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ABSTRACT The orbital evasion problem is getting 

increasing attention because of the increase of space 

maneuvering objects. In this paper, an escape-zone-based 

optimal orbital evasion guidance law for an evading spacecraft 

on near circular reference orbit is proposed against multiple 

pursuing spacecraft with impulsive thrust. The relative 

reachable domain is introduced first and approximated as an 

ellipsoid propagating along the nominal trajectory under the 

short-term assumption. The escape zone for the impulsive 

evasion problem is presented herein as a geometric description 

of the set of terminal positions for all the impulsive evasion 

trajectories that are not threatened by the maneuvers of 

pursuers at the maneuver moment. A general method is 

developed next to calculate the defined escape zone through 

finding the intersection of two relative reachable domain 

approximate ellipsoids at arbitrary intersection moment. Then, 

the two-sided optimal strategies for the orbital evasion 

problem are analyzed according to whether the escape zone 

exists, based on which the escape value is defined and used as 

the basis of the proposed orbital evasion guidance scheme. 

Finally, numerical examples demonstrate the usefulness of the 

presented method for calculating escape zone and the 

effectiveness of the proposed evasion guidance scheme against 

multiple pursuing spacecraft.1 

I. Introduction

As the number of near-Earth space objects increases, there

is growing attention to the importance of the orbital evasion 

problem. The problem of orbital evasion originates from the 

problem of orbital rendezvous and interception, in which the 

spacecraft needs to evade other maneuvering or non-

maneuvering space objects that may be about to collide 

through its own control [1]. 
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Early studies on orbital evasion were mostly carried out 

against non-maneuvering space objects. In these research, the 

evasion strategies were normally generated by maximizing an 

optimization index such as the terminal miss distance [2][3] or 

the collision probability [4]. However, these evasion strategies 

solved by the one-sided optimization cannot be used against a 

maneuvering space object, since the possible maneuvers of the 

space object were not considered in these research. 

Taking into account the possible maneuvers of the space 

objects, the traditional collision avoidance problem will 

become an orbital pursuit-evasion (OPE) problem. The 

differential game method [5] with maneuver assumptions for 

both pursuer and evader is more suitable to deal with this two-

sided optimal control problem. 

Since the differential game theory [6][7] was put forward, 

many studies on OPE games have been carried out. Analytical 

methods, for example the closed-form solution of barrier [8], 

and numerical methods such as the semi-direct collocation 

nonlinear programming method [9], the multiple shooting 

method [10], and the dimension-reduction method [11] are two 

widely used types of methods for solving an OPE game. 

Moreover, the nonlinear control for OPE game was realized 

using the state-dependent Riccati equation method in [12]. 

Two optimal guidance methods, namely, the Cartesian model 

and the spherical model, for the long-distance OPE game were 

proposed in [13]. The PE differential game for satellites with 

continuous thrust was investigated from the viewpoint of 

reachable domain in [14]. Many other works have focused on 

solving the saddle point solution of the game quickly and 

efficiently [15]-[18], as well as the more complex dynamic 

environment [19][20] and information structure [21]. 

It should be noted that all of the research above focused on 

the two-player OPE games involving one evading spacecraft 

and one pursuing spacecraft with continuous thrust [22]. 

Almost few studies have been conducted on the orbital evasion 

strategy against multiple pursuers. Meanwhile, considering the 

fact that impulsive thrust is still the main form of spacecraft 

maneuver nowadays, it is required to investigate the impulsive 

evasion strategy. Reference [23] conducted research aimed at 

the two-player impulse OPE game, while the assumption of 

two-impulse transfers is not suitable for short-distance PE. 

Overall, there is still a gap in the research concerning the 

impulsive evasion strategy for the short-distance scenario 
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against multiple pursuing spacecraft. 

According to the initial relative distance between the 

pursuing spacecraft and evading spacecraft, the orbital evasion 

problems can be divided into two scenarios [23]: long-distance 

evasion scenario and short-distance evasion scenario. In 

contrast, the short-distance evasion scenario, which is closely 

related to the relative motion state between the pursuing 

spacecraft and evading spacecraft, is the final stage of the 

complete orbital evasion process, and has the characteristics of 

strong adversarial and high real-time requirements. This paper 

works on the short-distance orbital evasion problem against 

multiple pursuers with impulsive thrust. There are two main 

contributions of this paper. The first contribution of this work 

is to propose the concept of escape zone for an impulsive 

orbital evasion problem against multiple pursuers, and present 

an effective method for calculating the escape zone at any 

decision moment by introducing the approximate relative 

reachable domain ellipsoid for orbital impulsive maneuver. 

Second, a two-sided optimization process based on the 

calculated escape zone is performed to generate the optimal 

pursuit-evasion strategies, which provides a possible idea for 

solving impulsive orbital games. 

The rest of this paper is organized as follows. Section II 

introduces the approximate relative reachable domain, and 

presents the concept of escape zone in this paper. A method 

based on the approximate relative reachable domain is 

proposed in Sec. III to calculate the defined escape zone. In 

Sec. IV, an escape-zone-based optimal evasion guidance law 

is proposed based on the escape value defined through the two-

sided optimal strategies analysis. Numerical examples are 

provided in Sec. V, and section VI concludes this paper. 

II. Preliminaries 

A. Relative Reachable Domain Approximate Ellipsoid 

The relative reachable domain (RRD) concept is introduced 

in this paper to determine the potential relative state reach set 

of a spacecraft under given maneuverability. Different from 

the concepts in [24] and [25], a RRD denoted by D(X0, ΔVmax, 

Δt) here is described as the set of all possible relative positions 

that can be transferred to after time Δt from initial relative state 

X0 under the maximum available velocity increment ΔVmax. 

Assuming that the reference orbit is circular, the RRD can 

be established based on the linearized dynamics, i.e., the CW 

equations [26], which have been proved sufficiently accurate 

to model the close range relative motion [25], as 
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and s = sin(ωΔt), c = cos(ωΔt), ω is the mean angular motion 

of the reference orbit, x0, y0, z0, �̇�, �̇�, and �̇� are components 

of the initial relative position vector and relative velocity 

vector in the reference local-vertical, local-horizontal (LVLH) 

frame, ξΔV and ηΔV are two angles characterizing the direction 

of the initial impulse vector in the reference LVLH frame. 

Obviously, the envelope of the RRD described by Eq. (1) 

is exactly the boundary of the time-constrained reachable 

relative state distribution mentioned in [24] and [25] at given 

time Δt, without considering the initial position uncertainty. 

Specifically, the commonality between them is that the fixed-

time RRD considered in [24] and [25] will be the same as that 

in this paper if the initial position uncertainties Δr are set to 0 

and the velocity increment applied at the decision moment is 

considered as the initial velocity uncertainties Δv. The 

difference between them is that [24] and [25] focus on solving 

the accurate inner and outer boundaries of the RRD in any 

direction within a relative motion time range, while this paper 

focuses on efficiently solving the approximate envelope of the 

RRD at any given time for quick analysis of the positional 

relationship between RRDs for different participants in the 

OPE games. 

When the relative motion time is much smaller than the 

period of the reference orbit, the envelope of the RRD at time 

Δt can be approximated as 

2 2 2
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where 
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It should be noted that the approximation in Eq. (4) occurs 

only in the x-y reference plane, not in the z direction. 

Specifically, the right side of the first formula in Eq. (1) is 

approximated by 2
max( cos )xy VV  . Let F1(Δt) and F2(Δt) 

denote the former and latter expression, respectively. F1(0) = 

F2(0) and 2 1 1
0

lim ( ) / 0
t

F F F


   can be proved, which de-

monstrate the equivalence of F1 and F2 at Δt = 0. Furthermore, 

a quantitative analysis is given as follows to investigate that 

this approximation is valid for how small the motion time is. 

Suppose that the height of the reference orbit is 35786 km, 

and that ΔVmax = 10 m/s. For each time Δt taken from 0 s to 7% 

times the reference orbital period Tr, a total of 1000000 Monte 

Carlo runs calculating the absolute value of relative error 

(ARE) of relative reachable distances are performed with 

different [0,2 )V    and [ / 2, / 2]V     . The results 

of the Monte Carlo runs are shown in Fig. 1. As seen in Fig. 1, 

the mean ARE is less than 3% (considered as the maximum 

value for an acceptable approximation error) when Δt is less 

than about 6.665%Tr = 5741.372 s. Similarly, the maximum 

ARE is less than 3% when Δt is less than about 4.797%Tr = 

4132.237 s. The results for other orbital heights and impulse 

magnitudes are also analogous to that in Fig. 1, some of which 

are given in Table 1 and Table 2. 
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Fig. 1 Results of the Monte Carlo runs. 

Table 1 Results for more reference orbital heights 

Orbital 

height 

(km) 

Maximum Δt when 

mean ARE < 3% 

Maximum Δt when 

maximum ARE < 3% 

400 6.665289%Tr 4.797518%Tr 

1000 6.665305%Tr 4.797339%Tr 

5000 6.665294%Tr 4.797338%Tr 

10000 6.665289%Tr 4.797333%Tr 

20200 6.665288%Tr 4.797352%Tr 

36300 6.665402%Tr 4.797374%Tr 

Table 2 Results for more impulse magnitudes 

Impulse 

Magnitude 

ΔVmax (m/s) 

Maximum Δt 

when mean ARE 

< 3% 

Maximum Δt when 

maximum ARE < 

3% 

2 6.665292%Tr 4.797359%Tr 

5 6.665329%Tr 4.797409%Tr 

8 6.665283%Tr 4.797325%Tr 

15 6.665294%Tr 4.797337%Tr 

18 6.665318%Tr 4.797273%Tr 

20 6.665359%Tr 4.797416%Tr 

Accordingly, the following conclusions are obtained about 

the approximate envelope defined in Eq. (4): 

1) The approximate envelope of the RRD at time Δt is an 

ellipsoid of revolution (termed RRDE) in the reference LVLH 

frame, which is centered on the nominal relative position at 

time Δt, with maxxya b V   and maxzc V  as the major 

and minor semi axes respectively, as shown in Fig. 2. 

2) The error caused by the approximation is acceptable only 

when Δt is much smaller than Tr (termed short-term assump-

tion). Specifically, Δt needs to be less than about τ1 = 6.665%Tr 

or τ2 = 4.797%Tr, so as to ensure that the mean ARE or 

maximum ARE is less than 3%, respectively. 

3) Under the short-term assumption, a and c both increase 

monotonically with increasing time Δt. 

 

Fig. 2 Approximate ellipsoid of the RRD. 

B. Problem Statement and Escape Zone Definition 

Consider an orbital evasion problem against N pursuing 

spacecraft. Each participating spacecraft is controlled by a 

three-dimensional impulse input at each decision moment, 

which represents the thrust effect during this decision period. 

The pursuing spacecraft attempts to satisfy some certain 

intercept conditions, for example, position matching with the 

evader. Contrarily, the evader needs to avoid entering this 

terminal interception range through its own control. 

Before continuing, the following assumptions are made: 

1) All the participating spacecraft are assumed to move in a 

two-body gravitational field, without considering any forms of 

perturbations and real-world noises. 

2) The maneuverability of the evader is assumed to be 

stronger than that of the pursuer to ensure escape is possible 

[27]. Specifically, two sides of the game are assumed to 

maneuver at the same time [28]. Meanwhile, the decision 

periods for the pursuers and evader are the same, but the 

maximum available velocity increment of the single impulse 

for the evader is slightly larger than that of the pursuer. 

3) The observation information is assumed to be complete, 

that is, each participating spacecraft can accurately acquire the 

status of other spacecraft in real time. 

As shown in Fig. 3, the evasion process starts from the 

moment t0 when the minimum distance Rmin between the 

pursuers and evader is less than a given alert distance Ralert, for 

example, 100 km, and terminates when Rmin is less than the 

minimum valid interception distance Rintercept of pursuers 

(evasion failure) or when Rmin is larger than Ralert again 

(evasion success). Therefore, the entire pursuit-evasion motion 

can be considered as the close range relative motion. 

 
Fig. 3 Diagram of the evasion problem (e.g. N=3). 

For the above orbital evasion problem, a unified time RRD 

ellipsoid of the evader (termed UTRRDE) at time tU is 

proposed first, where tU is a unified time introduced to unify 

different RRD ellipsoids for different intersection moments 

herein. There is no strict constraint on the selection of the 

unified time tU as long as it is larger than the decision moment 

t0 when the impulse is applied, i.e. the relative motion time (tU 

– t0) is positive, to ensure that the geometric parameters a and 

c of UTRRDE are larger than 0. However, considering the 

approximation error caused by the RRD ellipsoid, it is 

suggested to select a unified time less than the maximum valid 

relative motion time τ1 = 6.665%Tr determined in Sec. IIA to 

reduce the guidance error. 

In this paper, the corresponding point MTU on the UTRRDE 

for a point M on the RRDEE at time t is defined as the terminal 

relative position point after time tU on the impulsive relative 

trajectory (termed the characteristic trajectory), along which 

the evader can transfer to M after time t. 
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The corresponding point 1MTU of a point M1 on the 

intersection curve I1 of two RRDEs at time t can be calculated 

as follows: The velocity increment of the characteristic 

trajectory for M1 and 1MTU is computed first by 

1 1 1 1

1
M M M M[ ( )] [   ]T
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represents the state transition matrix from the initial impulse 

to the relative position at time t in the reference orbital frame,

1Mx ,
1My , and

1Mz are components of the relative position 

vector of M1 in the reference LVLH frame. Then, the 

corresponding point 1MTU can be obtained by 
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A V         (8) 

In this regard, the concept of escape zone (EZ) here 

proposed for the above evasion problem is defined as follows: 

Let Ut
t denote the EZ at decision moment t respect to the 

unified moment tU, where tU > t. Define the initial reference 

orbit with the initial orbit of evader. As shown in Fig. 4, Ut
t

is a combined area on the RRDE at time (tU-t), and all transfer 

trajectories that can reach to this area after time (tU-t) through 

a single velocity impulse, the magnitude of which is not larger 

than ΔVmax, can escape the interception of pursuers. 

 

Fig. 4 Definition of the escape zone. 

III. Escape Zone Calculation 

In this section, a method for finding the intersection of two 

RRDEs is presented first. The largest threatened area on the 

RRDE of evader by each pursuing spacecraft is solved then, 

and the EZ is eventually obtained by successively removing 

these areas from the entire ellipsoid. 

A. Finding Intersection of Two RRDEs 

Let the initial time t0 = 0. Define the initial reference orbit 

with the initial orbit of evader, in which way the center of the 

RRDE of evader will always be located at the origin of the 

reference orbital frame. Suppose that the RRDE of pursuer P 

(RRDEP) intersects that of evader E (RRDEE) at time t, as 

shown in Fig. 5. The intersection of two RRDEs represented 

by the red line I1 in Fig. 5 can be solved as follows. 

 
Fig. 5 Intersection of two RRDEs at time t. 

Let OP and OE denote the center of the RRDEP and RRDEE, 

respectively. For the plane Q0 determined by the line OPOE and 

Z axis of the reference frame, the components of its normal 

vector n�⃗ 0 in the reference LVLH frame is 

0 O([0 0 1] ) ([0 0 1] ) [   ]
P

T T T
n cP cP cPx y z  r r      (9) 

where xcP, ycP, and zcP are components of the nominal relative 

position vector of P at time t in the reference LVLH frame. 

The plane Q defined by 

: 0Q px qy rz                  (10) 

is obtained by rotating Q0 about the line OPOE by angle α. 

According to the Rodrigues’ Rotation Formula [29], the 

parameters p, q, and r in Eq. (10) can be computed by 

0 0 0O O O[   ] cos sin ( ) (1 cos )
P P P

T
n n np q r       r r r r r r (11) 

Let aP, cP and aE, cE denote the geometric parameters of 

RRDEP and RRDEE, respectively. Then, the ellipsoids of P and 

E can be defined by 
2 2 2

2 2 2

2 2 2

2 2 2

( ) ( ) ( )
RRDE : 1

RRDE : 1

cP cP cP
P

P P P

E

E E E

x x y y z z

a a c

x y z

a a c

  
  

  

   (12) 

The plane Q intersects the RRDEP and RRDEE at the curve 

IP and IE, respectively, as shown by the green lines in Fig. 5. 

Evidently, the intersection curves IP and IE must be ellipses or 

circles [30]. If and only if the plane Q is the equatorial plane 

of the RRDE, the intersection curve is a circle. Let 
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By using the Householder transformation [31], the parametric 

equation [32] of the intersection curve Ii can be given by 
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(14) 
where xcE = ycE = zcE = 0, and [0,2 ]i  is the phase parameter 

of each point on Ii. 

Then, two intersection points M1 and M2 of IP and IE, both 

of which lie on the intersection curve I1 of two RRDEs, can be 

calculated by solving the equations xIP = xIE, yIP = yIE, and zIP 

= zIE. However, this problem is difficult to solve analytically 

because of the high nonlinearity in Eq. (14). In this regard, the 

numerical solution is obtained here, by minimizing the 

objective function that 2 2
1 ( ) ( ) (I IP IE IP IE IPF x x y y z    
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2)IEz for design variables [0,2 ]P  and [0,2 ]E 

through the nonlinear optimization method, for example, the 

Quasi-Newton Method [33]. 

In order to improve the convergence of the above optimiza-

tion process, the phases of the intersection points 1M ' and 2M '

of two circles obtained by the intersection of plane Q and each 

RRD approximate sphere (RRDS) are used to provide initial 

guesses for i , as shown in Fig. 6, where the RRDS is a sphere 

whose center coincides with the center of RRDE and whose 

radius is equal to a of RRDE. Meanwhile, the Jacobian matrix 

of the objective function is provided by 
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Fig. 6 Initial guesses provided by intersections of RRDSs. 

In this manner, the intersection curve I1 of the RRDEP and 

RRDEE at time t can be obtained ultimately by calculating the 

intersection points of IP and IE for every rotation angle α from 

0 to π. Considering that the three main axes of RRDEP and 

those of RRDEE are parallel respectively, the symmetry can be 

utilized here to calculate the intersection points of IP and IE for 

α from π/2 to π by directly using the results for α from 0 to π/2 

according to 
2 2

2 2
3

4 3 3 3

4 3 3

4 3
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   (18) 

where M4(x4, y4, z4) is the symmetrical intersection point for α 

from π/2 to π of the intersection point M3(x3, y3, z3) for α from 

0 to π/2. Therefore, the computational effort can be eventually 

reduced by only calculating the intersection points of IP and IE 

for α from 0 to π/2. 

Because the calculated intersection curves I1 for different 

intersection times are located on different RRDEs, it is hard to 

compare them quantitatively. To solve this problem, the 

unified time RRD ellipsoid presented in Sec. IIB is introduced 

here. Through Eqs. (6) to (8), the intersection I1 for any 

intersection time can be projected onto the same UTRRDE to 

obtain the corresponding curve I2, as shown in Fig. 7. 

 

Fig. 7 Curve I2 corresponding to intersection I1. 

B. Solving the Largest Coverage on UTRRDE 

To solve the largest coverage on the UTRRDE swept by the 

pursuer P during the entire relative motion process, the RRDE 

of P and the RRDE of the evader E are propagated along the 

time axis. Firstly, the positional relationship between two 

RRDEs at the given time t can be judged as follows: 

Rewrite Eq. (12) into the following quadratic equations: 

RRDE : ( ) 0

RRDE : ( ) 0

T
E E E E

T T
P P P P P

Q C

Q C

  

   

X X A X

X X A X B X
    (19) 

where 
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Since AE and AP are positive definite, Qi(X) < 0, (i = P, E) 

defines the inside of the RRDEi, and Qi(X) > 0 corresponds to 

the outside. 

Generally, QE(X) = λ define all level curve ellipsoids [34] 

of RRDEE, where the minimum (negative) value of λ and λ = 

0 define the OE and the RRDEE, respectively. The minimum 

level value λ0 and maximum level value λ1 of the level curve 

ellipsoids that intersect the RRDEP can be calculated by 

minimizing QE(X) subject to the constraint QP(X) = 0, which 

can be solved by the method of Lagrange multipliers [35]. 

Define the Lagrange function as 

( , ) ( ) ( )E PF Q Q  X X X           (21) 

where ε is the introduced Lagrange multiplier. Differentiating 

Eq. (21) yields 

E PF Q Q                  (22) 

/ PF Q                  (23) 

where the gradient represents the derivatives in X. 

Setting Eq. (22) equal to zero yields 

2( )E P E P PQ Q        0A + A X B      (24) 

Formally solving for X yields 

 
 

1( )
2

E P P




 
  

Y
X A + A B         (25) 

where δ(ε) = det(AE + εAP) is a cubic polynomial in ε, and Y(ε) 

is a column vector that has components cubic in ε. 

Setting Eq. (23) equal to zero and replacing X with Eq. (25) 

yields 

         
2

0
T T

P P PC        Y A Y B Y    (26) 

which is a degree six polynomial in ε. The X can be computed 

by substituting the computed roots [36] of Eq. (26) into Eq. 

(25), and the corresponding value of QE(X) can be calculated 

by Eq. (19). The minimum and maximum values of the 

calculated QE(X) are exactly λ0 and λ1, respectively. 

The positional relationship between two RRDEs at time t 

can be decided by comparing λ0 and λ1 with 0: If λ0 > 0, two 

RRDEs are separated. If λ0 < 0 and λ1 > 0, two RRDEs intersect. 

If λ1 < 0, the RRDEP is contained in the RRDEE. 

Then, three cases about the types of the nominal relative 

trajectory of P are discussed according to the positional 

relationships between two RRDEs along the time axis: 

1) Case 1, separation. If λ0 > 0 holds for any time t, then the 

largest coverage does not exist, since the two RRDEs do not 

intersect at any time (see Fig. 8a). 

2) Case 2, intersection. If λ1 > 0 holds for any time t, and 

there exist time t such that λ0 < 0, then the two RRDEs intersect 

in a period of time between tex1 and tex2, where tex1 and tex2 

represent the first and the second externally tangent time of 

two RRDEs, respectively (see Fig. 8b). Therefore, the largest 

coverage is a continuous area on the UTRRDE swept by P 

during the time interval (tex1, tex2). 

3) Case 3, contained. If there exist time t such that λ1 < 0, 

then the two RRDEs intersect in two time intervals, between 

which the RRDEP is totally contained in the RRDEE, as shown 

in Fig. 8c. Therefore, the largest coverage contains two 

separate areas on the UTRRDE successively swept by P 

during the time interval (tex1, tin1) and (tin2, tex2). 

 

Fig. 8 Three cases of nominal trajectory of pursuer. 

Let TP denote the largest coverage of P. As mentioned, for 

the separation case, PT   . For the intersection case, TP is 

the union of all the areas enclosed by the intersection curve I2 

during the time interval (tex1, tex2), as shown in Fig. 9a. 

Similarly, for the contained case, TP is the union of all the areas 

enclosed by the intersection curve I2 during the time interval 

(tex1, tin1) and (tin2, tex2), as shown in Fig. 9b. 

 

Fig. 9 TP for the intersection and contained case. 

Considering the infinity of numbers of the rotation angle α 

around the line OPOE and the intersection moment t on the time 

axis, an ellipsoidal polygon with finite vertices, which all lie 

on the intersection curve I2, is used to replace I2, and a time 

step is selected for discrete calculations along the time axis. 

Specifically, the larger the number of polygon vertices and the 

smaller the time step, the higher the solution accuracy but the 

higher the computational burden. Under this approximation, 

the union of two intersection curve areas at different 

intersection time can be calculated by judging the inclusion 

relationships of the vertices of two ellipsoidal polygons [37]. 

In this way, TP of each pursuing spacecraft is recorded as a 

data table, which takes the intersection time t as the data index, 

and the geodetic coordinates of all vertices of the approximate 

polygon of the intersection curve I2 at time t as the data value, 

and is stored in a database for all the pursuers. The boundary 

of TP is recorded as a series of vertices associate with the 

intersection times. 

Eventually, the escape zone can be obtained by considering 

the threats of all the pursuing spacecraft. Let TPi, (i = 1, 2,…, 

N) denote the largest coverage of pursuing spacecraft Pi solved 

at the decision moment t. For Rintercept = 0, the escape zone Ut
t
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(see Fig. 10) can be calculated ultimately by removing all these 

largest coverage from the entire unified time ellipsoid 

0 1 2 N( )Ut
t P P PT T T             (27) 

where 0 is the entire UTRRDE at the unified time tU. 

 

Fig. 10 Diagram of the calculated EZ (e.g. N = 4). 

IV. Optimal Evasion Guidance Law 

In this section, the analysis of the two-sided optimal 

strategies for this orbital evasion problem is presented first, 

and the concept of the escape value is proposed next. Finally, 

a proposed escape-value-optimal guidance law is given to 

avoid interception by multiple pursuing spacecraft. 

A. Two-Sided Optimal Strategies Analysis 

In order to ensure the security of the evasion trajectory, the 

optimal interception strategy of the pursuers for a given 

evasion trajectory needs to be analyzed. 

Before discussion, the concepts of the evasion impulse and 

the pursuit impulse are clarified first. An evasion impulse here 

denoted by ΔVE[rd,tU] represents the impulse of the 

characteristic trajectory with the terminal position rd on the 

UTRRDE. A pursuit impulse here denoted by ΔVPi[rd,t] 

represents the impulse of the relative transfer trajectory of Pi 

that can make Pi intercept the evader after time t, which moves 

along the characteristic trajectory with the terminal position rd 

on the UTRRDE. According to Sec. III, the terminal position 

rd is exactly located on the intersection curve I2 of the 

intersection time t on the UTRRDE. 

 

Fig. 11 The evasion impulse and the pursuit impulse. 

Two cases about the two-sided optimal strategies at 

decision moment t are discussed as follows: 

1) If Ut
t   , i.e., the calculated EZ is not empty, then 

any evasion impulse ΔVE[rd,tU] satisfying that Ut
d tr leads to 

a successful evasion, which means that the pursuers cannot 

intercept the evading spacecraft with above evasion impulse in 

a limited time, no matter what strategy they adopt. 

In this case, the pursuers will attempt to minimize the miss 

distances with the maneuvered evader intuitively. On the 

contrary, the evading spacecraft needs to maximize the 

minimum miss distance of all pursuers among all the 

successful evasion trajectories. 

The miss distance MPi is defined as the minimum distance 

between the maneuvered pursuer Pi and the maneuvered 

evader E along the time axis, which can be calculated by

min{ ( ) ( ) | [0, ]}Pi Pi EM t t t   r r where rPi(t) and rE(t) 

represent the relative position vector of the maneuvered 

pursuer Pi and the maneuvered evader E at time t in the 

reference LVLH frame, respectively. Obviously, the optimal 

strategy of Pi is to adopt the maneuver impulse that can 

minimize MPi. Actually, according to the definition of the 

largest coverage on the UTRRDE, the minimum miss distance 

must fall on the situation in which the terminal position of the 

characteristic trajectory is located on the largest coverage TPi, 

since TPi stands for the boundary of the maximum available 

velocity increment of Pi. Therefore, the optimal pursuit 

impulse ΔVPi[rd2,t] can be solved by searching rd2 and t on TPi 

to minimize the miss distance MPi, which can be represented 

as an optimization problem as follows: 

2
2 2

2

min ( [ , ( )], )
,  ( 1,2,..., )

s.t.  

d
Pi Pi d d E

d Pi

M t
i N

T

 




r
V r r V

r
 (28) 

The minimum miss distance of all pursuers is finally 

obtained by min 1 2 Nmin{ , ,..., }P P PM M M M . As mentioned, 

the optimal evasion impulse ΔVE[rd1,tU] can be obtained by 

searching rd1 on the EZ to maximize Mmin, which can be 

represented as 

1

*
1 min 1 1min ( , [ , ])   s.t.  U

d

t
Pi E d U d tJ M t    

r
V V r r  (29) 

 
Fig. 12 The optimal strategy of Pi when EZ   . 

2) If Ut
t   , i.e., the EZ does not exist because the 

UTRRDE has been completely covered by the threat areas of 

all pursuers, then the pursuers can always find an appropriate 

strategy to intercept the evader, no matter what maneuver 

impulse the evader adopts. 

In this case, the pursuers will attempt to minimize the 

interception time for each given evasion impulse while the 

evading spacecraft attempts to maximize the minimum time to 

be intercepted among all the possible evasion trajectories. 

With the help of the established database in Sec. III, the 

minimum time min
Pit to be intercepted by Pi for a given evasion 
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trajectory pointing to a certain terminal position rd2 on the 

UTRRDE can be computed by searching in the database for 

the minimum intersection time satisfying that the terminal 

position rd2 is inside the area enclosed by intersection curve I2 

at this intersection time. Then, the optimal impulse of Pi can 

be determined as ΔVPi[rd2,
min
Pit ]. 

Let min
Pt denote the minimum time among all the valid min

Pit . 

The optimal evasion impulse ΔVE[rd1,tU] can be obtained by 

searching rd1 on 0 to maximize min
Pt , which can be 

represented as 

1

min *
2 1 1 0min ( , [ , ])   s.t.  

d
P Pi E d U dJ t t    

r
V V r r  (30) 

 
Fig. 13 The optimal strategy of Pi when EZ  . 

B. Escape-Value-Optimal Guidance Law 

According to the two-sided optimal strategies, the escape 

value (EV) is defined here as a scalar describing the effect to 

escape of an evasion trajectory pointing to the terminal 

position rd on the UTRRDE, which can be computed by 

 
min

min

/     , 
V

/  , 

U

U

U

t
P SI tt

t d t
SI t

t T

M L

   

   

r         (31) 

where min
Pt is the minimum time to be intercepted of the evader 

for the given evasion impulse ΔVE[rd,tU] when the EZ is empty, 

TSI is the dimension of time, Mmin is the minimum miss 

distance of all pursuers for the given evasion impulse ΔVE[rd,tU] 

when the EZ is not empty, and LSI is the dimension of distance. 

The escape value described previously can be used as the 

basis for a closed-loop evasion guidance scheme for an 

evading spacecraft against multiple pursuing spacecraft. 

In this scheme, at each decision moment of the evader, the 

evasion impulse is determined to obtain the largest escape 

value, which generally implies the greatest evasion possibility. 

Corresponding to two different cases in the EV calculation, 

when the EZ exists, the optimal evasion impulse is desired to 

achieve the largest minimum miss distance of all pursuers. 

Additionally, when the EZ does not exist, the evasion impulse 

is still optimized for acquiring the maximum time to be 

intercepted by the pursuers, which means that every 

nonoptimal maneuver of the pursuing spacecraft will result in 

the increase of the interception time and may eventually lead 

to successful evasion. Such a guidance scheme could be 

implemented as follows: 

1) Obtain the current relative states of all N pursuers. 

2) For the pursuing spacecraft Pi, propagate the nominal 

relative motion from the current state to time Tr/2 using the 

nonlinear relative dynamic model [38], which is a fairly 

sufficient choice to ensure that all externally and internally 

tangent moments of two RRDEs can be taken into account. 

3) Choose a small time step ts for the RRDE propagation. 

Calculate λ0, λ1 and judge the positional relationship between 

the RRDEPi and RRDEE along the nominal trajectory by Eqs. 

(19) to (26). Determine the type (separation, intersection or 

contained) of the nominal trajectory for Pi as in Fig. 8, and 

record the time tex1 and tex2 for the intersection case or time tex1, 

tin1, tin2 and tex2 for the contained case. 

4) For the separation case, let the largest coverage TPi be 

empty, and skip to step 7. 

5) For the intersection or contained case, calculate all the 

intersection curves I1 of the RRDEPi and RRDEE from 0 to τ1 

with time step ts using the method in Sec. IIIA, and project 

them onto the UTRRDE through Eqs. (6) to (8) to obtain the 

corresponding curves I2. Save all the curves I2 into the database 

for Pi. 

6) Calculate the union of all I2 to obtain TPi. 

7) Repeat the procedure from steps 2 to 6 until the largest 

coverage of all pursuers have been calculated. 

8) Calculate the EZ through Eq. (27). 

9) Determine the optimal evasion maneuver by searching rd 

on the EZ (if the EZ is not empty) or on 0 (if the EZ is empty) 

to minimize the escape value computed by using Eq. (31). 

10) This procedure, given by the preceding steps, is 

continued until the terminal conditions of the evasion process 

are satisfied. If Rmin is larger than Ralert, then successful evasion 

has been attained. 

It should be noted that this guidance scheme provides a 

conservative evasion strategy for the evading spacecraft, in 

which all the pursuing spacecraft are considered “smart” 

enough, i.e., will adopt the optimal pursuit strategy. In other 

words, the provided evasion strategy is a greedy and locally 

optimal solution rather than the global optimal solution for the 

entire game with more than one round. However, thanks to the 

calculated escape zone, this local optimal evasion strategy can 

be quite concise, fast, and effective. In addition, considering 

the uncertain antagonism of the pursuers, it is extremely 

difficult to accurately determine the total number of rounds of 

the entire game when the strategies of pursuers are unknown, 

while the guidance scheme could guarantee the basic proceeds 

of the evading spacecraft in the real-time games. 

V. Numerical Examples 

In this section, the effectiveness of the proposed evasion 

guidance scheme is verified by a numerical simulation of an 

orbital evasion scenario against several pursuing spacecraft. 

An evading spacecraft E and four pursuing spacecraft P1, 

P2, P3, P4 are included in this orbital evasion scenario, which 

starts from the initial time t0 = 0 s when the minimum distance 

Rmin between the pursuers and evader is less than the given 

alert distance Ralert = 100 km of evader. The orbital elements at 

t0, including semimajor axis a0, eccentricity e0, inclination i0, 

right ascension of ascending node Ω0, argument of perigee ω0, 

and mean anomaly M0, are shown in Table 3. 
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Table 3 Initial orbital elements of spacecraft 

Orbi

tal 

elem

ents 

Evader 

E 

Pursuer 

P1 

Pursuer 

P2 

Pursuer 

P3 

Pursuer 

P4 

a0 

(km) 

42164.1

36600 

42792.8

59322 

42625.7

66828 

42836.2

14890 

41518.5

96776 

e0 0.00010 0.01466 0.01218 0.01579 0.01545 

i0 

(rad) 
0.17453 0.17178 0.17110 0.17791 0.17625 

Ω0 

(rad) 
1.04720 1.03901 1.03668 1.05799 1.05273 

ω0 

(rad) 
0.17453 0.65025 0.10889 0.54471 3.65425 

M0 

(rad) 
0.02780 5.85412 0.09934 5.93882 2.81847 

The parameters of mass and maneuverability of the 

spacecraft are given in Table 4. As mentioned in Sec. IIB, the 

minimum time interval ΔTd between two impulses of pursuers 

and that of the evader are set to be equal, and the maximum 

available velocity increment 2.4 m/s for each impulse of the 

evader is set to be larger than that 2 m/s of the pursuer, which 

conforms to the assumption presented in Sec. IIB that the 

maximum available velocity increment of the single impulse 

for the evader is slightly larger than that of the pursuer. 

Table 4 Mass and maneuverability parameters of spacecraft 

Parameters 
Pursuing 

spacecraft 

Evading 

spacecraft 

Mass (kg) 300 500 

Maximum thrust (N) 20 40 

Minimum time interval 

between two impulses (s) 
300 300 

Maximum thrust time of 

each impulse (s) 
30 30 

Maximum available 

velocity increment of each 

impulse (m/s) 

2 2.4 

 

Fig. 14 Initial nominal trajectories of pursuers. 

Define the initial reference orbit with the initial orbit of 

evader. The initial nominal trajectories of pursuers in the 

reference LVLH frame are portrayed in Fig. 14 according to 

Table 3. Suppose that the minimum valid interception distance 

of pursuers Rintercept = 1 km. Then, the initial interception time 

along the nominal trajectory can be computed as about 

4296.284 s for P3 and 4295.958 s for P4, which indicates the 

necessity of evasion for E. 

Two cases of different pursuing strategies are considered: 

case 1) the optimal pursuing strategy described in Sec. IVA, 

and case 2) the minimum zero effort miss interception strategy 

solved by the differential evolution algorithm [39] at each 

decision moment with the constraint of the maximum available 

velocity increment ΔVmaxP for each impulse. 

The evading spacecraft is guided through the proposed 

guidance scheme in both cases. All the spacecraft are 

simulated to move in a two-body gravitational field in the 

numerical examples. The results and analysis of the numerical 

examples are presented as follows. 

For case 1, the evasion trajectory of evader and the pursuit 

trajectories of pursuers in reference frame are portrayed in Fig. 

15. Projections of these transfer trajectories on the X-Y plane, 

X-Z plane, and Y-Z plane of the reference LVLH frame are 

shown in Fig. 16, Fig. 17, and Fig. 18, respectively. Figure 19 

portrays the time history of the distance between each pursuing 

spacecraft and the evading spacecraft. As shown in the figures, 

the evading spacecraft guided through the proposed scheme 

successfully escape from all the pursuing spacecraft at 

15715.374 s, at which Rmin is larger than Ralert again. 

 

Fig. 15 The evasion and pursuit trajectories in case 1. 

 

Fig. 16 The X-Y projection of transfer trajectories in case 1. 
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Fig. 17 The X-Z projection of transfer trajectories in case 1. 

 

Fig. 18 The Y-Z projection of transfer trajectories in case 1. 

 

Fig. 19 Distance history between each P and E in case 1. 

It is shown in these figures that the entire evasion process 

can be approximately considered as two stages separated at 

about 6000 s in case 1. In the first stage, the evading spacecraft 

attempted to break through the encirclement of the pursuing 

spacecraft, after which the evader focused on keeping away 

from all the pursuers through its stronger maneuverability in 

the second stage. The relative position history shown in Fig. 

20 and the pursuit-evasion velocity increment history in the 

inertial frame shown in Fig. 21 also confirm this ratiocination. 

The detailed transfer trajectories within 6000 s are portrayed 

in Fig. 22, where the dashed lines denote the initial nominal 

trajectories of the pursuers. 

To demonstrate the effectiveness of the proposed method 

for EZ calculation, the results of EZ calculation for the initial 

time t0 are provided here. Set the unified time tU to 4200 s. By 

using Eqs. (19) to (26), the intersection time intervals of the 

RRDEs along the nominal trajectories from t0 are computed as 

(tex1, tex2) = (3608.974 s, 4721.429 s) for P1, (tex1, tex2) = 

(3816.740 s, 4859.952 s) for P2, (tex1, tin1) = (3690.253 s, 

4235.512 s) , (tin2, tex2) = (4366.436 s, 5166.783 s) for P3, and 

(tex1, tin1) = (3644.064 s, 4230.013 s) , (tin2, tex2) = (4372.348 s, 

5261.372 s) for P4. According to Sec. IIIB, the types of the 

nominal relative trajectory of P1, P2, P3, and P4 at t0 can be 

judged as intersection, intersection, contained, and contained, 

respectively. 

 

Fig. 20 The relative position history in case 1. 

 

Fig. 21 Pursuit-evasion velocity increment history in case 1. 

 

Fig. 22 Detailed trajectories within 6000 s in case 1. 
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Fig. 23 Calculated I2 and TP1 for P1 of intersection type at t0. 

 

Fig. 24 Calculated I2 and TP2 for P2 of intersection type at t0. 

 

Fig. 25 Calculated I2 and TP3 for P3 of contained type at t0. 

 

Fig. 26 Calculated I2 and TP4 for P4 of contained type at t0. 

All the intersections I2 during the intersection time intervals 

and the largest coverage TP1 calculated for P1 at t0 in the 

reference LVLH frame are shown in Fig. 23a by the blue dotted 

lines and the red solid line, respectively. Meanwhile, Fig. 23b 

portrays the geodetic coordinates of all I2 and TP1 on the 

UTRRDE. Similarly, the intersections and the largest coverage 

for P2, P3, and P4 at t0 are portrayed in Fig. 24, Fig. 25, and Fig. 

26, respectively. As shown in these figures, the results of the 

largest coverage coincide with the conclusion obtained in Sec. 

IIIB. As a result, the EZ at t0 is ultimately obtained through Eq. 

(27). The geodetic coordinates of the EZ at t0 are shown by the 

grey area in Fig. 27. Obviously, the EZ is equal to the 

remaining area after removing all the calculated largest 

coverage of pursuers from the entire UTRRDE. In the above 

simulations, the number of polygon vertices to replace I2 was 

set to 360 with a step of 1° for the rotation angle α, and the 

time step for discrete calculations was set to approximately 

5.562 s corresponding to the intersection time interval equally 

divided into 200 segments, which is preliminarily determined 

by the intersection time range of two RRDSs. Under such 

parameter configurations, the computing time for a data table 

is about 10.934 s on an Intel(R) Core(TM) i7-7700 on a 3.60 

GHz CPU. 

 

Fig. 27 The geodetic coordinates of EZ at t0 on UTRRDE. 

As for the two-sided optimal strategies, considering that the 

EZ exists at t0, the optimal evasion impulse is desired to 

achieve the largest minimum miss distance Mmin of all pursuers. 

According to Sec. IVA, the maximum Mmin is obtained as 

1.596692 km when the longitude of the terminal evasion 

position rd on UTRRDE is -3.376190° and the latitude is 

37.528571°. Correspondingly, Fig. 28 illustrates the heat map 

of Mmin calculated for all the terminal evasion positions 

generated by traversing the longitude  [-180°, 180°] and 

latitude [-90°, 90°] with the step of 1°. The maximum Mmin 

calculated is 1.576265 km when longitude = -3° and latitude = 

38°, which is close to the optimization results. 

 

Fig. 28 Heat map of Mmin calculated for different rd on EZ. 

For case 2, the evasion trajectory of evader and the pursuit 

trajectories of pursuers are portrayed in Fig. 29 to Fig. 32. 

Figure 33 portrays the time history of the distance between 

each pursuing spacecraft and the evading spacecraft. As shown 

in the figures, the evading spacecraft successfully escape from 

all the pursuing spacecraft at 14353.583 s, which is smaller 

than 15715.374 s in case 1. In addition, as seen in Fig. 33, the 

minimum distance between pursuers and evader during the 

entire evasion process is 13.020359 km in case 2, which is 

larger than that of 6.462936 km in case 1. This is intuitive and 

can be accounted for by the non-optimality of the pursuing 

Escape-zone-based optimal evasion guidance against multiple orbital pursuers
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strategy in case 2, since the pursuers did not consider any 

possible maneuver of the evader in this case. 

 

Fig. 29 The evasion and pursuit trajectories in case 2. 

 

Fig. 30 The X-Y projection of transfer trajectories in case 2. 

 

Fig. 31 The X-Z projection of transfer trajectories in case 2. 

 

Fig. 32 The Y-Z projection of transfer trajectories in case 2. 

 

Fig. 33 Distance history between each P and E in case 2. 

It should be noted that although the total time of the evasion 

process is relatively larger than τ, the effect of guidance can 

still be guaranteed because the reference orbit for optimal 

impulse calculation is updated to the current orbit of evader at 

every decision moment to make sure the RRDE of evader is 

always located at the origin of reference frame while 

calculating the EZ, and the maneuver period ΔTd is much 

smaller than τ. 

VI. Conclusions 

In this paper, an escape-zone-based optimal evasion 

guidance law was proposed for an evading spacecraft on near 

circular reference orbit against multiple pursuing spacecraft. 

The concept of escape zone was presented for the impulse 

orbital evasion problem first. A method based on the 

approximate relative reachable domain ellipsoid was proposed 

to calculate the escape zone against multiple pursuers for each 

maneuver moment. The escape value was defined according to 

the two-sided optimal strategies analysis, and eventually used 

as the basis for the closed-loop evasion guidance scheme. 

The proposed evasion guidance scheme provides a 

conservative escape-value-optimal evasion strategy for the 

evading spacecraft by considering the optimal intercept 

strategies of pursuers, such that to obtain the largest minimum 

miss distance of all pursuers when EZ exists or the maximum 

time to be intercepted by pursuers when EZ is empty. Finally, 

the numerical examples of an orbital evasion scenario with one 

evader and four pursuers were provided to verify the 

effectiveness of the presented method for EZ calculation and 

the proposed guidance scheme. The simulation results showed 

that the evader successfully escaped from all the pursuers in 

both cases against the optimal and nonoptimal pursuing 

strategies. Moreover, a better performance of evasion process, 

including a larger minimum distance and a smaller evasion 

time, against the nonoptimal pursuing strategy was found than 

that against the optimal pursuing strategy. 
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Appendix A. Derivation for Approximate RRD 

Considering a short-distance relative motion scenario with 

the circular reference orbit, after time t of applying the impulse

V with the components [   ]x y zV V V   in the reference 

orbital frame, the components of the relative position of the 

spacecraft based on CW equations satisfy 

0 0 0
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where ω is the mean angular motion of the reference orbit, x0, 

y0, z0,  ẋ0 ,  ẏ
0

, and  ż0 are components of the initial relative 

position vector and relative velocity vector in the reference 

local-vertical, local-horizontal (LVLH) frame, xV V  

cos cosV V   , cos siny V VV V      , sinz VV V    , 

ξΔV and ηΔV are two angles characterizing the direction of the 

initial impulse vector in the reference LVLH frame. 

Move the terms related to the initial state in Eqs. (A1) and 

(A2) to the left side of the equations. Taking the square of both 

sides and adding the two equations of x and y gives 
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Then, Eqs. (A3) and (A4) can be respectively written as 
2 2 2 2

1 2 2 3

4 5

( ) ( ) ( ) +( )

( )

c c x y

x y

x x y y V V

V V

   

 

       

   
 (A7) 

2 2 2( )c z zz z V        (A8) 

Equations (A7) and (A8), i.e. Eq. (1) in Sec. IIA, are the 

calculation formulas for the three-dimensional RRD at time t. 

Let F1(t) denote the right side of Eq. (A7). When the relative 

motion time t is much smaller than the period Tr of the 

reference orbit, use 2 2 1 3 4 5( ) [ ( ) / 2](F t V         

2cos )V  to approximate F1(t). In this way, the approximate 

envelope of the RRD can be obtained as 
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where 2 1 3 4 5( ) / 2xy          . 

The rationality of the above approximate process is proved 

from the following two aspects. Firstly, the equivalence of F1(t) 

and F2(t) in the neighborhood of t = 0 for the above 

approximation process is demonstrated as follows: 

From the specific form of each coefficient in Eqs. (A6), we 

have 1(0)  2 (0)  3 (0)  4 (0)  5 (0)  (0) 0xy  . 

Thus, 1 2(0) (0) 0F F  . Meanwhile, it can be easily proved 

that the expressions 
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are all satisfied when 0 arctan(2 / 3) /t   . Obviously, the 

above expressions are also satisfied under the short-term 

assumption. 
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( ) |t  denote the absolute value of the relative error caused by 

the approximation process. Then, we have 
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Substituting Eqs. (A10) into Eq. (A11), under the short-term 

assumption, we have 
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According to Eq. (A12), it is necessary to discuss the value 

of 1 3/   and 4 5 1( ) / (2 )   . Let m t , there is 
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Finally, it can be obtained as 
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Substituting Eq. (A15) and Eq. (A16) into Eq. (A12), it can 

be obtained as 
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Therefore, the equivalence of the above approximate process 

when time t approaches 0 has been proved. Secondly, a 

quantitative analysis has been given in Sec. IIA to investigate 

that the approximation process is valid for how small the 

motion time is. In summary, the derivation of the approximate 

RRD formula has been completed. 

Appendix B. Guidance Scheme for Pursuing 

Spacecraft in Simulation Case 1 of Sec. V 

The guidance scheme for the pursuing spacecraft Pi in 

simulation case 1 of Sec. V could be implemented as follows: 

1) Obtain the current relative state of the evading spacecraft, 

and calculate the state relative to evader. 

2) Propagate the nominal relative motion from the current 

state to time Tr/2 using the nonlinear relative dynamic model. 

3) Choose a small time step ts for the RRDE propagation. 

Calculate λ0, λ1 and judge the positional relationship between 

the RRDEPi and RRDEE along the nominal trajectory by Eqs. 

(19) to (26). Determine the type (separation, intersection or 

contained) of the nominal trajectory for Pi as in Fig. 8, and 

record the time tex1 and tex2 for the intersection case or time tex1, 

tin1, tin2 and tex2 for the contained case. 

4) For the separation case, let the largest coverage TPi be 

empty, and skip to step 7. 

5) For the intersection or contained case, calculate all the 

intersection curves I1 of the RRDEPi and RRDEE from 0 to τ1 

with time step ts using the method in Sec. IIIA, and project 

them onto the UTRRDE through Eqs. (6) to (8) to obtain the 

corresponding curves I2. Save all the curves I2 into the database 

for Pi. 

6) Calculate the union of all I2 to obtain TPi. 

7) Determine the optimal pursuit maneuver by searching rd2 

and t on TPi to minimize the miss distance MPi or directly as 

ΔVPi[rd2, min
Pit ]. 

8) This procedure, given by the preceding steps, is 

continued until the terminal conditions of the orbital game are 

satisfied. If Rmin is smaller than Rintercept, then successful 

interception has been attained. 
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