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Abstract

Cancer diagnosis is notoriously di�cult, evident in the inter-rater variability between

histopathologists classifying cancerous sub-types. Although there are many cancer

pathologies, they have in common that earlier diagnosis would maximise treatment

potential. To reduce this variability and expedite diagnosis, there has been a drive to

arm histopathologists with additional tools. One such tool is Raman spectroscopy,

which has demonstrated potential in distinguishing between various cancer types.

However, Raman data has high dimensionality and often contains artefacts and

together with challenges inherent to medical data, classification attempts can be

frustrated. Deep learning has recently emerged with the promise of unlocking many

complex datasets, but it is not clear how this modelling paradigm can best exploit

Raman data for cancer diagnosis.

Three Raman oncology datasets (from ovarian, colonic and oesophageal tissue)

were used to examine various methodological challenges to machine learning applied

to Raman data, in conjunction with a thorough review of the recent literature. The

performance of each dataset is assessed with two traditional and one deep learning

models. A technique is then applied to the deep learning model to aid interpretability

and relate biochemical antecedents to disease classes. In addition, a clinical problem

for each dataset was addressed, including the transferability of models developed

using multi-centre Raman data taken di�erent on spectrometers of the same make.

Many subtleties of data processing were found to be important to the realistic

assessment of a machine learning models. In particular, appropriate cross-validation

during hyperparameter selection, splitting data into training and test sets according

to the inherent structure of biomedical data and addressing the number of samples
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per disease class are all found to be important factors. Additionally, it was found that

instrument correction was not needed to ensure system transferability if Raman data

is collected with a common protocol on spectrometers of the same make.



Impact Statement

The findings in this thesis can be split into two categories: those related to the

methodological rigour of conducting machine learning for cancer diagnosis using

Raman spectroscopy, and clinical findings regarding the application of the technique

to specific oncology tasks identified by collaborating histopathologists.

Regarding methodological rigour, this thesis has confirmed findings in the

literature that without nested cross-validation the accuracy of models can be inflated

by 5-10%, by over-fitting model hyperparameters. Similarly, the method of splitting

data during model training was found to significantly impact the estimated accuracy

of models, with inappropriate methods inflating accuracy by as much as 10-20%. It

also finds that baseline correction during pre-processing does not necessarily increase

the performance of models, and may even obscure clinically relevant information and

complicate cross-validation by introducing more hyperparameters. Together with a

systematic review of the related recent literature this thesis contributes to a growing

movement within the medical Raman community to improve methodological rigour.

There are three main clinical findings.The first is that the technique can be used

to distinguish between ovarian samples with disparate surgical outcomes. Although

the results are not outstanding, they are competitive with genetic techniques and

data from this thesis will be used in a grant application with the collaborating

histopathologist to further investigate the applicability of Raman spectroscopy to this

clinical problem.

Other findings in this thesis have demonstrated that, in principle, microsatellite

instability can be detected in colon samples by Raman spectroscopy, and that potential

biochemical antecedents can be identified. Despite a low sample size, these findings
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are competitive with current screening tools. These results are in the process of

being published. This paves the way for larger studies to confirm these findings, and

explore the potential of the technique to compete with existing diagnostic tools.

Finally, findings in this thesis confirm that a model developed on data collected

from one spectrometer can be applied to data taken on another spectrometer of the

same make, so long as a common protocol is followed. System transferability is a

particular hurdle for any clinical applications, and these findings show one possible

pathway to providing clinical consistency. These results are likely to be of interest to

spectroscopists and clinicians alike and are being prepared for publication.

Finally, this paper establishes that deep learning models can be competitive with

traditional machine learning models in this domain despite low sample sizes.
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Chapter 1

Background

“The history of science is rich in

example of the fruitfulness of

bringing two sets of techniques,

two sets of ideas, developed in

separate contexts for the pursuit

of new truth, into touch with one

another. ”
J. Robert Oppenheimer

1.1 Clinical need for improved cancer diagnostics
In 2020 there were an estimated 19.3 million cancer diagnoses and 10 million cancer

deaths globally [1]. The number of new cases in 2040 is expected to increase to 28.4

million, led primarily by low income countries increasing life expectancies [1]. The

mortality rate will depend upon diagnostic and treatment regimes. Early diagnosis is

important as the stage of disease can have a significant impact upon survival, though

this is dependent upon the cancer [2]. For instance, in the UK, the one-year survival

rate for stage one colorectal cancer (CRC) is 97.7%, falling to 43.9% at stage four.

The corresponding rates for prostate cancer are ~100% falling to 87.6% [3].

Notable cancers include ovarian cancer which is particularly sensitive to early

detection with a 5-year survival rate of 70% for stage 2 dropping to 20% for stages

3-4, in which the disease has spread beyond the pelvis [4]. Only 20% of such
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cancers are diagnosed before stage 3. Unfortunately, the early detection of ovarian

cancer remains elusive and a multimodal approach utilising several biomarkers

combined with properly calibrated algorithmic models has been advocated [4].

Similarly, oesophageal cancer survival greatly benefits from early detection, with

5-year survival rates of 75-90%. However, most oesophageal cancers are detected at

a late stage when the 5-year survival rate is less than 20% [5]. This is compounded

by questions regarding the accuracy of endoscopy used for early diagnosis [6].

Improvements in colorectal cancer survival are in large part due to large screening

e�orts in Western countries, in which adenomatous polyps are identified and removed

during endoscopy and are then assessed with standard histological techniques [7].

The success of such screening programs demonstrates the strength of early diagnosis.

Indeed, its importance has been recognised by the UK government with targets that

by 2028 75% of cancers will be diagnosed at an early stage (stage one or two) and for

55,000 more people to survive cancer for five years or longer [8].

In addition to the imperative to expedite cancer diagnosis, there is also a need

to improve the accuracy of diagnoses. An element of subjectivity has been noted

in many traditional cancer diagnosis pipelines [9, 10, 11]. To illustrate why cancer

diagnosis is so fraught with subjectivity, we first need to understand the diagnosis

pathway. This will vary between cancers, but for solid tumours it will be broadly

similar. The CRC pathway can be used to illustrate the diagnosis pathway and

quantify the degree of variability.

1.1.1 Colorectal cancer diagnosis

The vast majority of CRC is diagnosed by endoscopic biopsy or polypectomy [12].

A provisional diagnosis will be made by the endoscopist who will then remove

any suspicious lesions and send them for histopathology. These samples will be

processed soon after being removed from the patient. This begins with fixation

which prevents autolysis and bacterial attack of the sample. A ubiquitous fixative

is formalin which contains formaldehyde and acts by cross-linking proteins. The
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sample is then embedded, often in para�n wax, to preserve tissue morphology and

to give the tissue support during sectioning, where thin slices of the sample are

taken. This process is known as formalin fixation and para�n embedding (FFPE).

The slices are then mounted onto a slide and stained with appropriate dyes, typically

haematoxylin and eosin (H&E), ready for inspection under a microscope. The

histopathologist will distinguish various morphological features to determine whether

any changes are benign or malignant [13]. For instance, the extent of any villous

component and the degree of dysplasia will be assessed. A villous component is a

leaf-like projection lined by dysplastic glandular epithelium and can be categorised

as villous, tubulovillous or tubular depending on the architecture of the sample.

Dysplasia refers to the degree of cell di�erentiation; i.e how identifiable the cells

are. For instance the NHS Bowel Cancer Screening Programme (BCSP) defines

a well di�erentiated adenocarcinoma as >95% of a tumour forming a gland, with

moderately di�erentiated samples 50-95% and poorly di�erentiated <50% [12]. Both

have been found to be independent predictors of advanced neoplasms [14]. However,

the use of such biomarkers in guiding patient management is contentious with

some pathologists arguing that the assessment of villous components and dysplasia

is too subjective to be clinically reliable [13]. Protocols have been developed to

ameliorate the subjectivity inherent in this method. In particular two-tier systems

to categorise dysplasia, in which well and moderately di�erentiated samples are

classified as low grade while poorly di�erentiated samples are classed as high

grade, have been shown to improve inter-rater agreement [15, 16, 17]. Attempts

to standardise approaches across international borders have also been made, most

notably the revised Vienna Classification system. Despite such attempts subjectivity

remains a prominent threat to objective patient management decisions. There are

many published studies quantifying the degree of subjectivity, but this evidence has

yet to be statistically synthesised to establish a thorough understanding of the inter

and intra-rater variability in pathologists’ assessment of colorectal samples. To this

end a systematic literature review and meta-analysis was performed to establish the

current state of knowledge.
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1.2 Inter-rater variability in CRC diagnosis

1.2.1 Systematic review and meta-analysis
A meta-analysis conducted on studies collected by a systematic review is considered

one of the best forms of evidence available in healthcare [18]. A systematic review

itself involves identifying and retrieving published studies in a systematic and

transparent manner such that all the available evidence on a subject is collected in

a reproducible manner. This literature is then assessed for methodological quality

to ensure biased studies are not included. The remaining studies are then assessed

for their clinical, methodological and statistical techniques and if they are similar

enough can be statistically combined to find a more accurate e�ect estimate with far

narrower confidence intervals than any single study. To this end a systematic search

and meta-analysis was performed with the intention of quantifying the variability

of histopathological diagnosis of potentially cancerous colon samples. Ideally this

would be assessed by comparing diagnoses with the known truth, generating, for

instance, sensitivity and specificity statistics. Unfortunately, pathology is the gold

standard for diagnosis and so is as close to the ground truth as current practices allow.

However, even a cursory search of the literature reveals that histopathologists will

disagree with each other and even themselves, which suggests there is some degree

of error to this gold standard. This inter and intra-rater variability serves as a proxy

marker for the accuracy of histopathological diagnosis.

1.2.2 Methods
Medline and EMBASE were searched for English language articles from 1980 to

12th December 2017. Identifying diagnostic accuracy studies proves more di�cult

than identifying randomised trials due to the inconsistent use of keyterms [19].

Therefore broad keywords were selected based on clinical expertise, known literature
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and published recommendations for searching medical databases [20, 21, 22]. The

following keywords were combined with boolean the operators AND/OR: colorectal$

OR colon$ OR CRC AND inter$ OR intra$ OR variability OR reliability, where "$"

allows for any subsequent character. An initial yield of 48701 articles was refined

by restricting keyword searches to the title. 75 abstracts were retrieved for closer

scrutiny of which 27 warranted full text screening. The reference lists of these studies

were searched for additional studies that were potentially relevent. The retrieved

studies were included in the review if they sought to evaluate the reliability of any

histological outcome of potentially cancerous or pre-cancerous colorectal samples

as determined by two or more histopathologists. The studies were then assessed for

quality using the The Quality Appraisal of Reliability Studies (QAREL) guidelines

[23]; explicitly developed to assess the rigour of diagnostic reliability reports. Studies

focusing exclusively on assessing serrated polyps were excluded for two reasons. At

the time of conducting this review, there was a lack of consensus on their definition,

nomenclature and pathogenesis amongst pathologists [24] which may skew results.

Also, serrated polyps were thought a relatively rare occurrence, with a prevalence

of approximately 0.1% [25]. Kappa statistics, used to quantify inter and intra-rater

variability, are particularly sensitive to rare occurrences and may return low values

even when there is a high proportion of agreement among observers. However,

evidence emerging after the completion of this review suggests that serrated polyps

are under-diagnosed and their role in CRC pathogenesis under-recognised [26].

The data extracted from each identified study included the year and country

of the study, the number of samples assessed, the number of pathologists and their

expertise, the reported kappa statistics and their standard errors, the histological

outcome assessed and what guidelines, if any, were followed. For any meta-analysis it

is important that the studies are comparing similar traits, therefore for data synthesis

only results of similar outcomes were extracted. These were the inter-observer

variability of the determination of hyperplastic vs adenomatous samples, polyp

architecture type, degree of dysplasia and completeness of excision (henceforth these

will be referred to collectively as ’outcomes’). However, there were insu�cient
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studies looking at this latter outcome so these too were not included in the synthesis.

Many studies reported pairwise kappa statistics between pathologists. These were

combined by each study under a fixed-e�ects model.

Kappa Statistics

Cohen’s Kappa statistic, , is a common measure of inter-rater variability in

healthcare assessments. It measures the degree of agreement between two raters on a

particular outcome above that which would be expected by chance alone. It is given

by

 =
po� pe

1� pe

(1.1)

where po is the proportion of observed agreement between two raters and pe

is the proportion of agreement expected by chance alone (similar to chi-squared

contingency tables). If there is no agreement between raters then  = 0 while perfect

agreement is given by  = 1 and perfect disagreement by  = �1.

There are extensions to Cohen’s kappa to include the agreement of two or more

raters and to give more weight to disagreements separated by more than one category.

For instance, the classification of mild vs severe dysplasia could be considered more

of a disagreement than mild vs moderate dysplasia.

1.2.3 Results

Appendix A summarises the studies identified for synthesis [17, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36]. Four studies were not included as they did not report or contain

su�cient information to construct standard errors and the authors did not reply to

requests for this data [37, 38, 39, 40].

An overall kappa of 0.52 (95% CI 0.45 - 0.59) was observed under a fixed-e�ects

model. However, this was with a significant degree of heterogeneity (Q = 1992.0, p <
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0.0001, I2 = 97.4%), indicating that the studies were too dissimilar to meaningfully

combine their statistical estimates, so a mixed-e�ects model was preferred with the

outcomes, speciality status of pathologists and whether any guidelines were followed

as moderators. Only three studies used weighted  estimates [27, 39, 40]. Pooling

weighted and unweighted  estimates is a potential statistical source of heterogeneity,

therefore unweighted estimates were used even when the potentially more realistic

weighted estimates were available.

Outcomes

Figure 1.1 shows a forest plot divided by the type of outcome assessed. The

subgroups have less heterogeneity than the full model, suggesting some between-

study variance is attributable to exactly what outcome pathologists are assessing in

a sample. The plot suggests that pathologists often agree with one another when

assessing whether a sample is hyperplastic or adenomatous  =0.80 (95% CI 0.68 -

0.93). However, they are not so consistent when assessing the architectural type or

grade of dysplasia of a sample with  scores of 0.46 (95% CI 0.40 - 0.52) and 0.45

(95% CI 0.38 - 0.52) respectively. Though reduced there remains a considerable

amount of heterogeneity between studies, particularly the grade and type. Likely

sources include the fact that di�erent numbers of categories were used in some of

the studies (e.g. grade ranges from 2-5 categories).

Specialist Assessment

Figure 1.2 shows a forest plot divided by whether an assessment was undertaken

by a Gastrointestinal (GI) specialist pathologist or by a non-specialist (or a specialist

from another field). The synthesis shows that while there is a slight improvement

between agreement among specialists compared to non-specialists with  values

of 0.56 (95% CI 0.47 - 0.65) and 0.47 (95% CI 0.37 - 0.57) respectively, this

di�erence is not statistically significant, evident in overlapping confidence intervals
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Figure 1.1: Forest plot divided by the type of outcome assessed, distinguishing: architecture
type, grade of dysplasia or adenomatous vs hyperplastic samples

of the  estimates. However, there is still a significant degree of heterogeneity

within the reduced models which is obscuring interpretation. Some of this residual

heterogeneity may be due to di�erences between GI specialists: varying years

of experience, di�erent definitions of a specialist in di�erent countries and some
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specialists being particularly interested with the assessment of colorectal polyps

while others may focus on the upper GI tract. While this heterogeneity persists it is

not possible to conclude that GI specialists agree with one another more often than

non-specialists.

Figure 1.2: Forest plot divided by whether the pathologists specialised in the tissue type
being assessed.
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Guidelines

Figure 1.3 shows a forest plot divided by whether an assessment was undertaken

following formal guidelines. The  statistic for those following guidelines is 0.53

(0.45 - 0.62) while for those not following any guidelines is 0.49 (0.37 - 0.60). Again,

though there is a slight improvement when guidelines are followed it is not statistically

significant but this may be obscured by the high degree of heterogeneity. In particular,

many of the guidelines which were followed were di�erent, varying from WHO

guidelines, Vienna classification guidelines and older classification systems. Also,

some studies used one guideline for the assessment of one outcome, and a di�erent

guideline for another outcome. Again, with such heterogeneity within the studies, it

is not possible to conclude that guidelines in general improve agreement between

pathologists.

1.2.3.1 Discussion

Sources of heterogeneity not discussed above are likely to include sample preparation

methods, di�erences in sample composition and regional variations in practice.

However, there are insu�cient studies to further sub-divide the data to explore these

sources. The high degree of heterogeneity is perhaps itself indicative of that which

has been noted extensively in the literature: the interpretation of villous features and

the grade of dysplasia is not only subjective, but does not have shared demarcations

on what is a spectrum, or even the most basic definitions [13]. For instance, villous

adenomas have been defined as ’leaf-like projections lined by dysplastic glandular

epithelium (which) comprise more than 80% of the luminal surface’ [41]: exactly

what constitutes a leaf is undefined.

There is, however, little evidence of publication bias. The funnel plot of the

mixed-e�ects model has an even spread of estimates around the residual value, though

it does show that large studies, which would have a small standard error, are lacking
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Figure 1.3

(figure 1.4). This demonstrates that the community is engaging with the problem

with unbiased data.

Clinical Implications
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Figure 1.4: Funnel plot of the mixed e�ects model: an even spread indicates no publication
bias

A kappa value > 0.8 is usually interpreted as meaning that the raters are in

’substantial’ agreement [42]. We may then conclude that in discerning hyperplastic

from adenomatous samples, pathologists often agree with one another. Patient

management for these two findings di�ers significantly with the former requiring

no special follow-up and the latter at least a follow-up colonoscopy in 3 years in the

most benign case, depending on other findings such as grade or architectural type.

It is di�cult to gauge the impact of variations in pathology diagnosis on patient

management in terms of the proportion that incorrectly miss treatment or surveillance,

or how many unnecessarily undergo such management. However, interpreting the

 statistic as a form of correlation coe�cient we may approximate the coe�cient

of determination by squaring , which in this context is a measure of the variation

in the observations due to the raters. Taking the overall estimate for pathologists’

agreement,  = 0.52, then we may approximate that 27% of the variation in pathology

diagnosis is due to the pathologist.

In addition to potential di�erences in clinical management there are also

implications when assessing new diagnostic procedures. Any novel diagnostic test
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will have to be compared to the current gold-standard of clinical pathology: it will

be prudent to bear in mind that the gold-standard itself is only moderately reliable.

Histopathologists enthusiastically acknowledge the problem of subjectivity and

it is a frequent topic of debate amongst themselves and their journal editorials. It

is unsurprising then that many seek additional means to make their decisions more

objective. Spectral histopathology (SHP) is one such attempt, and refers to any

methodology that employs spectroscopy to determine the disease status, or class, of

a sample. One type of SHP which is particularly popular is Raman spectroscopy.

1.3 Raman spectroscopy

1.3.1 Introduction

RS is one of several types of spectroscopy which may augment medical diagnostics.

RS shares some advantages with techniques such as infrared spectroscopy (IRS),

both being means of acquiring label-free biochemical information of tissue. The non-

destructive nature of these techniques make them amenable to in vivo applications.

RS has far greater spatial resolution than IRS, which could lead to more accurate

predictions, although whether this is an advantage depends on the application. For

instance, the high spatial resolution maps RS can acquire take a considerable amount

of time, making infrared more suitable for certain time critical scenarios. This is

compounded by the Raman signal being weak compared to the absorption signals of

IRS. A significant advantage of RS over IRS is its relative transparency to water, which

complicates the analysis of IRS [43]. These techniques are sometimes contrasted

with mass spectroscopy (MS). Although this technique has the advantage of providing

quantitative information and has already found clinical use [44], its destructive nature

and requirement for particular sample preparation limits its applicability for clinical

tasks [45]. This very brief overview serves to illustrate that no one technique is better

than another, but rather the strengths and weaknesses of each must be weighed in the

context of a particular clinical need.
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RS has long been considered a technology that could help transform biomedical

imaging. Since Feld [46] in 1995, the potential of RS to diagnose various diseases

has been explored. There are a number of factors which make RS suitable for clinical

use. It does not require the ’labelling’ of samples, which in this context means no

contrast agents or fluorescent tags are required, allowing for a smooth integration

into the clinical workflow and fewer potential regulatory barriers. It can be used

on either in vitro or in vivo tissue. Fast acquisition times are essential for the latter

application which have been demonstrated, for instance, by teams looking at breast

tumour surgical margins [47] and brain tumours [48]. It is hoped that it could also

detect sub-clinical changes in a tissue, providing clinical teams with information

hitherto absent in patient management decisions and perhaps even provide another

platform for personalised medicine. However, the technology has yet to become an

established adjunct to the histopathologist’s arsenal. Barriers include the Raman

signal being overwhelmed by autofluorescence, reducing the signal-to-noise ratio

(SNR) below useful levels and diagnostic spectral information being packed inside a

dense data set [49]. Technological solutions to this problem are often obstructive to

clinical translation, such as increasing acquisition times (which could burn biological

samples) and more sophisticated, and hence expensive, instruments. Computational

solutions are being explored to optimise the extraction of information either for the

purposes of classification or to identify specific biomarkers of disease. Bearing in

mind the promise of RS for clinical applications and the inherent limitations of the

technique, it is prudent to have an understanding of the physical basis of Raman

scattering and the instrumentation used to acquire such data.

1.3.2 Physical basis of Raman scattering

Blue Seas Thinking

In 1921, during a sea voyage from Europe to India, C.V. Raman noted ’the

wonderful blue opalescence of the Mediterranean Sea’ and asked why it was this

colour [50]. The received wisdom at the time, still found in some textbooks and
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online resources, was that the sea simply reflected the blue of the sky. In a series of

follow up experiments, inelascatic light scattering was first observed, later named the

Raman e�ect. Ultimately the colour of the sea is not due to the Raman e�ect, but

rather the preferential absorption of visible wavelengths other than blue. However,

the ’blue seas thinking’ of C.V. Raman led him to become the first Indian to win a

Nobel prize in physics (in 1930). The Raman e�ect can be understood in terms of

classical or of quantum physics, both of which have advantages and disadvantages.

Classical Theory

The classical description of Raman scattering proceeds from the polarisation of

a molecule by the oscillating electric field of incident light. This induces a dipole in

a molecule which then scatters the incident light. Rayleigh scattering occurs when

no energy is exchanged from the vibrations in the molecule: hence the scattered light

is the same colour as when incident. Raman scattering occurs when energy is either

lost or gained from a molecular vibration and transferred to the outgoing photon,

thus creating a shift in wavelength. To understand this quantitatively consider the

relationship between the induced dipole, P, the polarisability of the molecule, ↵, and

the electric field, E:

P = ↵E (1.2)

where the electric field is given by

E = E0cos2⇡⌫0t (1.3)

Here, E0 refers to the amplitude (or intensity) of the light, ⌫0 its frequency and t

time. Combining these two equations:

P = ↵E0cos2⇡⌫0t (1.4)

↵ is dependent upon the positions of the nuclei in the molecule. A molecule
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with N atoms has 3N degrees of freedom (i.e. 3 spatial dimensions), of which 3N �6

result in vibrations (or 3N �5 for a linear molecule). A thorough understanding of

this requires group theory: however, in the simplest case of a diatomic molecule with

a single normal coordinate, Q1 we can express ↵ as the series expansion:

↵ = ↵0+
✓ @↵
@Q1

◆

0
+ ... (1.5)

The position of the nucleus is time dependent as the molecule vibrates with a

frequency of ⌫1:

Q1 =Q
0
1cos2⇡⌫1t (1.6)

where Q
0
1 is the maximum vibrational amplitude. Substituting this into equation

1.4 and taking the first order approximation of the expansion this becomes:

P =
✓
↵0+

✓ @↵
@Q1

◆

0
Q1

◆
E0cos2⇡⌫0t =

✓
↵0+

✓ @↵
@Q1

◆

0
Q

0
1cos2⇡⌫1t

◆
E0cos2⇡⌫0t

(1.7)

Multiplying out the terms and using the trigonometric identity cos✓cos� =

1
2
�
cos(✓ +�)+ cos(✓ ��)

�
, and using colours to track parts of the equation which

will later be pertinent:

P = ↵0E0cos2⇡⌫0t +
1
2

E0Q
0
1

✓ @↵
@Q1

◆

0

✓
cos2⇡t(⌫0+ ⌫1)+ cos2⇡t(⌫0� ⌫1)

◆
(1.8)

From this derivation we see that classical theory predicts three basic types of

light scattering depending on the induced dipole moment, P, oscillating at frequency

⌫1. The ↵0 term given in green is light scattered at an unshifted frequency. This

is Rayleigh scattering. If
✓
@↵
@Q1

◆

0
, 0, that is if the polarisability of the molecule

changes with respect to the normal mode Q1 then we get two additional terms, in red

and blue, both of which describe Raman scattering. Hence we see that there are two

forms of Raman scattering. Anti-Stokes Raman scattering occurs when the frequency
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of the scattered light is shifted higher (⌫0+ ⌫1). Stokes Raman scattering occurs

when the frequency is shifted lower (⌫0� ⌫1). Anti-Stokes scattering can only occur

when the molecule has su�cient energy to transfer to the scattered light by already

being in a higher state of excitation. The population of molecules in such higher

states is dependent upon the temperature of the molecule and follows a Boltzmann

distribution. In samples at room temperature there are typically not many excited

molecules and so Stokes scattering usually dominates anti-Stokes scattering [51].

The above demonstrates that Raman scattering is dependent upon the vibrational

frequency, ⌫1, of the molecule. This in turn is dependent upon the mass of the atoms

in the molecule and the bond strength between them. Again, taking the simplified

diatomic molecule we may model the vibrational frequency by Hooke’s law, whence:

⌫1 =
1

2⇡C

s
K

µ
(1.9)

where C is the speed of light, K is the force constant between the atoms and µ

is the reduced mass of the two atoms a and b:

µ =
mamb

ma +mb

(1.10)

Hence we see that, all else being equal, molecules with a lower reduced mass

will confer a greater change in vibrational frequency to a Raman scattered photon.

Thus each unique diatomic molecule will have a unique Raman signature making it

theoretically possible to identify the molecule from its scattered light. However, as

we shall see, there are a number of impediments to interpreting the nature of Raman

scattered light.

Quantum Theory

If we consider light in its particle form then a source of light can be thought of

as creating a stream of photons, each of which has energy of h⌫0, where h is Planck’s

constant. When a photon collides with a molecule it may scatter with the same
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energy: an elastic collision or Rayleigh scattering. Occasionally though an inelastic

collision occurs where the scattered photon has gained or lost energy (see figure

1.5.): Raman scattering. This occurs in accordance with quantum selection rules,

where the incident photon causes the molecule to briefly jump to a higher energy

state, known as a virtual state, before relaxing to a permissible lower energy state.

This di�ers from infrared spectroscopy, another type of vibrational spectroscopy,

which is dependent upon the absorption, rather than the scattering, of photons.

The induced electric dipole moment from initial state i to the final state j can be

given by:

Pi j =

Z
 ⇤

i
µ j d⌧ (1.11)

where  ⇤
i

and  j are the respective time-dependent wave functions. By

considering the transition probabilities from various initial and final states it should

be possible to show why Raman scattering is so much weaker than Rayleigh scattering,

in which the initial and final state are the same: i = j. However, an initial search of

the Raman physics literature failed to find such a theoretical derivation, though it has

certainly been empirically demonstrated [51].

1.3.3 General Raman spectrometer description

Medical applications were made possible in the 1970’s when Raman spectroscopy

was coupled with microscopy, sometimes referred to as Raman biospectroscopy or

microspectroscopy. A schematic of a typical Raman instrument is shown in figure

1.6. Briefly, laser light is focused upon a sample of interest. This light then scatters,

as described above. Rayleigh scattered light is filtered out and the remaining light is

separated into its composite frequencies. When considering Raman instrumentation

(and its outputs) it is conventional to speak in terms of wavelengths, � , the inverse of

frequencies (� = C

⌫ ). These di�erent wavelength photons are resolved into a spectrum

using a grating and the number of photons within a narrow band of wavelengths
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Figure 1.5: Jablonski diagram of Raman scattering: Image from
https://commons.wikimedia.orgwikiFile:Raman_energy_levels.svg

counted, resulting in a spectrum such as figure 1.7. It will be important later to note

that the instrument typically counts an electric charge induced by the photons, so

electrons are what are actually counted. There are four major components to a Raman

spectrometer: an excitation source, a sample illumination and collection system, a

wavelength selector and a detection and processing system.

Excitation Source

A laser provides an intense and monochromatic source of light. This ensures that

the Raman e�ect is maximised and Rayleigh scattered photons can be distinguished

and removed. A typical Raman spectrometer for biomedical applications will deploy

a diode laser. Although the magnitude of the Raman wavelength shift is independent

of the incident wavelength, there are a number of other considerations to take into

account when determining the optimum wavelength of the laser. The intensity
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Figure 1.6: Schematic of a Raman micro-spectrometer. Note that scattered light is
typically collected back through the objective lens but is shown here as a
separate geometry for clarity. Image from http://www.chem.umd.edu/wp-
content/uploads/2014/01/RamanSpectroscopy.jpg

of Raman scattering is dependent upon the incident wavelength by ��4, hence an

infrared (IR) laser gives less intense scattering than visible light lasers. Unfortunately,

it is not simply the case that a low wavelength laser gives the best Raman spectra;

there are additional factors which must be taken into account as we shall later see.

Spatial resolution is also a consideration in micro-spectroscopy. The laser spot

diameter (i.e. the area irradiated by a laser) is related to the laser wavelength and

the Numerical Aperture (NA) of the objective lens by 1.22 �
N A

. Hence for a given

NA, the greater the laser wavelength the greater the spot diameter and the less the

spatial resolution. However, in biological materials one needs to also consider the

simultaneous generation of a fluorescence signal which can overwhelm any Raman

signal. Typically longer excitation wavelengths suppress this fluorescence signal.

Near IR (NIR) lasers are currently popular as they provide a reasonable trade-o�

between these factors, but as we shall later see, the fluorescence problem persists.
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Sample Illumination

As Raman scattering is a weak process, the laser should be properly focused

and the scattered light e�ciently collected to maximise the Raman signal. After the

laser light has interacted with the sample, light is scattered in all directions. There

are several optical configurations used to collect this scattered light: with 90� and

180� geometries between excitation and collection commonly used.

Wavelength Selector

Holographic notch filters are now replacing monochromators as the method by

which to suppress Rayleigh scattering. This ensures that only the light of a di�erent

wavelength to the laser light passes through the system. A major advantage of these

filters compared to older systems is that they can measure both Stokes and anti-Stokes

scattering. The scattered light is then collected using a focusing lens or mirrors. It

then passes through a di�raction grating or prism in order to disperse the various

wavelengths of scattered light, ready for detection.

Detection and Processing

Modern Raman spectrometers use charge-coupled devices (CCDs) to convert

photons to an electrical signal which can be read. A CCD is a silicon-based

semiconductor arranged as an array of photosensitive pixels, each of which produces

photoelectrons which are stored as a small electrical charge. This analogue signal is

then converted to a digital signal which is interpreted as the number of photons of a

particular wavelength. One problem with CCDs is that the pixels have a limit to the

amount of charge that they can hold. If there are too many photons the pixel will

become saturated and lose its charge, consequently reading as detecting no photons.

The Raman system described above will hereafter be referred to as a spectrometer
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or the instrument and by the above processes will produce a Raman spectrum.

1.3.4 Data description and biochemical interpretations

A Raman spectrum is represented as a graph in which the x axis shows the Raman

induced change in wavelength and the y axis the photon count at the di�erent

wavelength positions (figure 1.7). In the bio-Raman literature the wavenumber

shift, �!, is the preferred unit of measurement of wavelength shift. It is simply the

reciprocal of the wavelength, ! = 1
� cm

�1 and so has the units of reciprocal length,

given in reciprocal centimetres. A peak associated with a wavenumber is often called

a Raman band, or simply a peak, and represents the vibrational energy of a particular

molecular bond in a sample. The photon count, also called the Raman intensity, is

then proportional to the amount of corresponding vibrations in the sample. If a single

molecule has distinct molecular bonds, as many do, a Raman spectrum will similarly

have distinct Raman peaks.

Figure 1.7 is an example of a ’pure’ Raman spectrum - the results of taking a

spectrum from a single chemical species. In biological tissues there are complex

mixtures of biochemical species, resulting in an equally complex Raman spectrum

which is a non-linear composite of many pure signals. As can be seen in figure

1.8, the resulting spectra are more complicated than spectra from pure sources. It

is possible to construct some of the biochemical signatures in a spectrum from

theoretical quantum principles, though this is extremely di�cult and not practical for

research and medical applications. Instead, an empirical approach has accrued over

the decades, in which certain Raman bands have become associated with various

biochemical antecedents [52]. Figure 1.8 highlights some regions which have been

associated with broad biochemical species.

A single Raman spectrum taken from a complex sample, such as tissue, will

therefore be a combination of many biochemical constituents. The task is to ’unmix’

these so that the underlying biochemistry can be revealed and, ultimately, di�erent

disease processes can be identified. Unfortunately, the Raman e�ect is a relatively
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Figure 1.7: Raman spectrum of the amino acid Alanine

weak phenomenon, with approximately 1 in 106 photons being inelastically scattered.

This means that the Raman signal can easily be obscured by numerous sources of

noise, making analysis more di�cult. Figure 1.9 shows how these various factors

combine to create a measured Raman spectrum.

1.3.5 Anatomy of noise in a Raman spectrum

Each component of a spectrometer can introduce noise into a spectrum. This is

in addition to noise that is intrinsic to the light scattering phenomenon. All such

contributions can generally be referred to as noise, and are often modelled as a

single entity, but here we consider each of these contributions. The sum of these

independent sources of noise determine the overall variance of the signal, �2
p
:

�2
p
= �2

x
+�2

d
+�2

f
+�2

r
+�2

b
(1.12)
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Figure 1.8: Biological markers in a Raman spectrum. Certain regions and Raman bands are
known to be associated with some biochemical species. The Raman intensity is
given in arbitrary units.

Shot Noise

Shot noise, �2
x
, manifests due to the discrete nature of photon detection. For a

given laser power, p, and frequency, f , there will be a number of photons emitted per

second, n. As the power is given by p = nh f , where h is Planck’s constant, we can

calculate the number of photons emitted per second by n =
p

h f
. However, due to the

stochastic nature of stimulated photon emission in a laser, this number of photons

will not be constant. Rather, it is a Poisson process in which the photon count, N ,

is given byP(N = k) = e
�t�t

k

k! , where t is the expected number of photons in a unit

of time. This has expectation and variance E[N] = var (N ) = t. Hence, shot noise

is signal dependent: the more signal ( i.e. a greater expected number of emitted

photons) the greater will be the variance. Shot noise represents a lower limit to the

amount of noise present in a Raman signal as it is an irreducible manifestation of

quantum stochasticity.
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Figure 1.9: Anatomy of a Raman spectrum. (a) Numerous ’pure’ biochemicals are in any
single tissue sample. (b) These combine in a non-linear fashion to make a
spectrum which is a composite of the pure biochemicals. (c) A florescent
baseline is often present in tissue samples. (d) Various sources of instrumental
noise are also present in the measured spectrum.

Dark Current Noise

Dark noise, �2
d
, is caused by a random stream of electrons generated thermally

within the silicon structure of the CCD. This process is independent of light intensity,

but dependent on time. It can be modelled by �2
d
= a�(T )t where a is the conversion

e�ciency from electrons to counts, �(T ) is the temperature, T , dependent dark

current and t the integration time. Thus dark noise can be diminished by reducing
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the integration time. �(T ) also follows Poisson statistics. As it is strongly sensitive

to the CCD temperature the most e�ective means to reduce this noise is to reduce

the temperature. For example, the CCD in the Renishaw RA816 instrument,

used extensively in this investigation, is cooled to �70�C: at this temperature any

contribution from dark noise should be negligible. This cooling also improves the

dynamic range (DNR) of the measurement DN R =
MaxSignal

�2
d

. However, to keep a

stable temperature a control unit is required which can add to system flicker noise.

Flicker Noise

Flicker noise, �2
f
, is caused by variations in laser intensity which cause pro-

portional variations in photon detection. It is frequency dependent. Multichannel

spectrometers, such as the RA816, are robust against this noise as all wavelengths

are monitored in parallel.

Readout Noise

Readout noise, �2
r
, occurs during the process of transforming CCD charge

carriers into a signal that is stored in digital form on a computer. Unlike other sources

of noise, it does not depend on the signal intensity or measurement time.

Background Noise

Perhaps the most pernicious of all, background noise, �2
b
, is a general term

referring to any photons detected other than Raman scattered photons. This includes

background light not shielded by the instrument, Rayleigh scattered light not removed

by filters and luminescence of the sample in the form of fluorescence or thermal

emission. It is dependent upon the intensity of the laser and the presence of

fluorophores in the sample and also follows poisson statistics.

The presence of fluorescence can be so severe as to render a Raman signal
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illegible. Various methods are used to ameliorate this problem, including the selection

of an excitation wavelength that is less likely to cause fluorescence. This is possible

because higher wavelength lasers, which have lower energy, are not able to elevate

an electron in a molecule to a higher electronic state, but only to the virtual energy

state required for Raman (and Rayleigh) scattering to occur. However, this must be

balanced with the intensity of Raman scattering which is also dependent upon the

wavelength of the laser. The Raman intensity decreases as the wavelength of incident

light increases. Hence, for many biomedical applications of RS, a laser of 785nm

is chosen as a reasonable compromise between these competing interests. How to

model with this noise will be considered in section 5.3.

Cosmic Ray Noise

An additional source of noise, not stated in equation 1.12 as it is considered

uncontroversial to remove, comes from extra-terrestrial sources. High intensity

spikes in a Raman spectrum are seen when high energy cosmic rays are detected by

the CCD. These are spurious spikes that could be misconstrued as Raman peaks,

so some care is needed in their detection and removal. Fortunately, such is their

distinct nature from Raman peaks that their detection and removal is considered

uncontroversial in the Raman literature, even with fully automated algorithms.

1.3.6 Measuring noise
Signal to Noise

The signal to noise ratio (SNR) is a measure of the amount of noise in a signal

as a ratio to the amount of true signal present (i.e. Raman scattering). In RS this

is defined at a given spectral peak rather than the entire spectrum as shot noise

is dependent upon the signal intensity and thus varies by wavenumber. It can be

measured by a number of methods, each with di�erent strengths and weaknesses.

The main choice is whether to define it for each dataset (or a subset thereof) or
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for each spectrum [53]. In the ideal scenario, the same peak would be repeatedly

measured from several spectra taken from the same location on a sample, and their

mean and variance taken. However, a repeated measurement will never be identical

in RS due to several e�ects. Photobleaching is a phenomenon whereby fluorescence

is reduced after consecutive measurements. This occurs as the relaxation time for a

fluorescent photon is orders of magnitude longer than for virtual photon absorption

and emission. Hence background noise is reduced with consecutive measurements.

Despite photobleaching being a useful technique to reduce fluorescence, it has been

found that this e�ect increases calibration model error in biological samples [54].

There is also a risk of burning, or otherwise thermally altering, biological samples

with repeated measurements, depending upon the acquisition time and laser intensity.

These are in addition to the practical limitations of taking repeated spectra during the

acquisition of a Raman map, which may already contain many thousands of spectra.

Hence, for this project I define the SNR for each spectrum and take an average

over these for the SNR for a dataset. This is done by taking the height of a selected

peak as the signal, then selecting a region near the peak which is assumed to be noise.

The SNR is then the ratio of the peak height, Sp, to the standard deviation of the

noise, �p:

SN R =
Sp

�p

(1.13)

A feature of the SNR in RS is that if shot noise dominates, as the signal intensity

increases the noise also increases, but the SNR decreases. This is because the noise

grows at the square root to the signal. This can be seen by remembering that for a

Poisson variable the mean and variance are equal. Noting that the standard deviation

is the square root of the variance, then S̄ =
p
�. Then, following from equation 1.13:

SN R =
Sp

�p

=
�pp
�

p

=
p
�p (1.14)

Hence, all else being equal, having a stronger intensity diminishes the amount

of noise. This could be achieved either by increasing the power of the incident laser
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or by exposing the sample to the laser for a longer period of time: both methods

increase the number of photons detected by the CCD. However, CCD pixels have

a limit to the number of photons they can detect, after which the pixel becomes

saturated and reads as zero.

Point to Point Noise

The above derivation of SNR assumes that the region selected to measure the

standard deviation is flat. As discussed, Raman spectra often sit atop background

noise which creates slopes. Such slopes mean that the standard deviation is not a

reliable measure of variation. This is illustrated in figure 1.10 showing a simulated

Poisson process with and without a sloping baseline. In both cases, the average is 1000.

As this is simulated noise we know the standard deviation is exactly
p

1000 = 31.6.

The measured standard deviation in figure 1.10a is close to this at 32.1. In figure

1.10b the standard deviation is measured at 120.0, a gross over-estimation.

To account for the e�ect of a sloping baseline I use another metric of noise;

point to point (PP) noise:

PP =
1p
2

p
(
P

n

2 (xi � xi�1)2

n�1
) (1.15)

(a) (b)

Figure 1.10: a.) Simulated Poisson noise. a.) An average intensity of 1000 b.) also an
average intensity of 1000, but with a slope

The factor of 1p
2

is a correction factor which is exact for Gaussian noise, and
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approximate for Poisson noise, though it is very precise at the intensities typical of

RS. Using PP noise, figure 1.10b has noise of 31.3: much closer to the true noise of

31.6. Hence, when measuring noise, I will use the PP noise rather than the standard

deviation, thus equation 1.13 becomes:

SN R =
Sp

PP
(1.16)

The phenylalanine peak, at approximately 1003cm
�1 , is a remarkably consistent

peak within biomedical RS and so will be used to measure noise. It will be measured

as the maximum value in the region 995cm
�1 � 1015cm

�1, to account for any

wavenumber shifting. The phenylalanine peak is often swiftly followed by another

peak at 1033cm
�1, hence to measure the PP noise the region just adjacent to the

phenylalanine peak at 960cm
�1�990cm

�1 will be used (figure 1.11).

Figure 1.11: Phenylalanine peak for noise measurement

The noise inherent in RS together with the complex nature of the underlying

cancer biology we seek to detect mean that the technique has yet to become routinely

used in the clinical setting. In order to decipher these dense datasets, we next turn

our attention to their analysis and previous work in this domain.
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1.4 Introduction to chemometrics and machine learn-

ing

1.4.1 Chemometrics

Chemometrics refers to various analytical techniques which are used to detect and

extract information from Raman, or other, spectra. This can be divided into two

components: data preparation (or pre-processing) and downstream analysis. The

former is concerned with improving the quality of Raman spectra by attempting to

mitigate the various sources of noise discussed above. The latter is concerned with

determining the spectral, and biochemical, characteristics that distinguish di�erent

samples. Section 5.3 will outline some of the many pre-processing steps which

constitute the data preparation component required to make the data amenable to

downstream analyses.

A very common statistical chemometric technique used in biomedical RS is

Principal Component Analysis - Linear Discriminant Analysis (PCA-LDA) [55].

PCA reduces the dimensionality of the data and removes some noise; LDA then

learns a criterion by which to separate data as belonging to one of several classes (i.e.

di�erent diseases), based on labelled examples. This model will be explored in more

detail in section 4.3.

One way of analysing data is to build models based on known physical principles.

An example is the use of the Beer-Lambert law which relates the attenuation of light

through a substance. It has been used in RS to mitigate Raman self-absorption [56].

However, light scattering phenomena, especially when interacting with biological

samples, are often too complex to usefully model in this way. A much more common

approach is to use machine learning (ML).

1.4.2 Machine learning in healthcare

ML is any model which learns from the data, rather than being based on explicit

rules or physical principles; a bottom-up rather than top-down approach [57]. It

can therefore be described as a data driven approach to modelling. There are

many variations. A common example used in biomedical RS is the Support Vector
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Machine (SVM). This, and other traditional ML models, are held in contrast to

deep learning (DL) models, which are large and complex models based on neural

network architecture. DL models could revolutionise the digital healthcare space

[58], including biophotonics [59]. In particular, their ability to capture non-linear

complexities in a dataset allow them to exploit patterns too subtle for traditional

methods, making them an ideal candidate to realise the full potential of RS. An

area that has already benefitted from deep learning is digital pathology, particularly

applied to oncology [60].

However, ML, traditional or DL, is not without its limitations. Just as medical

researchers need to understand something of the statistical science of hypothesis

testing, and the debate and misunderstandings regarding p-values, it is becoming

increasingly important to become literate in ML [57]. One of the barriers to

transferring promising ML results to clinical settings is the reproducibility of results

[61]. Indeed, a recent review of ML applications to diagnose COVID-19 using chest

radiographs or CT scans found that of sixty two studies, none were of su�cient

quality to be clinically relevant [62]. Prominent among the given reasons were

methodological issues that compromise the generalisability of a model to the target

population. More generally, a recent high profile and influential editorial has warned

of an impending reproducibility crisis in ML science [63], based on the finding that

329 published papers across 17 disciplines, from histopathology to satellite imaging,

contained methodological issues su�cient to render findings unreproducible [64].

In the next section we thoroughly investigate the current state of ML in the field

of RS applied to oncology problems, both to understand where current research is

focussed and to determine to what extent the field su�ers from overly-optimistic

results which could threaten the generalisability of findings.
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1.5 Machine learning with Raman spectroscopy to

distinguish cancers

1.5.1 Literature review: methods

This literature review follows the principles set out in the PRISMA (Preferred

Reporting Items for Systematic reviews and Meta-analyses) guidelines [65]. The

databases PubMed and Web of Science were extensively searched by combining the

search terms ’Raman Spectroscopy’ and ’Learning’ with the AND Boolean operator.

Recovered titles and abstracts in the databases were searched as illustrated in figure

1.12, and any oncology studies were identified. Publications were limited to the

English language and being published from January 2018 to the date of the search

(October 2021). Potentially relevant studies were selected for a full text review.

Additional studies were identified among the references of identified studies. Studies

were excluded if they did not explicitly classify data or were not peer reviewed. As

the ML methodology was itself the focus of this review, no attempt to exclude studies

based on methodological quality was made and so the PRISMA quality checklist

was not applied.
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Figure 1.12: Literature search strategy

1.5.2 Literature review: results

A total of 28 studies were identified (table 1.1), 18 of which interrogated tissues, 4

studied cell lines, 5 blood serum and one urine. All of these studies classified Raman

spectra into at least two groups, usually healthy and cancerous. The tissues explored

in the literature (regardless of the sample substrate) included brain (5), tongue (3),

prostate (3), breast (3), lung (3), skin (3), nasopharyngeal (2), colon (2), oral (1),

cervical (1), ovarian (1) and kidney (1).

Many studies used several ML models, conducted analyses on di�erent subsets of

their data and/or compared several pre-processing techniques, producing a multitude

of disparate results. For instance, several studies compared the performance of

di�erent machine learning models, often traditional ML models like LDA against

DL models, such as convolutional neural networks (CNNs). For ease of comparison,
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Authors/year Pathology Model Validation Strategy Number of patients/ Number of spectra Level of Split Number of Accuracy
(sample type) samples Classes (sensitivity/specificity)

Aubertin et al. Prostate Cancer ANN LOOCV 32 subjects/samples 928 Not Stated 2 86%
2018 [66] (tissue) (87%/86%)
Baria et al. Skin Cancer PCA-ANN 5-fold CV Not Stated 150 Not Stated 3 96.7%
2020 [67] (cell lines)
Bury et al. Brain Metastases PCA-LDA Not Stated 21 subjects 525 Not Stated 2 80.2%
2019 [68] (tissue)
Chen et al. Ovarian Cancer ANN Outer fold - 174 subjects 870 Spectra 2 94.8%
2022 [69] (plasma) ensemble single 66/33 (95.3%/95.3%)

Inner fold -
5-fold CV

Chen et al. Prostate Cancer CNN 5-fold CV 84 subjects/samples 501 Subject 2 74.95%
2021 [70] (urine) (77.32%/72.46%)
Chen et al. Lung cancer CNN 5-fold CV 104 subjects/samples 520 Subject 2 99%
2021 [71] & glioma 2700 after (all pairwise

(tissue) augmentation comparisons > 95%)
Daniel et al. Cervical Cancer PCA-ANN Single 70/30 245 samples Not Stated Not Stated 3 99.0%
2019 [72] (tissue) (87%/86%)
Fang et al. Various Cancers CNN 10-fold CV 33 subjects 510 Not Stated 11 100%
2021 [73] (cell lines) (ResNet) 500 repeats 6600 after

augmentation
He et al. Renal Cancer SVM LOOCV 77 subjects/samples 4860 Subject 3 92.89%
2021 [74] (tissue)
Ito et al. Colon Cancer Boosted Not Stated 184 subjects/samples 3 spectra N/A 2 100%
2020 [75] (serum) Tree per subject.

Average used.
Jeng et al. Oral Cancer PCA-QDA k-fold CV 80 subjects/samples 400 Sample 2 81.75%
2019 [76] (tissue) and LOOCV (83.63%/79.44%)
Koya et al. Breast Cancer CNN Single split 88 subjects/samples 34505 Spectra 2 90%
2020 [77] (tissue) 60/20/20 (89% - precision

89% - recall)
Lee et al. Prostate Cancer CNN Single split 1 sample 300 Spectra 4 96.56%
2020 [78] (extracellular vesicles 70/15/15 per class, 1200 after

from cell lines) 4 classes augmentation
Ma et al. Breast Cancer CNN 10-fold CV 20 subjects 600 Not Stated 2 92.00%
2021 [79] (tissue) 40 samples 5000 after (98.00%/86.00%)

augmentation
Mehta et al. Brain Meningioma PCA-LDA LOOCV + 20 subjects ~8 spectra N/A 2 86%
2018 [80] (serum) independent 70 subjects per subject.

test set Average used.
Qi et al. Lung Cancer CNN 10-fold CV 77 subjects/samples 15 spectra Spectra 2 97.7%
2022 [81] (tissue) per sample (96.7%/98.8%)
Riva et al. Glioma Gradient LOOCV 63 subjects/samples 3450 Subject 2 83%
2021 [82] (tissue) Boost (82% - precision

82% - recall
Santos et al. Skin PCA-LDA Single split 128 samples 9-19 spectra Sample 2 62.5%
2018 [83] (tissue) 60/40 per sample
Sciortino et al. Glioma SVM LOOCV 38 subjects/samples 2073 Subject 2 87%
2021 [84] (tissue)
Serzhantov et al. Skin Gradient Single split 139 subjects 556 Not Stated 2 90.5%
2020 [85] (tissue) with soft 50/50 (93%/88%)

voting 1000 repeats
Shin et al. Lung Cancer CNN 5-fold CV 63 subjects/samples 2150 Spectra 2 94.8%
2020 [86] (SERS of plasma) (ResNet)
Shu et al. Nasopharyngeal Cancer CNN 10-fold CV 418 subjects 15354 Sample 2 84.43%
2021 [87] (in vivo tissue) Venetian blind 888 samples Augmented - (99.15%/65.77%)

quantity not specified
Wu et al. Colon Cancer CNN LOOCV 45 subjects/samples 233 Spectra 3 93.8% - by spectra
2021 [88] (tissue) 2420 after AND

augmentation Subject 81.3% - by subject
Xia et al. Tongue Cancer CNN-SVM 5-fold CV 12 subjects At least Not Stated 2 99.54%
2021 [89] (tissue) 24 samples 216 (99.54%/99.54%)
Yan et al. Tongue Cancer CNN 5-fold CV 22 subjects 2004 Not Stated 2 98.75%
2021 [90] (tissue) ensemble 44 samples (99.10%/98.29%)
Yu et al. Tongue Cancer CNN 5-fold CV 12 subjects 1440 Not Stated 2 96.90%
2021 [91] (tissue) 24 samples (99.31%/94.44%)
Zhang et al. Breast Cancer PCA-SVM Single split 6 cell line 4500 Not Stated 2 99.0%
2021 [92] (cell lines) 900 cells (99.9%/96.2%)
Zuvela et al. Nasopharyngeal Cancer GA-PLS-LDA LOOCV 62 subjects 2126 Sample 2 98.23%
2019 [93] (in vivo tissue) 113 samples (93.33%/100%)

Table 1.1: Literature review results table

and to mitigate against selection bias, the best performing model and/or dataset

is presented in table 1.1: other results are included when pertinent to a particular

discussion. In the vast majority of cases the accuracy of a model was the primary

reported performance metric: the number of correct classifications divided by the

total number of classification attempts. Although its suitability to prediction tasks

has been questioned, because of its ubiquity in the reviewed literature and its intuitive

interpretation I report this metric unless otherwise stated.
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1.5.2.1 Overview of the studies

Oral and Nasopharangeal Cancers

Xia et al. [94] probed tongue squamous cell tissues using a fibre optic Raman

spectrometer and developed a CNN-SVM (Support Vector Machine) for binary

classification. This model replaces the final dense layer of a typical CNN with a

SVM, combining the feature selection prowess of the former with the classification

abilities of the latter. SVMs can utilise a number of kernel functions to better model

non-linearities in the data; in this paper a radial basis function (RBF) was used. They

compared this model to a standard CNN as well as PCA-LDA and PCA-SVM (RBF).

The CNN-SVM performed best (accuracy = 99.54%, sensitivity = 99.54%, specificity

= 99.54%), as determined by accuracy, though trade-o�s between sensitivity and

specificity may change this interpretation according to clinical needs.

The same team used a similar set-up to collect two datasets taken under conditions

of ’illumination’ and ’no light’ [90]. These datasets underwent a further division of

pre-processing or no pre-processing, to make a total of four datasets. These were

used to classify spectra into binary classes using an ensemble CNN, in which several

CNN models are trained and the outputs integrated to give a consensus result. They

found that the best performance was attained under the no ambient light conditions

with pre-processing applied (accuracy = 98.75%, sensitivity = 99.10%, specificity

= 98.29%), although the di�erence in accuracy to the worst performing dataset

(illumination and no pre-processing) was only 4.75%.

The last publication from this team used a similar set-up and dataset to compare

the performance of a custom built CNN against PCA-LDA and PCA-SVM (with a

radial basis and a polynomial kernel) [91]. They found that the CNN outperformed the

other ML models (accuracy = 96.90%, sensitivity = 91.67%, specificity = 94.44%).

It is not clear if the tissues used in these three studies are the same. However, in
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all cases the diseased and healthy samples were obtained from the same subjects.

Also investigating oral cancers, Jeng et al. interrogated cryopreserved samples,

seeking to discriminate between healthy and cancerous tissues [76]. They further

performed a sub-group analysis, dividing their dataset into tongue, buccal and gingiva

tissues to perform three pairwise cancerous versus healthy binary classifications.

They additionally performed a ’point-wise’ approach in which five spectra were taken

per sample and a ’patient-wise’ approach in which the average of these five spectra

was taken. They explored two cross-validation (CV) techniques, comparing a k-fold

versus a leave-one-out-CV (LOOCV) strategy. CV is a vital aspect of dividing data

for ML and is considered in detail in section 5.2. Finally, they compared a PCA-LDA

and a PCA-QDA (Quadratic Discriminant Analysis) classifier. Using these methods

they found that taking the average spectrum of a sample yielded better performance

than a point-wise approach and with PCA-QDA typically performing better than

PCA-LDA, though not across all sub-group analyses. LOOCV resulted in lower error

rates compared to k-fold CV for an ’all cancer’ versus ’healthy’ analysis, but this was

reversed for a sub-group analysis, which consisted of smaller sample sizes.

Two studies focused on nasopharyngeal cancers. Zuvela et al. used an in vivo

set-up to collect data during endoscopy [93]. They employed a genetic algorithm

(GA) to perform feature selection for a PLS (Partial Least Squares)-LDA binary

classifier, comparing its performance to a PLS-LDA model without this selection.

They also compared performance when utilising either the fingerprint region, the high

wavenumber region, or both combined. Not only did the GA-PLS-LDA outperform

the generic model (accuracy: 98.23% versus 95.58%), but this feature selection

was also used to find candidate Raman peaks responsible for this discrimination.

Also, though combining fingerprint and high wavenumber regions may actually

confuse ML models by including irrelevant data, the GA feature selection was able

to mitigate against this potential danger, improving accuracy (fingerprint = 92.04%,

high wavenumber = 94.69%, both = 98.23%).

The same team expanded with a similar study which included many more

subjects, samples and spectra with a similar recruitment protocol [95]. Of all the
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studies reviewed, this is the largest in terms of the number of subjects recruited. This

time, however, they used a CNN to classify three classes (cancerous, post-treatment

and healthy) in a pairwise fashion. This consistently performed better than a PLS-

LDA classifier. The CNNs superior performance was maintained even when the

data was down sampled by a factor of two and four, contrary to the idea that CNNs

require a plethora of data from which to learn. Indeed, the CNN trained on data

down-sampled by a factor of two produced the best performance.

Lung Cancers

Qi et al. adopted a novel approach to classify Raman spectra of lung tissue

as adenocarcinoma, squamous cell carcinoma or normal in a pairwise fashion [81],

They transformed the data into 2D spectrograms in a similar process used to classify

audio data. This spectrogram data was used in a CNN accepting 2D inputs, akin to

typical image classifiers and di�erent from all the 1D inputs thus far discussed, and

compared performance to a PCA-LDA model. For both pairwise comparisons the

CNN returned an accuracy over 96% while neither PCA-LDA model broached 90%.

Shin et al. used surface enhanced Raman spectroscopy (SERS) of exosomes (a

potential oncology biomarker) derived from cell lines to classify early stage lung

cancer [86]. They used a well know CNN architecture called ResNet. This CNN

includes ’skip connections’ which allow the network to learn the identity function

during training which allows for a much deeper (i.e. more convolutional layers)

network, which should allow it to learn even more subtle features in the data [96]. It

compared favourably to the traditional ML models PCA-LDA, SVM and PLS-DA, as

well as to another large CNN architecture called VGG-16.

Chen et al. also discriminated between lung cancer, as well as glioma, a common

brain cancer, using spectra taken from blood serum [71]. They compared both classes

against healthy controls in a pairwise manner. Several deep learning architectures

were compared: an ANN (Artificial Neural Network), a RNN (Recurrent Neural

network), an LSTM (Long Short-Term Memory) and AlexNet. The dimension
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reduction techniques of PCA and PLS were also compared to no pre-treatment. The

use of data augmentation was also explored by increasing the number of spectra

5-fold. Across all analyses, this augmentation increased performance. This was

most pronounced when PLS was first performed on the data. AlexNet, the largest

model used, together with PLS and data augmentation, was the best performing

model, although the di�erence amongst all the models, except the ANN, was minimal.

However, when a three class model was constructed, the best performance had an

accuracy of 85.1%.

Brain Cancers

Two studies from the above team also explored gliomas. Riva et al. took fresh

tissue biopsies and classified healthy versus cancerous tissue using the traditional

models of Random Forest (RF) and Gradient Boost Tree (GB) [82]. The latter model

performed best and due to its feature selection allowed for the detection of novel

Raman peaks to be implicated in Gliomas. In the team’s second study, Sciotino et

al. explored the potential to discriminate between the mutational status of gliomas,

essentially attempting to genotype using RS [84]. They used GB and SVM (RBF) to

successfully classify between the two disease genotypes.

Bury et al. also analysed brain tissue, attempting to discriminate the primary

source of metastatic brain cancers [68]. Seven samples each with primary sources of

lung adenocarcinoma, colorectal carcinoma and melanomas were obtained and 25

spectra collected per section. RS was compared to attenuated total reflection-Fourier

transform infrared (ATR-FTIR) spectroscopy. An overall accuracy of 69.7% was

achieved compared to just 55.3% using similar PCA-LDA modelling on ATR-FTIR

data. These improved when the two adenocarcinoma categories were merged into a

single group to 80.2% and 84.0% respectively.

Mehta et al. used 35 serum samples from meningioma patients and compared

them to 35 samples from healthy controls in an attempt to develop an approach to

diagnose brain tumours using minimally invasive techniques [80]. Approximately
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eight spectra were taken per sample, and the average of these was used for analysis.

Employing PCA-LDA they achieved an accuracy of 86% for discriminating menin-

gioma from healthy samples, which fell to 70% when the model was tested against

an independent held out test set.

Breast Cancers

Koya et al. created Raman maps from ex vivo breast tissue and classified spectra

as cancerous or healthy [77]. It is the largest study in terms of Raman spectra, though

not samples; the Raman mapping methodology allowing them to take many spectra

per sample. A CNN was used to classify the spectra. They used a technique called

’permutation importance’ to interpret the CNN outputs and find which Raman bands

were biologically significant.

Ma et al. also classified breast tissue using a CNN [79]. They compared

its performance against four SVMs (each with a di�erent kernel) and Fisher’s

Discriminant Analysis (FDA). Data augmentation was required to improve the CNN

from the worst to the best performing model.

Zhang et al. interrogated five breast cancer and one healthy breast cell lines

with RS [92], using PCA-DFA (Discriminant Factor Analysis) and PCA-SVM to

classify spectra. The latter technique in particular was well able to separate healthy

from cancerous cell lines with an accuracy of 99.0%. The team also performed a

number of clinically relevant sub-group analyses and still achieved an accuracy of

93.9% with a four class model. Performance deteriorated as the sub-class divisions

became more nuanced, representing comparisons between ever more biochemically

homogenous samples.

Prostate Cancers

Lee et al. explored Raman spectra of extracellular vesicles derived from blood

serum samples as a biomarker for prostate cancer in combination with a CNN [97].
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This was compared to a PCA-LDA and PCA-QDA model. Additionally, analyses

were performed on three wavenumber regions (full spectrum, fingerprint and high

wavenumber regions), and with the data in its raw form as well as pre-processed. The

CNN outperformed the traditional ML models across all subsets. The fingerprint

region generally lent to better performance, though that was not ubiquitous across all

subset analyses.

Chen et al. also used a CNN to classify prostate cancer, using SERS spectra

taken from urine samples [70]. The model they used was LeNet-5, one of the pioneer

CNN architectures [98], with promising results for such a non-invasive technique.

Gastrointestinal cancers

Wu et al. interogated biopsy samples taken during endoscopy, classifying

spectra as normal, adenomatous polyps or adenocarcinomas [99]. They found a CNN

comprehensively outperformed several traditional ML models. They also explored

the di�erence that conducting analysis on pre-processed versus just normalisation

data. Finally, the team performed CV via two methods, one splitting at the level

of spectra, the other splitting at the level of subject/sample (there was one sample

per subject so these coincide). The former method achieved an accuracy of 93.8%,

falling to 81.3% with the latter split.

Ito et al. developed a boosted tree model from serum samples taken from

suspected colorectal cancer patients, classifying into four categories; colorectal

cancer, adenoma, hyper-plastic polyps and neuro-endocrine tumours, in a pairwise

fashion [75]. They achieved 100% accuracy in all tasks, although they used the R
2

value as their assessment metric which gives a more nuanced idea of performance by

accounting for how certain the model was in its classification, punishing predictions

further from the class label. By this metric the boosted trees still performed

exceptionally well. It is, however, unclear whether there was any validation/test set,

and so these results may reflect the training performance.
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Skin cancers

Serzhantov et al. used an ensemble of traditional ML models to classify skin

tissue as cancerous or normal [85]. The models included were a classification

and regression tree, SVM, k-nearest neighbours and logistic regression. Instead of

selecting the best single model, the outputs of all models were used to create a soft

voting classifier, allowing each model to ’vote’ on an outcome, and the consensus

across all models was taken. Splitting the data 50/50 into train/test sets, this was

repeated 1000 times to build a spread of estimates. This method achieved an accuracy

of 90.5%

Baria et al. compared PCA-LDA and PCA-ANN for the task of classifying

spectra taken from cultured cell lines to distinguish the skin melanoma genotypes

NRAS, BRAF or neither mutation [67]. The LDA produced an accuracy of 92.7%,

the ANN 96.7%.

Santos et al. classified skin samples with spectra from the high wavenumber

region using PCA-LDA, distinguishing between melanoma and not-melanoma [83].

They achieved an accuracy of 62.5%. The classification model was used in a unique

way: they took the LDA score outputs and, instead of setting a typical limit of 0.5 as

the delineation score between melanoma or not, chose a criteria of any two spectra

from a single sample having a score greater than 0.35, or any single spectrum having

a score greater than 0.8.

Gynaecological cancers

Daniel et al. compared a PCA-LDA to a PCA-ANN model in classifying

cervical tissue as healthy, neoplastic or malignant [72]. In addition, those samples

determined to be malignant were then subject to another LDA model to determine

whether the samples were well, moderately or poorly di�erentiated. The PCA-LDA

model achieved an accuracy of 95.3% compared to 99.0% for the PCA-ANN model.

To help determine the biochemistry that characterised the three classes, non-negative
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least squares (NNLS) was used to fit eleven known biochemical signatures to the

spectra. This provides a multivariate method of determining sample biochemistry

compared to the usual univariate peak assignment method.

Chen et al. used RS on serum to classify ovarian samples as normal, cystic or

cancerous in a two step binary classification regime [69]. The first step used an ANN

to determine abnormal from healthy samples, using an ensemble method to select

the best model architecture, with an accuracy of 94.8%. Abnormal samples were

then entered into another ANN to determine whether they were cystic or cancerous,

achieving an overall accuracy across the three classes of 86.2%.

Other Cancers

He et al. interrogated ex vivo renal tissue seeking to identify cancerous tissue

and demarc surgical boundaries as well as classify those tissues [74]. Although 100

spectra were obtained per sample, only 30 were used for classification after saturated

spectra were removed. They used a suite of ML models, with a SVM (RBF) model

marginally outperforming an ANN, while distinguishing between cancerous, normal

and fat tissues with 92.89% accuracy, with only slightly lower performance when

classifying cancerous sub-types.

Fang et al. used SERS to classify numerous cancerous and healthy cell lines

[100], comparing ResNet to a custom CNN architecture and PCA-KNN. ResNet

achieved 100% accuracy on an 11 class classification problem and was able to

perform equally well on pre-processed and just standardised data.

1.5.3 Literature review: discussion
There currently exists no explicit standard for conducting and reporting clinical

applications of machine learning, meaning the reviewed literature was not consistent

regarding what was reported. This reinforces the concerns underpinning the afore

mentioned reproducibility crisis. Due to the heterogeneity between these studies



�.�. Thesis objectives and structure ��

this has been a qualitative review, making it di�cult to draw definitive conclusions.

There is some evidence suggesting deep learning can advance the field. As discussed

by Blake et al. in a more concise exploration of the very same literature review

[101], there are many reasons to suspect that the generally high accuracies found

here will not translate to the clinical setting including small sample sizes, optimistic

sampling and validation strategies, as well as di�erences in the data generating

process itself, including variations in local practice for obtaining and treating samples,

of preparing the sample for RS, and the instrumentation itself. I shall frequently

return to this literature review throughout this thesis, under the moniker ’Lessons

from the Literature’, exploring certain topics in detail as they become relevant. This

will help motivate and justify certain methodological decisions that need to be made

at various points in the development of a robust ML model and training regime to

meet the objectives of this thesis.

1.6 Thesis objectives and structure
The aim of this project is to develop a modern ML model and training regime that can

be deployed towards the unique constraints and considerations of classifying Raman

spectra of potentially cancerous tissues. Three RS datasets taken from human tissue

will be used during the development of a learning pipeline. This includes two smaller

datasets of colorectal and ovarian tissue, as well as a larger multi-centre dataset of

oesophageal tissue taken with the same model of spectrometer across three separate

sites. Results from each dataset will be explored, but given the small sample sizes of

the first two, these will be regarded as pilot studies in their own right and will also be

used to help guide the process of learning on the larger oesophageal dataset. Great

detail is given to the numerous methodological considerations which are required to

make any results robust enough to be clinically relevant.

To this end, a number of specific objectives manifest:

1. thorough consideration and selection of medically relevant performance metrics

2. appropriate measures of variance of those metrics
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3. the selection of hyperparameters, including RS specific pre-processing tech-

niques

4. how to account for the hierarchical structure common to medical datasets

5. explore cross-validation techniques

6. dealing with imbalanced datasets

7. data augmentation for deep learning

8. predict the presence of various cancers classes

9. post analysis interpretation of the results

In chapter 2, the datasets will be described, introducing each particular clinical

challenge, the experimental set-up and a description of the data. Chapter 3 will

consider the determinants of a medically relevant performance metric in ML,

considering these particular datasets. Chapter 4 then describes the main ML models

used in this thesis: PCA-LDA, SVM and CNN. Chapter 5 will then explore some

of the numerous data preparations required before a thorough analysis can begin.

Although presented in a linear fashion for ease of reading, this has necessarily been

an iterative process. The results are given in chapter 6 and the post classification

analysis in chapter 7 will attempt to relate biochemical changes to the results.



Chapter 2

Description of Datasets

“Above all else, show the

data”
Edward R. Tufte

2.1 Introduction
It is impossible to consider ML models as distinct from the data on which they are

trained. This is what it means to be a data driven process. Therefore, understanding

the downstream analyses starts with understanding the data itself.

This chapter describes the 3 datasets explored in this thesis, including their

biomedical rationale, the experimental conditions for data collection - including

Raman spectrometer parameters - and an exploratory look at the data. This exploration

involves Principal Component Analysis, which is explained in section 4.3. Before

considering the individual datasets, there are a number of shared conditions that will

first be explained.

2.1.1 Raman system
The same Raman system was used to collect all three datasets: the Renishaw

prototype RA816 series biological analyser benchtop Raman system (Renishaw plc,

Wotton-under-edge, UK) . This is configured for pathology use with a 785nm laser

excitation, a 50x NA 0.8 objective, a 1500 lines/mm grating and a motorised XYZ

stage. These systems were configured to have a spectral range of 100�3100cm
�1,
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spectral resolution of 2cm
�1 and a step size of 10µm. The system is equipped with

transmitted and reflected white light imaging at a variety of magnification levels

down to a field view of 30x20mm for sample region of interest location. The system

performs an automated calibration and optimisation sequence prior to performing

measurements, including:

• Automatic adjustment of stage height to ensure the test samples are in focus.

• Slit lateral o�set adjusted to maximise signal (silicon standard).

• Calibration of the spectrum x-axis in absolute wavenumber (using internal

neon source) and in Raman shift (silicon standard).

• Main spectral properties (signal, bandwidth, asymmetry) are tested on silicon

standard.

• Repeatability and reproducibility of response and wavenumber calibrations

can be performance qualification (PQ) tested using a standard internal sample

of polystyrene.

The spot diameter (or laser line) and step size together give an indication of the

spatial resolution of acquired spectra. The Renishaw 816 spectrometer has a laser

line measuring approximately 1µm by 80µm. Data was collected in StreamLine
T M

mode with a binning of 10 and a step size of 10µm. This results in an approximate

spatial resolution of 10µm in the direction along the laser line, fully sampled, and

near to 1µm orthogonal to the laser line, which means that data is undersampled in

this direction. This undersampling was justified by virtue of the regions of interest

identified by the histopathologist being homogenous in disease class. The typical

human cell is approximately between 10µm and 100µm, depending on the tissue type,

indicating that the instrument gives spatial information at approximately the level of

the cell. The optimal degree of sample coverage is necessarily a balance between

high spatial fidelity and practical acquisition times. With the above parameters, a 15

by 15 spectra map took approximately 1.5 hours to acquire.
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2.1.2 Slide substrates

For all datasets, tissue undergoing Raman spectroscopy was mounted onto 304L

super mirror stainless steel slides. For tissues, these have been shown to improve

Raman signal acquisition by up to a factor of four and to reduce the background

signal compared to calcium fluoride (CaF2), the standard substrate often used in RS

[102, 103]. This improvement is attributed to a double pass e�ect of the laser as

it passes through the tissue twice, once back-reflected from the incident laser, and

again retro-reflected from the mirrored steel. In addition steel slides are far cheaper.

Before any tissue was mounted onto the steel slides, they were cleaned by

sonication in trichloroethylene for 30 minutes, followed by acetone for 30 minutes

then isopropanol for a further 30 minutes and were then dried under a stream of

nitrogen and stored at room temperature.

2.1.3 Tissue processing

All tissues were received as FFPE blocks. These were were manually sectioned using

a Leica RM 2235 microtome (Leica Biosystems Ltd., UK) producing para�n ribbons

of adjacent sections of 8µm or 3µm thickness. These were floated onto a 45�C water

bath and the 8µm ribbons mounted onto 304L super mirror stainless steel slides

(Renishaw PLC, UK) and the 3µm ribbons onto conventional glass microscopy slides

for those samples destined for RS and H&E staining respectively. The mounted steel

slides were incubated at 37�C for 24 hours. The H&E slides were subject to standard

automated staining and cover-slipping.

Prior to Raman data collection the para�n in which the mounted tissues are

embedded needs removing. This was done by immersing the mounted steel slides

in four successive ten minute baths in xylene (VWR International Ltd., UK) with

gentle agitation. A series of rehydration steps in graded ethanol absolute (VWR

International Ltd., UK) took place via two sequential immersions in each of 100%,

90%, 70% and 50% ethanol baths for five minutes each, followed by a final immersion

in distilled water for ten minutes.
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2.2 Colorectal cancer, microsatellite instability and

Lynch Syndrome

2.2.1 Lynch data: background

Colorectal cancer (CRC) encompasses cancers of the large colon and rectum. It is

one of the major malignancies of the world, being the third most commonly occurring

and the second most deadly cancer, with an estimated 1.8 million new cases and

881,000 deaths worldwide in 2018 [104]. With a few exceptions, CRC incidence is

increasing globally, particularly in developing countries where shifting dietary and

lifestyle factors are likely driving an increase in early onset CRC [105].

There are several known pathological pathways leading to CRC, resulting in

heterogeneous presentations, therapies and outcomes. One such pathway is DNA

mismatch repair deficient (dMMR) CRC, in which there are pathological alterations

to any of a number of MMR genes (MLH1, MSH2, MSH6 or PMS2). This loss of

MMR function causes high level microsatellite instability (MSI-H), characterised

by mononucleotide, dinucleotide and trinucleotide tandem repeats. This can occur

sporadically or as an inherited trait, as in Lynch Syndrome (LS). Hence, the detection

of MSI-H is recommended in every case of CRC to screen for LS [106]. The

high mutational burden seen in MSI-H tumours also has implications for treatment,

providing potential targets for immunotherapy such as immune checkpoint inhibitors

[107].

Despite recommendations for universal testing for MSI-H in all CRC cases,

resource limitations mean that this cannot always happen and is particularly poor for

young adults [108]. Testing for dMMR/MSI-H typically involves either immunohis-

tochemistry (IHC) of the mismatch repair proteins or PCR amplification of consensus

microsatellite repeats. Recent developments in ML have led to the possibility of

exploiting morphological information in standard H&E slides [109, 107]. Such

digital pathology techniques require few additional resources and have proven highly

accurate in high quality, curated datasets. However, consistent with other domains

using modern ML, these promising results do not generalise well when applied
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to settings or cohorts outside of the narrow context in which they were developed

[109]. The literature has thus far focused on H&E stained slides but ML applied to

other histological stains, such as IHC, or digital staining via Raman spectroscopy

may yield further improvements by exploiting molecular level information. Such

techniques need not outperform the current diagnostic gold standards of MMR-IHC

or MSI testing to be clinically useful as the screening process could benefit from

even marginal improvements, particularly with regard to detecting LS.

There are no histological features specific to LS samples which distinguish

them from adenocarcinoma (AC), but they are often poorly di�erentiated with excess

mucus, signet-cell features, medullary growth patterns, an inflammatory reaction

and high lymphatic infiltration [106]. Because of the strong genetic component

of the disease screening has traditionally focused on family history. There are

several guidelines to screen for LS in CRC patients. The earliest is the Amsterdam I

criteria which has a sensitivity and specificity of 61% and 67%, respectively. The

Amsterdam II criteria improved this to 72% and 78%. The more recent Bethesda

guidelines have a sensitivity of 94% and specificity of 25% [110]. If a case meets

the criteria outlined in these guidelines, then the tumour will be assessed for the

presence of LS. This is done either by MMR immunohistochemistry (IHC) testing or

micro-satellite instability (MSI) testing, which have sensitivities of 88-100% and

73-100% respectively and specificities of 68-84% and 78-98% [106].

A dataset was collected to explore the potential of RS to discriminate between

normal, microsatellite stable adenocarcinoma (MSS AC) and MSI-H AC in human

tissue, particularly the latter two disease classes which present the more pressing

clinical challenge. This data will be referred to as the Lynch dataset.

2.2.2 Lynch data: sample collection

FFPE human colonic tissue blocks were obtained from the UCL/UCLH Biobank

for Health and Disease under REC:15/YH/0311. 10 FFPE samples of resection

margins of normal colonic mucosa from sporadic CRC cases were obtained along

with 10 MSS/MMR proficient samples from the same patients. 10 archival MSI-H

samples were also obtained and matched to the sporadic AC samples by TNM
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(Tumour/Node/Metastasis) stage, making for a total of 30 samples across 3 classes

taken from 20 patients. All these blocks have an undetermined fixation time but

standard practice requires that all biopsies undergo 4-6 hours of fixation, while

resections undergo 24-48 hours of fixation. Tissue was mounted as described

in section 2.1.3. The H&E slides were re-analysed by a registered consultant

pathologist (Dr Manuel Rodriguez-Justo) to confirm sample pathology. The sample

characteristics can be found in appendix B.

Point spectra were acquired using the Renishaw RA816 system (Renishaw

plc, Wotton-under-edge, UK) described in section 2.1.1. A total laser intensity of

approximately 158 mW was focused onto samples through a 50x NA 0.8 objective.

A 1500 l/mm grating was used to disperse the light providing a spectral range of

0 to 2100 cm
�1 in the low wavenumber range. An integration time of 20 seconds

was used for all measurements. A total of 50 individual spectra were collected from

each tissue sample, except for one sample with only 40 spectra, resulting in a total

of 1490 spectra across the 3 classes. All spectra were acquired from the glandular

mucosal region in normal samples and from confirmed cancerous regions in all

cancer samples, located by the resident pathologist prior to Raman measurement.

2.2.3 Lynch data: description

For analysis, the spectral range was truncated to 400-1800 cm
�1. Figure 2.1 shows

the average spectrum for the three classes: normal tissue, MSI-H and MSS/MMR

proficient. These show some di�erences between classes. However, the side panels

show the variation of the classes, which obscures these subtle di�erences. A PCA

score plot (figure 2.2) also suggests that the three classes significantly overlap,

although the normal class is easier to distinguish from the others. This is true for all

pairwise plots of other PCs, though only PC1 and PC2 are shown, which account for

77.8% and 10.5% of the variation in the data respectively.
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Figure 2.1: Lynch data: average spectrum by class. Right panels indicate 1 standard
deviation. Spectra unprocessed other than cosmic ray removal.

Figure 2.2: Lynch data: Score plot of the first two PCs with corresponding loading plots
measured in arbitrary units

The SNR of this dataset was measured as described in section 1.3.6, and found

to have a mean (+/- 1 SD) SN R = 86.6+/�18.6, indicating a good overall quality of

the acquired spectra. This dataset will hereafter be referred to as the Lynch dataset.
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2.3 Detecting post surgical debulking of ovarian tis-

sue

2.3.1 Ovarian data: background

Ovarian cancer is the seventh most common malignancy in the world and the most

lethal of the gynaecological cancers. It is predicted to increase in many areas of

the world [111]. With no e�ective screening strategy most malignancies present

with widespread intra-abdominal disease. Primary debulking surgery followed by

chemotherapy is the standard treatment. One of the most important prognostic factors

for this regimen is the presence of residual disease after surgery; patients with more

than 0.1 cm of residual disease have substantially lower survival rates [112]. The

reasons why a complete resection of all cancerous tissue is not always possible are

complex. Among them are tumour-biology factors. If these could be identified then

more appropriate treatments options could be explored and ine�cacious surgery

avoided. Many early attempts were made to this end including radiological imaging,

laparoscopic inspection, physical examination and serum CA-125 levels but none

have yet proved reliable enough for clinical applications [113]. More recently genetic

markers have been explored, but these too have failed to yield reliable results [114].

Of those patients with residual disease, in about 20% of cases this is due to medical

reasons, for instance comorbidities significant enough to limit time in surgery, while

for the remaining 80% it is due to tumour-biology [114].

Ovarian cancers are known to be morphologically heterogenous, with features

such as polyploidy, increased frequency of genome duplication, immune cell infiltra-

tion and subclonality all being identified as discriminative of tumour sub-types [115].

Such di�erences have biochemical manifestations that may be visible to RS.

The purpose of this dataset is an exploratory analysis to assess the potential of

RS to help determine which samples are predictive of leaving residual disease post

surgical debulking versus those which leave no residual disease. Such a determination

would be of great clinical benefit if it could reliably identify which patients would be

unlikely to benefit from surgery. Due to the presence of the afore mentioned medical



�.�. Detecting post surgical debulking of ovarian tissue ��

reasons surgery may be unsuccessful, the best performance of a classifier is lower

than it would otherwise be if tumour-biology alone was a factor. For this clinical

problem a theoretical upper limit of an oracle is AUC = 0.83 (this metric is explained

in section 3.3).

2.3.2 Ovarian data: sample collection

The samples collected were a subset of AGO-OVAR11 trial in which subjects gave

informed consent for their tissues to be used in future research [114]. This trial is

the German contribution to the ICON 7 multi-centre trial, a phase three clinical trial

of ovarian cancer treatment regimes [116]. Eighteen samples were collected from

eighteen subjects. All subjects had stage III or IV high-grade serous ovarian cancer.

The presence of residual disease was determined by the treating surgeon at the end

of surgery using International Federation of Gynecology and Obstetrics guidelines

[117].

Data was collected with the system described in section 2.1.1. Raman maps

were obtained of regions of interest identified by the collaborating histopathologist

(Florian Heintz) using the spectrometers StreamLine
T M mode over the ’fingerprint’

region of 400-1800 cm
�1 (so called as this region contains many biochemically

pertinent Raman peaks). A 1.0 mm step size was used for all maps with an integration

time of 15 seconds. Within the identified region maps of 15 x 15 pixels were taken,

giving 225 spectra per map. This was supplemented with 30 point spectra taken

randomly from the region of interest, but not the mapped region, for a total of 255

spectra per subject and 4590 spectra overall. Saturated spectra were removed from the

dataset, defined as any spectrum with 20 or more contiguous wavenumbers reading

zero, leaving 4342 for analysis, 2122 with no residual disease and 2220 with residual

disease.

Data was acquired from each patient alternating between the two classes. This is

pertinent as the high precision nature of Raman spectrometers means that its various

components can ’drift’ over time, potentially introducing a time dependent component

to the acquired spectra. If this time dependence is systematically introduced into the

data acquisition process, then subsequent ML analysis could pick up this artefact
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rather than learn real clinical feature. This could happen, for instance, if all samples

of one disease class were first acquired, followed by all samples of another class,

e�ectively subjecting the di�erent classes to di�erent treatments. This was mitigated

by alternating samples between classes during acquistion.

2.3.3 Ovarian data: description
Figure 2.3 shows the average spectra for the two classes, residual disease and no

residual disease, showing considerable variance within the classes.

Figure 2.3: Ovarian data: average spectrum by class. Right panels indicate 1 standard
deviation. Spectra unprocessed other than cosmic ray removal and saturated
spectra removal.

This is further corroborated by considering the PCA score plots (figure 2.4)

which shows considerable overlap between the classes in the first 2 PCs. This lack of

obvious separability was consistent for all pairwise comparisons of PCs up to PC15.

This dataset has a mean (+/- 1 SD) SN R = 54.4+/�19.8, and will hereafter be

referred to as the Ovarian dataset.

2.4 Oesophageal cancer and system transferability

2.4.1 SMART data: background
Oesophageal cancer is the sixth most common cause of cancer deaths globally.

It has a five-year survival rate of less than 20% [118]. There are two distinct
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Figure 2.4: Ovarian data: score plot of PC1 and PC2 with corresponding loading plots in
right sided panels.

pathologies: squamous cell carcinoma and adenocarcinoma (AC). While the former

is more prevalent worldwide, it is declining. The latter is more common in Western

countries and is increasing globally. Treatment regimes are often extensive, including

chemotherapy, chemo-radiotherapy and/or surgical resection. The high mortality

rate is in part due to late diagnosis, and methods which can expedite detection are a

high priority [118]. To this end, the applicability of RS to the oesophageal cancer

setting has been explored, establishing that RS can distinguish di�erences in clinical

samples [119]. But despite reported sensitivities and specificities of 0.91 (95% CI,

0.89-0.93) and 0.92 (95% CI, 0.91-0.94), the technology has yet to translate to the

clinical setting.

One unanswered issue that is impeding adoption is that of system transferability:

the ability of diagnostic ML models built on one spectrometer to be reliably transferred

to data taken on a di�erent spectrometer. Instrumental artefacts, environmental

di�erences and workplace practices can all systematically interfere with Raman

signals, rendering models built on one spectrometer inapplicable to data taken on

another spectrometer. As a result a centre developing diagnostic RS would need

to build its own model from data collected on its own instrument. Individual

spectrometers will produce a spectrum which contains a true Raman signal and an
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instrument response function (IRF). This latter can be a�ected by di�erences in parts,

ageing of parts and sources, and a gradual change in quantum e�ciency. These factors

can be ameliorated by pre-calibrating prior to sample measurement using calibration

standards. Additionally, temperature fluctuations can cause thermal expansion,

leading to the misalignment of optical components and the shifting of spectral

peaks along the wavelength axis [120]. Such factors have been shown to deteriorate

the SNR, wavenumber axis shifting, peak width and peak ratios over a number

of common substances with well characterised Raman spectra [121]. A number

of methods attempt to correct these artefacts: single wavelength standardisation,

direct standardisation and piecewise direct standardisation. These attempt to remove

instrumental a�ects by using a subset of samples measured on one spectrometer to

regress the same data on another spectrometer. Other options include wavenumber

o�set correction, instrument response correction and baseline fluorescence correction.

Isabelle et al. assessed these latter factors on an oesophageal RS dataset taken across

3 sites, each with a Renishaw RA816 series benchtop spectrometer [122]. A binary

classifier was trained on one spectrometer to distinguish between two oesophageal

pathologies and performance tested on the other two sites, both with and without

corrections. These methods improved sensitivity from 86% and 73% to 96% and

79% across the two test sites respectively, but the corresponding specificity dropped

from 84% and 85% to 77% and 81%. This was despite showing that the corrections

had the desired e�ect of aligning wavenumber axes and reducing class variance. The

problem of system transferability has proven stubborn, leading to calls for default

spectrometer calibration and extensive data sharing between researchers to create

large RS datasets [121].

Another possible solution has recently developed with the advent of deep

learning architectures such as CNNs. These models can be robust against many

sources of noise, provided they are appropriately trained with a su�cient amount

of data. For instance, MRI data also su�ers from system transferability [123], but

multi-site studies have trained deep learning models to improve the generalisability

of the diagnosis of schizophrenia [124].



�.�. Oesophageal cancer and system transferability ��

The work of Isabelle et al. was an early analysis of the Stratified Medicine

through Advanced Raman Technologies (SMART) project. Since the projects

inception many more samples have been collected with the purpose of exploring the

transferability of RS as applied to oesophageal cancer. With this SMART dataset I

seek to discriminate between five oesophageal pathologies, while investigating the

ability of various models to reliably transfer results across multiple sites.

2.4.2 SMART data: sample collection

Samples were obtained from patients with a scheduled endoscopy for Barrett’s

surveillance or from patients who had surgery for oesophageal cancer. 66 FFPE

samples were taken from the histopathology archive at Gloucester Hospital NHS

Foundation Trust. These procedures were performed under local (endoscopic

resection) or general (oesophageal resection) anaesthetic in accordance with an

approved ethical proposal [Gloucestershire Local Research Ethics Committee]. At all

times the General Medical Council (GMC) guidelines on good clinical practice were

followed. Routine histopathology reports were used to assist with sample selection,

identifying those with one of five clear histological pathologies: normal squamous

(NSQ), intestinal metaplasia (IM), low and high grade dysplasia (LGD and HGD) and

adenocarcinoma (AC). Tissue scetions were cut at 8µm and mounted onto stainless

steel slides as described in section 2.1.3. Three such samples were collected from

each of the 66 subjects, one sent to each of the three participating centres. Standard

H&E slides of adjacent tissues were also taken to identify regions of interest and to

confirm pathologies. One consultant and one registrar histopathologist used sections

at one centre (GRH) to outline regions of interest and agree on a diagnosis, providing

a two person consensus (although the robustness of such consensus could be called

into question where there is one senior and one junior partner involved).

Each centre used the same make of spectrometer, described in detail in section

2.1.1. Data were collected in StreamLine
T M mode over the fingerprint spectral

region 400-1800 cm
�1, using a 10µm grid and an integrated exposure time of 6

seconds per point. Data were collected over pixel regions exhibiting a homogenous

pathology, with map sizes varying from 11 x 18 to 75 x 93 pixels. All three centres
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followed the same protocol for taking the Raman maps, as detailed in section 2.1.3 and

the same system parameters were used. Regions of interest were matched between

all centres to that identified by the histopathologists so that all three centres mapped

approximately the same regions - though this will not be exact as the slides were

taken from adjacent samples of the same tissue.

Unfortunately, the practicalities of organising a large multi-centre study meant

that the data was not always collected as per protocol, potentially leaving a portion of

questionable quality. This took the form of data which was not taken from the same

identified region of interest. Such spectra may not have the same disease class as

those identified in the region of interest. Additionally, as the focus of this study was

to assess the transferability of models across instruments, it is important to isolate all

other variables as much as possible, including the regions of samples used across

centres. Hence, a mask was applied to remove such extraneous spectra and ensure all

Raman mapped areas matched across centres. This was a manual process, and so was

prone to human error. An exploratory analysis revealed that though most matched

maps were of a similar size, as expected, a few maps remained significantly larger

than the corresponding maps taken at the other centres. This was measured by taking

the ratio of the number of spectra for the same map across the 3 centres in a pairwise

fashion. Using a criterion of the same sample being no more than 25% di�erent

between centres (figure 2.5), a total of 15 samples were excluded from subsequent

analysis, leaving a total of 61 samples from 51 patients per centre for the study. A

preliminary analysis using a 5 x 3-fold CV procedure, defined in section 5.2, showed

that this procedure increased PCA-LDA classification accuracy (+/- 1 SD) to 56.7%

+/- 3.6% , from 52.6% +/- 3.7%, lending some credence to the process.

Having to process the data this way is not ideal, but neither is retaining unmatched

data, thus the more conservative approach of excluding some samples was taken.

Despite these e�orts to only map areas with a homogenous pathology, the assignment

of a single label to multiple spectra taken from the same map could induce label noise

into this dataset. This is true of all Raman datasets, but is particularly pernicious

in this dataset due to the cross centre comparison. This can occur because we



�.�. Oesophageal cancer and system transferability ��

Figure 2.5: Pairwise ratio of spectra from the same samples. x-axis indicates the ratio, y
axis the count. Beyond either of the red dashed lines indicates samples which
di�er between centres by more than 25%

have assumed that all spectra taken from a sample represent the same disease class,

but it is possible that a single map could contain multiple pathologies. If multiple

pathologies are present, the histopathologist will assign a single label based on the

clinically worst present pathology. If we are classifying the whole image, this is an

appropriate labelling method as the worst present pathology is the clinically relevant

feature. However, if we are classifying individual spectra, assigning a single label

to potentially heterogeneous spectra can lead to incorrect labels. This is a common

problem in digital pathology in general, where many ’patches’ of single whole slide

images are segmented and used to train classifiers on the assumption that each patch

will inherit the class label of the whole slide. This is referred to as weakly supervised

classification, and has been shown to be surprisingly e�ective and far more practical

compared to pixel-wise manual annotations [125].

2.4.3 SMART data: description
A total of 560819 spectra were taken from 61 samples across 51 patients. Figure 2.8

shows that these are not evenly distributed across the pathology classes, but form an

imbalanced dataset. Such class imbalance requires careful considerations which are

addressed in section 5.6.

2.4.3.1 Instrument correction
Guo et al. suggest that data taken from di�erent instruments require some treatment

for any meaningful comparison, if the inter-instrument variations are larger than the
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Figure 2.6: SMART data: Count of spectra and patients per pathology class

inter-group variations [126]. They name this process model transfer. Figures 2.7a

and 2.7b show the correlations between the mean spectra of the five classes and the

three centres respectively. Although the correlations between all mean spectra is

high, the correlations between centres are generally higher than for classes, except

for the intermediate classes of IM, LGD and HGD. The corresponding mean spectra

are shown in figures 2.8a and 2.8b.
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(a) Uncorrected Class Correlations (b) Uncorrected Centre Correlations

(c) Corrected Class Correlations (d) Corrected Centre Correlations

Figure 2.7: SMART data correlations of the mean spectra of the five classes and three
centres for the original (uncorrected) and instrument corrected data

Instrument correction was applied to the dataset in order to assess whether

this improved the separability of the data. In particular, extended multiplicative

scatter correction (EMSC) and instrument response correction was performed.

EMSC accounts for scaling di�erences and artefacts by using a non-tissue measured

instrument spectrum for each centre, including the measured objective spectrum,

and a 3rd order polynomial baseline using a least-squares modelling procedure.

Instrument response correction involved comparing the ratio of daily measured and

calibrated spectra as measured by the NIST SRM 2241 standard reference material

to provide an instrument response profile which was used to correct spectra. This

correction was conducted using Renishaw’s WiRE software. More details can be

found in Isabelle et al. [122]. During this process the wavenumber axis was truncated
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to 450�1800cm
�1. The uncorrected data was similarly truncated to ensure a like for

like comparison between the datasets.

(a) Mean spectra by class

(b) Mean spectra by centre

Figure 2.8: Uncorrected SMART data: Mean spectra by class and by centre with plots
showing 1 standard deviation on right hand side.

The correlation plots for the corrected data (figures 2.7c and 2.7d) show a

marginal decrease in the correlation between NSQ and the three intermediary classes
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IM, LGD and HGD, compared to the same plots for the uncorrected data. There is no

appreciable change between the centres. Neither did correction result in a noticeable

di�erence in separability in the PCA plots (figure 2.9).

(a) Uncorrected Class (b) Uncorrected Centre

(c) Corrected Class (d) Corrected Centre

Figure 2.9: SMART data: PCA plots showing separation by Class and by Centre

These plots all serve to illustrate that any distinction between pathology classes

is subtle. So too is the distinction between centres, hence it may still be a pertinent

factor to consider during model building. Though there seems to be no improvement

in discernment between the uncorrected and instrument corrected data, it may simply

be too subtle to detect in these plots. Therefore, both datasets will still be explored

and compared during learning.

One of the strengths of CNNs is that the convolutional layer encourages the

model to be invariant to certain translations in the input data. For instance, in the

well known case of an animal image classifier, the model should be invariant to the

location, and orientation, of any animals in the images. A particular point of interest

in examining these two SMART datasets is whether the CNN will be robust to any

centre level artefacts due to this invariance property when compared to the more

traditional ML models.
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(a) SMART uncorrected data

(b) SMART corrected data

Figure 2.10: SMART data: example spectra at varying noise levels, top row uncorrected
spectra, bottom row the same spectra corrected

2.5 Extracting lessons from the data
The Ovarian and Lynch datasets are extremely small in the context of deep learning.

However, there are a number of techniques which can be employed which may make

them amenable to deep learning. These techniques are thoroughly explored in section

5. Although the SMART dataset is small in the context of deep learning, it is large

enough that the same rigorous optimisation that will be performed on the Lynch and

Ovarian datasets is impractical due to computational limitations. Therefore, while

exploring the two smaller datasets, attempts will be made to find principles that

can be generalised across all three datasets, leading to a much smaller optimisation

space to search for the SMART dataset. This optimisation involves the selection of

appropriate model hyperparameters, which are explored in detail in section 4.

The relative SNR values of the datasets are listed in table 2.1. The SNR of the

Ovarian dataset is lower than that for the Lynch dataset. This is likely due to the
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spectral acquisition methods: the former being acquired principally as maps, the

latter as point spectra. Maps typically have a lower SNR due to variations of the

sample topology which can bring the microspectrometer slightly out of focus. As a

consequence, the Ovarian dataset presents a more di�cult classification task.

The SNR is particularly poor for the SMART dataset. This is barely improved

by instrument correction. There is a great deal of variation within the SMART

dataset, which accounts for the low mean SNR. It is possible to remove spectra below

a certain SNR threshold in order to ensure the model only sees data of a certain

quality. However, this would necessitate removing spectra below this threshold when

deployed in clinical practice. As discussed in section 3, the most important factor is

that the models are trained in a manner that reflects how they will be used in clinical

practice. It may well be preferable to exclude spectra below a certain SNR, but this

would then need to be embedded into clinical practice and what that threshold would

be warrants a thorough investigation itself. As these quantities are not yet established

I proceed without applying a SNR threshold.

Dataset Number of Patients Number of Samples Number of Spectra Number of Classes SNR
Ovarian 18 18 4590 2 54.4 +/- 19.8
Lynch 20 30 1490 3 86.6 +/- 18.6
SMART 51 61 560819 5 18.3 +/- 8.1
(Original)
SMART 51 61 560819 5 19.5 +/- 7.9
(Instrument Corrected)

Table 2.1: Comparison of the datasets

In addition to being used as pathfinder datasets, the Lynch and Ovarian datasets

will be assessed in their own right. While they are small datasets, this is not unusual

in the context of ML in RS and medicine. They can be considered proof-of-concept

studies, to be used to justify and inform larger studies. In addition to seeking the best

performance for each, they will be used to guide decisions regarding the SMART

data.

I will use the hyperparameters found in the Lynch and Ovarian datasets to guide

the choice for the SMART dataset. The SMART dataset is two orders of magnitude

larger than the Lynch or Ovarian datasets, meaning it is far more computationally

expensive to explore the hyperparameter space. In addition, I do not want to overfit
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to any particular dataset: even if we could perform an exhaustive hyperparameter

search of the SMART dataset, it does not guarantee a good performance on the

general population. It is possible to pick hyperparameters which result in the best

performance for our particular dataset, but which would fail to generalise to the

broader population of interest: the topic of the next section.



Chapter 3

Assessing Model Performance

“Measure what is measurable,

and make measurable what is

not so”
Galileo Galilei

3.1 Introduction
ML is a data driven process. It follows that the technique is sensitive to the data upon

which it is trained. Any medical dataset is a sample from a greater population. The

degree to which the sample is representative of the population of interest is pivotal

if results derived from the sample are to generalise to the entire population. This

is egregiously demonstrated with the case of racially biased healthcare ML models.

This occurs when the datasets on which they were trained were racially homogenous

compared to the population to which they were applied [127], or due to the poor

selection of proxy biomarkers [128]. For every model, the pertinent question is

how well does the model generalise to the population of interest. In this thesis, the

population to which we wish to generalise our findings are Raman spectra acquired

from tissues of patients who have had a particular tissue biopsy due to suspicious

symptoms. For the dataset sets used in this thesis, no demographic data is available

due to anonymisation and so I am unable to assess the extent to which the data is

representative of the population. I will therefore proceed under the assumption that

the samples are representative with the caveat that any optimistic results will not
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necessarily generalise, and that any ML model developed for clinical practice must

be subject to strict post-deployment surveillance.

In this section I discuss important components in measuring the generalisability

of a model, factors which determine the suitability of any given metric and explain

the particular metrics used to assess model performance which will hereafter be used.

3.2 Generalisation error
The generalisation error is any metric which seeks to measure how well a model will

perform on new data (i.e. its generalisibility). For instance, in a medical context

this could be an estimate of the expected accuracy of a technique when deployed

on new patients. This estimate should be derived from data a ML model has not

previously seen (i.e. not used to train the model). In the ideal case this will be an

entirely new dataset. However, the process of collecting and annotating new data can

be prohibitively expensive, particularly in medical settings. Therefore, to estimate

the generalisation error it is common to split a dataset into segments, retaining a

portion for training the model (the training set) and holding out a smaller portion

to assess the performance of the model (the test set or hold-out set). This held-out

data should not be used to construct the model in any way, as its role is to emulate

the acquisition of new data. We hope that the performance on the test data is then

indicative of performance on newly collected data.

However, there are many reasons why a model may not generalise. Overfitting

is a particular risk in ML, where a model is so thoroughly trained on a subset of the

data that it learns random fluctuations that just so happen to distinguish one class

from another. These fluctuations are due entirely to chance, but the model will use

these irrelevant features when classifying new data, thus inhibiting performance. In

sections 4 and 5 many methods to reduce the possibility of overfitting are considered.

The potential of over-fitting also needs to be considered when choosing how the

data is split into training and test sets and is carefully analysed in sections 5.2 and

5.8. Medical data is often also hierarchical in nature, having several layers to the

data’s structure. For instance, many Raman spectra could be taken from a single
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sample and many samples could be taken from a single patient. This structure

necessitates the careful consideration of the correct level at which to split data, and is

discussed in section 5.4. The correct preprocessing of training and test sets is also

explored in section 5.3. Others reasons for erroneous generalisation errors fall into

the category of the dataset itself being unrepresentative of the general population,

usually occurring during sample collection.

Much deep learning research has been developed in the domain of image

recognition - it was for this application that CNNs were developed. Due to the

popularity of this task there are a number of large and thoroughly annotated benchmark

datasets by which to train and test a model. However, the generalisability of even the

best performing models trained on these large and well curated datasets has been

called into question, when new datasets were created to which the models should

be able to generalise. Accuracy rates dropped by 3-15% on the cifar-10 dataset and

11-14% on the imagenet dataset [129].

There does not seem to be any studies explicitly investigating if this persists in

deep learning medical applications, perhaps as it is substantially harder to collate and

annotate medical data. In lieu of research to the contrary, it is prudent to assume that

medical data will at least be similarly a�icted - i.e. it is a feature of contemporary

deep learning methods (from data collection through to analysis) rather than being

unique to particular datasets.

3.2.1 Bayes irreducible error

Even a hypothetical perfect model, called an oracle, which knows the true probability

distribution that generates the data will still incur some error in its predictions. This

is because the generating process may be inherently stochastic (like Raman scattering,

as discussed in section 1.3.5), and the generating process may involve variables not

present in the data. Thus, the true distributions of classes in a population very likely

overlap. The extent to which they overlap determines the best theoretical performance;

the greater the degree of overlapping, the greater the error. The error incurred by the

overlapping of true class distributions is known as the Bayes irreducible error.

An oracle can be understood in terms of a Bayes classifier. Consider a set of p
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features: xxx = [x1, ..., xp], which we wish to map to one of C classes (e.g. assign a spec-

trum with p wavenumber values to one of C diseases). To construct a Bayes classifier

we need to know the prior probabilities of the classes: IP(1), ..., IP(C), and the class

conditional probability density functions (pdfs, p(·)): p(xxx |1), ..., p(xxx |C). Specifically

to medical RS, these can respectively be interpreted as the prior probabilities, or un-

derlying proportion, of a disease class in a population and the probability distribution

of xxx, Raman spectra, given membership to a particular disease class. As the latter

are distributions, there may well be overlap between classes. The Bayes classifier,

↵, is derived from Bayes rule and defined as ↵(xxx) = arg max
c=1,...,C

p(xxx |c)IP(c). The

error associated with this classifier is the Bayes irreducible error. More details on the

Bayes classifier and its error can be found in Tohka and Gils [130]. Of particular note

is that to achieve this theoretical optimal performance, the prior class distributions

need to be known, or estimated from the proportions of subjects with the disease

classes in the setting of interest. This will become relevant when discussing class

imbalance in section 5.6. However, in practice we never know the class conditional

pdfs, p(xxx |c). Therefore the Bayes classifier is usually an unattainable gold standard,

and the irreducible error an unknown quantity.

In lieu of this knowledge, it is common to assume that human domain expert

performance represents the best possible performance. As was demonstrated in

the literature review of inter-rater variability in CRC diagnosis in section 1.2 this

can be problematic. Di�culties when constructing gold standards can occur when

tasks involve ambiguous intermediary classes, such as is found in some cancer

taxonomies, where certain morphological features, and sometimes biochemical and

genetic features, have been found to correlate with clinically relevant outcomes. The

correlations of these various features to clinical outcomes may be weaker or stronger,

their causal pathways unclear, and their relevance regularly discussed amongst experts

in the light of new evidence with consensus occasionally changing to exclude certain

features or to include new ones.

As shown in section 2, all three datasets show significant overlap in their classes,

at least when projected into low dimensional spaces (i.e. PCA space), suggesting a
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degree of Bayes irreducible error. As discussed in section 2.3, this is particularly so

for the Ovarian dataset due to contamination of tumour-biology specific and overall

medical health related outcomes.

ML is a data-centric method of modelling. By taking di�erent random subsets

of a dataset we would achieve varying results. Thus we see that any estimate of

model performance is itself a random variable (RV). In frequentist interpretations of

probability, we may imagine that there is a true generalisation error associated with a

particular model and population (not necessarily the same as the Bayes irreducible

error as any real ML model is unlikely to be an oracle). Let that fixed but unknown

error be ✓. Our estimate of it is given by ✓̂. We may then define two properties of

our estimate: its bias and its variance.

3.2.2 Bias

The expectation, E, of a RV is its asymptotic mean. It is usually estimated by a

sample mean. The bias of a RV is defined as:

bias(✓̂) = E(✓̂)� ✓ (3.1)

If the expected generalisation error is equal to the true generalisation error, then

bias(✓̂) = 0, and the estimate is said to be unbiased. This can be understood as a

consistent di�erence between a parameter estimate and its true value. Thus, bias can

be understood as a systematic error introduced by the model. This most commonly

manifests when a simple ML model is unable to su�ciently follow a particularly

complex data generating process (i.e. nature), as illustrated in figure 3.1a. All else

being equal, we would prefer the bias to be as low as possible.

3.2.3 Variance

The variance of an estimate is a measure of how much, on average, it varies. In the

context of the generalisation error this is expressed as:

V ar (✓̂) (3.2)
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which measures how much we expect the error estimate to vary as a function of

the training data: that is variations in di�erent training sets will result in variations in

the error estimation. All else being equal, models which are more complex (i.e. more

parameters and/or non-linear) are more susceptible to having high variance as such

models are more able to overfit to the training data (illustrated in figure 3.1c). The

true variance is usually unknown, hence itself is estimated from the dataset. In order

to derive an estimate of this variance, at least two measures of the generalisation

error need to be made (i.e. the same model trained twice on two di�erent training

sets): the more such measures the more accurate will be the variance estimate.

The generalisation error balances bias against variance. Bias is a measure of

how well the model fits the data: a high bias indicates under-fitting; it is not learning

enough features to su�ciently discriminate the data (figure 3.1a). High variance

indicates that over-fitting has occurred: the model has fit so well to the training data

that it has also learned to utilise random features that just so happen to be present

in the training set (figure 3.1c). Such overfitting leads to very high accuracies for

the training set, but does not generalise well and the generalisation error will vary to

reflect these random perturbations.

3.2.4 Learning curves

A learning curve is a plot showing the error rate (or sometimes the accuracy) as a

function of training, particularly used when training DL models. Learning curves

also sometimes represent the error rate as a function of model complexity. Figure 3.2

shows an idealised learning curve, displaying the trade o� between bias and variance

in terms of the influence of under-fitting and over-fitting. The model starts overly

simplistic, unable to distinguish relevant features. At this point the model has high

bias and low variance. As training proceeds, the model learns to identify relevant

features, thus reducing the error until the gap between the training error and the test

error is at its smallest. The model then begins to perform worse on the test data even

as the training error improves as it begins to identify common random perturbations

in the training data. This represents a model with low bias and high variance.

In figure 3.2 the x-axis shows ’capacity’. Informally, capacity is synonymous
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(a) 1st degree polynomial (b) 4th degree polynomial (c) 15th degree ploynomial

Figure 3.1: A representation of model fitting. Random data (blue points) were generated
around a sinusoid (orange lines) and three di�erent polynomial models (blue
lines) were fitted to the data. 3.1a: An under-fitted model in which a straight line
fails to capture the general features of the underlying function. Such a model
has high bias. 3.1b: A model which well captures the data by approximating
the general shape of the data while not trying to account for every nuance. 3.1c:
An over-fit model: though it fits the training data extremely well it would give
erroneous predictions on data drawn from the true function. Such a model has
high variance.

with the complexity of a model. The figure shows that it is not simply the case

that a model with more capacity will necessarily have the lower generalisation error.

Section 4 will detail the models used in this thesis: for now it is su�cient to note

they represent increasingly complex models. DL models are by definition extremely

complex, and medical Raman datasets would theoretically benefit from such nuance.

However, though DL has been heralded as the future of medical modelling, this

section serves to illustrate that such models are prone to high variance and overfitting.

Hence, it may be that simpler models may still outperform more complex models

even though they may not capture the nuances of the data generating process. By

Occam’s razor, we may then prefer the simplest model for the task. The discernment

between these two types of generalisation error highlights a central tension within

this thesis. The total generalisation error is the sum of bias and variance and it

is unclear which source of error dominates in the oncology datasets under study.

Without knowing the true data generating process it is not possible to decompose

these sources of noise in real data, hence an empirical approach is taken to compare

model performance bearing in mind these theoretical considerations.



�.�. Performance metrics ��

Figure 3.2: Learning Curve: bias and variance trade-o�. Green line - Bayes Irreducible
Error. Blue line - training error. Orange line - test error

This has necessarily been a brief exploration of bias-variance trade-o�. More

detail can be found in James et al. [131] which has formed the basis of this section.

Armed with an understanding of what we wish to measure, we now turn our attention

to how best to measure it for the given tasks.

3.3 Performance metrics
The generalisation error can be quantified by many performance metrics. Here,

we focus on those most common in the medical literature, and consider some less

popular metrics which may have some desirable qualities. All have in common that

they compare a models classification, or prediction, of a sample against its true label,

thus estimating the generalisation error. However, not all mistakes are equal and each

metric balances certain strengths and weaknesses.

3.3.1 Accuracy

Perhaps the most intuitive, and very common, performance metric is the accuracy. It

is simply the proportion of correct classifications over all classifications.
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As will be discussed in section 5.6, accuracy becomes an increasingly poor metric

as class imbalance increases. Even with balanced datasets (i.e. the same number of

samples per class), accuracy hides a number of subtleties in the performance of a

model which are revealed when we consider other performance metrics.

3.3.2 Confusion matrix and related metrics

Figure 3.3: Schematic of a (binary) confusion matrix: the matrix decomposes results into
true negatives (TN), false negatives (FP), true positives (TP) and false negatives
(FN). This can be extended to any number of classes.

Many metrics, particularly in medicine, can be derived from the confusion

matrix. This is a matrix specifying the classifications made by a model against

the true class labels (figure 3.3). This allows a more nuanced understanding of the

types of errors a model may be making. For instance, of those samples classified as

diseased, how many truly were diseased, and likewise, of those classified as healthy,

how many were truly healthy. These are known as the sensitivity and specificity, and

are formally defined as:
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sensitivity =
T P

T P+FN
(3.3)

speci f icity =
T N

T N +FP
(3.4)

These are commonly used metrics in healthcare, particularly for multi-class

problems, though they have come under some scrutiny [132], as discussed later. They

are related to the concepts of type 1 and type 2 errors in statistical hypothesis testing,

in that the probability of a type 1 error is measured as the false positive rate and type

two errors as the false negatives. The strength of these metrics is that they are able to

distinguish between types of error which may be qualitatively di�erent. In medicine

a false positive would lead to the over-treatment of a healthy person, and a false

negative would lead to disease being missed. If all else is held constant (such as the

sample size and nature of the phenomenon under investigation), it is the case that the

false positives can only be improved at the expense of false negatives. Which of these

errors should be minimised will depend upon the application; a screening test may be

able to tolerate a greater degree of false positives than a gold-standard diagnostic test.

These considerations broaden to become complex multi-faceted decisions including

medical ethics and health economics, which are beyond the scope of this thesis.

Accuracy can also be defined in terms of the elements of the confusion matrix:

accuracy =
T P+T N

T P+FN +T N +FP
(3.5)

though we can now see that the accuracy provides no information into how a

model is failing to classify.

A number of other metrics can also be defined by arithmetical combinations of

these terms, such as the positive and negative predictive value, precision, recall and

the related F1 score. Their use is less common is medical applications and so will

not be described here; more information about them can be found in Tohka and Gils

[130].
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3.3.3 ROC

A common medical metric is the receiver operator curve (ROC), and the associated

area-under-ROC (AUROC). These are derived from the sensitivity and specificity.

Most ML models do not output a simple class, but rather a number. We would

prefer the model to be trained to output, say, 1 for diseased and 0 for healthy but

usually a number between these is given. Therefore a threshold needs to be set,

above which the class 1 will be assigned and below which to the class 0. A common

default is 0.5, but this is an arbitrary choice. The ROC takes numerous threshold

values and plots the associated sensitivity against 1 - specificity (figure 3.4). Thus

we are able to explore the e�ect that the threshold choice has upon performance. The

optimal choice will be a balance between the sensitivity and specificity, which will be

application specific. For instance in screening programmes, which may anticipate a

very large number of samples, a high specificity may be preferred to a high sensitivity

to avoid a large number of false positives and the incumbent mental and physical

distress and financial burden of subsequent confirmatory diagnostics. Those very

same confirmatory tests will prefer high sensitivities in order to avoid false negatives,

where disease is missed. We would prefer both to be high, but when only adjusting

the decision threshold for classification, it is necessarily a trade-o� between the two.

The AUROC measures the normalised area under the ROC, with scores between 0 and

1. A perfect classifier has AU ROC = 1.0, whereas AU ROC = 0.5 is often regarded

as performing at random. What constitutes a good AUROC is application dependent;

0.7 might be considered very good when human level performance is little better

than guessing, whereas as score of 0.95 might not be good enough when humans

very seldom make classification errors, or the cost of an error is life-threatening.

For classification models to be clinically meaningful, a calibration step must

also be undertaken: a thorough and clinically relevant exploration of where to draw

the line between classes, rather than relying, usually unknowingly, on the default of

0.5 specified by most ML packages/libraries. This is most pertinent for models which

are to be deployed in real settings, as opposed to proof-of-concept type studies.
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Figure 3.4: Schematic representation of a ROC. Each point on the purple line indicates a
di�erent threshold which balances the sensitivity and 1 - specificity. Red line
indicates a model classifying at random. Shaded region indicates the AUROC

3.3.4 One class versus all others

The above metrics have been defined only for binary classifiers. They can be extended

to multiclass classifiers by considering one class as the positive class and all others

as the negative class. However, the usefulness and interpretation of such metrics is

debatable. If the real world application is explicitly multi-class then binarised metrics

will not reflect the nuances of actual disease classification. It is common to see a

model able to well classify healthy against combined diseased categories, but struggle

when classifying between the disease subtypes [130]. Additionally, the binary case

is often also clear to health professionals, and it is precisely the intermediary disease

classes for which a model is built to distinguish between, therefore the reporting

of appropriate metrics is particularly important. For instance, in the Lynch dataset,

which has 3 classes, we could make 3 pairwise comparisons: normal vs MSI-H and
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MSS, MSI-H vs normal and MSS vs normal and MSI-H. If the clinical problem was

to distinguish MSI-H from either healthy or MSS samples this may be a reasonable

measure of performance. However, the clinical problem, as discussed in section 2.2,

explicitly seeks a model that could distinguish between the three classes. This is also

true of the SMART dataset which has 5 classes, in which the intermediary classes

are of more clinical interest than the normal and AC classes.

Therefore, contrary to most medical applications, the sensitivity and specificity

will not be reported, and where AUROC and ROC are used, all pairwise comparisons

will be reported, not just those most favourable (i.e. normal vs all diseased). The

confusion matrix will be reported for every classification problem, allowing the

construction of all the above metrics. Although the Ovarian dataset is truly a binary

problem, the same metrics will be reported to allow for more direct comparisons

across all three datasets.

3.3.5 Log-loss

3.3.5.1 Prediction vs classification
In lieu of these performance metrics, we consider an alternative metric. Many from

the more traditional statistics community advocate for the use of ’proper scoring’

metrics, as opposed to those above which are described as ’improper scoring’. A

proper scoring metric imposes no threshold upon the model outputs, but rather

regards them as continuous variables. In particular, the model outputs are put through

a ’softmax’ layer, which requires that the outputs are non-negative and sum to one,

allowing them to be interpreted as probabilities. This gives a prediction, with a certain

confidence, rather than a definitive classification. The putative benefit of prediction

is that it sits easily within a Bayesian paradigm of medical diagnostics, ready to

be integrated with previous and subsequent clinical findings to make diagnoses

increasingly confident. Thus, a medical tests error rates explicitly become part of the

medical decision making process, something lamentably missing in current clinical

practice. It also means that no information regarding the ’certainty’ of the model is

being discarded. Consider the case where a model outputs 0.51 for one input and

0.99 for another. In an improper scoring regime, using the typical threshold of 0.5,
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both will be classified as 1 (diseased). However, the model is in some sense more

certain of the latter classification compared to the former. By imposing any threshold

this information is lost.

The log-loss (ll) is a proper scoring metric. In the programming language

Python (version 3.10), the Scikit learn library defines it as [133]:

ll = �lnIP(Y |Ŷ ) =
1
N

N�1X

i=0

C�1X

c=0
yi,cln( ŷi,c) (3.6)

where Y is a 1by C binary indicator matrix, column Yi being the i
th sample.

Then an element of the matrix, yi,c = 1, if sample i has label c from the set of C

labels, otherwise it is 0. Similarly, Ŷ is a matrix where ŷi,c is the prediction of the

model for the i
th sample and c

th class label. Its columns, Ŷi, represent the probability

distribution of sample i belonging to the C classes, and are non-negative and sum to

one.

For instance, the true class vector for a three class model, such as the with

the Lynch data, which has classes normal, MSI-H and MSS, can be represented

as Yi = [1,0,0]T , meaning it has the label ’normal’. An example of the output of a

model from a single input (i.e. a spectrum) might be Ŷi = [0.5,0.4,0.1]T . Note with

improper scoring this latter case would simply be classified as normal, as that has the

highest value and the other values are ignored. With the log-loss, this ’uncertainty’

is directly quantified.

Regardless of which performance metrics are used, alone they are only one

factor in determining the suitability of a technique. Other factors include usability

for end-users, ease of integration into existing workflows, ease of integration into

existing IT infrastructures and regulations, robustness to missing data, interpretability,

cost-e�ectiveness and post-deployment surveillance on actual patient outcomes (i.e.

mortality and morbidity) [130], some of which we consider next.

3.4 Reproducibility
Parallel to the concept of the generalisation error is the idea of reproducibility. ML

in general is facing what has been described as a "reproducibility crisis" [134], due
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to a lack of transparency and reporting, from data collection and curation to model

selection and training. This is exacerbated in medical applications as reproducibility

is fundamental to establishing clinical veracity [135].

Reproducibility can be deconstructed into three facets [135]. Technical repli-

cability refers to the ability of others to replicate results given the dataset and code

(i.e. the model and any pre-processing steps). Dataset availability is often lacking in

medical studies due to the sensitive nature of medical data. Technical replicability

also relies upon su�cient detail being given about all the steps of a study, including

modelling. Statistical replicability is principally concerned with a robust estimation

of the generalisation error as described above. This includes using appropriate

pre-processing steps, hyperparameter optimisation strategies and validation strate-

gies, as described in section 5.2. It is the thorough reporting of these strategies,

su�cient to allow others to replicate a study, which facilitates technical replicability.

Conceptual replicability refers to the ability to generalise across multiple centres, and

ultimately to the entire population of interest. Arguably this could be collapsed into

statistical replicability, as it is concerned with generalising to the entire population of

interest. However, this is such a persistent problem in healthcare applications it is

often highlighted separately. It also includes the tendency of healthcare models to

’drift’ over time due to updating clinical protocols and training regimes, servicing

and replacing of equipment and other time dependent factors [136]. It is related to

the concept of external validity used in medical research parlance concerned with the

degree to which causal relationships can be generalised to various measures such as

people, settings and time.

Much e�ort in this thesis has been placed into statistical replicability. Conceptual

replicability is also explored with the SMART dataset, which uses data from multiple

centres. It may not be possible to satisfy technical replication due to the medical

nature of the datasets, but enough details to reproduce the work if the dataset were

available will still be given as a testament to best practice.
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3.5 Small sample sizes
Throughout this thesis reference to problems incurred from small sample sizes are

discussed. This is related to the discussion of model complexity and overfitting

in section 3.2.4: the smaller the dataset the greater the risk of overfitting. This

is exacerbated with increasingly complex models, as characterised in figure 3.5.

However, as will be discussed in section 5 there are techniques which may change

the shape of these curves to make DL more amenable to smaller datasets.

These problems ultimately stem from samples being unable to represent the

entire population of interest. Even though it is usual to treat individual Raman spectra

as the base unit of prediction/classification, it is the patients’ samples which should

determine the sample size. This is because biological variation will exist at the level

of the patient, and a su�ciently sized sample is required in order to represent the

full breadth of all patients. Little is currently known about how biological variation

manifests in Raman spectroscopy, although it has been suggested that if natural

healthy variation can be incorporated into a RS model it will perform better even on

data from diseased samples [137].

3.6 Statistical comparisons of model performance
One of the requirements for statistical replicability is to report some measure of

variance [135]. This is possible when repeated measures of a performance metric

are taken. In this study, the standard deviation (SD) is often given. However, care is

needed in interpreting such interval estimates in the context of ML. This is because

the various samples used to repeatedly train a model are usually not independent

- they will include some of the same samples (details in section 5.2). This breaks

the identically and independent distributed (IID) assumption required to construct

confidence intervals and statistical hypothesis tests (for instance to statistically

compare the performance of two ML models). Only if all the repeated measures

are truly disjoint, would standard statistical tests be valid. Although there do exist

methods to compensate for the lack of independence between samples [138, 139],

they are based on assumptions which have not been examined in the context of RS
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Figure 3.5: Schematic representation of error as a function of sample size with models of
increasing capacity. Red line: traditional ML models such as LDA. Yellow
line: Model with intermediary capacity, such as a shallow NN. Blue line: deep
learning models

and their use is not common in the medical literature. As the datasets examined in

this study are exploratory rather than for clinical implementation, I will not apply

hypothesis testing and instead simply report mean performance +/- 1 SD as a measure

of variance. In subsequent chapters there will be a number of exploratory results,

generating a plethora of results. To remain concise yet informative, results in section

5, which explores a number of pre-processing and data preparation steps, will focus

primarily on accuracy and log loss, unless otherwise stated. Though accuracy may be

an imprecise measure, it is intuitive and widely understood, so is well suited to tasks

generating copious amounts of results. In section 6, in which the final models are

implemented, the confusion matrix, ROC and AUROC will additionally be reported,

allowing for a more nuanced understanding of the final results.



Chapter 4

Machine Learning Models

“All models are wrong, but some

are useful”
George Box

4.1 Introduction
RS, and more generally spectral histopathology (SHP), like many of the omics type

data (genomics, proteomics, metabolomics etc.), tends to be high dimensional and

complex, making it well suited to the data-driven ML techniques. This paradigm

is di�erent to the model driven approach of traditional statistical modelling, which

assumes that data are caused by some true data generating process (i.e. nature),

which is usually unknown and so the task is to find a model that well approximates

the unknown process. In contrast, data driven modelling assumes nothing of the

data, instead allowing the data itself to generate the model, thus mimicking the data

generation process. Model driven approaches find a model that generates the data;

data driven approaches allow the data to generate a model [140].

Data driven approaches have become increasingly popular in medicine [58],

emboldened by the successes of deep learning in computer vision and natural language

processing. This is now extending to SHP [59], with the more recent ML models

applied to oncological datasets exploring the potential of deep learning architectures

[101].
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Despite this promise, the approach is not without its own problems. Barriers

to medical applications of data driven approaches include a lack of reproducibility

[141, 142], di�culties in model interpretation (particularly important in medicine

as an understanding of casual mechanisms is one of the pillars of the Bradford-Hill

criteria of assessing medical evidence [143]) and the need for large and well annotated

data sets.

RS data is suited to data driven models as the light scattering phenomena which

generate it are su�ciently complex to limit model driven approaches. There are

many techniques within data driven modelling, and as there are few applications of

RS in routine clinical use at least some of the scrutiny must fall onto the models

used thus far. Within this remit, I first distinguish between two types of data driven

modelling: traditional and deep ML.

4.2 Traditional versus deep machine learning

Deep learning refers explicitly to the depth of a neural network (detailed in section

4.5), which can be understood as the number of parameters, or the capacity, of the

model. For the purposes of this thesis deep learning is defined as any model based

on a neural network architecture, from artificial neural networks (ANNs) to more

sophisticated architectures such as convolutional neural networks (CNNs). Traditional

models include all other models, whether they are linear statistical techniques such

as LDA, or non-linear, such as support-vector machines (SVMs) with an appropriate

kernel function. As discussed in section 3.2.4, the constraints upon more complex

models are such that traditional models may be preferable, alluded to in figure 3.5.

PCA-LDA is one of the most common methods used in ML [144], though its use in

oncological applications of RS is waning in favour of deep learning methods [101].

Therefore, we will explore the use of this model and use it as a baseline of traditional

ML performance. SVMs are a more sophisticated traditional ML model which often

outperform PCA-LDA, and other traditional models [101]. CNNs are becoming

increasingly common in oncological RS literature, and are current exemplars of the

medical imaging deep learning paradigm.
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This section details these three models, which will subsequently be used to

analyse the data used in this thesis in su�cient detail to allow an understanding of

the various hyperparameter choices later examined.

4.3 Principal Component Analysis - Linear Discrimi-

nant Analysis
Principal Component Analysis (PCA) - Linear Discriminant Analysis (LDA) has been

a remarkably popular choice of chemometric model used in biomedical applications

of RS. It remains popular even in the most recent literature, as demonstrated by

the literature review of section 1.5, though often as a baseline comparator to other

models.

Principal Component Analysis

PCA is commonly used to reduce the dimensionality of a dataset. Given the

high dimensionality of RS data (the number of discrete wavenumbers, or bands, on

the x-axis) PCA can be used as a pre-processing technique which helps to select

those features of the data most pertinent for classification. Specifically, PCA is an

unsupervised technique that takes in a set of p features x1, x2, ..., xp (the wavenumber

bands in the case of RS with p equal to the number of wavenumbers). PCA finds a low-

dimensional representation of these p features whilst retaining as much information

as possible, based on the assumption that relevant information is contained in those

directions which most vary.

Given a mean-centred dataset, X, of size nxp with n observations (Raman

spectra), PCA computes the first principal component (PC) as the linear combination

of the p features of the form

ui1 = �11xi1+�21xi2+ ...+�p1Xip (4.1)

which has the largest variance. ui1 refers to the PC score. The first PC, U1,

is constructed from these scores u11, ...,un1. It is possible to plot the n scores of a

dataset, U1, ...,Un against each other. This can be useful when there are multiple
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classes within the data as the technique sometimes shows that the classes can be

linearly separated on a lower dimensional hyperplane in an unsupervised manner

(PCA does not take into account class labels). For ease of understanding this is often

done by selecting two PC scores to plot against one another (figure 4.1c).

The above equation is normalised such that
Pp

j=1 �
2
j1 = 1 and these elements,

�11...�p1, are referred to as the PC loadings. These can be represented as a single

vector, �1 = (�11,�21, ...,�p1)T . In the context of biomedical RS, these loadings can

be interpreted as a Raman spectrum which is a linear combination of the dominant

spectral features in a dataset, from which it may be possible to identify some

biochemical species (figure 4.1a).

The second PC, U2, is calculated with the additional constraint that it is

orthogonal to the first PC, U1, and finds the direction which varies the most in the

remaining data space. Subsequent PCs are then similarly calculated, constrained to

be orthogonal to all proceeding PCs, with subsequent PCs being ranked by decreasing

variance in the data space. Thus, an underlying assumption implicit in PCA is that

the directions of maximum variance in the data space are the most relevant for a

problem, which may be generally, though not always, true.

As variance is the pertinent information for PCA it is common to scale the

data. This scaling ensures that features which are orders of magnitude larger than

others (such as the phenylalanine peak in biomedical RS) are not disproportionately

weighted when calculating the maximum variance. Thus the remaining variance is

not due to the scale of the variables, but is relevant information. This is perhaps more

clearly demonstrated in medical datasets consisting of disparate data: for instance

systolic blood pressure, measured in mmHg and usually in the 100s, and blood

glucose levels measured in mmol/L which are typically below 10. Without scaling,

blood pressure would very likely dominate the loadings, giving the impression that it

is the most important feature of the dataset, which may not be the case.

PCA can be geometrically understood as a rotation of axes such that the new

principal axis spans the data in the direction of maximum variance, with subsequent

axes orthogonal to this (compare figures 4.1b and 4.1c). Thus PCA can be understood
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as a rotation and scaling of the data cloud along its direction of maximum variance.

The data clouds in figure 4.1 represent an idealised case of PCA, constructed

only for illustrative purposes from a simulated dataset, showing only the first two

PCs. Here, PC1 captures 56% of the total variance in the data, PC2 44%.

(a) A PC interpreted as a Raman spectrum (b) Random Data Cloud

(c) PCA transformed Data Cloud (d) Labelled Data Cloud

Figure 4.1: (a) PC1 loading taken from the lynch dataset (b) A data cloud of random two
dimensional data. The arrows show the new axes created by the transformation
which form PC1 and PC2 (c) The data cloud after the rotation and scaling of
PCA, such that the x and y axis represent PC1 and PC2 (d) Points in the data
cloud have been labelled, showing the possibility of separability of the data

p PCs will be produced by PCA. To reduce the dimensionality of the data a

subset, q, of these p PCs will be selected. There are a number of heuristics to

choosing this number, like selecting q such that the cumulative percentage of the

variance is accounted for (often 90%); the remaining PCs are assumed to be noise

and discarded. Figure 4.1c shows an idealised use of PCA on a randomly generated

2D dataset with a systematic o�set added to generate two ’classes’. PC1 captures the
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largest amount of variance in the original data space. PC2 could be discarded under

the assumption that it is noise, making for a simpler 1D plot. In this illustrative 2D

case there is little benefit to PCA, but the technique becomes increasingly attractive

with higher dimensional spaces. In section 6, we treat the number of PCs to retain as

a hyperparameter of the model, allowing the data to determine the optimum number.

Although it is possible to keep the class labels during PCA, they are not used

during the calculation; hence the reference to PCA as an unsupervised technique.

The resulting plot, such as in figure 4.1d can be useful to visualise the separability of

the data, but critically it does not give a decision boundary with which to classify

new samples. For this, we need a supervised learning technique, such as LDA.

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a supervised learning technique which

takes a number of observations (i.e. spectra) and assigns each to one of K classes.

Its derivation is beyond the scope of this thesis (see [131] for a full account), but

following from the definition of Bayes rule and using the multivariate Gaussian

distribution and taking the log-odds, a decision rule, �k (z), can be constructed in

which an observation is classified to one of the K classes for which

�k (z) =U
T⌃�1µk �

1
2
µT

k
⌃�1µk + ln(⇡k ) (4.2)

is largest. µk is the k
th class specific mean vector, ⇡k the prior probability of

class k and ⌃ is the covariance matrix, common across all classes. These are all

estimated from the training data, unless there is specific domain knowledge which

can be used, such as the prior probabilities (i.e. prevalence) of disease classes in the

population of interest. This provides a criterion on which to classify new observations

as belonging to one of the K classes which forms a linear decision boundary (figure

4.2).

Hence, assumptions of LDA are that the observations are multivariate normally

distributed and have a class-specific mean vector and a common covariance matrix.

In the Raman oncology literature review performed in section 1.5, none of the studies

using LDA tested the assumptions of multivariate normality. However, in other
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domains it has been found that this assumption does not need to be strictly adhered

to for practical applications of LDA [145]. The ln(⇡k ) in equation 4.2 refers to the

K
th classes prior probability. As this is usually estimated from the training data, this

makes explicit that LDA is sensitive to the distribution of the classes. This sensitivity

has also been shown empirically [146]. This will become relevant section 5.6 where

imbalance amongst the classes is considered.

Figure 4.2: Taking the 2D PCA transformed random data cloud of plot 4.1b, LDA was
performed to create a decision boundary (white line). Dots represent correctly
classified training data, crosses incorrectly classified. Ellipses represent 1SD
around the yellow dot of the class centroid mean.

There are many derivations of LDA, although they are ultimately the same. A

common understanding stems from the close relation of LDA to analysis of variance

(ANOVA) often used in medical hypothesis testing. In this conception LDA can be

understood as maximising the separation between the K classes, while minimising

the separation within those classes. The resulting groups (centroids) form ellipsoids

which can be visualised as seen in figure 4.2.

4.4 Support Vector Machine
A Support Vector Machine (SVM) finds a hyperplane that separates data which can

then be used to classify new observations. A hyperplane in p dimensions is a flat

a�ne space of dimension p�1: in 2D a hyperplane is a line, in 3D a plane and in

4D a cube. In higher dimensions it is di�cult to visualise but the principle remains.
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However, for perfectly separable data (i.e. no irreducible error) there are an infinite

number of such hyperplanes. Thus the hyperplane with the maximum margin is

sought. The orthogonal distance from a separating hyperplane can be measured

for each observation; the smallest distance of these is called the margin and the

corresponding observation the support vector (as a point can be represented as a

vector). The maximal margin hyperplane then is the separating hyperplane which

maximises the distance from this point. An interesting feature of SVMs is that they

are dependent upon the support vector but not the remainder of the data. However,

this is true only of idealised data. Real data will not be perfectly separable and several

support vectors will be used to define the separating hyperplane (see figure 4.3a).

This would lead to overfitting, as the model is exquisitely sensitive to a subset of the

data. Hence, soft margins are used. The ’softness’ of the model is determined with

the parameter C: the larger is C the more misclassifications are tolerated.

The derivation of SVMs is too complex to be covered here, so it is simply stated

here as:

max
�0,...�p,✏1,...,✏ p

M (4.3)

subject to the constraints,

yi (�0+ �1xi1+ �2xi2+ ...�pxip) � M (1� ✏ i) (4.4)

pX

j=1
�2

j
= 1 (4.5)

✏ i � 0,
nX

i

✏ i  C (4.6)

In equation 4.3 M is the width of the margin which we seek to maximise.

Equation 4.4 defines the separating hyperplane (thus creating a decision boundary),

with an indicator function, yi, for the class label which indicates which side of the

hyperplane an observation falls, i indicating the i
th observation of n total observations.



�.�. Support Vector Machine ���

Equation 4.6 defines the ’softness’ of the margins where ✏ i are slack variables that

allow individual observations to be on the wrong side of the margin or hyperplane. If

✏ i = 0 then it is on the correct side, if ✏ i > 0 then the observation is on the wrong side

of the margin and if ✏ i > 1 the it is on the wrong side of the hyperplane. Pertinent

to parameter searching, we can thus see that C bounds the sum of the ✏ i’s and so

determines the extent of misclassifications. Thus it can be understood as a parameter

controlling a trade-o� between bias and variance as the larger it is, the wider the

margin will become as more observations will be tolerated within it. Of note is

that all observations within this margin are support vectors, not just those on the

separating hyperplane, hence as C increases so a larger subset of the data is involved

in determining the decision boundary. The influence of C on the decision boundary

can be seen in figures 4.3a and 4.3b. This contrasts with LDA which always uses the

entire dataset in order to construct class means and common covariance.

SVMs are not easily amenable to multi-class extensions, hence a one-versus-one

approach is often adopted. This constructs
⇣

K

2

⌘
SVMs, each of which compares a

pair of classes. This is essentially a pairwise comparison and an observations final

classification is given by the class to which it was most frequently assigned.

A great strength of SVMs is that they are flexible enough to create non-linear

decision boundaries by using kernel functions. The kernel function creates an

enlarged feature space, actually increasing the dimensionality of the data. In this

space it is possible to find linear decision boundaries, like a separating hyperplane,

which are non-linear when projected back down to the original feature space. The

equations 4.3 - 4.6 are solved by using a generalisation of the inner products, K (.),

which quantifies the similarity of two observations, x and xi. Again, the derivation is

beyond the scope of this thesis, so is simply stated:

f (x) = �0+
X

i2S

�iK (x, xi) (4.7)

S being the collection of indices of these support points.

However, the computational cost of kernel based SVM scales quadratically with

n, thus this technique may be unsuitable for particularly large datasets. There are



�.�. Support Vector Machine ���

(a) Linear SVM: C = 0.1 (b) Linear SVM: C = 10000

(c) SVM RBF: C = 1,� = 0.1 (d) SVM RBF: C = 1,� = 1

Figure 4.3: SVM performed on the same random data cloud produced in figure 4.1. The
thick line represents the decision boundary and the dashed line the corresponding
margin. Circled observations are those on the decision boundary or on the
wrong side: i.e. they are support vectors. Note that in Python the C parameter is
inverted, hence a smaller C leads to a larger margin: the principle remains the
same.

many choices of kernel function. Through an initial discovery phase I chose to use

the popular radial basis function (RBF) which takes the form:

K (xi, xi0) = exp(��
pX

j=1
(xi j � xi0 j )2) (4.8)

where � is a non-negative parameter which controls the curvature of the function

and thus overly high values could lead to overfitting. The influence of � on the

decision boundary can be seen in figures 4.3c and 4.3d. Thus, for our choice of

kernel function, we have two parameters to consider (which become hyperparameters

in the context of ML): C and �.
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4.5 Neural Networks
Artificial Neural Networks

Artificial Neural Networks (ANNs) are a useful gateway to understanding deep

learning architectures in general. They are a type of feedforward network inspired by

the network of neurons in the brain. The network has an input layer, a number of

intermediate layers referred to as hidden layers, and an output layer which classifies

the input as belonging to one of several possible disease classes in a medical context

(figure 4.4). Feedforward refers to each ’neuron’ only passing information forward in

the network, as opposed to recurrent neural networks which can send information

back to earlier layers. Such a neural network is described as being fully connected,

alluding to the fact that each feature is connected to each weight in the first layer,

which are in turn connected with all weights in subsequent layers and so on until the

output layer.

Figure 4.4: A schematic of an ANN: each circle in the hidden layer represents an artificial
neuron

In more detail, and specific to RS, the input takes the form of a vector which

represents a Raman spectrum with p features Xi = x1, x2, ..., xp, where p is the number
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of wavenumbers and the subscript i indicating the i
th spectrum of the dataset. The

task is to estimate the output, Ŷi, which we wish to be equal to the known class label

Yi. The output, Ŷi, is then a function of the various operations performed upon the

input, Xi, through the neurons of the intermediate layers. Each neuron, Z
[m]
l

, takes

in the output from each neuron in the proceeding hidden layer, where m indicates

which hidden layer (and is in brackets to make clear that it is not an exponent) and l

indicates which neuron of a given layer. Each neurons outputs are adjusted by their

weights, W
[m]. A receiving neuron then sums all of the incoming weights and adds

a bias term, b : Z
[m] =W

[m]
Z

[m�1] + b
[m]. In the case of the 1st hidden layer the

spectrum is the input. This sum is then subject to a non-linear activation function, �.

This can take various forms, but all act to constrain the range of a neurons output and

creates the non-linearity of the model.

All layers together can be expressed more concisely using matrix notation:

Ŷ =WWW
T

XXX +bbb (4.9)

where the activation function, �, is implied rather than explicitly stated and

XXX captures the input spectrum in its first column and subsequently the outputs of

hidden layers, Z .

During training, the parameters WWW and bbb are first randomly initialised and an

output, Ŷi, is produced. This output is then compared to the true class label, Yi, via a

loss function. This loss function can take many forms, but in figure 4.4 the mean

square loss is given as it has an intuitive interpretation. It takes the squared di�erence

between the predicted and true label. This is zero for exact predictions and grows

larger the further the prediction is from reality. We seek to minimise the di�erence.

This is achieved by a process called backpropagation in which derivatives are taken

via the chain rule. The parameters are then adjusted to fall down the gradient of

the loss function (figure 4.5). In this parameter space we seek to find the global

minimum by learning the weights and biases.
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Figure 4.5: Loss Function Schematic. Each black star represents one step, or update, of
the model parameters during back-propagation. This ’landscape’ is sometimes
referred to as the parameter space.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of ANN. CNNs have fewer

connections than ANNs as the convolutional layers only connect to a subset of the

neurons in the preceding layer, as opposed to all as with a typical ANN. This relative

sparsity of connections has been argued to make CNNs more suited to vibrational

spectroscopy applications as they are less prone to overfitting and make for more

interpretable models [147].

Figure 4.6: A Single Convolutional Layer. * indicates the convolution operation. The
numbers used are entirely illustrative.
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A kernel of a certain size is passed over the input data and a convolution

operation performed to produce a number. The kernel is then moved down the input

spectrum, each time the convolution produces a number. The step size, or stride, the

kernel takes as it passes over the data can be altered. The output is a feature map,

which we seek to train to extract features from the data. Mathematically, this can

be expressed (I ⇤K )(i) =
P

a I (a)K (i� a), where I and K indicate the input and the

kernel respectively for the i
th input index and the a

th kernel index. This is illustrated

in figure 4.6. In the case of 2D CNNs for image classification, one feature map

may learn to recognise vertical lines, while another may learn to recognise rounded

corners and so on. In the context of RS these should learn to extract pertinent spectral

features. Each feature map is then subjected to a form of normalisation called batch

normalisation to overcome a problem known as internal covariate shift, where there

is change in the distribution of an activation due to changes in the network weights

during training, meaning the network will take longer to converge to an optimal

solution [148]. The convolutional neurons are then subject to an activation function

as described in ANNs. Finally, a pooling layer may be applied which reduces the

size of the extracted feature maps.

In the convolutional layers of a CNN, it is the values in the kernels which are

learned via back-propagation.

Non-linear Activation Functions

� is an activation function which transforms linear inputs into a non-linear

output. This function can take several forms, which can have a significant impact

upon the performance of a model and is sometimes treated as a hyperparameter

during model development. A particularly common activation function is the rectified

linear unit (ReLU), given by max(0, zl ), where z is the linear output of the l
th neuron.

It allows for sparse activations (some values will be 0), is less prone to vanishing

gradients (where gradients become so small as to e�ectively prevent updates) and

is computationally e�cient [149]. This will be used for all subsequent DL models
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Figure 4.7: Schematic of CNN architecture. The convolutional layers learn to extract
pertinent features in the data, while the classification layer, which is fully
connected as described in the ANN, classifies according to those features.

developed in this thesis.

Parameter Initialisation

The model weights, W , will be learned during backpropagation, but to start

values for W must be initialised. This can be thought of in terms of figure 4.5 as the

starting point in the parameter space. The weights learned during training can be

sensitive to these initial values, and a process known as seed hacking could be used to

artificially inflate the performance of a model [150]. This can be avoided by using an

appropriate initialisation procedure and repeating initialisation (for instance by using

repeated CV). When using a ReLU activation function, Kaiming He initialisation

is a robust choice [151]. This randomly initialises weights according to a Gaussian

distribution with 0 mean and 2
l[m] variance: W ⇠N (0, 2

l[m] ), where l is the number of

inputs into a given layer, m.
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Loss Function

The loss function returns a prediction, Ŷi, of the true class, Yi. Figure 4.4 shows

the mean square error (MSE) loss, shown as it has an intuitive interpretation of being

the sum of the squared di�erences between predicted and actual labels:

Lmse =
1
N

X

N

yi (Yi � Ŷi)2 (4.10)

However, it is not necessarily the best choice and there are many possibilities,

so long as the function is di�erentiable. A common choice is the cross-entropy loss,

related to the Kullback-Leibler divergence in that it measures the di�erence between

two probability distributions.

To build an intuition of the cross-entropy loss, let us begin with the binary case,

which is also called the log loss:

Lll = �
1
N

X

N

Yiln(Ŷ )+ (1�Yi)ln(1� Ŷ ) (4.11)

where ln is the natural log. In this binary case, the true label Yi only takes values

of 0 or 1, hence only one of the sums will be active. Compared to the MSE, this loss

function more strongly penalises predictions, Ŷ , which can take any value between 0

and 1, that are far from the true values (figure 4.8). This may be preferred in medical

applications when we wish to strongly penalise very ’confident’ incorrect predictions.

Figure 4.8: Mean Square Error vs Log Loss
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The log-loss extends to multiple classes via the cross-entropy loss. In PyTorch

[152], this is defined as:

Lce = �
1
N

X

C

wCln
exp(xi)P
C exp(xi)

yi (4.12)

where C is the number of classes and wC is an optional weighting vector which

can be used when dealing with imbalanced dataset (discussed in section 5.6).

Learning rate

The learning rate, ↵, is a hyperparameter which controls the step size during

gradient descent. In figure 4.5 it is the size of the steps between the black stars.

Mathematically, this can be understood as a factor of the partial derivative calculated

during backprogagation: ↵ @L@x
. A large ↵ corresponds to a larger step size in the

parameter space and could result in constantly over-stepping an optimal solution.

Conversely, an overly small step size may lead to the inability to converge to a solution

in a reasonable time. The learning rate is generally considered to be one of the most

important hyperparameters [153], and so an optimal value is explored for each of the

datasets in this thesis.

Batch gradient descent with Adam

Thus far we have considered the case of a single spectrum being entered into the

CNN at a time. This search process is known as stochastic gradient descent (SGD).

An alternative is to feed several spectra, known as a mini-batch, into the model at a

time. The loss function is then calculated as the average over the mini-batch. This has

the e�ect of smoothing the loss function which may improve convergence, although

smaller batch sizes may result in a more rigorous exploration of the parameter

space and apply a form of regularisation, as a less smooth exploration mimics noise

in the gradient estimator [153]. The Adam optimiser is a popular extension of
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classical gradient descent [154]. It combines the benefits of the adaptive gradient

algorithm (AdaGrad) and root mean square propagations (RMSProp). Adam adjusts

the learning rate per-parameter to accelerate learning in the directions with large

gradients and to dampen learning in directions with small gradients. This introduces

two hyperparameters to the model, �1 and �2, though �1 = 0.9 and �2 = 0.999 are

very common default values and are used in this thesis.

Once all the data has been passed through the model during training, it is said

that a single epoch of data has been trained. For full training, many epochs will be

passed through the model; it is not uncommon to use several hundred epochs.

Early stopping

When a neural network is trained over several hundred epochs it is possible that

even though the training performance continues to improve, the test performance

deteriorates. This is a classic case of overfitting. One method to prevent overfitting

during training is to track the test performance at the end of each training epoch.

If the test score does not improve, or worsens, for a given number of epochs, it is

assumed that overfitting has begun and training is stopped early.

Drop-out

Another method to mitigate overfitting is drop-out regularisation. A certain pro-

portion of the weights are randomly excluded from updating during backpropagation.

This prevents the model from focusing on patterns present only in the training data,

forcing the model to find more general patterns. Drop out is only performed on the

fully connected layer of a CNN.

4.6 Hyperparameter exploration
This has been a brief treatment of PCA-LDA, SVMs and CNNs su�cient only to

understand the choices made during model development in subsequent chapters.
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Learning Rate 10�1, 10�2, 10�3, 10�4, 10�5 10�6

Batch Size 32, 64, 128, 256, 512, 1032
Adam �1 0.9
Adam �2 0.999

Drop out rate 0.2
Early Stopping 5 epochs

Table 4.1: CNN hyperparameters

We see that there are a deluge of hyperparameters from which to choose when

constructing a CNN. In the best case this facilitates the training of an appropriate

model for a particular dataset, and at worst allows for the overfitting of the model

at the second-level of inference (i.e. hyperparameter selection). Thus I have used

values that have become standard in other domains of deep learning for many of these

hyperparameters. Although this means I may not be fully exploiting the parameter

space, it also gives a more conservative estimate of performances, mitigating against

overfitting. However, two hyperparameters have been found to be particularly

important for e�ective learning: the learning rate and the batch size. Thus these will

be considered as hyperparameters to search with the Lynch and Ovarian datasets,

and the best performing values will be used for the SMART dataset.

The CNN architecture used for all datasets in given in figure 4.7. Table 4.1

shows the corresponding hyperparameters.

Along with the hyperparameters identified for PCA-LDA and SVM, these

can be classed as model hyperparameters, but there are a number of additional

choices we need to make before analysis begins. Many of these are specific to RS

and involve the appropriate pre-processing of spectral data, and can be considered

data-specific hyperparameters (as opposed to the model-specific hyperparameters

heretofore considered). The following chapter explores many of these choices, as

well as appropriate validation strategies to ensure a reasonable estimation of the

generalisation error.



Chapter 5

Data Preparation

“Preparation is the key to

success. ”
Alexander Graham Bell

5.1 Introduction
Before using the models to analyse the datasets there are a number of considerations

regarding the nature of the data which need to be taken into account, else they might

fall foul of the dictum rubbish in, rubbish out. Some of these considerations are

particular to Raman spectra and medical datasets, and how best to split the data for

training, others are bound to the ML methods to be applied, and some intersect these

areas.

5.2 Model validation
As discussed in section 3 the pertinent point for assessing a ML model is how well it

performs with previously unseen data from the clinical setting of interest. This is

essential to finding a realistic estimate of the generalisation error. However, there are

many practical limitations to collecting new data, particularly in clinical research

which can be expensive and time-consuming, and so ways of exploiting existing data

must be used, which this section explores.

Single split
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A common compromise is to split an existing dataset into a training and a test

set, the former being used to train a model, the latter simulating the process of

collecting a new dataset and being used to test the performance of a model. This

requires holding out a proportion of the data, and so the test set is sometimes called

the hold-out set. If hyperparameters also need to be chosen an additional set called

the validation set can also be split from the data. This can be used to select the best

hyperparameters, and then the generalisation error can be estimated using the test

set. The partition of the training and validation sets can be understood as the former

being used to learn the model parameters while the latter is used to choose the model

hyperparameters.

However, these single splits can compound the problem of small datasets as less

data is used to train the model. In particular, though the method is relatively unbiased

it su�ers a high degree of variance [155]. This means that, even under ideal conditions

in which the train, validation and test sets are all drawn from the same underlying

distribution, the generalisation error of the test set can vary significantly, especially

when the validation/test sets are relatively small. Hence, we seek alternatives.

Cross Validation

An extension of single training/test splitting is k-fold cross-validation (CV).

This repeats the training/test split k times so that k models are trained and tested

on k sets of disjoint data, each one producing an estimate of model performance.

The average performance is reported, sometimes with an accompanying measure of

variance. Taken to its logical extreme is leave-one-out CV (LOOCV) in which the

test set comprises of a single datum (i.e. a spectrum), leaving the model with the

maximum amount of data on which to train. LOOCV theoretically should provide

the least biased performance, as it incorporates the largest amount of training data,

and with the lowest variance, as it only shifts one sample across folds [156]. However,

this assumes that CV is averaging independent estimates, but the reality is that the

samples may be highly correlated (which Raman spectra are known to be). LOOCV



�.�. Model validation ���

could then struggle to detect model instabilities caused by changing the dataset as

only one sample is changing at a time. Beleites et al. empirically showed that, in

the context of spectroscopy, LOOCV becomes pessimistically biased as sample size

decreases, in addition to having a high variance [157]. Consequently a k-fold CV

strategy may be preferable, though the precise number of k depends on a number of

interacting factors such as the sample size, SN R and the model used, which are not

trivial to reconcile.

An alternative to CV is bootstrapping. In this method, instead of splitting the

data into disjoint folds, the training set is constructed by randomly sampling from the

data with replacement (so the same datum could be selected multiple times), with

all the data not so selected being put into the test set. It has been argued that this

method is more robust than CV as the repeated random sampling is less likely to

inadvertently bias the sets compared to a single validation split [158]. However, there

are extensions to CV which mitigate this weakness.

A single instantiation of k-fold CV will produce k disjoint test sets to assess

the performance of a model. It is possible to repeat this process such that each new

instantiation contains di�erent combinations of samples in the training set. This is

known as repeated CV and has been shown to reduce the variance of the generalisation

error [157, 159]. Repeating k-fold CV is computationally expensive and becomes

unfeasible for particularly large datasets or computationally demanding models. For

this reason, CV is not as common for CNNs compared to other classification models

used in RS, instead relying on more biased single train/validation/test splits. This is

computationally tractable, but leads to less stable estimates of the generalisability of

a model, hence overfitting may not be detected.

Stratified CV is a process that can be added to the above strategies which ensures

that after data splitting an approximately equal number of samples is present from

each class. This can be useful for small datasets which, if randomly split, could result

in only one class being present during training [160]. It could also be useful for

particularly imbalanced datasets, where minority classes could be removed entirely

from the training set. This can ensure at least one sample is present in the training
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set from each class, though this imposes a limit on the size of k during k-fold CV

(and cannot be reconciled with LOOCV), as if k exceeds the size of the minority

class it will not be possible to ensure it is present during training.

The above shows that the choice of validation strategy influences the interpre-

tation of results as di�erent strategies have di�erent amounts of bias and variance

in their generalisation estimates. In the following section we return to the literature

reviewed in section 1.5 to determine if any lessons can be drawn before conducting

my own experiments upon the the Lynch and Ovarian datasets.

5.2.1 Lessons from the literature: validation

Nearly all of the reviewed studies conducted some kind split upon the data in order to

produce train, test and, in some cases, validation sets. Several partitioning strategies

were used (figure 5.1). Most common was k-fold CV, either 5-fold or 10-fold. These

are common default values in ML as they have previously been found to produce a

good balance between bias, variance and computational cost [159]. However, they

are somewhat arbitrary choices and, as discussed above, what would constitute the

optimal strategy is a nuanced topic. Most of the reviewed studies had low sample

sizes, with an average of 82 subjects. When the sample size is small LOOCV has

been shown to have a high bias and variance, while k-fold strategies had a lower

bias and their variance can be further reduced by performing repeated splits [157].

Hence the latter might be preferred. Unfortunately due to the heterogeneity of the

studies, it is di�cult to draw comparisons of CV strategies across them. One study

explicitly explored the di�erence in performance between LOOCV and k-fold CV.

Jeng et al. found that LOOCV yielded higher accuracies than k-fold CV (the value

of k was not specified) for a binary classification task, but this was reversed in a

three class problem. No attempt was made to compare the variance or bias of these

performances and so little can be inferred from this study alone.

Two of the reviewed studies performed repeated validation: Serzhantov et al.

repeated a single 50/50 train/test split 1000 times [85], while Fang et al. performed

10-fold CV 500 times, giving 5000 model estimates [100]. However, it was not

the purpose of either study to investigate the e�ect this method had on the bias or
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variance of the generalisation error and so was not explored. With a large enough

dataset this could be estimated by comparing models trained on partitions of the data

to a model trained on an entire dataset [159].

Figure 5.1: Validation Strategy used in the reviewed literature

The recent literature o�ers little exploration of the unique structure of oncological

Raman datasets, and so in the next section I conduct my own experiments upon the

Lynch and Ovarian datasets.

5.2.2 Cross validation experiments
Methods

I employ a stratified k-fold CV in these experiments, taking k-fold to its extreme

where it becomes LOOCV. Here stratification is not possible as there is only one

sample left out. This has been repeated 5 times, balancing the reduction in variance

this brings with increased computational cost. With this CV strategy, the three

models were all held constant in their hyperparameters so that the only variable

changing between experiments was the number of folds.

The outcomes of interest are the variance and bias of the generalisation error,

approximated here with accuracy for ease of interpretation. However, measuring bias

requires some estimation of the ground truth. With a large enough dataset a large

portion of the data could be used to create a model and use its score as a proxy for the

’true’ score, then smaller portions used to create train and test splits. Unfortunately,
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even the SMART dataset is not large enough for such an experiment. Without such

an estimate of the true performance we can only say whether the bias is changing

and so we shall note any trends in overall accuracy.

Results and Discussion

As can be seen in figure 5.2, the lower the value of k the less variance in

the estimate of performance. This is consistent with evidence which suggests that

in highly correlated datasets, variance increases with k [156]. This is due to the

dependence of the training data; the di�erent folds used in estimating performance

reuse a certain portion of the data, thus violating the assumption of independence

which is normally made when estimating variance. The mean accuracies also remain

largely consistent. This implies that any bias, which is likely to be present, is not

being overly a�ected, either optimistically or pessimistically, as the number of folds

changes. Also of note is that these findings are consistent across all three models

trained upon two di�erent datasets, adding credence to the idea that the principles

behind CV are invariant across models [157].

Based on these empirical results, together with theoretical considerations, I

proceed with a 3-fold CV strategy, stratified to ensure that minority classes are always

present in the training data and that no class is omitted with the smaller datasets,

repeated 5 times to reduce the variance of estimates while not demanding too much

computational cost. In the rest of this section various in silico experiments are

conducted. They will use this 5 x 3-fold CV strategy unless otherwise stated.

5.3 Pre-processing
Pre-processing refers to any changes made to the original Raman data. This is

usually done to remove artefacts in the data, making it more amenable to downstream

analysis.
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(a) Ovarian Data

(b) Lynch Data

Figure 5.2: Mean accuracy of PCA-LDA, SVM and CNN by the number of folds used during
k-fold CV. Error bars indicate +/- 1SD, smaller bars suggesting less variance.
Bias manifests as di�erences in mean performance, though true bias is unknown.
Note that the last value along each x-axis corresponds to the number of samples
in the dataset and so represent leave-one-sample-out CV.

Cosmic Ray Removal

Cosmic rays are high energy particles that originate from extraterrestrial sources.
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Occasionally such a particle will interact with a spectrometers CCD which manifests as

a spike on a spectrum, which could be confused for a real feature. Fortunately, cosmic

rays are usually conspicuous, and removing them with good fidelity is relatively

easy using one of several algorithms. For all three datasets, this was performed

automatically using WiRE softwares ’median filtering’ cosmic ray removal.

Smoothing

Smoothing is an optional pre-processing step applied to particularly noisy

spectra. It removes noise by passing a low-band filter over the wavenumber axis and

aggregates the intensity within the filter by some method such as the mean, median or

a polynomial function. The circumstances under which spectral smoothing provides

benefits are known to be narrow, and can worsen performance by exacerbating

correlations within the dataset [161]. No smoothing was performed on any of the

datasets in this thesis.

Saturated Spectra

The pixels of the CCD (not to be confused with image pixels) accumulate charge

at a given wavenumber which is counted after a given time. However, there is an

upper limit to how much charge each pixel can hold. When this limit is met, the pixel

becomes saturated and the count reads as zero.

In the Ovarian datasets these were removed by identifying spectra that had

more than 20 contiguous wavenumber regions at zero. In the SMART dataset they

were flagged automatically by the WiRE software and removed. The Lynch dataset

consists only of point spectra, allowing manual inspection of each spectrum in real

time and any saturated spectra were discarded and a new spectrum obtained.

Normalisation
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Normalisation is usually applied in RS to ensure that analysed spectra are

independent of di�erent Raman scattering collection geometries which would

otherwise lead to varying spectral intensities. This can mitigate some of the e�ects

of varying instrument conditions, such as alignment and laser power [162]. In the

context of machine learning normalisation ensures that no single variable is orders

of magnitude greater than others, which would e�ectively bias the model towards

that variable during training. Some models, such as tree based algorithms are robust

to normalisation, but the three models used in this thesis all require normalisation.

Figure 5.3 shows the same class average spectra as in figure 2.3 but baseline corrected,

as discussed in section 5.3, and Standard Normal Variate (SNV) normalised, as

might be performed in a typical Raman study pipeline [162] The comparison shows

how subtle spectral di�erences can be accentuated and spectral variance reduced by

pre-processing, which may facilitate downstream analysis.

Figure 5.3: An example of processed spectra from the Ovarian dataset, baseline corrected
via ModPoly fit (4th order polynomial) and SNV normalised

There are many types of normalisation. Unless otherwise stated, in this thesis I

perform SNV normalisation:

X � µX

�X

(5.1)

where X is a single spectrum, µX is its mean and �X its standard deviation.
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This results in a spectrum with 0 mean and unit variance.

Baseline Correction

The raised baseline often observed in Raman spectra of biological origin is

usually attributed to fluorescence and manifests as much broader spectral features

compared to Raman peaks [163], though it may also contain other contaminants.

There is an abundance of baseline correction techniques used in the Raman literature

to correct for this elevated signal including; asymmetric least squares, polynomial

fitting with modified, iterative and alternating variations, ’rubberband’ algorithms and

’rolling ball’ algorithms, to name just a few. Even studies focussed solely on exploring

the e�ect of di�erent baseline correction techniques can only analyse a subset of

these methods, not to mention the numerous parameters that each may require

[164, 165, 166]. Thus, it is clear that the choice of algorithm and its parameters

cannot be exhaustively searched and will involve some degree of arbitrariness. These

choices can have a profound impact upon downstream analyses. This has been

demonstrated in headline science news with the recent discovery of phosphine in the

Venusian atmosphere, indicating the presence of extraterrestrial life [167]. It was

shown that the spectroscopic phosphine signal was an error caused by the choice of

polynomial baseline with which to correct the data [168].

It has even been suggested that the fluorescent component of a Raman spectrum,

hitherto regarded as noise, may actually contain diagnostically valuable information.

Gaifulina et al. found that the broad fluorescence signal was correlated to degeneration

of human cartilage [169]. If this is the case, then baseline subtraction may be removing

clinically relevant information. Indeed, there is evidence suggesting that most pre-

processing techniques, and their numerous parameters, actually worsen subsequent

classification performance [164]. Section 5.3.2 explores experiments with various

baseline correction techniques, but first we look at pre-processing in the Raman

oncology literature.
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5.3.1 Lessons from the literature: pre-processing

The literature review conducted in section 1.5, identified numerous pre-processing

techniques for RS oncology data. Finding the best pre-processing method and

parameters is often left to trial and error, or sticking with what worked well in the

past. Although more rational approaches exist, such as searching with a genetic

algorithm [164], removing the need for pre-processing is attractive. Hence, some

of the reviewed literature explored the potential of CNNs to automatically perform

feature selection and pre-processing at the same time. However, most ML models

require normalisation, hence in the subsequent discussion, references to ’raw’ data

include normalisation. Four studies explored a suite of pre-processing steps against

raw data.

Lee et al. compared ’baseline corrected’ data to raw data and found that for

traditional ML models baseline correction improved performance [97]. However,

the CNN performed better on the raw data with an accuracy of 96.56% +/- 0.91%

compared to 90.22% +/- 0.50%. The best performance on pre-processed data was

PCA-QDA with an accuracy of 95.00%. The precise nature of the baseline correction

used was omitted.

Fang et al. compared baseline correction and spectral smoothing via the

Vancouver Raman Algorithm (VRA) to raw data. They show a learning curve in

which the former method converges to 100% accuracy fractionally more quickly than

the latter, though both ultimately give the same results. In this case pre-processing

did not improve the performance of the CNN.

These studies suggest that CNNs can classify data without pre-processing. There

is even a suggestion that the architecture is able to exploit diagnostic information

present in raw data too subtle for traditional models to detect and is usually discarded.

However, this finding was not ubiquitous.

Yan et al. pre-processed data by smoothing with a Savitsky-Golay filter and

baseline removal via asymmetric weighted penalty least squares [90]. Compared to

raw data, pre-processing improved CNN accuracy to 98.75% from 96.70%.
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Wu et al. found similar results. They performed baseline correction and spectral

smoothing using the VRA and compared this regimen to raw data [99]. The former

regime outperformed the latter across all subset analyses. This includes the traditional

models, KNN, RF and SVM, but the largest decrease in performance was observed

in the CNN (accuracy: pre-processed 81.3%, raw 75%).

In all the above cases, where traditional ML models were used, they were

improved by pre-processing. Although some of these studies suggest that CNNs

could preclude an explicit pre-processing stage, this is not clearly established in the

literature. There are a plethora of pre-processing techniques and it may be that some

techniques were better suited to particular datasets than others, i.e. the pre-processing

step has introduced overfitting and CNNs trained on raw data would generalise better

when clinically deployed, even though their performance would be worse during

training and testing. This is just speculation until it is more thoroughly explored.

Bjerrum et al. commented on an apparently contradictory finding, that first

removing baseline o�sets during pre-processing via Extended Multiplicative Scatter

Correction (EMSC), and then randomly adding this back into the data during data

augmentation, yielded better results than just augmentation alone [170]. They

speculated that the CNN was forced to focus on features invariant to the short-

comings of EMSC while still benefitting from baseline correction. Augmentation is

discussed in section 5.7.

The order in which these pre-processing steps occur also needs considering. For

instance, if SNV normalisation is first performed followed by baseline correction,

then the subsequent spectra will not have zero mean and unit variance as intended.

The order of pre-processing was inconsistently reported in the literature. Where

explicitly reported this followed; truncation to a given wavenumber region, removal

of saturated spectra, removal of noisy spectra, baseline removal, outlier removal and

normalisation [82], or; truncation, outlier removal, MSC normalisation, removal of

noisy spectra, baseline correction, smoothing and min-max normalisation [84].

These findings are unfortunately inconclusive, thus in the following section I

take the Ovarian and Lynch dataset to perform some baseline correction experiments.



�.�. Pre-processing ���

5.3.2 Baseline correction experiments
The number of baseline correction techniques is too great to search exhaustively,

and there is no a priori reason to think that any one technique will work better

than another for any given application. Hence I investigate a few techniques, which

are well established in RS and are relatively easy to perform. The first is the

famous ’Mod Polyfit’ method of Lieber and Mahadevan-Jansen in which a modified

polynomial is iteratively fit to a spectrum using a least-squares-based polynomial

curve fitting function which ignores Raman peaks [171]. This requires selecting

a single parameter: the order of the polynomial to fit. An extension of this is

’Improved Modified Multi-Polynomial Fitting’ (I Mod Polyfit) [172]. This was

designed to improve fluorescence background removal by being able to account for

signal noise distortion and the influence of large Raman peaks. This method also has

the parameter of polynomial order. Zhang et al. developed an adaptive iteratively

reweighed Penalised Least Squares method which is similar to the previous methods

but has the desirable trait of not needing any parameters [173]. Finally, Extended

Multiplicative Scattering Correction (EMSC) was developed to correct for additive

baseline e�ects, multiplicative scaling e�ects and interference in near infrared (NIR)

spectroscopy, but has been found to be useful in Raman applications for fluorescence

removal [174].

I took each of these techniques, with a range of parameters, and applied them to

the Ovarian and Lynch datasets. The polynomial order ranged from 1-5. Higher orders

were not explored due to a mathematical artefact known as Runge’s phenomenon

which causes increasingly severe distortions to the tails of Raman spectra as the order

of the polynomial increases.

Methods

Data preparation for this experiment was identical for the Ovarian and Lynch
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datasets. Thirteen baseline correction methods were employed; one with no correction,

5 using Mod Polyfit with order of 1-5, I Mod Polyfit with order of 1-5, Zhang’s

method and EMSC. These were analysed using all three models (PCA-LDA, SVM

and CNN) with all other hyperparameters held constant, allowing only the baseline

method to vary. The 5 x 3-fold CV strategy was used for a total of 15 folds per

correction method. The mean accuracy and SD of each method was calculated.

Default values for the ML hyperparameters were used and so the accuracies reported

here are not necessarily representative of final model performance, and it is the

change in performance as a function of baseline correction method that it is pertinent.

Results and Discussion

Figure 5.4 shows the same spectrum under the di�erent baseline correction

methods. Of note is that the Zhang method performs piecewise linear-fitting over the

wavenumber region. The figure also shows how EMSC uses the average spectrum

from the dataset to correct a single spectrum. For the polynomial fitting methods,

it could be argued that a larger order of polynomial may be better able to fit to the

contours of the fluorescence component. However, there is no objective way of

knowing when over-fitting has occurred. As the methods are not dynamic, so do

not make allowances for any particular spectrum, what may work well for any one

spectrum may not work well for all spectra, even in the same dataset. For this reason,

it is prudent to consider the e�ects of these methods upon averaged spectra.

Figure 5.5 shows the results of baseline correction upon the mean Lynch spectrum

via four di�erent methods, two of which span five parameters. By inspection it is not

clear which method and parameters are most ’correct’. Of note is that some methods

will return negative values at certain points in the spectrum. This was one reason

why SNV normalisation was performed, which is not a�ected by negative values

(some forms of normalisation are only defined for non-negative values and so would

require an additional step of processing). A similar story is apparent in figure 5.6,

which shows the mean Ovarian spectrum by the same baseline correction methods.
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(a) EMSC Corrected Spectrum (b) ModPoly Corrected Spectrum: 5th order

(c) IModPolyCorrectedSpectrum: 4th order (d) Zhang Corrected Spectrum

Figure 5.4: Baseline Corrected Spectra, showing the same original spectrum from the
Ovarian dataset (blue), the baseline corrected spectrum by di�erent methods
(orange) and the removed component (green).

In this instance the EMSC had a far more ’correcting’ e�ect compared to the Lynch

data. EMSC also involves a choice of polynomial order for baseline subtraction. For

both the Ovarian and Lynch data this was fixed at 4. The di�erences in the corrected

spectra show how sensitive the technique is to such choices. Often, automated

software packages will simply use a default value, obscuring this parameter. For the

Lynch data, the choice had little impact.

Figure 5.4 shows the same spectrum under the di�erent baseline correction

methods. A larger order of polynomial may be better able to fit to the contours of

fluorescence, though there is no objective way of knowing when over-fitting has

occurred. Of note is that the Zhang method performs piecewise linear-fitting over

the wavenumber region.

One way to tease out the biochemical di�erences between a collection of spectra
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Figure 5.5: The mean spectrum from the Lynch dataset subject to four di�erent baseline
correction techniques, two of which also have varying parameters.

Figure 5.6: The mean spectrum from the Ovarian dataset subject to four di�erent baseline
correction techniques, two of which also have varying parameters.

is to take the di�erence spectrum. This involves taking the average spectrum for each

class in a dataset; residual and no-residual disease in the case of the Ovarian dataset.

We then subtract from the no residual disease (the null case) the residual disease

spectrum. What is left is the di�erence between the two groups, which highlights

which peaks distinguish the groups. Applying this method to four di�erent cases:

the original spectra, and one from each baseline correction method, choosing the
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best polynomial order (as defined by returning the highest accuracy), we can see the

di�erences in figure 5.7.

(a) Original Data (b) I Mod: 5th order polynomial

(c) Mod: 4th order polynomial (d) Zhang Method

Figure 5.7: Di�erence spectra according to baseline correction method of the residual and
no-residual disease groups from the Ovarian dataset

We can see that baseline correction in general has a significant e�ect upon the

visual appearance of the di�erence spectra. The most striking di�erences between

the methods occur at the tails of the di�erence spectra, with evidence that Runge’s

phenomenon is still causing mis-fitting, despite the relatively low order of the

polynomials. Aside from the tails, there are important di�erences between the spectra

which would lead to di�erences of interpretation of the biochemical constituents that

distinguish the two groups.

A more quantitative metric is to assess the impact upon model performance.

Figures 5.8 and 5.9 shows the accuracy of the three models with varying baseline

line correction methods on the Ovarian and Lynch datasets respectively.
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Figure 5.8: Model accuracy by baseline correction method: Ovarian dataset. Average value
over 15 folds and +/- 1 SD bars.

These graphs show that di�erent ML models may be better suited to di�erent

baseline correction methods and parameters. For instance, with the Lynch data the

CNN seemed to improve with a small degree of ModPoly correction, though other

models did not likewise improve. However, the Ovarian data did not replicate this

trend and any interpretations are tentative, as it is di�cult to say that any of the

di�erences observed here are large enough to be considered significant in light of the

SD bars.

We may additionally construct scatter plots of the data separated by class to

visually represent the degree of separation, and see if this is improved by baseline

correction. In figure 5.10 this is done via PCA plots of the first two principle

components (representing 87% and 84% of the variance for the uncorrected and

the best baseline corrected data respectively). This shows that there is considerable

overlap in the classes particularly between the MSI-H and MSS groups - consistent

with traditional methods which struggle to distinguish these two groups. This shows

that a linear separation of the data would be di�cult. But most pertinent in this
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Figure 5.9: Model accuracy by baseline correction method: Lynch dataset. Mean value over
15 folds and +/- 1 SD bars

section is that this is not improved by baseline correction.

(a) Uncorrected data PC1 and PC2 (b) Baseline corrected data PC1 and PC2

Figure 5.10: Visualising class separability of uncorrected Lynch data and baseline corrected
(Mod poly 2nd) data via PCA plots

Overall, there is little appreciable di�erence in performance across the various

baseline correction methods. Added to the inconclusive findings in the literature and

considering that altering Raman spectra can change the interpretation of biochemical

di�erences, it is most conservative to apply the principle of Occam’s razor and to cut

out this pre-processing step.
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Proceeding without baseline correction, the order of pre-processing in subsequent

analyses, unless otherwise stated, is cosmic ray removal, removal of saturated spectra

(via 3 x 3 median filtering of adjacent spectra), both conducted on the manufacturer’s

software, followed by truncation to the wavenumber region 400-1800 cm
�1 and SNV

normalisation.

These pre-processing steps are particular to Raman data. There are additional

data preparation steps which need to be taken into consideration due to the medical

nature of the data. The subsequent sections explore three of these, including the

hierarchical structure of the data and whether the datasets are balanced in terms of

their class labels. Understanding these is essential in order to properly split the data

during model training such that bias is not introduced into the results. These issues

are generally exacerbated by small sample sizes. One strategy to ameliorate this

problem is data augmentation, which can significantly inflate the training sample

size for CNNs by creating synthetic samples. However, this technique comes with its

own risks and so is carefully appraised in section 5.7.

5.4 Hierarchical structure of biomedical Raman data

As described in section 2, for all datasets in this study multiple spectra were taken

from samples. In addition to this, for the Lynch and SMART datasets, several samples

were occasionally taken from the same subject. And unique to the SMART dataset,

three clinical sites collected ostensibly the same data. This introduces a hierarchical

structure to the data, illustrated in figure 5.11, which must be considered during

analysis. In this section I first consult the literature review of section 1.5 to ascertain

current practices and then perform my own experiments on the Ovarian and Lynch

datasets.
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Figure 5.11: Top level: Clinical setting and/or instrumentation. Second level: Patient. Third
Level: tissue sample. Fourth level: spectra. Only the SMART dataset contains
all four level, the Lynch and Ovarian data being single centre.

5.4.1 Lessons from the literature: hierarchical splitting of the

data

Most of the reviewed studies classified individual spectra. Many such spectra were

often taken from a sample, and several samples were sometimes taken from the same

subject. This raises the question of at which level is it appropriate to split the data

during CV: spectra, sample or subject. If split at the level of spectra, this could mean

that spectra belonging to the same sample and/or subject are present in both the

training and test set (figure 5.12). This could lead to overly optimistic estimates of
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the generalisability of the model as it is not a realistic assessment of the model, which

in the clinical setting would be classifying spectra obtained from unseen samples.

Of those studies that split the data at the level of spectra the best accuracies

were: 90%, 94.8%, 96.56%, 97.7%, 93.8% and 94.8%. Of those studies in which

the level of split was not explicitly stated the accuracies were: 99.0%, 98.75%,

96.90%, 99.54%, 92.00%, 100%, 80.2%,99.0%, 90.5% and 96.7%. And of those

studies splitting data at the level of subject or sample the accuracies were: 84.43%,

99%, 81.75%, 98.23%, 83%, 87%, 92.89%, 74.95%, 81.3% and 65.5%. No attempt

has been made to statistically compare these groups as might be performed in a

meta-analysis as the various study aims and methodologies are too heterogeneous

to make such comparisons statistically valid. However, it can qualitatively be seen

that studies which split data at the level of subject or sample tend to report lower

accuracies than those that split data at the level of the spectra, or those that do not

explicitly state the level of the split. Splits at the subject or sample level likely reflects

more realistic assessments of how well the model would perform in the clinical setting.

Of particular note is the study by Wu et al., the only study which explicitly compared

methods of splitting upon the same dataset. They found a drop in performance

of 12.5% in the overall accuracy when splitting at the sample level [99]. This is

consistent with findings from Guo et al. who explicitly examined the di�erence that

the level of the split makes during CV with tumour cell lines, concluding that the

highest hierarchical level of the dataset should be used when partitioning the data

[175]. There is reason to believe that some of the high accuracies reported in the

literature are due to not taking into account the structure of the data and splitting

accordingly.
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Figure 5.12: Spectra versus patient data splitting. Pn refers to the n
th patient. Of note is

how the test set split by spectra includes all patients also contained in the train
set.

In many of the studies one sample was taken per subject. However, some studies

took multiple samples from the same subjects, which introduces an additional strata

into the hierarchy. For instance, Zuvela et al. took 113 samples from 60 patients [93]

and Shu et al. sampled 888 sites from 418 subjects [95]. Both studies split the data

at the level of samples rather than the highest level, subject, so it is not possible to

ascertain what impact this may have had on subsequent analyses.

Two studies classified only the average spectrum from a single sample, thus

flattening the hierarchical structure of the data and bypassing this issue [75, 80].

Both studies took spectra from serum samples and analysed the data using traditional

chemometric models. Neither study examined how taking the average spectrum

per sample compared to using all sample spectra. Jeng et al. did compare the

performance of using average spectra vs all five spectra of a single sample in their

PCA-QDA model, finding the former method had an accuracy of 88.75% vs 83.00%

[76]. We shall return to this in section 5.5; in the following sub-section we investigate

how taking into account the hierarchical structure of the data influences outcomes.
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5.4.2 Hierarchical splitting of the data: experiments
In this section I explore the impact that the level of split during CV has upon the

accuracies obtained from the Lynch and Ovarian datasets.

Methods

The three models of PCA-LDA, SVM and CNN were again used for this

experiment, as described above. The only di�erence made during training was that

in one instance the data were split randomly during CV as would typically be done

for data with a flat structure (i.e. no hierarchy). In this CV strategy spectra from the

same subject and sample could be present in both the training and test set. In the

other instance CV was performed such that all spectra belonging to the same sample

would remain as a single block so that all would either be in the training or test set.

As with the baseline experiments, default values for the model hyperparameters were

used and only the method of CV splitting changed: splitting by spectra or splitting

by subject.

Results and Discussion

As can be seen in table 5.1, splitting by subject significantly reduces the accuracy

achieved across both datasets and across all models. This is consistent with findings in

the literature review; both from those studies which explicitly investigated this strategy

and implicitly in the numerous studies which employed various strategies with those

splitting by spectra reporting generally higher accuracies. This accords with the

theoretical concern that splitting data at a lower level means that the independence

assumption is violated, as spectra from the same sample would be present in both

the training and test sets leading to an over-estimation of the generalisation error.

We can conclude that splitting by subject leads to more accurate estimates. Also of

note is the variance achieved in these results. The accuracies achieved when splitting

by spectra have a generally small standard deviation compared to when splitting by

subject. This is likely a manifestation of the former strategy incorporating subjects

in both the training and test sets, whereas the latter strategy is forced to attempt to
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generalise to previously unseen subjects. This is a more realistic replication of what

the models would encounter in the clinical setting, and also demonstrates that patient

variability is a significant contribution to the uncertainty of the generalisation error

with small datasets.

Model/Dataset Accuracy: Spectra Split Accuracy: Subject Split Di�erence in performance
PCA-LDA

Lynch 85.32% (+/- 1.56%) 68.24% (+/- 7.10%) 17.08%
Ovarian 78.65% (+/- 1.69%) 60.00% (+/- 11.86%) 18.65%
SVM
Lynch 85.63% (+/- 1.49%) 65.71% (+/- 7.31%) 19.92%

Ovarian 80.21% (+/- 0.91%) 51.07% (+/- 9.91%) 29.14%
CNN
Lynch 70.62% (+/- 8.15%) 60.73% (+/- 6.05%) 9.89%

Ovarian 83.37% (+/- 2.45%) 64.29% (+/- 7.01%) 19.08%

Table 5.1: Accuracy according to how the data was split: by spectra or by subject

This firmly establishes the necessity of splitting data during CV at the correct

level in order to appropriately measure the generalisation error. In the baseline

correction experiment of section 5.3.2 the data were split by subject.

5.5 Accounting for sample heterogeneity

5.5.1 Lessons from the literature: sample heterogeneity
In the literature there were two methods by which sample heterogeneity is currently

incorporated. Averaging spectra provides one means, while including multiple

spectra from a single sample provides another. Indeed, all studies in the literature

employed one of these strategies, regardless of the intended clinical use. There was

no direct comparison of these methods in the literature reviewed. A priori, there

is no reason to suspect that one approach will work better than the other and will

likely depend upon the intended application. For instance, a mean spectrum typically

has a higher SN R than individual spectra, and a model trained on the former may

not generalise to applications requiring individual spectra to be classified, such as
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post-surgery cancer edge detection. It is also an open question whether averaging

spectra from a sample before analysis would be an e�ective use of data for deep

learning models, which are notoriously data intensive. Overall, it is not clear that

averaging spectra will always provide a benefit, and the decision to do so should take

into account the nature of the application and the model being used.

For all applications in this thesis, it is the sample label which is pertinent to

the pathologist as this will be what guides patient management decisions. This

allows for an alternative method of classifying or predicting disease class: using the

classifications of individual spectra within a single sample to ’vote’ on the overall

sample class. I shall call this method simple consensus classification. One way of

doing this would be to classify each individual spectrum in a sample and then pick the

most common label amongst all the spectra as the sample’s predicted class. However,

this is not indicative of current histopathology practice, in which even if only a small

amount of tissue in a sample unambiguously shows the worst possible disease class,

then the whole sample will be labelled as that class. A simple consensus voting would

miss such cases. An alternative is to assess whether the worst disease class is present

above some pre-defined threshold (20% was used in the subsequent experiment).

If not, the next worst disease is assessed against the same threshold until a class is

selected. I shall call such a voting system as a proportional consensus classification.

In the following section I shall explore 4 methods of taking sample heterogeneity

into account: classifying each individual spectra, by the mean spectrum of each

sample, by sample as determined by simple consensus and by sample as determined

by proportional consensus.

5.5.2 Sample heterogeneity: Experiments

Methods

The Lynch and Ovarian datasets were used for this experiment, utilising the

three models using the 5 x 3 CV strategy as defined in section 5.2. All model

hyperparameters were held constant across each dataset. The CV strategy was
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applied to each of the four above methods described above to account for sample

heterogeneity. The method classifying individual spectra still ensured training/test

splits were made at the appropriate level of the hierarchy.

Results and Discussion

Tables 5.2 and 5.3 show the performance by di�erent method with the Lynch

and Ovarian dataset respectively. Although the error margins are large and overlap, a

general trend can be seen in that labelling by sample with simple consensus produces

higher accuracy. However, classifying samples by their average spectra is largely

competitive across most models and for both datasets. Given the computational

advantage of this method, it is an attractive option. However, the speed up is

not su�cient for the applications in this thesis to warrant even the slight drop in

performance.

Note that the error margins tend to be narrower for the ’by spectra’ method.

This is because that method classifies thousands of individual spectra, and as sample

size increases the variance of the sample mean decreases. As the other methods are

taking a consensus over each entire sample they are classifying per sample rather

than per spectrum and so have tens rather than thousands of classification attempts.

Lynch Data By Spectra Proportional Simple Sample Average
Consensus Consensus Spectrum

PCA-LDA 73.1% +/- 6.7 71.3% +/- 10.2 82.6% +/- 12.4 79.6% +/- 9.7
15 PCs
SVM 72.6% +/- 15.7 70.0% +/- 12.1 74.7% +/- 10.9 71.4% +/- 15.7

c = 10, � = 0.01
CNN 66.2% +/- 6.3 63.2% +/- 13.8 74.5% +/- 11.5 66.7% +/- 15.7

LR = 0.001, BS = 64

Table 5.2: Lynch data accuracy by method of sampling

As discussed in section 3.3, focusing on accuracy alone can obscure rather

than clarify. In particular, to determine what di�erence the proportional consensus

method makes we can look at the confusion matrices of the best performing model:

the PCA-LDA model on the Lynch dataset. Despite the simple consensus model

performing better in terms of accuracy we might expect the proportional method to
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identify more true disease classes at the expense of giving more false disease classes.

Indeed, the proportional consensus model gives far fewer errors in classifying the

MSS class, 8% error compared to the 26% error of the simple consensus. However,

it misclassifies MSI-H as MSS in 64% of cases, which is only 22% in the simple

consensus method. There may still be cases where this is desirable. If the cost

(human and financial) of misclassifying one disease class is particularly high then

reliably identifying that class at the expense of misclassifying other classes may be

preferable.

Ovarian Data By Spectra Proportional Simple Sample Average
Consensus Consensus Spectrum

PCA-LDA 53.4% +/- 7.4 52.2% +/- 13.4 55.6% +/- 14.5 53.3% +/- 16.3
3 PCs
SVM 54.4% +/- 7.5 56.7% +/- 24.1 53.3% +/- 12.5 40.0% +/- 20.9

c = 10, � = 0.01
CNN 49.5% +/- 15.0 44.4% +/- 19.9 50.0% +/- 23.6 47.7% +/-16.3

LR = 0.001, BS = 64

Table 5.3: Ovarian data accuracy by method of sampling

The choice of threshold for the proportional consensus in this experiment

(20%) was arbitrarily selected. It may be a useful metric but would require expert

histopathological input to choose a range of possible values, then further, independent,

data to properly calibrate the choice. This is beyond the scope of this thesis, and

so to evaluate the models in section 6, I shall use the simple consensus model to

determine their performance. This results in improved performance, and also more

directly mimics current histopathological practice for all three clinical problems

under consideration in that whole slides, rather than individual pixels, are the unit of

interest.

5.6 Imbalanced Data
Class balance refers to the distribution of classes within a dataset. In a balanced

dataset the classes are approximately equally distributed; in an imbalanced dataset

one or more of the classes has fewer members. It is common for medical datasets
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(a) Classify by spectra (b) Classify by proportional consensus

(c) Classify by sample: simple consensus (d) Classify by average spectrum

Figure 5.13: Confusion Matrices by method of classification: taken from Lynch data
PCA-LDA model

to have some degree of class imbalance as this often reflects the true distribution

of disease classes in a population, or the distribution of cases presenting with a

suspected disease. This is particularly true of rare diseases.

This can be a problem for ML if the aim is to optimise the training error

regardless of class distribution. A toy example of how this becomes problematic is

illustrated in a case where there are 100 samples, 99 belonging to a ’healthy’ class and

1 to a ’diseased class’. A model need simply classify all samples as healthy in order

to achieve 99% accuracy. This is also a lesson in the dangers of using a single metric

to assess performance. For instance, the sensitivity of this toy classifier would be 0%,

giving a clear indication of a problem. Regardless of the metrics, imbalanced datasets
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in the medical literature have been shown to bias towards the majority class [176].

However, as discussed in section 3.2.1, disease class distribution represents important

information from the real world, and this knowledge is critical in constructing the best

possible classifier. Therefore, there is a tension between these competing concerns.

This tension has not been addressed in the recent oncological Raman literature

(section 1.5), as research datasets tend to be reasonably balanced. Hence, we turn to

the more general medical literature for insights into the problem.

There is no precise definition of what constitutes class imbalance as many factors

interact to determine how much of a problem it is. For instance, Krawczyk showed

that for classes with non-overlapping distributions which are linearly separable, then

any amount of imbalance is acceptable [177]. However, this is an extremely unlikely

scenario for medical datasets. Factors such as the degree of imbalance, the sample

size and the degree of separability all interact to determine how much of a problem,

if at all, it presents [178].

A common metric of class imbalance is the imbalance ratio (IR): dividing the

highest class membership by the lowest.

IR =
Instancesma jority

Instancesminority
(5.2)

Studies can su�er a large degree of imbalance with I R = 100 or even I R = 1000.

However, even studies with an IR = 10 have been found to hinder the training of

models [178]. It has been shown that class imbalance becomes less of a problem as

overall sample size increases (even if the IR remains constant) [179]. Unfortunately,

medical sample sizes are typically very low compared to the general ML literature.

Additionally, the degree of separability between classes determines how much of a

problem imbalance is, with findings showing that as the degree of data complexity

increases, so too does the susceptibility to any imbalance [180]. There is very little

literature regarding multi-class classification with imbalanced datasets, which would

only complicate matters [178].

The Lynch and Ovarian datasets were deliberately constructed to su�er from

no class imbalance (i.e. IR = 1). This sampling strategy has been referred to
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as separate sampling [130]. The SMART dataset was perhaps closer to random

sampling. However, it is not clear whether this was truly random, or merely a sample

of convenience based on samples that were available in the biobank at the time. A

common mistake is to assume that a sample of convenience is the same as a random

sample, but this is not necessarily true. For instance, an unrelated study may have

recently sought samples of a particular disease class, thus depleting these from

the biobank, skewing the class distribution for the subsequent study. Regardless,

the SMART data has some class imbalance with IR = 3.5 counting by spectra and

IR = 3.1 counting by patient. Given the previous discussion that we should split data

at the highest level present in the data, we shall use the latter value. This is not as

severe as examples found in the literature, but the sample size is relatively small and,

as shown in section 2.4.3, there is a significant degree of class overlap, particularly

between the clinically intermediate groups of HGD, LGD and IM.

As it is unknown whether the SMART data was truly sampled at random, and

without knowing the true disease class distributions in the clinical setting and given

that small samples sizes are known to exacerbate class imbalance issues, it is perhaps

most prudent to address the class imbalance in the dataset. There are two main

remedies: data-level and algorithm-level.

Data level balancing

These methods alter the original data during the pre-processing stage. This

can involve either under-sampling, where members from the majority class are

deliberately excluded from analysis, or over-sampling, where members from the

minority class are increased by one of several methods. Both methods rebalance the

data to more equal levels. The former method may be undesirable as it discards what

could be scarce and expensive data. The latter method may seem more prudent, but

it can potentially lead to over-fitting and so needs to be implemented with care.

I will not explore any under-sampling methods. Not only does this discard

precious medical data, but many such methods have been shown on medical image

datasets to under-perform compared to over-sampling methods, while increasing the

variance in the generalisation error, which suggests instability in models so trained
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[176]. This is exacerbated the more imbalanced the dataset is as more data needs to

be discarded from the majority class to achieve equity with the minority class.

The simplest over-sampling method is random over-sampling (ROS) in which

samples from the minority class are randomly replicated with replacement and added

to the data until all the classes are equal (IR = 1). Despite its simplicity, over two

datasets and three classifiers, ROS has been found to be the best rebalancing method

[176]. Another popular method is the SMOTE (Synthetic Minority Over-Sampling

Technique) algorithm, which produces synthetic instances by interpolating between

the minority instances using kNN (k-Nearest Neighbours) [181]. An extension of

this is borderline SMOTE which performs SMOTE on borderline instances which

are often misclassified by their nearest neighbour [182].

Algorithm level balancing

We can also adjust the model in a way to better accommodate imbalanced data.

With CNNs the loss function can be adjusted to account for the class imbalance,

as was shown in equation 4.5. This weights the loss function such that the weight

multiplied by the class distribution frequency of each class is equal. This method is

not available for LDA or SVM. Other algorithms, not considered here, have been

found to be robust to imbalanced data, such as the AdaBoost model [183].

To determine the extent of any class imbalance problem in the SMART dataset,

and to determine the best method of ameliorating it, we first explore class imbalance

in a simulated environment constructed from the Lynch dataset before exploring a

subset of the SMART dataset itself.

5.6.1 Imbalanced data: Lynch rebalancing experiments
In order to simulate class imbalance in a multi-class classification setting I took the

Lynch data and artificially imbalanced the data. This was done by systematically

reducing the MSI-H class until only three samples were left. MSI-H was selected as

this has the lowest degree of class separability, particularly in relation to the MSS

group: this distinction is both the point of the study and a harder problem than
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distinguishing healthy from MSS AC. By selecting the class with less separability any

class imbalance is exacerbated. This also more closely mimics the class imbalance

present in the SMART dataset, in which the minority classes of HGD and LGD also

happen to be intermediate, less separable, states of oncogenesis, making any lessons

learnt from this simulation more applicable.

Method

As described in section 2.2, the Lynch dataset contains three classes, each with

ten samples. From the MSI-H disease class, one sample was removed at a time until

only three samples were left. Thus the maximum I R was 3.33, approximately equal

to that of the SMART data, and the minimum IR 1. For each removal the 5 x 3-fold

CV training strategy was used for all three models. The CV splits were stratified such

to ensure at least one MSI-H sample was always present in the training and test set.

This reduced dataset was then subject to four treatments: no treatment (imbalanced

data), ROS, SMOTE and weighted loss function. These ’rebalanced’ datasets were

then trained on a PCA-LDA, SVM and CNN using the same hyperparameters as in

previous experiments. Note that the weighted loss function is only available for the

CNN. There is a rebalancing available for the hinge loss used by SVM, but it is only

possible for linear SVM, which I have not been using.

Confusion matrices provide a reasonable summary of the performance of the

various models. However, for this simulation an unwieldy number of comparisons

are being made, hence a more simple collection of metrics is reported. Along with

the overall accuracy, the class specific accuracy for each of the three classes is also

given. This allows us to track the behaviour of several classes as the I R changes.

Results and Discussion

Figures 5.14a, 5.14b and 5.14c show that class imbalance is having an impact

upon all three models, especially upon the minority class which has a lower class

accuracy as the IR increases. The CNN is particularly sensitive to this imbalance.

Interestingly, the overall accuracy slightly decreases as the IR trends towards unity.

This is a consequence of the majority classes performing better when the minority

class is less represented: these being the majority class they increase the overall
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accuracy, even though there is limited performance in the minority group. It has

been suggested that SVMs are less prone to class imbalance [178], though here its

performance is comparable to PCA-LDA, which is known to be sensitive (figures

5.14b and 5.14c ) [146].

(a) CNN (b) SVM (c) PCA-LDA

(d) CNN: ROS (e) SVM: ROS (f) PCA-LDA: ROS

(g) CNN: SMOTE (h) SVM: SMOTE (i) PCA-LDA: SMOTE

(j) CNN: weighted (k) Key

Figure 5.14: Overall and per class of accuracy as a function of imbalance ratio (IR) over
three models, CNN, SVM and PCA-LDA, and under di�erent imbalance
mitigation strategies. Top row is the original data with no attempt to mitigate
class imbalance. Green line represent overall accuracy, red line the ’normal’
class, cyan line the ’MSS’ class and the blue line the minority class, ’MSI-H’.
Note that SDs have not been reported for the class accuracies as these were so
wide as to render the results meaningless. Instead we will focus on trends in
the data.

All the rebalancing techniques similarly improve the CNNs minority class

performance, with the most pronounced improvement achieved with the highest IR.

The benefit of data level techniques to the SVM and PCA-LDA performance is less

clear. These experiments show that even an I R = 3.33 can introduce di�culties to
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model training with biomedical Raman data.

Another explanation for why rebalancing data may help performance is that the

technique de facto performs bootstrap sampling. This is similar to other resampling

CV strategies but spectra are sampled from a dataset with replacement, meaning

that the same sample can be taken more than once. Testing is then performed on

those spectra which have never been taken, forming an out-of-bootstrap test set. By

rebalancing the training data with ROS, this process is being imitated.

I next extend the experiments to the SMART dataset which has true class

imbalance.

5.6.2 Imbalanced Data: SMART Experiments
Method

A subset of the SMART data, representing a single study centre, was taken.

This subset had an IR = 3.0. The data was already imbalanced but otherwise it was

subject to the same process as the Lynch rebalancing experiment, whereby di�erent

methods of rebalancing were compared to no rebalancing.

Results and Discussion

Figure 5.15 shows that in terms of overall accuracy the imbalanced data performs

best. This accords with the Lynch rebalancing experiment. However, this performance

comes at the expense of misclassifying the minority classes HGD and LGD. These

were only classified correctly 8.2% and 11.4% of the time respectively, both often

being misattributed to IM. ROS improves performance in these minority classes

to 27.7% and 33.3% at the expense of the majority classes. SMOTE achieves

comparable results with 32.3% and 28.4% as does a weighted loss function with

27.6% and 36.8%. In all cases it is the most prevalent class, IM, that su�ers the most

from balancing the data, from a class accuracy of 68.7% to 45.5%, 42.4% and 35.9%

respectively.

The results from this, and the Lynch rebalancing experiment, prompt a clinical

decision: whether it is preferable to misclassify the minority groups in favour of
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(a) Imbalanced (original) data (b) ROS data

(c) SMOTE data (d) Reweighted loss function

Figure 5.15: SMART: CNN Confusion Matrix by di�erent balancing strategies

classifying majority groups. In many medical decisions this problem often occurs in

the context of rare disease versus no disease. However, here the decision is whether

to detect intermediary disease states that are, perhaps, under-represented in the data.

Much depends upon the clinical consequences of such misclassifications.

Unfortunately, histopathological definitions vary worldwide, as do clinical

pathways [184]. In LGD, molecular architecture is largely preserved with only

subtle morphological changes, making it di�cult to distinguish from non-dysplastic

tissue [185]. HGD displays more marked atypical features and hence di�erent

morphological features. However, there is no clear demarcation between the two,

leading to high inter and intra-rater variability [186, 187]. The distinction between

grades is clinically important as their management options vary. LGD is managed
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via endoscopic surveillance with endoscopic resection as needed, or potentially with

radiofrequency (RFA) ablation. Patients with HGD undergo far more intensive

surveillance with options including RFA +/- endoscopic mucosal resection and

surgical resection.

The clinical relevance of IM is less clear. IM is characterised by the presence

of goblet cells, normally present in the intestine. It is associated with a risk of

progressing to LGD [185]. However, its clinical relevance is dependent upon the

precise location in the oesophagus from which it is taken [185]. This is further

complicated by the fact that IM can be further subdivided into three types, one of

which is not deemed a risk factor for gastric cancer, and the remaining two having an

association with developing cancer, but with an unclear causal pathway [188]. There

is debate in the community regarding the necessity of the presence of IM for the

diagnosis of Barrett’s oesophagus, an inflammatory disease associated with gastric

reflux [189].

Due to the more clear clinical management pathways for LGD and HGD

compared to IM it may be prudent to focus on the former at the expense of the latter,

although this should ultimately be a medical decision. To this end, a weighted loss

function for the CNN seems optimal: it has comparable performance to the data level

balancing techniques with minimal computational cost.

The high proportion of IM cases in the SMART dataset may reflect the presence

of subjects with Barrett’s oesophagus who would be under increased surveillance

compared to the general population. It is therefore not clear whether this representation

reflects the true class distribution, or has been skewed by the data collection process

itself. By rebalancing the data, we make the assumption that all classes have an equal

probability of being present in a dataset, which is unlikely to be true.
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5.7 Data Augmentation
A common technique used to both increase the size of a dataset and to help prevent

overfitting to training data is data augmentation.

Data augmentation is a technique by which the number of samples in a dataset

is inflated by transforming the original data in various ways, thereby creating new

data with the same class label which is then added to the original data pool. This

increases the training set size, particularly important for data hungry DL models,

and also provides a degree of regularisation of the data, ameliorating overfitting by

representing the same data with transformations. In the context of deep learning

in standard medical imaging, such as radiographs or digital pathology, popular

transformations include taking random crops of images, rotating those images and/or

adding noise to them [190]. However, care is needed that a transformation does not

change the label of the sample. For instance, a model trained to classify hand written

digits would be confounded if images of the digit "6" were rotated 180� thus changing

it to resemble a "9" (figure 5.16) . However, the same transformation performed on

a histology slide has no impact upon the label, as the images orientation does not

typically matter to disease morphology. Here, augmentation transforms the data such

that a model can potentially learn that the orientation of an image is not important to

its class, thus making it invariant to orientation.

5.7.1 Lessons from the literature: data augmentation
RS data is similarly amenable to augmentation, and several methods have been

explored in the reviewed literature of section 1.5. Shu et al., in classifying spectra

derived from nasopharyngeal tissue, adopted an augmentation technique mimicking

the rotations and reflections used in medical images, flipping spectra both vertically

and horizontally [87]. Chen et al. added white Gaussian noise of varying levels to

spectra, increasing the training data by a factor of five [191]. Lee et al. similarly

added Gaussian noise to spectra, increasing the entire dataset by a factor of four [78].

Ma et al. also added random Gaussian noise in addition to shifting the wavenumber

axis up to 2cm
�1 and adding a random scale coe�cient, thus increasing the sample

size from 600 to 5000 spectra [192]. Wu et al. also performed wavenumber shifting,
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Figure 5.16: Rotating images by 180�. Top left: H&E stained image of diseased colonic
tissue. Top right: same image rotated by 180�. This rotation does not change
the image label. Bottom left: a digit "6" from the MNIST dataset. Bottom
right: the same image rotated by 180�. This rotation means the first label no
longer represents the data.

up to 4cm
�1 , as well as adding linear combinations of 2-5 random spectra from the

same class to create a new spectrum, thus increasing the sample size from 233 to

2420 spectra [88]. Fang et al. also linearly combined several spectra to create a

new spectrum and additionally performed ’wavenumber shifting’ and added ’random

noise’ (neither were precisely defined), creating 6600 spectra from 510 spectra [73].

Xia et al. augmented their training set up to an unspecified number, shifting the

wavenumber axis and adding noise to the magnitude at each wavenumber, a process

which more closely resembles the Poisson noise inherent in Raman spectra, compared

to adding Gaussian noise [89].

Only two studies assessed the impact that their data augmentation had upon

classification performance. Chen et al. found it consistently increased performance

across multiple data subset analyses [191], and Ma et al. found it increased the

overall accuracy from 75% to 92% [192].

Bjerrum et al. o�er additional augmentation techniques in the context of

pharmaceutical applications of near-infrared (NIR) spectroscopy which could translate

to RS. This includes adding a random o�set and slope to spectra [170]. A technique

used in image classification that was not utilised in the RS studies is random erasing.

In the context of images this means ’blacking out’ a random segment of an image
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[193]. This would easily translate to spectra by randomly flattening a wavenumber

region to zero.

With so many augmentation techniques available, it is not obvious which

techniques, or combinations thereof, will yield the best results. Even in the field

of general image analysis there are not many comparative studies [193], and none

particular to spectroscopy. Generative Adversarial Networks (GANs), a type of deep

learning architecture, potentially mitigate this problem. This architecture trains two

competing networks. The first network, the discriminator, tries to classify samples

correctly as usual. The second, generative, network tries to create new samples

of su�cient quality to convince the discriminator network of their fidelity. Thus

the task of picking the ’best’ augmentations becomes part of the training regime.

Wu et al. explored this in the context of RS of skin cancer tissues [194]. They

employed two strategies using GANs to produce augmented training data: one to

create augmentations such that the dataset becomes balanced, so that every class

has the same number of spectra, and a stratified approach which maintained the

prior class distribution. They also explored augmenting the training set by di�erent

amounts and a suite of ML methods including traditional and deep models. With

three performance metrics, and minimal di�erence between them, it was not clear

whether the balanced or stratified strategy performed best, both giving good results.

Increasing the number of augmented spectra increased performance up to a point,

beyond which performance started to su�er, suggesting that for any task there is an

optimal number of spectra to augment; an additional hyper-parameter to optimise.

GANs have also be used to augment RS in the context of paint analysis for cultural

heritage characterisation to good e�ect [195].

Another pertinent factor seems to be the size of the original data set. Perez

et al., while investigating data augmentation for images of skin lesions, found that

augmenting training images with less than 500 original images only worsened

performance and that performing training and test augmentation on more than 500

images significantly improved performance [196]. If and how this translates to

Raman spectra is not obvious and worth investigating if deep learning techniques



�.�. Data Augmentation ���

become established in the field.

Augmentation is traditionally only performed upon the training data, as data

inflation and its regularisation e�ect is only pertinent during training and to inject noise

in the test data risks introducing systematic error. However, test-time augmentation is

becoming more common, particularly with small datasets. This technique augments

test samples to produce several transformations of a single observation and then

takes an average of performance of these as a single prediction. It has been shown

to increase model performance [193]. This could allow for multiple predictions

on the same spectrum, augmented several times, of which an average can be taken

- essentially creating an ensemble approach. Four of the above studies applied

data augmentation to the entire dataset, conducting de facto test-time augmentation

[192, 78, 88, 73]. However, it is not clear from their methods that they exploited this

merging of predictions.

It is clear from the literature that there are a wide range of available techniques

and considerations to make during data augmentation. The following sections will

explore two of these methods: adding noise to the Raman intensity together with

wavenumber axis shifting and taking linear combinations of random spectra within

the same class. Both methods will be compared to simple resampling on the Ovarian

and Lynch datasets.

5.7.2 Wavenumber axis shifting experiments

Wavenumber axis shifting can occur in Raman systems, where the wavenumber axis

of two or more Raman spectra becomes misaligned. It is defined in terms of the

di�erence between the wavenumber of an observed Raman peak to the wavenumber

of its well established (theoretically and empirically) position. These can drift

due to temperature fluctuations or tiny mechanical deviations in the high precision

engineering of a spectrometer. Certain substances have particularly prominent and

well studied peaks to allow for such comparisons, like polystyrene and cyclohexane.

Such substances are therefore often used in Raman systems as an internal standard by
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which to measure, and correct for, any internal drift in a spectrometers wavenumber

axis alignment. In biomedical applications, the phenylalanine peak has been

consistently found at about 1003cm
�1, and can be used as a guide for the presence of

wavenumber axis shifting. However, even with such monitoring it remains a common

problem in many Raman datasets and is particularly prominent when comparing

spectra taken across di�erent systems [121]. There are wavenumber calibration

algorithms which can be added to the pre-processing pipeline to help ameliorate this

problem. However, these cannot completely remove system induced wavenumber

axis shifting [197], and can even exacerbate the problem if not applied correctly [121].

This shifting is one of the exacerbating factors which makes system transferability

di�cult and so is pertinent to the SMART dataset, which has been taken on three

Raman systems. Data augmentation may provide a means to mitigate the problem,

as adding wavenumber axis shifting could make the model invariant to this source of

noise.

5.7.2.1 Impact of wavenumber axis shift upon model performance

First I establish the extent of the problem by taking the Lynch dataset which, due to

very precise experimental conditions, has no wavenumber axis shifting. To assess

the di�erence that wavenumber shifting would have upon the performance of various

models I again trained a PCA-LDA, SVM and CNN model via the stratified 3-fold

CV repeated 5 times established in section 5.2. Wavenumber shifting was then

induced to increasing degrees within the test data. This was done by shifting the

entire wavenumber axis, represented by a vector. This involves shifting every element

in the vector up to a specified amount, which I vary from -5 to 5. Each element in the

vector corresponds to approximately 2cm
�1, thus the induced shifting varies from

-10 to 10cm
�1 (figure 5.17a). This also necessarily truncates the resulting spectrum,

which was conducted to the maximum induced wavenumber shift so that all of the

vectors were the same size. Thus, for every fold, eleven tests sets were created and

tested, each varying up to a wavenumber shift, selected at random from a uniform
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distribution.

(a) (b)

Figure 5.17: a.) Shifting around the phenylalanine peak: black dashed line represents the
original peak, all other spectra have been shifted. b.) E�ect of wavenumber
shift upon classifier accuracy

Figure 5.17b shows that PCA-LDA and SVM are sensitive to wavenumber

shifting, with performances falling to barely better than guessing (33% for a 3 class

problem). Even though no data augmentation was conducted and there was no

wavenumber shifting present in the training data, the CNN is invariant to shifting

present in the test data, though its performance when there is no shifting is worse

than the traditional models.

It should be noted that this artificially induced wavenumber shifting does

not represent how such a phenomenon would occur in practice, as such shifting

would also be present in the training data via the use of di�erent instrument, less

controlled experimental conditions and less experienced operators. However, the

results establish that wavenumber shifting can impact upon some traditional models

and CNNs may provide a way of mitigating the problem. If the CNN can be improved

to perform at least as well as the traditional models, this robustness would make it

the more favourable model.
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5.7.2.2 Wavenumber axis shift for augmentation

Whereas the above experiment trained on wavenumber-unshifted data and tested on

shifted data, the following experiment induces shifting in the training data during

augmentation and none in the test data, as is typical in the data augmentation process.

The Lynch and Ovarian datasets were used for this experiment. The Lynch data had

no intrinsic wavenumber shifting, but the Ovarian dataset had a small degree.

A choice needs to made regarding how much wavenumber shifting to induce.

The Raman spectrometer used for these experiments performs an internal calibration

to check for wavenumber misalignment, tolerating a maximum shift of 10cm
�1 before

the automatic calibration system reports an error. Therefore I induce varying amounts

of wavenumber axis shifting (WNS) up to this number, but also explored a range of

values beyond this in order assess the e�ect of larger WNS. The reported value of

WNS represents the maximum possible shift every augmented spectrum can undergo,

the actual value being randomly selected from a uniform distribution (so for WNS =

5, each augmented spectrum will be shifted by some integer value between -5 and 5).

Method

The 5 x 3-fold CV strategy was again used, keeping all other hyperparameters

constant. After the data was split the training data was augmented by a factor of

16. This was done 8 times, each time varying the degree of wavenumber shifting

from 0-20 (corresponding to a shift of 0� 40cm
�1). This number represents the

maximum amount of shifting, the precise number being drawn from �max to max

from a uniform distribution. The performance of all three models was assessed on

the test data, which itself had not been subjected to any transformations other than

normalisation.

Results

Although there is a general mild downwards trend in figure 5.18, all models seem

to tolerate wavenumber shifting in the training set, except for PCA-LDA which starts

to su�er when the shifting exceeds that which we would expect from the instrument.

However, neither was there any appreciable improvement in performance over the

range up to 5 wavenumber shifts, which is far greater than the noise we expect from
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the spectrometer.

(a)

(b)

Figure 5.18: Accuracy as a function of the maximum amount of wavenumber shifting
induced during augmentation (a) Lynch data (b) Ovarian data. Note that each
shift of 1 (which is in terms of the vector representation) corresponds to a shift
of 2cm

�1
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5.7.3 Poisson noise on Raman peaks for augmentation

Several sources of noise in RS were discussed in section 1.3.5. These sources

are generally Poissonian in nature; the amount of noise is dependent upon the

Raman intensity at any given wavenumber. Therefore, inducing such noise during

augmentation could help prevent models from overfitting. The question then arises

of how much Poisson noise should be added. In the following experiment I induce

varying amounts of Poisson noise during the augmentation process, using the Lynch

and Ovarian datasets, to assess how this impacts upon test performance.

Method

To simulate this process I will assume that shot noise dominates, as this source

tends to dominate other sources at high signal levels. Poisson noise was added in

a particular manner in order to more closely resemble the noise generated by the

spectrometer. The intensity axis of the spectrometer is calibrated in electrons/cm
�1

where the detected electrons are the physical entity that follow Poisson statistics.

Hence we need to correct the reported intensity for the spectrometer dispersion d:

di =
xi�1� xi+1

2
(5.3)

for the i
th wavenumber of a given spectrum x (xi being the intensity at wavenum-

ber i). The spectrum will then be multiplied by this dispersion factor to given the

electron count per wavenumber pixel in the CCD. The spectrum is then adjusted so

that its maximum intensity was equal to a given constant, h = 102,103, ...,106, and

Poisson noise added according to the (scaled) signal intensity at each wavenumber.

This means that the noise added in the case of e.g. h = 100 is characteristic of the

spectrum having a maximum intensity of 100e/cm
�1, as illustrated in figure 5.19.

Again, the 5 x 3-fold CV strategy was used to assess the influence this has on

model performance. After the data was split the training data was augmented by a

factor of 16. This was done 5 times, each time varying the degree of induced Poisson

noise. The performance of all three models was assessed on the test data, which

itself had not been subjected to any transformations other than normalisation.
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(a) (b) (c)

(d) (e)

Figure 5.19: The same spectrum with di�erent amounts of Poisson noise added during
augmentation. Maximum scaled intensity: a = 102, b = 103, c = 104, d = 105,
e = 106. SNR calculated per spectrum as described in section 1.3.6. SNR
indicates the mean for the Lynch dataset +/- 1 standard deviation.

Results and Discussion

Figure 5.20 shows how augmentation with increasing levels of Poisson noise

influence the accuracy of models over the Lynch and Ovarian data. It presents a

mixed picture. The Lynch data shows a trend of improving results across all three

models, plateauing around an induced noise level of 104. The Ovarian data shows no

such improvement. This is perhaps a consequence of the Ovarian data SN R being

lower than the Lynch to begin with, and so has a generally lower performance which

does not improve with augmentation.

These two sources of noise, Poisson noise and wavenumber shifting, will

be combined into a single augmentation technique, hereafter referred to as noise

augmentation. Poisson noise will be induced at a level of 104 and wavenumber

shifting to a maximum of 3 wavenumbers. Together these represent an attempt

to augment data in a physically meaningful way, mimicking the noise generating

processes known to be present in RS. Another method was also explored, which

allows the data to dictate the nature of the perturbance of augmented spectra.
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Figure 5.20: Accuracy as a function of the amount of Poisson noise induced during aug-
mentation. Note that lower values of noise represent more induced noise. (a)
Lynch data (b) Ovarian data

5.7.4 Linear combination augmentation

Another common form of augmenting Raman spectra identified in the literature was

taking some form of combination of existing spectra with the same class label to

create new spectra. I will explore this form of augmentation by randomly taking five

spectra, S, from the same class, then linearly combining them:

↵1S1+↵2S2+↵3S3+↵4S4+↵5S5 (5.4)
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where each ↵i is a random coe�cient and
P

i ↵ = 1. Figure 5.21 visually

demonstrates an augmented spectrum which is a linear combination of five spectra.

Figure 5.21: Yellow spectra: 5 normalised spectra randomly selected from the same class
from the Lynch data. Black spectrum: a linear combination of the 5 yellow
spectra weighted by random coe�cients, ↵i

In the next section this linear recombination augmentation technique will be

explored alongside the noise augmentation technique and simple resampling to

determine which would be most suitable for the datasets in this thesis.

5.7.5 Augmentation inflation factor experiment
In the above explorations, the number of augmented spectra created has been held

constant. The question of how much data to augment is open, with the review of the

literature in section 5.7.1 showing that several choices have been made, sometimes

varying by many orders of magnitude. The e�ect of the chosen quantity of additional

spectra has not been systematically explored in the context of RS, but has been found

to be an important consideration in adjacent domains [196]. Hence, in this section,

I explore this e�ect with the above developed augmentation techniques and decide

upon a final augmentation strategy.
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Method

The Lynch and Ovarian datasets were explored using PCA-LDA, SVM and a

CNN, to assess the role that the augmentation inflation factor has upon training. Three

augmentation techniques are used: simple resampling, random linear combinations (as

detailed in section 5.7.4) and adding noise (as detailed in section 5.7.3). In the former,

no actual augmentation is performed but the training data is simply resampled. This

provides a baseline performance to which to compare the augmentation techniques.

When adding noise, the amount of poisson noise and wavenumber shifting added

during augmentation has been fixed at 10000 and 3 respectively.

The Lynch and Ovarian training data were augmented by a factor of 1 (i.e. no

augmentation), 2, 4, 8, 16, 32 and 64. The inflation factor refers to the number

of times the training set is increased - so an inflation factor of 8 means that the

training data is augmented until it is 8 times larger. The Lynch data was additionally

augmented by a factor of 128 as it is a smaller dataset to begin with. All models were

trained using the 5 x 3-fold CV strategy as described in section 5.2.

Results and Discussion

Figure 5.22 shows how the augmentation techniques scale as a function of

inflation factor for the Lynch data. PCA-LDA and SVM do not gain, or su�er, from

any of the augmentation techniques. This is consistent with the nature of these

models: LDA classifies based on data centroids and SVMs on a subset of the data

around the margin. The augmentation techniques are not expected to influence either

of these. The CNN does show a moderate improving trend up to an inflation factor

of approximately four before seeming to plateau. However, the error bars overlap

such that it is di�cult to draw firm conclusions. Additionally, any improvement has

been achieved by simply resampling the data, with neither augmentation technique

improving this above resampling.

The results from the Ovarian dataset (figure 5.23) show no such improvement

from any augmentation method. Even the CNN does not seem to benefit from the

techniques. It was noted in section 5.7.1 that augmentation was only of benefit when

the original dataset was of su�cient size. Though the Lynch dataset is smaller than
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(a)

(b)

(c)

Figure 5.22: Lynch data: accuracy across the three models as a function of data inflation
by three methods (a) Resampling (b) Noise added augmentation (c) linear
recombination augmentation
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the Ovarian dataset, the latter has a far lower SNR. It may be that the SNR of the

original data also has a significant impact upon the benefits of augmentation, whence

if the noise component is too great, adding more noise does not have a regularising

e�ect.

As a consequence of these augmentation experiments the following strategies

for each dataset will be adopted. For the Lynch dataset the noise added augmentation

technique will be used for the CNN, using a factor of 16 upon the training data.

Although this technique only improves performance marginally, there is a trend

that suggests a real e�ect. This is supported by knowledge of the noise generating

processes in RS, which the noise added technique directly seeks to mimic. However,

this e�ect does not seem to apply to the Ovarian data, possibly due to its low SN R.

However, no deleterious e�ects were seen from augmentation, and so the noise

added augmentation technique will be applied with an inflation factor of 4. The

SMART dataset is larger than either of these datasets, but has far lower SN R than the

Lynch or Ovarian datasets. The size of the SMART data means that augmentation

increases computational time significantly enough to restrict the amount of subsequent

experiments that could be performed. While there is no convincing evidence that

this would be beneficial, the computational cost means that I will not augment this

dataset.
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(a)

(b)

(c)

Figure 5.23: Ovarian data: accuracy across the three models as a function of data inflation
by three methods (a) Resampling (b) Noise added augmentation (c) linear
recombination augmentation
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5.8 Nested Cross Validation

We have thus far focussed on many of the hyperparameter choices available before

the final model is applied to the data. The aim was to establish general trends in order

to find which of these data hyperparameters may improve performance. However,

there are two outstanding issues that will be here addressed: hyperparameter choices

pertaining to the models themselves and the possibility of overfitting to hyperparam-

eters. Thus we draw a distinction between data-dependent hyperparameters (i.e. the

order of a baseline to fit to during baseline removal or the factor by which to inflate a

dataset during augmentation) and model-dependent hyperparameters (i.e. number of

PCs to retain during PCA).

As detailed in chapter 4 the models used all have a number of hyperparameters

which need to be chosen before the model is trained. These can have profound

di�erences upon the performance of a model. It is common to explore these either

with a process of trial and error or a more systematic search. However, it has been

shown that using standard CV to both select the best hyperparameters and to estimate

the generalisation performance of a model can result in significant bias [198]. This

may not be true of models trained with su�ciently large datasets, but becomes more

of a problem as sample size decreases [199]. This is due to overfitting at the second

level of inference: in the same way it is possible to overfit the training of a model to

a particular dataset, it is possible to overfit the hyperparameter choices such that they

may perform well on the training data, but fail to generalise well to new data [155].

This can also be a problem when there are many hyperparameter choices from which

to select.

One rationale for exploring some potential data hyperparameters, such as the

choice of the number of augmented spectra, was to restrict our choices. However,

model specific hyperparameters remain. To mitigate against this source of bias I

have adopted a nested CV strategy. This embeds one CV process inside another,

resulting in an inner CV loop and an outer CV loop (figure 5.24). The outer loop

first detaches a portion of the data: in this case I selected 3-fold CV for the outer

loop, resulting in one third of the overall data being held out, while the remaining
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two thirds is passed to the inner loop. The inner loop then splits the data again, in

this case a 2-fold CV process, resulting in one third of the data remaining for training

and the other third, called the validation set, for assessing the performance of the

hyperparameters. Every combination of hyperparameters is trained in this manner.

Just as with normal CV this process can be repeated to decrease the variability of the

estimated performance due to small sample size. I repeat the inner loop 3 times. The

best performing set of hyperparameters are then trained upon the combined training

and validation data and passed back to the outer loop where the model is assessed

against the held-out test data. This outer CV loop can also be repeated, which I do

five times. Thus the inner loop selects the best performing hyperparameters and

the outer loop gives a less biased estimate of the generalisation performance of the

chosen model. Note, that for each outer loop, di�erent data is passed into the inner

loop and so it is possible that the inner loop selects a di�erent set of hyperparameters

each loop.

Figure 5.24: Schematic of Nested Cross Validation

Figure 5.25 shows the di�erence that nested CV makes to estimating the

generalisability of a model. The non-nested scores represent the inner fold scores.

These are what would be reported in a flat (i.e. non-nested) CV strategy. This

contrasts to the lower nested scores, which have been further tested upon the test set,
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which was not available to the models during hyperparameter selection. This clearly

shows that flat CV provides an overly optimistic assessment of performance. This

trend persists with other performance metrics, such as log loss.

(a) Lynch Data (b) Ovarian Data

Figure 5.25: Nested vs Non-nested Cross Validation. PCA-LDA model on the Lynch
and Ovarian data, the number of principle components to retain being the
hyperparameter searched, from 2-35 PCs retained. Dashed lines represent the
means across all 15 folds.

Thus, for the selection of model hyperparameters, a nested CV strategy is

used for each of the datasets. Unfortunately nested CV comes with a considerable

computational cost, limiting its applicability. This comes from the number of models

that need to be trained and assessed: for instance, the inner fold of figure 5.25 trained

a number of models equal to: the number of hyperparameters x number of folds x

number of repetitions, 34 x 2 x 3 = 204. As this is repeated 15 times across the outer

fold a total of 3060 models were thus trained. This is possible with PCA-LDA as

it is not computationally expensive but SVMs and especially CNNs are expensive.

This limits how many hyperparameters can be assessed using nested CV for these

latter models. This was another reason for exploring the data hyperparameters in

such detail, as it leaves only the model hyperparameters to be explored.

The details of the final CV strategy are explained for each dataset in the following

chapter.

5.9 Limitations
Searching particular hyperparameters while holding all others constant allows us to

explore the e�ect a given hyperparameter has upon performance estimates. However,
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it potentially miss interactions between those hyperparameters, which may combine

in complex and unpredictable ways if allowed to vary together. Thus even though

our exploration may provide some insights, it also ignores these interactions and so

none of the above conclusions can be considered definitive.



Chapter 6

Results

“Errors using inadequate data

are much less than those using

no data”
Charles Babbage

6.1 Lynch and Ovarian Data nested CV strategy
For the Lynch and Ovarian datasets, and for all three models, a nested CV strategy

was employed to explore the model hyperparameters. This involved 3-fold CV

repeated 5 times for the outer fold with 2-fold CV repeated 3 times for the inner

fold, as illustrated in figure 5.24. The inner folds require a single performance

metric to select the best model: as discussed in section 3.3 the log-loss captures

the distributions of outcomes to the true labels rather than a single point measure

for performance. Hence, the model with the lowest average log-loss was selected

for retraining with the larger data pool and tested against the held-out test set from

the outer fold. The best performing hyperparameter combination was then selected

and subjected to a flat 3-fold CV repeated 5 times for a final assessment of model

performance (otherwise the performance estimate will include estimates from models

with di�erent hyperparameters, which does not reflect how the model would be

deployed in the clinical setting). This final estimate extracted a prediction per sample,

as opposed to per spectrum, using the simple consensus method described in section

5.5. The same hyperparameter space was searched over the Lynch and Ovarian
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datasets using a grid-search strategy, in which all hyperparameter combinations in a

grid are systematically explored (tables 6.1 and tables 6.2 for the SVM and CNN

respectively). For PCA-LDA only one hyperparameter was searched, the number of

PCs to retain over the range 2-35.

Analyses were conducted using Python version 3.10. The Scikit-learn library

was used for the PCA-LDA models [133]. The ThunderSVM library was used for

the SVM models [200]. This allows SVM models to be computed on a graphics

processing unit (GPU), which was necessary as kernel SVM computations scale

quadratically with the data. The CNN was developed using Pytorch [152]. An

NVIDIA A10 GPU with 32 GB RAM was used. On the largest dataset, the SMART

data, the approximate time to run through 5 x 3 CV for the PCA-LDA, SVM and

CNN models were one hour, 12 hours and 14 hours respectively.

6.2 Lynch Data

6.2.1 Lynch Data: Results

PCA-LDA

Figure 6.1a shows the outer-fold performance of the PCA-LDA with the corre-

sponding best hyperparameters selected from the inner-fold. This shows that there is

considerable variance in the number of PCs the inner-fold selects. This is indicative

of an unstable model which is sensitive to the training data, which is common with

small datasets. Selecting the mode (and employing the principle of parsimony to

break any ties by selecting the simplest model) the 15 PC model was selected. The

model was retrained using this hyperparameter on a flat 5 x 3 CV strategy to produce

a confusion matrix (figure 6.1b) and a ROC curve (6.2).
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(a) (b)

Figure 6.1: (a) Lynch Data: PCA-LDA Log-Loss. Each outer fold was subject to an
inner fold hyperparameter search. The bars represent the log-loss of the best
performing hyperparameter in that fold. The ordering of the folds is arbitrary.
(b) Lynch Data: PCA-LDA Outer Fold Confusion Matrix.
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(a) All ROC curves

(b) Normal ROC curves (c) MSI-H ROC curves (d) MSS ROC curves

Figure 6.2: PCA-LDA ROC. Top, all disease classes plotted on same axis. Bottom row,
individual disease classes. Thick lines represent the mean performance over 15
folds. Pale lines represents the performance of each individual fold. Shaded
regions indicate 1 standard deviation.

It is clear from the ROC curves in figure 6.2 that distinguishing normal from

diseased tissue (either MSI-H or MSS) is a relatively easy task, but the task of

distinguishing MSI-H from MSS is more di�cult. This is consistent with expert

opinion. The confusion matrix (figure 6.1b) shows that the PCA-LDA confuses

MSI-H for MSS over half the time (54.0%), but only confuses MSS for MSI-H 24.0%

of the time.

SVM

As discussed in section 4.4, SVM-RBF has 2 model hyperparameters, a range

of which was searched as shown in table 6.1. As can be seen from figure 6.3a, SVM
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C 0.01 0.1 1 10 100
� 0.01 0.1 1 10 100

Table 6.1: SVM hyperparameters used during grid search for the Lynch dataset

returns more stable model hyperparameters during nested CV with C = 0.1 being

heavily favoured and � = 0.001 preferred over half the time. This may be due to the

ability of the model to draw non-linear decision boundaries. SVM performs better

than PCA-LDA across all metrics. From figure 6.1b, this can be attributed to its

much improved ability to distinguish MSS, misclassifying it only 4%, though it only

correctly identifies MSI-H 30.0% of the time, misclassifying it as normal tissue 22%

of the time, which the PCA-LDA did only 4% of the time.

(a) (b)

Figure 6.3: (a) Lynch Data: SVM Log-Loss. Each outer fold was subject to an inner fold
hyperparameter search. The bars represent the log-loss of the best performing
hyperparameter in that fold. The ordering of the folds is arbitrary. (b) Lynch
Data: SVM Outer Fold Confusion Matrix.

CNN

The CNN hyperparameters, discussed in section 4.5, which were searched are

shown in table 6.2. The learning rate is stable, with 0.0001 being selected for 8/15 of

the nested models. The batch size is relatively unstable, 256 was the most common

selection at 5/15 times. Its accuracy is comparable to the previous models, but

achieves this in similar way to PCA-LDA being more able to classify MSI-H at the

expense of MSS.
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(a) All ROC curves

(b) Normal ROC curves (c) MSI-H ROC curves (d) MSS ROC curves

Figure 6.4: SVM ROC. Top, all disease classes plotted on same axis. Bottom row, individual
disease classes.Thick lines represent the mean performance over 15 folds. Pale
lines represents the performance of each individual fold. Shaded regions indicate
1 standard deviation.

Batch Size 32 64 128 256 516 1032
Learning Rate 10�06 10�05 10�04 10�03 10�02 10�01

Table 6.2: CNN hyperparameters used during grid search for the Lynch dataset

6.2.2 Lynch Data: Discussion

Table 6.3 directly compares the log-loss and overall accuracy across the three models

from the Lynch data. Of note is that although PCA-LDA accuracy is worse than

the SVM, it was the better in terms of log-loss. This indicates that the PCA-LDA

model is more circumspect in its predictions. For instance, an output of a model

for a single spectrum might be represented as [0.33,0.35,0.32] which would be
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(a) (b)

Figure 6.5: (a) Lynch Data: CNN Log Loss. Each outer fold was subject to an inner fold
hyperparameter search. The ordering of the folds is arbitrary. (b) Lynch Data:
CNN Outer Fold Confusion Matrix.

Log Loss Accuracy
PCA-LDA 0.66 +/- 0.17 71.3% +/- 8.8

SVM 0.80 +/- 0.73 74.7% +/- 7.2
CNN 0.54 +/- 0.17 74.0% +/- 12.0

Table 6.3: Lynch data: Final models comparison.

classified as MSI-H, where the true output might be [1,0,0], indicating a normal

spectrum. Although the classification is wrong, its log-loss will not be too high as

the predictions between the three classes are close. Repeated over many spectra,

we would expect a low classification score even though the log-loss is not high. As

discussed in chapter 3, this is the advantage of using proper scoring metrics. Across

most metrics the CNN is the best performing model, though with such small sample

sizes and large standard deviations it is not possible to declare the model definitively

better for this application.

The existing criteria used to screen for LS use sensitivity and specificity to

measure the generalisation error. The Amsterdam II criteria achieve a sensitivity and

specificity of 72% and 78% respectively; the Bethesda protocol 94% and 25%. These

pathways are binary classifiers, only taking confirmed CRC cases and classifying them

as either MSI-H or MSS. Therefore the sensitivity and specificity are well defined.

I retrained the LS model as a binary classifier to allow a like for like comparison.



�.�. Lynch Data ���

(a) All ROC curves

(b) Normal ROC curves (c) MSI-H ROC curves (d) MSS ROC curves

Figure 6.6: CNN ROC. Top, all disease classes plotted on same axis. Bottom row, individual
disease classes.Thick lines represent the mean performance over 15 folds. Pale
lines represents the performance of each individual fold. Shaded regions indicate
1 standard deviation.

This used the same nested CV strategy as above but excluding the normal group.

The best sensitivity and specificity given by a PCA-LDA model was 82% and 51%

respectively. For the CNN this was 83% and 45% and the SVM 51% and 57%.

These are competitive with the existing protocols, indicating a viable addition to

the LS screening pathway, and would likely improve with a larger training cohort.

Whether a two or a three class model would be preferable for clinical deployment is

ultimately a medical decision. The 3 class model allows the possibility of a di�erent

clinical management pathway, where all samples suspected CRC samples could be

automatically screened for LS.
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Figure 6.7 shows the di�erence spectrum between the MSI-H and MSS mean

spectra. From this it may be possible to infer some biochemical di�erences between

the two classes. In particular, peaks at 714, 1081, 1302, and 1445 cm
�1 have

tentatively been assigned to lipids. Other peak assignments include 1672 cm
�1

(cholesterol), 494 cm
�1 (glycogen, nucleic acids), 529 cm

�1 (amino acids), 732 cm
�1

(phosphatidylserine, adenine), 787 cm
�1 (nucleic acids), 852 cm

�1 (ring-breathing

mode of proline, hydroxyproline, tyrosine), 1003 and 1034 cm
�1, (phenylalanine,

polysaccharides), 1110 cm
�1 (lipids, proteins), 1366 cm

�1 (tryptophan, lipids,

guanine) and 1583 cm
�1 (C=C bending mode of phenylalanine). Overall, there seems

to be di�erences in nucleic acids, proteins and lipids. Band assignments were made

using findings contained within Movasaghi et al. [52].

Figure 6.7: Lynch data: MSI-H minus MSS di�erence spectrum. Numbers indicate peaks
mentioned in the text.

However, the small sample size means it is not possible to distinguish which

peaks are statistically meaningful - we may be observing natural, healthy, variation

between patients. Additionally, there are peaks present with unknown underlying

biochemistry, which may be contributing to the predictive capacity. That some

of these peaks correlate with known and/or hypothesised biochemical di�erences

between these groups lends credence to these di�erences being clinically significant.
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For instance, higher levels of lipids and lower levels of glucose have been observed

in CRCs [201], the latter being consistent with a switch to aerobic glycolysis (the

Warburg e�ect) [202].

Regardless, it is di�cult to determine which, if any, of these biochemical

di�erences the models are using to make their classifications. In PCA-LDA we

may inspect the PCs which were used for the LDA. PCs 1 - 10 (first two shown

in figure 2.2) show multiple potentially biologically relevent peaks characteristic

of nucleic acids (727, 780, 1097, 1573 cm
�1), lipids (1079, 1301, 1330 cm

�1) and

proteins (1002, 1030, 1236, 1668 cm
�1). However, given that the PCs contain

mixed biochemical signatures, there is still no guarantee that any given biochemical

di�erence is informing the models output. Notice also, that the peaks identified

here do not correspond to those of the di�erence spectrum. SVMs are notoriously

opaque and no attempt at interpretation has been made for this model. CNNs have

been described as a black box technique, but in section 7 I explore some means of

extracting biochemical information.

6.3 Ovarian Data

6.3.1 Ovarian Data: Results

PCA-LDA

Figure 6.8a shows the performance of the inner PCA-LDA fold with the best

performing hyperparameters. Similar to the Lynch dataset, there is some variation

in choosing the optimal number of PCs. In this case the mode value was 3. The

model was retrained using this hyperparameter on a flat 5 x 3 CV strategy, assessing

performance per sample using simple consensus, to produce a confusion matrix

(figure 6.8b) and ROC curve (6.9).

As a binary classification, there is only one curve to plot. These metrics suggest

the model is performing barely above random classification.

SVM

The SVM hyperparameters chosen during nested CV vary significantly, sug-

gesting an unstable model that will not generalise well (figure 6.10a). Selecting the
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(a) (b)

Figure 6.8: (a) Ovarian Data: PCA-LDA Log Loss. Each outer fold was subject to an inner
fold hyperparameter search. The ordering of the folds is arbitrary. (b) Ovarian
Data: PCA-LDA Outer Fold Confusion Matrix.

Figure 6.9: PCA-LDA ROC. Thick line represents the mean performance over 15 folds.
Pale lines represents the performance of each individual fold. Shaded region
indicates 1 standard deviation.

mode of these parameters, C = 0.1 and � = 0.1, produces the confusion matrix of

figure 6.10b. This is a slight improvement upon the PCA-LDA model, but is still

only performing slightly better than chance.

CNN
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(a) (b)

Figure 6.10: (a) Ovarian Data: SVM Log Loss. Each outer fold was subject to an inner
fold hyperparameter search. The ordering of the folds is arbitrary. (b) Ovarian
Data: SVM Outer Fold Confusion Matrix.

Figure 6.11: SVM ROC. Thick line represents the mean performance over 15 folds. Pale lines
represents the performance of each individual fold. Shaded region indicates 1
standard deviation.

Figure 6.12a suggests a reasonably stable model, with a learning rate of 10�6

and batch size of 1032 being the most common values. The corresponding confusion

matrix (figure 6.12b) again shows a slight improvement over both PCA-LDA and

SVM, though the performance remains only slightly better than chance.
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(a) (b)

Figure 6.12: (a) Ovarian Data: CNN Log-Loss. Each outer fold was subject to an inner
fold hyperparameter search. The ordering of the folds is arbitrary. (b) Ovarian
Data: CNN Outer Fold Confusion Matrix.

Figure 6.13: CNN ROC. Thick line represents the mean performance over 15 folds. Pale lines
represents the performance of each individual fold. Shaded region indicates 1
standard deviation.

6.3.2 Ovarian Data: Discussion

Table 6.4 compares the results between models. In this instance the AUROC is also

given as the problem is binary. The di�erence across metrics is marginal, with large

variance, but the log-loss for PCA-LDA is much worse compared to the other models.
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Log Loss Accuracy AUROC
PCA-LDA 4.08 +/- 2.08 51.1% +/- 19.7 0.63+/- 0.14

SVM 1.18 +/- 1.14 58.9% +/- 17.1 0.71 +/- 0.17
CNN 1.09 +/- 0.64 55.5% +/- 23.3 0.73 +/- 0.19

Table 6.4: Ovarian data results table

This indicates that this model is returning very confident but incorrect predictions.

These results are actually a slight improvement upon previous findings that

used molecular signatures of residual disease using gene expressions. Using several

models and thresholds the genetic method could not return an AUROC > 0.65 [114].

The same study hypothesised that the maximum AUROC achievable with an oracle

would be 0.83 or 0.71 depending upon how residual disease is defined (the latter

value being indicative of a stricter criterion, not used here, which may lead to better

patient outcomes when acted upon) and so the ceiling of optimal performance may

be particularly low for this clinical problem.

Despite the CNN giving an underwhelming accuracy, its low log-loss and

relatively high AUROC indicate that the model has potential. The AUROC, in

particular, suggests a better threshold other than the default 0.5 may be preferable for

this problem. A thorough investigation of this value may yield su�ciently satisfactory

sensitivities and specificities to be clinically useful.

Figure 6.14 shows the di�erence spectrum between the mean spectra of the two

classes. It is di�cult to discern any obvious biochemical features that distinguish

the classes. Instead, the obvious di�erence is in the general intensity, with the

no residual disease class having a higher overall Raman intensity. This could

be considered an artefact of the lack of pre-processing which omitted a baseline

correction step, which explicitly seeks to remove such a component. However, the

baseline correction experiments of section 5.3.2 showed that baseline correction did

not improve model performance (figure 5.8). This may be a further hint that, at least

for certain applications, the baseline contains diagnostically useful information, as

suggested by Gaifulina et al. [169].



�.�. SMART Data ���

Figure 6.14: Lynch data: di�erence spectrum between average residual and no residual
classes

6.4 SMART Data

6.4.1 Hyperparameters for SMART

Based on the Ovarian and Lynch results, I selected hyperparameters for the SMART

data. In particular, it was found that taking the mean (or the geometric mean for the

log-distributed hyperparameters searched in SVMs and the CNNs) resulted in the

best performing models. For the PCA-LDA model, 11 PCs were retained. For the

SVM model C = 0.9 and � = 0.1 were selected and for the CNN LR = 5⇥10�5 and

BS = 184 were used.

As the SMART hyperparameters were preselected I did not employ nested CV.

This circumvents the possibility of overfitting the data at the second level of inference,

making the generalisability of the results more robust, at the expense of perhaps not

finding the optimal model for the SMART data.

6.4.2 CV strategy for SMART

As described in section 2.4.2 the principal purpose of this five class dataset was to

assess the transferability of data taken at one centre to the same data taken at di�erent

centres with the same make of spectrometer. To this end, the data was subject to an
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Figure 6.15: SMART data: Schematic of CV strategy. Upper schematic shows an iterated
centre level CV strategy that uses 5 x 3 CV to produce performance estimates
+/- 1SD, then the training estimates on the full single centre data, followed by
the test estimates for each other centre. Lower schematic ignores the centre
level hierarchy, pooling all data together and subject to the 5 x 3 CV strategy
giving performance estimates +/- 1SD

instrument correction, giving a ’corrected’ and an ’uncorrected’ dataset. Compared

with the previous datasets, the SMART data has an additional level to its hierarchical

structure: the centre from which it was taken. To tease out information about

the di�erences in performance across centres, three CV strategies were employed.

First, a single centre was taken and subjected to the 5 x 3 CV strategy described

in section 5.2. This produced an estimate of performance with error bars, and is

the estimated generalisability of the model trained on a single centre. The models

were then retrained on the entirety of that training centres data, as would be done

if deploying a model in the real world. This model was then tested against the two

held-out test centres. If the instrumentation and protocol were su�cient to mitigate

against system transferral issues then we would expect little di�erence between the

single centre 5 x 3 performance and that of the held-out centres. This process was

repeated 3 times such that each centre was used to train the models (figure 6.15).
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Additionally, a 5 x 3 CV strategy was employed on the entire SMART datasets,

ignoring the centre level splitting. This provides an estimate of performance if the

centre level structure of the hierarchy is ignored. The corrected and uncorrected

datasets were each independently subjected to this training regime. The CNN used

class rebalancing through a weighted loss function, as described in section 5.6.2.

This process produced a plethora of results and so only the accuracy and log-loss

will be shown in this initial comparison.

Figure 6.16: Log-loss and accuracy visualised across centres. Left panels indicate change
in log-loss, right panels change in accuracy. Points with error bar indicate
5x3 CV performance, with dotted lines indicating performance at the held out
centres. Red indicates uncorrected data, green instrument corrected.

6.4.3 SMART data: corrected vs uncorrected results
Tables 6.5 and 6.6 compare the uncorrected and instrument corrected SMART dataset

performances. In order to more easily compare these tables some information has
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been extracted to visualise the change in performance from the 5 x 3 CV score per

centre to the two held out test centres. Figure 6.16 shows there is no appreciable

drop in accuracy from the training centres to the test centres as would be expected

if transferability between centres was problematic. Additionally, there is little to

distinguish the performance of the three models on either dataset. Although there is

the merest suggestion that CNNs perform better, most evident in the all centre 5 x 3

CV results, the degree of improvement and variability in results are insu�cient to

confirm superior performance.

5 x 3 CV Centre 1 Centre 2 Centre 3 5 x 3 CV
one centre All centres

Centre 1 63.8% +/- 8.0 72.1% 63.9% 78.7%
1.76 +/- 0.93 1.03 2.08 0.79

PCA-LDA Centre 2 62.5% +/- 6.4 63.9% 70.5% 63.9% 64.2% +/- 6.9
1.85 +/- 1.15 3.56 1.13 6.12 1.83 +/- 1.01

Centre 3 62.7% +/- 6.2 65.6% 60.6% 68.9%
1.75 +/- 0.85 1.32 2.31 1.04

Centre 1 66.5% +/- 8.4 75.4% 63.9% 83.6%
2.18 +/- 1.99 0.51 1.76 0.64

SVM Centre 2 67.1% +/- 9.3 63.9% 77.0% 63.9% 63.9% +/- 11.2
2.52 +/- 2.21 3.31 1.22 4.38 1.63 +/- 1.41

Centre 3 66.5% +/- 10.7 67.2% 63.9% 75.4%
2.19 +/- 1.89 1.72 3.55 0.74

Centre 1 66.5% +/- 13.2 100% 67.2% 60.7%
0.94 +/- 0.26 0.29 0.87 0.77

CNN Centre 2 63.1% +/- 6.4 65.6% 90.2% 63.9% 68.4% +/- 5.6
1.05 +/- 0.25 0.70 0.30 2.37 1.02 +/- 0.20

Centre 3 64.2% +/- 12.6 75.4% 65.6% 91.8%
1.38 +/- 1.08 0.84 1.03 0.30

Table 6.5: SMART Uncorrected results. Italicised entries indicate the training results and
so are not indicative of performance.

However, as discussed in section 3.3, it may be that accuracy is too blunt a

measure. Figure 6.16 additionally presents the same information for the log loss.

This similarly shows no di�erence in performance when transferring models across

systems, and that instrument correction does not improve performance. Unlike

the accuracy results though, the superiority of the CNN is more evident, giving

marginally lower log-loss scores, but with much narrower variability (both within a
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single centre and transferring across to other centres), indicating a more confident

estimate of performance.

5 x 3 CV Centre 1 Centre 2 Centre 3 5 x 3 CV
one centre All centres

Centre 1 62.7% +/- 4.3 70.4% 70.5% 73.7%
1.77 +/- 1.06 1.41 2.73 1.15

PCA-LDA Centre 2 64.4% +/- 8.3 67.2% 75.4% 68.9% 62.2% +/- 11.2
1.78 +/- 0.97 1.73 0.61 1.07 1.90 +/- 1.37

Centre 3 63.4% +/- 9.7 68.9% 67.2% 73.8%
1.85 +/- 1.33 0.89 2.44 0.78

Centre 1 64.1% +/- 13.7 80.3% 63.9% 75.4%
2.04 +/- 1.65 0.39 1.58 1.57

SVM Centre 2 64.0% +/- 12.9 62.3% 80.3% 68.9% 66.6% +/- 8.8
1.85 +/- 0.91 3.41 0.32 2.81 1.82 +/- 1.31

Centre 3 65.1% +/- 12.1 62.2% 65.6% 78.7%
2.40 +/- 1.93 3.57 2.92 0.68

Centre 1 63.0% +/- 11.1 100% 54.1% 78.7%
1.11 +/- 0.52 0.19 1.08 0.72

CNN Centre 2 61.4% +/- 11.3 62.3% 100% 65.6% 68.2% +/- 9.6
1.22 +/- 0.56 0.93 0.15 1.34 1.01 +/- 0.23

Centre 3 61.1% +/- 11.8 68.9% 59.0% 93.4
1.23 +/- 0.60 0.87 1.59 0.19

Table 6.6: SMART Corrected results. Italicised entries indicate the training results and so
are not indicative of performance.

6.4.4 SMART data: corrected vs uncorrected discussion
These results show that instrument correction does not improve performance for

any model, and that using the same make of spectrometer across centres with a

common protocol is su�cient to create transferable models. However, as described

in section 2.4.2, some samples were discarded due to suspected breaches to that

protocol, and that when such samples were present the classification performance

su�ered. Therefore, strict adherence to a protocol would seem paramount to system

transferability, though this necessity is not unusual in healthcare applications and

should be well tolerated by pathology technicians should the technology proceed to

the clinical setting.

As the engineering and clinical protocol development have been su�cient

to allow for model transfer, I have been unable to explore whether the input
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invariance property of CNNs would allow them to outperform traditional models

when transferring models across spectrometers.

6.4.5 SMART data: model comparison discussion
Although the log-loss is a proper scoring metric, and so captures the nuances of the

model predictions, it lacks an intuitive interpretation. Table 6.7 shows the AUROC

of each class over the three models using the centre level training on the uncorrected

data (and so correspond with the red plots given in figure 6.16). This accords with

the log-loss findings that the CNN is the best performing model, showing much more

discriminative ability over the intermediate classes of IM, LGD and HGD.

NSQ IM LGD HGD AC
PCA-LDA 0.99 +/- 0.01 0.78 +/- 0.08 0.69 +/- 0.11 0.51 +/- 0.10 0.74 +/- 0.08
SVM 0.87 +/- 0.06 0.87 +/- 0.09 0.89 +/- 0.08 0.89 +/- 0.08 0.97 +/- 0.02
CNN 0.99 +/- 0.00 0.90 +/- 0.06 0.92 +/- 0.08 0.92 +/- 0.04 0.91 +/- 0.08

Table 6.7: SMART uncorrected data: AUROC by class +/- 1 SD

A recent literature review and meta-analysis of RS applied to ex vivo oesophageal

cancers found a pooled AUROC of 0.99 when distinguishing between malignant and

benign tissues [119]. This is similar to the models developed in this thesis when

considered as a binary model of normal (NSQ) vs all other groups. It is not clear in

the literature review whether the included studies took into account factors such as

the hierarchical structure of the data, which I have found important to consider, but

together with the results here does indicate that the technology has the potential for

clinical use in distinguishing malignant oesophageal pathologies. The review did

highlight that few studies had attempted to grapple with tumour sub-types, as did the

SMART study. This is both a more di�cult and clinically relevant task.

I have not attempted to extract potential pathogenic biochemical hallmarks from

the SMART data, as was done with the Lynch data. There have been a number of

studies investigating the use of RS to distinguish potential oesophageal cancers which

have tentatively attempted to determine such biochemical antecedents. They have



�.�. SMART Data ���

(a) ROC (b) Confusion Matrix

Figure 6.17: SMART uncorrected data: (a) ROC (b) Confusion Matrix

variously found that cancerous oesophageal tissue is associated with an increase of

tryptophan (1268 cm
�1) and collagen (1454 cm

�1) [203] and a decrease in tryptophan

(1366, 1627 cm
�1) and collagen (849, 1037 cm

�1) [204]. Other studies have found

an increase in DNA (780 cm
�1) and lipids (1440 cm

�1) [205], which has been

corroborated in another study which assigned a peak at 1334 cm
�1 to DNA [206].

This di�erence between a lipid peak and a DNA peak is only 6 cm
�1, uncomfortably

close to the wavenumber shifting tolerated by some spectrometers. Numerous other

biochemicals have been identified, but they have not been corroborated by other

studies. These inconsistent and sometimes contradictory findings suggest that at

least some of these associations are spurious. The work in this thesis suggests a few

reasons why this may occur. For instance, all of the above studies employed baseline

correction. As seen in section 5.3.2, this can change the interpretation of mean

and di�erence spectra, which most studies used to detect biochemical di�erences

[203, 206, 205]. One study additionally performed t-tests on a selection of Raman

bands [204]. At least some of the statistically significant di�erences found will

be spurious as there was no correction for type one error inflation associated with

multiple hypothesis testing. This will only be exacerbated by the small samples sizes,

especially in terms of statistical power (i.e. type two errors). Finally, the role of

wavenumber shifting in identifying Raman peaks needs to be considered, especially
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when using instruments of di�erent makes and according to disparate protocols.

Between the oesophageal literature review [119] and the literature review

conducted in section 1.5, I can be reasonably confident that this is a first application

of deep learning to RS for classifying potentially malignant oesophageal tissues.

Deep learning has been applied to standard H&E slides of oesophageal tissues [207].

This study was also multi-class, considering 4 tissue classes, and similarly found

intermediate classes di�cult to classify. In section 8.2.2 I consider how these two

modalities, biochemical signals through RS and standard morphology, might be

combined in a multi-modal deep learning architecture.

The decision not to use baseline correction for the SMART dataset was mo-

tivated by the findings from section 5.3 that baseline correction did not improve

subsequent ML performance with the smaller datasets. Without a direct comparison

of performance of baseline corrected and uncorrected SMART data it is not possible

to draw firm conclusions justifying this choice. However, by not so correcting the

data, the subsequent models are more parsimonious and have removed a potential hy-

perparameter choice that could allow for over fitting and exacerbate the generalisation

gap.

The results from the SMART data demonstrate that system transferability can

be achieved through engineering and clinical protocol alone, bypassing the need

for instrument corrections. Additionally, the advantage of CNNs over PCA-LDA

and SVMs is becoming apparent and would likely only increase with larger sample

sizes. Although the performance metrics are competitive with existing modalities for

oesophageal cancer diagnostics, this would require confirmation with a much larger

sample size.

6.4.6 Data availability statement

The code used to construct the three models and to perform CV on the SMART data

will be released on GitHub upon publication (under institutional review at the time

of writing). Release of the SMART data itself will be discussed amongst all the
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interested institutions and released if agreed upon and appropriate.



Chapter 7

Post Processing

“Unweave a rainbow, as it

erewhile made”
John Keats

In oncology studies using RS it is common to compare the mean spectra and

analyse the di�erence spectra of disease classes in an attempt to discern biochemical

antecedents. However, that spectral di�erences are present between classes does

not necessarily mean that they are clinically meaningful or that a model learned

to use those features. Especially with small sample sizes, at least some of those

di�erences will be simple random fluctuations. Some of the studies from the literature

review of section 1.5 attempted to distinguish statistically significant Raman bands

by comparing a selection between classes [70, 81, 84, 82, 66, 93]. However, none of

those studies employed correction for type one error inflation inherent to multiple

hypothesis testing (i.e. if multiple Raman bands are tested between classes, 1 in 20

will be ’statistically significant’ by chance alone at the traditional p-value > 0.05).

Even if properly treated (for instance with Bonferroni correction), and assuming that

the sample was truly randomly selected - an oft forgotten but fundamental assumption

of hypothesis testing - it does not follow that they are diagnostically significant.

The ML model may learn to ignore features that have been determined statistically

significant, if those features do not aid the model to discern between classes.

Deep learning architectures are generally considered black box techniques. This
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is a key impediment to clinical adoption as being able to relate decisions to biomedical

antecedents is a cornerstone of modern medicine. However, CNNs do o�er a number

of unique methods by which to illuminate the workings of the model and relate

classifications to spectral and biochemical precursors.

7.1 Occlusion Studies
Occlusion studies have been developed in the context of image classification whereby

a part of an image is occluded and the change in prediction of the occluded image is

compared to that of the original, whole image. By moving the occluded patch over

the image, a heat map can be created which shows those parts of the image which

are diagnostically important to the model (figure 7.1). Thus it is possible to visually

map what features the model learns to pay attention to. As an example, this has been

used in the context of MRI based diagnosis of Alzheimers disease to find brain areas

implicated in the pathology [208].

Figure 7.1: CNN occlusion study of the brain under MRI: patches of the image were
systematically occluded. Areas that a�ected the models ability to predict disease
are shown in red. Image taken from [208]

I demonstrate how this technique can be used in RS, using the Lynch dataset.
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Specifically I have taken the binary CNN model that was used to discern between

MSI-H and MSS, described in section 6.2.2. The mean spectra of the MSI-H and

MSS class were iteratively ’occluded’ by setting their value to zero in 30 cm
�1 sliding

wavenumber segments. Remembering that a model output can be interpreted as a

probability (discussed in chapter 3), the change in probability in class membership

between the whole spectrum and the occluded spectra was obtained. Figure 7.2

demonstrates how the occluded segments were fed into the model and the attendant

change in prediction due to the occlusion tracked.

Figure 7.2: Spectral Occlusion Schematic: the ’steps’ show 30cm
�1 spectral segments that

were occluded, with their attendant change in prediction for the positive class.
Red dotted line shows the prediction probability for the whole spectrum.

From the spectral heat maps in figure 7.3 we can see that important features for

the CNNs ability to detect MSI-H can be found at 680�710cm
�1, 800�830cm

�1

and 870� 900cm
�1. These areas are associated with nucleic acids and proteins.

These regions do not correspond to Raman bands thought important by inspecting

the di�erence spectrum between MSI-H and MSS mean spectra (section 6.2.2).

Although tentative, it is consistent with the theory that MSI-H is caused by DNA

MMR protein disregulation [209]. If we are able accept the results of the occlusion

study, then we might treat them as hypothesis generating, guiding clinicians towards

potential biomarkers hitherto not considered.
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Figure 7.3: Top: MSI-H occlusion map of mean spectrum. Bottom: MSS Occlusion map of
mean spectrum. Blue areas indicate decreases in predicting the positive class,
red ares to increases. The intensity of colour corresponds to the degree to change
in prediction

It is possible to perform spectral occlusion on any single spectrum to discern

biochemical information. Here I have used the class average spectra under the

assumption that a mean spectrum contains diagnostically pertinent information. This
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is likely true to an extent, but it is the same assumption underlying di�erence spectra

and manual comparisons of mean spectra. Additionally, the mean spectra shown

above only had probabilities of 0.6 for the positive class, casting some doubt on their

utility. A model and spectrum with a more confident prediction would provide a

more convincing basis for such analysis. With the next technique we seek to explore

a visualisation that uses all spectra the model has seen.

7.2 Sample SMART maps
In this section we explore whether the predictions given by the CNN correspond

to any discernible morphological features, which, if present, would add confidence

to the predictions. The SMART maps were of su�cient size and spatial quality to

attempt such visualisation. There is nothing unique about CNNs for producing such

maps and could be done with any model, though I restrict attention to the CNN for

brevity.

Figure 7.4 shows a visualisation process from H&E through the Raman mapping

process ending with a pseudo-coloured map showing the class labels. The whole

H&E sample and the identified region of interest were labelled as AC by the study

histopathologist. The CNN labels 69.6% of the spectra as AC, with NSQ the next

most common at 16.6%. Unfortunately, the classification map does not correspond to

any morphological features, even though some structure is evident in the raw Raman

map.

It is evident that no morphological information is being captured by the model

and the (correct) prediction is given entirely by the biochemical information extracted

from the spectra. The opposite is true of the original classification made by the

histopathologists, who used only morphological information. Indeed, most of the

attention given to deep learning in the context of histopathology is to networks that

utilise morphological information [210]. But it is clear that both biochemical and

morphological features can contribute to disease diagnosis and that they contain non-

overlapping information that may improve prediction further than any one modality

alone. In the next chapter I conclude by briefly considering how multi-model deep
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Figure 7.4: SMART Raman Map Visualised. Top left: H&E stained section classified
as AC, region of interest outlined in red. Top right: montage view under the
microspectrometer of an adjacent section of the same sample, with the area to
be mapped outlined in white. Bottom left: raw Raman map corresponding to
the white outlined area, visualised at 828 cm

�1. Right panel, same Raman map
visualised as disease classifications for each spectra.

learning architectures may simultaneously exploit spectral and spatial data as a

direction for future research.



Chapter 8

Conclusion

“The outcome of any serious

research can only be to make

two questions grow where only

one grew before”
Thorstein Veblen

8.1 Conclusions
This thesis has shown that there are a number of subtle methodological considerations

that need to be taken into account in order to return realistic assessments of how

models applied to RS may perform in real oncology settings. Section 5.3 provided

evidence that a staple of RS pre-processing, baseline correction, may not improve

model performance, and could even obfuscate biochemical interpretations of mean

and di�erence spectra. This is likely to be a controversial finding given the ubiquity

of this family of techniques in the literature. A valid criticism of my approach is that

a more systematic search of the baseline correction algorithm hyperparameter space

would find those corrections that enhance the performance of a model. For instance,

a genetic algorithm may better find optimal hyperparameters compared to the grid

search strategy I used. However, as explored in section 5.8 this would need to be

combined with a CV strategy that accounts for the search process so that overfitting

does not occur at this second level of inference. Based on the three datasets used

in this thesis, I have found that the cost of not properly selecting hyperparameters
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is an over-estimate in model accuracy of 5-10%. In this thesis I have additionally

shown how nested CV can be used to ameliorate this over-estimation. Though not

a new finding, the fact that it is far from common, as shown in literature review

in section 1.5, shows that this consideration has yet to become established in the

oncological Raman community. Regardless, it is clear that the arbitrary selection

of hyperparameters based, for instance, on what worked well on unrelated datasets,

and ad hoc trial and error approaches, is not tenable. Additionally, the SMART

results indicate that algorithmic instrument correction is not necessary to establish

system transferability when the same make of instrument is used in conjunction with

a common protocol.

In section 5.4 we saw that any study classifying individual spectra but using

multiple spectra from the same sample and/or patient must divide spectra into

training and test sets such that the required independence assumption is met. The

consequences for not doing this are an approximate inflation of 20% in the models

estimated accuracy, leading to gross over-estimates of performance. This has been

noted elsewhere in the literature, but as evident from the systematic literature review

in section 1.5 it is often not applied. This hierarchical structure can be flattened

by taking the average spectrum per sample. In section 5.5 I suggested a simple

alternative for using spectra to classify whole samples, using simple consensus voting

to choose a class. I have shown this improves accuracy by a few percent, and could

potentially be further improved with the development of more sophisticated voting

regimes.

The role of data augmentation for RS remains unclear, both in terms of the

existing literature and the results in this thesis. I explored two methods which

provided no benefit on two datasets and a minimal di�erence to the Lynch dataset. It

is not clear why this is so, but a possible reason is that a datasets SN R must be of a

certain quality for these augmentation techniques to work. GANs have been found to

provide superior data augmentation in RS, and are the most likely method to improve

this particular aspect of training.

Taking into account all the above methodological issues I have explored 3
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datasets. The results do not achieve the 80-100% accuracy common in the reviewed

literature in section 1.5, but likely give a more realistic assessment of how the

models would perform when deployed to real clinical settings, given the stringent

methodological constraints outlines throughout this thesis.

The Lynch data performed best with the CNN, despite having the lowest sample

size in terms of spectra. However, as discussed in section 5.5, it is the number of

samples, not spectra, that is more important in this determination. This shows that

small datasets with su�cient SN R can still benefit from deep learning architectures,

although the extent of this benefit is questionable based on these results. Traditional

wisdom would posit that the CNN would benefit most when more data is collected

compared to the traditional models, as has been demonstrated with NIR spectroscopy

[211]. These results are competitive with existing diagnostic modalities and are

being prepared for publication (in peer review at the time of writing).

The Ovarian dataset gave far more ambiguous results. No model was obviously

better and the standard deviations of the results make any conclusions tentative.

Although the Ovarian dataset was larger than the Lynch in terms of spectra, it was

smaller in terms of samples. It also su�ered from a lower SN R. It may be that the

clinical problem is inherently more di�cult, with genetic methods giving similar

results. Although the results seem disappointing, the consulting histopathologist (Dr

Florian Heintz) is keen to explore the technique further and the data acquired in this

thesis is being used in a proposal for research project funding.

The SMART dataset was the largest in terms of spectra and samples collected,

though the worst in terms of SN R. However, this dataset gave the least ambiguous

results, demonstrating that system transferability can be achieved through engineering

and clinical protocol alone, bypassing the need for instrument corrections. Addi-

tionally, the advantage of CNNs over PCA-LDA and SVMs is evident and would

likely only increase with larger sample sizes. Although the performance metrics

are competitive with existing modalities for oesophageal cancer diagnostics, such as

ultrasound [212], this would require confirmation with a much larger sample size.

The SMART data is being prepared for a publication focussing on clinical RS model
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transferability.

Overall, I have shown that deep learning architectures can be competitive with

traditional models for RS applications in oncology. Although any benefit is only

minimal with low sample sizes, as sample sizes increase, so too will DL performance.

Even with small sample sizes, there are a number of additional techniques available

which can further enhance DL performance under certain conditions. Some of these

have been explored in this thesis, such as data augmentation, while others are the

topic of ongoing and future work.

8.2 Future work

8.2.1 Transfer learning

Transfer learning is a mechanism by which a previously trained deep model can be

used to classify a di�erent dataset. This works even with models that have been

trained on datasets quite di�erent to the orginal application. For instance a model

called VGG-16, which was initially trained on everyday images such as pets and

vehicles, was transferred to the oncology setting to classify whole slide images [213].

This works because the deeper layers of a CNN are learning to identify simple

features such as vertical or horizontal edges, and these are common to all images.

It involves taking the model weights learned during training, and transferring them

across to a new model with a similar architecture. There are a number of options

once this transfer is complete. The weights could be frozen so that they do not

adjust in light of the new dataset. This may work for large models trained on huge

datasets and transferred to a model performing a similar task. However, this might

not work with models trained on smaller datasets or transferring across quite di�erent

applications. Fine-tuning may then be preferable, whereby the pre-trained model

weights are used during initialisation instead of random weights (such as Kaiming

He initialisation described in section 4.5). This allows the model to be adjusted by

the existing dataset. Transferring models can be flexible and some combination of

freezing and fine-tuning is possible; for instance, the weights of the convolutional

layer could be frozen and the weights of the fully connected layers fine-tuned.
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A potential candidate for transfer learning in RS is provided by Ho et al, who

used a ResNet 18 model to classify bacteria type and determine antibiotic resistant

using approximately 74000 Raman spectra during training [214]. This model is an

order of magnitude larger than the CNN I developed with approximately 1.3 million

parameters compared to 0.2 million. As the model has been trained on Raman

spectra, it may benefit from freezing the convolutional layers and fine-tuning the

fully connected layers to prevent overfitting.

Transfer learning has been shown to improve accuracy by about 5% on a RS

dataset of organic compounds [215]. The potential of model transfer provides an

additional reason why model and data sharing are beneficial to model development

within the medical RS community.

8.2.2 Combined biochemical and morphological models

Traditional histopathology uses H&E samples to distinguish between cancerous

tissues. This is done using morphological information based on what is discernible

to the microscope-aided eye. In the -omics age of genetic and molecular data

these traditional techniques are said to be becoming less relevant [216]. However,

there is information in the morphology of a sample, even if it eventually proves

less discriminating than molecular information. RS has an advantage over many

molecular modalities in that it can easily be combined with existing work flows to

produce Raman maps. These can be understood as hyperspectral cubes which contain

morphological information in the x-y plane (as seen in a typical H&E section), and

biochemical information in the z plane in the form of Raman spectra (figure 8.1).

Thus RS can provide combined biochemical and morphological datasets.

A collection of such images could be trained using a typical 3D CNN usually

used for image classification. However, this would mean a single sample would

constitute a deluge of information requiring copious amounts of training data. Such

large datasets are hard, though not impossible, to obtain for medical images, but the

need for each to undergo Raman mapping could mount a formidable obstacle to any

practical project. An alternative could be to adopt transfer learning as outlined above

in order to combine a 1D CNN trained to classify Raman spectra and a 3D CNN
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Figure 8.1: Hyperspectral Image: the x, y-plane represents morphological information. The
z-plane represents biochemical information contained in Raman spectra

trained to classify images.

Figure 8.2 shows a schematic for how this might proceed. A Raman map would

be acquired per sample, as was done with the SMART dataset. Each spectrum in the

map could then be fed into a pre-trained 1D CNN. The ResNet model provided by

Ho et al could be used for this component, adjusted to give three outcomes which

would represent biochemical maps. These maps would then be the size of a standard

3D CNN which has been trained on RGB images. A candidate for this is a custom

made attention-based 3D CNN which has been trained on data very similar to the

SMART dataset, using 123 oesophageal histology images to distinguish between four

disease classes [207]. The advantage of these two models is that they have both been

trained in Pytorch, making their technical concatenation far simpler. Thus combined,

the model may be able to take into account biochemical information via the first

component and morphological information in the second component followed by a

classification layer. The intermediary stage linking the two models also allows for
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the visualisation of biochemical Raman maps which may aid interpretation, opening

the black box. This could be compared to a technique such as PCA , which can

also reduce the spectral data to three biochemical maps, providing a benchmark to

measure if the mixed-modality model does indeed provide a benefit. This is but

one possible integration of the two models, and other architectures may prove more

fruitful.

Figure 8.2: A double transferred CNN to combine biochemical and morphological informa-
tion into a mixed-modality DL model

Deep learning promises to unlock the potential of RS in oncology applications;

but great potential calls for restraint. With so many model choices, it is all too easy

to train models with extremely impressive performance within a narrow research

domain, but that we are unable to apply to the clinical setting where the technology is

needed. Deep learning represents a paradigm shift in traditional statistical thinking,

allowing data to generate the model. Therefore great care needs to be taken in how

data is curated and processed, and providing just one more reason why data and model

sharing is so important to the development of models in the biomedical domain.



Appendix A

Table of Inter-rater Reliability

Literature

The table on the following pages summarises the literature considered for the

meta-analysis in section 1.2.
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Sample ID Sample Type TNM Stage Tumour Grade
MSI-H1 Resection cancer T2 N0 M0 Mod. Di�.
MSI-H2 Resection cancer T2 N0 M0 Mod. Di�.
MSI-H3 Resection cancer T2 N0 M0 Mod. Di�.
MSI-H4 Resection cancer T3 N0 M0 Poor di�.
MSI-H5 Resection cancer T3 N0 M0 Mod. Di�.
MSI-H6 Resection cancer T3 N0 M0 Mod. Di�.
MSI-H7 Resection cancer T3.N1.Mx Poor di�.
MSI-H8 Resection cancer T3 N1 M0 Poor di�.
MSI-H9 Resection cancer T4 N0 M0 Mod. Di�.
MSI-H10 Resection cancer T4 N1 M0 Mod. Di�.
AC1 Resection cancer T2 N2 M0 Mod. Di�.
N1 Normal - -
AC2 Resection cancer T2 N0 M0 Mod. Di�.
N2 Normal - -
AC3 Resection cancer T2 N0 M0 Mod. Di�.
N3 Normal - -
AC4 Resection cancer T3 N1 M0 Mod. Di�.
N4 Normal - -
AC5 Resection cancer T3 N3 M0 Mod. Di�.
N5 Normal - -
AC6 Resection cancer T3 N0 M0 Mod. Di�.
N6 Normal - -
AC7 Resection cancer T3 N0 M0 Mod. Di�.
N7 Normal - -
AC8 Resection cancer T3 N0 M0 Mod. Di�.
N8 Normal - -
AC9 Resection cancer T4 N2 M0 Mod. Di�.
N9 Normal - -
AC10 Resection cancer T4 N0 M1 Poor di�.
N10 Normal - -

Table B.1: Breakdown of patient samples used to build the ML models for the classification
of normal (N), sporadic adenocarcinoma (MSS AC) and micro-satellite instability
high (MSI-H) patients.
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