
University of Sheffield

Machine Learning Methods for

Autonomous Classification and

Decision Making

Yifei Zhu

1stSupervisor: Lyudmila Mihaylova

2ndSupervisor: Michael Balikhin

A thesis submitted in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy

Department of Automatic Control and Systems Engineering

i

Declaration

All sentences or passages quoted in this document from other people’s work have been

specifically acknowledged by clear cross-referencing to author, work and page(s). Any

illustrations that are not the work of the author of this report have been used with the

explicit permission of the originator and are specifically acknowledged. I understand

that failure to do this amounts to plagiarism and will be considered grounds for failure.

Name:

Signature:

Date:

Acknowledgements

Completing the PhD study over the last four years was a challenging journey. However,

I would like to thank everyone who encouraged me and provided help through the

journey.

First, I would like to thank my supervisor, Prof. L. Mihaylova, for providing guidance,

feedback and encouragements. Second I would like to thank Dr. Peng Wang and Dr.

Xingchi Liu who are co-authors of some of my publications and the journal paper under

preparation, and who provided great help and guidance to the project conducted the

thesis.

Secondly, I would like to express my heartfelt appreciation to my family. Thank my

parents for fully supporting my further study as a PhD student. Thank my wife for

making those sacrifices and accompanying me through those years.

ii

Abstract

This thesis focuses on developing machine learning methods for autonomous classifi-

cation and decision making, especially on two case studies: traffic speed prediction

and cancer bone segmentation. For traffic speed prediction, the convolutional neural

network (CNN) achieves state-of-the-art results in complex traffic networks. However,

the pooling layers cause the loss of information within the data. This thesis pro-

poses an efficient capsule network for traffic speed prediction. The proposed capsule

network replaces the pooling layer with capsules connected by dynamic routing and

encodes the features and probability of those features showing on the local region. The

proposed capsule network provides outperformed results compared to state-of-the-art

CNNs. However, the CNN and capsule network (CapsNet) are parametric models and

the uncertainty is, thus, not analysed. Two Gaussian process (GP) frameworks are

proposed for traffic speed prediction, equipping the CNN with the ability to quantify

uncertainty. The first framework proposes to equate a state-of-the-art CNN with a

shallow GP. The proposed approach is evaluated and the uncertainty is analysed by

applying the confidence interval. In addition, the impact of the noise is investigated by

adding a different level of noise. The second framework is a novel deep kernel CNN-GP

framework with spatio-temporal kernels, allowing it to abstract high-level features and

consider both time and space. The proposed CNN-GP framework is validated and eval-

uated using CO2 concentration and traffic prediction for the short-term and long-term.

An efficient uniform error bound is proposed and evaluated with simulated and real

data. For cancer bone segmentation, machine learning methods are proposed to seg-

iii

iv

ment bone lesions in cancer-induced bone disease from Micro Computed Tomography

(µCT) images, which brings a new perspective of dealing with bone caner segmenta-

tion. The performances are evaluated and their effectiveness is compared. Due to the

limited number of datasets and the lack of labelled lesions within the dataset, an ap-

proach to generate simulated data is proposed. With an enhanced dataset, a generative

adversarial network is proposed to reconstruct the bone with a lesion to a healthy bone.

Consequently, the location of the lesion can be obtained by subtracting the original

image from the reconstructed image.

Contents

List of Symbols xi

List of Abbreviations xii

List of Figures xv

List of Tables xix

1 Introduction 1

1.1 Objective . 2

1.2 Thesis Outline . 2

1.3 Key Contributions . 4

1.4 Publications . 6

2 Literature Review 8

2.1 Backgrounds . 8

2.2 Methods for Traffic Prediction . 12

2.2.1 Segment-based Regression Kriging (SRK) 13

2.2.2 Auto Regressive Integrated Moving Average (ARIMA) 15

2.2.3 Bayesian Combined Neural Network (BCNN) 16

2.2.4 Long Short-term Memory Neural Network (LSTM-NN) 19

2.2.5 Convolutional Neural Network for Traffic Prediction 21

v

CONTENTS vi

2.2.6 Structural Recurrent Neural Network for Traffic Prediction . . . 31

2.2.7 Support Vector Machines . 37

2.2.8 Gaussian Process Methodology 38

2.3 Introduction of Uncertainty Quantification 44

2.3.1 Confidence Interval . 45

2.3.2 Variational Lower Bound . 45

2.4 Fast Edge Detection Using Structured Forests for Classification and Seg-

mentation . 47

2.4.1 Random Decision Forests . 48

2.4.2 Structured Random Forests . 50

2.4.3 Edge Detection . 52

2.5 Summary . 54

3 Machine Learning for Traffic Prediction 58

3.1 Introduction . 58

3.2 Machine Learning Frameworks for Short-term Traffic Prediction 60

3.2.1 Capsule Network . 60

3.2.2 Deep Convolutional Neural Network as Shallow Gaussian Process 65

3.2.3 Performance Evaluation . 69

3.2.4 Conclusion . 74

3.3 A Convolutional Neural Network - Gaussian Process with Deep and

Multitype Kernels for Time Series Prediction 76

3.3.1 Related work . 78

3.3.2 CNN with Spatio-temporal GP Regression 82

3.3.3 Experiments And Analysis . 83

3.3.4 Conclusion . 95

3.4 Uncertainty Quantification with Uniform Error Bound 95

3.4.1 Uniform Error Bound . 96

3.4.2 Lipschitz Constant Derivation 98

CONTENTS vii

3.4.3 Evaluation of The Uniform Error Bound with Simulated Data . 99

3.4.4 Evaluation of the Uniform Error Bound with Real Traffic Speed

Data . 104

3.4.5 Data Pre-processing . 104

3.4.6 Conclusion . 109

3.5 Summary . 109

4 Deep Learning for Cancer Bone Segmentation 112

4.1 Introduction . 112

4.2 Machine Learning Frameworks for Cancer Bone Segmentation 114

4.2.1 Convolutional Neural Network 115

4.2.2 Fully Convolutional Network for Semantic Segmentation 115

4.2.3 Capsule Network . 119

4.2.4 Convolutional Neural Network As Shallow Gaussian Process . . 120

4.2.5 Performance Evaluation . 122

4.2.6 Conclusions . 125

4.3 Lesion Bone Reconstruction with Simulated Lesions 126

4.3.1 Data Augmentation . 126

4.3.2 Deep Convolutional Generative Adversarial Networks 127

4.4 Conclusion . 134

4.5 Summary . 134

5 Conclusions and Future Works 136

5.1 Future Work . 138

Bibliography 141

Appendices 161

A 162

A.1 Uniform Continuity . 162

CONTENTS viii

A.2 Modulus of Continuity [1] . 162

A.3 Lipschitz Continuity . 163

A.4 Dudley’s Criterion . 163

A.5 Equation Derivation . 163

List of Symbols

Γ Adjustable error term corresponding to a weighted least squares cost function

C Covariance Function

E Mean Function

α(·) Layer output

θ Model parameters

Ai,j Layer Outputs of a Network

b Bias

Cell(·) Cell block

CO CO2 Concentration

Ci,j Coupling coefficient

D Discriminator

f(·) Forget gate

G Generator

i(·) Input gate

I Identical Matrix

K(·, ·) Kernel Function

ix

LIST OF SYMBOLS x

M(·) Memory block

nt White Noise

o(·) Output gate

squashj Squashing function

sum Weighted sum

S Traffic Speed

V Traffic Volume

W Weights

y Ground Truth/Actual Value

z Intermediate Value/Feature Extracted by CNN

ES Spatial edge

ET Temporal edge

L(·) Loss function

µ Mean

ωσN(·) Modulus of continuity

Φ(·) Auto regressive operator

φ(·) Nonlinear Activation

σ2 Variance

σ2
n Variance of Noise

flatten(·) Flatten operation

pool(·) Pooling operation

Prob(·) Probability

LIST OF SYMBOLS xi

Θ Moving average operator

ŷ Model Predictions

Cl Network Channel

h(·, ·) Binary split function

I Information gain

L Marginal likelihood

Lf Lipschitz constant of unknown function

L∂ik Lipschitz constant of partial derivative kernels

m(·) Mean function

max(·) Maximum

N(·) Number of points derived from the discretisation of a segment

pr, pt Discrete points within road segments

List of Abbreviations

AI Artificial Intelligence

AMDS Asymmetrical Multidimensional Scaling

ANN Artificial Neural Network

ARIMA Auto Regressive Integrated Moving Average

AST Adaptive Spatio-temporal

AU Aleatoric Uncertainty

BCNN Bayesian Combined Neural Network

CapsNet Capsule Network

CI Confidence Interval

CNN Convolutional Neural Network

Convnet GP Deep Convolutional Neural Network as Shallow Gaussian Process

DBN Deep Belief Network

DCGAN Deep Convolutional Generative Adversarial Network

DCGAN Deep Kernel Learning

DKL Deep Kernel Learning

xii

LIST OF ABBREVIATIONS xiii

DL Deep Learning

ELBO Evidence Lower Bound

ELU Exponential Linear Unit

EU Epistemic Uncertainty

FCN Fully Convolutional Network

FP False Positive

FN False Negative

GAN Generative Adversarial Network

GP Gaussian Process

HDNN Hybrid Deep Neural Network

IOU Intersection of Union

ITS Intelligent Transportation Systems

KL Kullback-Leiber

LSTM Long Short-Term Memory

LS-SVM Least Square Support Vector Machine

MC Monte Carlo

MCMC Markov chain Monte Carlo

ML Machine Learning

MS Multi-scale Version

MSE Mean Square Error

µCT Micro Computed Tomography

LIST OF ABBREVIATIONS xiv

NN Neural Network

NRMSE Normalized Root Mean Square Error

PCA Principal Component Analysis

RBF Radial Basic Function

RBM Restrict Boltzmann Machine

ReLu Rectified Linear Unite

RMSE Root Mean Square Error

RNN Recurrent Neural Network

SAE Stacked Autoencoder

SE Structured Edge

SH Sharpening

SRK Segment-based Regression Kriging

SSNN State Space Neural Network

SSIM Structural Similarity

STGP Spatio-temporal Gaussian Process

SVM Support Vector Machine

TDNN Time-delay Neural Network

TP True Positive

UEB Uniform Error Bound

UQ Uncertainty Quantification

VI Variational Inference

List of Figures

2.1 Artificial neuron architecture. 10

2.2 Artificial neuron architecture. 10

2.3 Artificial intelligence development and expansion [2]. 11

2.4 An example of LSTM-NN architecture [3] 19

2.5 The illustration of the traffic-to-image conversion [4]. 23

2.6 a) Binary step activation function. b) Linear activation function. c)

Sigmoid activation function. d) Tanh activation function. e) ReLu acti-

vation function. f) Leaky ReLu activation function. g) Parametric ReLu

activation function. h) Exponential linear units activation function. . . 27

2.7 The derivative of the Sigmoid Activation Function. 29

2.8 An example of ST-graph. a) Nodes A, B and C represent the road

segment, and are connected by spatial edges ES and temporal edges

ET . b) The ST-graph evolves over time. The unrolling is represented

by using temporal edges ET . c) The factor graph representation of the

ST-graph. Nodes and edges in the ST-graph are represented as factors

[5]. 33

2.9 The architecture of the structural-RNN of specific node A with the un-

rolled spatio-temporal graph [5]. 36

3.1 CNNs classified both images as human face. 60

3.2 Left shows the capsule, and right represents the neuron. 62

xv

LIST OF FIGURES xvi

3.3 The architecture applied on traffic speed prediction for complex traffic

network. 62

3.4 Elementwise transformation of a CNN [6]. 66

3.5 a) Validation on data with zero mean noise. b) Validation on data with

non-zero mean noise. Blue represents the RMSE value obtained from

ConvNet GP; Red represents the RMSE obtained from CNN. 73

3.6 Validation on data with zero mean noise for each sensor. Blue represents

the RMSE value obtained from the ConvNet GP; Red represents the

RMSE obtained from the CNN. 74

3.7 Prediction uncertainty obtained by ConvNet GP. The 1σ confidence in-

terval is applied on GP and 3σ confidence interval is applied for ConvNet

GP. 75

3.8 The GP-CNN framework. Blue block represents the combination of

convolutional and pooling layers; red block represents fully connected

layer; and pink block represents a Gaussian process regression. 81

3.9 a) The visualization of the traffic speed data. b) The visualization of

the last-layer features extracted by the typical CNN. 83

3.10 Visualization of short-term (1 month) CO2 concentration prediction for

the CNN and CNN-GP with different spatio-temporal kernels. 86

3.11 a) Visualization of long-term (24 months) CO2 prediction by using CNN.

b) Visualization of the long-term CO2 prediction by using CNN-GP

with spatio-temporal kernel as shown in equation (3.19) and uncertainty

information evaluated by confidence interval (3σ). 88

3.12 Visualization of short-term (15 minutes) traffic volume prediction for the

CNN and CNN-GP with spatio-temporal kernel. Note that the predicted

traffic volume values are positive but the negative values are due to the

3σ confidence intervals. 89

LIST OF FIGURES xvii

3.13 a) Visualisation of long-term (1 day) traffic volume prediction. b) Visu-

alisation of long-term (1 week) traffic volume prediction. Note that the

predicted traffic volume values are positive but the negative values are

due to the 3σ confidence intervals. 90

3.14 Visualization of short-term (15 minutes) traffic speed prediction for the

CNN and CNN-GP with spatio-temporal kernel. Note that the predicted

traffic volume values are positive, but the negative values are due to the

3σ confidence intervals. 92

3.15 a) Visualization of long-term (1 day) traffic speed prediction. b) Visu-

alization of long-term (1 week) traffic speed prediction. 93

3.16 One-step history data of are used to predict one-step head data. x = 1 :

1 : 50, y = cos 2x+ sinx+ v. 99

3.17 One-step history data of are used to predict one-step head data, where

x = 1 : 1 : 50, y = 20× (cos 2x+ sinx+ v). 100

3.18 One-step history data of are used to predict one-step head data. x = 1 :

0.5 : 50, y = cos 2x+ sinx+ v. 101

3.19 One-step history data of are used to predict one-step head data. x = 1 :

0.5 : 50, y = cos 2x+ sinx+ v. 102

3.20 The top figure shows the visualization of UEB for simulated data. The

middle figure shows the visualization of UEB value alone the time. The

bottom figure shows that prediction variance. 103

3.21 Visualization of UEB for real traffic speed data. 105

3.22 Visualization of UEB for real traffic speed data (τ = 1e−7). 106

3.23 UEB value evolution as the noise variance changes with τ = 1e−7. . . . 107

3.24 Top: Average uniform error bound value. Bottom: Percentage of the

points that is out of the error bounds. 108

4.1 CNN architecture for bone segmentation. 116

4.2 Fully convolutional network architecture for bone segmentation 118

LIST OF FIGURES xviii

4.3 Capsule network architecture for bone segmentation 119

4.4 a) Evaluation of the edge detection. Red represents the ground-truth

points that are failed to be predicted, and yellow represents the pre-

diction. b) is the visualisation of the result obtained from CNN. c) is

the visualisation of the result obtained from FCN. d) Visualisation of

the result obtained from CapsNet. e) is the visualisation of the result

obtained from Covnet GP. In b), c), d) and e), the red areas represent

the background and blue areas represent the bone ares. f) ROC curve. 123

4.5 The generation of the simulated data. 127

4.6 A basic architecture of GAN. 128

4.7 A visualization of GAN generating bone from a noise. 131

4.8 A visualization of GAN generating bone from cancer bone. 132

List of Tables

3.1 Layer parameters of CapsNet . 65

3.2 Layer parameters of CNN . 71

3.3 Layer parameters of CapsNet . 71

3.4 Results validation (unit: km/h) . 72

3.5 Layer parameters of CNN for CO2 prediction 84

3.6 Layer parameters of CNN for traffic volume prediction 84

3.7 RMSE results summary . 94

4.1 Layer parameters of CNN . 116

4.2 Layer parameters of FCN . 116

4.3 Layer parameters of CapsNet . 120

4.4 Deep learning approach evaluation . 124

4.7 Layer parameters of Generator for reconstructing bone from noisy vector.132

4.5 Layer parameters of Generator for reconstructing bone from image with

lesion. 133

4.6 Layer parameters of Discriminator . 133

xix

Chapter 1

Introduction

Data has been the lifeblood of a great number of domains, and the rapid growth of

data leads to the increasing demand for intelligent automation. Machine learning (ML)

is a powerful tool for autonomous data analysis and decision making in different do-

mains. Before ML, data is analysed by model-based methods or by humans, which

are either expensive or time consuming. For example, different physical models are

required to be designed under different traffic scenarios and computerised tomogra-

phy (CT) images for patients can only be analysis by experienced doctors. ML shows

the ability to handle large amounts of data and decision making, which has revolu-

tionised the field of autonomous systems. ML is essentially a data-driven methods are

developed to investigate the inherent relationships in historical data. A wide range

of approaches, including decision trees [7], K-nearest neighbor [8], support vector ma-

chines [9], statistical methods and ending with artificial neural networks (ANNs) [10],

are the categories of ML. Deep learning (DL) methods are one of the subsets of ML,

and have achieved great success, especially convolutional neural networks (CNNs) [11].

However, DL methods only provide deterministic predictions, but the degree of trust

of the results is not analysed and not well studied.

The focus of this thesis is the development of novel ML methods for autonomous clas-

1

CHAPTER 1. INTRODUCTION 2

sification and decision making. Classification is one of the most fundamental problems

in machine learning, which involves assigning data into different predefined categories

based on their properties. The decision-making problem involves choosing the most

appropriate action based on the current state, and regression is one representative.

Both problems are similar, since discrete predictions are made for labels in the classi-

fication problem, and continuous predictions are made for the regression problem. In

this thesis, two case studies are investigated: 1. traffic speed prediction in a complex

traffic network; 2. cancer bone and lesion segmentation. For both case studies, the

inputs are essentially images, since the time series of traffic speed is converted into

an image, and CT image slides are images. In this thesis, the ML methods developed

focus on analysing image data.

1.1 Objective

This thesis aims to present ML methods for autonomous classification and decision

making, and implement them in areas that are challenging and have not been previously

researched. The impact of uncertainty is investigated. Two case studies are applied,

as both focus on image data.

1.2 Thesis Outline

This thesis consists of five chapters, and the structure is outlined as following:

Chapter 1 introduces the topic and objectives of this thesis. The outline and key

contributions in each chapter are emphasised. Relevant publications are listed in

the last section of this chapter.

Chapter 2 reviews existing machine learning methods for regression and classifica-

tion, followed by an overview of uncertainty quantification. The main existing

machine learning methods for traffic prediction are introduced, and the convolu-

CHAPTER 1. INTRODUCTION 3

tional neural network is emphasised as the baseline for this thesis. The types of

uncertainty and uncertainty quantification methods are demonstrated. A review

of fast edge detection using structured forests for classification and segmentation

is provided.

Chapter 3 focuses on machine learning methods for traffic speed prediction and

uncertainty quantification. In this case study, the aim is to present machine

learning methods that accurately predict traffic speed in the future and quantify

the uncertainty. The traffic speed data is converted into an image as proposed

in the literature, and an efficient Capsule Network (CapsNet) for complex traffic

networks is proposed to overcome the drawbacks of the state-of-the-art Convo-

lutional Neural Network (CNN) for traffic prediction. Since CNN and CapsNet

are parametric models and provide deterministic results, the uncertainty is not

analysed. Therefore, two Gaussian process (GP) related frameworks, deep CNN

as shallow GP (ConvNet GP) and CNN with GP regression (CNN-GP), are pro-

posed for traffic speed prediction, which equip the CNN with the ability of un-

certainty quantification. The uncertainty is analysed by applying the confidence

interval. In addition to the confidence interval, a uniform error bound is mod-

ified and applied for the CNN-GP framework to quantify the uncertainty. The

proposed approaches are evaluated with real traffic speed data, and the impact

of noise is investigated by adding different levels of noise to the data. Finally, a

spatio-temporal kernel is proposed based on the CNN-GP framework, since the

traffic speed data show periodicity, which provides further improvement in the

prediction accuracy.

Chapter 4 focuses on machine learning methods for cancer bone segmentation. In

this case study, the aim is to locate the position of the lesions and quantify the

areas of the lesion. Four machine learning approaches are proposed for bone seg-

mentation, including a CNN, a CapsNet, a Fully Convoltuional Network (FCN)

and a ConvNet GP, which brings a new perspective of dealing with bone cancer

CHAPTER 1. INTRODUCTION 4

segmentation. The performances are evaluated and the effectiveness is compared.

Because the number of the dataset is limited and the lesions in the dataset are not

labelled, an approach to generate a simulated data set is proposed. Furthermore,

the major challenge of this case study is that the lesion area is identical as the

background. Therefore, instead of directly segmenting the lesion, a generative

adaptive network (GAN) is proposed to reconstruct the bone with the lesion back

to healthy, and thus the location of the lesion can be obtained by subtracting the

original image and the reconstruction image. The performance is evaluated and

shows great potential towards fully automatic bone tumour segmentation.

Chapter 5 gives a summary of the thesis and discussions of future work.

1.3 Key Contributions

Chapter 3: This chapter delves into ML methodologies tailored for time series predic-

tion, paired with uncertainty quantification. The groundbreaking contributions

encapsulated within this chapter include:

• Image Conversion of Time Series Data: Distinct from traditional nu-

merical representations of time series data, this chapter adopts a pioneer-

ing approach, as previously illuminated in select literature, where in traffic

speed data undergo transformation into a visual image format, enabling the

application of image-focused algorithms.

• Novel CapsNet for Time Series Prediction: Recognising inherent limi-

tations within the current CNN paradigm, this chapter proposes an efficient

CapsNet. This introduces concepts of capsule and dynamic routing algo-

rithm, aiming to overcome identified drawbacks of CNNs in the domain of

time series forecasting [C1].

• Incorporation of Uncertainty Quantification Frameworks: A salient

CHAPTER 1. INTRODUCTION 5

gap observed in the deterministic outputs of CNN and CapsNet is the ab-

sence of uncertainty quantification. Addressing this, this chapter pioneers

the introduction of ConvNet GP [C3]. These architectures endow CNN with

the indispensable faculty of quantifying inherent uncertainties.

• Deep Learning Kernel: A novel CNN-GP approach is proposed for pre-

diction with time series data. The advantages of GP regression are aug-

mented with deep learning kernels, and this provides both efficient feature

extraction, robustness to uncertainties, and accurate results [J1].

• Spatio-temporal kernel: Acknowledging the periodicity intrinsic to traf-

fic speed data, this chapter heralds the creation of a spatio-temporal kernel,

anchored upon the CNN-GP approach. This kernel embodies a refined un-

derstanding of temporal patterns, significantly improving the accuracy of

short-term prediction, and enabling long-term prediction [J1].

• Empirical Noise Impact Analysis: The uncertainties are investigated

through the confidence interval. Beyond the baseline evaluation using au-

thentic traffic speed data, the research delves deep into the models’ ro-

bustness, studying their behaviour and efficacy in the face of varied noise

magnitudes introduced in the dataset.

• Advanced Uncertainty Analytical: An efficient adaptation of the uni-

form error bound has been specifically devised and integrated within the

CNN-GP framework, offering a cutting-edge technique for uncertainty quan-

tification.

Chapter 4: In this chapter, the focus is on innovative machine learning method-

ologies designed for cancer bone segmentation. The salient contributions and

groundbreaking methodologies delineated in this chapter are as follows:

• Multifaceted Machine Learning Architectures: this chapter intro-

duces four distinct ML paradigms for the intricate task of bone segmenta-

CHAPTER 1. INTRODUCTION 6

tion: traditional dense CNN, CapsNet, FCN and ConvNet GP. The inclu-

sion of these diverse methodologies underscores a novel and comprehensive

perspective toward the exigencies of bone segmentation [C2].

• Simulated Dataset Generation: Given the inherent constraints of the

dataset, its limited volume, and the absence of lesion labelling, this chapter

innovatively proposes an approach for the generation of simulated datasets.

This approach not only augments the existing dataset but also addresses

the gap in terms of labelling instances.

• Challenging Lesion-Background Indistinguishability: A prominent

obstacle identified in this domain is the uncanny resemblance between the

lesion area and the background. Instead of conventionally attempting direct

lesion segmentation, this work breaks new ground by suggesting the deploy-

ment of a GAN. The GAN’s principal role is to reconstruct bones inflicted

with lesions back to their pristine, lesion-free state. The precise location of

the lesion is subsequently discerned by juxtaposing the original and recon-

structed images. Although unconventional, this approach has been shown

to have significant potential.

1.4 Publications

The author’s publications with relevance to this thesis are listed as following:

Peer Reviewed Papers in Conference Proceedings

[C1] Y. Kim, P. Wang, Y. Zhu and L. Mihaylova, “A Capsule Network for Traffic Speed

Prediction in Complex Road Networks” in Proc. of 2018 Sensor Data Fusion:

Trends, Solutions, Applications (SDF), 2018, pp. 1-6, doi: 10.1109/SDF.2018.8547068.

CHAPTER 1. INTRODUCTION 7

[C2] Y. Zhu, A. C. Green, L. Guo, H. R. Evans and L. Mihaylova, “Machine Learning

Approaches for Cancer Bone Segmentation from Micro Computed Tomography

Images,”In Proc. of 2020 IEEE 23rd International Conference on Information

Fusion (FUSION), 2020, pp. 1-6, doi: 10.23919/FUSION45008.2020.9190495.

[C3] Y. Zhu, P. Wang and L. Mihaylova, “A Convolutional Neural Network Combined

with a Gaussian Process for Speed Prediction in Traffic Networks,” In Proc. of

2021 IEEE International Conference on Multisensor Fusion and Integration for

Intelligent Systems (MFI), 2021, pp. 1-7, doi: 10.1109/MFI52462.2021.9591204,

Best student paper award.

Peer Reviewed Journal Paper

[J1] Y. Zhu, X. Liu, R. Lane, N. Bouaynaya and L. Mihaylova, “A Convlutional

Neural Network-Gaussian Process Approach with Deep Kernels for Time Series

Prediction,” IEEE Transactions on Intelligent Transportation Systems, 2023, un-

der review.

Chapter 2

Literature Review

2.1 Backgrounds

While a number of definitions of artificial intelligence (AI) have been proposed over

the last decades, John McCarthy stated that artificial intelligence is the science and

engineering of making intelligent machines and computer programs. AI is related to

the similar task of using computer to understand human intelligence [12]. ML is an

application of AI that builds a model based on historical data to make decisions or

predictions without the need of explicit programming. Tom Mitchell proposed that

“Machine learning is a computer program to learn from experience E with respect to

some class of tasks T and performance measure P , if its performance at tasks in T , as

measured by P , improves with experience E [13].”

Generally, there are three types of machine learning: supervised learning methods [14],

unsupervised learning [14, 15] and reinforcement learning [14, 16]. For supervised learn-

ing, an input data set and the correct outputs are given. Supervised learning problems

are classified into regression and classification problems. In regression problems, the

target is to predict the results within a continuous domain, which means that the input

data are mapped to some continuous functions. In classification problems, the targets

8

CHAPTER 2. LITERATURE REVIEW 9

are instead to predict the results in a discrete domain, which means the input data are

mapped into discrete categories. For example, historical data of the stock market are

given to predict the stock price in the next fifteen minutes. For unsupervised learning,

limited or even no knowledge of the results are provided. Unsupervised learning is a

machine learning technique that allows the model to discover patterns and information

on its own. It mainly deals with unlabelled data. For example, unsupervised learning

is applied on a shopping website, such as Amazon, to recommend items that customers

may like. For reinforcement learning, it is inspired by behaviorist psychology. The

software agent learns to achieve a goal in an environment. In reinforcement learning,

the model faces a game-like situation that requires the model to provide a sequence of

decisions. During the training session, the model employs trail and error to come up

with a solution to the problem in a complex environment. To get the model to do what

it is expected to do, rewards and penalties of the actions that the model performs are

applied. The goal of the model is to maximise the total rewards and minimise the total

penalties. For example, AlphaGo Zero [17] was trained to defeat a world champion in

the ancient Chinese game by using reinforcement learning. Machine learning has been

widely used in human life, and artificial neural network (ANN) has become one of the

most important algorithms of machine learning.

An outstanding advantage of ANNs is that they are data-driven models and, therefore,

more accurate from physical systems with large inputs [2]. An ANN is a machine

learning algorithm inspired by the human brain, as it consists of an interconnected

network of artificial neurons that learns from the data by modifying its connection

[10]. Like the human brain, ANNs have been widely used in massive domains, such

as speech recognition, data recovery, and word recognition. More specifically, an ANN

can be designed for data classification and regression. An artificial neuron, the most

basic structure of an ANN, is a mathematical function that receives one or more inputs

to produce an output. Fig. 2.1 shows an example of the architecture of an artificial

neuron.

CHAPTER 2. LITERATURE REVIEW 10

Figure 2.1: Artificial neuron architecture.

For a given artificial neuron, let there be n inputs labelled from X1 to Xn. The general

transformation of the artificial neuron is defined as follows:

aln = φ(
n∑
i=1

wixi + b), (2.1)

where wi is weight for each input, b is the bias and φ represents the nonlinear activation.

Figure 2.2: Artificial neuron architecture.

CHAPTER 2. LITERATURE REVIEW 11

However, a neuron cannot work alone as the human brain is a network of neurons that

cooperate toward a target. An arbitrary number of artificial neurons consist of layers

in the ANNs. By simulating biological neurons, an artificial neuron transfers its input

to the others to establish an interactive network. Fig. 2.2 represents an example of a

3-layer ANN architecture that contains three basic types of layers: input, hidden and

output layer. The neurons in the input layer receive data. The hidden layer contains

an arbitrary number of artificial neurons interconnected to neurons in the input layer.

In most networks, each neuron in the hidden layer receives outputs from all neurons

in the previous layer [18]. In the last layer, the output layer, the neuron receives the

output from artificial neurons in the hidden layer and generates the output of the

network. As the structure of ANNs becomes more complex, the term deep learning is

defined to refer to ANNs with complex multilayers [19]. The difference between DL

and ANNs is that the architectures of DL are more complex and the number of data

is larger compared with the ANNs. Therefore, DL is defined as an ANN that has a

larger number of parameters and layers.

The development and relationships between AI methods are shown in Fig. 2.3.

Figure 2.3: Artificial intelligence development and expansion [2].

This thesis focuses on ML methods. In Section 2.2, the background of traffic predic-

CHAPTER 2. LITERATURE REVIEW 12

tion and existing methods for traffic prediction are introduced. Section 2.3 introduces

uncertainty and methods of quantifying uncertainty. In Section 2.4, the background of

cancer bone and traditional methods of image recognition are demonstrated.

2.2 Methods for Traffic Prediction

Traffic congestion has become a problem in most metropolitan areas and has drawn a

great deal of attention in light of traffic prediction and control systems. Therefore, the

concept ’Smart City’ attracts the interest of researchers and governors. The ’Smart

City’ is an increasingly popular concept that aims to manage the city more intelli-

gently. The establishment of intelligent transportation systems (ITS) is one of the core

tasks to build smart cities. One of the cornerstones for successfully deploying ITS is

traffic speed prediction. Considering the evolution of traffic within the whole traffic

network provides people and traffic managers with complete information on the traffic

network to make better decisions. Traditional methods for traffic prediction are either

expensive or time-consuming. Therefore, a method that can predict traffic accurately

and autonomously is desired.

Mostly, the main existing traffic flow prediction approaches are divided into two meth-

ods, model-based and data-driven methods [20]. The main discrepancy between the

two methods is, as they are named, whether models or data are evolved to predict

the future states. Model-based methods require developing physical traffic models that

describe the dynamics of the traffic network. There are mainly three types of models,

such as microscopic, macroscopic and mesoscopic [21]. Microscopic models are both

time and computationally expensive, as they provide details of the individual vehicle

[22, 23]. Macroscopic models simulate the aggregated behaviour of traffic. However,

the trade-off between computational efficiency and prediction accuracy should be com-

promised. Macroscopic models are used for real-time traffic prediction, such as the cell

transmission model (CTM) [24] and the CTM interval [25]. By emphasising in vary-

CHAPTER 2. LITERATURE REVIEW 13

ing levels of detail, the macroscopic models combine the microscopic and macroscopic

models.

2.2.1 Segment-based Regression Kriging (SRK)

After that, model-based methods have attracted the interest of researchers. With the

assumption that the models describe the dynamics of the traffic system accurately,

the prediction results are reliable. Most recently, SRK [26] has been proposed for pre-

dicting traffic volume. The SRK is a geostatistical method that has been widely used

for the assessment of traffic-related problems. However, most previous studies ignore

critical information about the road segment, which can lead to inaccurate predictions

and therefore negative impact on decision making. The SRK is proposed to address

this problem. The authors make three assumptions: first, homogeneity is assumed for

the traffic data over the road segment, but spatially heterogeneous and autocorrelated

for different road segments; second, continuity is assumed for the observed traffic data;

and third, the expected variance of the observations is assumed to be a function of

separation distance, which is the spatial stationarity for the segment-based model [26].

Traffic volumes are predicted by SRK following five steps. Modelling traffic volume

trends using linear regression is the first step. The Box-Cox function [27] and the

selected predictor variables [26] are used to transform the latent variables. Estimat-

ing residuals is the second step after removing trends in traffic volumes. Based on

the first assumption, the maximum likelihood predicted from the point values of the

road segments is used to assess the segment-based variogram. The covariance between

segments is formulated as:

Cs(si, sj) =
1

N(si)

1

N(sj)

N(si)∑
r=1

N(sj)∑
t=1

C(pr, pt) (pr ∈ si, pt ∈ sj), (2.2)

where pr and pt represent discrete points within road segments si and sj. The discreti-

sation number of a road segment is represented by N(·). The third step is to generate

the estimation and error variances. A linear combination of the surrounding road seg-

CHAPTER 2. LITERATURE REVIEW 14

ments m is used to estimate the prediction value ẑ(·) of the SRK on the road segment

s0.

ẑ(s0) =
m∑
i=1

Wi(s0)z(si), (2.3)

where the neighbouring segments are denoted as si, and the weight is denoted as

Wi(s0). The weights are estimated as follows:

Cs(so, si) =

∑m

j=1Wj(s0)Cs(si, sj) + µ(s0), i = 1, 2, · · · ,m∑m
j=1Wj(s0) = 1

, (2.4)

and the variance of error for SRK estimation at road segment s0 is formulated as,

σ̂2(s0) = Cs(so, s0)−
m∑
j=1

Wj(s0)Cs(s0, sj)− µ(s0) (2.5)

Generating the final prediction by adding SRK estimation and the estimated trends

in the first step is fourth step. Performance validation shows that the SRK provides

a significant improvement in prediction accuracy for heavy vehicles. The best perfor-

mance is provided by the point-based geostatistical model with 78% improvement in

spatial variance and 53% improvement in estimated uncertainty, compared to regres-

sion kriging. This improvement shows that the SRK can provide a new perspective on

characterising spatial features and spatial homogeneity of road segments.

Although, as a number of models have been developed, the general model that can

satisfy all traffic scenarios is still not proposed, which limits the application of model-

based methods. Data-driven methods [20] are more popular nowadays. Although

model-based methods put effort into building physical models [20, 28], data-driven

methods usually require only historical data. Statistical and machine learning methods

are the two main categories that are developed to investigate the inherent relationships

in data.

The exploration of SRK underscores the criticality of addressing the spatial charac-

teristics and homogeneity inherent in the road segments to understand the prediction

CHAPTER 2. LITERATURE REVIEW 15

of traffic volume. While pioneering in spatially characterising traffic dynamics, this

approach primarily leans toward the spatial aspect of the data. In the domain of traf-

fic prediction, it is essential to simultaneously consider the temporal evolution of the

data. Historical and sequential patterns inherent in time series data have been a cor-

nerstone of various predictive models. A paradigm shift towards the time-series domain

introduces us to the Auto Regressive Integrated Moving Average (ARIMA) model, a

vanguard in temporal traffic forecasting. In the subsequent discussion, a comprehen-

sive examination of ARIMA will be carried out, elucidating its distinctness from SRK

and emphasising its robustness in capturing the temporal intricacies of traffic data.

2.2.2 Auto Regressive Integrated Moving Average (ARIMA)

The ARIMA [28] is proposed in 1979, and it achieved success on short-term highway

traffic prediction. ARIMA is a popular prediction model for time series, and it consists

of the autoregressive component, the integrated component, and the moving average

component. The autoregressive component characterises the dependence of the current

value based on past data. The integrated component is applied when the data is non-

stationary, meaning that the distribution of the data varies over time. The moving

average component focuses on the correlation between the current value and the past

errors. The parameters for the ARIMA model are selected based on the characteristics

of the data and optimised by maximising the likelihood. The mathematics of ARIMA

is introduced as follows. Let Vt be the traffic flow time series and B be the backshift

operator BVt = Vt−1. As the time series Vt is stationary and has a mean µ, the

ARIMA model is represented as:

Φp(B)(1−B)d(Vt − µ) = θq(B)nt, (2.6)

where Φp(B) = 1 − Φ1B − Φ2B
2 − · · · − ΦpB

p is an auto regressive operator of order

p, Θq(B) = 1 − Θ1B − Θ2B
2 − · · · − ΘqB

q is a moving average operator of order

q, and nt ∼ N (0, σ2
zI) is a white noise. The ARIMA model is fitted to a specific

dataset by iterative procedures: preliminary identification, estimation and diagnostic

CHAPTER 2. LITERATURE REVIEW 16

check [28]. Parameters (p, q, d) are estimated in preliminary identification by inspecting

the autocorrelations of the time series. After determining the values of p, q, and d,

non-linear least square techniques are used to estimate the autoregressive and moving

average parameters [28], at the estimation stage. Finally, the goodness of the model is

checked in the diagnostic check.

While the ARIMA model excels in capturing temporal patterns of traffic data with its

methodologically robust components, its efficacy diminishes in scenarios where spatio-

temporal relationships within intricate traffic networks become pivotal. Furthermore,

as elucidated, machine learning techniques have gained considerable traction due to

their ability to adeptly handle the spatiotemporal intricacies of traffic data. On the

other hand, machine learning methods [29], [30], [31] and [32] have become increasingly

popular. The spatiotemporal features of traffic networks have attracted significant in-

terest from researchers. The latter methods, such as ANNs, have demonstrated prowess

in handling multi-dimensional data streams and offering generalisable solutions [33].

Park et al. [34] proposed a real-time vehicle speed prediction algorithm based on

ANN. Transitioning into the next section, an approach in forecasting, Bayesian Com-

bined Neural Network (BCNN), will be described. This paradigm ingeniously amalga-

mates Bayesian principles with ANNs, furnishing a method that not only caters to the

predictive strengths of neural architectures, but also accommodates the probabilistic

inferences inherent in Bayes’ theorem.

2.2.3 Bayesian Combined Neural Network (BCNN)

Zheng et al. [35] combined the Bayes theorem with an ANN to predict the short-

term flow of freeways. The Bayesian combination approach aims to combine several

predictors based on the Bayes rule and conditional probability [36]. In other words, the

BCNN consists of multiple ANNs and is trained with a Bayesian approach. The prior

distributions of the model parameters are specified at the beginning. These priors

are updated by training, and the posterior distributions of the parameters can be

CHAPTER 2. LITERATURE REVIEW 17

estimated. BCNN combines multiple outputs generated by ANNs, and the uncertainty

can be estimated by the variance of the posterior. The basic predictor is formulated

for the specific t-step time series as

yt = fkt (yt−1, yt−2, · · · , y1) + ekt , (2.7)

where the target traffic flow is denoted as yt; f
k
t (·) is the forecasting model; ekt is the cor-

responding prediction error; and k represents the index of predictors. However, equa-

tion (2.7) only holds for one k in each time series, and the best-fitted model cannot be

identified in advance most of the time [35]. Therefore, an inducing variable Z is assumed

to sample one of the values of k in one time interval to introduce uncertainty. The con-

ditional posterior probability is therefore defined as pkt = Prob(Z = k/yt, yt−1, · · · , y1),

and with the Bayes rule.

pkt =
Prob(yt, Z = k/yt, yt−1, · · · , y1)∑k

m=1 Prob(yt, Z = m/yt, yt−1, · · · , y1)
(2.8)

From assuming that ekt = yt−fkt is a Gaussian white noise with zero mean and standard

deviation σk and the fact of

Prob(yt, Z = k/yt−1, yt−2, · · · , y1) = Prob(yt/yt−1, yt−2, · · · , y1, Z = k)pkt−1, (2.9)

and

Prob(yt/yt−1, yt−2, · · · , y1, Z = k) = Prob(ekt = yt − yt/yt−1, yt−2, · · · , y1, Z = k)

=
1√

2πσk
e

[− (yt−f
k
t)

σk
]2

(2.10)

it can be derived that:

pkt =

1√
2πσk

pkt−1e
[− (yt−f

k
t)

σk
]2∑k

m=1
1√

2πσm
pmt−1e

[− (yt−fmt)

σm
]2
. (2.11)

Equation (2.11) represents the probability of model k generating the observed traf-

fic flow, and it can also be considered as the kth predictor in the combined model.

CHAPTER 2. LITERATURE REVIEW 18

Furthermore, equation (2.11) shows that the model generating the largest prediction

error yt − fkt is heavily penalised, and therefore a decrease pkt is obtained. As a result,

the model that best predicts traffic flow at step t will obtain the highest pkt and the

predictor with the highest pkt is the main predictor in the next step. Therefore, the

prediction for the t+ 1 time step can be formulated as follows.

yt+1 =
k∑
k=1

pkt · fkt+1. (2.12)

Two predictors, a back-propagation NN and a radial basic function (RBF) NN, are

applied. Based on equation (2.11), the posterior probability of the observed traffic flow

is calculated as follows:

pkt =

1√
2πσk

pkt−1e
[− (yt−f

k
t)

σk
]2

1√
2πσ

p1
t−1e

[− (yt−f1t)
σ

]2 + 1√
2πσ

p2
t−1e

[− (yt−f2t)
σ

]2
(2.13)

The output of the BCNN predictor at time t+ 1 is formulated as,

yt+1 = p1
t · f 1

t+1 + p2
t · f 2

t+1, (2.14)

where p1
t and p2

t are the credit values for back propagation and RBF neural networks

respectively. Experiments show that the proposed BCNN model outperforms the single

predictor for more than 85% time steps [35].

However, an ANN cannot understand and learn the spatial relationships between the

road segments. Furthermore, compared to deep learning methods, ANNs provide lower

prediction accuracy because of their shallow architectures and ignorance of the time

characteristics of time series inputs. Therefore, an additional temporal component is

introduced into the ANNs, called recurrent neural networks (RNNs). The activations

obtained from the previous layer are combined with the inputs and fed back into the

RNN [37]. Liu et al. [38] proposed a state space NN (SSNN) to predicting urban

travel time. A time-delay NN (TDNN) is a variant that combines previous input and

current input. Shen et al. [39] prove that TDNN provides a higher accuracy in travel

time prediction. Deep learning methods were first applied for traffic flow prediction

CHAPTER 2. LITERATURE REVIEW 19

Figure 2.4: An example of LSTM-NN architecture [3]

by Polson and Sokolov [40]. Huang et al. [41] propose a deep belief network (DBN)

for the transportation network. Ma et al. [31] proposed a combination of RNN and

deep Restricted Boltzmann Machines (RBM), named RBM-RNN, which adopts the

advantages of both RBM and RNN. Although RNN shows an excellent ability to solve

non-linear regression problems for time series [3], time lag is an issue. The time lags

commonly existing in traffic data cannot be modelled by traditional RNNs that are

highly dependent on the pre-specified lag [42]. The long short-term memory neural

network is proposed to address the drawbacks of RNNs in the next section.

2.2.4 Long Short-term Memory Neural Network (LSTM-NN)

Ma et al. [3] proposed a LSTM-NN and demonstrated that LSTM-NN provides out-

performing stability and accuracy. An LSTM-NN contains three layers: input layer,

recurrent hidden layer and output layer. Memory blocks in the hidden layers make the

difference between LSTM-NN and traditional NN. The memory block is composed of

self-connecting memory cells memorising the temporal states, adaptive and multiplica-

CHAPTER 2. LITERATURE REVIEW 20

tive gate units to control the flow of information [3]. In addition, an additional pair of

input and output gates is applied to control the input and output activations flowing

into the block. The core of the memory cell is the constant error carousel (CEC) [3],

and the activation of CEC represents the state of the cell. The CEC enables learn-

ing of the gates, and hence the LSTM-NN is able to handle the error disappearing

by maintaining it at a constant value. A forget gate is added, since it can prevent

internal cell values from growing without bound, which resets the memory blocks and

substitutes the CEC weights with the activation obtained from the forget gate, when

the information flow is antiquated [3]. An example architecture of the LSTM-NN is

presented in Fig. 2.4. In the context of traffic speed prediction, the input is denoted

as v = [v1, v2, · · · , vn], and y = [y1,2 , · · · , yn] denotes the output, where n represents

the prediction time step. Predicting the traffic speed in the next time step is the aim

of the LSTM-NN, and the prediction can be obtained by iteratively calculating the

following:

in = σ(Wivvn + WimMn−1 + WicCelln−1 + bi) (2.15)

fn = σ(Wfvvn + WfmMn−1 + WfcCelln−1 + bf) (2.16)

Celln = ft �Celln−1 + in � g(Wivvn + WimMn−1 + bc) (2.17)

on = σ(Wovvn + WomMn−1 + WocCelln + bo) (2.18)

Mn = on � h(Celln) (2.19)

yn = WymMn + by (2.20)

where the scalar product of two vectors is denoted as �, and σ(·) is defined as,

σ(x) =
1

1 + e−x
(2.21)

As presented in Fig 2.4, the memory block is bounded by a dished box, and the outputs

of the input, output and forget gates are respectively in, on and fn. Weight and bias are

denoted as W(··) and b(·), and Cn and Mn represent the activations obtained from the

cell and the memory block. For example, the weight for the input gate and applied to

CHAPTER 2. LITERATURE REVIEW 21

the input is represented as Wiv. In equation (2.17), g(·) is the centred logistic sigmoid

function with a range of [−2, 2]:

g(x) =
4

1 + e−x
− 2, (2.22)

and a centered logistic sigmiod function with range [−1, 1] is denoted as:

h(x) =
2

1 + e−x
− 1. (2.23)

The LSTM-NN is trained based on backpropagation through time (BPTT) and real

time recurrent learning with gradient descent optimisation [43, 44]. The common loss

function is sum square errors. A comparative study has been done by Ma et al. [3],

and the stability and accuracy of the LSTM-NN outperform when compared to RNN,

TDNN, SVM, ARIMA and Kalman filter. Having discussed the architectural and

operational intricacies of the LSTM-NN and its merits in traffic speed prediction, it is

essential to explore other neural network architectures that have also been employed

in the domain of traffic prediction. One such architecture that has garnered significant

attention is CNN. While LSTM-NNs outperform in capturing long-term dependencies

by leveraging their memory cells, CNNs, traditionally used in image processing tasks,

have unique capabilities in automatically and adaptively learning spatial hierarchies of

features. The subsequent section delves into the principles and applications of CNNs

in the context of traffic prediction, elucidating its potential advantages.

2.2.5 Convolutional Neural Network for Traffic Prediction

Compared to ANN related methods, the deeper and more complex features are ab-

stracted by deep learning methods, and thus deep learning can learn the data better

than existing ANNs. However, both ANN and existing deep learning methods are

focused on one road segment or a small traffic network. Most existing models only

considered traffic evolution in the aspect of temporal relationships, and spatial correla-

tions of the traffic network are not considered. Therefore, to fill the gap, Ma et al. [45]

CHAPTER 2. LITERATURE REVIEW 22

introduced an image-based method that represents traffic data as images and applies

a CNN to extract spatio-temporal features of traffic data in the form of images.

2.2.5.1 Traffic Data as Images

Traffic prediction should be investigated in both time and space dimensions. Let the

x- and y-axes of a matrix represent time and space, respectively. The intervals in the

time dimension depend on the sampling resolution of the data collection sensor and

span from the beginning of the day to the end of the year. For instance, a conventional

GPS device takes a sample every 10 seconds, while a magnetic loop sensor takes a

15-minute sample of traffic speed. The sensors are represented as dots with positions,

traffic speeds, etc. in space. Since the sequences of the dots are redundant and there

are many locations that lack variability, simply organising these dots by sensor IDs

and fitting them onto the y-axis may cause a high dimension and an uninformative

issue. To ensure that the y-axis is informative, the dots are divided into parts that

reflect comparable traffic situations. Each element in the matrix is the traffic speed

value associated with time and space. The matrix can be considered as a one-channel

image. Finally, a spatio-temporal matrix can be constructed as following,

S =

s11 s12 · · · s1M

...
...

. . .
...

sN1 sN2 · · · sNM

, (2.24)

where N is the number of the time steps and M is the number of the sensors. The i-th

row of S represents the traffic speed at the time step i. The pixel value of sij represents

the traffic speed on the road segment j at the time step i. Therefore, the matrix S

forms a single channel image. Figure 2.5 demonstrates the transformation among the

raw traffic speed network, the spatio-temporal matrix, and the final image.

CHAPTER 2. LITERATURE REVIEW 23

Figure 2.5: The illustration of the traffic-to-image conversion [4].

2.2.5.2 Convolutional Neural Network for Traffic Prediction

CNN has demonstrated a great capacity to comprehend images, due to its distinctive

ways of extracting characteristics. Two features that add to the CNN’s distinctiveness

are the local linked layers (convolutional layers) and the pooling technique (pooling

layer). The local connected layers limit the amount of parameters that must be learnt

while maintaining the most crucial characteristics, since the output neurons of each

layer are only linked to their nearby input neurons, which extract a new feature in

every layer.

Based on the two characteristics, Ma et al. [45] introduced four major modifications

for CNN in traffic speed prediction: a) the inputs are different. In case of image

classification tasks, the input is usually images that have three channels and pixel

values from 0 to 255. However, the CNN input in the traffic speed prediction context

has only one channel and ranges from 0 to some speed values. Although there are

differences, the traffic speed data are normalised to avoid difficulties in the training

procedures. b) The model outputs are different from these in a classification task,

whereas, the outputs of traffic speed prediction are predicted traffic speed on the road

segments rather than the classification labels. c) Abstracted features have different

meanings. The features can be edges or physical shapes of the training objects for

image classification problems. For traffic speed prediction, the extracted features are

CHAPTER 2. LITERATURE REVIEW 24

the correlations of traffic speed within the traffic network. d) The training objectives

are different. A continuous cost function, rather than a cross-entropy cost function for

classification, should be adopted for traffic speed prediction, as traffic speed values are

continuous.

2.2.5.3 CNN Characteristics

The architecture of the typical CNN in the context of a traffic network consists mainly

of four parts that are network input, feature extraction, regression, and model output.

Each component is explained below.

First, the inputs of the CNN are the images converted from a traffic network with

spatio-temporal features. Let the length of the input be D and the number of the time

interval be H. The matrix form of traffic speed data is the following,

Si =

S11 ... S1D

...

SH1 ... SHD

, (2.25)

where i represents the input index, D is the number of the sensors and H is the length

of the time intervals. Here VHD represents the traffic speed value at the H-th time step

on the D-th road segment.

Second, feature extraction is a sequence of convolutional and pooling layers. The

layer index is denoted by l, and the pooling operation is represented by using pool.

Respectively, Slj, α
l
j and (Wl

j, b
l
j) denote the l-th layer inputs, outputs and network

parameters, where j is the channel index of the convolutional filters. The number of

convolutional filters in the l-th layer is denoted by Cl. The first sequence of convolu-

tional and pooling layers can be formulated as:

α1
j = pool(φ(W1

jS
1
j + b1

j)), j ∈ [1, C1], (2.26)

CHAPTER 2. LITERATURE REVIEW 25

where φ is the activation function. The output in the l-th layer can be written as:

αlj = pool(φ(

Cl−1∑
k=1

(Wl
jS

l
k + blj)), j ∈ [1, Cl]. (2.27)

There are three characteristics of the extracted traffic speed features: 1) Convoltuional

and pooling operations are processed in two dimensions, and therefore the CNN is able

to lean the spatio-temporal relations among road segments and along time.; 2) Different

depth of the network can be applied according to the circumstance by modifying the

number of layers; 3) the CNN transforms the input images into deep features through

a sequence of layers.

In model prediction, the features obtained from a sequence of feature extraction layers

are fed into a flatten layer that generates a dense vector with the final and highest-level

features of the traffic network. The densed vector can be represented as:

αlf latten = flatten([αl1, α
l
2, · · · , αlj]), j ∈ [1, Cl], (2.28)

where l is the depth of the network and flatten is the concatenating procedure.

The final step is to feed the dense vector through a fully connected layer. The model

output can be written as:

ŷ = Wfα
L
flatten + bf ,

= Wf (flatten(pool(φ(

CL−1∑
k=1

(WL
j SLk + bLj)))) + bf

(2.29)

where Wf and bf are the layer parameters of the fully connected layer and ŷ is the

predicted traffic speed.

2.2.5.4 Convolutional and Pooling Layers

The CNN is different from traditional ANNs, as neurons are not fully connected to

the output neurons. The convolutional layer in the CNN abstracts local correlations

and connects only local neurons to the output neurons. One filter can extract one

CHAPTER 2. LITERATURE REVIEW 26

traffic feature, and thus the number of features abstracted depends on the number of

convolutional filters. The convolutional operation provides a local path for connecting

lower-level features to high-level ones. The convolutional filter Wl
Cl

is applied to the

input, and the output of the convolutional operation can be formulated as:

yconv =
m∑
a=1

n∑
b=1

(Wl
Cl

)abxab, (2.30)

where two dimensions of the convolutional filter are represented by m and n. The

traffic speed value at position a and b is denoted as xab, and (Wl
Cl

)ab is the weight of

the convolutional filter. The convlutional layer output is represented as yconv.

Due to the extraction of crucial values in the specific area, the pooling layer down-

samples and aggregates data. Pooling operations ensure that CNN is locally invariant.

Therefore, the identical features can be abstracted by the CNN, even with shift scales

[46]. To conclude, reducing the network scale is one advantage of the pooling operation,

but the most important aspect is to identify the most prominent features in the input.

For example, maximum pooling is formulated as:

ypool = max(xa,b), a ∈ [1 · · · p], b ∈ [1 · · · q], (2.31)

where the two dimensions of pooling filter are denoted as p and q. The traffic speed

value at position a and b is represented as xab, and ypool is the output.

2.2.5.5 Activation Functions

The following subsection presents the commonly used activation function [47, 48].

a) Binary Step Function. The binary step function activates the artificial neurons

according to a threshold. If the input value is greater than the threshold, the neuron

is activated. Otherwise, the neuron is deactivated. The mathematical definition with

threshold of 0 is given as following,

f(x) =

0, if x < 0

1, if x ≥ 0

, (2.32)

CHAPTER 2. LITERATURE REVIEW 27

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.6: a) Binary step activation function. b) Linear activation func-

tion. c) Sigmoid activation function. d) Tanh activation function. e) ReLu

activation function. f) Leaky ReLu activation function. g) Parametric

ReLu activation function. h) Exponential linear units activation function.

CHAPTER 2. LITERATURE REVIEW 28

where x is the input. An example diagram of the binary step function is given in

Fig. 2.6 (a). There are two limitations of binary step function: 1) the binary step

function cannot be applied on multi-output model, such as multi-class classification;

2) zero gradient of the binary step function is a problem for backpropagation.

b) Linear Activation Function The linear activation function is proportional to the

input, which is also called the identity function. It can mathematically be represented

as

f(x) = x. (2.33)

An example diagram of the binary step function is given in Fig. 2.6 (b). However, the

linear activation function cannot be applied on backpropagation, since the gradient is

constant. On the other hand, once only the linear activation is applied, the last layer

can essentially be a linear combination of the previous layers. Therefore, the network

will be considered as a single layer.

c) Sigmoid Function The sigmoid function scales the input values into a range of 0

to 1. The output value will be close to 1, as the input value becomes more positive.

The output value will be closer to 0, as the input value becomes more negative, as

shown in Fig. 2.6 (c). The mathematical definition is given as

f(x) =
1

1 + e−x
. (2.34)

The sigmoid function is commonly applied when the output of the network is proba-

bilities. Since the probability is within the range of 0 to 1, the sigmoid function is a

right choice because of its range.

However, Fig. 2.7 implies that the gradient of the sigmoid function is very small when

the input value is greater than 3 or smaller than −3. As the gradient approaches zero,

the network will be affected by the vanishing gradient problem.

CHAPTER 2. LITERATURE REVIEW 29

Figure 2.7: The derivative of the Sigmoid Activation Function.

d) Tanh Function. As shown in Fig. 2.6 (d), the tanh function has the same S-shape

as the sigmoid function. The sigmoid function scales the input values in a range of −1

to 1. The output value will be close to 1, as the input value becomes more positive.

The output value will be close to −1, as the input value becomes more negative. The

tanh function can be mathematically defined as,

f(x) =
ex − e−x

ex + e−x
. (2.35)

As shown in Fig. 2.6 (d), the tanh function is zero-centred, and hence, the output

can be easily mapped to strongly positive, neutral or strongly negative. However, the

gradient curve of the tanh function is slimier as that of sigmoid. Therefore, the tanh

function also faces the problem of vanishing gradients.

e) Rectified Linear Unit (ReLu) Function Unlike the linear activation function,

the ReLu function only activates neurons when the input is greater than 0. The

mathematical definition is given as following,

f(x) = max(0, x). (2.36)

Although the diagram, shown as Fig. 2.6 (e), of the ReLu function is identical when

the input is greater than 0, it has a derivative function and allows backpropagation.

The advantages of the ReLu function are as follows: 1) the ReLu function takes less

computational resources compared with sigmoid and tanh functions, since only part of

CHAPTER 2. LITERATURE REVIEW 30

the neurons are activated; 2) because of the linear and non-saturating property of the

ReLu function, the loss function converges more efficiently. However, the Dying ReLU

problem occurred. The weights and biases in the neurons that generate negative values

are never updated during backpropagation, as the gradient in these neurons is 0, which

leads to the problem that some neurons are never activated. Therefore, it reduces the

ability of the network to fit the data correctly.

f) Leaky ReLu Function Leaky ReLu function is a variant version of the ReLu

function to handle the problem existing with the ReLu function. Instead of 0, the

leaky ReLu function outputs a small slope when the inputs are negative. The diagram

is shown in Fig. 2.6 (f). The mathematical definition is shown as following,

f(x) = max(0.1x, x). (2.37)

In addition to the advantages of the ReLu function, a leaky ReLu function also allows

backpropagation for negative inputs, as the gradient of negative inputs is a non-zero

value. However, the limitation is that the small value of the gradient over the negative

input makes learning the parameters time-consuming.

g) Parametric ReLu Function Parametric ReLu function is another variant of the

ReLu function to solve the dying ReLU problem. The difference between leaky and

parametric ReLu functions is that the coefficient of the parametric ReLu function for

the negative inputs is a parameter. It can be mathematically defined as,

f(x) = max(ax, x). (2.38)

h) Exponential Linear Units (ELU) Function The ELU function is another im-

proved version of the ReLu function. The slope of the negative input is modified as a

function of the ELU function. The mathematical definition is given as

f(x) =

x, if x ≥ 0

α(ex − 1), if x < 0

. (2.39)

CHAPTER 2. LITERATURE REVIEW 31

Although the ELU function is a strong alternative for the ReLu function, the ELU

function has the following limitations: 1) the computational complexity increases be-

cause of the exponential operation; 2) the learning process of the parameter α is not

taken.

2.2.5.6 CNN Optimisation

Traffic speeds in the complex traffic network are the output of CNN, and the loss

function of the network is the mean squared errors (MSEs), which measure the error

between prediction and ground-truth traffic speeds. Therefore, the aim of optimisation

is to minimise MSEs during training procedures. MSE is formulated as:

MSE =
1

N

N∑
i=1

(ŷi − yi)
2. (2.40)

The model parameters are denoted as θ = (Wl
i, b

l
i,Wf , bf), backpropagation algorithm

[49, 46] is applied to optimize the values of θ:

θ = argminΦ
1

N

N∑
i=1

(ŷi − yi)
2. (2.41)

2.2.6 Structural Recurrent Neural Network for Traffic Pre-

diction

The CNNs have been reported to achieve effective forecasting accuracy for traffic speed

[45]. CNNs are proven to be powerful in learning spatio-temporal features where the

traffic speed data are converted into spatio-temporal images. The successful combi-

nation of convolutional and pooling layers enables the model to capture high-order

features in the input data. Recurrent neural networks (RNNs) have been considered,

since the forecasting of traffic speed data is essentially a time series prediction. In

this section, the architecture of structural-RNN is described [5]. It starts with an in-

troduction of the representations of spatio-temporal graphs (ST-graphs). The RNN,

therefore, can be represented by the factor component decomposed from an ST-graph.

CHAPTER 2. LITERATURE REVIEW 32

2.2.6.1 Traffic Speed Data as Time Series

The same as [45] introduced, the model aims to predict the short-term traffic speed data

by using the road network ST-graph and the historical traffic speeds. Let vtn represent

the speed of traffic on the road segment n at time t. Given a sequence of traffic speed

data vtn for the road segment n = 1, 2, · · · , N at time steps t = T − l, · · · , T , the model

is aimed at forecasting the future traffic speed vT+l
n .

2.2.6.2 Structural RNN Architectures

In this section, the architecture of the structural RNN is introduced. It starts with the

introduction of the spatio-temporal (ST) graphs. Then the ST-graph is decomposed

into factor components, and each factor is represented by using an RNN. By following

the architecture and interactions of the ST-graph, the RNNs are interconnected.

a) Representation of spatial-temporal graphs: An ST-graph is represented by G =

(V , ES, ET), where the nodes are denoted as V , and the spatial and temporal edges are

represented as ES and ET respectively [50]. In the traffic speed prediction context, the

nodes in the ST-graph are assigned to be the road segments in the traffic network.

The information of correlations between neighboring road segments is contained in the

spatial edges, and the dynamics of the traffic evolution over time are represented by the

temporal edges. An example of the ST-graph is presented in Fig. 2.8 a), where the nodes

A,B,C ∈ V represent road segments, and the links between different nodes represent

the spatial edges ES. Spatial edges exist only if there are connections between two

road segments. The directions are under consideration, and thus two spatial edges in

opposite directions are applied if neighbouring nodes are connected in both directions.

The nodes at adjacent time steps are connected by temporal edge connections, such

as the nodes at time t and t + 1 [50]. In Fig. 2.8 b), the traffic speed at node A

at time t is represented as xtA, and the feature vector of the spatial edge connecting

nodes A and B at time t is represented as xtAB = [xtA, x
t
B]. The feature vectors of

two spatial edges in the opposite direction that connect nodes A and B are different,

CHAPTER 2. LITERATURE REVIEW 33

(a)

(b)

(c)

Figure 2.8: An example of ST-graph. a) Nodes A, B and C represent the

road segment, and are connected by spatial edges ES and temporal edges ET .

b) The ST-graph evolves over time. The unrolling is represented by using

temporal edges ET . c) The factor graph representation of the ST-graph.

Nodes and edges in the ST-graph are represented as factors [5].

CHAPTER 2. LITERATURE REVIEW 34

such as xtAB = [xtA, x
t
B] and xtBA = [xtB, x

t
A]. The feature vector of the temporal edges

connecting the node itself from a previous time is represented as xtAA = [xt−1
A , xtA].

For a given ST-graph and feature vectors, the goal is to obtain the prediction of the

node outputs ytA, where A ∈ V . The features at the node and the interactions with

the connecting nodes are two factors that have an impact on the speed of traffic ytA

[50], which forms a complex system. The interactions with the connecting nodes are

formulated to a simpler function using a factor graph [51]. The factor graph can be

formulated from the st graph, and thus the RNN can be derived from the specific

factor graph. Two factor functions are included in the factor graph, ΨA(yA, xA) and

a pairwise factor Ψe(ye(1), ye(2), xe), where A ∈ V represents the node and e ∈ ES ∪ ET
represents the edges. Fig. 2.8 c) shows the factor-graph representation of the ST-graph

in Fig. 2.8 a).

Learning each factor in the factor graph is necessary. However, it is unnecessary to

learn distinct parameters for every node, but the parameters and factors can be shared

by similar nodes. For example, nodes B and C can share factors and parameters when

the traffic speed of A is predicted. Sharing the factors and parameters provides the

flexibility to process an increasing number of nodes without increasing the computa-

tional complexity. Therefore, the nodes are partitioned as CV = V1, · · · ,VP , where Vp
represents similar nodes. The factor Vp shared is denoted as ΨVp . The partition of the

semantically similar nodes naturally divides the edges. Thus, the edges are partitioned

as CE = E1, · · · , EN , where En are the edges of similar nodes and all edges in En share

the same factor ΨEm . The node factor ΨVp and the edge factors ΨEn connected to node

A are considered to predict the traffic speed. The structured RNN is established by

using this definition such that the interactions within the ST-graph can be captured.

b) Structural RNN from Spatio-temporal Graphs: the architecture represents each

factor by using an RNN. Three types of RNNs are defined for node, spatial and temporal

edges, which are nodeRNNs, spatial and temporal edgeRNNs. The nodeRNNs are

denoted as RVp . The spatial and temporal RNNs are represented as RES and RET

CHAPTER 2. LITERATURE REVIEW 35

respectively. The combination of spatial and temporal edgeRNNs refers to edgeRNNS

REm . Interactions between connecting nodes are captured by jointly considering both

nodeRNNs and edgeRNNs. To form a feedforward network, nodeRNNs and edgeRNNS

are connected to form a bipartite graph GR = (RVp ,REm , ER) [50]. In particular,

nodeRNNs and edgeRNNs are connected, iff their factors ΨVp and ΨEm are connected

in the ST-graph.

Algorithm 1 Spatio-temporal graph to structural RNN [50]

Input: G = (V , ES, ET), CV = V1, · · · ,VP
Output: Structural RNN graph GR = (RVp ,REm , ER)

1: Semantically partition edges CE = E1, · · · , EN
2: Find factor components Vp,ΨEm of G

3: Represent each factor as nodeRNNs RVp and edgeRNNS RES

4: Connect RVp and REm for a bipartite graph.

5: return GR = (RVp ,REm , ER)

The Algorithm 1 shows the procedures of constructing a structural RNN architec-

ture. The predictions of nodeRNNs interact through the edgeRNNs, and therefore,

the prediction of the node is obtained. In the next section, a training procedure of

structural RNN is introduced.

c) Structural-RNN Architecture Training: in order to train the structural-RNN, a

sequence of features {xtA}
T
t=T−l+1 associated with each node in the ST-graph is fed into

the structural-RNN architecture for a given node A ∈ Vp. Once the node features

input, the structural-RNN architecture is supposed to predict the traffic speed yt+1
A at

the node. The edge features on edge e ∈ Em, ordering in time, is the input of the

edgeRNNs,

The temporal sequence of edge features xte on edge e ∈ Em is input into the edge

node edgeRNNs, and the edge is the events at the node A in the ST-graph [50]. In

the case of the prediction of traffic speed, the edge e includes spatial and temporal

CHAPTER 2. LITERATURE REVIEW 36

Figure 2.9: The architecture of the structural-RNN of specific node A with

the unrolled spatio-temporal graph [5].

edges. The connected output of edge RNNs is concatenated to the node features xtA

in nodeRNNs at each time step. During training, predictions error is backpropagated

through nodeRNNs and edgeRNNs. In this way, the node and edge features of the

node are non-linearly combined to form a structural-RNN.

Fig 2.9 shows the architecture of structural-RNN at the specific node A. Forward

unrolling involves the edgeRNNs RET and RES . NodeRNNs RV combines the node

features and the output of edgeRNNs to form the prediction of traffic speed at each

step.

The model-based and data-driven methods introduced above are considered as para-

metric model, since they consist of a specific set of parameters. Unlike the parametric

models that assume a specific prior, non-parametric models are more flexible and able

to adapt when data changes over time, which makes them more robust. The non-

parametric models are a potential solution to the overfitting problem that occurs with

a parametric model, because of their flexibility. On the other hand, the non-parametric

CHAPTER 2. LITERATURE REVIEW 37

models handle data with small sample size and missing data more effectively, since they

learn the distributions of parameters rather than specific values. The next two sections

introduce two non-parametric models that have been applied for traffic prediction.

2.2.7 Support Vector Machines

Statistical data-driven methods, such as SVM, have achieved success in time series

data. Zhang et al. [52] proposed a least squares SVM (LS-SVM) for traffic forecasting.

LS-SVM replaces quadratic programming (QP) with linear least squares criteria [53].

Let the dataset be D = (xi, yi)
N
i=1, where xi ∈ Rn is the input and yi ∈ R is the target.

The LS-SVM can be formulated as following,

yi = WTφ(xi) + b+ ei, i = 1, 2, · · · , n, (2.42)

where φ(·) is a non-linear mapping function; the weight is denoted as W ∈ H; ei is an

error term; and b is the bias term. Therefore, the optimisation problem is formulated

in the weight space as following,

minL(W, e) =
1

2
‖w‖2 +

1

2
Γ

n∑
i=1

e2
i , (2.43)

where the loss function is represented as L, and the error coefficient of the weighted

least squares cost function is denoted as Γ [52]. The Lagrangian function is defined for

solving the minimisation problem,

L(W, b, e, α) = L(W, e)−
n∑
i=1

αi[W
TΦ(xi) + b+ ei − yi], (2.44)

where α = [α1, α2, · · · , αn] ∈ Rn is the support vector. The gradient conditions for

optimality are given by:

∂L
∂w

= 0⇒ w =
∑n

i=1 αiw
TΦ(xi),

∂L
∂b

= 0⇒ w =
∑n

i=1 αi = 0,

∂L
∂ei

= 0⇒ αi = Γei,

∂L
∂αi

= 0⇒ wTΦ(xi) + b+ ei − yi = 0.

(2.45)

CHAPTER 2. LITERATURE REVIEW 38

For standard SVM, W and φ(xi) are not calculated [54]. A linear system can be

obtained by eliminating W and e:0 IT

I Ω + 1
Γ
I

 b
α

0

y

 , (2.46)

where y is the targets, I is the identical matrix, and Ωi,j = φ(xi)
TΦ(xj). According to

the Mercer condition [53], a mapping φ(·) and an expansion K(x, y) =
∑

i φ(x)φ(y), x, y ∈

Rn exist, if and only if
∫

K(x, y)g(x)g(y)dxdy ≥ 0 with
∫
g(x)2dx finit for any g(x).

Therefore,

Ωi,j = φT (xi)φ(xj) = K(xi,xj). (2.47)

The LS-SVM model can be formulated as following,

f(x) = WTφ(xi) + b =
n∑
i=1

αiK(x,xj) + b, (2.48)

where solving the equation (2.46) provides the values of α and b. For a positively

defined kernel function, there are three commonly used choices, such as the squared

exponential kernel, which are introduced in Section 2.2.8. The LS-SVM provides a

non-parametric model for traffic prediction and achieves better performance compared

with ARMA, Kalman filter (KF), historical-mean (HM) and radial basis function neural

network (RBF-NN).

2.2.8 Gaussian Process Methodology

The previous section introduces powerful parametric methods such as CNNs and RNNs.

In this section, GP, another machine learning method different from neural networks, is

introduced. NNs provide deterministic predictions whereas the GPs are considered as

a non-parametric model and provide additional uncertainty information. In addition,

DNN is equivalent to a GP when the network is infinitely wide or deep [55]. The

advantages mentioned above motivate the research and methods proposed in this thesis.

This section briefly introduces GP regression in mathematics.

CHAPTER 2. LITERATURE REVIEW 39

2.2.8.1 Gaussian Process Regression

a GP is defined as a collection of random variables, with any finite number of which

has a joint Gaussian distribution [56]. The aim of a GP is to model the unknown

function f . Let x and y be, respectively, the input and output of a GP, and they can

be multidimensional. The GP is a non-parametric Bayesian model, which places a GP

prior over the latent function f [57] shown as following

f(s) ∼ GP(m(s), K(s, s′)), (2.49)

where m(s) and K(s, s′) denote the mean and covariance function that is symmetric

positive semi-definite, and all possible pairs of the input are dented as s and s′. In the

function-space view, the unknown function is Gaussian distributed.

f(s) ∼ N (m(s), K(s, s′)), (2.50)

s =

s1

s2

...

sN

, f(s) =

f(s1)

f(s2)

...

f(sN)

,m(s) =

m(s1)

m(s2)

...

m(sN)

(2.51)

K(v, s′) =

k(s1, s
′
1) k(s1, s

′
2) · · · k(s1, s

′
N)

k(s2, v
′
1) k(s2, s

′
2) · · · k(s2, s

′
N)

...
...

. . .
...

k(sN , s
′
1) k(sN , s

′
2) · · · k(sN , s

′
N)

, (2.52)

CHAPTER 2. LITERATURE REVIEW 40

where the output vector for the N -dimensional input s is represented as f(s), and the

multivariate normal distribution is denoted as N (·, ·). Equation (2.52) shows a general

form of the covariance function, and thus the covariance function can be alternatively

denoted as Ks,s′ .

2.2.8.2 Mean Function

The mean function models the prior mean of the unknown function. The mean function

is, however, a parametric function and the parameters of the mean function are called

hyperparameters. Due to the lack of prior information, the behaviour of the mean

function is either unknown or challenging to define. For example, future traffic speed

is predicted using a GP. There is no prior information over the mean of the traffic

speed. Typically, the mean function for traffic speed is a zero mean function [56]. In

different contexts, it is useful to apply the non-zero mean function. For example, the

mean function can be a constant or a linear function. The GP converges to the mean

function in long-term prediction, and thus mean functions may play an effective role

in application. Non-zero mean functions are listed as follows, a) Constant: The

constant mean function is given below:

mc(s) = c, (2.53)

where c represents a constant. The constant mean function and the zero-mean function

have a similar behaviour, which means that the GP converges to the constant c in long-

term prediction.

b) Linear: The linear mean function is given below:

mlin(s) = as + c, (2.54)

where a is an unknown coefficient.

c) Basis: The basis mean function is given below:

mba(s) = dg(s)T , (2.55)

CHAPTER 2. LITERATURE REVIEW 41

where g(s) is fixed basis function and d is a parameter of the mean function.

2.2.8.3 Covariance Function

the prior on the unknown function f can be implied by the covariance function. The

covariance function contains the covariance information of the inputs. The same as

mean functions, the covariance functions are parametric and determined by hyperpa-

rameters. The choice of the covariance function is often critical. Examples of commonly

used covariance functions are given as follows:

a) Linear: The linear covariance function is given below:

Klin(s, s′) = σ2
s(s− c)(s′ − c) + σ2

b , (2.56)

where the magnitude and the bias variance are denoted as σ2
v and σ2

b respectively.

b) Exponential: The exponential covariance function is given below:

Kexp(s, s
′) = σ2

v exp(−|s− s′|
l

), (2.57)

where σ2
v and l denote the magnitude variance and lengthscale hyperparameters. The

width of the variations is controlled by the lengthscale, which means that the input is

correlated over a long range when the lengthscale is large.

c) Squared Exponential: The squared exponential covariance function is given be-

low:

Kse(s, s
′) = σ2

v exp(−(s− s′)2

2l
). (2.58)

The squared exponential covariance function is the most commonly used kernel.

d) Rational Quadratic: The rational quadratic covariance function is given below:

Krq(s, s
′) = σ2

v exp(1 +
(s− s′)2

2αl
)−α, (2.59)

where α is a scaling factor. The rational quadratic covariance function is identical to

the squared exponential covariance function when α→∞.

CHAPTER 2. LITERATURE REVIEW 42

e) Periodic: The periodic covariance function is given below:

Kper(s, s
′) = σ2

s exp(−
2 sin2 |s−s′|

p

l2
), (2.60)

where p implies the period. Defining p = 2 means that the period is 2π. The period

covariance function models the periodic characteristics of the unknown function.

2.2.8.4 Regression Equations

the regression problem can be solved by Bayesian inference with a GP prior. Let f be

the observed function values for the training set and let ft be the set of function values

corresponding to the test set xt. Therefore, the joint distribution is defined as follows:f

ft

 ∼ N

µ
µt

 ,
 K Ksts

KT
sts Kstst

 , (2.61)

where µt is the test mean, Ksts is the train-test covariance, and Kstst is the test-test

covariance. Therefore, corresponding to the conditioning, the joint Gaussian prior

distribution on the observations is given by

ft|St,S, f ∼ N (KstsK
−1f ,Kstst −KstsK

−1KT
sts). (2.62)

Assuming additive independent identically distributed Gaussian noise with variance σ2
n,

the prior of the noisy observation becomes cov(y) = K + σ2
nI, where y are the ground

truth observations. Following equation (2.63), the joint distribution of the observed

values and the function values for test set can be written as,y

ft

 ∼ N

0

0

 ,
K + σ2

nI Ksts

KT
sts Kstst

 . (2.63)

The conditional distribution is, therefore, ft|S,y,St ∼ N (Ksts[K + σ2
nI]−1f ,Kstst −

Ksts[K + σ2
nI]−1KT

sts). The predictive mean and covariance functions are typically pa-

rameterised in terms of hyperparameters θ. Subsequently, the training data and the

CHAPTER 2. LITERATURE REVIEW 43

hyperparameters are given as s,y ∈ D and θ, and therefore the mean and variance func-

tion of the predictive distribution p(ft|D, θ, st) = N (ft|µ(st), σ
2
t (st)) at a test point st

is formulated as follows:

E(st) = Ksts(K + σ2
nI)−1y, (2.64)

C(st) = Kstst −Ksts(K + σ2
nI)−1KT

sts. (2.65)

The variance in equation (2.65) is only based on inputs [56]. Variance is a difference

between prior covariance, Kstst , and the function information provided by the obser-

vations, Ksts(K + σ2
nI)−1KT

sts. Therefore, the predictive distribution of the test target

yt can be simply calculated by adding σ2
nI and the function variance cov(ft).

2.2.8.5 Learning of Hyperparameters

the mean and covariance functions define a GP, while the mean and covariance func-

tions depend on their hyperparameters. Although there are infinite combinations of

the hyperparameters, they are selected based on the training data, which is called

hyperparameter learning. Hyperparameter learning is performed by maximising the

logarithmic marginal likelihood that is given below:

L=log p(y|v, θ)= −1

2
|K + σ2

nI| −
1

2
yT (K + σ2

nI)−1y − n

2
log(2π), (2.66)

where |·| is the matrix determinant. With the hyperparameters obtained by maximising

the log marginal likelihood, the prediction mean and the covariance matrix can be

calculated using equation (2.64) and (2.65). Prediction variance can be extracted by

selecting the diagonal elements in the covariance matrix. The GP methods provide

predicted variances in addition to the predictions and therefore provide uncertainty

information.

CHAPTER 2. LITERATURE REVIEW 44

2.3 Introduction of Uncertainty Quantification

The uncertainty exist in different areas, from stock market price prediction to medical

diagnosis. Nowadays, machine learning and deep learning models can investigate the

uncertainties for statistical inference [58]. Before practical applications, it is critical

to evaluate the efficacy of the model [59]. Uncertainty quantification (UQ) reinforces

critical decisions since predictions cannot be trusted without UQ and may be inaccu-

rate. The DL model is intended to achieve specific performance goals through training

with labelled data. The iterative training process optimises the model parameters to

provide satisfactory performance [60]. There are different uncertainties and common

uncertainties are caused by the following reasons: 1) how well the collected data repre-

sent the actual phenomenon and distribution, 2) the accuracy and completeness of the

training data, 3) the selection of the DL model, and 4) the performance of the models

[61]. The predictions generated by the model are uncertain since they are prone to data

noise, incorrect model inference, and inductive assumptions. Therefore, a trustworthy

method is necessary to represent the uncertainty. A model that effectively handles

uncertainty should provide better accuracy [60]. The uncertainty occurs due to the

mismatch between the training and testing data or the presentation of irreducible data

noise. Aleatoric uncertainty (data) and epistemic uncertainty (model) are the two

major types of uncertainty [62].

Aleatoric uncertainty (AU) is irreducible uncertainty in the data that is the main reason

causing uncertainty in the predictions, such as noise in the data. The AU is an inherent

property of the data distribution. For example, in binary classification problem, the

predictions located in two-class distribution intersection have higher AU compared to

other data outside the intersection. Epistemic uncertainty (EU) is caused by insuf-

ficient knowledge of the data. The inadequate knowledge means that the number of

data may be a large collection, but the collection of data may be uninformative [63]. In

this case, the model is able to characterise the emergent features of the data. However,

CHAPTER 2. LITERATURE REVIEW 45

data collection is incomplete, noisy, multi-modal and discordant [58]. The distribu-

tion of model parameters formulates the EU [60]. In this section, two uncertainty

quantification methods are introduced.

2.3.1 Confidence Interval

The GP is introduced in Section 2.2.8 as a powerful tool to establish models with

additional uncertainty information. Since a GP models the distribution of an unknown

function, the GP model outputs a mean function m(x) and a covariance function

K(x, x′). Based on the prediction mean and variance, which is the diagonal element of

the covariance matrix, a confidence interval can be constructed. A confidence interval

provides the estimated interval where the ground truth will be located, and it only

involves the prediction mean and variance [64]. Therefore, the following statement

holds:

P(|y − µ| < zσ) ≥ γ, (2.67)

where y is the ground truth, µ is the prediction mean, z is a constant, σ is the prediction

standard deviation, and γ it the probability. In general, the confidence levels C are

0.99, 0.95 and 0.90, which correspond to 99%, 95% and 90% confidence that the interval

covers the ground truth. Each confidence level C refers to a value of z, which is listed

in the z-table [65]. For example, a 95% confidence interval is formulated as,

(µ− zσ) < y < (m + zσ), (2.68)

where z equals to 1.96 in case of 95% confidence level.

2.3.2 Variational Lower Bound

Let the input data be X ∈ RD, output be Y ∈ RD and a set of latent variables z. The

Bayesian inference deals with the following posterior for the inferences:

p(z|y) =
p(y|z)p(z)

p(y)
. (2.69)

CHAPTER 2. LITERATURE REVIEW 46

However, the denominator p(y) is ether unavailable or computationally expensive [66].

Variational inference (VI) is designed to approximate this intractable posterior distri-

bution [67]. In VI, a family Q of densities is specified for the latent variables, and

each q(z) ∈ Q is one of the candidate approximations of exact conditional in equation

(2.69) [66]. The core idea of VI is to transform the approximation problem into an

optimisation problem. The aim is to find the best candidate q∗(z) that minimises the

Kullback-Leibler (KL) divergence [68] to the true conditional as follows:

q∗(z) = argq(z)∈Q minKL(q(z)||p(z|y)), (2.70)

which is a distance measurement between the two distributions. The KL divergence

can be formulated as follows:

KL(q(z)||p(z|x)) = E[log q(z)]− E[log p(z|y)] + log p(y) (2.71)

However, the KL divergence still cannot be calculated, as log p(y) is intractable. There-

fore, the Evidence Lower Bound (ELBO), an alternative objective equivalent to KL, is

optimised:

ELBO = E[log p(z|y)]− E[log q(z)]. (2.72)

ELBO is indeed the negative of equation (2.71) added with log p(y). Then, ELBO

can be represented as ELBO = log p(y)−KL(q(z)||p(z|x)), which is a constant with

respect to q(z) [66]. Therefore, minimisation of KL divergence becomes maximisation

of ELBO.

For a GP, as described in the previous sections, a GP is f(x) ∼ GP(m(x), k(x,x′)) and

the latent variable z is sampled from a Gaussian distribution. The output y is then

distributed based on the likelihood function y|f ∼ h(f). Inducing samples are used,

and therefore, the variational lower bound is optimized as

log p(y) ≥ E[log p(y|f)]−KL(q(fz)||p(fz)), (2.73)

where z is the latent variable or inducing points.

CHAPTER 2. LITERATURE REVIEW 47

2.4 Fast Edge Detection Using Structured Forests

for Classification and Segmentation

In this section, traditional edge detection for segmentation is introduced.

Since the 1970s, edge detection has become a basic element for computer vision [69,

70, 71]. Edge detection is a critical process in various computer vision applications,

especially image segmentation [72, 73]. Traditional edge detection methods calculate

color gradients using a variety of methods, such as non-maximum suppression [74],

where non-maximum suppression is an algorithm to select one entity out of many

overlapping entities. However, a number of visually salient edges correspond to bright-

ness, textures, or illusory contours [75] rather than colour gradients. Brightness, color,

texture and depth gradients are taken as input to the state-of-the-art edge detection

algorithm [73, 76, 77].

Edges within a local patch are highly interdependent [78]. Edges include patterns,

for example, lines and junctions [79]. Problems with similar characteristics are solved

using structured learning [80]. To obtain the advantage of the inherent structure of

the edge and remain computationally efficient, structured learning is applied to edge

detection [81]. Structured learning focuses on the challenge of defining a mapping with

an arbitrarily complex input or output space [81, 82, 83, 84]. Structured random forest

is introduced in the following sections.

The structured random forest is inspired by the work of Kontschieder et al. [85]. The

key observation of this work is that the leaf node can store any type of output and is

independent of the structured labels with a certain image patch [81]. Based on this

observation, structured random forest was proposed and has been applied to a wide

range of output spaces.

CHAPTER 2. LITERATURE REVIEW 48

2.4.1 Random Decision Forests

Beginning with the introduction of random decision forests [86, 87], the input x is

classified by iteratively splitting through a decision tree. Each node is composed of a

binary split function,

h(x, θj) ∈ {0, 1}, (2.74)

where parameter required to be optimised is denoted as θj at branch j, and the input

is represented as x. If h(x, θj) = 1 the node is split to the right, otherwise left, with

the process terminated at the leaf node. For a given input x, the output, stored at the

leaf node, of the decision tree can be either a deterministic label or a distribution.

A collection of independent decision trees ft forms a decision forest. The ensemble

model combines the predictions ft(x) into one prediction output. The choice of the

ensemble model depends on the target labels Y . Majority voting is the common choice

for classification and averaging is the common for regression. The leaf node of a decision

tree may store arbitrary information [81]. Furthermore, the leaf node only relies on

the input, and therefore Kontschieder et al. [85] suggested that complex output space,

such as structured outputs, can be used.

Although prediction of decision forests is straightforward, training is more challenging.

The review of standard learning procedure is demonstrated next, and the description

of learning with structured output is introduced.

2.4.1.1 Training Decision Trees

Each decision tree is independently trained. Given a nod j and a training set Dj, the

training procedure aims to chose a value of θj of a split function h(x, θj) to maximise

of the information gain I at each node:

Ij = I
(
Dj, D

L
j , D

R
j

)
, (2.75)

CHAPTER 2. LITERATURE REVIEW 49

where, Sj ∈ X × Y is the training set with X samples and Y labels. SLj = {(x, y) ∈

Sj|h(x, θj) = 0} represents proceeding on the left node and DR
j = Dj/D

L
j represents

the proceeding at the right node, where x ∈ X is one of the samples. The training

procedure stops when it reaches the maximum depth or when the information gain

drops below a fixed threshold.

The information gain for multiclass classification is then defined as:

Ij = H(Dj)−
∑
k∈L,R

|Dk
j |

|Dj|
H(Dk

j), (2.76)

where H(S) represents the Shannon entropy. Continuous forms of entropy and infor-

mation gain can be extended to solve regression problems [88]. Minimising the variance

of the labels at the leaf nodes is a common approach for single-variate regression [89].

With a mild additional assumption about Y , a more general information gain criterion

can be defined. Before going into the details about the structured random forest, the

role of randomness played in the training procedure is discussed next.

2.4.1.2 Randomness and Optimality

A single decision tree has high variance and tends to overfit [89, 86, 87, 90]. Decision

forests solve this problem by combining multiple independent and well trained trees.

Therefore, achieving sufficient diversity of trees is the most critical component of the

training procedure.

The diversity of the decision trees is achieved by randomly subsampling the training

data or the features and splits in each node [90]. Node-level randomness tends to

provide higher precision [87]. Specifically, only a limited set of parameters θj is sampled

and tested, while optimising the information gain criterion shown in Eq. 2.75.

As a result, to obtain a high diversity ensemble, the accuracy of the individual decision

tree is sacrificed [87]. Taking advantage of a similar intuition, an approximate criterion

of information gain for structured labels is described below, which leads to the general

structured forest [81].

CHAPTER 2. LITERATURE REVIEW 50

2.4.2 Structured Random Forests

The structured random forests are extended from the random decision forests with a

more general structured output space Y . In the certain case of computer vision, the

input is an image x ∈ X , and the output is the corresponding annotations, such as

segmentation masks or semantic labels. Random forests with structured labels face

two challenges during the training procedure. The first is the high dimensionality and

complexity of the output spaces. Therefore, evaluating a large number of candidate

splits is extremely expensive [81]. Second, the information gain of the structured label

is not properly defined.

Dollar et al. [81] suggest that the approximate information gain is sufficient to train

the classifier [87, 85]. The philosophy is mapping the structured labels into a set of

discrete labels c ∈ C, where C is a set of discrete integers. Therefore, structured labels

that have similar properties can be classified into the same category c. The measure-

ment of similarity is highly demanded to calculate the information gain. However,

the formulation of similarity over Y is not properly defined for some structured out-

put space, particularly for edge detection. Instead of directly calculating similarity,

an intermediate space Z is introduced to easily measure the distance. The two-stage

approach is, therefore, utilised: first mapping Y → Z and then mapping Z → C.

2.4.2.1 Intermediate Mapping

The core assumption is that a mapping can be defined in the following,

Π : Y → Z. (2.77)

The Euclidean distance over Z is used to approximate the dissimilarity of the labels.

A binary vector z =
∏

(y) can be defined to encode the class information of every pair

of pixels. The intermediate space Z makes it easier to calculate the distance. However,

Z can be high-dimensional, and it results in a challenge in computational resources.

In the edge detection problem, there may be a large number of unique pixel pairs,

CHAPTER 2. LITERATURE REVIEW 51

and therefore, it is computationally expensive to calculate z for every y. Therefore, an

approximate distance measure is applied to reduce the dimensinality of z [81].

For reducing the size of z, m dimensions of z are sampled, which causes a reduced

mapping. Different mappings are generated randomly and applied to the labels y

during the training procedure. Therefore, with this kind of mapping, computational

efficiency is improved and extra randomness is involved, ensuring the diversity of the

decision trees. In the different aspects, Principal Component Analysis (PCA) [91] is

another way to further reduce the dimension of Z. PCA removes the noise in Z and

approximately preserves the Euclidean distance [81].

2.4.2.2 Information Gain Criterion

There are a number of possible choices of the information gain criterion when the

mapping is given as
∏

φ : Y → Z. Multivariate joint entropy can be computed directly

for the intermediate space [81]. Due to the possible high complexity (O(|Zm|), where

m can be large), the information gain can be determined by variance or a continuous

formulation of entropy [88], with a given Z.

Two ways of mapping structured labels into discrete labels are considered. The first

is to cluster z into k classes with K-means. The second is to use PCA quantisation.

These two approaches have similar performance, but the latter is faster [81].

2.4.2.3 Ensemble Model

Finally, the way to combine all labels into one prediction output is defined. As intro-

duced in b), a m dimensional mapping is sampled and z is computed. The label yk

with a minimum overall distance of zk is selected. Since any predicted labels must be

observed in the training procedure, the ensemble model cannot recognise new labels

[81]. Therefore, domain-specific ensemble models are preferred in practise.

CHAPTER 2. LITERATURE REVIEW 52

2.4.3 Edge Detection

This section describes how structured forests work for edge detection. The input of

the method is a multiple-channel image. Similarly to the semantic problem, the aim

is to classify each pixel with a binary label, which indicates the property of the pixel.

It is assumed that a segmented training set is given, and the boundaries between the

segments corresponding to the contours are annotated for each patch [72, 92]. For

a given patch, the annotation can be either a segmentation mask or a binary edge

map. As denoted above, y ∈ Y = Zd×d is defined as the segmentation mask, and

y′ ∈ Y ′ = {0, 1}d×d is defined for the binary edge map, where d represents the patch

size. An edge map can be obtained from a segmentation mask and, therefore, both

annotations are utilised [81]. How to calculate the input features x, the mapping

function to determine the splits, and the ensemble model is described below.

2.4.3.1 Input features

Suppose the model aims to provide a 16× 16 segmentation mask for a 32× 32 image.

The model first enhances the image with additional K channels and thus generates a

vector of features x ∈ R32×32×K . Two features are used, named pairwise difference and

pixel lookups.

Following suggestions provided by Lim et al. [78], color and gradient channels are

used. The image is augmented into 13 channels, and details can be found in [81]. The

channels are blurred by a triangle filter with a radius of 2 pixels and downsampled by a

factor of 2, and hence, there are 3328 candidate features x. Also, inspired by [78], the

pairwise difference features are computed. The channels are blurred by a large triangle

filter with a radius of 8 pixels and downsampled to a size of 5 × 5. An additional

300 candidate features for one channel are generated by sampling candidate pairs and

computing the difference, and therefore, there are 7228 total candidate features [81].

CHAPTER 2. LITERATURE REVIEW 53

2.4.3.2 Mapping function

In the training procedure of the decision trees, a mapping
∏

: Y → Z is required to

be defined. One choice is to map Y to the binary edge map. However, the Euclidean

distance used to measure the distance is brittle over the binary edge map. Therefore,

an alternative mapping is defined. Let y(j), where j is between 1 and 256, represent

the segment index on the j-th pixel. Two not identical pixels can be sampled and

checked if they are in the same segment, which defines a long binary vector encoding

[y(j1) = y(j2)] for each unique pair of pixels.

2.4.3.3 Ensemble model

Combining the output of multiple trees contributes to the robust results of random

forests. By averaging the multiple overlapped edge maps, a soft edge can be generated,

as merging the segmentation masks for the overlapping patches is difficult [81]. Thus,

the edge map at each leaf node is stored for learning the mask, which allows predictions

to be combined.

2.4.3.4 Multi-scale Detection (SE+MS)

Two enhancements are introduced in this section. A multi-scale version (MS) of the

edge detector is implemented, and the idea is inspired by Ren [93]. The results gen-

erated by the structured edge (SE) detector are averaged after being resized to the

original dimension. This approach critically increases edge quality.

2.4.3.5 Edge Sharpening (SE+SH)

It is observed that the structured edge detector effectively detects edge peaks of isolated

edges. However, the edges of fine image structures blur together resulting in miss

detection, and no clear peak emerges for weak edges. The diffuse edge is mainly caused

by the noisy edge map predictions, and the predictions cannot be effectively assigned

to each other. Specifically, the overlapping predictions of the edge shift several pixels

CHAPTER 2. LITERATURE REVIEW 54

from the ground truth location.

To avoid this phenomenon, the sharpening procedure is introduced to align the response

of the edges from overlapping positions. The image color and depth are useful for

more precise localisation of the predictions. The predicted segmentation mask can

be transformed implicitly, and thus the mask better matches the original image [81].

Matching overlapping masks to the original image connects each mask, which generates

better localised edges.

The better aligned masks are produced by sharpening the predicted segmentation mask

and the corresponding original image. The mean colour µs = E[x(j)|y(j) = s], where j

is the pixel index, is computed for each segment s. Then, the assigned segment for each

pixel is updated by assigning it to the segment that minimises ||µs − x(j)||2 [81]. The

assignable segments are restricted to the immediately adjacent segments (4-connected

neighbourhoods). With the sharpened segmentation masks, the corresponding edge

maps are computed and averaged. The aggregated edge map is sharper, since the edge

maps are assigned to the corresponding images in a proper way. Edge sharpening may

be performed several times before averaging the edge maps. Since the edges are sparse,

sharpening can be implemented efficiently.

2.5 Summary

Chapter presents an overview of the main widely used methods for traffic prediction

and, respectively, for edge-based object detection in images. Section 2.1 provides a brief

introduction to machine learning methods. The main existing methods for traffic pre-

diction are reviewed in Section 2.2. Starting with a model-based method, Section 2.2

first introduces SRK, which brings a new perspective on capturing spatial features and

spatial homogeneity of road segments. However, the physical properties of the road seg-

ments are required for developing the SRK, and thus different SRK models need to be

developed with different traffic networks, which is either expensive or time-consuming.

CHAPTER 2. LITERATURE REVIEW 55

Therefore, the data-driven methods are demonstrated. The ARIMA is a popular pre-

diction model and achieves success in short-term highway traffic prediction. However,

the model mainly considers the evolution of traffic over time. In addition, the ARIMA

is a linear model, and thus only linear relationships between data can be captured,

which means that ARIMA is not able to capture complex patterns within the data.

The ANNs are then widely applied to traffic predictions because of their generalisabil-

ity and the capability of handling multi-dimensional data. The BCNN is proposed to

combine multiple outputs generated by ANNs. With multiple predictors, BCNNs have

a stronger ability to capture different complex patterns within traffic data. The LSTM-

NN is introduced next as it learns the long-term dependency. Traffic data within a

traffic network are correlated not only over time but also over space. Therefore, CNN,

a deep learning method, is introduced to abstract the spatio-temporal features from

traffic data which are converted into the form of an image. The CNN framework, pro-

posed by Ma et la. [45] will be the base-line methods for the traffic prediction in this

thesis. Besides, the structural RNN is introduced for traffic prediction, which provides

another perspective of utilizing the spatio-temporal features of the traffic speed data.

Parametric models have achieved great success, as introduced in previous sections. On

the other hand, non-parametric models, including LS-SVM and GP, provide a consid-

eration of uncertainty, especially the GP models. The GP has the potential to equip

the DL methods with uncertainty quantification. The next two sections focus on the

traffic prediction problems. Model-based methods are briefly introduced for traffic pre-

diction. However, the dynamics of the traffic systems is required to be explicitly defined

for model-based methods, and thus, data-driven models are described to overcome the

disadvantages of model-based methods. ARIMA, BCNN, LSTM-NN are introduced as

the statistical and machine learning methods for traffic prediction, and they provide

reliable prediction, but the spatio-temporal information within the traffic data is not

concerned. Therefore, the CNN, a deep learning method, is introduced to abstract

the spatio-temporal features from traffic data which is converted into the form of an

image. The CNN framework, proposed by Ma et la. [45] will be the base-line methods

CHAPTER 2. LITERATURE REVIEW 56

for the traffic prediction in this thesis. Besides, the structural RNN is introduced for

traffic prediction, which provides another perspective of utilizing the spatio-temporal

features of the traffic speed data. Parametric models have achieved great success, as

introduced in previous sections. On the other hand, non-parametric models, including

LS-SVM and GP, provide a consideration of uncertainty, especially the GP models.

The GP models will be the focus, and a GP related framework will be proposed in

the chapter 3. The uncertainty attracts the interest of researching, not only because

uncertainty quantification helps to improve the accuracy of the models, but also quan-

tifies how much the predictions are trustworthy. Section 2.3 introduces two types of

uncertainty and two methods for uncertainty quantification. The novel approaches for

traffic speed prediction proposed in Chapter 3 are based on the following:

• The traffic speed changes are represented as an image. First, the measured traffic

speed data are converted into an image (matrix) representation as described in

Section 2.2.5.1.

• The CNN has the ability to extract features, but uncertainty characterisation is

not provided. Since the GP is a powerful Bayesian framework, it is adopted to

characterise the results, and this forms the CNN-GP framework. Next, two novel

algorithms are proposed, one is the ConvNet GP and the CNN-GP, and they

are shown to achieve accurate traffic speed prediction and in addition provide

uncertainty characterisation based on the calculated GP variance.

• A confidence interval is applied to analyse the uncertainty.

Section 2.4 introduces traditional methods for image segmentation, and fast edge de-

tection using structured forests is described in detail, as it will be used as the base-line

methods for evaluating the machine learning approaches proposed in this thesis. Fast

edge detection using structured forests is the base-line of this case study. In Chapter 4,

novel approaches for cancer bone segmentation is based on the following:

• The fast edge detection using structured forests described in Section 2.4 is the

CHAPTER 2. LITERATURE REVIEW 57

base-line of this case study.

• The approaches developed for traffic speed prediction are modified to the segmen-

tation task, providing a novel perspective on the segmentation of cancer bones.

• The deep learning approach is developed to achieve segmentation of the lesion

area autonomously.

The next chapter proposes machine learning frameworks for traffic speed prediction and

an approach for uncertainty quantification named the uniform error bound approach.

A detailed performance validation is provided for the proposed approach.

Chapter 3

Machine Learning for Traffic

Prediction

3.1 Introduction

The previous chapter gives an overview of traffic prediction methods. This chapter

proposes a capsule network and two GP related approaches for short-term traffic pre-

diction. Two long-term traffic prediction frameworks based on the GP are described

and the uniform error bound is applied for uncertainty quantification. All proposed

approaches are evaluated with real traffic speed data collected in Santander, Spain.

The uniform error bound is first evaluated with simulated data and then with real

traffic speed data.

Section 3.2 proposes a capsule network and two GP related approaches for short-term

traffic speed prediction, and the novelty and significance are the following:

• A efficient architecture of CapsNet is proposed for traffic speed prediction, which

is the first time applied on the traffic prediction problem. Compared to CNN, the

proposed CapsNet can extract higher-level features and encode the probability

of those features that are located in the local region.

58

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 59

• A ConvNet GP is proposed for traffic speed prediction by equating the base-line

CNN to a GP, which provides similar performance as the base-line CNN and

additional uncertainty information.

Section 3.3 proposes a novel deep kernel CNN-GP framework with spatio-temporal

kernels. The contributions are the following:

• CNN-GP framework for time series prediction is proposed. CNN provides feature

maps to the GP regression which makes the prediction and quantifies the impact

of uncertainties.

• A multitype spatio-temporal GP is proposed to better encode the prior knowledge

observed from the data

• A detailed performance validation and evaluation of these proposed approaches

is conducted on two case studies: (1) Seasonal carbon dioxide (CO2) prediction,

(2) Traffic prediction in terms of both volume and speed data.

• The proposed approach with spatio-temporal kernels can provide both short-term

and long-term predictions.

Section 3.4 proposes a modified uniform error bound (UEB) to quantify the uncer-

tainty of the traffic speed prediction problem, and the novelty and contribution are the

following:

• A effective UEB, with weaker assumptions comparing with other error bound

methods, is proposed for CNN-GP framework, which provides uncertainty anal-

yses for traffic speed predictions.

• The detailed performance validation and evaluation of UEB are conducted on

simulated and real data.

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 60

3.2 Machine Learning Frameworks for Short-term

Traffic Prediction

In this section, deep learning and a GP framework are introduced. CapsNet is first

introduced, and a novel architecture of CapsNet is proposed that encodes the prior

information of the traffic features, which is the first time applied to the traffic prediction

problem. Second, the ConvNet GP is described, and it is a way to enhance the CNN

with the ability to analyse uncertainty information.

3.2.1 Capsule Network

As Section 2.2.5 introduced, CNN are powerful to comprehend images due to its con-

volution and pooling properties. Geoffrey Hinton emphasised his confidence in con-

volution, and, however, he presented four primary arguments for pooling as a routing

method in his talk [94]. The arguments against pooling are introduced as following.

Pooling is unnatural. Hinton stated that pooling badly fits the psychology of shape

Figure 3.1: CNNs classified both images as human face.

perception [94]. Human detects an object instantaneously as it appears. Based on the

information of the object observed, a person directs the information to the part of the

brain that can process it best. On the other hand, the pooling operation distributes the

most active information to all subsequent neurons [95], which is out of the ordinary and

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 61

inhibits the network from learning about the detailed information. Pooling Solves a

wrong problem. By pooling the neural activities together, CNNs attempt to make

the neural activity invariant to small pose changes [94]. This brings one advantage for

classification tasks, since the label should remain consistent regardless of the locations

of the objects (spacial invariant). Fig. 3.1 shows that CNNs can only abstract and

detect features, but cannot understand the relationship between features, which means

that both images are accurate portraits of a human face. Pooling does not use the

linear structure of vision. The transformation, such as rotation and wrap, changes

a sizable portion of the pixels in the image. Therefore, the viewpoint is the primary

cause of the image variance [94]. It is a linear problem for a person to compose a scene

of multiple components, since the person can recognise the relationships between the

components. Without this linear framework, object detection in computer vision is no

longer linear, but more complex. As a result, a typical CNN must be exponentially

increased in parameters size [96] and trained with an exponentially growing amount

of data, such as applying data augmentation [97]. Pooling is a poor way to per-

form dynamic routing. The most prominent activations are gathered by pooling and

propagated to the same neurons in the following layer. However, an entirely different

collection of neurons is responsible for managing different types of activations, as input

images are translated. Human vision can understand the translation of the image and

activates the same neurons, which occurs at runtime, and hence it is dynamic rather

than statically preconnected [95]. This is a routing problem that the features of the

image pixels must be correctly routed to the neurons that specialise on that type of

feature [94]. Dynamic routing selects the best neuron, while pooling selects the best

inputs.

To conclude the limitations of CNNs brought, the major challenge is that the CNNs

are not able to recognise pose, texture and transformation [96], which is caused by

the invariance brought by the pooling. Therefore, the CNNs lack equivalence. On

the other hand, the pooling operation loses features in the input [98]. As the results

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 62

show, a significant number of training data are required to compensate for the loss.

For achieving the best results, CNNs are deep in depth, and hence a large amount of

parameters is calculated [99]. CNNs are more vulnerable to adversarial attacks and

generate wrong results [100].

Hinton et al. [101] proposed the concept of capsule networks to emphasise the ability

of a network to recognise poses. Hinton defined capsules as groups of neurons divided

into each layer [96]. Sabour et al. [96] further improved the capsule networks. Fig. 3.2

Figure 3.2: Left shows the capsule, and right represents the neuron.

presents a comparison between a capsule and an artificial neuron. A neuron calculates

a scalar output from a list of scalar inputs, while a capsule computes a vector output

from a list of vector inputs by wrapping a group of neurons. In this way, a capsule

encodes instantiation parameters such as position and pose, and the length of the

output vector represents the probability of the existence of the feature [96].

Figure 3.3: The architecture applied on traffic speed prediction for complex

traffic network.

A capsule network consists of convolutional layer, primary capsule layer and class

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 63

capsule layer. The convolutional layers are used to extract the features from the data

and the outputs of the convolutional layers are fed into the primary capsule layer. The

activity vector for each capsule i in layer l is denoted as ui, and the output vector ui of

i-th capsule in layer l is then fed into all the capsules in the next layer l + 1 [98]. The

j-th capsule in layer l + 1 produces ui with the corresponding weight Wi,j, and the

output vector of the capsule in layer l + 1 is ûj|i. The transformation of the predicted

vector is represented as

ûj|i = Wi,jui. (3.1)

The predicted vector ûj|i and the coupling coefficient Copi,j are multiplied to obtain a

single primary capsule prediction. A weighted sum sumj is applied to all primary cap-

sule predictions, and the coupling coefficient between the capsule i and other capsules

is determined by softmax,

sumj =
∑
i=1

Copi,jûj|i, Copi,j =
exp(bi,j)∑
k exp(bi,k)

. (3.2)

The outputs are fed into the squashing function sumj,

squashj =
‖sumj‖2sumj

1 + ‖sumj‖2‖sumj‖
. (3.3)

The non-linear squash function shrinks the length of the output of the capsule between

0 and 1. The output of the capsule layer sumj is routed to the next layer capsule. The

coupling coefficient Ci,j ensures that the prediction of capsule i in layer l is correctly

routed to that of capsule j in layer l + 1. The output vector corresponding to each

capsule can be divided into two parts: the probability that represents the existence

of the feature and the set of instantiation parameters [98]. Therefore, when lower-

level capsules agree on a higher-level capsule, the construction of relationships between

capsules in different layers is called dynamic routing-by-agreement [96]. In contract

to the pooling, routing algorithm is applied at runtime, and the goal is to redirect

previous capsule output vectors to the following capsules where they agree with their

input [95].

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 64

Algorithm 2 Routing Algorithm [96]

procedure: Routing(ûj|i, r, l)

for all capsules i in layer j and capsule j in layer(l+1): bij ← 0

for r iteratoins do

for all capsules i in layer l: ci ← softmax(bi) Eq.3.2

for all capsules j in layer (l+1): xi ←
∑

i cijûj|i

for all capsules j in layer (l+1): vj ← squash(xj) Eq.3.3

for all capsule i in layer l and capsule j in layer (l+1): bij ← bij + ûj|ivkj

return vj

end for

The architecture proposed for the traffic speed prediction for complex road network

is presented in Fig. 3.3. The architecture begins with two convolutional layers that

abstract simple features from the spatio-temporal traffic speed data in the form of

images. Each convolutional layer has a kernel size of 3 × 3 and 32 channels with a

stride of 1 with zero padding. The third layer is the primary capsule layer that extracts

higher-level features and encodes the spatial relationships between features. Therefore,

the outputs of the primary capsule are vectors that contain high-level features and the

probability of those features that are located in the local region. The capsules in the

primary capsule layer output 8-dimensional vectors and the capsules in a cuboid share

weights. The output of the primary capsule is squashed to a fixed length and fed

into the digit capsule. The last layer is the digital capsule that is used to generate

traffic speed predictions and has a 16-dimensional capsule for each road segment. The

dynamic routing algorithm is performed between the primary capsule and the digit

capsule, which determines the connections between the capsules in the primary capsule

and the digital capsule. The association between each capsule representing a road

segment and the other capsules in the primary capsule layer is captured by the dynamic

routing algorithm. In this way, the digit capsule layer’s capsules can be characterised

by any remote local attribute.

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 65

Table 3.1: Layer parameters of CapsNet

Layer Parameter Activation

Convolution1 (32,3,3) ReLu

Convolution2 (32,3,3) ReLu

PrimaryCaps (128,3,3) Capsule size 8 Relu

DigitCaps Capsule size 16 -

Although CapsNet overcomes the drawbacks of CNN and encodes prior information

with features, both CNN and CapsNet are deterministic models that lack uncertainty

analyses. The next section demonstrates a framework that combines CNN and GP,

which is one of the proposed approaches to equip CNN with uncertainty information

by using GP.

3.2.2 Deep Convolutional Neural Network as Shallow Gaus-

sian Process

A deep neural network can conceptually be considered as a Gaussian process regres-

sion [102]. Therefore, this vision is adopted and a deep CNN can be considered as a

shallow GP [6]. As pointed out in [103] combining the non-parametric nature of GP

regression and the learning ability of neural networks can improve the generalisation

capabilities of the GPs.

3.2.2.1 Concepts and Definitions

As mentioned previously, inaccurate uncertainty estimation of CNNs is becoming in-

creasingly problematic. For a standard CNN, with L hidden layers, the transformation

from layer l to layer l + 1 is given as following:

a
(l+1)
j (S) = blj +

Cl∑
i=1

Wl
j,iφ(ali(S)), (3.4)

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 66

Figure 3.4: Elementwise transformation of a CNN [6].

where

S =

s1

s2

.

.

.

sC0

, (3.5)

is the input image with height H0 and width D0. Each input image has C0 channels,

and, therefore, the input image is considered as a C0 × (H0D0) matrix, with si a row

vector of size 1×(H0D0). The i-th output from the l-th layer is represented by al+1
i (S).

The bias is blj and the weight matrix derived from the filter Ul
j,i on the l-th layer is

Wl
j,i. The activation for the output of the previous layer is represented as φ(ali(S)). For

the first layer, φ(·) simply maps the input si to itself. In equation (3.4), Wl
j,iφ(ali(S))

indicates the dot product of Wl
j,i and φ(ali(S)).

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 67

In the traditional CNN paradigm, the elements of a convolution filter Ul
j,i are deter-

mined. One filter is usually responsible for a specific feature. It is hard to say if the

filter can still manage to capture the features when the data is polluted by random

noise. To tackle the problem, one intuitive idea is to make the filter itself random rather

than determined. In this way, for one specific convolution filter Ul
j,i, when the elements

change randomly, the number of potential filters could approach infinity. Therefore,

all filters together should be able to average the noise and extract the features from

the polluted data as described in [6]. A convolution filter Ul
j,i is substantially a matrix

as shown in Fig. 3.4. As in [6], each element ulj,i,x,y of Ul
j,i is governed by a Gaussian

distribution as in equation (3.6), and the bias blj is governed by another Gaussian

distribution in the form

ulj,i,x,y ∼ N (0,
σ2
w

C l
), (3.6)

where i and j are the channel index in layer l− 1 and l, x and y are the horizontal and

vertical location of the element in the filter

blj ∼ N (0, σ2
b). (3.7)

As each single element ulj,i,x,y of Ul
j,i is subject to a Gaussian distribution, as many

filters as possible can therefore be derived by sampling from the corresponding distribu-

tion. Each filter can be further flattened into a weight matrix Wl
j,i with the dimension

of N l × (H lDl). According to equation (3.4), if N l → ∞, then C l → ∞. With the

Central Limit Theorem (CLT), equation (3.6) and (3.7), al+1
j (S) subject to a Gaussian

distribution as C l →∞.

3.2.2.2 Mean and Covariance

In [6], the authors show that, with certain constraints, a deep convolutional neural

network is equivalent to a shallow Gaussian process. When it comes to a Gaussian

process, the question of how to obtain the mean and covariance from a deep convolu-

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 68

tional neural network is required to be investigated.

According to equation (3.4), the input is an image S. To derive the covariance, at least

another input image denoted as S
′

is required. Indexed by S and S
′
, two feature maps

alj(S) and alj(S
′
) can be concatenated as

alj(S,S
′
) = (alj(S), alj(S

′
))T , (3.8)

which can be further extended as equation (3.9) to show the transformation from layer

l to layer l + 1,

al+1
j (S,S

′
) = bljI +

Cl∑
i=1

Wl
j,i 0

0 Wl
j,i

φ(ali(S,S
′
)), (3.9)

which is proven to be multivariate Gaussian in [6] when C l →∞. In equation (3.9), I

is the identity matrix. The attribute holds for any given feature map determined by j

and l, which are further constrained by the structure of the deep convolutional neural

network. For more details, refer to [6].

To derive the mean and convariance, the element-wise feature map is first given as

Al+1
j,g (S) = blj +

Cl∑
i=1

HlDl∑
h=1

Wl
j,i,g,hφ(Al

i,h(S)), (3.10)

where l and l + 1 are the indexes of the hidden layers, i and j are the indexes of the

input and output channels, and h and g denote the location of the element within the

input and output channels. When the input image is S
′
, the element-wise feature map

becomes Al+1
j,g (S

′
).

With equation (3.10), the mean and covariance are formulated as in equation (3.11)

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 69

and (3.12), respectively.

E[Al+1
j,g (S)] = E[blj] +

Cl∑
i=1

HlDl∑
h=1

E[Wl
j,i,g,hφ(Al

i,h(S))] = 0 (3.11)

cov

[
Wl

j,i,g,hφ(Al
i,h(S)),Wl

j,i′ ,g,h′
φ(Al

i′ ,h′
(S
′
))

]
= σ2

b + σ2
w

∑
h∈gth patch

E
[
φ(Al

i,h(S))φ(Al
i,h(S

′
))
]
,

(3.12)

where E[.] represents the mathematical expectation and cov[.] represents the element-

wise covariance function. The Gaussian distribution on the weights and feature maps

is assumed to be with a zero mean. The convariance includes a term depending on φ(·).

According to [6], a closed form of the covariace can be obtained if φ(·) is Gaussian and

ReLU etc. Please refer to [6] for a solution with ReLU activation. With equation (3.11)

and (3.12), a deep convolutional neural network can be considered as a GP. A deep

convolutional neural network is well known for spatial feature extraction, while GP is

mostly famous for temporal data regression. In this thesis, a ConvNet GP is proposed

by equating the base-line CNN as shown in Table 3.2 to a GP. By incorporating a CNN

into the kernel of a GP, the powerful feature extraction ability of the CNNs is embedded

into GP, and the GP is powerful Bayesian framework that can analyse uncertainty

information. The equivalence between CNNs and GPs preserves the advantages of

both.

The next section introduces another proposed framework that equips the CNN with

the ability of uncertainty quantification.

3.2.3 Performance Evaluation

Data Pre-processes and Preparation: Traffic speed data used is collected on road

segments in the city centre of Santander with 15-minute time steps for the year 2016.

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 70

The traffic dataset is provided thanks to the SETA EU project. The traffic speed data

structured in equation (2.24) are divided as follows to prepare the training, validating

and testing set. Assume that each sample comprises S rows, and 10 samples constitute

one loop of data partition.

• Training Set: The first 7 samples (1-7)

• Validating Set: The next 2 samples (8-9)

• Testing Set: The next 2 samples (10)

In this way, unique features of traffic data, such as those during Christmas vacation can

be captured. CNN, CNN with GP Regression and ConvNet are described in Section 3.2.

Each proposed network is performed to accomplish the following five tasks:

• Task 1: 1-step ahead prediction, with 10-step traffic speed history on 20 road

segments.

• Task 2: 2-step ahead prediction, with 10-step traffic speed history on 20 road

segments.

• Task 3: 1-step ahead prediction, with 14-step traffic speed history on 50 road

segments.

• Task 4: 2-step ahead prediction, with 14-step traffic speed history on 50 road

segments.

• Task 5: Based on Task 1, different levels of simulated sensor noise are added

to the data, and therefore the noisy data become Xnoisy = X + ε, where ε ∼

N (µnoise,σ
2
noise).

The models are implemented on Python by using Tensorflow, Keras and GPflow. The

training and performance evaluation are run on a PC with 8-core i7-10700K CPU, 48

GB memory, and an RTX-2080 GPU. CNN took 11±0.6 seconds to train and evaluate

once, CNN with GP regression took 50 ± 9 seconds to train and evaluate once, and

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 71

ConvNet took 1.3± 0.2 seconds to train and evaluate once.

Evaluation and Dissuasion: In the application of CNN and CapsNet, both networks

employ mean squared error (MSE) as the loss function. Adam optimiser [104] with

the exponentially decaying learning rate is utilised to minimise the total MSE. For

implementation of CNN as shallow GP, the ConvNet GP is the kernel equivalent to

a 6-layer CNN that has three convolutional layers and three max pooling layers. The

parameters and layer settings are the same as the typical CNN whose architecture and

layer parameters are listed in Table 3.2. The layer parameters for CapsNet are listed

in Table 3.3.

Table 3.2: Layer parame-

ters of CNN

Layer Parameter Activation

Convolution1 (16,3,3) ReLu

Polling1 (2,2) -

Convolution2 (8,3,3) ReLu

Polling2 (2,2) -

Convolution3 (4,3,3) Relu

Polling3 (2,2) -

Flatterning - -

Fulling-connected - -

Table 3.3: Layer parame-

ters of CapsNet

Layer Parameter Activation

Convolution1 (32,3,3) ReLu

Convolution2 (32,3,3) ReLu

PrimaryCaps (128,3,3) Relu

Capsule size 8 -

TrafficCaps Capsule size 16 -

The root mean squared error (RMSE) as a measurement of the accuracy of traffic speed

prediction performance. The RMSE is defended as:

RMSE = mean(

√∑I
i=1(yi − ŷi)2

N
) (3.13)

where yi is the ground truth value; ŷi represents the traffic speed prediction on i-th

road segment; and N denotes the number of the number of the traffic speed data in

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 72

Table 3.4: Results validation (unit: km/h)

CNN CapsNet ConvNet GP

RMSE RMSE RMSE

Task 1 8.94 8.853 6.69

Task 2 9.39 9.179 6.97

Task 3 9.70 9.257 8.02

Task 4 9.84 9.472 8.205

evaluation set. The performances of the networks operating four tasks are listed in

Table 3.4.

The RMSE increases as input and output sizes increase from Task 1 to Task 4. CNN

proposed by Ma et al. [45] is the base line. CapsNet contributes to the improvements

of 1. 0%, 2. 3%, 4. 6% and 3. 8% compared to CNN with respect to Task 1 to Task

4. Among the four approaches introduced in previous sections, ConvNet GP provides

the best performance on all four tasks, as it shows better (smaller) RMSE than the

other four approaches, especially for Task 1 and 2. ConvNet GP provides the most

significant improvement, 25.2% and 25.8% smaller, in RMSE when performing Task

1 and 2 compared to CNN. For Task 3 and 4, ConvNet GP contributes a 17.3% and

16.7% improvement.

Fig. 3.5 shows the overall performance of networks operating with different noise levels

(Task 5) where the noise variance ranges from 0 to 45. For ConvNet GP, the RMSE

values increase as the noise variance increases. Fig. 3.6 shows that the performances

on each sensor with different noise levels are consistent with the overall performance.

ConvNet GP provides the smallest RMSE values on all sensors, and the RMSE values

increase as the noise variance increases. The performance of the networks maintain

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 73

(a)

(b)

Figure 3.5: a) Validation on data with zero mean noise. b) Validation on

data with non-zero mean noise. Blue represents the RMSE value obtained

from ConvNet GP; Red represents the RMSE obtained from CNN.

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 74

Figure 3.6: Validation on data with zero mean noise for each sensor. Blue

represents the RMSE value obtained from the ConvNet GP; Red represents

the RMSE obtained from the CNN.

the same tendency as the sensor ID varies. For example, the largest RMSE values are

located on the sensor 26 for all networks, and the smallest RMSE values are located

on the sensor 18 for all networks.

Fig. 3.7 shows the confidence interval of GP and Convnet GP with 3σ in purple. The

blue dots represent the ground truth. Therefore, the ConvNet GP provides a very

narrow confidence interval. To conclude, the ConvNet GP provides the best accuracy

with respect to the lowest RMSE, but provides the narrowest confidence interval.

3.2.4 Conclusion

This section shows that the properties of Gaussian process regression can be beneficial

in assessing the impact of sensor data uncertainties in traffic speed prediction. The

section presents a GP based frameworks, and ConvNet GP. The ConvNet GP reformu-

lates a CNN as a Gaussian process. The ConvNet GP is compared to a baseline generic

CNN. The real traffic speed data collected in Santander city, Spain, is used to validate

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 75

Figure 3.7: Prediction uncertainty obtained by ConvNet GP. The 1σ con-

fidence interval is applied on GP and 3σ confidence interval is applied for

ConvNet GP.

and evaluate the performance of the proposed GP frameworks. The results imply that

the ConvNet GP has better capabilities on learning in the presence of uncertainties

in the test data and gives 18.23% improvement in the speed RMSE with respect to

the generic CNN. With the help of variances provided from the GP, the calculated

confidence intervals characterise the credibility of the speed predictions. This section

evaluates the performance with different levels of noise in data, which shows that the

ConvNet GP achieves the best performance over all levels of noise and the RMSE

increases as the noise level increases for all the methods.

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 76

3.3 A Convolutional Neural Network - Gaussian

Process with Deep and Multitype Kernels for

Time Series Prediction

Time series prediction is a fundamental problem in various fields, ranging from stock

price and economic monitoring to traffic flow prediction and global environment fore-

casting. Time-series prediction models forecast future values or patterns based on his-

torical observations, enabling researchers and practitioners to make better decisions.

Time-series prediction is essentially a regression problem that involves understanding

and modelling the relationship between independent variables and the dependent vari-

able. Numerous algorithms have been proposed for time series regression, including

ARIMA [28], LSTM [3], and CNN [45].

Despite the success of existing regression models in mapping inputs to feature spaces

[105, 106, 107, 108, 109], they cannot provide uncertainty information. Uncertainty

quantification (UQ) plays a crucial role in decision making and prediction, enabling

the rigorous analysis of inherent uncertainties within models and data. UQ involves

the use of statistical methods to quantify the uncertainty in the outputs of complex

mathematical models. Without UQ, the decisions and predictions made are usually not

trustworthy [60, 110]. Bayesian techniques are successfully demonstrated frameworks

that learn uncertainty [110], including Monte Carlo (MC) dropout [111], Markov chain

Monte Carlo (MCMC) [112], and variational inference (VI) [113]. These techniques

provide a probabilistic framework for modelling uncertainty, enabling the incorporation

of prior knowledge and updating beliefs as new data is observed.

A Gaussian Process (GP), being among the most powerful tools in the Bayesian infer-

ence regime, has the potential to equip CNNs with the ability for uncertainty analysis.

A GP is a collection of random variables, any finite number of which has a joint Gaus-

sian distribution [56]. GPs have received increased interest due to their flexibility,

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 77

robustness, and wide range of applicability. One of the key advantages of GPs is that

they are non-parametric, meaning that they can flexibly adapt to complex data with-

out the need to manually specify the latent functions. The most important advantage

of a GP is its ability to provide a measure of uncertainty, which is particularly use-

ful in applications where it is crucial to estimate not only the outcomes but also the

associated uncertainty.

To fill the gap in existing regression models with CNN embedding, GP regression is

introduced. In this paper, CNN-GP and a spatio-temporal kernel are proposed for

time-series prediction. CNN-GP incorporates a CNN feature embedding and a GP

regression. The spatio-temporal kernel of the GP provides consideration for both time

and space, which can bring improvements in performance.

The contributions of this section are the followings:

• A CNN-GP framework for time series prediction is proposed. The CNN provides

feature maps to the GP regression which makes the prediction and quantify the

impact of uncertainties;

• A multitype spatio-temporal GP is proposed to better encode the prior knowledge

observed from the data.

• A detailed performance validation and evaluation of these proposed approaches

is conducted on two case studies: (1) seasonal carbon dioxide (CO2) prediction,

(2) traffic prediction in terms of volume and speed data.

• The proposed approach with spatio-temporal kernels can provide both short-term

and long-term predictions.

The next section proposes the CNN-GP framework and spatio-temporal kernel.

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 78

3.3.1 Related work

This section briefly reviews commonly used models for time-series prediction. Primar-

ily, regression models are divided into two categories: model-based and data-driven

methods [114, 115]. The main difference between the two methods is, as their names

suggest, whether models or data are used to predict future states. Model-based meth-

ods require the development of suitable models that describe the dynamics of systems.

The ARIMA algorithm [28] was proposed in 1979 and achieved success in short-term

highway traffic prediction, using a physical traffic model. Since then, model-based

methods have attracted the interest of researchers. With the assumption that models

can accurately describe the dynamics of the traffic system, the prediction results based

on physical models are reliable. While model-based methods focus on building physical

models [20, 28], data-driven methods mostly require only historical data. Statistical

and machine learning methods are the two main categories that have been developed

to investigate the inherent relationships in data. Statistical data-driven methods, such

as the support vector machine (SVM), have achieved success with time series data.

ANNs are also widely applied to time series predictions due to their ability to work

with multidimensional data and their generalisability [33]. Park et al. [34] proposed a

real-time vehicle speed prediction algorithm based on an ANN. Zheng et al. [35] com-

bined Bayes’ theorem with an ANN to predict short-term freeway traffic flow. However,

the data-driven mechanism of a simple ANN cannot explain the spatial relationships

of the road segments. Moreover, compared to deep learning methods, ANNs provide

lower prediction accuracy due to their shallow architectures. To capture comprehen-

sive traffic flow features both spatially and temporally, a deep-learning-based model,

the stacked restricted RBM, is proposed [29]. The RBM model is employed to extract

these traffic flow features, and subsequently, a logistic regression approach is utilised

for the forecasting process. Most recently, an adaptive spatio-temporal (AST) Incep-

tionNet was proposed [116]. By leveraging the inception module, the model effectively

combines local spatio-temporal features with various global features. Additionally, the

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 79

development of a fully adaptive graph convolution method, encompassing topologically

adaptive graph convolution and an adaptive adjacency matrix, enables autonomous and

dynamic learning of spatial heterogeneity. This allows the AST-InceptionNet to effec-

tively handle situations where adjacency relations are unknown. Moreover, a long-short

temporal information fusion module is proposed [117], which integrates a transformer

network and a spatio-temporal graph convolutional network.

However, real-world phenomena often encompass numerous confounding factors and

involve a large number of inputs. High-dimensional data can be redundant or highly

correlative [118, 119]. This necessitates the utilisation of mapping inputs into feature

spaces with reduced dimensionality by transforming the high-dimensional input space

into a lower-dimensional feature space. Through the representation of data in a more

abstract form, mapping inputs into feature spaces effectively reduces computational

complexity while enhancing the efficiency of regression models. Simultaneously, map-

ping inputs into feature spaces facilitates the extraction of informative features from

the input data. By capturing the underlying patterns and relationships inherent within

the data, mapping the input into feature spaces enables the regression model to focus

on the most salient and informative features. Consequently, the regression model can

better capture the underlying dependencies and improve the prediction performance.

This approach is widely applied in neural language processing tasks [105, 106] and

logistic regression [107]. From another perspective, the relationships between inputs

and outputs frequently exhibit non-linear characteristics. In this regard, mapping in-

puts into feature spaces, particularly those based on deep learning models, are able

to capture non-linear dependencies and, consequently, improve the accuracy of predic-

tions. Various mapping methods have been proposed, including common methods such

as linear discriminant analysis [120, 121], principal component analysis [91, 122], and

independent component analysis [123], among others [124, 125]. However, these meth-

ods are considered single layer learning methods [126]. Some deep models have been

proposed, for example, the stacked autoencoder (SAE) [127] and DBN [128, 41]. These

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 80

deep models extract robust features and outperform other methods. However, SAE

and DBN are not able to extract spatial information effectively. The CNN employs

local connections to extract spatial information efficiently and shared weights to sub-

stantially diminish the number of parameters. A hybrid deep neural network model

(HDNN) [108] has been proposed for volatility forecasting. The HDNN consists of

feature extraction and regression components. Mapping inputs into feature spaces ex-

plores the volatility-related feature space via a CNN, and the fully connected network,

considered as the regression component, takes the feature vectors to predict volatility,

bringing remarkable improvements in prediction accuracy. Another hybrid framework

has been proposed for diabetic retinopathy classification [109], where a deep CNN-

based architecture is used as the feature extractor and the extracted feature vectors

are classified by a support vector machine, which reduces misclassifications. The CNN

feature extraction has shown powerful feature extraction ability and can potentially be

combined with different regression and classification models.

In addition to neural networks, kernel methods are also popular in time-series pre-

diction. Kernel methods are considered as non-parametric models, In the context of

machine learning, a non-parametric model is one that does not make strong assump-

tions about the form or structure of the function that is being estimated. Instead,

kernel methods use kernel functions to map the data into a higher-dimensional space

where the learning problem can be solved more easily. One of the most well-known

kernel methods is SVM. In [129], an SVM is proposed for financial time series fore-

casting. GPs are a form of the kernel method and were popularised by Rasmussen and

Williams [56]. Xie et al. [130] proposed a GP for short-term traffic volume prediction.

Inspired by mapping inputs into feature spaces, deep kernel learning (DKL) is proposed

to combine the strength of deep learning and kernel methods. DKL maps the inputs to

an intermediate space through a deep neural network, such as a deep CNN, and these

intermediate values are used as inputs to standard kernel methods [131, 132].

However, neural networks lack uncertainty analyses. MC dropout [111] is a regulari-

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 81

Figure 3.8: The GP-CNN framework. Blue block represents the combina-

tion of convolutional and pooling layers; red block represents fully connected

layer; and pink block represents a Gaussian process regression.

sation technique introduced in deep learning models for UQ. MC dropout enables the

model to sample multiple predictions for a given input by randomly dropping out neu-

rons during both the training and inference stages, allowing the deep learning model

to estimate uncertainties. As proposed in [133], MC dropout with input-dependent

data noise is applied to quantify the uncertainty for LSTM models. MCMC [112] is

a powerful statistical technique in Bayesian inference. It provides an approach to ex-

plore high-dimensional space and estimate posterior distributions, which can generate

representative samples that approximate the uncertainty quantification and desired

distribution. Another Bayesian statistical technique for quantifying uncertainty is VI.

VI offers computationally efficient frameworks to approximate intractable posterior

distributions [113]. In particular, VI is often used to estimate the posterior distribu-

tion of the neural network parameters. The estimated parameter distributions enable

the model to quantify uncertainty. Furthermore, VI allows for the calculation of ad-

ditional quantities, such as the evidence lower bound. The confidence interval (CI) is

one of the most common UQ methods. CI is a statistical tool that is used to esti-

mate the distribution based on a sample from that population, providing a measure of

uncertainty.

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 82

3.3.2 CNN with Spatio-temporal GP Regression

A spatio-temporal GP (STGP) is a GP model with spatial-temporal kernel function

that models the evolution of the system in both space and time [134]. In this section,

the spatial inputs for the GP framework are the past observations, which is represented

as x, and the temporal inputs are the time, t. An STGP can be used to model a

functional transformation from the inputs to the output Y [135]:

Y = f(x, t),

f(x, t) ∼ GP(m(x,x), k(x,x′; t, t′)),
(3.14)

where m(·) and k(x,x′; t, t′) are, respectively, mean function and spatial-temporal ker-

nel (covariance) function. The kernel function can be factorised as:

k(x,x′; t, t′) = ks(x,x
′)kt(t, t

′), (3.15)

where ks(·, ·) and kt(·, ·), respectively, represent the spatial and temporal kernel func-

tions. With the mean and covariance function, the STGP regression can be formulated

in the same way as the GP described in the previous section. The complexity of the

GP for N observations is O(N3), and the complexity of the STGP for N observations

and T time steps is O(N3T 3).

Proposed in [136], a Gaussian process can be used in conjunction with a CNN to analyse

uncertainty without decreasing accuracy. The primary concept behind CNN with GP

regression is to abstract features using a combination of convolutional and pooling

layers, and then input the abstracted features into a GP regression model to generate

the predictions. As shown in Fig. 3.8, a pre-trained CNN is used to abstract features

and the last-layer features of the CNN are fed into the GP regression to generate

prediction and uncertainty quantification. Therefore, the input of GP, z, is the last-

layer features of the CNN. For example, Fig. 3.9 a) shows a input of traffic speed

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 83

(a) (b)

Figure 3.9: a) The visualization of the traffic speed data. b) The visual-

ization of the last-layer features extracted by the typical CNN.

prediction and Fig. 3.9 b) presents the last-layer features of the CNN. From equation

(2.27), let z denote the last-layer features fed into the GP regression. Therefore, we have

f(z) ∼ GP(m(z), k(z, z′)) and f(z, t) ∼ GP(m(z), k(z, z′; t, t′)). Following equations

(2.61)-(2.66), the mean and covariance of the prediction distribution can be calculated.

3.3.3 Experiments And Analysis

3.3.3.1 Index of Performance

The root mean squared error (RMSE) is the main performance evaluation metric used

to evaluate traffic speed prediction approaches. The RMSE is defined as follows:

RMSE(k) =

√√√√ 1

Nmc

Nmc∑
m=1

[ŷ(k)− y(k)]2, (3.16)

where y(k) is the ground truth speed value and ŷ(k) represents the traffic speed pre-

diction at the kth time step. Here Nmc denotes the number of Monte Carlo runs.

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 84

Table 3.5: Layer parame-

ters of CNN for CO2 predic-

tion

Layer Parameter Activation

Convolution1 (32,3) ReLu

Polling1 (2,2) -

Convolution2 (16,3) ReLu

Polling2 (2,2) -

Convolution3 (8,3) Relu

Polling3 (2,2) -

Flattern - -

Fulling-connected - -

Table 3.6: Layer parame-

ters of CNN for traffic vol-

ume prediction

Layer Parameter Activation

Convolution1 (64,3) ReLu

Polling1 (2,2) -

Convolution2 (32,3) ReLu

Polling2 (2,2) -

Convolution3 (16,3) Relu

Polling3 (2,2) -

Flattern - -

Fulling-connected - -

3.3.3.2 Seasonal CO2 Prediction

The seasonal CO2 measurements are collected at the Mauna Loa Observatory in Hawaii

[137]. The CO2 data collection was started by Charles David Keeling in March 1958

[138]. The dataset contains monthly average CO2 values from 1958 to 2001, and each

monthly average is the mean of daily averages. There are 521 time steps, and the

data contains times and atmospheric CO2 values. Therefore, the dataset is a vector

for values C = [C1, · · · , C510] and a vector for time T = [T1, · · · , T510]. We use the first

357-month history (70%) as training data and the remaining 153-month history (30%)

to evaluate the proposed approach. In this case study, CNN and CNN-GP described

in previous sections perform the following tasks:

• Short-term task: One-month prediction, with 10-month history. For each predic-

tion, actual data is used to form the history.

• Long-term task: 24-month prediction, with 357-month history. For each pre-

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 85

diction after the first within the 24-month period, we use the predictions from

previous steps to form part of the history.

For short-term prediction, a 10-month history is used jointly with the time to train the

CNN and CNN-GP model. Therefore, the input of the CNN and the CNN module in

the CNN-GP framework can be represented as C = [c1, · · · , c10], and the input fed into

the GP regression can be represented as z = [z1, · · · , zn, t]. To evaluate the models, 20

experiments are conducted to compute the performance of the baseline CNN and the

CNN-GP framework with three different combinations of kernels. The CNN architec-

ture consists of three pairs of convolutional and pooling layers followed by a flattening

layer and a fully connected layer. Table 3.5 defines the architecture of the CNN and

layer parameters for CO2 concentration prediction. The three convolutional layers have

64, 32, 16 channels, respectively, of size 3 with a stride of 1. Each convolutional layer

involves a rectified linear unit (ReLU) activation function. Pooling layers have filters

of size 2 applied with a stride of 1. The architecture of the CNN-GP framework is

represented in Fig. 3.8. The different options for the GP module kernel function are

listed in (3.17) to (3.19):

k1(z, z′) = kSE(z, z′) + kLinear(t, t
′), (3.17)

k2(z, z′; t, t′) = kSE(z, z′) + kPerSE(t, t′) + kLinear(t, t
′), (3.18)

k3(z, z′; t, t′) = kSE(z, z′)× kPerSE(t, t′) + kLinear(t, t
′), (3.19)

where kSE represents the square exponential (SE) kernel, and kLinear denotes the lin-

ear kernel. The periodic kernel kPerSE can be achieved by mapping the original inputs

through the transformation u = [sin t, cos t]. In the context of CO2 concentration pre-

diction, the periodic kernel takes the SE kernel as the base kernel, and the formulation

can be expressed as:

kPerSE(t, t′) = σ2
f exp

(
−

sin2 π|t−t′|
p

2l2

)
, (3.20)

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 86

Figure 3.10: Visualization of short-term (1 month) CO2 concentration

prediction for the CNN and CNN-GP with different spatio-temporal kernels.

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 87

where l and σf denotes length-scale and variance respectively, and p represents the

period parameter. The linear kernel is defined as:

kLinear(t, t
′) = vtt′, (3.21)

where v is a coefficient.

The results are presented in Fig. 3.10, where the red line represents the average predic-

tion over 20 experiments, and the blue line represents the actual CO2 concentration.

The CNN model, with the parameter settings outlined in Table 3.5, achieves an RMSE

of 1.719 parts per million (ppm). The CNN-GP framework, with the kernel shown in

equation (3.17), achieves an RMSE of 0.866 ppm; the CNN-GP framework, with the

kernel shown in equation (3.18), achieves an RMSE of 0.849 ppm, excluding one of

the experiments that did not converge; and the CNN-GP framework, with the kernel

shown in equation (3.19), achieves an RMSE of 0.428 ppm. As shown in Fig. 3.10,

the CNN-GP with the spatio-temporal kernel shown in equation (3.19) provides the

most stable and accurate predictions. The experimental results demonstrate that the

CNN-GP framework with the spatio-temporal kernel exhibits the capability to gener-

ate accurate predictions, even when the employed CNN model does not perform well.

The peach shadows in Fig. 3.10 represent the 3σ confidence interval, which means that

the CNN-GP framework has 95.4% confidence that the actual observations are located

within the interval. This demonstrates an advantage of the CNN-GP method: confi-

dence intervals are available, whereas pure CNN does not produce CIs. For long-term

prediction, a 357-month history is used to train the model, and predictions are made

for 24 months using the predictions from the previous steps. The input of the CNN

and the CNN-GP framework can be denoted as C = [ĉ1, · · · , ĉ10], where ĉn represents

the predictions made by the model in the previous steps. The spatio-temporal kernel

used for the CNN-GP framework is shown in equation (3.19). Fig. 3.11 shows the re-

sults for long-term prediction, where the red line represents the long-term predictions

and the blue line represents the actual CO2 concentration. CNN achieves an RMSE

of 1.524 ppm, and the CNN-GP framework achieves 0.740 ppm. Fig. 3.11(b) presents

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 88

(a) (b)

Figure 3.11: a) Visualization of long-term (24 months) CO2 prediction by

using CNN. b) Visualization of the long-term CO2 prediction by using CNN-

GP with spatio-temporal kernel as shown in equation (3.19) and uncertainty

information evaluated by confidence interval (3σ).

the uncertainty quantification of the CNN-GP framework with a confidence interval.

As shown in the figure, the peach shadows represent the 3σ confidence interval, mean-

ing that the CNN-GP framework has 99.7% confidence that the actual observations

are located within the interval. As with short-term predictions, the CNN-GP outper-

formed the CNN. Due to different time periods used in the assessment, it is not possible

to compare the short and long-term predictions. However, long-term predictions are

expected to be worse than short-term ones.

3.3.3.3 Traffic Prediction

The traffic dataset is provided thanks to the SETA project [139]. The traffic data we

use is collected on road segments in the city centre of Santander with 15-minute time

steps for the year 2016. There are N = 33504 time steps, excluding days when the

sensors did not work, and M = 256 road segments. Therefore, the traffic data are a

matrix of size N ×M . Each missing measurement is estimated using an average of the

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 89

Figure 3.12: Visualization of short-term (15 minutes) traffic volume pre-

diction for the CNN and CNN-GP with spatio-temporal kernel. Note that

the predicted traffic volume values are positive but the negative values are

due to the 3σ confidence intervals.

traffic at the same time on the other days. Therefore, the traffic volume data, V, and

speed data, S, can be represented in an image-like matrix form:

V =

v11 v12 · · · v1M

...
...

. . .
...

vN1 vN2 · · · vNM

, (3.22)

S =

s11 s12 · · · s1M

...
...

. . .
...

sN1 sN2 · · · sNM

. (3.23)

The pixel value of vij and sij represents the traffic volume and speed on the road

segment j at time step i. Therefore, the V and S matrix each form a channel of the

image. We use 2-week history (1344 time steps) as a training set and use 1-week traffic

to evaluate the proposed approach.

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 90

(a) (b)

Figure 3.13: a) Visualisation of long-term (1 day) traffic volume predic-

tion. b) Visualisation of long-term (1 week) traffic volume prediction. Note

that the predicted traffic volume values are positive but the negative values

are due to the 3σ confidence intervals.

In this case study, CNN and CNN-GP described in previous sections, respectively,

perform the following task:

• 1-step (short-term) traffic volume prediction on one specific road segment, with

10-step history on the specific road segments. For each new prediction, we provide

accurate historical data.

• 1-week (long-term) traffic volume prediction on one specific road segment, with

2-week history on the specific road segments. For each new prediction, we use

the prediction from the previous steps for the history.

3.3.3.4 Traffic Volume Prediction

For short-term traffic volume prediction, a 2-week history of traffic volume is used along

with the time to train the CNN and CNN-GP models. The input of CNN and CNN

module in the CNN-GP framework can be represented as a matrix Vi = [v1N , · · · , v10N],

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 91

and the input fed into the GP regression can be represented as z = [z1, · · · , zn, t]. CNN

and CNN-GP frameworks are trained with a two-week history and tested on the next-

week future traffic speed.

The CNN architecture consists of three pairs of convolutional layers and pooling lay-

ers, followed by a flattening layer and a fully connected layer. Table 3.6 defines the

CNN architecture and the layer parameters for traffic volume prediction. The three

convolutional layers have 32, 16, and 8 channels, respectively, with a size of 1×3 and a

stride of 1. Each convolutional layer involves a rectified linear unit (ReLU) activation

function. The pooling layers have filters of size 1× 2 applied with a stride of 2.

The architecture of the CNN-GP framework is represented in Fig. 3.8. The kernel for

the GP module is as follows:

k(z, z′; t, t′) =

(kM12(z, z′) + kSE(z, z′))× kPerM32(t, t′) + kBias(t, t
′).

(3.24)

where kM12 is the Matérn 1/2 kernel, which is equivalent to the exponential kernel,

shown in equation (3.25),

kM12(z, z′) = σ2
f exp

(
−|z− z′|

l

)
, (3.25)

and kPerM32 is the periodic kernel with Matérn 3/2 kernel function [56], formulated as

the following,

kPerM32(t, t′) = σ2
f

(
1 +

√
3r

l

)
exp

(
−
√

3r

l

)
, (3.26)

where r = sin π|t−t′|
p

, and the biase kernel is defined as kBias(t, t
′) = c, where c is

a constant. The CNN algorithm, with the parameter settings outlined in Table 3.6,

achieves an average RMSE of 73.776 vehicles per hour (veh/h), and the CNN-GP

framework, with the kernel shown in equation (3.24), achieves an average RMSE of

75.458 veh/h. Fig. 3.12 presents a visualisation of short-term traffic volume prediction,

where the peach shadows represent the 3σ confidence interval, which means that the

CNN-GP framework has a 99.7% confidence that the actual observations lie within the

interval.

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 92

Figure 3.14: Visualization of short-term (15 minutes) traffic speed pre-

diction for the CNN and CNN-GP with spatio-temporal kernel. Note that

the predicted traffic volume values are positive, but the negative values are

due to the 3σ confidence intervals.

For long-term prediction, a 2-week traffic volume history is used to train the model, and

1-week predictions are made using the predictions from the previous steps. The input

of the CNN and CNN-GP framework can be denoted as V = [v̂1N , · · · , v̂10N], where

v̂MN represents the predictions made by the model in the previous steps. Fig. 3.13(a)

shows the results for 1-day future predictions, and Fig. 3.13(b) presents the results

for 1-week ahead predictions. The CNN-GP framework achieves an average RMSE

of 130.746 veh/h for 1-day ahead prediction and an average RMSE of 179.872 veh/h

for 1-week ahead prediction. The peach shadows shown in Fig. 3.13 represent the 3σ

confidence interval, meaning that the CNN-GP framework has a 99.7% confidence that

the actual observations lie within the interval.

3.3.3.5 Traffic Speed Prediction

For traffic speed prediction, a 2-week history of traffic speed is used in conjunction with

the corresponding time information to train the CNN and CNN-GP models. Therefore,

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 93

(a) (b)

Figure 3.15: a) Visualization of long-term (1 day) traffic speed prediction.

b) Visualization of long-term (1 week) traffic speed prediction.

the input for CNN and CNN module in the CNN-GP framework can be represented as

a matrix Si = [s1N , · · · , s10N], where sMN represents the traffic speed at a particular

time step. The input fed into the GP regression can be denoted as z = [z1, · · · , zn, t].

The CNN and CNN-GP frameworks are trained using the two-week history and tested

on the future week’s traffic speed. The CNN architecture is the same as that used for

traffic volume prediction, as described in the previous section. The layer parameters,

including the number of channels and filter sizes, remain unchanged. The architecture

of the CNN-GP framework is illustrated in Fig. 3.8. The kernel for the GP module in

the CNN-GP framework is as follows:

k(z, z′; t, t′) = kM12(z, z′)× kPerSE(t, t′) + kBias(t, t
′), (3.27)

where kBias is the bias kernel. For short-term traffic speed prediction, CNN achieves

an average RMSE of 1.144 km/h, while the CNN-GP framework achieves an average

RMSE of 0.709 km/h. Fig. 3.14 presents a visualisation of short-term traffic speed pre-

diction, where the peach shadows represent the 3σ confidence interval. This indicates

that the CNN-GP framework has a 99.7% confidence level that the actual observations

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 94

Table 3.7: RMSE results summary

Task CNN CNN-GP

CO2 Short-term 1.719 ppm 0.428 ppm

CO2 Long-term (24 months) 1.524 ppm 0.740 ppm

Traffic Volume Short-term 73.776 veh/h 75.458 veh/h

Traffic Volume Long-term (1 day) - 130.746 veh/h

Traffic Volume Long-term (1 week) - 179.872 veh/h

Traffic Speed Short-term 1.144 km/h 0.709 km/h

Traffic Speed Long-term (1 day) - 3.796 km/h

Traffic Speed Long-term (1 week) - 4.190 km/h

fall within the interval.

For long-term prediction, a 2-week history of traffic speed is used to train the model,

and predictions are made for the next week using the predictions from the previ-

ous steps. The input to CNN and CNN-GP framework can be denoted as S =

[ŝ1N , · · · , ŝ10N], where ŝMN represents the predictions made by the model in the previ-

ous steps. Fig. 3.15(a) shows the results for 1-day future predictions, and Fig. 3.15(b)

presents the results for 1-week ahead predictions. The CNN-GP framework achieves

an average RMSE of 3.796 veh/h for 1-day ahead prediction and an average RMSE

of 4.190 veh/h for 1-week ahead prediction. The peach shadows shown in Fig. 3.15

represent the 3σ confidence interval, indicating that the CNN-GP framework has a

99.7% confidence level that the actual observations fall within the interval. The re-

sults demonstrate that the GP module with a spatio-temporal kernel in the CNN-GP

framework has the ability to generate accurate predictions, even when the CNN feature

extraction module does not perform well.

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 95

3.3.4 Conclusion

This paper introduces a novel deep-kernel CNN-GP framework for time series predic-

tion. The CNN-GP framework combines a CNN module for feature extraction with

a GP regression module for prediction and uncertainty quantification. Additionally,

a spatio-temporal kernel is proposed for the GP module, allowing it to consider both

time and space. Two case studies are conducted to validate and evaluate the perfor-

mance of the proposed CNN-GP framework. A summary of the results is given in

Table 3.7. The experimental results demonstrate that the CNN-GP framework with

the spatio-temporal kernel achieves more accurate predictions compared to the baseline

CNN model in both CO2 concentration and traffic prediction tasks. This improvement

highlights the effectiveness of incorporating the GP module with the spatio-temporal

kernel. It enables the framework to generate accurate predictions, even in scenarios

where the CNN feature extraction module may not perform well. Future work will

focus on distributed methods for traffic prediction and other methods of uncertainty

quantification, e.g. as in [140].

3.4 Uncertainty Quantification with Uniform Error

Bound

This section proposes a UEB for CNN-GP to quantify the uncertainty within the

traffic speed data. The UEB was proposed based on the GP frameworks, and hence,

the prediction variance places a huge impact on the results. The following sections

introduce an effectively modified UEB for CNN-GP. As the GP regression takes the last-

layer features from the CNN in the CNN-GP framework, the CNN can be considered

as the latent function, and the GP regression focuses on modelling the latent function

itself. Therefore, the noise term in the GP is removed to generate the UEB for CNN-GP.

Performance validation and evaluation for efficient UEB are conducted on simulated

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 96

and real traffic speed data.

3.4.1 Uniform Error Bound

The UEB is proposed, as data-driven models generate prediction errors due to limited

or noisy data. Based on the uncertainty measurement provided by the GP, the UEB is

derived with less restrictive assumptions compared with existing error bound methods.

First, let x and y be the inputs and the targets, respectively, and then y = f(x) + ε,

where f(x) is the unknown function sampled from a GP with zero mean and ε is a

zero-mean Gaussian noise with variance σ2
n [141]. Recall that a GP is a collection of

all possible functions and, therefore, a continuous distribution in the function space

can be learnt with discretionary precision by selecting an appropriate kernel function.

Besides, the prior over the function space is defined by the GP, and the shape of the

prior is typically defined by the kernel function. Therefore, the Lipschitz continuity

is required for refining the uniform error bounds. The Lipschitz constant Lk for the

kernel function is defined as,

Lk = max
x,x′∈X

∥∥∥∥∥∥
∂K(x,x′)

∂x1

...
∂K(x,x′)

∂xd

T∥∥∥∥∥∥. (3.28)

However, if limited knowledge of the prior is provided, it is impossible to derive the

Lipschitz constant of Lf directly. By assuming a certain prior distribution with kernel

function, it is possible to derive the Lipschitz constant. The partial derivatives of a

continuous kernel that defines a GP is shown as following,

k∂i(x,x′) =
∂2

∂xi∂x′i
k(x,x′). (3.29)

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 97

The Lipschitz constant of the unknown function f(x) is defined as,

Lf =

∥∥∥∥∥∥

√
2 log 2d

δl
maxx∈X

√
k∂1(x,x)

+12
√

6dmax{max
√
k∂1(x,x),

√
rL∂1

k }

...√
2 log 2d

δl
maxx∈X

√
k∂d(x,x)

+12
√

6dmax{max
√
k∂d(x,x),

√
rL∂dk }

∥∥∥∥∥∥, (3.30)

where L∂ik is the Lipschitz constants of the partial derivative kernels k∂i(·, ·) with max-

imal extension represented by r = maxx,x′∈X‖x − x
′‖. Sampled from the GP, the

unknown function f(x) is continuous in space X . It has at least 1 − δL probability

that Lf is a Lipschitz constant of f(x) [141]. The core theorem of the UEB can be

concluded: the unknown function with the Lipschitz constant Lf is continuous and the

observation can be formulated as y = f(x) + ε, where f(x) is samped from a GP with

zero mean defined by the continuous kernel function k(·, ·) with the Lipschitz constant

Lk. Next, the mean and covariance functions are continuous with Lipschitz constant

Lvn.

Lvn ≤ Lk
√
N‖(K + σ2IN)−1yN‖ (3.31)

The modulus of the continuity can be defined as,

ωσN ≤
√

2τLk(1 +N‖(K + σ2IN)−1‖ max
x,x′∈X

k(x,x′)) (3.32)

β(τ) = 2 log (
M(τ,X)

δ
), (3.33)

where

M(τ,X) ≤ (1 +
r

τ
)d (3.34)

and

γ(τ) = (LvN + Lf)τ +
√
β(τ)ωσN(τ). (3.35)

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 98

Then, it holds that

P (|f(x)− vN(x)| ≤
√
β(τ)σN(x) + γ(τ),∀x ∈ X) ≥ 1− δ (3.36)

The uniform error bounds are calculated as the right-hand-side term. Detailed deriva-

tion can be found in [141].

3.4.2 Lipschitz Constant Derivation

The Lipschitz constant is calculated as in equation (3.28). Therefore, the partial deriva-

tive is the core of computing the Lipschitz constant. The kernel function applied for

CNN-GP regression is the squared exponential kernel, as shown in equation (2.58), and

the partial derivative of the squared exponential kernel can be derived as follows. The

first order derivative of the dK with respect to. xi is derived as,

dK

dxi
= −x− x′

l2
K. (3.37)

Notice that x and x′ are two different features extracted by CNN. Similarly, the deriva-

tive of dK with respect to x′i is as

dK

dx′i
=

x− x′

l2
K. (3.38)

Note that dK
dxi

and dK
dx′i

have an opposite sign. The second derivative can be derived as,

ddK

dxidx′i
=

1

l2
K − x− x′

l2
dK

dx′i

=
1

l2
K +

x− x′

l2
dK

dxi
.

(3.39)

To obtain the Lipschitz constant of L∂iK , xi is taken as fixed and leave only x′i varing.

Hence

dddK

dxidx′idx
′
i

=
1

l2
dK

dx′i
− 1

l2
dK

dxi
+

x− x′

l2
ddK

dxidx′i

=− 1

l2
dK

dxi
− 1

l2
dK

dxi
+

x− x′

l2
ddK

dxidx′i
.

(3.40)

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 99

Figure 3.16: One-step history data of are used to predict one-step head

data. x = 1 : 1 : 50, y = cos 2x+ sinx+ v.

3.4.3 Evaluation of The Uniform Error Bound with Simulated

Data

Before applying the uniform error bound to the real traffic speed data, a simulated time

series is used to validate whether the uniform error bound is suitable for time series

regression. The GP is employed to fulfil the regression task of a linear combination of

sine, cosine functions and noise:

y = cos 2x+ sinx+ n, (3.41)

where x is the input, y is the output, and v ∼ N (0, σ) is the noise. A GP with the

kernel of the ARD-SE function and the uniform error bound is applied to perform the

regression with uncertainty quantification. The simulated data are divided into 70%

for training and 30% for evaluation. First, one-step history data of are used to predict

one-step head data, where x = 1 : 1 : 50 and y = cos 2x + sinx + v. As shown in

Fig. 3.16, the blue crosses are the training points; red starts are the ground truths; the

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 100

Figure 3.17: One-step history data of are used to predict one-step head

data, where x = 1 : 1 : 50, y = 20× (cos 2x+ sinx+ v).

black crosses represent the predictions; finally, the pink shades represent the uniform

error bounds. There are 50 points in total, and thus 35 points are used for training and

15 points are used for evaluation. The simulation data are more periodic compared

with the real traffic speed data. The results show that the performance of the uniform

error bound is very poor, as the values of the bounds are extremely large at evaluation

points and therefore are unable to quantify the uncertainty well. The first simulated

data only contains the periodic characteristic, as the real traffic speed data varies more

rapidly. Therefore, the second simulated data is applied for evaluation, which is one-

step history data that are used to predict one-step head data, where x = 1 : 1 : 50,

y = 20 × (cos 2x + sinx + v). With a coefficient, the simulated data changes rapidly,

which is more similar as the real traffic speed data. The prediction results are shown in

Fig. 3.17. It is even more obvious that the uniform error bounds are acceptable at the

training points and are meaningless at the predictions, as the bounds are too wide to

quantify the uncertainty at the predictions. This is because the simulated data is too

sparse. To prove that the sparsity affects the performance of the uniform error bound,

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 101

Figure 3.18: One-step history data of are used to predict one-step head

data. x = 1 : 0.5 : 50, y = cos 2x+ sinx+ v.

the third and fourth simulated data are applied:

• One-step history data are used to predict one-step head data. x = 1 : 0.5 : 50,

y = cos 2x+ sinx+ v;

• One-step history data are used to predict one-step head data. x = 1 : 0.5 : 50,

y = 20× (cos 2x+ sinx+ v).

Based on the first and second simulated data with 50 points, the numbers of points for

the third and fourth simulated data are increased to 100 but remained the value range

of the input x the same. As shown in Figs. 3.18 and 3.19, the uniform error bounds are

more reasonable compared to the sparse simulated data. More obviously in Fig. 3.19,

the uniform error bound near to the training points is narrow, and the points away

form training points have large error bounds (eg, x = 27, 28), which are reasonable.

Fig. 3.20 visualises both the values of the uniform error bound and the values of the

prediction variance. The red crosses in the second subplot represent those points as the

training points. The relationship between the values of the uniform error bound and

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 102

Figure 3.19: One-step history data of are used to predict one-step head

data. x = 1 : 0.5 : 50, y = cos 2x+ sinx+ v.

that of the prediction variance can be observed either from visualisation or from the

mathematical equation (3.36). The values of the uniform error bound are proportional

to the value of prediction variance, since equation (3.36) shows that prediction variance

is a coefficient of the bound.

Based on the experimental results, there are three aspects that draw attention. First,

the data are sparse, which causes large value of Lipshiz constant, and hence, leads to

large uniform error bounds. Second, the prediction variance places huge impact on

the error bounds. As shown in equation (3.36), the Lipshiz constant related variable

will times the prediction variance, and therefore, if the GP model itself provides large

prediction variances, the uniform error bounds will then be larger. Third, as shown in

equation (3.34), the increase in the input dimension leads to an exponential increase

of M , which finally leads to the increases in the uniform error bounds. The dimension

of the data changes the value of beta largely, and thus the number of sensors should

be carefully defined.

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 103

Figure 3.20: The top figure shows the visualization of UEB for simulated

data. The middle figure shows the visualization of UEB value alone the

time. The bottom figure shows that prediction variance.

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 104

3.4.4 Evaluation of the Uniform Error Bound with Real Traf-

fic Speed Data

The uniform error bound is applied to quantify the uncertainty and the results of the

uniform error bounds are compared with the confidence interval based on the predictive

variances. Second, a set of noise with different noise levels is added onto the testing

data. The purpose is to observe how the data noise affects the accuracy. Finally,

uniform error bounds are applied in both CNN-GP regression framework and long-

term GP regression to quantify the uncertainty within the data.

3.4.5 Data Pre-processing

The traffic speed data used are collected on road segments in the city centre of San-

tander with 15-minute time steps for the year 2016. The traffic dataset is provided

thanks to the SETA EU project. The data are divided in the same way as described

in Section 3.2.3. The CNN-GP framework with uniform error bound is performed to

accomplish the following two tasks:

• Task 1: 1-step ahead prediction on Sensor 1, with 10-step traffic speed history

on 10 road segments.

• Task 2: Based on Task 1, different levels of simulated sensor noises are added

into the data, and therefore the noisy data becomes Xnoisy = X + ε, where

ε ∼ N (0,σ2
noise).

The models are implemented on Python by using Tensorflow, Keras and GPflow. Train-

ing and performance evaluation is run on a PC with 8-core i7-10700K CPU, 48 GB

memory and an RTX-2080 GPU. The mean squared error (MSE) is used as a loss

function when CNN is applied to traffic prediction. The Adam optimizer [104] with

exponentially decaying learning rate is utilised to minimise total MSE. The CNN ar-

chitecture is a 6-layer CNN that contains three pairs of convolutional layers and max

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 105

Figure 3.21: Visualization of UEB for real traffic speed data.

pooling layers.

KARD SE(s, s′) = σ2
f exp(− 1

2l2

q∑
j=1

(vj − vj
′)2), (3.42)

Root mean squared error (RMSE) is taken as the benchmark of performance of the

traffic speed prediction models. The RMSE averaged over N samples of traffic speed

data is defined as:

RMSE =

√∑N
i=1(yi − ŷi)2

N
, (3.43)

where yi is the ground truth speed value and ŷi represents the traffic speed prediction on

i-th road segment in the evaluation data set. With a noise-free environment, CNN and

CNN-GP regression provide similar RMSE results that are 8.209 km/h and 8.080 km/h

respectively. CNN-GP regression provides better performance compared to typical

CNN in a noise-free environment. A visualisation of the UEB is shown in Fig. 3.21.

By varying the hyperparameter τ , the UEB is minimised in this case. However, the

UEB is extremely wide, providing a poor uncertainty quantification. The reason is

that the prediction variance itself is large. Recall that the GP regression model is

defined as y = f(x) + ε where f(x) ∼ GP(m(x), k(x, x′)) [56], and the predictive

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 106

Figure 3.22: Visualization of UEB for real traffic speed data (τ = 1e−7).

distribution of the test target is calculated as a summation of the covariance function

and σ2
nI. However, in the case of the CNN-GP framework, a GP regression is applied

to the features extracted by CNN, and therefore the distribution of the function f(x)

is enough to quantify the uncertainty within the traffic speed data.

The results of the UEB for Task 1 is shown in Fig. 3.22. The values of the UEB

are now satisfied to quantify the uncertainty. With τ = 1e−5, there are 8 ground

truth points (2.39%) outside the UEB; with τ = 1e−7, there are 8 ground truth points

(4.78%) outside the UEB. The hypothesis δ in equation (3.36) and δL in equation (3.30)

are assumed to be 0.1, which means that 90% of the ground truth values are located

within the uniform error bounds. Therefore, the hypothesis holds with τ = 1e−5.

The widely applied uncertainty quantification method, the confidence interval, shows

that 80 ground truth points (23.88%) locate outside the confidence interval with 1-σ

confidence intervals, which indicates that the prediction has 68% confidence that the

ground truth values are located within the 1− σ confidence intervals. When compar-

ing the UEB with the confidence interval, the UEB shows advantages of uncertainty

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 107

Figure 3.23: UEB value evolution as the noise variance changes with

τ = 1e−7.

quantification. From the hypothesis view, the UEB provides a more quantified view

of the probability that the predictions are located within the intervals. From the sta-

tistical point of view, the UEB provides an accuracy error bound that covers most of

the ground truth points within the bound, which means that the UEB provides better

uncertainty quantification.

For Task 2, different levels of noise are added to the traffic speed data. The variance

of the noise varies from 0-19 KM2/h2, and 30 experiments are performed at each noise

level. In Fig. 3.23, the blue crosses are the average UEB values of each experiment, and

the averages at each noise level comprise the red line, which shows that the mean UEB

increases progressively as the noise level increases. A turning point exists at the noise

level with a variance of 17 KM2/h2, and the average UEB starts to decrease. This can

be explained by the fact that the noise is strong enough to submerge the traffic speed

data.

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 108

Figure 3.24: Top: Average uniform error bound value. Bottom: Percent-

age of the points that is out of the error bounds.

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 109

Fig. 3.24 presents the results of UEB with different values of τ . Generally, the UEB

becomes narrower as the value of τ becomes smaller and therefore the percentage of

points located outside the UEB increases. In other words, τ is a controller parameter

that defines how aggressive uncertainty quantification will be.

3.4.6 Conclusion

In this section, the uniform error bound is introduced for uncertainty quantification.

Assumptions are described as they are less restrictive compared with existing error

bound methods. In Section 3.4.2, the partial derivatives of CNN-GP with KSE is

derived. Before the evaluation with the real traffic data, a simulated data is applied

for examine the availability of the UEB for regression problem. Three aspects draw

attentions. First, the sparsity of the data will cause a large Lipschitz constant, and

therefore, will lead to a large UEB. Second, the UEB is proportional to the prediction

variance and, hence, a large prediction variance will cause large UEB. Third, the UEB

is exponentially proportional to the dimension of the data. CNN-GP provides a large

prediction variance for traffic speed data, and therefore the distribution of the function

f(x) for GP is applied, as it is enough to quantify the uncertainty within the traffic

speed data. The evaluation of the UEB shows that it is a better uncertainty quan-

tification method compared with the confidence interval. By adding different levels

of noises, the UEB values increase as the levels of noise increase, and the UEB still

remains the ability to quantify the uncertainty.

3.5 Summary

Numerous methods exist for short-term traffic prediction. However, these approaches

often necessitate the development of specific physical models tailored to the partic-

ular traffic scenario or solely consider the spatial or temporal relationships between

road segments. This chapter first proposes an efficient CapsNet which overcomes the

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 110

drawbacks of the CNN. The CapsNet replaces the pooling layers with neuron capsules

and dynamic routing, and thus it can abstract higher-level features compared with the

state-of-the-art CNN and encode the probability of those features that locate in the

local region. However, the state-of-the-art CNN and CapsNet are limited by the lack

of uncertainty analysis. Therefore, this chapter proposes a ConvNet GP framework to

endow neural networks with the capability of uncertainty quantification. The ConvNet

GP framework is proposed for traffic speed prediction, where the state-of-the-art CNN

is equated to a GP. The performances of the proposed approaches are evaluated with

real traffic speed data, and the impact of noise is investigated by adding different levels

of noise. The results indicate that the properties of GPs offer advantages in evaluating

the uncertainties associated with sensor data in traffic speed prediction. Furthermore,

the ConvNet GP demonstrates superior performance in terms of RMSE. The confidence

intervals are used to quantify the uncertainty. Additionally, inspired by DKL, a novel

deep kernel CNN-GP framework for time series prediction is introduced, leveraging a

GP regression approach that utilises the last-layer features of the state-of-the-art CNN

as input for making predictions. Building upon the CNN-GP framework, this chapter

introduces spatio-temporal kernels, allowing it to consider both time and space. By

incorporating an additional periodic kernel, the GP is endowed with the capability to

capture the inherent periodic patterns within the data and the ability to make short

and long term predictions. The experimental results demonstrate that the deep kernel

CNN-GP framework with spatio-temporal kernel achieves more accurate predictions

compared to the baseline CNN model in both CO2 concentration and traffic prediction

tasks. This improvement highlights the effectiveness of incorporating the GP module

with the spatio-temporal kernel. An efficient UEB is proposed for uncertainty quantifi-

cation by removing the noise term, since the GP regression in the CNN-GP framework

focuses on modelling the distribution of unknown function f(x). The experiments are

done on the CNN-GP framework with squared exponential kernel. Simulated data is

employed to examine the suitability of a UEB for regression problems. The findings

shed light on three key aspects that warrant attention: 1.the sparsity of the data results

CHAPTER 3. MACHINE LEARNING FOR TRAFFIC PREDICTION 111

in a substantial Lipschitz constant, thereby yielding a larger uniform error bound; 2.

the uniform error bound exhibits a direct proportionality to the prediction variance; 3.

the uniform error bound displays an exponential relationship with respect to the di-

mensionality of the data. The results obtained suggest that the UEB offers a superior

approach for quantifying uncertainty compared to the confidence interval. Through

the introduction of varying levels of noise, it is observed that the values of the uniform

error bound escalate in tandem with the intensity of noise. Importantly, the uniform

error bound consistently maintains its ability to effectively quantify uncertainty.

Chapter 4

Deep Learning for Cancer Bone

Segmentation

4.1 Introduction

In the UK, one in four deaths occur due to cancer, and at this stage, the cancer

has spread to the bones in more than 40% of patients [142]. Bone disease caused by

cancer results in substantial pain, loss of mobility and fractures in patients, as well

as increasing the fatality and cost of treatment [143], [144]. Unfortunately, there are

no pharmacological treatments to help repair bone disease. A major limitation in

the development of bone healing drugs is the lack of reliable approaches to accurately

quantify bone lesions. Hence, it is essential to develop an automated approach to

accurately diagnose bone disease.

Evans et al. developed Osteolytica to measure cancer-induced lesions in mouse tibiae

scanned by micro computed tomography (µCT) [145]. Osteolytica first dilates the sam-

ple bone volume image until the holes on the outer surface are filled. Then a contraction

is performed on the dilated volume, which stops when the contracted volume reaches

the highest overlapping ratio between itself and the original volume. By subtracting

112

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 113

the original volume and the contracted volume, additional areas are obtained as lesion

areas, and therefore, the areas and the number of the bone lesion can be calculated

[145]. The analysis using Osteolytica provides 0.53% average variability, which is 37

times more accurate compared to the ImageJ analysis method from [146],[147].

However, a significant problem with Osteolytica is that it recognises cartilage, a normal

structure in healthy and diseased bones, as a bone lesion, creating a false positive

result. Carilage can be manually excluded, but this creates a major problem when

bone lesions connect with the growth plate, as the real bone lesion would also be

excluded. Therefore, the objective of this study is to segment bone and cancer-induced

bone lesion in three dimensions using Micro Computed Tomography (µCT) dataset.

Micro Computed Tomography (µCT) datasets were used by scanning the proximal end

of mouse tibiae with or without tumour [148]. The µCT datasets contain 2D transverse

slices that can be rendered into a 3D dataset. Each slice has width W and height H.

By aggregating N slices, the datasets are represented in 3D tensor with W ×H ×N .

During the experiments described in later sections, the M9 mouse tibiae dataset with

tumour is used to evaluate the approaches. M9 dataset has 1235 slices, and each slice

has 1440×1440 resolution, which means that M9 dataset is a tensor with dimension of

1440× 1440× 1235.

More specifically, machine learning approaches are applied on the pre-clinical µCT

datasets of bones with and without cancer. Two main approaches are proposed: the fast

edge detection approach with structured forest, an extension of [81], and deep learning

approaches, such as convolutional neural network (CNN) [149], [49], [150], capsule

network (CapsNet) [151],[96] and Gaussian process (GP) approaches [6]. Ultimately,

the objective of this study is to improve the accuracy of quantifying bone lesions to

facilitate reliable pre-clinical testing of new bone-targeted therapies.

More specifically, the objective of this study is to improve the accuracy of quantify-

ing bone lesions to facilitate reliable pre-clinical testing of new bone-targeted thera-

pies. Section 4.2 introduces two main approaches: the fast edge detection approach

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 114

with structured forest, an extension of [81], and deep learning approaches, including

a convolutional neural network (CNN) [149], [49], [150], capsule network (CapsNet)

[151],[96] and Gaussian process (GP) approaches [6]. The novetly and significance are

the following:

• Machine learning approaches are proposed for bone cancer segmentation, provid-

ing a new perspective of dealing with bone cancer segmentation.

• A comparative study is done for evaluating the proposed machine learning ap-

proaches.

However, Section 4.2 focuses on bone segmentation, and areas of lesions are difficult

to locate due to the limitation of the dataset. Section 4.3 introduces an approach to

creating simulated data, and hence the lesion areas are correctly labelled. A generative

adversarial network (GAN) is proposed to reconstruct cancer bone back to healthy

bone. The novelty and contributions are the following:

• An approach for creating simulated cancer bone dataset with correct labels is

proposed.

• An GAN is proposed to reconstruct cancer bone to healthy bone, and therefore

the location of lesions is obtained by subtracting reconstruction bone and cancer

bone.

• GAN provides a potential solution to the challenge of the lesion areas being

extremely similar to the background.

4.2 Machine Learning Frameworks for Cancer Bone

Segmentation

In this section, three deep learning and one GP related frameworks are introduced.

A CNN with dense predictions is proposed to be the base-line. Considering that the

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 115

strength of the CNN lies in whole-image classification and that classifying each pixel

individually can be computationally expensive, a fully convolutional network (FCN) is

proposed. The FCN enables pixelwise prediction with the flexibility to handle inputs

of any size and provides outputs of the matching dimensions. However, the pooling

layers in CNNs and FCNs can lead to the loss of important information in the data,

preventing them from effectively recognising pose, texture, and transformations. In

the case of the µCT dataset, the positions of mouse tibiae are not guaranteed to be

identical, necessitating the introduction of rotation. Therefore, a CapsNet is proposed

for cancer bone segmentation. However, despite the advances made in CNNs, FCNs,

and CapsNets, there are still inherent challenges, notably the limitations imposed by

computational resources. Furthermore, the analysis of uncertainty information, which

has crucial significance in high-risk applications such as clinical applications, has not

been extensively explored. In this context, a ConvNet GP is proposed for cancer bone

segmentation, aiming to enhance both computational efficiency and accuracy.

4.2.1 Convolutional Neural Network

A CNN with dense predictions is designed to be the base-line. The convolution layers

have 256, 128 and 64 channels, respectively, and the filter size of each layer is 3×3. A

max pooling layer with a filter size of 2×2 and a stride of 2 follows each convolution

layer. All the convolution layers are activated by a Rectified Linear Unit (ReLu)

activation function. At the end of the network, there is a fully connected layer. The

architecture is presented in Fig. 4.1. The network parameters are presented in Table

4.1.

4.2.2 Fully Convolutional Network for Semantic Segmenta-

tion

It has been introduced many times in the previous sections that CNNs achieved im-

pressive advantages in recognition. CNNs are not only developed for whole-image

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 116

Figure 4.1: CNN architecture for bone segmentation.

Table 4.1: Layer parame-

ters of CNN

Layer Parameter Activation

Convolution1 (256,3,3) ReLu

Polling1 (2,2) -

Convolution2 (128,3,3) ReLu

Polling2 (2,2) -

Flatterning - -

Fully-connected - -

Table 4.2: Layer parame-

ters of FCN

Layer Parameter Activation

Convolution1 (32,3,3) ReLu

Polling1 (2,2) -

Convolution2 (32,3,3) ReLu

Polling2 (2,2) -

Deconvolution 1 (32,4,4) ReLu

Deconvolution 1 (32,4,4) ReLu

Convolution3 (32,2,2) -

SoftMax - -

Pixel Classification - -

classification [49, 152] but also for local tasks, including the detection of bounding

boxes objects [153, 154, 155] and local correspondence [156, 157]. The basic compo-

nents, including convolution and pooling, operate in the local regions and only depend

on the relative spatial coordinates of the inputs [150]. Let Xi,j be the input vector

on a particular layer and αi,j be the output of the layer. The transformation in the

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 117

particular layer can be represented in function form as following [150],

αi,j = fk,s(Xi,j), (4.1)

where k and s are the kernel size and the stride, and f(·) is determined by the layer type:

convolutional as shown in equation (2.30), max pooling as shown in equation (2.31)

and nonlinear activation function as shown in equation (2.32 - 2.39). The functional

form maintains with kernel size and stride obeying the transformation rule [150]:

fk,s ◦ gk′,s′ = (f ◦ g)k′+(k+1)s′,ss′. (4.2)

A fully convolutional network (FCN) is a network with only layers in this form of

nonlinear filter. An FCN can effectively generate predictions for pixelwise tasks such

as semantic segmentation, since it can work on an input of any size and provide an

output of the matching dimensions. In the rest of this section, we discuss the way

to convert classification networks into FCNs that produce coarse output heatmaps.

Deconvolution layers are introduced for upsampling.

FCN is adapted classifiers for dense prediction. Typical classification networks,

such as AlexNet [11], end with fully connected layers, and these fully connected layers

have specific dimensions without spatial coordinates. However, the fully connected

layers can be considered as convolutions of kernels that cover the entire input spaces,

which casts the classification networks into fully convolutional networks that produce

classification maps. The output classification maps make the fully connected network

naturally a choice for dense problems, such as semantic segmentation [150]. If the

ground truth is available at each output element, the forward and backward passes are

straightforward and benefit from the inherent computational efficiency of convolution.

However, the output dimensions of the fully convolutional networks are reduced with

respect to the stride of the convolution operation. Dense predictions can be generated

from these coarse outputs. One way to connect coarse output to dense predictions

is Upsampling with deconvolution. Upsampling f times with deconvolution is

indeed a convolution with a fractional input stride of 1/f , as long as the factor f is

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 118

an integer. Since deconvolution simply reverses the forward and backward passes of

convolution, upsampling with deconvolution can be performed within the network for

end-to-end learning with backpropagation.

Figure 4.2: Fully convolutional network architecture for bone segmenta-

tion

Segmentation Architecture is shown in Fig. 4.2. The first four layers are the same

as the CNN introduced in Fig. 4.1. These layers performed the same job as in the

CNNs, as they extracted deep feature hierarchies that encode the locations and seman-

tics. Therefore, for pixel-wise prediction and classification, the encoded information is

required to connect back to pixels. Deconvolutional layers are introduced as an effi-

cient and effective solution. Deconvolution is commonly called backward convolution,

which means that deconvolutional layers simply reverse the operations in convolutional

layers. Therefore, deconvolutional layers achieve end-to-end learning by backpropagat-

ing the pixelwise loss [150]. Different from CNN, FCNs replace fully-connected layers,

typically used for classification, by using convolutional layers to classify each pixel in

the image.

Table 4.2 lists the parameters of the FCN implemented for this study. Convolutional

layers 1 and 2 have 32 filters with 3× 3 filter sizes. The convolutional operations in

those two layers are performed with a stride of 1 with 1 padding and activated by a

ReLu. Pooling layers have filters of size 2×2 applied with a stride of 2 and 0 padding.

32 filters with 4×4 filter sizes applied with a stride of 1 and 1 cropping are applied in

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 119

the deconvolutional layers. Convolutional layer 3 has 32 filters of size 2×2 applied with

a stride of 1. The pixel classification layer applies cross-entropy as a loss function.

4.2.3 Capsule Network

Figure 4.3: Capsule network architecture for bone segmentation

CNNs and FCNs have shown a very good performance in different applications. How-

ever, max pooling in CNNs and FCNs lose valuable information by selecting the max

values in the activations. There are only limited and pre-defined pooling mechanisms

to handling variations in the spatial arrangement of data [158]. Since it is impossible

to ensure that the positions of the bones are exactly the same while CT scanning,

data augmentation or image registration is required for CNNs and FCNs. CapsNet

has been proposed in [151] and [96] to address the drawbacks of CNNs and FCNs.

Each layer in CapsNet contains capsules that represent different characteristics of the

object. The main difference between capsules and artificial neurons is that capsules

are in vector forms and their activations provide vector output instead of scalers in

artificial neurons. More significantly, the routing algorithm updates the weights be-

tween two capsule layers, which determines the way in which low-level capsules feed

their input into high-level capsules. Detailed introduction is described in the previ-

ous section 3.2.1. The architecture of the CapsNet implemented for this case study is

presented in Fig. 4.3.

Convolutional layers 1 and 2 have 32 filters with 3× 3 filter sizes. PrimaryCaps has

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 120

128 filters with 3× 3 filter sizes. The convolutional operations in all three layers are

performed with a stride of 1 with 0 paddings and activated by a ReLu nonlinear acti-

vation. Each capsule in PrimaryCaps is an 8-dimensional vector, and capsules in one

cuboid share weights. The last layer is TrafficCpas that has a 16-dimensional capsule

per pixel. The routing algorithm performs between PrimaryCpas and TrafficCaps with

3 iterations. The parameters of the proposed CapsNet are listed in Table 4.3.

Table 4.3: Layer parameters of CapsNet

Layer Parameter Activation

Convolution1 (32,3,3) ReLu

Convolution2 (32,3,3) ReLu

PrimaryCaps (128,3,3) ReLu

Capsule zise 8 -

TrafficCaps Capsule size 16 -

4.2.4 Convolutional Neural Network As Shallow Gaussian Pro-

cess

Nevertheless, CNNs and FCNs still face challenges, especially since they are time-

consuming and computationally expensive. In addition, they provide deterministic

results without uncertainty analysis, and therefore uncertainty becomes one of the

hidden problems in high-risk applications, such as biomedical applications [159]. A GP

approach, one of the most powerful tools in Bayesian inference, has the potential to

equip CNNs and FCNs with the capabilities of uncertainty analysis. Garriga et al. [6]

proposed that a deep CNN is essentially a shallow GP, which allowed CNN to analyse

the uncertainty.

A standard CNN transformation, with L hidden layers, is given as following,

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 121

a
(l+1)
j (X) = blj +

Cl∑
i=1

W l
j,iφ(ali(X)), (4.3)

where

X = [x1,x2, · · · ,xC0]T (4.4)

is the input image with height H(0) and width D(0). blj is the bias and W l
j,i is the weight

matrix that derives from the filter U l
j,i in the l-th layer. φ(ali(X)) is the activation and

ali(X) is the feature map of the previous layer. The elements in a filter U l
j,i are random,

and thus the number of potential filters could approach infinity, which means that all

filters together should average out the noise and extract the features from a polluted

input. As described in [6], every element of U l
j,i is governed by a Gaussian distribution

and the bias blj is governed by another Gaussian distribution as shown in equations

(4.5) and (4.6) respectively,

ulj,i,x,y ∼ N (0,
σ2
w

C l
), (4.5)

blj ∼ N (0, σ2
b). (4.6)

As the weight elements and biases have a Gaussian distribution, the number of the

filters, therefore, approaches infinity by sampling from the corresponding Gaussian

distribution. The number of filters corresponds to the number of channels in a con-

volutional layer. With the Central Limit Theorem (CLT), al+1
j (X) is subjected to a

Gaussian distribution as the number of channels approaches infinity.

The element-wise feature map transformation is given as,

Al+1
j,g (X) = blj +

Cl∑
i=1

HlDl∑
h=1

W l
j,i,g,hφ(Ali,h(X)), (4.7)

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 122

where C l represents the channels. With the equation (4.7), the mean and covariance

function can be derived,

E[Al+1
j,g (X)] = E[blj] +

Cl∑
i=1

HlDl∑
h=1

E[W l
j,i,g,hφ(Ali,h(X))] = 0 (4.8)

C

[
W l
j,i,g,hφ(Ali,h(X)),W l

j,i′ ,g,h′
φ(Al

i′ ,h′
(X

′
))

]
= σ2

b + σ2
w

∑
h∈gth patch

E
[
φ(Ali,h(X))φ(Ali,h(X

′
))
] (4.9)

In [6], the mean equals to 0. While the covariance function only depends on the

expectation of the activation function. According to [6], the activation function is

ReLu.

4.2.5 Performance Evaluation

The dataset, M9, is randomly split into 70% training and 30% testing. Due to the

limitation of computational resources and efficiency, the slice images were downsampled

53 times from 1440×1440 to 27×27 for the CNN, CapsNet and Convnet GP. Only

FCN was still trained with original, 1440×1440, data. The downsampling errors were

evaluated using the structural similarity index measure (SSIM) [160]. With 53-time

downsampling, the SSIM equals 0.927.

The intersection of union (IOU), given by Equation (4.10), the and root mean square

error (RMSE) is defined as Equation (4.11)

IOU =
Area of Overlap

Area of Union
, (4.10)

RMSE =

√∑I
i=1(yx,y − ŷx,y)2

N
. (4.11)

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 123

(a) (b) (c)

(d) (e) (f)

Figure 4.4: a) Evaluation of the edge detection. Red represents the

ground-truth points that are failed to be predicted, and yellow represents

the prediction. b) is the visualisation of the result obtained from CNN. c)

is the visualisation of the result obtained from FCN. d) Visualisation of

the result obtained from CapsNet. e) is the visualisation of the result ob-

tained from Covnet GP. In b), c), d) and e), the red areas represent the

background and blue areas represent the bone ares. f) ROC curve.

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 124

are used to evaluate the performance of the approaches. Here yx,y is ground truth pixel

value and ŷx,y is the predicted pixel value.

The result was evaluated by precision and recall that are formulated as following,

Precision =
TP

TP + FP
, (4.12)

Recall =
TP

TP + FN
, (4.13)

where TP represents true positives, FP represents false positives, and FN represents

false negatives. Precision represents the percentage of correct predictions in the total

number of predictions. The recall is the fraction of the predictions that are actually

correct. Since there was a large number of pixels classified as background rather than

edge, to make the result more accurate, only the results within specific bounding boxes

that fully enclose the bone are evaluated.

Table 4.4: Deep learning approach evaluation

Approach IOU RMSE Percision Recall

CNN 99.33% 0.065 0.995 0.998

FCN (Full resoultion dataset) 86.12% - 0.996 0.996

CapsNet 98.58% 0.086 0.989 0.996

Convnet GP 99.60% 0.031 0.997 0.999

CNN and CapsNet were trained with a common starting learning rate of 0.0005 and

an exponential decay rate of 0.9999. The FCN was trained with a learning rate of

0.001 and an exponential decay rate of 0.9. The results were evaluated by IOU, RMSE

and precision and recall, and their values are given in Table 4.4. The ConvNet GP

approach has achieved the best segmentation performance with downsampled data.

However, FCN achieves acceptable results with full-resolution data. On the hand of

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 125

the generalisation of the model, CNN, FCN and ConvNet GP have their drawbacks

on handling with rotation, and thus, the data augmentation is required to be applied.

On the aspect of computational complexity, the applied CapsNet consumes the longest

time, 62 hours, for training. The FCN takes second place with 31 minutes. CNN takes

3.53 seconds, and the ConNnet GP takes 2.15 seconds for training.

4.2.6 Conclusions

This section introduces fast edge detection and four deep learning neural networks to

cancer bones segmented from the µ CT datasets. The fast edge detection approach

has provided 0.529 precision and 0.574 recall, which are less acceptable compared with

deep learning approaches. The other four deep learning NNs have provided outstanding

segmentation results with a preclinical dataset. Convnet GP has achieved the highest

accuracy respected either on IOU or pixel-wise evaluation (RMSE, precision and recall).

However, FCN has the ability to process large-scale data, and CapsNet is rotation

invariant. FCN, CapsNet and Convnet GP have different strengths.

This work provides a new perspective of dealing with bone cancer segmentation and

compares the effectiveness of machine learning approaches for this challenging segmen-

tation problem. In the next stage of the research, we aim to segment the lesion area

from the datasets with artificial lesions with a user-defined size to test the accuracy of

our deep learning approaches in three dimensions. A challenge we face is that, while

the bone is easily identifiable, the bone lesion areas are almost the same as the back-

ground. A limitation in our current approach is that it requires downsampled datasets.

Since some information within the dataset is lost during downsampling, the full-size

dataset will be processed in the next stage to improve accuracy. Furthermore, the

experiments have been performed on 2D slices of the µCT dataset. Given that bone

lesions are a 3D structure, it is possible that 2D CNN will not be sufficient to process

the dataset. Therefore, the implementation of 3D CNN is a potential architecture that

can be investigated in parallel.

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 126

4.3 Lesion Bone Reconstruction with Simulated Le-

sions

Section 4.2 described a comparative study of machine learning methods for bone seg-

mentation problems, which is the first stage of the lesion segmentation task. The next

stage aims to segment the lesion areas, which means that the number of lesion areas is

able to be calculated, and therefore, the evolution of the lesion can be quantified during

the development of bone-healing drugs. However, there are two challenges. First, the

size of the datasets is limited, as there are only 6 µCT datasets available, and three of

them are with tumours and lesions. Most importantly, the datasets are not labelled,

which means that the lesion areas are not labelled. Second, the biggest challenge is

that the lesion areas in the µCT slices are identical to either the background or the

bone. Based on these challenges, an enhanced dataset is developed and introduced in

the next section.

4.3.1 Data Augmentation

Since the machine learning methods have achieved incredible progress in dicrimiative

tasks, data augmentation has been one of the most important techniques to improve

model benchmarks and solve overfitting problems. There are two main augmentation

categories, image manipulations, and deep learning approaches. Image manipulations

directly apply to the image data, such as geometric transformation, flipping and kernel

filters [97]. Random erasing, proposed by Zhong et al. [161], is one interesting augmen-

tation technique is that designed to create data for recognising occluded images [97].

Random erasing by randomly masking a n×m patch of an image with certain colour

or noise [97]. Inspired by the random erasing technique, a random mask is applied to

the µCT dataset without lesion. There are five steps to create simulated datasets with

lesions. First, a random noise with the same dimension of µCT slices is generated.

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 127

Figure 4.5: The generation of the simulated data.

Second, the noise is blurred by Gaussian blur,

G(x,y) =
1

2πσ2
exp−

x2−y2

2σ2 (4.14)

where x and y are the horizontal and vertical locations in the image respectively, and

the standard deviation of the Gaussian distribution is denoted as σ. After the noise is

blurred, the pixel values are rescaled from 0 to 255. Third, a mask is created with a

certain threshold, with open-and-close techniques in morphology. Fourth, the inverted

masks are added to the original µ CT dataset, and therefore the simulated dataset

with lesion is generated. Finally, the labels of the lesion can be generated simply by

subtracting the original image and the simulated data. The procedures are shown in

Fig. 4.5.

4.3.2 Deep Convolutional Generative Adversarial Networks

After developing a bone lesion dataset with labels, the other challenge becomes the

biggest obstacle to accomplish the segmentation task. A bone lesion is considered as

the abnormal area caused by uncontrollably dividing and multiplying of the cells in the

bone, and therefore the lesion areas have the same characteristics as the background

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 128

Figure 4.6: A basic architecture of GAN.

or the bone in the CT images. In this case, it is even difficult for a not so experienced

doctor to recognise the lesions on the CT images. As a result, the machine learning

methods proposed in the previous sections are not able to segment the lesion, since the

lesion will be either classified into bone or background. Therefore, direct segmentation

is too challenging to achieve. However, inspired by the procedures to creating simulated

dataset with lesion, the idea of reconstructing the lesion bone back to a healthy one

draws the research interest. In this case, the generative adversarial network (GAN)

emerges.

The GAN is based on game theory [162]. Two game participants are assumed, in GAN

two machine learning models, generator and discriminator. The generator learns the

distribution of real data, and on the other hand, the discriminator aims to classify the

input to real data and the results generated by the generator [163]. The generator and

the discriminator are continuously optimised to, respectively, improve the generation

and discrimination abilities for winning the game. The optimisation goal is to achieve a

Nash equilibrium between the generator and the discriminator. The basic architecture

of GAN is presented in Fig. 4.6.

Generator: generator obeys the real data probability density function, pdata(x). How-

ever, the generator is not necessary to evaluate the probability density function pdata,

but the generator draws samples from pdata. The generator is defined by a prior distri-

bution p(z) over the input of the generator z, and therefore the generator function is

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 129

defined as G(z; θG), where θG is a vector of the trainable parameters of the generator

[164]. The input of the generator is considered to be the source of randomness, and

the prior distribution p(z) should be an unstructured distribution, and the Gaussian

distribution is applied in this case. Therefore, the input vector z is typically a noise.

The aim of the generator is to learn G(z; θG) and thus transform the noise z into the

real data [164].

Discriminator: the discriminator plays against the generator. The discriminator

examines its input and determines whether the input is drawn from the training distri-

bution or from the generator, which is defined as D(x; θD). The discriminator estimates

the probability that the input will be drawn from the training distribution rather than

from the generator.

Loss functions: the generator and discriminator have their own loss functions: LG(θG, θD)

for the generator and LD(θG, θD) for the discriminator. Briefly speaking, the loss of

the generator encourages it to generate outputs G(z) similar to the real data, and the

loss of the discriminator encourages the discriminator to correctly classify the input as

real or fake [164]. In the case of reconstructing the lesion bone, a deep convolutional

GAN (DCGAN) [165] is applied. The DCGAN generator is a deconvolutional neural

network, while the discriminator is a CNN. The output of the discriminator is the

probability that the input is classified as real data. Therefore, the output values fall in

the range of 0 and 1. The input of the discriminator looks more like the real data if the

output value is close to 1, and, on the contrary, the input of the discriminator looks

more like a fake if the output value is close to 0. To generate multiple classifications,

the output of the discriminator is replaced by a softmax function [165], which makes

the discriminator the standard classifier for multiclass. Let z be a random vector with

a uniform noise distribution, and the generator function G(z) maps the random vector

to the real data space. Then, assume x which has a distribution pdata(x,y) is the input

of the discriminator with the label y. Let k be the number of classes, and let the

output of the discriminator be a vector probability of k dimensional p. Then, the loss

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 130

function of the DCGAN can be formulated as a minimisation problem.

L = −Ex,y∼pdata(x,y)[L(y|x,y < k)]− Ex∼G(z)[L(y|G(z), y = k)], (4.15)

where L is the cross-entropy loss function, which is formulated as,

L(y|x) = −
∑
i

y′ilog(pi). (4.16)

In equation (4.16), y′ is the expected class, and pi is the probability that the input

belongs to y′. In equation (4.15), L(y|x,y < k) is also the cross-entropy loss function.

L(y|x,y < k) = −
k∑
i

y′ilog(pi). (4.17)

4.3.2.1 Experiments

The experiments are performed on the simulated dataset as described in section 4.3.

Based on the approach introduced in Section 4.3, 1000 simulated CT slices are cre-

ated by adding masks on one selected CT slice of the healthy bone. The images are

downsampled from 1440 × 1440 pixels to 28 pixels for computational efficiency. The

DCGAN model is implemented in Python using Tensorflow and Keras. The training is

run on the Colaboratory from Google with 2 Intel Xeon CPU, 12 GB memory, and a

Mostly K80 GPU. The DCGAN model took 56.1 seconds to train one iteration. Two

experiments are performed:

• Task 1: Reconstruct 1 2-D CT slice of healthy bone from a noise.

• Task 2: Reconstruct 1 2-D CT slice of healthy bone from a simulated bone with

lesions.

For Task 1, the generator is a deconvolutional neural network that takes a noise vector

with a size of 1 × 100. The kernel size of the deconvolutional layers is 5 × 5 and the

activation function is a non-linear LeakyRelu function. The strides of the deconvolu-

tional layer 1 is 1, and those of deconvolutional layers 2 and 3 are 2. The padding of all

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 131

(a) 1 (b) 10 (c) 20

(d) 30 (e) 40 (f) 50

Figure 4.7: A visualization of GAN generating bone from a noise.

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 132

(a) 1 (b) 10 (c) 20

(d) 30 (e) 40 (f) 50

Layer Parameter Activation

Convolution 1 (256,3,3) ReLu

Pooling 1 (2,2) -

Convolution 2 (128,3,3) ReLu

Pooling 2 (2,2) -

Flatten - -

Dense (12544) -

Reshape (7,7,256) -

Deconvolution 3 (128,5,5) LeakyReLu

Deconvolition 4 (64,5,5) LeakyReLu

Deconvolution 5 (1,5,5)) LeakyReLu

Figure 4.8: A visualization of GAN generating bone from cancer bone.

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 133

Table 4.5: Layer param-

eters of Generator for re-

constructing bone from im-

age with lesion.

Layer Parameter Activation

Dense (12544) -

Reshape (7,7,256) -

Deconvolution 1 (128,5,5) LeakyReLu

Deconvolition 2 (64,5,5) LeakyReLu

Deconvolution 3 (1,5,5)) LeakyReLu

Table 4.6: Layer parame-

ters of Discriminator

Layer Parameter Activation

Convolution 1 (64,5,5) LeakyReLu

Dropout 1 (0.3) -

Convolution 2 (128,5,5) LeakyReLu

Dropout 1 (0.3) -

Flatten - -

Dense (28,28) -

the layers is the same padding. The detailed layer parameters are listed in Table 4.5.

The discriminator is a pixel-wise classifier that has two convolutional layers with stride

of 2 and is followed by a dropout layer with probability of 0.3. At the end, there is

one flatten layer and a fully connected layer. The detailed layer parameters are listed

in Table 4.6. The results are shown in Fig. 4.7. The images labelled (a) to (f) are the

results generated by the generator from iterations 1 to 50. The DCGAN is trained for

50 iterations in total, and at iteration 50, the DCGAN provides a reconstruction result

with 0.9861 IOU (referring to equation (4.10)).

For Task 2, the generator is modified, since the generator input is no longer the noise

vector but a CT slice of the bone with lesion. Therefore, two pairs of convolutional

layer and a pooling layer and a flatten layer are added at the beginning. The added

convolutional layers have kernel size of 3× 3 and 256 and 128 filters, respectively. The

layer parameters are listed in the bottom table of Fig. 4.8. The discriminator remains

unchanged. The results are shown at the top of Fig. 4.8. The DCGAN is trained for 50

iterations in total, and the IOU for the outputs generated by the generator are 0.8533

for iteration 1, 0.8831 for iteration 10, 0.5641 for iteration 520, 0.9315 for iteration

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 134

30, 0.8493 for iteration 40 and 0.6395 for iteration 50. Observing the evolution of the

training, the best result is provided in iteration 31. The reason why the generation

becomes blurred is due to the simulation data. Since the simulation data are created

by adding random noise to the CT image of healthy bone and 1000 random noises are

added, the DCGAN get overfitted with the random noise as the training iteration goes

up.

4.4 Conclusion

In this section, the limitation of deep learning methods for lesion segmentation is intro-

duced, such as the limited number of data and the lack of sufficient labels. Therefore, a

data augmentation method is proposed in Section 4.3, so that as many data as possible

can be created with the correct labels. Another problem of lesion segmentation is that

the lesion areas have identical characteristics as the background or bone in CT images.

Therefore, the reconstruction of the lesion bone back to a health bone draws the inter-

est. The GAN is introduced. Two experiments are used to evaluate the performance

of the GAN. The first is to use the noise input to reconstruct the healthy bone and

the second is to use the lesion bone as the input to reconstruct the healthy bone. The

best performances are, respectively, 0.9861 and 0.9315 in terms of IOU. Therefore, it

is a possible way to reconstruct the lesion bone back to what a healthy bone should

look like, and the area of the lesion can be segmented by subtracting the original and

the reconstructed image.

4.5 Summary

This Chapter mainly introduces two stages of cancer bone segmentation. The first

stage is to introduce machine learning approaches for bone segmentation. Four types

of efficient deep learning approaches are proposed and compared with the base-line

methods, fast edge detection, described in Section 2.4. ConvNet GP has achieved the

CHAPTER 4. DEEP LEARNING FOR CANCER BONE SEGMENTATION 135

highest accuracy respected either on IOU or pixel-wise evaluation (RMSE, precision

and recall). However, FCN has the ability to process large-scale data, and CapsNet

is rotation invariant. FCN, CapsNet and Convnet GP have different strengths. The

second stage proposes the difficulties of segmenting the area of the lesion, such as the

limited number of data and the lack of sufficient labels. Therefore, a data augmentation

method is proposed in Section 4.3, so that as many data as possible can be created

with the correct labels. Then a generative adversarial network is proposed for the

reconstruction of the bone with the lesion. The best performances are 0.9861 and 0.9315

in terms of IOU for inputting noise and lesion image into the generator, respectively.

Therefore, it is a possible way to reconstruct the lesion bone back to what a healthy

bone should look like, and the area of the lesion can be segmented by subtracting the

original and reconstructed image.

Chapter 5

Conclusions and Future Works

The thesis proposes machine learning methods for traffic speed prediction an cancer

bone segmentation, and provides methods of uncertainty quantification.

Machine learning methods are proposed for both short-term and long-term traffic speed

prediction. Inspired by the CNN for traffic prediction proposed by Ma et al. [45], the

traffic speed data is converted into a form of image and, based on this, an efficient

CapsNet and a ConvNet GP are proposed and evaluated for the short-term traffic

speed prediction. An efficient architecture of CapsNet is proposed for short-term traf-

fic speed prediction, which is the first time applied to the traffic prediction problem.

The proposed CapsNet overcomes the disadvantages of CNN and encodes features with

the probability of higher-level features located in the local region. A ConvNet GP is

proposed for traffic speed prediction by equating the base-line CNN to a GP, pro-

viding additional uncertainty information. The evaluation results show that CapsNet

has better ability to learn the spatio-temporal features compared with CNN, and the

results imply that ConvNetGP has better capabilities on learning in the presence of

uncertainties. Different levels of noise are added to the data to evaluate the effects of

uncertainty, and confidence intervals are used to quantify the uncertainty. The results

show that the ConvNet GP achieves the best performance at all noise levels, and the

136

CHAPTER 5. CONCLUSIONS AND FUTURE WORKS 137

RMSE generally increases as the noise level increases for all proposed methods.

Unlike ConvNetGP, a novel deep kernel CNN-GP framework is proposed for time series

prediction. The CNN-GP framework combines a CNN module for feature embedding

with a GP regression module for prediction and uncertainty quantification. Addition-

ally, a spatio-temporal kernel is proposed for the GP module, allowing it to consider

both time and space. Two case studies are conducted to validate and evaluate the per-

formance of the proposed CNN-GP framework. The experimental results demonstrate

that the CNN-GP framework with the spatio-temporal kernel achieves more accurate

predictions compared to the baseline CNN model in both CO2 concentration and traffic

prediction tasks. This improvement highlights the effectiveness of incorporating the

GP module with the spatio-temporal kernel. It enables the framework to generate

accurate predictions, even in scenarios where the CNN embedding module may not

perform well.

Finally, an efficient uniform error bound is proposed for uncertainty quantification. The

experiments are done on the CNN-GP framework with squared exponential kernel. The

simulation data are first applied to examine the amiability of uniform error bound for

regression problems. Three aspects of the uniform error bound draw attention: the

sparsity of the data will cause a large Lipschitz constant, which leads to a large uniform

error bound; the uniform error bound is proportional to the prediction variance; the

uniform error bound is exponentially proportional to the dimension of the data. As the

GP regression takes the last-layer features from the CNN in the CNN-GP framework,

the CNN can be considered as the latent function and the GP regression focuses on

modelling the latent function itself. Therefore, the noise term in the GP is removed to

generate the UEB for CNN-GP. The results imply that the uniform error bound is a

better way to quantify the uncertainty compared to the confidence interval. By adding

different levels of noises, the values of uniform error bound increase as the levels of

noise increase, and the uniform error bound still remains the ability to quantify the

uncertainty.

CHAPTER 5. CONCLUSIONS AND FUTURE WORKS 138

Machine learning methods are proposed for cancer bone segmentation. Two stages

are described. The first stage is to introduce machine learning approaches for bone

segmentation. A CNN, a CapsNet, a FCN and a ConvNet GP are proposed for bone

segmentation and compared with the base-line methods, fast edge detection. These

machine learning methods have their strengths. ConvNet GP has achieved the highest

accuracy either on IOU or pixel-wise evaluation (RMSE, precision and recall); the

FCN has the ability to process large-scale data; and the CapsNet is rotation invariant.

The second stage proposes the difficulties of segmenting the lesion area, such as the

limited number of data and the lack of sufficient labels. Therefore, a data augmentation

method is proposed, so that as many data can be created with correct labels. Then

a GAN is proposed for the reconstruction of the lesion bone. The best IOU results

are 0.9861 and 0.9315, respectively, for the cases of bone reconstruction from a noisy

vector and from a bone image with a lesion image. Therefore, it is a possible way to

reconstruct the lesion bone back to what a healthy bone should look like, and the area

of the lesion can be segmented by subtracting the original and reconstructed image.

5.1 Future Work

This thesis proposes machine learning methods for both traffic speed prediction and

cancer bone segmentation. Below are recommendations for further research. First, the

recommendations for traffic speed prediction are given below:

• The uniform error bound is applied on the CNN-GP with the squared exponential

kernel. Therefore, the uniform error can be applied to more complex kernel

functions, such as the spatio-temporal kernels proposed in Section 3.3. Even

more complex, it can be applied on the ConvNet GP, as a CNN can be equivalent

to a GP with the central limited theorem.

• Traffic speed prediction is formulated as a regression problem and, therefore, the

proposed methods have the potential to solve a high-dimensional regression prob-

CHAPTER 5. CONCLUSIONS AND FUTURE WORKS 139

lem. The CNN in the CNN-GP framework provides powerful feature extraction

abilities, and the GP provides uncertainty quantification.

• Future work will focus on distributed methods for traffic prediction and other

ways of uncertainty quantification.

The recommendations for cancer bone segmentation are given below:

• The experiments have been performed on 2D slices of the µCT dataset. Given

that the bone lesions are a 3D structure, it is possible that 2D CNN will not

be sufficient to process the dataset. Therefore, the implementation of 3D CNN,

such as U-Net, is a potential architecture.

• The proposed methods are based on the downsampled data, which is a limitation.

Therefore, computationally efficient methods should be investigated to achieve

full-size data segmentation and reconstruction.

• Reconstruction methods can be further investigated, as they have shown potential

to solve the difficulties that the lesion areas are identical to the background and

bone.

• Image inpainting with deep learning, such as [166], can be another recommended

direction. As described in Osteolytica [145], the arbitrary areas of the lesion can

be segmented and thus, with pre-trained image inpainting methods, the lesion

areas can be filled. The accurate number of pixels for the lesion can be calculated

by subtracting the original and generated images.

This thesis shows that machine learning methods can be effectively employed to solve

both regression and classification problems, and the GP can equip neural networks

with the ability to characterise uncertainty. The thesis also shows the promising fu-

tures of proposed machine learning methods, since uncertainty quantification not only

provides higher accuracy, but also reinforces critical decisions. The future work de-

scribed above for the proposed methods will strengthen their robustness in challenging

CHAPTER 5. CONCLUSIONS AND FUTURE WORKS 140

practical implementations.

Bibliography

[1] R. Qiu and M. Wicks, Cognitive Networked Sensing and Big Data. Springer,

Boston, USA, 2014.

[2] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and

H. Arshad, “State-of-the-art in artificial neural network applications: A survey,”

Heliyon, vol. 4, no. 11, p. e00938, 2018.

[3] X. Ma, Z. Tao, Y. Wang, H. Yu, and Y. Wang, “Long short-term memory neu-

ral network for traffic speed prediction using remote microwave sensor data,”

Transportation Research Part C: Emerging Technologies, vol. 54, pp. 187–197,

2015.

[4] Z. Cao, H. Guo, J. Zhang, D. Niyato, and U. Fastenrath, “Improving the effi-

ciency of stochastic vehicle routing: A partial lagrange multiplier method,” IEEE

Transactions on Vehicular Technology, vol. 65, no. 6, pp. 3993–4005, 2015.

[5] Y. Kim, P. Wang, and L. Mihaylova, “Structural recurrent neural network for

traffic speed prediction,” in Proc. of the IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 5207–5211.

[6] A. Garriga-Alonso, C. E. Rasmussen, and L. Aitchison, “Deep convolutional

networks as shallow Gaussian processes,” in Proc. of the International Conference

on Learning Representations. Apollo - University of Cambridge Repository, 2019.

141

BIBLIOGRAPHY 142

[7] L. Rokach and O. Maimon, “Decision trees,” in Data Mining and Knowledge

Discovery Handbook, O. Maimon and L. Rokach, Eds. Boston, MA: Springer

US, 2005, pp. 165–192.

[8] L. E. Peterson, “K-nearest neighbor,” Scholarpedia, vol. 4, no. 2, p. 1883, 2009.

[9] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support vec-

tor machines,” IEEE Intelligent Systems and Their Applications, vol. 13, no. 4,

pp. 18–28, 1998.

[10] M. Van Gerven and E. Bohte, Sander, Artificial Neural Networks as Models of

Neural Information Processing. Lauzanne: Frontiers in Computational Neuro-

science, 2018.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp.

84–90, 2017.

[12] R. S. Sutton, “John mccarthy’s definition of intelligence,” Journal of Artificial

General Intelligence, vol. 11, no. 2, pp. 66–67, 2020.

[13] T. M. Mitchell, Machine learning. McGraw-Hill, Maidenhead, UK, March 1997.

[14] S. J. Russell and P. Norvig, Artificial intelligence. A modern approach, 3rd Edi-

tion. Prentice Hall, Pearson Education, Inc., Upper Saddle River, New Jersey,

2010.

[15] H. B. Barlow, “Unsupervised learning,” Neural Computation, vol. 1, no. 3, pp.

295–311, 1989.

[16] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A

survey,” Journal of Artificial Intelligence Research, vol. 4, pp. 237–285, 1996.

[17] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,

T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the game of go without

BIBLIOGRAPHY 143

human knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[18] S. B. Maind, P. Wankar et al., “Research paper on basic of artificial neural

network,” International Journal on Recent and Innovation Trends in Computing

and Communication, vol. 2, no. 1, pp. 96–100, 2014.

[19] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional

neural network,” in Proc. of the 2017 International Conference on Engineering

and Technology (ICET). IEEE, 2017, pp. 1–6.

[20] T. Seo, A. M. Bayen, T. Kusakabe, and Y. Asakura, “Traffic state estimation

on highway: A comprehensive survey,” Annual Reviews in Control, vol. 43, pp.

128–151, 2017.

[21] P. Wang, Y. Kim, L. Vaci, H. Yang, and L. Mihaylova, “Short-term traffic pre-

diction with vicinity Gaussian process in the presence of missing data,” in Proc.

of 2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF), 2018, pp.

1–6.

[22] L. A. Pipes, “An operational analysis of traffic dynamics,” Journal of Applied

Physics, vol. 24, no. 3, pp. 274–281, 1953.

[23] P. G. Gipps, “A behavioural car-following model for computer simulation,”

Transportation Research Part B: Methodological, vol. 15, no. 2, pp. 105–111,

1981.

[24] C. F. Daganzo, “The cell transmission model: A dynamic representation of high-

way traffic consistent with the hydrodynamic theory,” Transportation Research

Part B: Methodological, vol. 28, no. 4, pp. 269–287, 1994.

[25] A. Gning, L. Mihaylova, and R. K. Boel, “Interval macroscopic models for traffic

networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 12,

no. 2, pp. 523–536, 2011.

BIBLIOGRAPHY 144

[26] Y. Song, X. Wang, G. Wright, D. Thatcher, P. Wu, and P. Felix, “Traffic vol-

ume prediction with segment-based regression kriging and its implementation in

assessing the impact of heavy vehicles,” IEEE Transactions on Intelligent Trans-

portation Systems, vol. 20, no. 1, pp. 232–243, 2018.

[27] A. C. Atkinson, M. Riani, and A. Corbellini, “The Box–Cox transformation:

Review and extensions,” Statistical Science, vol. 36, no. 2, pp. 239–255, 2021.

[28] M. S. Ahmed and A. R. Cook, “Analysis of freeway traffic time-series data by

using Box-Jenkins techniques,” Transportation Research Board, vol. 722, pp. 1–9,

1979.

[29] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow prediction with

big data: a deep learning approach,” IEEE Transactions on Intelligent Trans-

portation Systems, vol. 16, no. 2, pp. 865–873, 2015.

[30] J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual networks for

citywide crowd flows prediction,” in Proc. of the AAAI Conference on Artificial

Intelligence, vol. 31, no. 1. AAAI Press, 2017, pp. 1655–1661.

[31] X. Ma, H. Yu, Y. Wang, and Y. Wang, “Large-scale transportation network

congestion evolution prediction using deep learning theory,” PloS one, vol. 10,

no. 3, p. e0119044, 2015.

[32] Y. Wu, H. Tan, L. Qin, B. Ran, and Z. Jiang, “A hybrid deep learning based

traffic flow prediction method and its understanding,” Transportation Research

Part C: Emerging Technologies, vol. 90, pp. 166–180, 2018.

[33] M. G. Karlaftis and E. I. Vlahogianni, “Statistical methods versus neural net-

works in transportation research: Differences, similarities and some insights,”

Transportation Research Part C: Emerging Technologies, vol. 19, no. 3, pp. 387–

399, 2011.

BIBLIOGRAPHY 145

[34] J. Park, D. Li, Y. L. Murphey, J. Kristinsson, R. McGee, M. Kuang, and

T. Phillips, “Real time vehicle speed prediction using a neural network traffic

model,” in Proc. of the 2011 International Joint Conference on Neural Networks.

IEEE, 2011, pp. 2991–2996.

[35] W. Zheng, D.-H. Lee, and Q. Shi, “Short-term freeway traffic flow prediction:

Bayesian combined neural network approach,” Journal of Transportation Engi-

neering, vol. 132, no. 2, pp. 114–121, 2006.

[36] V. Petridis, A. Kehagias, L. Petrou, A. Bakirtzis, S. Kiartzis, H. Panagiotou, and

N. Maslaris, “A Bayesian multiple models combination method for time series

prediction,” Journal of Intelligent and Robotic Systems, vol. 31, no. 1, pp. 69–89,

2001.

[37] S. Ishak, P. Kotha, and C. Alecsandru, “Optimization of dynamic neural network

performance for short-term traffic prediction,” Transportation Research Record,

vol. 1836, no. 1, pp. 45–56, 2003.

[38] H. Liu, H. Van Zuylen, H. Van Lint, and M. Salomons, “Predicting urban arterial

travel time with state-space neural networks and Kalman filters,” Transportation

Research Record, vol. 1968, no. 1, pp. 99–108, 2006.

[39] L. Shen, “Freeway travel time estimation and prediction using dynamic neural

networks,” Ph.D. dissertation, Florida International University, USA, 2008.

[40] N. Polson and V. Sokolov, “Deep learning predictors for traffic flows,” arXiv

preprint arXiv:1604.04527, 2016.

[41] W. Huang, G. Song, H. Hong, and K. Xie, “Deep architecture for traffic flow

prediction: deep belief networks with multitask learning,” IEEE Transactions

on Intelligent Transportation Systems, vol. 15, no. 5, pp. 2191–2201, 2014.

[42] F. Gers, “Long short-term memory in recurrent neural networks,” Ph.D. disser-

tation, EPFL, Lausanne, Switzerland, 2001.

BIBLIOGRAPHY 146

[43] M. Boden, “A guide to recurrent neural networks and backpropagation,” The

Dallas Project, vol. 2, no. 2, pp. 1–10, 2002.

[44] H. Jaeger, “Long short-term memory in echo state networks: Details of a simu-

lation study,” Jacobs University Bremen, Germany, Tech. Rep., 2012.

[45] X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, and Y. Wang, “Learning traffic as images:

a deep convolutional neural network for large-scale transportation network speed

prediction,” Sensors, vol. 17, no. 4, p. 818, 2017.

[46] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech, and time

series,” The Handbook of Brain Theory and Neural Networks, vol. 3361, no. 10,

p. 1995, 1995.

[47] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation functions:

Comparison of trends in practice and research for deep learning,” arXiv preprint

arXiv:1811.03378, 2018.

[48] S. Sharma, S. Sharma, and A. Athaiya, “Activation functions in neural net-

works,” Towards Data Science, vol. 6, no. 12, pp. 310–316, 2017.

[49] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Proc. of the Advances in Neural Information

Processing Systems, 2012, pp. 1097–1105.

[50] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena, “Structural-rnn: Deep learning

on spatio-temporal graphs,” in Proc. of the IEEE Conference on Computer Vision

and Pattern Recognition, 2016, pp. 5308–5317.

[51] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-

product algorithm,” IEEE Transactions on Information Theory, vol. 47, no. 2,

pp. 498–519, 2001.

[52] Y. Zhang and Y. Liu, “Traffic forecasting using least squares support vector

machines,” Transportmetrica, vol. 5, no. 3, pp. 193–213, 2009.

BIBLIOGRAPHY 147

[53] J. A. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle, “Weighted least

squares support vector machines: robustness and sparse approximation,” Neuro-

computing, vol. 48, no. 1-4, pp. 85–105, 2002.

[54] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik, “Support

vector regression machines,” in Proc. of Advances in Neural Information Pro-

cessing Systems, M. Mozer, M. Jordan, and T. Petsche, Eds., vol. 9. MIT Press,

1996.

[55] J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and J. Sohl-

Dickstein, “Deep neural networks as Gaussian processes,” arXiv preprint

arXiv:1711.00165, 2017.

[56] C. K. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learn-

ing. MIT Press, 2005.

[57] H. Liu, Y.-S. Ong, X. Shen, and J. Cai, “When Gaussian process meets big data:

A review of scalable GPs,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 31, no. 11, pp. 4405–4423, 2020.

[58] A. Malinin, “Uncertainty estimation in deep learning with application to spoken

language assessment,” Ph.D. dissertation, University of Cambridge, UK, 2019.

[59] H. Jiang, B. Kim, M. Y. Guan, and M. Gupta, “To trust or not to trust a

classifier,” arXiv preprint arXiv:1805.11783, pp. 5541–5552, 2018.

[60] M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu, M. Ghavamzadeh,

P. Fieguth, X. Cao, A. Khosravi, U. R. Acharya et al., “A review of uncertainty

quantification in deep learning: Techniques, applications and challenges,” Infor-

mation Fusion, vol. 76, no. C, pp. 243–297, December 2021.

[61] E. Begoli, T. Bhattacharya, and D. Kusnezov, “The need for uncertainty quan-

tification in machine-assisted medical decision making,” Nature Machine Intelli-

gence, vol. 1, no. 1, pp. 20–23, 2019.

BIBLIOGRAPHY 148

[62] B. T. Phan, “Bayesian deep learning and uncertainty in computer vision,” Mas-

ter’s thesis, University of Waterloo, Canada, 2019.

[63] J. Mukhoti and Y. Gal, “Evaluating Bayesian deep learning methods for semantic

segmentation,” arXiv preprint arXiv:1811.12709, 2018.

[64] F. M. Dekking, C. Kraaikamp, H. P. Lopuhaä, and L. E. Meester, A Modern In-

troduction to Probability and Statistics: Understanding Why and How. Springer,

2005, vol. 488.

[65] L. Laurencelle and F.-A. Dupuis, Statistical tables, explained and applied. World

Scientific, USA, 2002.

[66] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A review

for statisticians,” Journal of the American Statistical Association, vol. 112, no.

518, pp. 859–877, 2017.

[67] D. G. Tzikas, A. C. Likas, and N. P. Galatsanos, “The variational approximation

for Bayesian inference,” IEEE Signal Processing Magazine, vol. 25, no. 6, pp.

131–146, 2008.

[68] S. Kullback and R. A. Leibler, “On information and sufficiency,” The Annals of

Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[69] J. R. Fram and E. S. Deutsch, “On the quantitative evaluation of edge detection

schemes and their comparison with human performance,” IEEE Transactions on

Computers, vol. 100, no. 6, pp. 616–628, 1975.

[70] G. S. Robinson, “Color edge detection,” Optical Engineering, vol. 16, no. 5, pp.

479–484, 1977.

[71] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis. John

Wiley & Sons, New York, 1973.

BIBLIOGRAPHY 149

[72] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hi-

erarchical image segmentation,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 33, no. 5, pp. 898–916, 2010.

[73] J. Malik, S. Belongie, T. Leung, and J. Shi, “Contour and texture analysis for

image segmentation,” International Journal of Computer Vision, vol. 43, no. 1,

pp. 7–27, 2001.

[74] J. Canny, “A computational approach to edge detection,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, no. 6, pp. 679–698, 1986.

[75] D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image

boundaries using local brightness, color, and texture cues,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 26, no. 5, pp. 530–549, 2004.

[76] X. Ren and L. Bo, “Discriminatively trained sparse code gradients for contour de-

tection,” in Proc. of Advances in Neural Information Processing Systems, vol. 25,

2012, pp. 584–592.

[77] S. Gupta, P. Arbelaez, and J. Malik, “Perceptual organization and recognition

of indoor scenes from RGB-D images,” in Proc. of the IEEE Conference on

Computer Vision and Pattern Recognition, 2013, pp. 564–571.

[78] J. J. Lim, P. Dollar, and C. L. Zitnick III, “Learned mid-level representation for

contour and object detection,” Sep. 18 2014, US Patent App. 13/794,857.

[79] X. Ren, C. C. Fowlkes, and J. Malik, “Figure/ground assignment in nat-

ural images,” in Proc. of the European Conference on Computer Vision.

Springer,Boston,, 2006, pp. 614–627.

[80] S. Nowozin and C. H. Lampert, Structured Learning and Prediction in Computer

Vision, 2011, vol. 6, no. 3-4, pp. 185–365.

BIBLIOGRAPHY 150

[81] P. Dollár and C. L. Zitnick, “Fast edge detection using structured forests,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 8, pp.

1558–1570, 2014.

[82] B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin, “Learning structured

prediction models: A large margin approach,” in Proc. of the 22nd International

Conference on Machine Learning, 2005, pp. 896–903.

[83] M. B. Blaschko and C. H. Lampert, “Learning to localize objects with structured

output regression,” in Proc. of the European Conference on Computer Vision.

Springer, 2008, pp. 2–15.

[84] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, “Support vector

machine learning for interdependent and structured output spaces,” in Proc. of

the Twenty-first International Conference on Machine Learning, 2004, p. 104.

[85] P. Kontschieder, S. R. Bulo, H. Bischof, and M. Pelillo, “Structured class-labels

in random forests for semantic image labelling,” in Proc. of the 2011 International

Conference on Computer Vision. IEEE, 2011, pp. 2190–2197.

[86] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[87] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Machine

Learning, vol. 63, no. 1, pp. 3–42, 2006.

[88] A. Criminisi, J. Shotton, and E. Konukoglu, “Decision forests: A unified frame-

work for classification, regression, density estimation, manifold learning and semi-

supervised learning,” Foundations and Trends® in Computer Ggraphics and Vi-

sion, vol. 7, no. 2–3, pp. 81–227, 2012.

[89] W.-Y. Loh, “Classification and regression trees,” Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery Journal, vol. 1, no. 1, pp. 14–23, 2011.

BIBLIOGRAPHY 151

[90] T. K. Ho, “The random subspace method for constructing decision forests,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp.

832–844, 1998.

[91] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley Interdisci-

plinary Reviews: Computational Statistics, vol. 2, no. 4, pp. 433–459, 2010.

[92] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation and

support inference from rgbd images,” in Proc. of the European Conference on

Computer Vision. Springer, 2012, pp. 746–760.

[93] X. Ren, “Multi-scale improves boundary detection in natural images,” in Proc.

of the European Conference on Computer Vision. Springer, 2008, pp. 533–545.

[94] G. Hinton, “What is wrong with convolutional neural nets?” 06 2018, speech

recorded on youtube. [Online]. Available: https://www.youtube.com/watch?v=

rTawFwUvnLE

[95] L. A. Dombetzki, “An overview over capsule networks,” in Proc. of Network

Architectures and Services, 2018, pp. 89–95.

[96] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,”

ArXiv, pp. 3856–3866, 2017.

[97] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for

deep learning,” Journal of Big Jata, vol. 6, no. 1, pp. 1–48, 2019.

[98] M. K. Patrick, A. F. Adekoya, A. A. Mighty, and B. Y. Edward, “Capsule

networks–a survey,” Journal of King Saud University-Computer and Informa-

tion Sciences, vol. 34, no. 1, pp. 1295–1310, 2022.

[99] A. Shahroudnejad, P. Afshar, K. N. Plataniotis, and A. Mohammadi, “Improved

explainability of capsule networks: Relevance path by agreement,” in Proc. of

the IEEE Global Conference on Signal and Information Processing (GLOBASIP).

IEEE, 2018, pp. 549–553.

BIBLIOGRAPHY 152

[100] J. Su, D. V. Vargas, and K. Sakurai, “Attacking convolutional neural network

using differential evolution,” IPSJ Transactions on Computer Vision and Appli-

cations, vol. 11, no. 1, pp. 1–16, 2019.

[101] G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming auto-encoders,” in

Proc. of the International Conference on Artificial Neural Networks. Springer,

2011, pp. 44–51.

[102] J. Lee, Y. Bahri, R. Novak, S. Schoenholz, J. Pennington, and J. Sohl-Dickstein,

“Deep neural networks as Gaussian processes,” ArXiv, vol. abs/1711.00165, 2018.

[103] A. Borovykh, “A Gaussian process perspective on convolutional neural net-

works,” ArXiv, vol. abs/1810.10798, 2018.

[104] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in

Proc. of the 3rd International Conference on Learning Representations, ICLR,

San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio

and Y. LeCun, Eds., 2015. [Online]. Available: http://arxiv.org/abs/1412.6980

[105] A. Mnih and K. Kavukcuoglu, “Learning word embeddings efficiently with noise-

contrastive estimation,” in Advances in Neural Information Processing Systems

26: 27th Annual Conference on Neural Information Processing Systems 2013.

Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United

States, C. J. C. Burges, L. Bottou, Z. Ghahramani, and K. Q. Weinberger, Eds.,

2013, pp. 2265–2273.

[106] N. Dereli and M. Saraclar, “Convolutional neural networks for financial text

regression,” in Proc. of the 57th Annual Meeting of the Association for Compu-

tational Linguistics: Student Research Workshop, 2019, pp. 331–337.

[107] Z. Cui, M. Zhang, and Y. Chen, “Deep embedding logistic regression,” in Proc.

of 2018 IEEE International Conference on Big Knowledge (ICBK). IEEE, 2018,

pp. 176–183.

BIBLIOGRAPHY 153

[108] W.-J. Chen, J.-J. Yao, and Y.-H. Shao, “Volatility forecasting using deep neu-

ral network with time-series feature embedding,” Economic Research-Ekonomska

Istraživanja, vol. 36, no. 1, pp. 1377–1401, 2023.

[109] V. Dondeti, J. D. Bodapati, S. N. Shareef, and N. Veeranjaneyulu, “Deep con-

volution features in non-linear embedding space for fundus image classification.”

Revue d’Intelligence Artificielle, vol. 34, no. 3, pp. 307–313, 2020.

[110] A. F. Psaros, X. Meng, Z. Zou, L. Guo, and G. E. Karniadakis, “Uncertainty

quantification in scientific machine learning: Methods, metrics, and compar-

isons,” Journal of Computational Physics, vol. 477, p. 111902, 2023.

[111] K. Brach, B. Sick, and O. Dürr, “Single shot MC dropout approximation,” arXiv

preprint arXiv:2007.03293, 2020.

[112] M. A. Kupinski, J. W. Hoppin, E. Clarkson, and H. H. Barrett, “Ideal-observer

computation in medical imaging with use of Markov-chain Monte Carlo tech-

niques,” Journal of the Optical Society of America A, vol. 20, no. 3, pp. 430–438,

2003.

[113] J. Swiatkowski, K. Roth, B. Veeling, L. Tran, J. Dillon, J. Snoek, S. Mandt,

T. Salimans, R. Jenatton, and S. Nowozin, “The k-tied normal distribution: A

compact parameterization of Gaussian mean field posteriors in Bayesian neural

networks,” in Proc. of International Conference on Machine Learning. PMLR,

2020, pp. 9289–9299.

[114] P. J. Brockwell and R. A. Davis, Introduction to Time Series and Forecasting.

Springer International Publishing, 2016.

[115] G. Zhang, B. Eddy Patuwo, and M. Y. Hu, “Forecasting with artificial neural

networks:: The state of the art,” International Journal of Forecasting, vol. 14,

no. 1, pp. 35–62, 1998.

BIBLIOGRAPHY 154

[116] Y. Wang, C. Jing, W. Huang, S. Jin, and X. Lv, “Adaptive spatiotemporal In-

ceptionNet for traffic flow forecasting,” IEEE Transactions on Intelligent Trans-

portation Systems, vol. 24, no. 4, pp. 3882–3907, 2023.

[117] G. Huo, Y. Zhang, B. Wang, J. Gao, Y. Hu, and B. Yin, “Hierarchical spatio–

temporal graph convolutional networks and transformer network for traffic flow

forecasting,” IEEE Transactions on Intelligent Transportation Systems, 2023.

[118] D. Cai, X. He, and J. Han, “Spectral regression: A unified subspace learning

framework for content-based image retrieval,” in Proc. of the 15th ACM Inter-

national Conference on Multimedia, 2007, pp. 403–412.

[119] C. Hou, F. Nie, D. Yi, and D. Tao, “Discriminative embedded clustering: A

framework for grouping high-dimensional data,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 26, no. 6, pp. 1287–1299, 2014.

[120] J. Ye, R. Janardan, and Q. Li, “Two-dimensional linear discriminant analysis,”

in Proc. of Advances in Neural Information Processing Systems, 2004.

[121] T. V. Bandos, L. Bruzzone, and G. Camps-Valls, “Classification of hyperspec-

tral images with regularized linear discriminant analysis,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 47, no. 3, pp. 862–873, 2009.

[122] G. Licciardi, P. R. Marpu, J. Chanussot, and J. A. Benediktsson, “Linear versus

nonlinear pca for the classification of hyperspectral data based on the extended

morphological profiles,” IEEE Geoscience and Remote Sensing Letters, vol. 9,

no. 3, pp. 447–451, 2011.

[123] A. Villa, J. A. Benediktsson, J. Chanussot, and C. Jutten, “Hyperspectral image

classification with independent component discriminant analysis,” IEEE Trans-

actions on Geoscience and Remote Sensing, vol. 49, no. 12, pp. 4865–4876, 2011.

[124] L. M. Bruce, C. H. Koger, and J. Li, “Dimensionality reduction of hyperspectral

data using discrete wavelet transform feature extraction,” IEEE Transactions on

BIBLIOGRAPHY 155

Geoscience and Remote Sensing, vol. 40, no. 10, pp. 2331–2338, 2002.

[125] L. O. Jimenez and D. A. Landgrebe, “Hyperspectral data analysis and supervised

feature reduction via projection pursuit,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 37, no. 6, pp. 2653–2667, 1999.

[126] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review

and new perspectives,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[127] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep learning-based classifi-

cation of hyperspectral data,” IEEE Journal of Selected Topics in aAplied Earth

Observations and Remote Sensing, vol. 7, no. 6, pp. 2094–2107, 2014.

[128] Y. Chen, X. Zhao, and X. Jia, “Spectral–spatial classification of hyperspectral

data based on deep belief network,” IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, vol. 8, no. 6, pp. 2381–2392, 2015.

[129] F. E. Tay and L. Cao, “Application of support vector machines in financial time

series forecasting,” Omega, vol. 29, no. 4, pp. 309–317, 2001.

[130] Y. Xie, K. Zhao, Y. Sun, and D. Chen, “Gaussian processes for short-term traffic

volume forecasting,” Transportation Research Record, vol. 2165, no. 1, pp. 69–78,

2010.

[131] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing, “Deep kernel learn-

ing,” in Proc. of the 19th International Conference on Artificial Intelligence and

Statistics, vol. 51. PMLR, 2016, pp. 370–378.

[132] S. W. Ober, C. E. Rasmussen, and M. van der Wilk, “The promises and pitfalls of

deep kernel learning,” in Proc. of the Thirty-Seventh Conference on Uncertainty

in Artificial Intelligence, vol. 161. PMLR, 2021, pp. 1206–1216.

[133] K. Fang, D. Kifer, K. Lawson, and C. Shen, “Evaluating the potential and chal-

lenges of an uncertainty quantification method for long short-term memory mod-

BIBLIOGRAPHY 156

els for soil moisture predictions,” Water Resources Research, vol. 56, no. 12, p.

e2020WR028095, 2020.

[134] S. Sarkka, A. Solin, and J. Hartikainen, “Spatiotemporal learning via infinite-

dimensional Bayesian filtering and smoothing: A look at Gaussian process re-

gression through Kalman filtering,” IEEE Signal Processing Magazine, vol. 30,

no. 4, pp. 51–61, 2013.

[135] W. Aftab, R. Hostettler, A. De Freitas, M. Arvaneh, and L. Mihaylova, “Spatio-

temporal Gaussian process models for extended and group object tracking with

irregular shapes,” IEEE Transactions on Vehicular Technology, vol. 68, no. 3,

pp. 2137–2151, 2019.

[136] S. Borgeaud, “Gaussian process classifier for CNN uncertainty,” 2018. [Online].

Available: https://github.com/seb5666/cnn gaussian process uncertainty/blob/

master/report/report.pdf

[137] P. Tans and R. Keeling, “Trends in atmospheric carbon dioxide, carbon

cycle greenhouse gases, global monitoring laboratory.” [Online]. Available:

https://gml.noaa.gov/ccgg/trends/

[138] C. D. Keeling, R. B. Bacastow, A. E. Bainbridge, C. A. Ekdahl Jr, P. R. Guen-

ther, L. S. Waterman, and J. F. Chin, “Atmospheric carbon dioxide variations

at Mauna Loa observatory, Hawaii,” Tellus, vol. 28, no. 6, pp. 538–551, 1976.

[139] “EU SETA project, a ubiquitous data and service ecosys-

tem for better metropolitan mobility, Horizon 2020 Programme,

2016.” [Online]. Available: https://figshare.shef.ac.uk/articles/dataset/

Traffic speed data for Santander city/20164538

[140] X. Liu, L. Mihaylova, J. George, and T. Pham, “Gaussian process upper confi-

dence bounds in distributed point target tracking over wireless sensor networks,”

BIBLIOGRAPHY 157

IEEE Journal of Selected Topics in Signal Processing, vol. 17, no. 1, pp. 295–310,

2023.

[141] A. Lederer, J. Umlauft, and S. Hirche, “Uniform error bounds for Gaussian

process regression with application to safe control,” vol. 32, 2019.

[142] J. Budczies, M. von Winterfeld, F. Klauschen, M. Bockmayr, J. K. Lennerz,

C. Denkert, T. Wolf, A. Warth, M. Dietel, I. Anagnostopoulos et al., “The land-

scape of metastatic progression patterns across major human cancers,” Oncotar-

get, vol. 6, no. 1, p. 570, 2015.

[143] F. Saad, A. Lipton, R. Cook, Y.-M. Chen, M. Smith, and R. Coleman, “Patho-

logic fractures correlate with reduced survival in patients with malignant bone

disease,” Cancer, vol. 110, no. 8, pp. 1860–1867, 2007.

[144] A. Barlev, “Payer costs for inpatient treatment of pathologic fracture, surgery

to bone, and spinal cord compression among patients with multiple myeloma or

bone metastasis secondary to prostate or breast cancer,” Journal of Managed

Care Pharmacy, vol. 16, no. 9, pp. 693–702, 2010.

[145] H. Evans, T. Karmakharm, M. Lawson, R. Walker, W. Harris, C. Fellows, I. Hug-

gins, P. Richmond, and A. Chantry, “Osteolytica: An automated image analy-

sis software package that rapidly measures cancer-induced osteolytic lesions in

in vivo models with greater reproducibility compared to other commonly used

methods,” Bone, vol. 83, pp. 9–16, 2016.

[146] C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “Nih image to imagej: 25

years of image analysis,” Nature Methods, vol. 9, no. 7, pp. 671–675, 2012.

[147] M. D. Abràmoff, P. J. Magalhães, and S. J. Ram, “Image processing with imagej,”

Biophotonics International, vol. 11, no. 7, pp. 36–42, 2004.

[148] A. C. Green, D. Lath, K. Hudson, B. Walkley, J. M. Down, R. Owen, H. R.

Evans, J. Paton-Hough, G. C. Reilly, M. A. Lawson et al., “TGFβ inhibition

BIBLIOGRAPHY 158

stimulates collagen maturation to enhance bone repair and fracture resistance

in a murine myeloma model,” Journal of Bone and Mineral Research, vol. 34,

no. 12, pp. 2311–2326, 2019.

[149] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-

plied to document recognition,” Proc. of the IEEE, vol. 86, no. 11, pp. 2278–2324,

1998.

[150] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic

segmentation,” in Proc. of the IEEE Conference on Computer Vision and Pattern

Recognition, 2015, pp. 3431–3440.

[151] G. E. Hinton, S. Sabour, and N. Frosst, “Matrix capsules with EM routing,” in

Proc. of International Conference on Learning Representations, 2018.

[152] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[153] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies

for accurate object detection and semantic segmentation,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 580–

587.

[154] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolu-

tional networks for visual recognition,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 37, no. 9, pp. 1904–1916, 2015.

[155] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Over-

feat: Integrated recognition, localization and detection using convolutional net-

works,” arXiv preprint arXiv:1312.6229, 2013.

[156] P. Fischer, A. Dosovitskiy, and T. Brox, “Descriptor matching with convolutional

neural networks: a comparison to SIFT,” arXiv preprint arXiv:1405.5769, 2014.

BIBLIOGRAPHY 159

[157] J. Long, N. Zhang, and T. Darrell, “Do convnets learn correspondence?” in Pro-

ceedings of the 27th International Conference on Neural Information Processing

Systems - Volume 1, ser. NIPS’14. Cambridge, MA, USA: MIT Press, 2014, p.

1601–1609.

[158] M. Jaderberg, K. Simonyan, A. Zisserman et al., “Spatial transformer networks,”

in Proc. of the Advances in Neural Information Processing Systems, 2015, pp.

2017–2025.

[159] V. Kumar, V. Singh, P. Srijith, and A. Damianou, “Deep Gaussian processes

with convolutional kernels,” ArXiv, vol. abs/1806.01655, 2018.

[160] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality as-

sessment: from error visibility to structural similarity,” IEEE Transactions on

Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[161] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing data aug-

mentation,” in Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 34, no. 07, 2020, pp. 13 001–13 008.

[162] D. He, W. Chen, L. Wang, and T.-Y. Liu, “A game-theoretic machine learn-

ing approach for revenue maximization in sponsored search,” arXiv preprint

arXiv:1406.0728, 2014.

[163] K. Wang, C. Gou, Y. Duan, Y. Lin, X. Zheng, and F.-Y. Wang, “Generative

adversarial networks: introduction and outlook,” IEEE/CAA Journal of Auto-

matica Sinica, vol. 4, no. 4, pp. 588–598, 2017.

[164] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications

of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

[165] F. Gao, Y. Yang, J. Wang, J. Sun, E. Yang, and H. Zhou, “A deep convo-

lutional generative adversarial networks (dcgans)-based semi-supervised method

BIBLIOGRAPHY 160

for object recognition in synthetic aperture radar (sar) images,” Remote Sensing,

vol. 10, no. 6, p. 846, 2018.

[166] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro, “Image

inpainting for irregular holes using partial convolutions,” in Proceedings of the

European Conference on Computer Vision (ECCV), 2018, pp. 85–100.

[167] S. Grünewälder, J.-Y. Audibert, M. Opper, and J. Shawe-Taylor, “Regret bounds

for Gaussian process bandit problems,” in Proceedings of the Thirteenth Inter-

national Conference on Artificial Intelligence and Statistics. JMLR Workshop

and Conference Proceedings, 2010, pp. 273–280.

Appendices

161

Appendix A

A.1 Uniform Continuity

Given the metric space (v, d1) and (Y, d2), function f mapping v to Y is considered

as uniformly continuous, when there is a real slope such that d1(v,y) < δ for every

pairs of v and Y.

A.2 Modulus of Continuity [1]

In mathematical analysis, a modulus of continuity is a function:

ω : [0,∞]→ [0,∞].

The uniform continuity of a function is measured by the modulus of continuity. There-

fore, a function takes ω as a modulus of continuity if and only if

|f(x)− f(y)| ≤ ω(|x− y|),

for all x and y in the domain of f .

162

APPENDIX A. 163

A.3 Lipschitz Continuity

Given the metric space (v, d1) and (Y, d2), a function is considered as Lipschitz con-

tinuous when a non-positive real constant K exists so that,

d2(f(x)) ≤ Kd1(x).

A.4 Dudley’s Criterion

Assume that (v, d) is totally bounded and denote by N(ε,v) the ε-packing number of

(v, d), for all positive ε. If
√

logN(ε,v) is integrable at 0, then (f(x))x∈v admits a

version which is almost surely uniformly continuous on (v, d). Moreover, if (f(x))x∈v

is almost surely continuous on (v, d), then

E sup f(x) ≤ 12

∫ σ

0

√
logN(ε,v)dε, (A.1)

where σ = supVarf(x) is the supremum of the variance on v [167].

To bound the Dubley integral, we use∫ c

0

√
log(1 + bε−

1
a)dε ≤ c

√
log(e2a+1)

a
, (A.2)

which holds for any a, b and c such that ba = 2c. Indeed, letting ξ = (1 + 2−
1
a)a, we

have, ∫ c

0

√
log(1 + bε−

1
a)dε ≤ c

√
log(e2a+1)

a
. (A.3)

A.5 Equation Derivation

Let (f(x))x∈x be some centered Gaussian process. Assume that (x, d) is totally bounded

and denote by N(ε,x) the ε-packing number of (x, d), for all positive ε. If
√

logN(ε,x)

is integrable at 0, then (f(x))x∈x admits a version which is almost surely uniformly

APPENDIX A. 164

continuous on (x, d). Moreover, if (f(x))x∈x is almost surely continuous on (x, d), then

E sup f(x) ≤ 12

∫ σ

0

√
logN(ε,x)dε, (A.4)

where σ = supVarf(x) is the supremum of the variance on x [167].

Following Eq.(36)-(43) in [141], we will get

E[sup f(x)] ≤ 12
√
d

∫ max
√
k(x,x)

0

√
log(1 +

4rLk
%2

)d%. (A.5)

Then following the Dudley integral computations, we can bound the Dudley intergral.

We use ∫ c

0

√
log(1 + bε−

1
a)dε ≤ c

√
log(e2a+1)

a
, (A.6)

which holds for any a,b and c that satisfy ba = 2c.

From Eq. (A.5), we can get that a = 1
2
, b = 4rLk and c = max

√
k(x,x) =

√
rLk.

Then substitute a, b and c into Eq. (A.6), we have

∫ σ

0

√
log(1 +

4rLk
%2

)d% ≤

√
log(e21+ 1

2)
1
2

max{max
√
k(x,x),

√
rLk}

=
√

4.0794 max{max
√
k(x,x),

√
rLk}.

(A.7)

