the case of conservative updates, assuming that η =

√
D̂2

|M|
and D̂2 ≥ A ≥ 1,

∑
t∈M

tr((W̃ t − Ũ )>H t) ≤
√
D̂2|M|
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Proof. We prove for the case of conservative updates. The case of non-conservative

updates can be proven in the same manner by summing over [T ] instead of M.

Rearranging the equation in Lemma 38 and summing over t ∈ M (while noting that

for conservative updatesH t = 0 when t , |M|) gives

∑
t∈M

tr((W̃ t − Ũ )H t) =
1
2η

(
||Ũ − W̃ 1||2F − ||Ũ − W̃

|M|+1||2F

)
+ η2

∑
t∈M

tr(H t(H t)>)

≤
1
2η

||Ũ − W̃ 1||2F + η2
∑
t∈M

tr(H t(H t)>)

 (3.51)

=
1
2η

tr(ŨŨ >) + η2
∑
t∈M

tr(H t(H t)>)

 (3.52)

=
1
2η

tr(ŨŨ >) + η2
∑
t∈M

tr(X̃ t(X̃ t)>)

 (3.53)

≤
1
2η

(
D̂2 + η2|M|

)
(3.54)

=
1
2η
D̂2 +

η

2
|M|

where (3.51) comes from the fact that ||Ũ − W̃ |M|+1||2F ≥ 0, (3.52) follows from

W̃ 1 := 0, (3.53) comes from Lemma 16 and (3.54) comes from Lemmas 35 and 36.

The lemma follows by setting the η from the assumption. �

Lemma 40. For Algorithm 2 with non-conservative updates, assuming that η =√
D̂2

T and D̂2 ≥ A ≥ 1

∑
t∈[T ]

L
γ
hi(yt, ȳt) −

∑
t∈[T ]

L
γ
hi(yt, Ūit jt) ≤

1
γ

√
D̂2T (3.55)

where we recall that Ū := γU . In the case of conservative updates, η =

√
D̂2

|M|
and

D̂2 ≥ A ≥ 1 ∑
t∈M

L
γ
hi(yt, ȳt) −

∑
t∈M

L
γ
hi(yt, Ūit jt) ≤

1
γ

√
D̂2|M|. (3.56)

Proof. We prove the case for the conservative updates. The case for non-

conservative updates can be proven in a similar manner by using [T ] instead of
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M. We aim to prove

∑
t∈M

(
L
γ
hi(yt, ȳt) − L

γ
hi(yt, Ūit jt)

)
≤

1
γ

∑
t∈[T ]

tr
(
(W̃ t − Ũ )H t

)
so that the lemma follows from Lemma 39. For t ∈ M, we have that H t =

∇W̃γL
γ
hi(yt, ȳt) since ytȳt < 0. Substituting for ȳt gives,

L
γ
hi(yt, ȳt) =

1
γ

[γ − yt(tr
(
W̃ tX̃ t

)
− 1)]+ .

Lemma 3 gives,

L
γ
hi(yt, Ūit jt) =

1
γ

[γ − yt(tr
(
ŨX̃ t

)
− 1)]+ .

Define

ft(Z) :=
1
γ

[γ − yt(tr
(
ZX̃ t

)
− 1)]+

Since Lγhi(yt, ·) is convex and the fact that a convex function applied to a linear

function is again convex, we have that f (·) is convex. We have

∑
t∈M

(
L
γ
hi(yt, ȳt) − L

γ
hi(yt, Ūit jt)

)
=

∑
t∈M

(
ft(W̃ t) − ft(Ũ )

)
≤

∑
t∈M

tr
((
W̃ t − Ũ

)>
∇ ft(W̃ )

)
(3.57)

=
∑
t∈M

tr
((
W̃ t − Ũ

)>
∇W̃L

γ
hi(yt, ȳt)

)
=

1
γ

∑
t∈M

tr
(
(W̃ t − Ũ )>H t

)
, (3.58)

where (3.57) follows from the fact that f (A) − f (B) ≤ tr((A − B)>∇ f (A)) for a

convex function f and (3.58) comes from the definition of H t = ∇W̃γL
γ
hi(yt, ȳt)

(see (3.49)). �

The regret statement of the theorem follows from Equation (3.55) in Lemma 40

by bounding
∑

t∈[T ]L
γ
hi(yt, ȳt) and

∑
t∈[T ]L

γ
hi(yt, Ūit jt) through Lemma 23 and the first

inequality of Lemma 21 respectively. For the mistake bound in the realizable case,

we use Equation (3.56) in Lemma 40 and observe that
∑

t∈ML
γ
hi(yt, Ūit jt) = 0, from
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which Lemma 33 follows. �

3.6.3 Proof of Proposition 6

We now prove Proposition 6, that the transductive and inductive algorithms are

equivalent. Recall by assumption that RM = RM and RN = RN .

Equivalence of Traces

Suppose, in this subsection, that we have some given trial t. In this subsection we

analyse the inductive algorithm. We make the following definitions:

Definition 41. For all s ∈ U ∩ [t]

v(s) :=
[
(
√

(M t)+)eis

√
2RM

;
(
√

(N t)+)e js

√
2RN

]

v̄(s) :=

 (
√

(M T+1)+)eis

√
2RM

;
(
√

(N T+1)+)e js

√
2RN


Note that X̃ t(s) = v(s)v(s)> and X̃T+1(s) = v̄(s)v̄(s)> for s ∈ U ∩ [t].

Lemma 42. For all l ∈ N and for all a1, a2, ..., al ∈ U ∩ [t − 1] there exists some

α ∈ < such that:

X̃ t(a1)X̃ t(a2) · · · X̃ t(al) = αv(a1)v(al)>

and

X̃T+1(a1)X̃T+1(a2) · · · X̃T+1(al) = αv̄(a1)v̄(al)>

Proof. We prove by induction on l. In the case l := 1 the result is clear with α := 1.

Now suppose the result holds with l := q for some q ∈ N. We now show

that it holds for l := q + 1. Since it holds for l := q, choose α′ such that

X̃ t(a1)X̃ t(a2) · · · X̃ t(aq) = α′v(a1)v(aq)> and X̃T+1(a1)X̃T+1(a2) · · · X̃T+1(aq) =
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α′v̄(a1)v̄(aq)>. Note that we now have:

X̃ t(a1)X̃ t(a2) · · · X̃ t(al) = X̃ t(a1)X̃ t(a2) · · · X̃ t(aq)X̃ t(al)

= α′v(a1)v(aq)>X̃ t(al)

= α′v(a1)v(aq)>v(al)v(al)>

=
(
v(aq)>v(al)

)
α′v(a1)v(al)>

=

(
M+(iaq , ial)

2RM

+
N+( jaq , jal)

2RN

)
α′v(a1)v(al)>

Similarly we have:

X̃T+1(a1)X̃T+1(a2) · · · X̃T+1(al) =

(
M+(iaq , ial)

2RM

+
N+( jaq , jal)

2RN

)
α′v̄(a1)v̄(al)>,

from which the result follows. �

Lemma 43. For all l ∈ N and for all a1, a2, ..., al ∈ U ∩ [t − 1] we have:

tr
(
X̃ t(t)X̃ t(a1)X̃ t(a2) · · · X̃ t(al)

)
= tr

(
X̃T+1(t)X̃T+1(a1)X̃T+1(a2) · · · X̃T+1(al)

)

Proof. By Lemma 42, let α be such that

X̃ t(a1)X̃ t(a2) · · · X̃ t(al) = αv(a1)v(al)>

and

X̃T+1(a1)X̃T+1(a2) · · · X̃T+1(al) = αv̄(a1)v̄(al)>.
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Note that:

tr
(
X̃ t(t)X̃ t(a1)X̃ t(a2) · · · X̃ t(al)

)
= α tr

(
X̃ t(t)v(a1)v(al)>

)
= α tr (v(t)v(t)>v(a1)v(al)>)

= α tr (v(al)>v(t)v(t)>v(a1))

= α (v(al)>v(t)) (v(t)>v(a1))

= α

(
M+(ial , it)

2RM

+
N+( jal , jt)

2RN

) (
M+(it, ia1)

2RM

+
N+( jt, ja1)

2RN

)

Similarly we have:

tr
(
X̃T+1(t)X̃T+1(a1)X̃T+1(a2) · · · X̃T+1(al)

)
=α

(
M+(ial , it)

2RM

+
N+( jal , jt)

2RN

) (
M+(it, ia1)

2RM

+
N+( jt, ja1)

2RN

)

The result follows. �

Lemma 44. For any q ∈ N, any κ ∈ <+ and any b1, b2, · · · bt−1 ∈ < we have:

tr

X̃ t(t)

 ∑
s∈U∩[t−1]

bsX̃
t(s)


q = tr

X̃T+1(t)

 ∑
s∈U∩[t−1]

bsX̃
T+1(s)


q

Proof. We have:

tr

X̃ t(t)

 ∑
s∈U∩[t−1]

bsX̃
t(s)


q

= tr

X̃ t(t)
∑

a1∈U∩[t−1]

∑
a2∈U∩[t−1]

· · ·
∑

aq∈U∩[t−1]

 q∏
i=1

bai

 X̃ t(a1)X̃ t(a2) · · · X̃ t(aq)


=

∑
a1∈U∩[t−1]

∑
a2∈U∩[t−1]

· · ·
∑

aq∈U∩[t−1]

 q∏
i=1

bai

 tr
(
X̃ t(t)X̃ t(a1)X̃ t(a2) · · · X̃ t(aq)

)
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and similarly,

tr

X̃T+1(t)

 t−1∑
s=1

bsX̃
T+1(s)

q
= tr

X̃T+1(t)
∑

a1∈U∩[t−1]

∑
a2∈U∩[t−1]

· · ·
∑

aq∈U∩[t−1]

 q∏
i=1

bai

 X̃T+1(a1)X̃T+1(a2) · · · X̃T+1(aq)


=

∑
a1∈U∩[t−1]

∑
a2∈U∩[t−1]

· · ·
∑

aq∈U∩[t−1]

 q∏
i=1

bai

 tr
(
X̃T+1(t)X̃T+1(a1)X̃T+1(a2) · · · X̃T+1(aq)

)
.

The result follows by Lemma 43. �

Lemma 45. For any κ ∈ <+ and any b1, b2, · · · bt−1 ∈ < we have:

tr

X̃ t(t) exp

κI +
∑

s∈U∩[t−1]

bsX̃
t(s)


 = tr

X̃T+1(t) exp

κI +
∑

s∈U∩[t−1]

bsX̃
T+1(s)




Proof. Using the fact that exp (A +B) = exp (A) exp (B) for commuting matrices

A and B, and noting that the multiple of the identity matrix commutes with any

matrix, we have that

tr

X̃ t(t) exp

κI +
∑

s∈U∩[t−1]

bsX̃
t(s)


 = tr

X̃ t(t) exp (κI) exp

 ∑
s∈U∩[t−1]

bsX̃
t(s)


 .

By the Taylors series expansion we have:

tr

X̃ t(t) exp (κI) exp

 ∑
s∈U∩[t−1]

bsX̃
t(s)


 = eκ tr

X̃ t(t)
∞∑

q=0

1
q!

 ∑
s∈U∩[t−1]

bsX̃
t(s)


q

= eκ
∞∑

q=0

1
q!

tr

X̃ t(t)

 ∑
s∈U∩[t−1]

bsX̃
t(s)


q

Similarly, we have

tr

X̃T+1(t) exp

κI +
∑

s∈U∩[t−1]

bsX̃
T+1(s)


 = eκ

∞∑
q=0

1
q!

tr

X̃T+1(t)

 ∑
s∈U∩[t−1]

bsX̃
T+1(s)


q .
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The result then follows from Lemma 44. �

Equivalence of Algorithms

On a trial t, let z̄t be the prediction (ȳt) of the inductive algorithm and let ȳt remain

the prediction of the transductive algorithm. We fix κ := log
(
D̂/(m + n)

)
.

Lemma 46. On a trial t the prediction, ȳt, of the transductive algorithm is given by:

ȳt = tr

X̃T+1(t) exp

κI +

t−1∑
s=1

fs(ȳs)X̃T+1(s)


and the prediction, z̄t, of the inductive algorithm is given by:

z̄t = tr

X̃ t(t) exp

κI +

t−1∑
s=1

fs(z̄s)X̃ t(s)


where fs(x) := ηys if ysx ≤ γ × [non-conservative] and fs(x) := 0 otherwise.

Proof. Direct from algorithms, noting that if s < U ∩ [t − 1] then fs(z̄s) = 0. �

Lemma 47. Given a trial t, if ȳs = z̄s for all s < t, then ȳt = z̄t.

Proof. Direct from Lemmas 46 and 45 (with bs := fs(ȳt) = fs(z̄t)), noting that if

s < U ∩ [t − 1] then fs(z̄s) = 0. �

Proposition 6 follows by induction over Lemma 47. �

3.6.4 Proof of Proposition 7

Before proving Proposition 7, we first present an intermediate lemma, Lemma 48.

Lemma 48. Giving a matrixA ∈ <n×k, scalar a ∈ <, we have that

∆(AA>, aIn) = ∆(A>A, aIk) + a(n − k).

Proof. Denote the n × n eigendecomposition diagonal matrix of A>A as Λn and

that of AA> as Λk. Observe that the non-zero eigenvalues of A>A is identical to

that of AA>. In both cases, these are given by the square of the singular values of

A.
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This fact then allows us to write the following,

∆(AA>, aIn) = tr(AA> log(AA>)) − tr(AA> log(aIn)) + tr(aIn) − tr(AA>)

= tr(Λn log(Λn)) − tr(Λn log(aIn)) + tr(aIn) + tr(Λn)

= tr(Λk log(Λk)) − tr(Λk log(aIk)) + tr(aIn) + tr(Λk)

= tr(Λk log(Λk)) − tr(Λk log(aIk)) + tr(aIk) + a(n − k) + tr(Λk)

= tr(A>A log(A>A)) − tr(A>A log(aIk)) + tr(aIk) + a(n − k) + tr(Λk)

= ∆(A>A, aIk) + a(n − k).

�

We now recall the proposition and provide a proof.

Proposition 7. For all t

W ∗,t
1 = W ∗,t

2

whereW ∗,t
1 is defined as in (3.15) andW ∗,t

2 is defined as in (3.16).

Proof. We recall that

W ∗,t
2 = argmin

W :W ∈Sm+n
+

∆(DWD,
D̂

m + n
Im+n) + ηγ

∑
s∈[t]

f s
γ (W ) .

Then, we write

W ∗,t
2 = argmin

W :W ∈Sm+n
+ ,W̃=DWD

∆(W̃ ,
D̂

m + n
Im+n) + ηγ

t−1∑
s=1

f s
γ (W )

= argmin
W :W=ZZ>,Z̄=DZ

∆(Z̄Z̄>,
D̂

m + n
Im+n) + ηγ

t−1∑
s=1

f s
γ (W )

where Z ∈ <(m+n)×k, the last optimisation is over all Z and k, and we have made

use of the fact that requiring W ∈ Sm+n
+ is equivalent to requiring that W = ZZ>.

This is because any symmetric matrix A has an eigendecomposition A = V ΣV >.

Since all the eigenvalues ofW are non-negative by virtue of it being positive semi-

definite, we can set Z = V
√

Σ. Similarly, any matrix Z has a SVD decomposition
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Z = SΩT >, so that ZZ> = SΩ2S>, which gives a matrix with non-negative

eigenvalues {Ω2
i,i : i ∈ [m + n]}. Then using Lemma 48,

W ∗,t
2 = argmin

W :W=ZZ>,Z̄=DZ

∆(Z̄>Z̄,
D̂

m + n
Ik) + ηγ

t−1∑
s=1

f t
γ (W ) +

D̂(m + n − k)
m + n

= argmin
W :W=ZZ>

∆(Z>D2Z,
D̂

m + n
Ik) + ηγ

t−1∑
s=1

f t
γ (W ) +

D̂(m + n − k)
m + n

Finally by considering wlog Z = [P ;Q] for P ∈ <n×k, Q ∈ <m×k, we then have

that this equalsW ∗,t
1 .

�

3.6.5 Proof of Proposition 8

In the following, we prove Proposition 8. We computeW ∗,t+1 as described in (3.17),

and show that this gives rise to the prediction in Algorithm 1. We note that (3.17) is

convex inW due to the following lemma.

Lemma 49. The function

∆(DWD,A) + f t
γ (W )

is convex inW ∈ Sm+n
+ , whereA ∈ Sm+n

+ andD ∈ Sm+n
+ .

Proof. First, we note that the sum of convex functions gives a convex function. The

hinge loss f t
γ (W ) is a convex function in ȳt, where we recall that ȳt := tr(WX)−1.

Since the composition of a convex and linear function is a convex function, we have

that the hinge loss is convex inW .

Hence, we aim to show the convexity of F(W ) := ∆(DWD,A). We define

the function

G(W ) = DWD

and the function

H(W ) = ∆(W ,A).
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We then have that F(W ) = H(G(W )). It is clear thatG is linear inW since

G(αW1 + (1 − α)W2) = D(αW1 + (1 − αW2))D

= αDW1D + (1 − α)DW2D

= αG(W1) + (1 − α)G(W2).

We also know that H is convex in W due to the convexity of the quantum relative

entropy with respect to its first argument. By the convexity of H and the linearity of

G, we have that their composition F is again convex.

�

Since the function in (3.17) is convex, we can use the first derivative to find the

minimizer. For a function F(W ) : <(m+n)×(m+n) → <, we will denote its derivative

with respect toW as ∇W F(W ).

Lemma 50. We have

∇W f t
γ (W ) = −

1
γ

ytX
t [γ > yt(tr(WX t) − 1)].

Proof. Clearly if γ ≤ yt(tr(WX t) − 1), then Lγhi(ȳt, yt) = f t
γ (W ) = 0, resulting

in a derivative of 0(m+n)×(m+n). For γ > yt(tr(WX t) − 1), we have that f t
γ(W ) =

1
γ
[γ − yt(tr(WX t) − 1)] which gives the lemma since ∇A tr(AB) = B> and X t is

symmetric for all t. �

Lemma 51. For F(W ) := ∆(DWD,DW ∗,tD), we have

∇W F(W ) = D(log(DWD) − log(DW ∗,tD))D.

Proof. Recall that (∇W F(W ))i j = ∂F
∂Wi j

for all i, j ∈ [m + n]. Defining G(W ) :=

DWD, we have that
∂F
∂Wi j

=
∑
k,l

∂F
∂Gkl

∂Gkl

Wi j
. (3.59)

Since Gkl =
∑

s,t DksWstDtl,
∂Gkl

∂Wi j
= DkiD jl. (3.60)
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We also have
∂F
∂Gkl

= (log(G) − log(DW ∗,tD))kl, (3.61)

since ∇A(∆(A,B)) = log(A)− log(B) for symmetric matricesA,B (see e.g. [4]).

Combining (3.59), (3.60) and (3.61),

∂F
∂Wi j

=
∑
k,`

(log(G) − log(DW ∗,tD))klDkiD jl.

The lemma then follows sinceD is symmetric.

�

Lemma 52.

∇W (∆(DWD,DW tD) + ηγ f t
γ (W ) = D(log(DWD) − log(DW ∗,tD))D

− ηytX
t [γ > yt(tr(WX t) − 1)]

Proof. This follows directly from Lemmas 50 and 51. �

Lemma 53. We have

X t = DX̃ tD.

Proof. Recall that

X t :=
1
2

[
eit

m; e jt
n

] [
eit

m; e jt
n

]>
.

and

X̃ t :=
1
2
D−1

[
eit

m; e jt
n

] [
eit

m; e jt
n

]>
D−1.

�

Lemma 54. For all t ∈ [T ],

W ∗,t+1 =


D−1 exp(log(DW ∗,tD) + ηytX̃

t)D−1 if γ > yt(tr(WX t) − 1)

W ∗,t otherwise.
(3.62)
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Proof. We recall that W ∗,t+1 = argminW ∆(DWD,DW ∗,tD) + ηγ f t
γ (W ). We

first consider the case when γ > yt(tr(WX t) − 1). From Lemma 52, we have that

the minimumW ∗ satisfies

D(log(DW ∗D) − log(DW ∗,tD))D − ηytX
t = 0.

Rearranging,

log(DW ∗D) − log(DW ∗,tD) = ηytD
−1X tD−1

W ∗ = D−1 exp(log(DW ∗,tD) + ηytD
−1X tD−1)D−1.

From Lemma 53, we then obtain the first case. For the other case, we have that the

minimumW ∗ satisfies

D(log(DW ∗D) − log(DW ∗,tD))D = 0,

from which the second case follows. �

Lemma 55. For all t ∈ [T ],

W ∗,t = D−1W̃ tD−1,

where W̃ t is as defined in Algorithm 1.

Proof. We prove by induction over t. For t = 1, we have that W ∗,1 = D̂

m+nD
−2 =

D−1W̃ 1D−1. Now we show that if W ∗,t = D−1W̃ tD−1, we also have W ∗,t+1 =

D−1W̃ t+1D−1. From Lemma 54, we have for the case γ > yt(tr(WX t) − 1):

W ∗,t+1 = D−1 exp(log(DW ∗,tD) + ηytX̃
t)D−1

= D−1 exp(log(W̃ t) + ηytX̃
t)D−1 (3.63)

= D−1W̃ t+1D−1. (3.64)
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where (3.63) comes from the assumption that W ∗,t = D−1W̃ tD−1, and (3.64)

comes from the update rule in Algorithm 1. Otherwise, there is no update and

we have

W ∗,t+1 = W ∗,t

= D−1W̃ tD−1

= D−1W̃ t+1D−1.

�

By Lemmas 55 and 53,

ȳt + 1 = tr(W̃ tX̃ t)

= tr(DW ∗,tDX̃ t)

= tr(W ∗,tDX̃ tD)

= tr(W ∗,tX t).

�



Chapter 4
Latent Block Structure

In the previous chapter, we gave mistake and regret bounds for online matrix com-

pletion with side information for a general matrix. In this chapter, we will apply

these bounds to binary matrices with a k × ` latent block structure, where k and

` are respectively the number of distinct row and column factors. In the trans-

ductive setting, if the side information is predictive of the underlying factoriza-

tion of the matrix, then in an ideal case, the mistakes are bounded by Õ(k`). In

the inductive setting, we provide an example where the mistakes are bounded by

Õ(max(k, `)2 min(k, `)).

4.1 Introduction

In this chapter, we aim to apply the bounds that we developed in the last chapter for

the MEG and MGD algorithms to the hypothesis class of matrices with a k×` latent

block structure. Such matrices have the property that both the margin complexity

and the max-norm are bounded by min(
√

k,
√
`). Recall that the mistake bounds that

we proved in the previous chapter are of the form Õ
(
D/γ2) and O

(
D2/γ2), whereD

is the quasi-dimension term and 1/γ2 is a parameter of the algorithm which serves

as an upper estimate of the squared margin complexity mc(U )2 of the comparator

matrix U . In this chapter, we will upper bound the quasi-dimension term D for

different scenarios in the transductive and inductive settings.

Recall that in the case of vacuous side information, D = m + n. However, if
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there is a k × ` latent block structure and the side information is predictive, then we

show thatD ∈ O(k + `) in the transductive setting. This results in an MEG mistake

bound that is Õ(k`), which we will later argue is optimal. In the inductive setting,

where we are given only a pair of kernel functions, we give an example with the min

kernel where the quasi-dimensionD is now bounded by O(k2 + `2), giving an MEG

mistake bound that is Õ(max(k, `)2 min(k, `)). Although latent block structure may

appear to be a “fragile” measure of matrix complexity, our regret bound implies that

performance will scale smoothly in the case of adversarial noise.

The chapter is organized as follows. First, we give a background on matrices

with a latent block structure. In Section 4.3, we formally introduce the concept of

latent block structure (Definition 56) and provide an upper bound (Theorem 57) for

the quasi-dimensionDwhen the matrix has latent block structure. For the transduc-

tive setting, we provide an example that bounds D when we have graph-based side

information (Section 4.4.1); and a further example (Section 4.4.2) when the matrix

has additionally a “community” structure. For the inductive setting, we present an

example illustrating a bound on D when the side information comes as vectors in

<d which are separated by a clustering via hyper-rectangles in Section 4.5.1 and

hyper-spheres in Section 4.5.2. Finally, we perform synthetic experiments in Sec-

tion 4.6.

4.2 Background

Hartigan [72] introduced the idea of permuting a matrix by both the rows and

columns into a few homogeneous blocks. This is equivalent to assuming that each

row (column) has an associated row (column) class, and that the matrix entry is

completely determined by its corresponding row and column classes. This has since

become known as co- or bi-clustering. This same assumption has become the basis

for probabilistic models which can then be used to “complete” a matrix with missing

entries. The authors of [73] give rate-optimal results for this problem in the batch

setting and provide a literature overview. It is natural to compare this assumption to

the dominant alternative, which assumes that there exists a low rank decomposition
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Figure 4.1: A (9, 9)-biclustered 50 × 50 binary matrix before/after permuting into latent
blocks.

of the matrix to be completed, see for instance [74]. Common to both approaches

is that associated with each row and column, there is an underlying latent factor so

that the given matrix entry is determined by a function on the appropriate row and

column factor. The low-rank assumption is that the latent factors are vectors in<d

and that the function is the dot product. The latent block structure assumption is

that the latent factors are instead categorical and that the function between factors

is arbitrary.

4.3 Definition and Quasi-Dimension Bound

We introduce the concept class of (k, `)-binary-biclustered matrices (previously de-

fined in [34, Section 5]), in the following definition. A visualization of an example

(9,9)-biclustered matrix can be found in Figure 4.1. We then give an upper bound

to the quasi-dimension term Dγ

M ,N (U ) when a matrix has this type of latent struc-

ture in Theorem 57. The magnitude of the bound will depend on how “predictive”

matrices M and N are of the latent block structure. In Sections 4.4.1 and 4.4.2,

we will use a variant of the discrete Laplacian matrix for M and N to encode side

information and illustrate the resultant bounds for idealized scenarios.
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Definition 56. The class of (k, `)-binary-biclustered matrices is defined as

Bm,n
k,` = {U ∈ {−1, 1}m×n : r ∈ [k]m, c ∈ [`]n,U ∗ ∈ {−1, 1}k×`, Ui j = U∗ric j

, i ∈ [m], j ∈ [n]} .

Thus each row ri is associated with a latent factor in [k] and each column c j

is associated with a latent factor in [`] and the interaction of factors is determined

by a matrix U ∗ ∈ {−1, 1}k×`. More visually, a binary matrix is (k, `)-biclustered if

there exists some permutation of the rows and columns into a k × ` grid of blocks

each uniformly labeled −1 or +1. Determining if a matrix is in Bm,n
k,` , may be done

directly by a greedy algorithm. However, the problem of determining if a matrix

with missing entries may be completed to a matrix inBm,n
k,` was shown in [75, Lemma

8] to be NP-complete by reducing the problem to Clique Cover.

Many natural functions of matrix complexity are invariant to the presence of

block structure. A function f : X → < with respect to a class of matrices X

is block-invariant if for all m, k, n, ` ∈ N+ with m ≥ k, n ≥ `, R ∈ Bm,k and

C ∈ Bn,` we have that f (X) = f (RXC>) for any k × ` matrix X ∈ X. The max-

norm, margin complexity, rank and VC-dimension1 are all block-invariant. From

the block-invariance of the max-norm, we may conclude that for U ∈ Bm,n
k,` ,

mc(U ) ≤ ‖U‖max = ‖U ∗‖max ≤ min(
√

k,
√
`). (4.1)

This follows since we may decompose U = RU ∗C> for some U ∗ ∈ {−1, 1}k×`,

R ∈ Bm,k and C ∈ Bn,` and then use the observation in the preliminaries that the

max-norm of any matrix in {−1, 1}m×n is bounded by min(
√

m,
√

n).

In the following theorem, we give a bound for the quasi-dimensionDγ

M ,N (U )

which will scale with the dimensions of the latent block structure and the “predic-

tivity” of M and N with respect to that block structure. The bound is independent

of γ in so far asDγ

M ,N (U ) is finite.

1Here, a hypothesis classH defines a matrix via U := (h(x))h∈H ,x∈X.
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Theorem 57. If U ∈ Bm,n
k,` define

D◦M ,N (U ) :=


2 tr(R>MR)RM +2 tr(C>NC)RN +2k+2` M ,N are PDLaplacians

k tr(R>MR)RM + ` tr(C>NC)RN M ∈ Sm
++ andN ∈ Sn

++

,

(4.2)

as the minimum over all decompositions of U = RU ∗C> for R ∈ Bm,k, C ∈ Bn,`

and U ∗ ∈ {−1, 1}k×`. Thus for U ∈ Bm,n
k,` ,

D
γ

M ,N (U ) ≤ D◦M ,N (U ) (if ‖U‖max ≤ 1/γ)

min
V ∈SP1(U )

D
γ

M ,N (V ) ≤ D◦M ,N (U ) (if mc(U ) ≤ 1/γ) .

The bound Dγ

M ,N (U ) ≤ D◦M ,N (U ) allows us to bound the quality of

the side information in terms of a hypothetical learning problem. Recall that

argminriyi≥1:i∈[m](r
>Mr)RM is the upper bound on the mistakes per Novikoff’s theo-

rem [76] for predicting the elements of vector y ∈ {−1, 1}m with a kernel perceptron

using M−1 as the kernel. Hence the term O(tr(R>MR)RM ) in (4.2) may be inter-

preted as a bound for a one-versus-all k-class kernel perceptron whereR encodes a

labeling from [k]m as one-hot vectors.

It is also possible to prove a similar bound forAγ

M ,N (U ) ≤ A◦M ,N (U ), where

A◦M ,N (U ) :=


4(tr(R>MR)RM + k)(tr(C>NC)RN + `) M ,N are PDLaplacians

k` · tr(R>MR)RM · tr(C>NC)RN M ∈ Sm
++ andN ∈ Sn

++

.

(4.3)

This bound may be used when applying the mistake and regret bounds of the MGD

algorithm. Recalling that Aγ

M ,N (U ) ≤
(Dγ

M ,N
(U ))2

4 from Chapter 3, we can observe

that the upper bounds satisfy a similar relationship, i.e.,A◦M ,N (U ) ≤
(D◦

M ,N
(U ))2

4 .

In the remaining chapters, we will apply Theorem 57 on various examples in

the transductive and inductive settings. The inductive setting is more general, as it

only requires a pair of kernel functionsM+ and N+, from which we can build M

and N . However, only in a technical sense will it be possible to model inductive

side information via a PDLaplacian, sinceM+ can only be computed given knowl-
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edge of the graph in advance. This is unfortunate since the quasi-dimension upper

bound for PDLaplacians in Theorem 57 does not have the multiplicative factors in

k and ` as compared with general positive definite matrices.

We next show an example whereD◦M ,N (U ) ∈ O(k + `) with “ideal” side infor-

mation.

4.4 Transductive Setting

4.4.1 Graph-based Side Information

We may use a pair of separate graph Laplacians to represent the side information

on the “rows” and the “columns.” A given row (column) corresponds to a vertex in

the “row graph” (“column graph”). The weight of edge (i, j) represents our prior

belief that row (column) i and row (column) j share the same underlying factor.

Such graphs may be inherent to the data. For example, we have a social network of

users and a network based on shared actors or genres for the movies in a “Netflix”

type scenario. Alternatively, as is common in graph-based semi-supervised learn-

ing [77, 78] we may build a graph based on vectorial data associated with the rows

(columns), for example, user demographics. Although the value of D will vary

smoothly with the predictivity ofM andN of the factor structure, in the following

we give an example to quantifyD◦ in a best case scenario.

Bounding D◦ for “ideal” graph-based side information. In this ideal case

we are assuming that we know the partition of [m] that maps rows to factors. The

rows that share factors have an edge between them and there are no other edges.

Given k factors, we then have a graph that consists of k disjoint cliques. However,

to meet the technical requirement that the side information matrixM (N ) is positive

definite, we need to connect the cliques in a minimal fashion. We achieve this by

connecting the cliques like a “star” graph. Specifically, a clique is arbitrarily chosen

as the center and a vertex in that clique is arbitrarily chosen as the central vertex.

From each of the other cliques, a vertex is chosen arbitrarily and connected to the

central vertex. Fig. 4.2 illustrates a graph with 4 cliques that is constructed using

this methodology, where the edges that connect the cliques to the central vertex are



Chapter 4. Latent Block Structure 86

highlighted in red. Observe that a property of this construction is that there is a

path of length ≤ 4 between any pair of vertices. Now we can use the bound from

Theorem 57,

D◦ = 2 tr(R>MR)RM + 2 tr(C>NC)RN + 2k + 2` ,

to bound D ≤ D◦ in this idealized case. We focus on the rows, as a parallel ar-

gument may be made for the side information on the columns. Consider the term

tr(R>MR)RM , where M := L◦ is the PDLaplacian formed from a graph with

LaplacianL. Then using the observation from the preliminaries that (u>L◦u)RL◦ ≤

2(u>LuRL + 1), we have that tr(R>MR)RM ≤ 2 tr(R>LR)RL + 2k. To evaluate

this, we use the well-known equality of tr(R>LR) =
∑

(i, j)∈E

∥∥∥Ri −R j

∥∥∥2
. Observ-

ing that each of the m rows of R is a “one-hot” encoding of the corresponding

factor, only the edges between classes then contribute to the sum of the norms, and

thus by construction tr(R>LR) ≤ k − 1. We bound RL ≤ 4, using the fact that the

graph diameter is a bound on RL (see [79, Theorem 4.2]). Combining terms and as-

suming similar idealized side information on the columns, we obtainD◦ ∈ O(k + `).

Observe then that since the comparator matrix is (k, `)-biclustered, we have in the

realizable case (with exact tuning), that mc(U )2 ≤ min(k, `) by (4.1). Thus, the mis-

takes of the MEG and MGD algorithms are bounded by Õ(mc(U )2D◦) = Õ(k`) and

O(mc(U )2(D◦)2) = O(min(k, `) max(k, `)2) respectively. This MEG upper bound

is tight up to logarithmic factors as we may decompose U = RU ∗C> for some

U ∗ ∈ {−1, 1}k×`, R ∈ Bm,k and C ∈ Bn,` and force a mistake for each of the k`

entries in U ∗.

Can side information provably help? Unsurprisingly, yes. Consider the set of

matrices such that each row is either all ‘+1’ or all ‘-1’. This set is exactly Bm,n
2,1 .

Clearly, an adversary can force m mistakes, whereas with “ideal” side information

the upper bound is Õ(1).
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Figure 4.2: Example graph for learning graph-based side information with 4 latent factors.

4.4.2 Online Community Membership Prediction

A special case of matrix completion is the case where there are m objects which

are assumed to lie in k classes (communities). In this case, the underlying matrix

U ∈ {−1, 1} is given by Ui j = 1 if i and j are in the same class and Ui j = −1

otherwise. Thus this may be viewed as an online version of community detection

or “similarity” prediction. In [38], this problem was addressed when the side infor-

mation was encoded in a graph and the aim was to perform well when there were

few edges between classes (communities).

Observe that this is an example of a (k, k)-biclustered m×m matrix whereU ∗ =

2Ik − 11> and there exists R ∈ Bm,k such that U := RU ∗R>. Since the max-norm

is block-invariant, we have that ‖U‖max = ‖U ∗‖max. In the case of a general k × k

biclustered matrix, ‖U ∗‖max ≤
√

k (see (4.1)). However in the case of “similarity

prediction”, we have ‖U ∗‖max ∈ O(1). This follows since we have a decomposition

U ∗ = PQ> by P ,Q ∈ <k,k+1 with P := (Pi j =
√

2[i = j] + [ j = k + 1])i∈[k], j∈[k+1]

and Q := (Qi j =
√

2[i = j] − [ j = k + 1])i∈[k], j∈[k+1], thus giving ‖U ∗‖max ≤ 3. This

example also shows that there may be an arbitrary gap between rank and max-norm

of ±1 matrices as the rank ofU ∗ is k (in [9] this gap between the max-norm and rank

was previously observed). Therefore, if the side-information matrices are taken to

be the same PDLaplacian M = N defined from a Laplacian L, we have that since

‖U‖max ∈ O(1) andD◦ ∈ O(tr(R>LR)RL), mistake bounds of Õ(tr(R>LR)RL) and

O(tr(R>LR)2(RL)2) are obtained for the MEG and MGD algorithms respectively,
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which recover the bounds of [38, Proposition 2] up to constant factors. This work

extends the results in [38] for similarity prediction to regret bounds, and to the

inductive setting with general positive definite matrices. In the next section, we will

see how this type of result may be extended to an inductive setting.

4.5 Inductive Setting

In the previous section, with the idealized graph-based side information, one may be

dissatisfied as the skeleton of the latent structure is essentially encoded intoM (N ).

In the inductive setting, the side information is instead revealed in an online fashion.

The definition of (k, `)-binary-biclustered matrices for the inductive setting may be

extended to the following:

BI,Jk,` = {U ∈ {−1, 1}I×J : r ∈ [k]I, c ∈ [`]J ,U ∗ ∈ {−1, 1}k×`, Ui j = U∗rıc , ı ∈ I,  ∈ J} .

If we set m = |{ıt : t ∈ [T ]}| and n = |{ t : t ∈ [T ]}|, then given comparator

matrix U ∈ BI,Jk,` , we define U̇ ∈ Bm,n
k,` , such that U̇it , jt′ = Uıt , t′ for t, t′ ∈ [T ] where

it = min{s : ıs = ıt} and jt = min{s : s = t}. The importance of side information

is also highlighted in this setting. In the absence of side information, the MEG and

MGD bounds become linear and quadratic respectively with respect to the matrix

dimension T , making them vacuous.

In the following examples, we receive a row and column vector ıt, t ∈ <d×<d′

on each trial; these vectors will be the indices to our row and column kernels. We

assume that these vectors may be separated into distinct clusters retrospectively,

where each cluster corresponds to a row or column latent class. In Section 4.5.1,

we will assume box-shaped clusters and apply the min kernel on the row and col-

umn vectors, obtaining MEG mistake bounds of Õ(min(k, `) max(k2, `2)). In Sec-

tion 4.5.2, we apply the Gaussian kernel on ball-shaped clusters, and obtain MEG

mistake bounds of Õ(min(k, `) max(k, `)2 ((1 +
√

3) max(k, `))
6ρ2

2ρδ∗2+(δ∗2)2 ), where ρ and

δ∗2 are properties of the clusters.



Chapter 4. Latent Block Structure 89

Figure 4.3: Side information vectors for d = 2, with the corresponding separating boxes.

4.5.1 Side Information in Boxes

In the following, we show an example for predicting a matrix U ∈ BI,Jk,` such that

for online side information in [−r, r]d that is well-separated into boxes, there exists

a kernel for which the quasi-dimension grows no more than quadratically with the

number of latent factors (but exponentially with the dimension d). The online side

information is given by a row and column vector ıt, t ∈ [−r, r]d×[−r′, r′]d′ which we

receive on each trial, and for simplicity we set r = r′ and d = d′. Fig. 4.3 illustrates

side information vectors for d = 2 and the boxes that separate these. For simplicity,

we use the min kernel, which approximates functions by linear interpolation.

BoundingD◦ for the min kernel. Define the transformation s(x) := r−1
2r x+ r+1

2

and the min kernel K : [0, r]d × [0, r]d → < as K(x, t) :=
∏d

i=1 min(xi, ti). Also

define δ∞(S 1, . . . , S k) := min1≤i< j≤k minx∈S i,x′∈S j ‖x − x
′‖∞. A box in <d is a set

{x : ai ≤ xi ≤ bi, i ∈ [d]} defined by a pair of vectors a, b ∈ <d.

Proposition 58. Given k boxes S 1, . . . , S k ⊂ [−r, r]d, r ≥ 2, δ∗∞ =

min
(
2, 1

4δ(S 1, . . . , S k)
)
, and x1, . . . ,xm ∈ ∪

k
i=1S i, if R = ([xi ∈ S j])i∈[m], j∈[k] and

K = (K(s(xi), s(x j)))i, j∈[m] then tr(R>K−1R) ≤ k
(

4
δ∗∞

)d
.

Recall the bound (see (4.2)) on the quasi-dimension for a matrix U ∈ Bm,n
k,` ,

where we haveD ≤ D◦ = k tr(R>MR)RM + ` tr(C>NC)RN for positive definite

matrices. If we assume that the side information on the rows (columns) lies in

[−r, r]d, then RM ≤ RM ≤ rd (RN ≤ RN ≤ rd) for the min kernel. Thus by

applying the above proposition separately for the rows and columns and substituting
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into (4.2), we have that

D ≤ D◦ = (k2 + `2)
(

4r
δ∗∞

)d

,

where δ∗∞ = min
{
2, 1

4δ∞(S 1, . . . , S k), 1
4δ∞(S̃ 1, . . . , S̃ `)

}
> 0, S 1, . . . , S k are the given

k boxes that cluster the row side information vectors, and S̃ 1, . . . , S̃ ` are the ` boxes

that cluster the column side information vectors.

Corollary 59. Assume that we receive ıt, t ∈ [−r, r]d × [−r, r]d on each trial,

where r ≥ 2, and that there exist k boxes S 1, . . . , S k ⊂ [−r, r]d, and ` boxes

S̃ 1, . . . , S̃ ` ⊂ [−r, r]d, such that ı1, . . . , ıT ∈ ∪k
i=1S i, 1, . . . , T ∈ ∪

`
i=1S̃ i and

δ∗∞ = min
{
2, 1

4δ∞(S 1, . . . , S k), 1
4δ∞(S̃ 1, . . . , S̃ `)

}
>0.

The mistakes of Algorithm 3 in the realizable case with conservative updates

and parameters D̂ = (k2 + `2)
(

4r
δ∗∞

)d
, η = 1

min(
√

k,
√
`)

, are bounded by,

|M| ≤ 3.6 min(k, `)
(
k2 + `2

) ( 4r
δ∗∞

)d

log(m + n) ,

for anyU ∈ BI,Jk,` for which U̇ has a decompositionRU ∗C> which satisfiesRit ,a =

[ıt ∈ S a] and C jt ,a = [ t ∈ S̃ a], and yt = sign(Uıt t) for all t ∈ M.

The expected mistakes of Algorithm 3 with non-conservative updates and pa-

rameters D̂ = (k2 + `2)
(

4r
δ∗∞

)d
, η =

√
D̂ log(m+n)

2T , are bounded by

E[|M|] ≤
∑
t∈[T ]

[yt , Uıt t] + 3.5

√
min(k, `)

(
k2 + `2) ( 4r

δ∗∞

)d

log(m + n)T

for anyU ∈ BI,Jk,` for which U̇ has a decompositionRU ∗C> which satisfiesRit ,a =

[ıt ∈ S a] and C jt ,a = [ t ∈ S̃ a].

Hence we have that, with an optimal tuning and well-separated side infor-

mation on the rows and columns, the MEG mistake bound for a (k, `)-biclustered

matrix in the inductive setting is of Õ(min(k, `) max(k, `)2), and the MGD mistake

bound is O(min(k, `) max(k, `)4). By using the bound on the quasi-area in Equa-

tion (4.3), we obtain an MGD mistake bound of O(min(k, `)k2`2). However, our
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Figure 4.4: Side information vectors for d = 2, with the corresponding separating balls.

best lower bound in terms of k and ` is just k`, as in the transductive setting. An

open problem is to resolve this gap.

4.5.2 Side Information in Balls

In the following, we show an example for predicting a matrix U ∈ BI,Jk,` for side

information that is well-separated into balls. Similar to the min kernel example, we

receive a row and column vector ıt, t ∈ <d × <d′ on each trial; these vectors will

be the indices to our row and column kernels, and for simplicity we set d = d′.

Fig. 4.4 illustrates example side information vectors and their separating balls for

the d = 2 case. For this example, we use the Gaussian kernel. Instead of using

Theorem 57 to bound the quasi-dimension which only holds for binary U , we will

use Proposition 60, which bounds the quasi-dimension for a real-valued matrix Ū

that is sign-consistent with U . This is done to simplify the downstream analysis,

which requires the interpolation of points defined by the data using RKHS functions

of the Gaussian kernel. If we were to use Theorem 57, the interpolation values

would be at exactly 0 and 1. However, Proposition 60 allows for interpolation values

to be between 0 and maximum height h, which is more natural for the Gaussian

kernel.

This proposition requires that

‖Ū‖max ≤ (h + 1)2 min(
√

k,
√
`),
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where there is an additional multiplicative (h + 1)2 term as compared with its binary

counterpart in (4.1). Under this condition, the proposition bounds Dγ

M ,N (Ū ) ≤

O
(
kRM tr(R̃>MR̃) + `RN tr(C̃>NC̃)

)
where R̃ and C̃ are the real-valued coun-

terparts to the block-expansion matricesR andC in the decomposition of the binary

biclustered matrix U .

Proposition 60. For U ∈ Bm,n
k,` with decomposition RU ∗C> where R ∈ Bm,k,

U ∗ ∈ {−1, 1}k×`, C ∈ Bn,`, k > 1, ` > 1, and for 1
γ

= (h + 1)2 min(
√

k,
√
`), there

exists a matrix Ū ∈ SP1(U ), such that ‖Ū‖max ≤
1
γ

and

D
γ

M ,N (Ū ) ≤
1
3

(
kRM tr(R̃>MR̃) + `RN tr(C̃>NC̃)

)
,

for any R̃ and C̃ where

R̃i j ∈


[1 +

√
3, h] if Ri j = 1

[0, 1
k−1 ] if Ri j = 0

and C̃i j ∈


[1 +

√
3, h] if Ci j = 1

[0, 1
`−1 ] if Ci j = 0

.

Bounding D for the Gaussian kernel. Define the Gaussian kernel Kβ :

<d × <d → < as Kβ(x, t) := exp(−β||x − t||2). Also define δ2(S 1, . . . , S k) :=

min1≤i< j≤k minx∈S i,x′∈S j ||x−x
′||2. A ball in<d is the set of points {x : ||x−t||2 ≤ ρ},

defined by the centre t ∈ <d and radius ρ.

Proposition 61. Given k balls S 1, . . . , S k, with respective radii ρ1, . . . , ρk, max-

imal radius ρ = maxi∈[k] ρi, δ∗2 = δ(S 1, . . . , S k), x1, . . . ,xm ∈ ∪k
i=1S i, and

K = (Kβ(xi,x j))i, j∈[m], where β = 1
(2ρδ∗2+(δ∗2)2)d log((1 +

√
3)(k − 1)), there exists

an R̃ ∈ <m×k such that

R̃i j ∈


[1 +

√
3, h] if xi ∈ S j

[0, 1
k−1 ] if xi < S j

and tr(R̃>K−1R̃) ≤ kh2 where h = (1 +
√

3)
(
(1 +

√
3)(k − 1)

) ρ2

2ρδ∗2+(δ∗2)2 .

Applying Proposition 61 to Proposition 60, and observing that for the Gaussian



Chapter 4. Latent Block Structure 93

kernel RM = RN = 1, we have

D(Ū ) ≤
1
3

(k2 + `2)h2,

where h := (1 +
√

3)
(
(1 +

√
3) max(k − 1, ` − 1)

) ρ2

2ρδ∗2+(δ∗2)2 , δ∗2 is the smallest separa-

tion between any two given balls, and ρ is the largest radius of a ball. Using the fact

that sign(Ūit jt) = sign(Uit jt) and maxi, j |A|i j ≤ ‖A‖max for any matrix A, we derive

the following corollary.

Corollary 62. Assume that we receive ıt, t ∈ <
d × <d on each trial, and

that there exist k balls S 1, . . . , S k ⊂ <
d with respective radii ρ1, . . . , ρk, and

` balls S̃ 1, . . . , S̃ ` ⊂ <
d with respective radii ρ̃1, . . . , ρ̃`, such that ı1, . . . , ıT ∈

∪k
i=1S i, 1, . . . , T ∈ ∪

`
i=1S̃ i, δ∗2 := min(δ2(S 1, . . . , S k), δ2(S̃ 1, . . . , S̃ `))>0, ρ :=

max(maxi∈[k] ρi,max j∈[`] ρ̃ j) and h := (1 +
√

3)
(
(1 +

√
3) max(k − 1, ` − 1)

) ρ2

2ρδ∗2+(δ∗2)2 .

The mistakes of Algorithm 3 in the realizable case with conservative updates

and parameters D̂ = 1
3 (k2 + `2)h2, η = 1

(h+1)2 min(
√

k,
√
`)

, are then bounded by,

|M| ≤ 1.2 (h + 1)4h2 min(k, `)(k2 + `2) log(m + n) ,

for anyU ∈ BI,Jk,` for which U̇ has a decompositionRU ∗C> which satisfiesRit ,a =

[ıt ∈ S a] and C jt ,a = [ t ∈ S̃ a], and yt = sign(Uıt t) for all t ∈ M.

The expected mistakes of Algorithm 3 with non-conservative updates and pa-

rameters D̂ = 1
3 (k2 + `2)h2, η =

√
D̂ log(m+n)

2T , are then bounded by

E[|M|] ≤
1 + (h + 1)2 min(

√
k,
√
`)

2

∑
t∈[T ]

[yt , Uit jt]+

3.5

√
(h + 1)4h2

3
min(k, `)

(
k2 + `2) log(m + n)T

for anyU ∈ BI,Jk,` for which U̇ has a decompositionRU ∗C> which satisfiesRit ,a =

[ıt ∈ S a] and C jt ,a = [ t ∈ S̃ a].

We therefore have an MEG mistake bound of Õ(min(k, `) max(k, `)2h6).
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4.5.3 Balls vs. Boxes

It is hard to directly give a meaningful comparison between the Gaussian kernel

mistake bound in Corollary 62 with the min kernel bound in Corollary 59, since the

assumption that the side information is well-separated into boxes does not imply

that it can be well-separated into balls and vice versa. For ease of comparison,

we shall therefore assume that the side information can be well-separated into both

balls and boxes.

We first note that the Gaussian kernel and min kernel bounds scale similarly

except that the former has a h6 term whereas the latter has a (4r/δ∗∞)d term. In

the case where ρ = δ∗2, h6 ∈ O(max(k, `)2), and the Gaussian kernel bound has

a superior scaling when O(max(k, `)2) < O((4r/δ∗∞)d). More generally, observing

that ρ2

2ρδ∗2+(δ∗2)2 ≤ min( ρ

2δ∗2
, ρ2

(δ∗2)2 ), we have that the Gaussian kernel mistake bound term

scales with
(
(1 +

√
3)(k − 1)

) 3ρ
δ∗2 . For the min kernel bound, assuming that k > `,

and that the largest box dimension a ≥ δ∗∞, we can roughly bound r ≤ 2ka so

that the mistake bound scales with ( 8ka
δ∗∞

)d. Hence, we have that the ratio ρ

δ∗2
scales

exponentially in the Gaussian bound as opposed to the polynomial scaling of a
δ∗∞

.

However, the min kernel bound scales exponentially with d, whereas there is no

dependence on d in the Gaussian bound.

The regret bounds are harder to compare, owing to the fact that the re-

gret bound with the Gaussian kernel in Corollary 62 has a constant factor of

(h + 1)2 min(
√

k,
√
`) in front of the comparator matrix whereas the min kernel

bound in Corollary 59 does not.

4.6 Synthetic Experiments
To illustrate the algorithm’s performance, synthetic experiments were performed in

the transductive setting with graph side information. We assess the performance of

the algorithm with varying levels of side information noise, and apply a sketching

method [80] which approximates the exponential in our algorithm and offers an

improved time complexity.

In particular, the comparator matrix U is sampled uniformly at random from
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Figure 4.5: Error rates for predicting a noisy (9, 9)-biclustered matrix with side informa-
tion, with side information noise β ∈ [0.0, 0.5] .

the set of all square (9,9)-biclustered matrices, after which i.i.d. noise is added.

A visualization of a noise-free example matrix can be found in Figure 4.1. The

noise process flipped the label of each matrix entry independently with probability

p = 0.10.

4.6.1 Side information Noise

The side information on the rows and columns are represented by PDLaplacian ma-

trices, for which the underlying graphs were constructed in the manner described in

Section 4.4.1 (see Fig. 4.2). For this experiment, varying levels of side information

noise β ∈ [0.0, 0.5] were applied. This was introduced by considering every pair

of vertices independently from the constructed graph and flipping the state between

edge/not-edge with probability β. A final step is added to ensure the graph is con-

nected. In this step a random pair of components is connected by a random edge,

recursively. The process terminates when the graph is connected.

The parameters were chosen so that the expected regret bound in Theorem 1

would apply to our experimental setting. We use the quasi-dimension upper bound
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D̂ := D◦M ,N (U ) = 2 tr(R>MR)RM + 2 tr(C>NC)RN + 4k, as developed in The-

orem 57 for PDLaplacians. The learning rate was set as η =

√
D̂ log(2n)

2T . Since each

run of the algorithm consisted of predicting all n2 matrix entries sampled uniformly

at random without replacement, we set T = n2. As for the margin estimate, due to

the requirement that γ ≤ 1/‖U‖max, a suitable value can be extracted from Equa-

tion (4.1), giving γ = 1/
√

k.

The per trial mistake rate is shown in Fig. 4.5 for matrix dimension n =

40, . . . , 400, where each data point is averaged over 10 runs. We observe that for

random side information β = 0.5, the term D̂ could lead to a bound which is vacuous

(for small n), however, the algorithm’s error rate was in the range of [0.25, 0.45],

being well below chance. With ideal side information, β = 0.0, the performance

improved drastically, as suggested by the bounds, to an error rate in [0.10, 0.25].

Observe that since there is 10% label noise for all values of β, the curves are con-

verging to an online mistake rate of 10%. The data points for the plot can be found

below. For our implementation of n = 1000 at a noise level of β = 0.5, 10 runs re-

quired approximately 37 hours on an Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz

with 4GB of RAM and a NVIDIA Tesla P100 GPU. At a noise level of β = 0.0 (no

noise), 10 runs required approximately 27 hours. Note that this was run on a shared

node on a cluster, meaning that the run time may vary depending on the other jobs

that were running.

4.6.2 Sketching Method

This experiment aims to assess the effectiveness of applying the sketching

method [80] to our algorithm, which reduces the computational complexity by ap-

proximating the computation of the dominant step, the exponential on log(W̃ t).

It approximates the term exp(log(W̃ t)) ≈ exp(log(W̃ t)/2)RR> exp(log(W̃ t)/2),

where R ∈ <2n×κ has entries sampled from a standard Gaussian disitribution. The

term exp(log(W̃ t)/2)R can be evaluated efficiently through the iterative Lanczos

method, which has a time complexity in O(κn2s + s2), where s is the number of

iterations. We performed experiments with the same parameters as those in the pre-

vious section, with κ ∈ {1, 2, 5, 10, 20, 100}, and no side information noise β = 0.0.
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Figure 4.6: Error rates for predicting a noisy (9, 9)-biclustered matrix with side information
with the sketching method. The bottom curve represents the error rates with a
direct exponential computation.

For κ ∈ {1, 2, 5}, we required more iterations with s = 20, whereas for κ ∈ {10, 20},

we only did s = 10 iterations, and for κ = 100, we performed only 5 iterations. At

this value of κ, we also compare against the methodology in [81], which evaluates

an approximate matrix exponential vector product (as shown by the dotted line).

The time complexity of this method is O(κn2s), where s is dependent on the 1-norm

of W̃ t.

The plots in Fig. 4.6 shows the error rates for the different values of κ. We

observe that using only κ = 1, as proposed in [80], yields error rates which plateau

around 0.4. As expected, higher κ converge to smaller error rates, with κ = 100

converging to error rates below 0.15. In the regime that we explored, we found that

the run time with the sketching method was only faster for κ ∈ {1, 2}. Using the same

hardware in the previous section, each run for n = 1500 and κ = 1, 2 and 100 took on

average around 6.9, 11.0 and 54.8 hours respectively, compared to 11.1 hours for the

direct exponential computation. However, the sketching method has a lower time

complexity, suggesting that the method may result in quicker computation times for
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Min Kernel Bound Gaussian Kernel Bound

MEG Õ(min(k, `) max(k, `)2( 4r
δ∗∞

)d) Õ(min(k, `) max(k, `)2h6)
MGD sum squared kernel O(min(k, `) max(k, `)4( 4r

δ∗∞
)2d) O(min(k, `) max(k, `)4h8)

MGD product kernel O(min(k, `)k2`2( 4r
δ∗∞

)2d) O(min(k, `)k2`2h8)

Table 4.1: The mistake bounds of the MEG and MGD algorithms in the inductive
setting as applied to biclustered matrices. We recall that h = O(((1 +

√
3) max(k, `))

ρ2

2ρδ∗2+(δ∗2)2 ).

larger matrices.

4.7 Discussion

In this chapter, we applied the bounds developed in Chapter 3 to the hypothesis class

of (k, `)-biclustered matrices. We recall that the MEG and MGD algorithms achieve

mistake bounds of Õ
(
D/γ2

)
and O

(
D2/γ2

)
respectively. For this hypothesis class,

the margin term 1/γ2 ≤ min(k, `) when exactly tuned as the margin complexity. We

bounded the D term for various examples. In the transductive setting with ideal

graph-based side information, D ∈ O(max(k, `)). When applying our bound to the

problem of online community membership prediction, we recovered and extended

the result in [38]. The synthetic experiments corroborate our theoretical results and

suggest the possibility of applying the sketching method on our algorithm.

In Section 3.2.2, we discussed two possible embeddings: one which has a

product kernel in its dual form (see (3.10)), and one which has a sum squared kernel

(see (3.12)). Observing that we can apply the quasi-area bound in (4.3) for the

product kernel, but can use the tighter quasi-dimension bound (4.2) for the sum

squared kernel, we then show a comparison of the two kernels against MEG in

Table 4.1. We observe that the predictions for both kernels in the GD algorithm

naturally extend to the tensor case of order p. Given kernelsM+
1, . . . ,M

+
p and side
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information vectors ı1, . . . ıp, the predictions on trial t would be in the form of

ŷt = η
∑
s∈Ut

ys

p∏
j=1

1
RM j

M+
j(ı

j
t , ı

j
s) (product kernel) (4.4)

ŷt = η
∑
s∈Ut

ys

 p∑
j=1

1
2RM j

M+
j(ı

j
t , ı

j
s)


2

(sum squared kernel) . (4.5)

It is not difficult to write the bounds. The problem, as highlighted in Table 4.1,

is that the GD bounds can be vacuous in cases when the EG bound is not. In

what follows, we hypothesize that bounds can be proven for an efficient algorithm

completing a tensor of order p that has a generalized notion of biclustering, where

we now receive p side information vectors that are well-separated in balls or boxes,

and we use min or Gaussian kernels to inform similarity.

We first introduce our generalized notion of biclustering for tensors. The class

of (k1, . . . , kp)-binary-clustered tensors of order p is defined as

B
m1,...,mp

k1,...,kp
= {U ∈ {−1, 1}m1×...×mp :

rq ∈ [kq]mq , U ∗ ∈ {−1, 1}k1×...×kp , Ui1...ip = U∗r1
i1
...rp

ip
, q ∈ [p]} .

For simplicity, we assume k = k1 = . . . = kp. On each trial t, we receive side

information vectors ı1t , . . . , ı
p
t ∈ <

d. We have the realizable case when yt = Ui1t ,...,i
p
t

for some U ∈ Bm1,...,mp

k,...,k , where iq
t = min{s : ıqs = ı

q
t } for all q ∈ [p]. Assume that for

all q ∈ [p], the vectors {ıqt }t∈[T ] from all T trials can be well-separated into k clusters

S q
1, . . . , S

q
k , where if vectors ıqs and ıqt are in the same cluster, then they correspond

to the same latent class, i.e. rq
is

= rq
it

in the definition of the biclustered tensor.

Define δ∞(S 1
1, . . . , S

p
k ) = minq∈[p] min1≤a<b≤k minx∈S q

a,x′∈S
q
b
‖x − x′‖∞ and similarly,

δ2(S 1
1, . . . , S

p
k ) = minq∈[p] min1≤a<b≤k minx∈S q

a,x′∈S
q
b
‖x − x′‖2.

Conjecture 63. If the clusters are box-shaped, then there exists a polynomial-time

algorithm for which the number of mistakes in the realizable case can be bounded

by Õ(kp+1( 4r
δ∞

)d), where δ∗∞ := min(2, 1
4δ∞(S 1

1, . . . , S
p
k )), and r ≥ 2 is the largest

`∞-norm of ıqt for all q and t. If the clusters are ball-shaped, then there exists a
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polynomial-time algorithm for which the number of mistakes in the realizable case

can be bounded by Õ(kp+1(h′p)p(p+1)), where we define h′p := cp(cp(k − 1))
ρ2

2ρδ∗2+(δ∗2)2 ,

cp is a constant which increases with p, ρ is the radius of the largest ball and

δ∗2 := δ2(S 1
1, . . . , S

p
k ).

The conjecture is motivated by the trends which follow from the bounds for

the first-order tensor (vector) and the second-order tensor (matrix) cases. For the

first-order tensor case, the task is to complete a binary vector, where we are given a

single side information vector ıt on each trial t and a single kernel function which in-

forms similarity between the entriesM+. The predictions are given by (4.5) where

p = 1, for which the kernel perceptron algorithm gives mistake bounds of the form

O(minh∈HM+ :h(ıt)yt≥1 ‖h‖2M+ X2
M+), where X2

M+ = maxtM
+(ıt, ıt). If the side informa-

tion vectors can be well-separated into boxes S 1, . . . S k, then we can consider the

hypothesis h(x) =
∑

i∈[k] αi fi(x), where αi ∈ {−1, 1}, fi(x) = [x ∈ S i], and we have

that ||h||2
M+ = ||(

∑
i∈[k] αi fi(x))||2 ≤ (

∑
i∈[k] αi|| fi(x)||)2. By Lemma 65, we have that

|| fi(x)||2 ≤ ( 4
δ∗∞

)d for all i, so that ||h||2
M+ ≤ ( 4

δ∗∞
)dk2. Combining with X2

M+ ≤ rd,

the mistake bound can thus be written as O
(
k2 (

4r/δ∗∞
)d
)
. Similarly, if the side

information vectors can be separated into balls S 1, . . . , S k, we can consider the hy-

pothesis h(x) =
∑

i∈[k] αi fi(x), where αi ∈ {−1, 1}, fi(x) ∈


[2, h′1] if x ∈ S i

[0, 1
k−1 ] otherwise

, and

h′1 := 2(2(k − 1))
ρ2

2ρδ∗2+(δ∗2)2 . Using a similar analysis to that in Lemma 68, we ob-

tain || fi(x)||2 ≤ (h′1)2 for β := 1
(2ρδ∗2+(δ∗2)2)d log(2(k − 1)). Hence, the mistakes are in

O
(
k2(h′1)2

)
. For the matrix p = 2 case, we consider the bounds given by the MEG

algorithm. It remains an open problem to prove this conjecture for higher orders of

p.
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4.8 Proofs

4.8.1 Proof of Theorem 57

We recall Theorem 57 and then prove it.

Theorem 57. If U ∈ Bm,n
k,` define

D◦M ,N (U ) :=


2 tr(R>MR)RM +2 tr(C>NC)RN +2k+2` M ,N are PDLaplacians

k tr(R>MR)RM + ` tr(C>NC)RN M ∈ Sm
++ andN ∈ Sn

++

,

as the minimum over all decompositions of U = RU ∗C> for R ∈ Bm,k, C ∈ Bn,`

and U ∗ ∈ {−1, 1}k×`. Thus for U ∈ Bm,n
k,` ,

D
γ

M ,N (U ) ≤ D◦M ,N (U ) (if ‖U‖max ≤ 1/γ)

min
V ∈SP1(U )

D
γ

M ,N (V ) ≤ D◦M ,N (U ) (if mc(U ) ≤ 1/γ) .

Proof. A γ-decomposition of matrixU is given by a P̂ ∈ Nm,d and a Q̂ ∈ Nn,d such

that P̂ Q̂> = γU . A block-invariant decomposition of matrixU ∈ Bm,n
k,` is given by a

P̂ ∈ Nm,d and a Q̂ ∈ Nn,d for some d such that there exists a δ ∈ (0, 1], P̂ ∗ ∈ N k,d,

and a Q̂∗ ∈ N `,d, so that P̂ = RP̂ ∗, Q̂ = CQ̂∗ and P̂ Q̂> = δU .

We now prove the following intermediate result,

Lemma: If U ∈ Bm,n
k,` , then for every γ ∈ (0, 1/‖U‖max), there exists a

block-invariant γ-decomposition of U .

Proof. Since U ∈ Bm,n
k,` we have that U = RU ∗C> for some R ∈ Bm,k,

C ∈ Bn,` and U ∗ ∈ {−1, 1}k×`. Observe by block invariance we have

that ‖U‖max = ‖U ∗‖max and by the definition of ‖·‖max we have that

there exists a
(

1
‖U‖max

)
-decomposition of U ∗ via factors P̂ ∗ ∈ N k,d, and

a Q̂∗ ∈ N `,d, this implies that P̂ := RP̂ ∗, Q̂ := CQ̂∗ is a
(

1
‖U‖max

)
-

block-invariant decomposition of U .
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Now given any γ ∈ (0, 1/‖U‖max) we construct a γ-block-invariant de-

composition ofU . Set c := γ‖U‖max. We construct new factor matrices

P̂ ′ ∈ Nm,d+1 and Q̂′ ∈ Nn,d+1

P̂ ′ :=
(
cP̂ (

√
1 − c2)1

)
; Q̂′ :=

(
Q̂ 0

)
.

Observe that (P̂ ′, Q̂′) is the required γ-block-invariant decomposition

of U . �

Recall (5.6),

D
γ

M ,N (U ) := min
P̂ Q̂>=γU

RM tr
(
P̂ >MP̂

)
+ RN tr

(
Q̂>NQ̂

)
. (4.6)

Observe that when the feasible set of the optimization that defines Dγ

M ,N (U ) is

non-empty andU ∈ Bm,n
k,` , there exists a member of the feasible set which is a block-

invariant decomposition ofU by the lemma above. We proceed by proving an upper

bound of

RM tr
(
P̂ >MP̂

)
+ RN tr

(
Q̂>NQ̂

)
for every block-invariant decomposition of U .

First we will bound the term tr(P̂ >MP̂ ) for general positive definite matrices

and then for PDLaplacians. By symmetry, the bound will also hold for tr(Q̂>NQ̂).

Suppose (P̂ , Q̂) is a block-invariant decomposition of U . Then, we have

tr(P̂ >MP̂ ) = tr((RP̂ ∗)>MRP̂ ∗) = tr(P̂ ∗(P̂ ∗)>R>MR)

≤ tr(P̂ ∗(P̂ ∗)>) tr(R>MR) = k tr(R>MR) ,

where the inequality comes from the fact that tr(AB) ≤ λmax(A) tr(B) ≤

tr(A) tr(B) for A,B ∈ S+. By symmetry we have demonstrated the inequality

for positive definite matrices.

We now consider PDLaplacians. AssumeM := L◦ = L+
(

1
m

) (
1
m

)>
R−1

L , a PD-

Laplacian. Recall the following two elementary inequalities from the preliminaries
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(Section 1.3): if u ∈ [−1, 1]m, then

(u>Lu)RL ≤
1
2

(u>L◦u)RL◦ , (4.7)

(u>L◦u)RL◦ ≤ 2(u>LuRL + 1) . (4.8)

Observe that for an m × m graph Laplacian L with adjacency matrix A that for

X ∈ <m×d,

tr(X>LX) =
∑

(i, j)∈E

Ai j

∥∥∥Xi −X j

∥∥∥2
. (4.9)

Suppose (P̂ , Q̂) is a block-invariant decomposition of U then the row vectors

P̂1, . . . , P̂m come in at most k distinct varieties, that is |
⋃

i∈[m] P̂i| ≤ k. The same

holds forR and furthermore (P̂r = P̂s)⇐⇒ (Rr = Rs) for r, s ∈ [m]. Observe that

given r, s ∈ [m] that ifRr , Rs then ‖Rr −Rs‖
2 = 2 and

∥∥∥P̂r − P̂s

∥∥∥2
≤ 4 since they

are coordinate and unit vectors respectively. This then implies,

tr
(
P̂ >LP̂

)
≤ 2 tr (R>LR) . (4.10)

Thus we have

tr(P̂ >MP̂ )RM ≤ 2 tr(P̂ >LP̂ )RL + 2k by (4.8)

≤ 4 tr (R>LR)RL + 2k by (4.10)

≤ 2 tr (R>MR)RM + 2k by (4.7)

By symmetry we have demonstrated the inequality for PDLaplacians. �

4.8.2 Proof of Proposition 58

In the following, we defineKx(·) := K(x, ·). If r ≥ 2, δ∗∞ := min
(
2, 1

4δ(S 1, . . . , S k)
)
.

This implies that δ∗∞ ≤ min
(
2, r−1

2r δ(S 1, . . . , S k)
)
. Recall that s(x) := r−1

2r x + r+1
2 1.

Then observe that, given that the transformation x̃i = s(xi) holds true for all

i ∈ [m], requiring S 1, . . . , S k ⊂ [−r, r]d with x1, . . . ,xm ∈ ∪
k
i=1S i and δ∗∞ ≤

min
(
2, r−1

2r δ(S 1, . . . , S k)
)

is equivalent to the requirement that S̃ 1, . . . , S̃ k ⊂ [1, r]d
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x1

x2

f(x
1,

x 2
)

1

Figure 4.7: Visualization of the function f (x1, x2) with S 1, S 2 and S 3 represented as red
rectangles in the x1 − x2 plane.

with x̃1, . . . , x̃m ∈ ∪
k
i=1S̃ i and δ∗∞ ≤ min

(
2, δ(S̃ 1, . . . , S̃ k)

)
. Furthermore, for all

i ∈ [m] and j ∈ [k], we have that xi ∈ S j if and only if x̃i ∈ S̃ j. We shall proceed

with the latter set of requirements for simplicity. Recall that the RKHS for the d = 1

min kernel H1
K

is the set of all absolutely continuous functions from [0,∞)d → <

that satisfy f (0) = 0 and
∫ ∞

0
[ f ′(x)]2dx < ∞.

Lemma 64. The inner product for f ∈ H1
K

may be computed by,

〈 f , g〉 =

∫ ∞

0
f ′(x)g′(x)dx .

Proof. We show this by the reproducing property:

〈 f ,Kx〉 = f (x).

Defining 1x(t) as the step function that evaluates to 1 for t ≤ x and 0 otherwise, we

note that the derivative of min(x, t) with respect to t is equal to 1x(t). This gives rise

to ∫ ∞

0
f ′(t)K ′(x, t)dt =

∫ ∞

0
f ′(t)1x(t)dt =

∫ x

0
f ′(t)dt = f (x) .

Using the condition of f (0) = 0, we then obtain the reproducing property. �
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Lemma 65. Given k boxes S̃ 1, . . . , S̃ k ⊂ [1, r]d, δ∗∞ ≤ min
(
2, δ(S̃ 1, . . . , S̃ k)

)
and

x̃1, . . . , x̃m ∈ ∪
k
i=1S̃ i, there exists a function f ∈ HK for which f (x̃ j) = [x̃ j ∈ S̃ 1] for

j ∈ [m] and this function has norm

|| f ||2 =

(
4
δ∗∞

)d

.

Proof. Recall that a box in<d is a set {x : ai ≤ xi ≤ bi, i ∈ [d]} defined by a pair of

vectors a, b ∈ <d. First, we consider the case of d = 1, with the coordinates of S̃ 1

defined by a and b. Defining the function that interpolates the points x̃1, . . . x̃m in

one dimension as f 1 ∈ H1
K

, we chose f 1 to be the following:

f 1(x) =



0 for x ≤ a − δ∗∞
2

2
δ∗∞

x + 1 − 2
δ∗∞

a for a − δ∗∞
2 < x ≤ a

1 for a < x ≤ b

− 2
δ∗∞

x + 1 + 2
δ∗∞

b for b < x ≤ b +
δ∗∞
2

0 for x > b +
δ∗∞
2 .

This function is picked from the space H1
K

so that
∫ ∞

0
[( f 1)′(x)]2dx is minimized

with respect to “worst-case” constraints. The condition on δ∗∞ implies that δ∗∞ ≤ 2,

so that f 1(0) = 0. It also implies that δ∗∞ ≤ δ(S 1, . . . S k) so that for all i ∈ [m],

f 1(x̃i) = 0 if x̃i < S 1. The norm || f 1||2, then becomes

|| f 1||2 =

∫ ∞

0
|( f 1)′(x)|2dx

=

∫ a

a− δ
∗
∞
2

(
2
δ∗∞

)2

dx +

∫ b+
δ∗∞
2

b

(
2
δ∗∞

)2

dx

= 2
(

2
δ∗∞

)2 (
δ∗∞
2

)
=

4
δ∗∞

.

This can be extended to multiple dimensions by observing that the induced

product norm of f is the product of the norms of f 1 in each dimension, thus giving

the required bound. In this case also, the condition on δ∗∞ ensures both f (0) = 0
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and f (x̃i) = 0 for x̃i < S̃ 1,where i ∈ [m]. For an illustration of this function in two

dimensions, see Figure 4.7. �

Lemma 66. Given k boxes S̃ 1, . . . , S̃ k ⊂ [1, r]d, δ∗∞ ≤ min
(
2, δ(S̃ 1, . . . , S̃ k)

)
and

x̃1, . . . , x̃m ∈ ∪
k
i=1S̃ i, if u = (ui = [x̃i ∈ S̃ 1])i∈[m] and K = (K(x̃i, x̃ j))i, j∈[m] then

u>K−1u ≤
(

4
δ∗∞

)d
.

Proof. Using a well-known equality (see e.g. [82, Proposition 12.32]) and

Lemma 65, we observe that,

u>K−1u = min
f∈HK : f (x̃i)=[x̃i∈S̃ 1],i∈[m]

‖ f ‖2K ≤
(

4
δ∗∞

)d

,

for u := (ui = [x̃i ∈ S̃ 1])i∈[m],K := (K(x̃i, x̃ j))i, j∈[m] and x̃1, . . . , x̃m ∈ ∪i∈[k]S̃ i. �

Defining ui as the ith column of R, then observe that the term tr(R>K−1R) =∑
i∈[k] u

>

iK
−1ui. Thus by applying Lemma 66 to each ui, we have that

tr(R>K−1R) ≤ k( 4
δ∗∞

)d. �

4.8.3 Proof of Proposition 60

We recall the proposition and first provide an intermediate lemma.

Proposition 60. For U ∈ Bm,n
k,` with decomposition RU ∗C> where R ∈ Bm,k,

U ∗ ∈ {−1, 1}k×`, C ∈ Bn,`, k > 1, ` > 1, and for 1
γ

= (h + 1)2 min(
√

k,
√
`), there

exists a matrix Ū ∈ SP1(U ), such that ‖Ū‖max ≤
1
γ

and

D
γ

M ,N (Ū ) ≤
(h + 1)2

1 +
√

3

(
kRM tr(R̃>MR̃) + `RN tr(C̃>NC̃)

)
,

for any R̃ and C̃ where

R̃i j ∈


[1 +

√
3, h] if Ri j = 1

[0, 1
k−1 ] if Ri j = 0

and C̃i j ∈


[1 +

√
3, h] if Ci j = 1

[0, 1
`−1 ] if Ci j = 0

.

Lemma 67. For any U ∈ Bm,n
k,` with decompositionRU ∗C> where U ∗ ∈ {−1, 1}k×`,

R ∈ Bm,k, C ∈ Bn,`, h > 1 +
√

3, and any R̃ and C̃ where R̃i j ∈
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[1 +

√
3, h] if Ri j = 1

[0, 1
k−1 ] if Ri j = 0

and C̃i j ∈


[1 +

√
3, h] if Ci j = 1

[0, 1
`−1 ] if Ri j = 0

,

R̃U ∗C̃> ∈ SP1(U ).

Proof. We first write (R̃U ∗C̃>)i j = R̃>

iU
∗C̃ j. We proceed to evaluate the value of

(R̃U ∗C̃>)i j for arbitrary i and j. We denote (vi)> := R̃>

iU
∗. We also denote the

indices of the largest elements of R̃i and C̃ j as κmax and lmax respectively, and define

ai := R̃iκmax . By the restrictions on R̃iκ for any κ ∈ [k] and U ∗ ∈ {−1, 1}k×`, we have

that ai = R̃iκmax ≥ 1 +
√

3 and |
∑
κ′∈[k]\{κmax}

R̃iκ′U
∗
κ′l| ≤ 1 for any l ∈ [`]. Hence, for

any l ∈ [`]

vi
l ∈ [−(ai + 1),−(ai − 1)] ∪ [ai − 1, ai + 1]

and

|R̃iκmaxU
∗
κmaxl| = R̃iκmax >

∣∣∣∣∣∣∣ ∑
κ′∈[k]\{κmax}

R̃iκ′U
∗
κ′l

∣∣∣∣∣∣∣ . (4.11)

Since sign(R̃iκmaxU
∗
κmaxl) = sign(U ∗κmaxl) and U ∗κmax

= R̃>

iU
∗, Equation (4.11) implies

(vi)> = R̃>

iU
∗ ∈ SP(R>

iU
∗). (4.12)

We now show that sign(R̃>

iU
∗C̃ j) = sign(Ui j). By Equation (4.12) and the

fact that Ui j = R>

iU
∗
lmax

, this is equivalent to showing that the sign of R̃>

iU
∗C̃ j =

(vi)>C̃ j is equal to the sign of vi
lmax

. We will show this by proving that |vi
lmax

C̃ jlmax | >

|
∑

l′∈[`]\{lmax}
vi

l′C̃ jl′ |.

In the worst case, |vi
lmax
| = ai − 1 and for all l′ ∈ [`] \ {lmax}, |vi

l′ | = ai + 1,

vi
l′v

i
lmax

< 0, C̃ jlmax = 1 +
√

3 and C̃ jl′ = 1
`−1 . Recall that we require that |vi

lmax
C̃ jlmax | =

(1 +
√

3)(ai−1) > |
∑

l′∈[`]\{lmax}
vi

l′C̃ jl′ | = ai + 1. This holds for any ai > 1 + 2
3

√
3, and

holds in our case since ai ≥ 1 +
√

3 > 1 + 2
3

√
3. We have now shown R̃U ∗C̃> ∈
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SP(U ). To conclude the proof, we show |(vi)>C̃ j| ≥ 1. We have

|(vi)>C̃ j| ≥ |vi
lmax

C̃ jlmax −
∑

l′∈[`]\{lmax}

vi
l′C̃ jl′ |

≥ (1 +
√

3)(ai − 1) − (ai + 1)

≥
√

3ai − 2 −
√

3

≥
√

3(1 +
√

3) − 2 −
√

3

= 1.

�

For a matrix A ∈ <a×b, we define the diagonal matrix DA with entries

(DA)ii = 1
||Ai ||

. The proposition can be proven by combining the bounds derived

from setting the following values of γ and real-valued comparator matrix Ū

γ =
1

(h + 1)2
√
`

Ū =
1
γ
DR̃U ∗R̃U

∗(C̃DC̃)> (4.13)

and

γ =
1

(h + 1)2
√

k
Ū =

1
γ
DR̃R̃(C̃(U ∗)>DU ∗C̃>)>.

For conciseness, we proceed to prove using the first set of values as set out in (4.13),

noting that the bound for the second set of values follows analogously.

By the restrictions on the elements of R̃ and U ∗ ∈ {−1, 1}k×`, we have that for

all i ∈ [m] and for all l ∈ [`], maxκ∈[k] R̃iκ ∈ [1 +
√

3, h] and |
∑
κ′∈[k]\{κmax}

R̃iκ′U
∗
κ′l| ≤

1. Therefore, we have

R̃iU
∗ ∈ [

√
3, h + 1]`, (4.14)

giving

max
i∈[m]
||(R̃U ∗)i|| ≤ (h + 1)

√
`. (4.15)

We also have

max
j∈[n]
||C̃ j|| ≤ (h + 1) (4.16)
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since in the worst case C̃ j has one element as h and all the other elements 1
`−1 , so

that max j∈[n]

∥∥∥C̃ j

∥∥∥ ≤ √h2 + 1 ≤ h + 1. By Lemma 67, R̃U ∗C̃> ∈ SP1(U ), and by

Equations (4.15) and (4.16), we have that for all i ∈ [m] and j ∈ [n], (h+1)
√
`

||(R̃U ∗)i ||
≥ 1

and h+1
||C̃ j ||
≥ 1, so that the γ term and the two D matrices only scale the values of Ū

to be larger. Hence Ū ∈ SP1(U ).

We now show that ‖Ū‖max ≤
1
γ

= (h + 1)2
√
`. Recall the definition of the

max-norm:

‖Ū‖max = min
PQ>=Ū

max
i
||Pi|| max

j
||Q j||.

Defining P ′ := (h + 1)
√
`DR̃U ∗R̃U

∗ and Q′ := (h + 1)DC̃C̃, we then

have that (P ′,Q′) is in the feasible set of the optimization, so that ‖Ū‖max ≤

maxi ||P
′
i || max j ||Q

′
j||. Since maxi ||(DAA)i|| = 1 for an arbitrary matrix A, we

then have

‖Ū‖max ≤ (h + 1)2
√
`.

We now prove the quasi-dimension bound. To do so, we will make use of the

following facts:

• min
i∈[m]
||(R̃U ∗)i|| ≥

√
3`, (4.17)

which holds due to (4.14).

• min
j∈[n]
||C̃ j|| ≥ 1 +

√
3, (4.18)

since in the worst case C̃ j has one non-zero element with value 1 +
√

3.

• tr((DAA)>BDAA) ≤
1

mini∈[a] ||Ai||
2

∑
i∈[b]

a>iBai, (4.19)

where ai is the ith column ofA,A ∈ <a×b andB ∈ <b×b. The inequality holds

since, tr((DAA)>BDAA) =
∑

i∈[b] ãiBã
>

i , where ãi is the ith column ofDAA, and

can be evaluated as ãi = ai � (1/||A1||, . . . , 1/||Aa||) ≤ 1
mini∈[a] ||Ai ||

ai.

We define P̂ ′ = DR̃U ∗R̃U
∗ and Q̂′ = DC̃C̃ and note that ||P̂ ′i || = 1 for
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all i ∈ [m] and ||Q̂′j|| = 1 for all j ∈ [n]. Then recall the definition of the quasi-

dimension:

D
γ

M ,N (U ) := min
P̂ Q̂>=γU

RM tr
(
P̂ >MP̂

)
+ RN tr

(
Q̂>NQ̂

)
,

where P̂ and Q̂ are row-normalized matrices. We observe that P̂ ′(Q̂′)> = γŪ , and

hence we can bound

D
γ

M ,N (Ū ) ≤ RM tr((P̂ ′)>MP̂ ′) + RN tr
(
(Q̂′)>NQ̂′

)
= RM tr((DR̃U ∗R̃U

∗)>MDR̃U ∗R̃U
∗) + RN tr

(
(DC̃C̃)>NDC̃C̃

)
≤

RM

mini∈[m] ||(R̃U ∗)i||
2

tr
(
(R̃U ∗)>MR̃U ∗

)
+

RN

min j∈[n] ||C̃ j||
2

tr
(
C̃>

jNC̃ j

)
(4.20)

≤
RM

3`
tr((R̃U ∗)>MR̃U ∗) +

RN

(1 +
√

3)2
tr

(
C̃>NC̃

)
(4.21)

=
RM

3`
tr((U ∗)>R̃>MR̃U ∗) +

RN

(1 +
√

3)2
tr(C̃>NC̃)

=
RM

3`
tr(U ∗(U ∗)>R̃>MR̃) +

RN

(1 +
√

3)2
tr(C̃>NC̃)

≤
RM

3`
tr(U ∗(U ∗)>) tr(R̃>MR̃) +

RN

(1 +
√

3)2
tr(C̃>NC̃) (4.22)

=
RM

3
k tr(R̃>MR̃) +

RN

(1 +
√

3)2
tr(C̃>NC̃) (4.23)

where (4.20) follows from (4.19), (4.21) follows from (4.17) and (4.18), (4.22)

follows from tr(AB) ≤ λmax(A) tr(B) ≤ tr(A) tr(B) for A,B ∈ S+ and (4.23)

follows from tr(U ∗(U ∗)>) = k`.

�

4.8.4 Proof of Proposition 61

We first prove an intermediate lemma.

Lemma 68. Given k balls S 1, . . . , S k, with respective radii ρ1, . . . , ρk, maximal

radius ρ = maxi∈[k] ρi, δ∗2 = δ(S 1, . . . , S k), x1, . . . ,xm ∈ ∪
k
i=1S i, and K =

(Kβ(xi,x j))i, j∈[m], where β = 1
(2ρδ∗2+(δ∗2)2)d log((1 +

√
3)(k − 1)), there exists a u ∈ <m
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such that

ui ∈


[1 +

√
3, h] if xi ∈ S 1

[0, 1
k−1 ] otherwise

and u>K−1u ≤ h2,where h := (1 +
√

3)((1 +
√

3)(k − 1))
ρ2

2ρδ∗2+(δ∗2)2 .

Proof. We make use of the following equality, (see e.g. [82, Proposition 12.32])

u>K−1u = min
f∈HK : f (xi)=ui,i∈[m]

‖ f ‖2K

Taking f ′(·) = hKβ(·, t), where t ∈ <d is the center of S 1, and β =

1
(2ρδ∗2+(δ∗2)2)d log((1 +

√
3)(k − 1)), the lemma is proven if f ′ is in the feasible set,

since we would then have

min
f∈HK : f (xi)=ui,i∈[m]

‖ f ‖2K ≤ ‖ f
′‖

2
K ≤ h2.

We proceed to prove that f ′ is in the feasible set. To do so, we prove that the

following statements are true: f ′(t + ρ1) = 1 +
√

3 and f ′(t + (ρ + δ∗2)1) = 1
k−1 .

These constraints ensure that the function f ′(x) must be sufficiently large for any

point x within the radius ρ (corresponding to the case when x ∈ S 1), and that f ′(x)

decays sufficiently for any point x beyond the given separation δ∗2 (when x < S 1).

f ′(t + ρ1) = hKβ(t + ρ1, t)

= h exp(−βρ2d)

= (1 +
√

3)((1 +
√

3)(k − 1))
ρ2

2ρδ∗2+(δ∗2)2 exp
(
−

ρ2

2ρδ∗2 + (δ∗2)2 log((1 +
√

3)(k − 1))
)

= (1 +
√

3)((1 +
√

3)(k − 1))
ρ2

2ρδ∗2+(δ∗2)2 ((1 +
√

3)(k − 1))
−ρ2

2ρδ∗2+(δ∗2)2

= 1 +
√

3.
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f ′(t + (ρ + δ∗2)1) = hKβ(t + (ρ + δ∗2)1, t)

= h exp(−β(ρ + δ∗2)2d)

= (1 +
√

3)((1 +
√

3)(k − 1))
ρ2

2ρδ∗2+(δ∗2)2 exp
(
−

(ρ + δ∗2)2

2ρδ∗2 + (δ∗2)2 log((1 +
√

3)(k − 1))
)

= (1 +
√

3)((1 +
√

3)(k − 1))
ρ2

2ρδ∗2+(δ∗2)2 ((1 +
√

3)(k − 1))
−(ρ+δ∗2)2

2ρδ∗2+(δ∗2)2

= (1 +
√

3)((1 +
√

3)(k − 1))
−2ρδ∗2−(δ∗2)2

2ρδ∗2+(δ∗2)2

= (1 +
√

3)((1 +
√

3)(k − 1))−1

=
1

k − 1
.

�

Defining ui as the ith column of R̃, we have R̃>K−1R̃ =
∑k

i=1 u
>

iK
−1ui. We

then obtain the result by applying the intermediate lemma k times.

�



Chapter 5
Online Multitask Learning with

Long-Term Memory

In this chapter, we introduce a novel online multitask setting. In this setting, each

task is partitioned into a sequence of segments that is unknown to the learner. As-

sociated with each segment is a hypothesis from some hypothesis class. We give

an algorithm that is designed to exploit the scenario where there are many such

segments but significantly fewer associated hypotheses. This algorithm is designed

for infinite hypothesis classes from a reproducing kernel Hilbert space. Its per trial

time complexity is cubic in the number of cumulative trials. We prove a regret

bound that holds for any segmentation of the tasks and any association of hypothe-

ses to the segments. In the single-task setting, this is equivalent to switching with

long-term memory in the sense of [83]. In the single-task special case, this is the first

example of an efficient regret-bounded switching algorithm with long-term memory

for a non-parametric hypothesis class.

5.1 Introduction

We consider a model of online prediction in a non-stationary environment with mul-

tiple interrelated tasks. Associated with each task is an asynchronous data stream.

As an example, consider a scenario where a team of drones may need to decon-

taminate an area of toxic waste. In this example, the tasks correspond to drones.
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Each drone is receiving a data stream from its sensors. The data streams are non-

stationary but interdependent as the drones are travelling within a common site. At

any point in time, a drone receives an instance x and is required to predict its label

y. The aim is to minimize mispredictions. As is standard in regret-bounded learning

we have no statistical assumptions on the data-generation process. Instead, we aim

to predict well relative to some hypothesis class of predictors. Unlike a standard

regret model, where we aim to predict well in comparison to a single hypothesis,

we instead aim to predict well relative to a completely unknown sequence of hy-

potheses in each task’s data stream, as illustrated by the “coloring” in Figure 5.1.

Each mode (color) corresponds to a distinct hypothesis from the hypothesis class.

A switch is said to have occurred whenever we move between modes temporally

within the same task. Thus in task 1, there are three modes and four switches. We

are particularly motivated by the case that a mode once present will possibly recur

multiple times even within different tasks, i.e., “modes” � “switches.” We will

give algorithms and regret bounds for infinite non-parametric Reproducing Kernel

Hilbert Space (RKHS) [84] hypothesis classes.

Task 1

Task 2

Task 3

Task 4

Task 5

Time

Figure 5.1: A Coloring of Data Streams
(5 tasks, 6 modes, and 11
switches).

For τ = 1 to T do
Receive task `τ ∈ [s] .
Set i← `τ; t ← σ(τ) .
Receive instance xτ ≡ xi

t ∈ X .
Predict ŷτ ≡ ŷi

t ∈ {−1, 1} .
Receive label yτ ≡ yi

t ∈ {−1, 1} .
Incur Loss L01(yτ, ŷτ) .

Figure 5.2: The Switching Multitask
Model

The chapter is organized as follows. In the next section, we introduce our

formal model for online switching multitask learning. In doing so, we provide a

brief review of some related online learning results which enable us to provide a

prospectus for attainable regret bounds. This is done by considering the bounds

achievable by non-polynomial time algorithms. We then provide a brief survey of

related work. In Section 5.3, we provide the algorithm and the bound for RKHS
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hypotheses classes. We complement our theoretical results with synthetic experi-

ments in Section 5.4. Finally, we provide a few concluding remarks in Section 5.5

and Section 5.6 contains the proofs.

5.2 Online Learning with Switching, Memory, and

Multiple Tasks
We review the models and regret bounds for online learning in the single-task,

switching, and switching with memory models as background for our multitask

switching model with memory.

In the single-task online model a learner receives data sequentially so that on

a trial t = 1, . . . ,T , the learner:

1. receives an instance xt ∈ X from the environment,

2. predicts a label ŷt ∈ {−1, 1}

3. receives a label from an environment yt ∈ {−1, 1}

4. incurs a zero-one loss L01(yt, ŷt), where we recall that L01(yt, ŷt) := [yt , ŷt].

There are no probabilistic assumptions on how the environment generates its in-

stances or their labels; it is an arbitrary process which in fact may be adversar-

ial. The only restriction on the environment is that it does not “see” the learner’s

ŷt until after it reveals yt. The learner’s aim will be to compete with a hy-

pothesis class of predictors H ⊆ <X so as to minimize its expected c-regret,

Rc
T (h) :=

∑T
t=1 E[L01(yt, ŷt)] − cL01(yt, sign(h(xt))) for every hypothesis h ∈ H ,

where the expectation is with respect to the learner’s internal randomization.

In this chapter we will consider the hypothesis class given by a setHK induced

by a kernel K. Given a reproducing kernel K : X × X → < we denote the induced

norm of the reproducing kernel Hilbert space (RKHS) HK as ‖·‖K (for details on

RKHS see [84]). Given an instance sequence x := (x1, . . . , xT ), we let H(x,λ)
K :=

{h ∈ HK : h(xt) ∈ ([−λ,−1] ∪ [1, λ]),∀t ∈ [T ]} denote the functions in HK that

have a bounded range on the sequence. In the case where λ = 1, the functions are
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binary-valued. An analysis of online gradient descent (OGDK) with the hinge loss,

kernel K and randomized prediction [12, see e.g., Ch. 2 & 3] (proof included in

Section 5.6.3 for completeness) gives an expected regret bound of

R
1+λ

2
T (h) ∈ O

(√
‖h‖2K X2

KT
)

(∀h ∈ H(x,λ)
K ) , (5.1)

where X2
K ≥ maxt∈[T ] K(xt, xt). This bound does not have a dependence on λ, unlike

the bound to be introduced in Theorem 69. It remains an open problem whether the

dependence on λ in the latter bound can be removed.

In the switching single-task model the hypothesis becomes a sequence of hy-

potheses h = (h1, h2, . . . , hT ) ∈ HT and the c-regret is Rc
T (h) :=

∑T
t=1 E[L01(yt, ŷt)]−

cL01(yt, sign(ht(xt))). Two parameters of interest are the number of switches k :=∑T−1
t=1 [ht , ht+1] and the number of modes m := | ∪T

t=1 {ht}|, i.e., the number of the

distinct hypotheses in the sequence. In this chapter we are interested in long-term

memory, that is, algorithms and bounds that are designed to exploit the case of

m � k.

For the hypothesis class H(x,λ)
K , we may give non-memory bounds of the form

R
1+λ

2
T (h) ∈ O

(√
k maxt ‖ht‖

2
K X2

KT
)

by using a simple modification [85] of OGDK

(see Section 5.6.3). To the best of our knowledge, there are no previous long-term

memory bounds for H(x,λ)
K , even if λ = 1 (however see the discussion of [39] in

Section 5.2.2); these will be a special case of our multitask model, to be introduced

next.

5.2.1 Switching Multitask Model

In Figure 5.2, we illustrate the protocol for our multitask model. The model is es-

sentially the same as the switching single-task model, except that we now have s

tasks. On each (global) trial τ, the environment reveals the active task `τ ∈ [s].

The ordering of tasks chosen by the environment is arbitrary, and therefore we may

switch tasks on every (global) trial τ. We use the following notational convention:

(global time) τ ≡ i
t (local time) where i = `τ, t = σ(τ) and σ(τ) :=

∑τ
j=1[` j = `τ].

Thus xτ ≡ xi
t, yτ ≡ yi

t, etc., where the mapping is determined implicitly by the task
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vector ` ∈ [s]T . Each task i ∈ [s] has its own data pair (instance, label) sequence

(xi
1, y

i
1), . . . , (xi

T i , yi
T i), where T = T 1 + . . . + T s. The multitask hypotheses multiset

is denoted as h∗ = (h1, . . . , hT ) ≡ (h1
1, . . . , h

1
T 1 , . . . , hs

1, . . . , h
s
T s) ∈ HT . In the mul-

titask model, we denote the number of switches as k(h∗) :=
∑s

i=1
∑T i−1

t=1 [hi
t , hi

t+1],

the set of modes as m(h∗) := ∪s
i=1 ∪

T i

t=1 {h
i
t} and the multitask regret as RT (h∗) :=∑s

i=1
∑T i

t=1 E[L01(yi
t, ŷ

i
t)] − L01(yi

t, h
i
t(xi

t)). In the following, we give motivating up-

per bounds based on exponential-time algorithms induced by “meta-experts.” We

provide a lower bound with respect toH(x,1)
K in Proposition 70.

The idea of “meta-experts” is to take the base class of hypotheses (H(x,λ)
K ) and

to construct a class of “meta-hypotheses” by combining the original hypotheses to

form new ones, and then apply a meta-algorithm to the constructed class; in other

words, we reduce the “meta-model” to the “base-model.” The meta-algorithm that

we will use is the “multiplicative weight” (MW) algorithm [86] which learns a finite

hypothesis classHfin, and a regret bound1 of the form

RT (h) ∈ O
( √

log(|Hfin|)T
)

(∀h ∈ Hfin)

was given in [87]. This is a special case of the framework of “prediction with

expert advice” introduced in [88, 19]. We cannot however use hypotheses from

H
(x,λ)
K directly since the cardinality, in general, is infinite, and additionally we do

not know x in advance. Instead of using hypotheses fromH(x,λ)
K as building blocks

to construct meta-hypotheses, we use multiple instantiations of an online algorithm

for H(x,λ)
K as our building blocks to construct meta-algorithms. The MW algorithm

is then used as a meta-meta-algorithm to combine these meta-algorithms.

We let AK := {a[1], . . . , a[m]} denote our set of m instantiations that will

act as a surrogate for the hypothesis class H(x,λ)
K . We then construct the set,

ĀK(k,m, s,T 1, . . . ,T s) := {ā ∈ AT
K : k = k(ā),m = |m(ā)|}. Each ā ∈ ĀK

now defines a meta-algorithm for the multitask setting. That is, given an online

multitask data sequence (xi
1, y

i
1), . . . , (x j

T j , y
j
T j), each element of ā will “color” the

1Technically, when we say that an algorithm achieves a bound, it may be that the algorithm
depends on a small set of parameters which we have then assumed are “tuned” optimally.
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corresponding data pair with one of the m instantiations (we will use the function

α : {(t, i) : t ∈ [T i], i ∈ [s]} → [m] to denote this mapping with respect to ā). Each

instantiation will receive as inputs only the online sequence of the data pairs corre-

sponding to its “color”; likewise, the prediction of meta-algorithm ā will be that of

the instantiation active on that trial. We will use as our base algorithm OGDK . Thus

for the meta-algorithm ā with (binary) predictions ā(xi
t), we have from (5.1),

s∑
i=1

T i∑
t=1

E[L01(yi
t, ā(xi

t))] ≤

1 + λ

2

s∑
i=1

T i∑
t=1

L01(yi
t, sign(h[α(i

t)](xi
t))) +

m∑
j=1

O

(√
‖h[ j]‖2K X2T

)
(5.2)

for any received instance sequence x ∈ XT and for any h[1], . . . , h[m] ∈ H(x,λ)
K .

The MW algorithm [19, 88, 11] does not work just for hypothesis classes;

more generally, it works for collections of algorithms. Hence we may run the MW

as a meta-meta-algorithm to combine all of the meta-algorithms ā ∈ ĀK , with the

corresponding regret bound of

s∑
i=1

T i∑
t=1

E[L01(yi
t, ŷ

i
t)] ≤

s∑
i=1

T i∑
t=1

E[L01(yi
t, ā(xi

t))] + O

(√
log(|ĀK |)T

)
. (5.3)

Thus by substituting the loss for each meta-algorithm ā (the R.H.S. of (5.2))

into (5.3) and using the upper bound
(

T−s
k

)
ms(m − 1)k for the cardinality of ĀK , we

obtain (using upper bounds for binomial coefficients and the inequality
∑

i
√

piqi ≤√
(
∑

i pi)(
∑

i qi)) ,

R
1+λ

2
T (h∗) ∈ O

(√
(
∑

h∈m(h∗) ‖h‖
2
K X2

K + s log m + k log m + k log((T − s)/k))T
)
,

(5.4)

for any received instance sequence x ∈ XT and for any h∗ ∈ H(x,λ)
K

T
such that

k = k(h∗) and m = |m(h∗)|.

The term
∑

h∈m(h∗) ‖h‖
2
K X2

K may be viewed as a learner complexity, i.e., the

price we “pay” for identifying the hypotheses that fit the modes. A salient feature
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of long-term memory bounds is that although the data pairs associated with each

hypothesis are intermixed in the multitask sequence, we pay the learner complexity

only modestly in terms of potentially leading multiplicative constants. A switching

algorithm without long-term memory “forgets” and pays the full price for a mode

on every switch or new task. We have thus given an exponential-time algorithm

for H(x,λ)
K with O(1) leading multiplicative constants. In Section 5.3, we give an

efficient algorithm forH(x,λ)
K , with a time complexiy of O(T 3) per trial, and in terms

of learner complexities, it gains only leading multiplicative constants ofO(λ2 log T ).

In the case of binary RKHS functions (λ = 1), this becomes O(log T ).

5.2.2 Related Work

In this section we briefly describe other related work in the online setting that con-

siders either switching or multitask models.

The first result for switching in the experts model was the WML algo-

rithm [19], which was generalized in [89]. There is an extensive literature building

on those papers, with some prominent results including [83, 90, 91, 92, 93, 94, 95,

96, 97, 98, 99]. Relevant for our model are those papers [83, 91, 94, 92, 97, 98, 99]

that address the problem of long-term memory (m � k), in particular [83, 91, 94].

Analogous to the problem of long-term memory in online learning is the prob-

lem of catastrophic forgetting in artificial neural network research [100, 101]. That

is the problem of how a system can adapt to new information without forgetting the

old. In online learning, that is the problem of how an algorithm can both quickly

adapt its prediction hypothesis and recall a previously successful prediction hypoth-

esis when needed. In the experts model this problem was first addressed by [83],

which gave an algorithm that stores each of its past state vectors, and then at each

update mixes these vectors into the current state vector. In [91], an algorithm and

bounds were given that extended the base comparision class of experts to include

Bernoulli models. An improved algorithm with a Bayesian intepretation based on

the idea of “circadian specialists” was given for this setting in [94]. In the work that

this chapter is based on [8], an algorithm for multitask learning with memory in the

expert setting is given, and is directly inspired by the methodology in [94].



Chapter 5. Online Multitask Learning with Long-Term Memory 120

The problem of linear regression with long term memory was posed as an open

problem in [94, Sec. 5]. Algorithm 4 gives an algorithm for linear regression for

bounded functions in a RKHS with a regret bound that reflects long-term memory.

Switching linear prediction has been considered in [85, 14, 102, 39]. Only [39]

addresses the issue of long-term memory. The methodology of [39] is a direct in-

spiration for Algorithm 4. We significantly extend the result of [39, Eq. (1)]. Their

result was i) restricted to a mistake as opposed to a regret bound, ii) restricted to

finite positive definite matrices and iii) in their mistake bound the term analogous

to
∑

h∈m(h∗) ‖h‖
2
K X2

K was increased by a multiplicative factor of Õ(|m(h∗)|), a signifi-

cantly weaker result.

Multitask learning has been considered extensively in the batch setting, with

some prominent early results including [103, 104, 105]. In the online multitask

expert setting, [106, 107, 108, 94] considered a model where each task is associated

only with a single hypothesis, i.e., no internal switching within a task. Also in the

expert setting, [109, 110] considered models where the prediction was made for

all tasks simultaneously. In [110], the aim was to predict well relative to a set of

possibly predefined task interrelationships and in [109], the interrelationships were

to be discovered algorithmically. The online multitask linear prediction setting was

considered in [111, 112, 113]. The models of [112, 113] are similar to ours, but like

previous work in the expert setting, these models are limited to one “hypothesis” per

task. In the work of [111], the predictions were made for all tasks simultaneously

through a joint loss function.

5.3 RKHS Hypothesis Classes

Our algorithm and its analysis builds on Algorithm 3 for online inductive matrix

completion with side-information and its corresponding performance guarantee in

Theorem 1. We recall the following notation from Section 1.3.

The max-norm (or γ2 norm [9]) of a matrix U ∈ <m×n is defined by

‖U‖max := min
PQ>=U

{
max
1≤i≤m

‖Pi‖ × max
1≤ j≤n

∥∥∥Q j

∥∥∥} , (5.5)
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where the minimum is over all matrices P ∈ <m×d andQ ∈ <n×d and every integer

d. We denote the class of m × d row-normalized matrices as Nm,d := {P̂ ⊂ <m×d :∥∥∥P̂i

∥∥∥ = 1, i ∈ [m]}. The quasi-dimension of a matrix is defined as follows.

Definition. The quasi-dimension of a matrix U ∈ <m×n with respect to

M ∈ Sm
++, N ∈ S

n
++ at γ as

D
γ

M ,N (U ) := min
P̂ Q̂>=γU

tr
(
P̂ >MP̂

)
RM + tr

(
Q̂>NQ̂

)
RN , (5.6)

where the infimum is over all row-normalized matrices P̂ ∈ Nm,d and

Q̂ ∈ Nn,d and every integer d. If the infimum does not exist then

D
γ

M ,N (U ) := +∞ (The infimum exists iff ‖U‖max ≤ 1/γ).

Algorithm 3 addresses the problem of the online prediction of a comparator ma-

trix U with side information. The side information is supplied as a pair of ker-

nels over the row indices and the column indices. In Theorem 1, a regret bound

Õ
(√

(D̂/γ2)T
)

is given, where 1/γ2 ≥ ‖U‖2max and D̂ ≥ Dγ

M ,N (U ) are parame-

ters of the algorithm that serve as upper estimates on ‖U‖2max and Dγ

M ,N (U ). The

first estimate 1/γ2 is an upper bound on the squared max-norm (Eq. (5.5)), which

like the trace-norm may be seen as a convex proxy for the rank of the matrix [3].

The second estimate D̂ is an upper bound of the quasi-dimension (Eq. (5.6)), which

measures the quality of the side-information. The quasi-dimension depends upon

the “best” factorization (1/γ)P̂ Q̂> = U , which will be smaller when the row P̂

(column Q̂) factors are in congruence with the row (column) kernel. We bound the

quasi-dimension in Theorem 71 in Section 5.6 as a key step to proving Theorem 69.

In the reduction of our problem to a matrix completion problem with side infor-

mation, the row indices correspond to the domain of the learner-supplied kernel K

and the column indices correspond to the temporal dimension. On each trial we re-

ceive an xτ (a.k.a. xi
t). The comparator matrixU is now an embedding ofH , where

the column ofH corresponding to time τ will contain the entries Hτ = (hτ(xυ))υ∈[T ].

Fig 5.3 illustrates an example comparator matrix and its corresponding latent ma-

trix U ∗. Although we are predicting functions that are changing over time, the
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Task 1 Task 2

Task 1

Task 2

1 2 3 4 5 1 2 3 4

(a) Example matrix U . Each row corresponds
to a distinct instance, and the columns rep-
resent the different trials. Both rows and
columns are ordered by task for conve-
nience. On each trial, we are asked to predict
a diagonal element of this matrix.

Task 1

Task 2

(b) Corresponding latent matrix U ∗. The rows
represent the instances, and the columns cor-
respond to the distinct hypotheses, m.

Figure 5.3: The reduction of the online multitask learning problem to the matrix comple-
tion problem with a (T ,m)-biclustered matrix U . In this example, m = 3.

underlying assumption is that the change is sporadic; otherwise it is infeasible to

prove a non-vacuous bound. Thus we expect Hi
t ≈ Hi

t+1 and as such our column

side-information kernel should reflect this expectation. Topologically, we would

therefore expect a kernel to present as s separate time paths, where nearness in

time corresponds to nearness on the path. In the following we introduce the path-

tree-kernel (the essence of the construction was first introduced in [114]), which

satisfies this expectation in the single-task case. We then adapt this construction to

the multitask setting.

A path-tree kernel P : [T ] × [T ] → <, is formed via the Laplacian of a

fully complete binary tree with N := 2dlog2 T e+1 − 1 vertices. The path corre-

sponds to the first T leaves of the tree, numbered sequentially from the leftmost

to the rightmost leaf of the first T leaves. Denote this Laplacian as L where the

path is identified with [T ] and the remaining vertices are identified with [N] \ [T ].

Then using the definition L◦ := L +
(

1
N

) (
1
N

)>
R−1

L , we define P(τ, υ) := (L◦)+
τυ

where τ, υ ∈ [T ]. We extend the path-tree kernel to a multitask-path-tree ker-

nel by dividing the path into s contiguous segments, where segment i is a path
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of length T i, and the task vector ` ∈ [s]T determines the mapping from global

trial τ to task `τ and local trial σ(τ). We define P̃`,T 1,...,T s
: [T ] × [T ] → < as

P̃`,T 1,...,T s
(τ, υ) := P

(∑`τ−1
i=1 T i + σ(τ),

∑`υ−1
i=1 T i + σ(υ)

)
. Observe we do not need to

know the task vector ` in advance; we only require upper bounds on the lengths of

the tasks to be able to use this kernel. Finally, we note that it is perhaps surpris-

ing that we use a tree rather than a path directly. We discuss this issue following

Lemma 73 in Section 5.6.

Algorithm 4 requires O(t3) time per trial t since we need to compute the eigen-

decomposition of three O(t) × O(t) matrices as well as sum O(t) × O(t) matrices up

to t times. We bound the regret of the algorithm as follows.

Algorithm 4 PredictingH(x,λ)
K in a switching multitask setting.

Parameters: Tasks s ∈ N, task lengths T 1, . . . ,T s ∈ N, T :=
∑s

i=1 T i, learning rate: η > 0,
complexity estimate: Ĉ > 0, modes: m ∈ [T ], RKHS function upper bound: λ ≥ 1,SPD
Kernel K : X × X → <, P̃ := P̃`,T 1,...,T s

: [T ] × [T ]→<, with maxτ∈[T ] K(xτ, xτ) ≤ X̂2
K ,

and X̂2
P := 2dlog2 T e.

Initialization: U← ∅ ,X1 ← ∅ , T 1 ← ∅ .

For τ = 1, . . . ,T
• Receive task `τ ∈ [s] .
• Receive xτ ∈ X .
• Set i← `τ; t ← σ(τ); xi

t ≡ xτ .
• Define

Kτ := (K(x, z))x,z∈Xτ∪{xτ} ; P τ := (P̃(τ, υ))τ,υ∈T τ∪{τ} ,

X̃τ(υ) :=


√
Kτexυ√

2X̂2
K

;

√
P τeυ√
2X̂2

P



√
Kτexυ√

2X̂2
K

;

√
P τeυ√
2X̂2

P


>

,

W̃ τ ← exp

log
(

Ĉ
2Tmλ2

)
I |X

τ |+|T τ |+2 +
∑
υ∈U

ηyυX̃τ(υ)

 .
• Predict

Yτ ∼ Uniform
(
−

1
√

mλ2
,

1
√

mλ2

)
; ȳτ ← tr

(
W̃ τX̃τ(τ)

)
−1 ; ŷi

t := ŷτ ← sign(ȳτ−Yτ) .

• Receive label yi
t := yτ ∈ {−1, 1} .

• If yτȳτ ≤ 1√
mλ2

then

U← U ∪ {τ} , Xτ+1 ← Xτ ∪ {xτ}, and T τ+1 ← T τ ∪ {τ} .

• Else Xτ+1 ← Xτ and T τ+1 ← T τ .
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Theorem 69. The 1+λ2

2 -regret of Algorithm 4 with upper estimates, k ≥ k(h∗), m ≥

|m(h∗)|,

Ĉ ≥ C(h∗) := λ2

 ∑
h∈m(h∗)

‖h‖2K X2
K + 2(s + k − 1)mdlog2 T e2 + 2m2

 ,
X̂2

K ≥ maxτ∈[T ] K(xτ, xτ), and learning rate η =

√
Ĉ log(2T )

2Tmλ2 is bounded by

s∑
i=1

T i∑
t=1

E[L01(yi
t, ŷ

i
t)] −

1 + λ2

2
L01(yi

t, sign(hi
t(xi

t))) ≤ 3.5
√

Ĉ T log(2T ) (5.7)

with received instance sequence x ∈ XT and for any h∗ ∈ H(x,λ)
K

T
where λ ≥ 1.

Comparing roughly to the bound of the exponential-time algorithm (see (5.4)),

we see that the log m term has been replaced by an m term, we have worse scalings in

terms of λ, and we have gained a multiplicative factor of log 2T . From the perspec-

tive of long-term memory, we note that the potentially dominant learner complexity

term
∑

h∈m(h∗) ‖h‖
2
K X2

K has only increased by a slight log 2T term if λ = 1. To gain

more insight into the problem, we also have the following simple lower bound. We

observe that even though it is written in terms of some h∗ ∈ H(x,1)
K

T
, it is also a

lower bound forH(x,λ)
K

T
, sinceH(x,1)

K
T
⊆ H

(x,λ)
K

T
.

Proposition 70. For any (randomized) algorithm and any s, k,m,Γ ∈ N, with k+s ≥

m > 1 and Γ ≥ m log2 m, there exists a kernel K and a T0 ∈ N such that for every

T ≥ T0:

T∑
τ=1

E[L01(yτ, ŷτ)] − L01(yτ, hτ(xτ)) ∈ Ω

(√(
Γ + s log m + k log m

)
T
)
,

for some multitask sequence (x1, y1), . . . , (xT , yT ) ∈ (X × {−1, 1})T and some h∗ ∈

[H(x,1)
K ]T such that m ≥ |m(h∗)|, k ≥ k(h∗),

∑
h∈m(h∗) ‖h‖

2
K X2

K ≥ |m(h∗)| log2 m, where

X2
K = maxτ∈[T ] K(xτ, xτ).

Comparing the above proposition to the bound of the exponential-time algo-

rithm (see (5.4)), the most striking difference is the absence of the log T terms. We
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conjecture that these terms are not necessary for the zero-one loss. In the following

section, we give a proof sketch of Theorem 69.

5.3.1 Proof Sketch of Theorem 69 and Theorem 71

In the proof, we give a reduction of Algorithm 4 to Algorithm 3. Two necessary ad-

ditional results that we need include Theorem 71 and Corollary 74. In Corollary 74,

we bound a normalized margin-like quantity of the multitask-path-tree kernel used

in the algorithm. Then in Theorem 71, we bound the quasi-dimension which indi-

cates how to set the parameters of Algorithm 4 as well as determines the value of

C(h∗) in the main theorem. As this bound of the quasi-dimension is a key element

of our proof, we contrast it to a parallel result proved in Theorem 57.

We recall that the regret (see Theorem 1) of Algorithm 3 is Õ
(√

(D̂/γ2)T
)

where 1/γ2 ≥ ‖U‖2max and D̂ ≥ Dγ

M ,N (U ). We will prove in our setting 1/γ2 =

mλ2 ≥ ‖U‖2max in the discussion following (5.26).

We now contrast our bound on the quasi-dimension (Theorem 71) to the

bound of Theorem 57. The quasi-dimension depends on γ so that if γ ≤ γ′, then

D
γ

M ,N (U ) ≤ Dγ′

M ,N (U ). In Theorem 57, the given bound on quasi-dimension is

independent of the value of γ. Thus to minimize the regret bound of Õ
(√

(D̂/γ2)T
)
,

it is sensible in Theorem 57 to select the smallest possible 1/γ2 = ‖U‖2max. The sit-

uation in this chapter is essentially reversed. In the following theorem, it is required

that 1/γ2 = mλ2 ≥ ‖U‖2max. In fact, m maxi j |Ui j|
2 is the maximum possible value of

the squared max norm in the case that m = |m(h∗)| with respect to all possible com-

parators h∗ (see (5.26)). Thus in contrast to Theorem 57, the following result trades

off a potentially larger value in 1/γ2 for a smaller possible D̂. If we were instead to

use the bound of Theorem 57, then the term in this chapter
∑

h∈m(h∗) ‖h‖
2
K X2

K would

gain a leading multiplicative factor of m2 (terrible!).

We recall the following notation. The class of m×d row-normalized is denoted

as Nm,d := {P̂ ⊂ <m×d :
∥∥∥P̂i

∥∥∥ = 1, i ∈ [m]} and the class of block expansion

matrices is defined as Bm,d := {R ⊂ {0, 1}m×d : ‖Ri‖ = 1 for i ∈ [m], rank(R) = d}.

Block expansion matrices may be seen as a generalization of permutation matrices,

additionally duplicating rows (columns) by left (right) multiplication.
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We define the class of (k, `, λ)-biclustered matrices as

Bm,n,λ
k,` = {U = RU ∗C> ∈ ([−λ,−1] ∪ [1, λ])m×n : R ∈ Bm,k ,C ∈ Bn,`,

U ∗ ∈ ([−λ,−1] ∪ [1, λ])k×`} .

In the case that λ = 1, we retrieve the definition of the (k, `)-binary-biclustered

matrices as seen in Chapter 4.

Theorem 71. IfH ∈ Bp,T,λ
p,m , γ = 1/

√
mλ2, λ ≥ 1 and if

D?
M ,N (H) := γ2λ2 tr((H∗)>MH∗)RM + tr(C>NC)RN (5.8)

is defined as the minimum over all decompositions of H = H∗C> for H∗ ∈

([−λ,−1] ∪ [1, λ])p×m, C ∈ BT,m then for U = DH where D is a diagonal matrix

with entries Dii = 1
γ||H∗

i ||
for i ∈ [p]

D
γ

M ,N (U ) ≤ D?
M ,N (H) (γ = 1/

√
mλ2) .

Proof. Recall by supposition γ = 1/
√

mλ2, and define U ∗ := DH∗. Note that for

all i ∈ [p], ||U ∗i || =
1
γ
. Set P̂ ′ := γU ∗ and Q̂′ := C hence P̂ ′ ∈ N p,m, Q̂′ ∈ NT,m

and P̂ ′Q̂′> = γU ∗C> = γDH∗C> = γU .

Recall (5.6),

D
γ

M ,N (U ) := min
P̂ Q̂>=γU

tr
(
P̂ >MP̂

)
RM + tr

(
Q̂>NQ̂

)
RN . (5.9)

Observe that (P̂ ′, Q̂′) is in the feasible set of the above optimization. Hence

D
γ

M ,N (U ) ≤ tr
(
P̂ ′>MP̂ ′

)
RM + tr

(
Q̂′>NQ̂′

)
RN

= γ2 tr((U ∗)>MU ∗)RM + tr(C>NC)RN .

We also have for all i ∈ [p], j ∈ [m] that U ∗i j = DiiH
∗
i j =

√
mλ2

||H∗
i ||
H∗

i j. Recalling
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that |H∗
i j| ≥ 1 so that ||H∗

i || ≥
√

m, we then have

U ∗i j ≤ λH
∗
i j.

Observing that tr((U ∗)>MU ∗) scales quadratically with the entries ofU ∗ then gives

the result. �

5.4 Synthetic Experiments
As the online multitask setting with memory setting is a novel one, there are no

alternative algorithms that we can directly compare against. Instead, we show the

memory and multitask features of our algorithm separately. To demonstrate the

former, we compare our algorithm to the (kernel) switching and non-switching per-

ceptron algorithms in the single task case. Then we show the multitask learning

feature by comparing our algorithm which learns over 1024 trials in a single task

to the same algorithm which learns across two tasks, with 1024 trials per task. On

each trial, the task number is selected uniformly at random, until all 1024 trials

have been exhausted for one of the tasks; when this happens, all trials will occur in

the remaining task. In the following experiments, we will assess the performance

of our algorithm with the RKHS space induced by the Dirac kernel. In addition,

we consider introducing decay methods, which reduces the time complexity of the

algorithm.

5.4.1 Dirac Kernel

In this experiment, we consider the instance space X = [d], hypothesis spaceHd =

{−1, 1}d and the kernel Kd(x, x′) = 2[x = x′] − 1. For this setup, we have that

maxx∈[d] Kd(x, x) = 1 and that ‖h‖2Kd
= d for all h ∈ Hd. Since the hypotheses

are binary, we set λ = 1, and consider 3 modes (m = 3). All hypotheses and

instances are sampled uniformly at random from their respective spaces. We set the

parameters according to Theorem 69, with Ĉ := 3d + 6(s + k − 1)mdlog2 T e2 + 18 ,

η =

√
Ĉ log(2T )

6T , and average our results across 10 runs. For all experiments, we feed

identical input sequences to the different algorithms.
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Single task Single vs multitask

Cumulative mistakes Mistakes per segment Cumulative mistakes

Dimensions d = 16, switches k = 15.

Dimensions d = 32, switches k = 15.

Dimensions d = 64, k = 15 switches.

Figure 5.4: Results for the worst-case kernel. The shaded regions show the standard de-
viation. For the plots in the second column, the dotted lines show the linear
fit.

We consider dimensions d ∈ {16, 32, 64}, k = 15 switches which occur at

regular intervals every 64 trials and switch between the three modes consecutively.

Across the different setups, the first two columns of Figure 5.4 show that in the

single task case (s = 1), our algorithm has fewer cumulative mistakes than the

perceptron algorithms and our algorithm exhibits memory behaviour as the average

number of mistakes per segment decreases over time. Figure 5.4 (third column)

shows that the mistakes per task in the multitask setting with s = 2 are consistently

lower compared to the single task setting.
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5.4.2 Decay Methods

The time complexity of our algorithm is O(|Ut|
3) per trial t. We therefore seek to

constrain |Ut| ≤ B for all t, by applying the decay methods inspired by [115, 102],

bounds for which have been proven only for the kernel perceptron. In [115], the

contributions of the elements in Ut are decayed after which the earliest trial in Ut

is removed. In contrast, [102] has the simpler strategy of removing an element at

random without any decay.2. For these experiments, we consider the same setup

as the one in Section 5.4.1. Figure 5.5 shows the results. For simplicity, we did

not shrink the contributions for the strategy in [115]. We choose the smallest B

for which there was no overlap between the error bars of the switching perceptron

and the decay method in the single task setting. We used this value of B for both

the single task and multitask experiments. For the random removal strategy, we

required a higher B = 192, whereas the earliest trial removal strategy only required

B = 48. For both methods, there was no discernible memory behaviour as the

number of mistakes per segments increases. However, the multitask decay methods

did outperform the single task algorithm with no decay in both cases.

5.5 Discussion
We have presented a novel multitask setting which generalizes single-task switching

under the long-term memory setting. We gave an algorithm for the RKHS hypothe-

sis class with per trial prediction times ofO(t3), for which we proved both upper and

lower bounds on the regret. An open problem is to resolve the gap between the two

bounds. On the algorithmic side, the algorithm depends on a number of parameters,

such as Ĉ, which depends on s, k and m. The knowledge of these parameters can be

circumvented through the doubling trick. Alternatively, there is extensive research

in online learning methods to design parameter-free methods. Can some of these

methods be applied here (see e.g., [116])? For a non-parametric hypothesis class,

intuitively it seems we must expect some dependence on T . In terms of the time

2For simplicity, we implement the transductive algorithm (Algorithm 1). This is possible due to
the finite-dimensional domains of both the row and column kernels, and is equivalent to the inductive
algorithm due to Proposition 6.
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Single task Single vs multitask

Cumulative mistakes Mistakes per segment Cumulative mistakes

Random trial removal

Earliest trial removal

Figure 5.5: Results for the decay methods.

complexity, can we perhaps prove bounds for sketching methods [80] that have had

success in simpler models to improve the running times? More broadly, for what

other infinite hypothesis classes can we give efficient regret-bounded algorithms in

this switching multitask setting with long-term memory?
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5.6 Proofs

5.6.1 Proof of Theorem 69

Proof of Corollary 74

In this section, we prove Corollary 74, which is utilized in the proof of Theorem 69.

The corollary is first stated below.

Corollary 74. If f ∈ HP̃ ∩ {0, 1}T then

‖ f ‖2P̃ max
τ∈[T ]

P̃(τ, τ) ≤ (k( f ) + s( f ))dlog2 T e2 + 2 , (5.10)

where P̃ = P̃`,T 1,...,T s
, k( f ) :=

∑s
i=1

∑T i−1
t=1 [ f (i

t) , f ( i
t+1)] and s( f ) :=

∑s−1
i=1 [ f (i

T i) ,

f (i+1
1 )].

We recall the notions of effective resistance between vertices in a graph and

the resistance diameter of a graph. A graph may naturally interpreted as an resistive

network where each edge in the graph is viewed as a unit resistor. Thus the effective

resistance between two vertices is the potential difference needed to induce a unit

current flow between them and the resistance diameter is the maximum effective

resistance between all pairs of vertices.

To prove the corollary, we will need to bound the diagonal element of the

Laplacian pseudo-inverse by the resistance diameter. In the following Lemma, we

will improve upon [10, Eq. (9)] by a factor of 1
2 for the special case of fully complete

trees.

Lemma 72. For the graph Laplacian L ∈ <N×N of a fully complete tree graph,

RL = max
i∈[N]

L+
ii ≤

1
2
Rdiam(L),

where Rdiam(L) is the resistance diameter of the graph described by L.

Proof. Before proving the result, we shall recall 4 general facts about graphs, trees

and Laplacians. We also denote the set of vertices at a given depth a level. The root

is at level 0.
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1. The effective resistance between vertices i and j is given by (see [117]),

R(i, j) = L+
ii + L+

j j − 2L+
i j. (5.11)

2. The diagonal element of L+ is given by (see eg. [118])

L+
ii =
R(i)
N
−
Rtot

N2 , (5.12)

where R(i) =
∑N

j=1 R(i, j) and Rtot =
∑

i, j<i R(i, j).

3. For fully complete trees, we have that R(i) = R( j) and L+
ii = L+

j j if i and j are

in the same level due to symmetry.

4. For trees, the effective resistance between vertices i and j is given by the

geodesic distance (path length) between the two vertices.

Next, we prove the following intermediate result.

Lemma: For a given vertex i, the vertex j that minimizes L+
i j is the leaf

vertex with the largest geodesic distance from i.

Proof. Define h to be the height of the tree. We take vertex i′ to

be at level k ∈ [h − 1] and vertex j′ at level k + 1. Recalling that

R(i) =
∑N

j=1 R(i, j), we will consider the individual summands that

compose R( j′) and R(i′), given by the geodesic distances between i′

and j′ respectively and the other vertices due to fact 4. From fact 3

(with respect to the summands), we can assume without loss of gener-

ality that vertex j′ is the child of i′. Going from the summation of R( j′)

to the summation of R(i′), there are 3 possible changes to the geodesic

distances in the summation:

1. the descendants of j′ will have a geodesic distance reduced by 1

2. the geodesic distance between i′ and j′ remains constant

3. all the other vertices will have a geodesic distance increased by 1.
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Hence, defining D j′ to be the set of descendants of node j′,

R( j′) = R(i′) −
∑
i∈D j′

1 +
∑

i′∈[N]\(D j′∪{ j′})

1

= R(i′) − |D j′ | + N − (|D j′ | + 1)

= R(i′) + N − 2|D j′ | − 1.

This gives that R( j′) − R(i′) ≤ N, and

R( j′) − R(i′)
N

≤ 1. (5.13)

We show that vertex j that minimizes L+
i j must be a leaf vertex by con-

tradiction. Suppose j is not a leaf vertex then there exists a child of

j , i. Call the child j′ which thus satisfies R(i, j′)−R(i, j) = 1. Hence,

Equations (5.11) and (5.12) give

L+
i j′ − L+

i j =
1
2

(
R( j′)

N
−
R( j)

N
− R(i, j′) + R(i, j)

)
(5.14)

≤ 0, (5.15)

where the inequality is due to (5.13) for which we let i′ = j. Hence, we

have that L+
i j ≥ L+

i j′ which is a contradiction.

Then, using Equations (5.11) and (5.12), we have

argmin
j

L+
i j = argmin

j

R( j)
N
− R(i, j).

Since all leaf vertices have the same R(i), the leaf vertex that minimizes

must be the one with the largest geodesic distance from i. �

Recall that for a tree, the resistance diameter is equal to its geodesic diameter,

and hence the vertices that maximize the effective resistance are given by the two

leaf vertices with the largest geodesic distance. We therefore proceed by consider-

ing i and j to be any of the vertices that maximize the effective resistance, giving
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the resistance diameter. Due to fact 3, we have L+
ii = L+

j j. Then, from (5.11), we

obtain,

1
2
Rdiam(L) = L+

ii − L+
i j

= L+
ii −min

k
L+

ik (5.16)

≥ L+
ii −

1
N

N∑
k=1

L+
ik

≥ L+
ii (5.17)

where (5.16) comes from the intermediate lemma, and (5.17) comes from the fact

that
∑N

j=1 L+
i j = 0 for all i ∈ [N] since L1 = 0 for connected graphs. �

The following Lemma is essentially a simplification of the argument in [114,

Section 6] for Laplacians,

Lemma 73. (See [114, Section 6].) If f ∈ HP ∩ {0, 1}T then

max
τ∈[T ]

P(t, t) ≤ 2dlog2 T e

‖ f ‖2P max
t∈[T ]

P(t, t) ≤ k( f )dlog2 T e2 + 2, , (5.18)

where k( f ) :=
∑T−1

t=1 [ f (t) , f (t + 1)].

Proof. First we recall the following standard fact about the graph Laplacian L of

an unweighted graph G = (V, E),

u>Lu =
∑

(i, j)∈E

(ui − u j)2 ,

where V is the set of vertices and E is the set of edges in the graph. Call this quantity

the cut of the labeling u. Consider a fully complete binary tree with a depth of

dlog2 T e + 1. For simplicity now assume that there are exactly T leaf nodes, i.e.,

log2 T ∈ N. Assume some natural linear ordering3 of the leaves. This ordering

3Given every three vertices in ordering (a, b, c) we have that d(a, b) ≤ d(a, c) where d(p, q) is the
path length between p and q.
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then defines our path. We call each set of vertices at a given depth a “level” and

they inherit a natural linear ordering from their children. Suppose that there are n

vertices at a given level `, and define w`
i := uv`i

, where v`i is the ith vertex on level `.

The path-cut at this level is given by
∑n−1

i=1 |w
`
i − w`

i+1|.

We now proceed to argue that for a given binary labeling of a path with associ-

ated path-cut k( f ), we can identify a (real-numbered) labeling of the tree, such that:

a. the labeling of the tree leaves is binary and consistent with that of the path and b.

the tree has a cut of no more than 1
2k( f )dlog T e. The construction is as follows: each

parent inherits the average of the labels of its children. We make two observations

about the constructed labeling:

1. The path-cut at a higher level cannot be more than the level below. Consider

two adjacent levels with the lower level ` having n vertices. Denote the set

of odd numbers that is a subset of [n − 1] as Iodd, and the set of even number

that is a subset of [n − 2] as Ieven. Recall that the path-cut of the lower level is∑n−1
i=1 |w

`
i − w`

i+1|. This can be bounded as follows:

n−1∑
i=1

|w`
i − w`

i+1|

=
∑
i∈Iodd

∣∣∣∣∣∣w`
i −

w`
i + w`

i+1

2

∣∣∣∣∣∣ +

∣∣∣∣∣∣w`
i + w`

i+1

2
− w`

i+1

∣∣∣∣∣∣ +
∑

i∈Ieven

|w`
i − w`

i+1|

=
∑
i∈Iodd

∣∣∣∣∣∣w`
i −

w`
i + w`

i+1

2

∣∣∣∣∣∣ +

∣∣∣∣∣∣w`
i + w`

i+1

2
− w`

i+1

∣∣∣∣∣∣ +
∑

i∈Iodd\{n−1}

|w`
i+1 − w`

i+2|

≥
∑
i∈Iodd

∣∣∣∣∣∣w`
i −

w`
i + w`

i+1

2

∣∣∣∣∣∣ +
∑

i∈Iodd\{n−1}

∣∣∣∣∣∣w`
i + w`

i+1

2
− w`

i+1

∣∣∣∣∣∣ + |w`
i+1 − w`

i+2|

≥
∑
i∈Iodd

∣∣∣∣∣∣w`
i −

w`
i + w`

i+1

2

∣∣∣∣∣∣ +
∑

i∈Iodd\{n−1}

∣∣∣∣∣∣w`
i + w`

i+1

2
− w`

i+2

∣∣∣∣∣∣ (5.19)

≥
∑

i∈Iodd\{1}

∣∣∣∣∣∣w`
i −

w`
i + w`

i+1

2

∣∣∣∣∣∣ +
∑

i∈Iodd\{n−1}

∣∣∣∣∣∣w`
i + w`

i+1

2
− w`

i+2

∣∣∣∣∣∣
=

∑
i∈Iodd\{n−1}

∣∣∣∣∣∣w`
i+2 −

w`
i+2 + w`

i+3

2

∣∣∣∣∣∣ +

∣∣∣∣∣∣w`
i + w`

i+1

2
− w`

i+2

∣∣∣∣∣∣
≥

∑
i∈Iodd\{n−1}

∣∣∣∣∣∣w`
i + w`

i+1

2
−

w`
i+2 + w`

i+3

2

∣∣∣∣∣∣ (5.20)
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where (5.19) and (5.20) follow from |a−b|+|b−c| ≥ |a−c| (triangle inequality).

Observing that the R.H.S. of (5.20) is the path cut of the upper level, we are

then done.

2. If we denote the set of edges between two adjacent levels by Ẽ, we have that∑
(i, j)∈Ẽ(ui − u j)2 is at most half the path-cut of the lower level. This can be

seen by considering the edges between a given parent i and its two children j

and j′. Let us define x as half the path cut due to the children, i.e. 1
2 |u j − u j′ |.

Since all labelings are in [0, 1], we have that x ∈ [0, 1/2]. The cut made due

to the parent and the children, i.e. (ui − u j)2 + (ui − u j′)2 is then given by 2x2.

Using the inequality x − 2x2 ≥ 0 for x ∈ [0, 1/2], and applying this to all the

parents on the same level as vertex i, we then prove the statement.

Combining the two above observations and recalling that there are dlog2 T e+1 levels

(and therefore dlog2 T e transitions between the levels), we have that

∑
(i, j)∈E

(ui − u j)2 ≤

dlog2 T e∑
`=1

1
2

p(`) ≤
dlog2 T e∑

k=1

1
2

k( f ),

where p(`) is the path-cut of the tree at level `, the first inequality is due to observa-

tion 2, and the second inequality is due to observation 1. Hence we have shown our

premise that the cut is upper bounded by 1
2k( f )dlog2 T e. Observe that our premise

still holds if there are more than T leaf nodes, as we can treat any additional leaves

on the bottom level as being labeled with the last label on their level; thus the cut

will not increase. Hence we have shown the following inequality where L is the

Laplacian of a fully complete binary tree with N vertices and a path of T leaves

labeled by an f ∈ {0, 1}[T ].

min
u∈R[N]:ui= f (i),i∈[T ]

u>Lu ≤
1
2

k( f )dlog2 T e . (5.21)

We next observe that

RL ≤ dlog2 T e . (5.22)

This follows from Lemma 72, where RL = maxi∈[N] L+
ii is bounded by half the



Chapter 5. Online Multitask Learning with Long-Term Memory 137

resistance diameter, which is then just bounded by half the geodesic diameter. Fur-

thermore if L is the Laplacian of a connected graph and L◦ := L +
(

1
m

) (
1
m

)>
R−1

L

then if u ∈ [−1, 1]m we have

RL◦ = 2RL ,

u>L◦u ≤ u>Lu +
1
RL

.

Thus combining the above with (5.21) and (5.22), we have,

RL◦ ≤ 2dlog2 T e ,

min
u∈R[N]:ui= f (i),i∈[T ]

(u>L◦u)RL◦ ≤ k( f )dlog2 T e2 + 2 ,

which proves the Lemma. �

Observe that the left hand side in (5.18) is up to constant factors, the nor-

malized margin of f in the sense of Novikoff’s Theorem [76]. The construction

is somewhat counterintuitive as one may expect that one can use a path graph di-

rectly in the construction of the kernel. However, then maxt∈[T ] P(t, t) ∈ Θ(T ) which

would lead to a vacuous regret bound. Also one may wonder if one can reduce the

term (log T )2 while maintaining a linear factor in k( f ). In fact the term (log T )2 is

known [119, Theorem 6.1] to be required when k( f ) = 1.

As a straightforward corollary to Lemma 73, we have

Corollary 74. If f ∈ HP̃ ∩ {0, 1}T then

‖ f ‖2P̃ max
τ∈[T ]

P̃(τ, τ) ≤ (k( f ) + s( f ))dlog2 T e2 + 2 , (5.23)

where P̃ = P̃`,T 1,...,T s
, k( f ) :=

∑s
i=1

∑T i−1
t=1 [ f (i

t) , f ( i
t+1)] and s( f ) :=

∑s−1
i=1 [ f (i

T i) ,

f (i+1
1 )].

Proof. Since each task is laid out contiguously along the bottom layer, we pay the

path-cut for each task individually and we pay s( f ) for the intertask boundaries. �
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Proof of Theorem 69

We first recall some of the notation introduced earlier in the section. The block

expansion matrices are defined as Bm,d := {R ⊂ {0, 1}m×d : ‖Ri‖ = 1 for i ∈

[m], rank(R) = d}. The class of (k, `)-binary-biclustered matrices is defined as

Bm,n
k,` = {U = RU ∗C> ∈ {−1, 1}m×n : U ∗ ∈ {−1, 1}k×` ,R ∈ Bm,k ,C ∈ Bn,`} . Next,

we recall Theorem 69 and provide a proof.

Theorem 69. The expected regret of Algorithm 4 with upper estimates, k ≥

k(h∗), m ≥ |m(h∗)|,

Ĉ ≥ C(h∗) := λ2

 ∑
h∈m(h∗)

‖h‖2K X2
K + 2(s + k − 1)mdlog2 T e2 + 2m2

 ,
X̂2

K ≥ maxτ∈[T ] K(xτ, xτ), and learning rate η =

√
Ĉ log(2T )

2Tmλ2 is bounded by

s∑
i=1

T i∑
t=1

E[L01(yi
t, ŷ

i
t)] −

1 + λ2

2
L01(yi

t, h
i
t(xi

t)) ≤ 3.5
√

2Ĉ T log(2T ) (5.24)

with received instance sequence x ∈ XT for any h∗ ∈ H(x,λ)
K

T
where λ ≥ 1.

Proof. Algorithm 4 is the same as Algorithm 3 except for some redefinitions in the

notation. For convenience we recall Algorithm 3 below4.

Algorithm 3.

Parameters: Learning rate: 0 < η quasi-dimension estimate: 1 ≤ D̂,

margin estimate: 0 < γ ≤ 1 and side-information kernels M+ :

I × I → <, N+ : J × J → <, with RM := maxi∈IM
+(i, i) and

RN := max j∈J N
+( j, j), and maximum distinct rows m and columns

n, where m + n ≥ 3.

Initialization: M← ∅ ,U← ∅ ,I1 ← ∅ , J1 ← ∅ .

For t = 1, . . . ,T

• Receive pair (it, jt) ∈ I × J .

4Since we are only concerned with the regret bound, we have set the parameter
NON-CONSERVATIVE = 1 in our restating of the algorithm.



Chapter 5. Online Multitask Learning with Long-Term Memory 139

• Define

(M t)+ := (M+(ir, is))r,s∈It∪{it} ; (N t)+ := (N+( jr, js))r,s∈J t∪{ jt} ,

X̃ t(s) :=
[
(
√

(M t)+)eis

√
2RM

;
(
√

(N t)+)e js

√
2RN

] [
(
√

(M t)+)eis

√
2RM

;
(
√

(N t)+)e js

√
2RN

]>
,

W̃ t ← exp

log
 D̂m + n

 I |It |+|J t |+2 +
∑
s∈U

ηysX̃
t(s)

 .
• Predict

ŷt← tr
(
W̃ tX̃ t(t)

)
; ȳt ← sign(ŷt) .

• Receive label yt ∈ {−1, 1} .

• If yt , ŷt thenM← M ∪ {t}.

• If ytȳt < γ then

U← U ∪ {t} , It+1 ← It ∪ {it}, and J t+1 ← J t ∪ { jt} .

• Else It+1 ← It and J t+1 ← J t .

The following table summarizes the notational changes between the two algorithms.

Description Algorithm 3 Algorithm 4

Row space I X

Column space J [T ]

Row kernel M+ K

Column kernel N+ P := P̃`,T 1,...,T s

Row squared radius RM X̂2
K

Column squared radius RN X̂2
P

Margin estimate γ−2 mλ2

Complexity Estimate D̂γ−2 Ĉ

Dimensions 5 m, n T,T

Time t τ

Instance (it, jt) (xτ, τ)

We now recall the following regret bound for Algorithm 1, which also holds for

Algorithm 3, due to Proposition 6.

5Note T is an upper bound known in advance for the number of rows. We will use p to denote

the number of distinct x values seen over the trials of the algorithm.
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Theorem 1 The expected mistakes of Algorithm 1, parameters D̂ ≥

D
γ

M ,N (U ), η =

√
D̂ log(m+n)

2T , are bounded by

E[|M|] ≤

(
1 + maxi, j |Ui j|

)
2

∑
t∈M

[yt , sign(Uit jt)] +
3.5
γ

√
D̂ log(m + n)T

(5.25)

for all U ∈ ([−∞,−1] ∪ [1,∞])m×n with ‖U‖max ≤ 1/γ.

We introduce the following notation: the set Xfin := ∪τ∈[T ]{xτ}, the matrix H :=

(hτ(x) : x ∈ Xfin, τ ∈ [T ]), H∗ := (h(x))x∈Xfin,h∈m(h∗) and C := ([hτ = h])τ∈[T ],h∈m(h∗)

(note C ∈ BT,m), D ∈ <p×p is a diagonal matrix with entries Dii = 1
γ||H∗

i ||
for

i ∈ [p], U := DH , the matrices K̄ = [(K(x, x′) : x, x′ ∈ Xfin)]−1, P̄ = [(P̃(τ, υ) :

τ, υ ∈ [T ])]−1, and λ := maxi, j |Hi j|. Observe thatH = H∗C>.

Initially we note that we very trivially extend the algorithm and thus its analysis

in so far as we use the upper bounds and X̂2
K ≥ RK̄ and X̂2

P ≥ RP̄ .

It now remains that in order to complete the reduction of Theorem 69 to The-

orem 3, we need to demonstrate the following four inequalities:

‖U‖max ≤
√

mλ2 (5.26)

max
i, j
|Ui j| ≤ λ

2 (5.27)

1 ≤ min
i, j
|Ui j| (5.28)

D
1/
√

mλ2

K̄,P̄
(U ) ≤

1
mλ2 C(h∗) . (5.29)

First we show (5.26). Recalling the definition of the max-norm, we have

‖U‖max = min
PQ>=U

(
max

i
||Pi|| max

j
||Q j||

)

Set P ′ := DH∗, andQ′ := C and observe that (P ′,Q′) is in the feasible set of the

minimization, giving

‖U‖max ≤ max
i∈[|Xfin |]

||(DH∗)i||max
j∈[T ]
||C j||
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= max
i∈[|Xfin |]

(
1

γ||H∗
i ||
||H∗

i ||

)
max
j∈[T ]
||C j||

=
1
γ

=
√

mλ2

Next we show (5.27) and (5.28). Defining U ∗ := DH∗, we have U = U ∗C>,

so that all the entries that appear in U must also exist in U ∗ and vice versa. We

therefore have

max
i, j
|Ui j| = max

i, j
|U ∗i j|

= max
i, j
|(DH∗)i j|

= max
i, j

|H∗
i j|

γ||H∗
i ||

Using 1
γ

=
√

mλ2, |H∗
i j| ≤ λ, and 1

||H∗
i ||
≤ 1

√
m for all i and j, then gives (5.27).

Similarly, we have

min
i, j
|Ui j| = min

i, j

|H∗
i j|

γ||H∗
i ||

Using 1
γ

=
√

mλ2, |H∗
i j| ≥ 1 and 1

||H∗
i ||
≥ 1
√

mλ2
for all i and j gives (5.28).

We now show (5.29). We recall the following useful equality (see e.g. [82,

Proposition 12.32]),

u>K−1u = min
f∈HK : f (x)=ux:x∈X

‖ f ‖2K . (5.30)

where K = (K(x, x′))x,x′∈X, u ∈ <X and K is invertible and K is a kernel. By

Theorem 71 we have

D
1/
√

mλ2

K̄,P̄
(U ) ≤

1
m

tr((H∗)>K̄H∗)X̂2
K + tr(C>P̄C)X̂2

P

where we recall that H = H∗C> with H∗ := (h(x))x∈Xfin,h∈m(h∗) and C := ([hτ =

h])τ∈[T ],h∈m(h∗) (note C ∈ BT,m).
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Simplifying and using (5.30) we have,

D
1/
√

mλ2

K̄,P̄
(U ) ≤

1
m

∑
h∈m(h∗)

‖h‖2K X̂2
K + tr(C>P̄C)X̂2

P . (5.31)

From (5.30) we have,

tr(C>P̄ C) =
∑

h∈m(h∗)

c>hP̄ ch =
∑

h∈m(h∗)

‖ fh‖
2
P̃ (5.32)

where ch is the column vector formed by taking the hth column of C. The vector

ch ∈ {0, 1}T indicates if hypothesis h is “active” on trial τ, i.e., cτh = [hτ = h].

Next we define fh(τ) := cτh for τ = 1, · · · ,T . Recalling τ ≡ `τ

σ(τ), we also have

fh(τ) ≡ fh (`τ
σ(τ)).

From (5.32) and Corollary 74 we have,

tr(C>P̄C)X̂2
P =

∑
h∈m(h∗)

‖ fh‖P̃ X̂2
P (5.33)

≤
∑

h∈m(h∗)

(
k( fh) + s( fh))dlog2 T e2 + 2

)
≤

∑
h∈m(h∗)

(k( fh) + s( fh))dlog2 T e2 + 2m(h∗)

≤
∑

h∈m(h∗)

(k( fh) + s( fh))dlog2 T e2 + 2m

≤ 2(s + k − 1)dlog2 T e2 + 2m (5.34)

where

k( f ) =

s∑
i=1

T i−1∑
t=1

[ f (i
t) , f (i

t+1)] , s( f ) =

s−1∑
i=1

[ f (i
T i) , f (i+1

1 )] ,

and where (5.34) comes from using
∑

h∈m(h∗) k( fh) = k(h∗) ≤ 2k and
∑

h∈m(h∗) s(h) ≤

2(s − 1), where the factors of two are due to each switch of fh on successive time

steps as well as intertask boundaries being counted twice.
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Substituting (5.34) into (5.31), we have

D
1/
√

mλ2

K̄,P̄
(U ) ≤

1
m

∑
h∈m(h∗)

‖h‖2K X̂2
K + 2(s + k − 1)dlog2 T e2 + 2m ,

This demonstrates (5.29) thus completing the reduction. �

5.6.2 Proof Sketch of Proposition 70

First we recall and then give a proof sketch of Proposition 70.

Proposition 70. For any (randomized) algorithm and any s, k,m,Γ ∈ N, with

k + s ≥ m > 1 and Γ ≥ m log2 m, there exists a kernel K and a T0 ∈ N such that for

every T ≥ T0:

T∑
τ=1

E[L01(yτ, ŷτ)] − L01(yτ, hτ(xτ)) ∈ Ω

(√(
Γ + s log m + k log m

)
T
)
,

for some multitask sequence (x1, y1), . . . , (xT , yT ) ∈ (X × {−1, 1})T and some h∗ ∈

[H(x,1)
K ]T such that m ≥ |m(h∗)|, k ≥ k(h∗),

∑
h∈m(h∗) ‖h‖

2
K X2

K ≥ |m(h∗)| log2 m, where

X2
K = maxτ∈[T ] K(xτ, xτ).

Proof Sketch. We recall the following online learning terminology. A sequence

of examples (x1, y1), . . . , (xT , yT ) is realizable with respect to a hypothesis class H

if there exists an h ∈ H , such that
∑T

t=1L01(yt, h(xt)) = 0. The optimal mistake

bound (Ldim(H)) with respect to a hypothesis classH also known as the Littlestone

dimension [16, 120] is, informally speaking, the minimum over all deterministic

learning algorithms, of the maximum over all realizable example sequences of the

number of mistaken predictions.

We will apply the following useful result [120, Lemma 14] which we quote

below for convenience,

Lemma 14 (Lower Bound). Let H be any hypothesis class with a fi-

nite Ldim(H). For any (possibly randomized) algorithm, there exists a
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sequence (x1, y1), . . . , (xT , yT ) such that

E
T∑

t=1

L01(yt, ŷt) −min
h∈H
L01(yt, h(xt)) ≥

√
Ldim(H)T

8
.

In essence, this allows one to go from a lower bound on mistakes in the realizable

case to a lower bound in the non-realizable case. However, Lemma 14 only applies

directly to the standard single-task model. To circumvent this, we recall as discussed

in Section 5.2, that the switching multitask model may be reduced to the single-task

model with a domain X′ = X× [T ]× [s] and hypothesis classH ′. Therefore a lower

bound in the switching multitask model with respect toH implies a lower bound in

the single-task non-switching case for H ′ via the reduction. There are some slight

technical issues over the fact that “time” is now part of the domain X′ and thus e.g.,

valid example sequences cannot be permuted. We gloss over these issues in this

proof sketch noting that they do not in fact impact our arguments. The argument

proceeds by demonstrating that there exists for any s, k,m,Γ ∈ N, a kernel K and a

realizable multitask sequence (x1, y1), . . . , (xT , yT ) for which

T∑
τ=1

L01(yτ, ŷτ) ∈ Ω
(
Γ + s log m + k log m

)
, (5.35)

where x ∈ XT , X2
K = maxτ∈[T ] K(xτ, xτ), Γ ≥

∑
h∈m(h∗) ‖h‖

2
K X2

K ≥ m log2 m,

k ≥ k(h∗), m ≥ |m(h∗)| and k + s ≥ m > 1. After demonstrating that there ex-

ists such an example sequence we can apply [120, Lemma 14] to demonstrate the

proposition. Since the lower bound is in the form Ω(P+Q+R) which is equivalent to

Ω(max(P,Q,R)), we may treat P, Q and R, independently to prove the bound. Be-

fore we treat the individual cases, we give a straightforward result for a simplistic

hypothesis class.

Define Xd := [d] and Hd := {−1, 1}d (i.e., the set of functions that map [d] →

{−1, 1}). Observe that Ldim(Hd) = d, as an algorithm can force a mistake for every

component and then no more. Also, observe that if we define a kernel Kd(x, x′) :=

2[x = x′] − 1 over the domain Xd that Hd = H
([d])
Kd

, maxx∈[d] Kd(x, x) = 1 and that
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‖h‖2Kd
= d for all h ∈ Hd. Finally, note that if m = |Hd| then

∑
h∈Hd
‖h‖2Kd

X2
Kd

=

m log2 m.

We proceed by sketching an adversary for each of the three cases.

1. Case Γ is the max.

To force Γ mistakes, we choose K = Kd and set d = Γ/m and without loss

of generality assume that d is an integer and recall that k + s ≥ m. Since

Ldim(Hd) = d, an adversary may force d mistakes within a single task in

the first d trials. This strategy may be repeated k more times within a single

task thus forcing (k + 1)d mistakes. If k + 1 ≥ m, we are done. Otherwise,

the constraint k + s ≥ m implies that we may force d mistakes per task in

m − (k + 1) other tasks. Thus after md trials, md = Γ mistakes have been

forced while maintaining the condition m ≥ |m(h∗)|.

2. Case k log2 m is the max.

Set d = log2 m and without loss of generality assume d is positive integer.

Using Hd we force kd mistakes by first forcing d mistakes within a single

task then “switching” k−1 times forcing kd = k log2 m mistakes, while main-

taining the conditions m ≥ |m(h∗)| and k ≥ k(h∗).

3. Case s log2 m is the max.

Same instance as the above case, except we force d mistakes per task.

�

5.6.3 Proofs and Details for Section 5.2

For the reader’s convenience, we collect some standard well-known online learning

results or minor extensions thereof in this subsection.

Details for MW Bound

The algorithm and analysis corresponds essentially to the classic weighted majority

algorithm introduced in [19]. We first define some of the notation to be used in the

section. We define the component-wise multiplication as x�w := (x1w1, . . . , xnwn).
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If f : < → < and x ∈ <n then f (x) := ( f (x1), . . . , f (xn)). We denote the proba-

bility simplex as ∆H := {h ∈ [0, 1]H } ∩ {h :
∑

h∈H = 1} and set ∆n := ∆[n]. If v ∈ ∆H

then h ∼ v denotes that h is a random sample from the probability vector v over

the setH . We denote |Hfin| as n. We now introduce the MW algorithm and give the

corresponding regret.

Algorithm 5 MW Algorithm

Parameters: Learning rate η; finite hypothesis set {h1, . . . , hn} = Hfin ⊂ {−1, 1}X

Initialization: Initialize v1 = 1
n1n

For t = 1, . . . ,T
• Receive instance xt ∈ X.
• Set ht = (h1(xt) . . . hn(xt)) ∈ {−1, 1}n.
• Predict

it ∼ vt ; ŷt←hit
t .

• Receive label yt ∈ {−1, 1} .
• Update

`t ←
1
2
|ht − ŷt1|

wt+1 ← wt � exp (−η`t)

vt+1 ←
wt+1∑n

i=1 wt+1,i

Theorem 75. For Algorithm 5, setting η =
√

(2log n)/T

T∑
t=1

E[L01(yt, ŷt)] − L01(yt, h(xt)) ≤
√

2 log(n)T (5.36)

for any h ∈ Hfin.

Proof. Recalling that `t =
|ht−ŷt1|

2 , we have that vt · `t = E[L01(yt, ŷt)] and that

ei · `t = L01(yt, hi(xt)). In what follows, we will therefore bound vt · `t − e
i · `t. We

first prove the following “progress versus regret” inequality.

vt · `t − e
i · `t ≤

1
η

(
d(ei,vt) − d(ei,vt+1)

)
+
η

2

n∑
i=1

vt,i`
2
t,i. (5.37)

where d(u,v) :=
∑n

i=1 ui log( ui
vi

) is the relative entropy for u, v ∈ ∆n. Let Zt :=
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∑n
i=1 vt,i exp(−η`t,i). Observe that from the algorithm

d(ei,vt) − d(ei,vt+1) =

n∑
j=1

ei
j log

vt+1, j

vt, j

= −η

n∑
j=1

ei
j`t, j − log Zt

= −ηei · `t − log
n∑

i=1

vt,i exp(−η`t,i)

≥ −ηei · `t − log
n∑

i=1

vt,i(1 − η`t,i +
1
2
η2`2

t,i) (5.38)

= −ηei · `t − log(1 − ηvt · `t +
1
2
η2

n∑
i=1

vt,i`
2
t,i)

≥ η(vt · `t − e
i · `t) −

1
2
η2

n∑
i=1

vt,i`
2
t,i (5.39)

using inequalities e−x ≤ 1− x + x2

2 for x ≥ 0 and log(1 + x) ≤ x for (5.38) and (5.39)

respectively.

Summing over t and rearranging we have

m∑
t=1

(
vt · `t − e

i · `t

)
≤

1
η

(
d(ei,v1) − d(ei,vm+1)

)
+
η

2

T∑
t=1

n∑
i=1

vt,i`
2
t,i

≤
log n
η

+
η

2

T∑
t=1

n∑
i=1

vt,i`
2
t,i (5.40)

where (5.40) comes from noting that d(u,v1) ≤ log n, −d(u,vm+1) ≤ 0, and∑T
t=1

∑n
i=1 vt,i`

2
t,i ≤ T . Finally we substitute the value of η and obtain the theorem. �

Proof for Online Gradient Descent Regret Bound

In this section, we will prove expected regret bounds for online gradient descent [76]

for both the switching and non-switching cases. The proofs are adapted from the

material in [12, 89, 85, 121]. Recall that we wish to prove the following for the

non-switching case:

T∑
t=1

E[L01(yt, ŷt)] −
1 + λ

2
L01(yt, sign(h(xt))) ∈ O

(√
‖h‖2K X2

KT
)

(5.41)
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for all h ∈ H(x,λ)
K and X2

K := maxt∈[T ] K(xt, xt). For the switching case, we wish to

prove

T∑
t=1

E[L01(yt, ŷt)] −
1 + λ

2
L01(yt, sign(h(xt))) ∈ O

(√
k max

t
‖ht‖

2
K X2

KT
)

(5.42)

for all h ∈ H(x,λ)
K and X2

K := maxt∈[T ] K(xt, xt). For simplicity, we prove for an

arbitrary inner product 〈·, ·〉 space with induced norm ‖·‖. The RKHS setting reduces

to this setting by identifying x := K(x, ·), u := h, and 〈u,x〉 := h(x).

Algorithm 6 Randomized Constrained Online Gradient Descent Algorithm
Parameters: Learning rate η, radius R
Initialization: Initialize w1 = 0

For t = 1, . . . ,T
• Receive vector xt ∈ <

d.
• Predict

Yt ∼ Uniform(−1, 1) ; ȳt←〈wt,xt〉 ; ŷt←sign(ȳt − Yt) .

• Receive label yt ∈ {−1, 1} .
• If ȳtyt ≤ 1 then

wm
t ← wt + ηytxt

wt+1 ← PR(wm
t )

• Else wm
t ← wt ; wt+1 ← wt

In the following, we define the hinge loss (with margin 1) Lhi(y1, y2) = [1 −

y1y2]+ for y1, y2 ∈ <. We define zt := −ytxt[1−yt〈wt,xt〉 ≥ 0] ∈ ∇wLhi(yt, 〈w,xt〉),

where wt, xt and yt are as defined in Algorithm 6. We define PR(w) to be the

projection into the ball with radius R, so that

PR(w) =


w if ‖w‖ ≤ R

R w
‖w‖

otherwise .

We also present a lemma, used as a starting point for both the switching and non-

switching proofs.
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Lemma 76. For Algorithm 6 and any u lying in the convex set {u : ‖u‖ ≤ R},

〈wt − u, zt〉 ≤
1
2η

(
‖wt − u‖

2
− ‖wt+1 − u‖

2 + η2 ‖zt‖
2
)

Proof. Using the update rule of the algorithm, we have

∥∥∥wm
t − u

∥∥∥2
= ‖wt − ηzt − u‖

2

= ‖wt − u‖
2
− 2η〈wt − u, zt〉 + η2 ‖zt‖

2

Next note that ‖wt+1 − u‖
2
≤

∥∥∥wm
t − u

∥∥∥2
since wt+1 and u both live in the convex

set {u : ‖u‖ ≤ R}, giving

‖wt+1 − u‖
2
≤ ‖wt − u‖

2
− 2η〈wt − u, zt〉 + η2 ‖zt‖

2 .

Rearranging then results in the lemma. �

Non-switching bound

Lemma 77. For Algorithm 6, given X = maxt ‖xt‖, ‖u‖ ≤ U and η = U
X
√

T
we have

that
T∑

t=1

Lhi(yt, ȳt) − Lhi(yt, 〈u,xt〉) ≤
√

U2X2T

for any vector u.

Proof. Using the convexity of the hinge loss (with respect to its second argument),

we have

Lhi(yt, ȳt) − Lhi(yt, 〈u,xt〉) ≤ 〈wt − u, zt〉.

We may therefore proceed by bounding
∑T

t=1〈wt − u, zt〉. Starting with Lemma 76

and summing over t, we have

T∑
t=1

〈wt − u, zt〉 ≤
1
2η

‖w1 − u‖
2
− ‖wT+1 − u‖

2 + η2
T∑

t=1

‖zt‖
2


≤

1
2η

‖u‖2 + η2
T∑

t=1

‖zt‖
2

 (5.43)
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=
1
2η
‖u‖2 +

η

2

T∑
t=1

‖xt‖
2 [1 − yt〈wt,xt〉 ≥ 0]

≤
1
2η
‖u‖2 +

η

2

T∑
t=1

‖xt‖
2

≤
1
2η

U2 +
η

2
X2T

=
√

U2X2T

where Equation (5.43) results from the definition of w1. �

Theorem 78. For Algorithm 6, given X = maxt ‖xt‖, ‖u‖ ≤ U, η = U
X
√

T
,

T∑
t=1

E[L01(yt, ŷt)] −
1 + λ

2
L01(yt, sign(〈ut,xt〉)) ≤

1
2

√
U2X2T ,

for any vector u such that 1 ≤ |〈u,xt〉| ≤ λ for t = 1, . . . ,T .

Proof. The bound follows from Lemma 77, where we bound the hinge loss terms

as follows:

1.
∑T

t=1Lhi(yt, ȳt) ≥ 2
∑T

t=1 E[L01(yt, ŷt)] (see e.g. Lemma 23)

2. Lhi(yt, 〈u,xt〉) ≤ (1 + λ)L01(yt, sign(〈ut,xt〉)).

The second inequality can be proven as follows. We recall that Lhi(yt, 〈u,xt〉) =

[1 − yt〈u,xt〉]+. In the case that yt〈u,xt〉 > 0, we have that Lhi(yt, 〈u,xt〉) = 0

since |〈u,xt〉| ≥ 1. Otherwise, we have Lhi(yt, 〈u,xt〉) = [1 + |〈u,xt〉|]+ ≤ 1 + λ.

Combining the two cases, we have Lhi(yt, 〈u,xt〉) ≤ (1 + λ)L01(yt, sign(〈ut,xt〉)).

�

The bound for the non-switching case in (5.41) then follows by setting U =

||u||.
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Switching bound

Lemma 79. For Algorithm 6, given X = maxt ‖xt‖, {u1, . . .uT } ⊂ {u : ‖u‖ ≤ R},

η = U
X
√

T
and

√
‖uT ‖

2 + 2R
∑T−1

t=1 ‖ut+1 − ut‖ ≤ U, we have that

T∑
t=1

Lhi(yt, ȳt) − Lhi(yt, 〈ut,xt〉) ≤
√

U2X2T .

Proof. Using the convexity of the hinge loss (with respect to its second argument),

we have

Lhi(yt, ȳt) − Lhi(yt, 〈ut,xt〉) ≤ 〈wt − ut, zt〉.

We may therefore proceed by bounding
∑T

t=1〈wt − ut, zt〉. Starting with Lemma 76

and summing over t, we have

T∑
t=1

〈wt − ut, zt〉 ≤
1
2η

T∑
t=1

(
‖wt − ut‖

2
− ‖wt+1 − ut‖

2 + η2 ‖zt‖
2
)

(5.44)

To transform the right hand side of the above equation into a telescoping sum, we

add and subtract the term At = ‖wt+1 − ut‖
2
− ‖wt+1 − ut+1‖

2, giving

T∑
t=1

‖wt − ut‖
2
− ‖wt+1 − ut‖

2 =

T∑
t=1

‖wt − ut‖
2
− ‖wt+1 − ut+1‖

2
− At

= ‖u1‖
2
− ‖wT+1 − uT+1‖

2
−

T∑
t=1

(‖wt+1 − ut‖
2
− ‖wt+1 − ut+1‖

2)

= ‖u1‖
2
− ‖wT+1 − uT ‖

2
−

T−1∑
t=1

(‖wt+1 − ut‖
2
− ‖wt+1 − ut+1‖

2)

(5.45)

≤ ‖u1‖
2
−

T−1∑
t=1

(‖wt+1 − ut‖
2
− ‖wt+1 − ut+1‖

2),

(5.46)

where Equation (5.45) comes from evaluating t = T in the summation.



Chapter 5. Online Multitask Learning with Long-Term Memory 152

Computing the sum, we obtain

T−1∑
t=1

‖wt+1 − ut‖
2
− ‖wt+1 − ut+1‖

2 =

T−1∑
t=1

‖ut‖
2
− ‖ut+1‖

2
− 2〈wt+1, (ut − ut+1)〉

≥

T−1∑
t=1

‖ut‖
2
− ‖ut+1‖

2
− 2 ‖wt+1‖ ‖ut − ut+1‖

≥ ‖u1‖
2
− ‖uT ‖

2
− 2R

T−1∑
t=1

‖ut − ut+1‖ (5.47)

where Equation (5.47) comes from ‖wt+1‖ ≤ R, a consequence of the projection

step. Substituting this back into Equations (5.44) and (5.46), we then obtain

T∑
t=1

〈wt − ut, zt〉 ≤
1
2η

‖uT ‖
2 + 2R

T−1∑
t=1

‖ut − ut+1‖ +

T∑
t=1

η2 ‖zt‖
2


≤

1
2η

U2 +
η

2
X2T.

=
√

U2X2T ,

where the second inequality comes from the definitions of zt, U and X, and the

equality comes from the definition of η. �

Theorem 80. For Algorithm 6, given X = maxt ‖xt‖, {u1, . . .uT } ⊂ {u : ‖u‖ ≤ R},

and
√
‖uT ‖

2 + 2R
∑T−1

t=1 ‖ut+1 − ut‖ ≤ U, and η = U
X
√

T
we have that

T∑
t=1

E[L01(yt, ŷt)] −
1 + λ

2
L01(yt, sign(〈ut,xt〉)) ≤

1
2

√
U2X2T ,

for any sequence of vectors u1, . . .uT such that 1 ≤ |〈ut,xt〉| ≤ λ for t =

1, . . . ,T .

Proof. The bound follows from Lemma 79, where we bound the hinge loss terms

as follows:

1.
∑T

t=1Lhi(yt, ȳt) ≥ 2
∑T

t=1 E[L01(yt, ŷt)] (see e.g. Lemma 23)

2. Lhi(yt, 〈u,xt〉) ≤ (1 + λ)L01(yt, sign(〈ut,xt〉)) (see the proof for Theorem 78

for more details).
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�

The bound for the switching case then follows from Theorem 80 by setting

R = maxt ||ut||, and U =
√

(4k + 1) maxt ||ut||
2, noting that

‖uT ‖
2 + 2R

T−1∑
t=1

‖ut+1 − ut‖ ≤ ‖uT ‖
2 + 2 max

t
||ut|| (2k max

t
||ut||)

= ‖uT ‖
2 + 4k max

t
||ut||

2

≤ (4k + 1) max
t
||ut||

2

= U2.

This gives us a regret bound of

T∑
t=1

E[L01(yt, ŷt)] −
1 + λ

2
L01(yt, 〈ut,xt〉) ≤

1
2

√
(4k + 1) max

t
||ut||

2X2T .

Using the inequality
√

a + b ≤
√

a+
√

b for positive scalars a and b, we then obtain

the desired scaling.



Chapter 6
Conclusion

In Chapter 3, we provide efficient algorithms for online matrix completion with side

information. We consider two possible settings for how the side information may

be revealed. In the transductive setting, the side information of all the rows and

columns is provided as two positive semi-definite matrices, whereas in the induc-

tive setting, we are given two kernels, and the side information is revealed in an

online fashion. The algorithms that we provide are instances of the MEG and MGD

algorithms. For the MEG algorithm, we prove mistake bounds of the form Õ(D
γ2 ),

where D measures the quality of the side information, and γ2 is the margin com-

plexity when exactly tuned. The MGD algorithm has an inferior mistake bound of

O(D
2

γ2 ), but a superior time complexity. The prediction of the MGD algorithm can

easily be shown to have a dual form; depending on the embedding, it is equivalent

to the kernel perceptron prediction with the kernel being the product or sum squared

of the row and column kernels. We observe in the discussion of Chapter 4 that the

MGD algorithm can be naturally extended to the tensor case, whereas this remains

an open problem for the MEG algorithm.

In Chapter 4, we apply our bounds on the hypothesis class of biclustered ma-

trices. For these matrices, our best mistake bounds in the transductive setting is of

Õ(k`), which is tight up to logarithmic factors. In the inductive setting however, our

best mistake bounds are Õ(min(k, `) max(k2, `2)). It remains to be seen whether this

gap can be resolved. In Chapter 5, we introduce the novel setting of online multi-
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task learning with long-term memory. We frame this problem as a special case of

completing a biclustered matrix, and propose to solve this using our inductive algo-

rithm for matrix completion up to a few redefinitions. The applications that we have

considered so far are based on considering the hypothesis class of biclustered ma-

trices. However, the bounds that we prove in Chapter 3 are completely general, and

other research directions include applying our bounds to other hypothesis classes of

matrices, which could give rise to other applications.

In addition to our theoretical results, we perform experiments where we apply

a sketching method on the transductive algorithm in Chapter 4 and decay methods

in Chapter 5. Although these heuristics to reduce the time complexity seem to work

to varying degrees, theoretical guarantees are still lacking. Having interpretable

bounds for these heuristics would lend weight to large scale applications, for which

the otherwise cubic and quartic runtimes may become prohibitive. The experiments

that we include in the thesis are done on synthetic data. To further demonstrate the

applicability of the algorithms, experiments on real world data can be considered in

the future.
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