
Abstract—In the Sellafield nuclear site, 
intermediate level waste and special nuclear 
material is stored above ground in stainless steel 
packages or containers, with thousands expected 
to be stored for several decades before permanent 
disposal in a geological disposal facility. During 
this intermediate storage, the packages are 
susceptible to corrosion, which can potentially 
undermine their structural integrity. Therefore, 
long term monitoring is required. In this work, 
hyperspectral imaging (HSI) was evaluated as a non-destructive tool for detecting corrosion on stainless steel 
surfaces. Real samples from Sellafield, including stainless steel 1.4404 (known as 316L) and 2205 plates from the 
Sellafield atmospheric testing corrosion site, were imaged in the experiments, measuring the spectral responses for 
corrosion in the visible near-infrared (VNIR, 400-1000 nm) and short-wave-infrared (SWIR, 900-2500 nm) regions. Based 
on the spectral responses observed, a new concept denoted as Corrosion Index (CI) was introduced and evaluated to 
estimate corrosion maps. With the CI, every pixel in the hyperspectral image is given a value between zero and one, 
aimed at representing corrosion intensity for a given location of the sample. Results suggest that HSI, combined with 
our proposed CI analysis techniques, could be used for effective automated detection of corrosion in nuclear 
packages. 
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I. Introduction

HE Sellafield nuclear site (Cumbria, UK) has a number of 

package configurations (cans, drums, and boxes) for 

storing intermediate level waste and special nuclear material. 

These packages, usually high-quality stainless steel containers, 

are filled with nuclear material and nuclear waste, and placed 

in protected stores above ground at Sellafield for intermediate 

storage before a geological disposal facility is available for 

permanent disposal. It is anticipated that more than 150,000 

packages will be stored for the next several decades. 

During this period, the packages have to be monitored to 

ensure that their performance is as expected. While the stainless 

steel used in the manufacturing of storage packages shows good 

resistance, these containers are still susceptible to different 

sources of corrosion leading to pitting, precursor of the 

atmospherically induced stress corrosion cracking, or even 

corrosion related to Polyvinyl Chloride (PVC) degradation, 

when corrosive hydrochloric acid is generated from the PVC 

plasticized films used in some containers [1-2]. 
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Corrosion can have a significant impact on the structural 

integrity of the containers and, therefore, appropriate 

monitoring is required. However, suspect packages at Sellafield 

are currently inspected manually, which is challenging, 

subjective and time consuming. This could be potentially 

improved by introducing automated inspections based on 

different technologies. The state of the art includes non-

destructive methods based on Eddy current [3-6], microwave 

[7-9], corrosion sensors for undersea monitoring [10] or laser 

profiling techniques [11] for detecting corrosion-related 

defects. Imaging technologies are of particular interest, as they 

can easily capture data across large surface areas. In recent 

years, diverse image processing approaches have been 

proposed for the non-destructive detection of corrosion in 

several diverse applications. These approaches include 

conventional imaging (RGB) and, more recently, hyperspectral 

imaging (HSI), which has been claimed to have better potential 

for detecting corrosion [12], covering spectral information in 

the visible near-infrared (VNIR) and short-wave-infrared 

(SWIR) regions of the electromagnetic spectrum. 
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The main advantage of HSI is its capability to capture both 

spectral and spatial data simultaneously. While RGB spectral 

resolution is limited to three channels (red, green, and blue), 

covering only color, HSI provides hundreds of channels 

covering not only the visible range but also the near infrared. 

However, HSI has been barely explored, and the current state 

of the art has focused on samples prepared in the lab (lab-

induced corrosion). Therefore, this corrosion may not be 

representative of the real corrosion developed onsite for years 

and even decades. In this work, HSI was evaluated for corrosion 

detection using real samples from the Sellafield site. This 

included plates from the Sellafield atmospheric testing 

corrosion site, which was installed in 1991 to simulate the 

worst-case environments within the stores. 

The aim of the work described in this paper is two-fold, 

contributing to the state of the art by: 

 - Reporting spectral responses of real/onsite stainless steel

samples both in the VNIR and SWIR regions (400-2500 nm), 

with Headwall VNIR E-series [13] and SWIR-640 [14] sensors. 

 - Introducing the Corrosion Index (CI) concept to estimate

corrosion. This estimation is currently data-driven, being based 

on the observed hyperspectral responses. However, the 

underlying chemical characterization will be investigated in the 

future for incorporating chemical-based prior knowledge. 

The rest of this manuscript is organized as follows: Section 2 

summarizes the related work developed for the detection of 

corrosion using both conventional imaging and HSI. Section 3 

describes the different samples used in the experiments, along 

with the hyperspectral systems for data acquisition. Then, 

Section 4 presents the different experiments undertaken with 

related analysis and results. Finally, some conclusions are 

drawn in Section 5. 

II. RELATED WORK

A. Conventional Imaging
The evaluation of conventional imaging for the detection of

corrosion is a relatively recent research topic, which has 

targeted different materials and applications. For example, an 

initial work was published in 2009, where Chen et al. 

investigated the detection of rust in bridges using conventional 

images in 14 different color spaces. This included red-green-

blue (RGB), L*a*b*, and many others [15], where L*a*b* 

achieved the best performance filtering out light effects. Some 

years later, in 2014, Bonnín-Pascual et al. acknowledged the 

reduced amount of contributions in this topic, introducing 

texture (roughness) analysis in RGB images based on the Grey 

Level Co-occurrence Matrix [16] for corrosion detection. 

Since then, there has been a number of publications in which 

different color spaces and algorithms for corrosion detection or 

classification have been investigated, including the hue-

saturation-intensity (H-S-I) color space with Support Vector 

Machines (SVMs) [17], and the hue-saturation-value (H-S-V) 

color space with deep learning [18]. In 2015, Feliciano et al. 

evaluated six textural characteristics in RGB images [19], while 

in 2017, Ahuja et al. [20] developed an interesting survey on 

corrosion on metallic surfaces considering color, texture, noise, 

clustering, segmentation, enhancement, and wavelet 

transformation features. 

More recently, research has focused on optimizing the image 

processing pipeline, where different combinations of refined 

color and texture features along with diverse classifiers have 

been evaluated, including 2D Gabor filters and Principal 

Component Analysis (PCA) [21], morphology [22], Xu 

segmentation [23], Multi-Layer Perceptron [24], and some 

others [25-29], where recent deep-learning-based methods [30-

32] could be further explored to this purpose.

However, most of this work is highly limited to the reduced

broadband spectra of the information in conventional imaging 

(RGB), and the potential of HSI [33], a promising technology 

in this field, still needs to be explored. 

B. Hyperspectral Imaging (HSI)
Research using HSI for corrosion detection on metals is very

limited and significant work can only be found in the last 6 

years. In 2016, Simova et al. reported the spectral response of 

microbially induced corrosion in the VNIR region [34]. In 

2018, Rowley published a PhD thesis reporting responses of 

corrosion products in the VNIR, also including Raman 

spectroscopy, where it was suggested that HSI has better 

potential for detecting corrosion than conventional imaging at 

the cost of higher complexity [12]. In the same year, Catelli et 

al. [35] investigated the use of HSI SWIR for corrosion 

detection in bronze sculptures. 

In 2019, Antony et el. [36] published a work for inspection 

of corrosion in difficult-to-access areas by a probe-based 

hyperspectral imager, work which was extended in [37]. In 

2020, Kobayashi et al. [38] stated that different corrosion 

products including Goethite, Akageneite, Lepidocrocite, and 

iron oxide can be recognized in the VNIR region, and Chen’s 

work [39] used SVM to classify samples with lab-induced 

corrosion (three categories), reporting spectral responses not 

only in the VNIR but also in the SWIR region 

In 2021, Lavadiya et al. [40] evaluated corrosion in ASTM 

A572 structural steel with lab-prepared samples, using PCA and 

SVM to classify VNIR spectra into either acid corrosion (HCl), 

salt corrosion (NaCl), sulphate corrosion (Na2SO4), painted 

coating, or no-corrosion. In the same year, Yang et al. used k-

Nearest Neighbor and Partial Least Square Discriminant 

Analysis to recognize different intensities of corrosion in steel 

transmission towers via lab-induced corrosion samples at 4 time 

categories (48h, 96h, 192h, and 384h) [41]. Finally, in 2022, De 

Kerf et al. investigated the NIR region (up to 1700 nm) to 

identify four corrosion products including Goethite, Magnetite, 

Lepidocrocite, and Hematite in lab-prepared samples [42]. 

The previously described work represents the current state of 

the art in using the hyperspectral technology for corrosion 

detection. Therefore, plenty of research is still required to 

understand how this technology can be effectively used for this 

purpose. While some spectral responses of corrosion have 

already been reported [12], [34], [40], further investigation is 

needed to support and confirm these findings in both VNIR and 

SWIR regions. Additionally, the samples evaluated in the 

literature present lab-induced corrosion [39], [40], [41], [42], 

which may differ from the corrosion developed onsite over the 

years. In this work, five different partially corroded stainless 

steel samples, two of them corroded onsite at Sellafield, are 

evaluated to report spectral responses of corrosion at different 

stages in its lifecycle. 
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III. MATERIALS AND METHODS

A. Samples
Hyperspectral images were captured for a total of five

stainless steel samples, from which spectral responses were 

evaluated. These samples, provided by Sellafield, were selected 

because they have different backgrounds and histories, 

allowing the evaluation of corrosion from different 

perspectives. However, no ground truth (e.g., chemical 

characterization via laser-induced breakdown spectroscopy) 

was available by the time this work was conducted. These 

samples are described as follows. 

The 316L distressed sample (‘316Ld’) is an austenitic 

stainless steel plate (35 x 20 cm), which has been exposed for 4 

years in the atmospheric corrosion site at Sellafield. This 

sample was originally distressed across 4 areas that still remain 

clearly visible (see Fig. 1(a) and 1(b)). A visual inspection 

reveals the presence of some specific areas with clear visible 

corrosion, as well as a no-corrosion background. 

Two stainless steel grade 2205 duplex samples were also 

used in the experiments (Fig. 1(c) and 1(d)). One is a control 

sample (‘control 2205’, 20 x 20 cm) which has been stored 

indoors at Sellafield for 29 years. The other is an exposed 

sample (‘exposed 2205’, 20 x 20 cm), expected to show some 

corrosion after a 29-year exposure at the Sellafield atmospheric 

testing corrosion site. The exposed sample shows several 

corrosion spots across its surface. 

Another sample of interest is the ‘316L filter’ (Fig. 1(f), 2 x 

2 cm). This sample was extracted from a larger (and unused) 

316L filter sheet provided by Sellafield. This filter 

configuration is normally present in the top side of many 

(breathable) containers. Unlike the rest of the samples evaluated 

in this work, the 316L filter presents lab-induced corrosion (a 

salt-bath at the University of Strathclyde was applied to achieve 

corrosion), and it was included in the analysis for comparison 

with the corrosion observed in real/onsite samples. Several 

corrosion and no-corrosion areas across the surface of this 

sample can be clearly identified. 

Finally, the ‘overpack’ sample (Fig. 1(h), 32 cm height, 16 

cm diameter) is a 316L stainless steel overpack can in which 

the base presents advanced corrosion. This corrosion is due to 

the exposure to PVC under lab conditions. A visual inspection 

reveals potentially different stages of corrosion across the base 

of the can, hence the interest in imaging the base of this 

particular sample. The other surfaces of the can were not 

imaged as no significant corrosion was found.  

B. Hyperspectral Imaging Systems
Two different systems from Headwall Photonics Inc. [43]

were used to capture the hyperspectral images of the samples 

under analysis. The overall spectral range covered by both 

systems included the VNIR and SWIR regions (400-2500 nm 

in total). 

The Headwall VNIR-E series [13] (sCMOS detector) was 

used to gather data in the VNIR region (400-1000 nm) in 373 

different spectral channels with a spectral resolution of ~1.63 

nm, and 1600 spatial pixels.  

Another Headwall system, the SWIR-640 [14] (MCT 

detector), captured data in the SWIR region (900-2500 nm) in 

272 spectral channels or bands with a spectral resolution of ~6 

nm, and 640 spatial pixels. The ADC bit depth for both systems 

is 16 bits. 

Both sensors required the same setup for data capturing (see 

Fig. 2), which involved a number of other elements too. Data 

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

Fig. 1.  Samples used during experiments. 
Top left: Sample ‘316Ld’ (35 x 20 cm) from the atmospheric testing corrosion site at Sellafield - (a) an image of the sample captured during the 
experiments, and (b) an image of the sample during exposure in the atmospheric testing corrosion site shown for reference (credit: Sellafield Ltd). 
Top right: Samples ‘control 2205’ (20 x 20 cm) and ‘exposed 2205’ (20 x 20 cm) from the atmospheric testing corrosion site at Sellafield - (c) an 
image of the ‘control 2205’ sample, and (d) an image of the ‘exposed 2205’ sample, both captured during the experiments, and (e) an image of 
an exposed 2205 sample (different to the analyzed one) in the atmospheric testing corrosion site shown just for reference (credit: Sellafield Ltd). 
Bottom left: Sample ‘316L filter’ (2 x 2 cm) with corrosion induced at the University of Strathclyde - (f) an image of the sample captured during the 
experiments, and (g) an image of the larger sheet provided by Sellafield from which the sample was extracted.  
Bottom right: Sample ‘overpack’ (32 cm height, 16 cm diameter) - (h) an image of the entire can, (i) an image of the base of the can, which is 
partially corroded, and (j) a zoomed-in image of the corroded area to be imaged. 
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acquisition was based on the push-broom technology [44], [45], 

which means that the sensors performed line scan at constant 

speed to capture the hyperspectral images. This line scan 

required relative movement between the sensor and the sample 

under study, which was achieved by placing the sample on the 

Headwall linear translation stage. Additionally, an adjustable 

broadband light source was needed to illuminate the sample and 

calibrate the sensors. Finally, a PC with Headwall software was 

used to control the system. 

Data was captured after a standard calibration procedure 

using dark and white reference images [44]. The white 

reference was obtained using a Spectralon tile (bottom left 

corner in Fig. 2), and the dark reference by covering the lens. 

After calibration, hyperspectral images showed reflectance 

intensity normalized in the range [0-1] (zero for black or 0% 

reflectance, and one for white or 100% reflectance). The stand-

off distance between the lens and samples was approximately 

50 cm, which translates into spatial resolutions in the 

hyperspectral images of ~0.1 mm/pixel and ~0.3 mm/pixel for 

VNIR and SWIR, respectively (different resolutions due to the 

different specifications of the systems). Experiments with the 

overpack sample were an exception due to the height of the can, 

resulting in a stand-off distance of 18 cm, with spatial 

resolutions of ~0.05 mm/pixel and ~0.1 mm/pixel, respectively. 

C. Corrosion Index Method
The evolution of corrosion over time could be modeled based

on the evolutionary shape of the spectral responses, as it will be 

shown in Section IV.C. An accurate modeling would ideally 

require further analysis based on the underlying chemical 

characterization of the different corrosion products. While this 

ground truth information was not available for the evaluated 

samples, an initial modeling based on the evolution of the 

spectral responses is still possible. This modeling looks for an 

automated detection and estimation of corrosion purely based 

on hyperspectral data. 

In order to detect and estimate corrosion through 

hyperspectral data, a new concept denoted as Corrosion Index 

(CI) is introduced in this work. The CI metric aims at

representing the corrosion stage for a given pixel (a spectral

response) in the image of a sample. The CI is a real value (𝐶𝐼 ∈

𝑅1, 𝐶𝐼 ∈ [0,1]) between zero and one, where a value of zero or

small values close to zero would represent a situation of no-

corrosion, while a value of one or large values close to one 

would represent high/advanced corrosion. Therefore, the 

intermediate part of the CI scale would become the range of 

main interest, in which pre-corrosion or early corrosion, 

difficult to identify by the human eye, could be detected. 

The CI is computed pixel-wise based on the spectral content 

and requires prior knowledge about the spectral response for 

advanced corrosion for a particular material (reference response 

𝑟𝑒𝑓), and two calibration coefficients 𝑎, 𝑏. The core algorithm 

of the CI compares the spectral response under analysis to the 

reference one (𝑟𝑒𝑓), and quantifies the difference between both. 

The CI can use different core algorithms to quantify this 

spectral difference, and it is expected that the algorithm will be 

different depending on the spectral range covered (VNIR, 

SWIR) and the type of material evaluated. In this work, the 

Angular Cosine Distance (ACD) [46] [47], defined as 

𝐴𝐶𝐷(𝑖𝑛𝑝𝑢𝑡, 𝑟𝑒𝑓) = 2𝑐𝑜𝑠−1 (
𝑖𝑛𝑝𝑢𝑡∙𝑟𝑒𝑓

‖𝑖𝑛𝑝𝑢𝑡‖‖𝑟𝑒𝑓‖
) 𝜋⁄  was used for this 

(see Fig. 3). 

The ACD measures the dissimilarity between an input 

spectral response and the reference response (𝑟𝑒𝑓), leading to a 

score ∈ [0,1] in which smaller values indicate a high similarity 

of the responses. Therefore, the CI can be defined as: 

𝐶𝐼 = {

(𝑎−𝐴𝐶𝐷(𝑖𝑛𝑝𝑢𝑡,𝑟𝑒𝑓))

(𝑎−𝑏)
𝑖𝑓 𝐴𝐶𝐷_𝑠𝑐𝑜𝑟𝑒 ≤ 𝑎

0 𝑖𝑓 𝐴𝐶𝐷_𝑠𝑐𝑜𝑟𝑒 > 𝑎

}  (1) 

where 𝑎, 𝑏 in Eq. 1 are two coefficients for the calibration of 

the CI. These coefficients implement a remapping of the ACD 

values, translating them to the CI scale (𝐶𝐼 ∈ [0,1]). The 

remapping values play a key role and must be adjusted properly 

based on prior knowledge. The 𝑎 and 𝑏 coefficients represent 

the ideal ACD values corresponding to no-corrosion and 

advanced corrosion, respectively, for a particular material so 

that the relative ACD values can be translated into the absolute 

CI scale. In this work, the values of 𝑎 and 𝑏 were empirically 

adjusted based on the analysis of the samples under evaluation 

as both advanced corrosion and no-corrosion responses were 

available, allowing the estimation of these coefficients. In 

practical terms, as long as both advanced corrosion and no-

corrosion responses are available and reliable for a given 

material, this empirical adjustment of 𝑎 and 𝑏 is enough for 

calibrating the CI, which can then be used for new samples and 

images of the same material. 

Fig. 2.  Setup of the Headwall hyperspectral sensors for data capturing, 
which mainly includes sensor, translation stage, adjustable light 
source, and PC with common peripherals (screen, keyboard and 
mouse). 

Fig. 3.  Schematic representation of the CI modeling, with input, output, 
and prior knowledge. 
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IV. EXPERIMENTS AND RESULTS

A. Spectral Response of Corrosion on 316L
In this experiment, spectral responses from the 316Ld sample

are reported. Fig. 4(b) shows three different spectral responses 

in the VNIR region. The first response (yellow color) was 

extracted from an apparent no-corrosion area in the 

background, and the other two spectral responses (green and 

blue) were extracted from clearly visible corroded areas. A 

direct comparison between these suggests that corrosion leads 

to spectral responses with a significant curve in the 400-700 nm 

range when compared to a much flatter response for the no-

corrosion case. This finding correlates in some degree with 

previous work [12], [34], [40]. 

Fig. 4(c) shows SWIR spectral responses from the 316Ld 

sample at the same locations. Therefore, the response in yellow 

color comes from an area where no corrosion was observed, 

while the other two spectral responses (in green and blue colors) 

represent corroded areas. On this occasion, although there are 

differences in the responses (see red arrows in Fig. 4(c)), and 

some peaks could be linked to the presence of hydroxides [35] 

[39], key differential features are not conclusive without further 

analysis. 

B. Spectral Response of Corrosion on 2205 Duplex
Spectral responses of the 2205 samples are also reported. Fig.

5(b) shows VNIR responses from different areas in the control 

2205 sample. The three responses look relatively similar to each 

other except for a change in reflectance intensity, especially for 

the response shown in blue color, which is extracted from a 

(a) (b) (c) 

(d) (e) (f) 

Fig. 5.  Spectral responses from the control 2205 and exposed 2205 samples - (a) HSI composite image of the control 2205 sample, highlighting 
evaluated 10x10-pixel areas from which the responses are averaged, (b) spectral responses from the control 2205 sample in the VNIR region, (c) 
spectral responses from the control 2205 sample in the SWIR region, (d) HSI composite image of the exposed 2205 sample, highlighting evaluated 
10x10-pixel areas from which the responses are averaged, (e) spectral responses from the exposed 2205 sample in the VNIR region, and (f) 
spectral responses from the exposed 2205 sample in the SWIR region. 

(a) (b) (c) 

Fig. 4.  Spectral responses from the 316Ld sample - (a) HSI composite image of the sample, highlighting the evaluated 10x10-pixel areas from 
which the responses are averaged, (b) spectral responses in the VNIR region, and (c) spectral responses in the SWIR region. 
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darker area of the sample surface. However, the VNIR 

responses extracted from the exposed 2205 sample (Fig. 5(e)), 

which would be expected to show corrosion in some degree, 

present a similar behavior to that found in the 316Ld case, 

where a curve appears in the range 400-700 nm. This would 

suggest that the spectral response of corrosion for both 316L 

and duplex 2205 in the VNIR region is similar. 

A similar analysis was applied to these samples in the SWIR 

region of the spectrum. Fig. 5(c) shows three spectral responses 

from the control 2205 sample, while Fig. 5(f) does the same for 

the exposed 2205 sample. A visual inspection does not reveal 

conclusive differences in the SWIR responses, only a reduction 

in the overall reflectance intensity for some cases, which could 

be linked to the presence of corrosion [41]. In fact, a similar 

reduction in the overall reflectance intensity was already 

detected in the 316Ld case (see Fig. 4(c)).  

C. Characterizing Corrosion through Hyperspectral
Imaging

As seen in previous sections, the SWIR spectral responses 

for 316L steel in Fig. 4(c) are significantly different to the 

SWIR responses for 2205 steel in Fig. 5(c, f). This difference is 

not unexpected, as there may be potentially different corrosion 

products being present depending on the material and corrosion 

evolution.  

  Unlike SWIR, the VNIR spectral responses are more 

consistent among materials, probably as HSI in this range 

mainly captures color information, which seems more stable 

than the features appearing in the SWIR (peaks likely related to 

hydroxides presence). At the same time, there is an obvious 

difference between the responses depending on the spectral 

range being evaluated (VNIR or SWIR). This clearly 

emphasizes the point that the CI concept needs to be configured 

for the specific material under analysis and the spectral range 

being used. 

Therefore, the findings in previous sections would suggest 

that, while no conclusive/consistent features can be initially 

identified for corrosion in the SWIR region (significant peaks 

have been identified, likely related to hydroxides presence, but 

they will require further analysis), spectral responses in the 

VNIR region seem to consistently indicate the presence of 

corrosion by showing a curve in the 400-700 nm range. This is 

in line with previous work [12], [34], [40], and relates to the 

presence of red-like colors, which show a peak around 700 nm. 

Although the presence of useful features in the SWIR cannot 

be discarded, further analysis in this work focused on the VNIR 

region. In the next experiment, the 316L filter and the overpack 

can were evaluated. These two samples were selected because 

a visual inspection suggested the presence of different stages of 

corrosion across their surfaces and, hence, the spectral 

responses were expected to capture these differences. 

Fig. 6 shows different responses in the 316L filter and the 

overpack samples, expected to represent different stages related 

to no-corrosion, early corrosion, and more advanced corrosion, 

in yellow, green, and blue/cyan color, respectively. These 

responses would suggest that corrosion can be measured by 

evaluating the slope of the response in the 500-600 nm range, 

relatively flat for no-corrosion, but increasing as corrosion 

becomes more evident. Hence, initial/subtle changes in this 

slope could be used for early corrosion detection. 

(a) (b) (c) 

(d) (e) (f) 

Fig. 6.  Different corrosion stages identified in the 316L filter and the overpack samples - (a) HSI composite image of the 316L filter sample, 
highlighting evaluated 5x5-pixel areas from which the responses are averaged, (b) spectral responses in the VNIR region, and (c) zoomed-in 
spectral responses, (d) HSI composite image of the sample, highlighting evaluated 10x10-pixel areas from which the responses are averaged, (e) 
spectral responses in the VNIR region, and (f) zoomed-in spectral responses. 
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D. Mapping Corrosion through Hyperspectral Imaging
This new CI concept was applied to the two samples

evaluated in the previous section, 316L filter and overpack can, 

where a CI value was generated for each pixel in the respective 

hyperspectral VNIR images. This led to a CI map for each case, 

maps that show the distribution of corrosion at different stages 

across the surface of the samples. The CI maps below include a 

colored bar for easy interpretation, where yellow, blue, and 

green colors correspond to no-corrosion, advanced corrosion, 

and intermediate cases, respectively. 

The spectral reference (𝑟𝑒𝑓) used in ACD for the 316L filter 

and the overpack samples were the responses shown in blue 

color in Fig. 6(c) and Fig. 6(f), respectively, which are assumed 

to represent advanced corrosion in each case, and thus expected 

to lead to ACD values close to zero. Therefore, the 𝑏 

coefficients, which represent the ideal ACD values for 

advanced corrosion, were adjusted to 𝑏 = 0. In order to adjust 

the 𝑎 coefficient, the responses shown in yellow color in Fig. 

6(c) and Fig. 6(f) were selected, which represent no-corrosion 

areas in each sample. The ACD values for these regions were 

0.2058 and 0.2019, respectively, leading to rounded 

coefficients of 𝑎 = 0.2 for both cases. The resulting CI maps 

are shown in Fig. 7. 

Fig. 7(b) shows the CI map obtained for the 316L filter 

sample. This map presents the distribution of corrosion at 

different stages across the surface of the sample, showing 

advanced corrosion (dark blue color, with CI values close to 

one) in the bottom left corner, with a less advanced corrosion 

(lighter blue/green) in the middle part and the top right corner. 

Therefore, highly corroded areas are clearly highlighted, and 

the CI map also shows some dark yellow and green areas that 

could be interpreted as early corrosion or potential pre-

corrosion. This would need confirmation from a subsequent 

chemical analysis. 

The CI map for the overpack sample is available in Fig. 7(d). 

The different corrosion stages identified via the spectral 

responses in Fig. 6(f) were captured into different parts of the 

CI scale, with yellow, green, blue, and dark blue parts of the 

(a) (b) (c) (d) 

(g) (h) 

(e) (f) (i) (j) 

Fig. 7.  CI maps for the samples based on the VNIR region. 
Top left: CI map for the 316L filter sample - (a) HSI composite image of the sample, and (b) CI map based on the ACD score (with coefficients 
a=0.2, b=0). 
Top right: CI map for the overpack sample - (c) HSI composite image of the sample, and (d) CI map based on the ACD score (with coefficients 
a=0.2, b=0). 
Bottom left: CI map for the 316Ld sample - (e) HSI composite image of the sample, and (f) CI map based on the ACD score (with coefficients 
a=0.2, b=0). 
Bottom right: CI map for the 2205 samples - (g) HSI composite image of the control 2205 sample, (h) CI map based on the ACD score (with 
coefficients a=0.11, b=0), (i) HSI composite image of the exposed 2205 sample, and (j) CI map based on the ACD score (with coefficients a=0.11, 
b=0). 

Hyperspectral imaging based corrosion detection in nuclear packages

7



color scale representing the four areas highlighted in Fig. 6(d). 

Again, the resulting map seems to show promise in translating 

the spectral responses from hyperspectral data into measurable 

corrosion intensity. 

The CI map was also obtained for the other three samples 

evaluated in this work. For the 316Ld sample, the calibration of 

the 𝑎 and 𝑏 coefficients was similar to the one used for the 

previous samples, yielding the same values 𝑏 = 0, 𝑎 = 0.2. 

Also, the spectral reference (𝑟𝑒𝑓) used in ACD was the spectral 

response in blue color in Fig. 4(b), as this would be the response 

for advanced corrosion for this sample based on visual 

inspection. 

The spectral reference (𝑟𝑒𝑓) for the control and exposed 

2205 samples was the response in blue color in Fig. 5(e) for 

both cases (there was no advanced corrosion detected in the 

control 2205 sample). At the same time, the coefficient 𝑎 was 

given the value of the ACD score between the spectral response 

used as reference (𝑟𝑒𝑓), from the exposed sample, and the 

spectral response in yellow color in Fig. 5(b), used as no-

corrosion response, from the control sample. This led to the 

coefficients 𝑏 = 0, 𝑎 = 0.11 for both samples. Their resulting 

CI maps can be seen in Fig. 7(f), 7(h), and 7(j), respectively. 

Fig. 7(f) shows the CI map for the 316Ld sample. According 

to the implemented CI, there is significant presence of corrosion 

in the four areas which were distressed prior to the exposure of 

the sample. The intensity of the corrosion seems to be higher in 

the two areas in the top part. There are some other regions 

highlighted as advanced corrosion, such as the top left and the 

bottom right corners. At the same time, there are some areas 

with close-to-zero values, especially in the top of the sample 

which, in some cases, could be related to specular reflections 

from the metal. The background of the sample, with more 

irregular values around the dark yellow and light green part of 

the scale, would suggest the presence of pre-corrosion or early 

corrosion. However, chemical analysis is required to confirm 

this. 

Finally, Fig. 7(h) and Fig. 7(j) show the CI map for the 

control and exposed 2205 samples, respectively. This was the 

only case in which the CI was computed and calibrated using 

information from two independent samples of the same 

material, the first one stored and the second one exposed at 

Sellafield. Therefore, the behavior on these samples is of high 

interest to evaluate the CI performance. The resulting maps 

show that most pixels in the control sample exhibit a CI in the 

yellow part of the scale (close-to-zero values, i.e., no-

corrosion), while most pixels in the exposed sample lead to a 

CI in the blue part of the scale, suggesting significant corrosion. 

This finding would be in line with expectations, as it was 

expected to find a relatively clean control sample, but 

significant corrosion in its exposed counterpart. 

V. CONCLUSIONS

Intermediate level waste and special nuclear material are 

stored at the Sellafield nuclear site (Cumbria, UK) in stainless 

steel containers. Being stored above ground at Sellafield for 

decades, these packages are potentially subject to corrosion, 

especially atmospheric pitting corrosion. In recent years, 

several image processing techniques have been proposed for 

non-destructive detection of corrosion in metals, which could 

be used for long-term monitoring of these nuclear packages. 

However, HSI technology, with a much larger spectral 

resolution than conventional imaging, has been barely 

investigated for this purpose. 

In this work, HSI was used to capture images of real samples 

from Sellafield and report the spectral responses of corrosion 

for different cases in two different spectral regions (VNIR 400-

1000 nm, and SWIR 900-2500 nm). Based on the evolution of 

the spectral responses across different stages of corrosion, a 

new concept denoted as Corrosion Index (CI) was presented, in 

which every pixel in the hyperspectral image is given a value 

between zero and one, from no-corrosion to advanced 

corrosion, respectively. The CI requires calibration achievable 

via prior knowledge, using spectral responses of corrosion and 

no-corrosion for a given material as reference. After that, the CI 

can be applied to new samples of the same material. Also, while 

this concept was implemented through the ACD score, other 

underlying algorithms, e.g., curve fitting or other distance 

metrics, could be used for this.  

Results show consistency in the CI maps generated for 

different cases, including 316L and control/exposed 2205 

samples from the Sellafield atmospheric testing corrosion site, 

an overpack can with its base partially corroded due to PVC 

degradation, and a 316L filter on which corrosion was induced 

in the lab. The very next steps of this work aim at including 

comprehensive chemical characterization of the different 

corrosion products in the CI modeling by linking it to the 

hyperspectral responses. This will explore the physical, 

chemical and biological factors behind the respective spectral 

changes through standard measurements of different markers, 

combining multidisciplinary expertise covering hyperspectral 

analysis, image processing and chemistry analysis. Further 

exploration will also include the implementation of the CI 

through machine learning and deep learning methods, which 

will require comprehensive data for training. 
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