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Abstract In this paper, we focus on exploring effective
methods for faster and accurate semantic segmentation.
A common practice to improve the performance is to at-
tain high-resolution feature maps with strong semantic
representation. Two strategies are widely used: atrous
convolutions and feature pyramid fusion, while both are
either computationally intensive or ineffective. Inspired
by the Optical Flow for motion alignment between adja-
cent video frames, we propose a Flow Alignment Module
(FAM) to learn Semantic Flow between feature maps
of adjacent levels and broadcast high-level features to
high-resolution features effectively and efficiently. Fur-
thermore, integrating our FAM to a standard feature
pyramid structure exhibits superior performance over
other real-time methods, even on lightweight backbone
networks, such as ResNet-18 and DFNet. Then to further
speed up the inference procedure, we also present a novel
Gated Dual Flow Alignment Module to directly align
high-resolution feature maps and low-resolution feature
maps where we term the improved version network as
SFNet-Lite. Extensive experiments are conducted on
several challenging datasets, where results show the
effectiveness of both SFNet and SFNet-Lite. In partic-
ular, when using Cityscapes test set, the SFNet-Lite
series achieve 80.1 mIoU while running at 60 FPS using
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ResNet-18 backbone and 78.8 mIoU while running at
120 FPS using STDC backbone on RTX-3090.

Moreover, we unify four challenging driving datasets
(i.e., Cityscapes, Mapillary, IDD, and BDD) into one
large dataset, which we named Unified Driving Segmen-
tation (UDS) dataset. It contains diverse domain and
style information. We benchmark several representa-
tive works on UDS. Both SFNet and SFNet-Lite still
achieve the best speed and accuracy trade-off on UDS,
which serves as a strong baseline in such a challenging
setting. The code and models are publicly available at
https://github.com/lxtGH/SFSegNets.

Keywords Fast Semantic Segmentation · Real-time
Processing · Sence Understanding · Auto-Driving

1 Introduction

Semantic segmentation is a fundamental vision task that
aims to classify every pixel in the images correctly. It
involves many real-world applications, including auto-
driving, robot navigation, and image editing. The seminal
work of Long et. al. [1] built a deep Fully Convolutional
Network (FCN), which is mainly composed of convo-
lutional layers to carve strong semantic representation.
However, detailed object boundary information, which
is also crucial to the performance, is usually missing due
to the use of the down-sampling layers.

To alleviate this problem, state-of-the-art methods [2,
3,4,5] apply atrous convolutions [6] at the last several
stages of their networks to yield feature maps with strong
semantic representation while at the same time main-
taining the high-resolution. Meanwhile, several state-
of-the-art approaches [7,8,9] adopt multiscale feature
representation to enhance final segmentation results.

https://github.com/lxtGH/SFSegNets
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Recently, several methods [10,11,12] adopt vision trans-
former architectures and model the semantic segmenta-
tion as a per-segment prediction problem. In particular,
they achieve stronger performance for the long-tailed
datasets, including ADE-20k [13] and COCO-stuff [14]
due to the stronger pre-trained models [15] and query-
based mask representation [16].

Despite those methods achieving state-of-the-art re-
sults on various benchmarks, one fundamental problem
is the real-time inference speed, particularly for high-
resolution image inputs. Given that the FCN using
ResNet-18 [17] as the backbone network has a frame
rate of 57.2 FPS for a 1024× 2048 image, after applying
atrous convolutions [6] to the network as done in [2,3],
the modified network only has a frame rate of 8.7 FPS.
Moreover, under a single GTX 1080Ti GPU with no
other ongoing programs, the previous state-of-the-art
model PSPNet [2] has a frame rate of only 1.6 FPS for
1024×2048 input images. Consequently, this is problem-
atic for many advanced real-world applications, such as
self-driving cars and robot navigation, which desperately
demand real-time online data processing.

In order to not only maintain detailed resolution
information but also get features that exhibit strong
semantic representation, another direction is to build
FPN-like [18,19,20] models which leverage the lateral
path to fuse feature maps in a top-down manner. In
this way, the deep features of the last several layers
strengthen the shallow features with high resolution,
and therefore, the refined features are possible to satisfy
the above two factors and are beneficial to the accu-
racy improvement. Such designs are mainly adopted
by real-time semantic segmentation models. However,
the accuracy of these methods [20,21,22,23] still needs
improvement when compared to those networks that
hold large feature maps in the last several stages. Is
there a better solution for high accuracy and high-speed
semantic segmentation? We suspect that the low accu-
racy problem arises from the ineffective propagation of
semantics from deep layers to shallow layers, where the
semantics are not well aligned across different stages.

To mitigate this issue, we propose explicitly learn-
ing the Semantic Flow between two network layers
of different resolutions. Semantic Flow is inspired by
optical flow, which is widely used in video processing
task [24] to represent the pattern of apparent motion
of objects, surfaces, and edges in a visual scene caused
by relative motion. In a flash of inspiration, we find
the relationship between two feature maps of arbitrary
resolutions from the same image can also be represented
with the “motion” of every pixel from one feature map to
the other one. In this case, once precise Semantic Flow
is obtained, the network is able to propagate semantic
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Fig. 1: Inference speed versus mIoU performance on
test set of Cityscapes. Previous models are marked as
blue points, and our models are shown in red and green
points which achieve the best speed/accuracy trade-off.
Note that our methods with ResNet-18 as backbone even
achieve comparable accuracy with all accurate models at
much faster speed. SFNet methods are the green nodes
while SFNet-Lite methods are the red nodes.

Cityscapes IDD Mapillary BDD

Unified Driving Segmentation dataset merges four popular road driving datasets 

(a), A sample from Cityscapes. (b), A sample from IDD. (d), A sample from BDD.(c), A sample from Mapillary.

Fig. 2: Illustration of the merged Unified Driving Seg-
mentation (UDS) benchmark. It contains four datasets
including Cityscapes [25] (a), IDD [26](b), Mapil-
lary [27](c) and BDD [28] (d). These datasets have
various styles and texture information, which make the
merged UDS dataset more challenging.

features with minimal information loss. It should be
noted that Semantic Flow is different from optical flow,
since Semantic Flow takes feature maps from different
levels as input and assesses the discrepancy within them
to find a suitable flow field that will give a dynamic
indication about how to align these two feature maps
effectively.

Based on the concept of Semantic Flow, we design
a novel network module called Flow Alignment Mod-
ule (FAM) to utilize Semantic Flow in semantic seg-
mentation. Feature maps after FAM are embodied with
both rich semantics and abundant spatial information.
Because FAM can effectively transmit semantic infor-
mation from deep to shallow layers through elementary
operations, it shows superior efficacy in improving ac-
curacy and keeping superior efficiency. Moreover, FAM
is end-to-end trainable and can be plugged into any
backbone network to improve the results with a mi-
nor computational overhead. For simplicity, we call the
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networks that all incorporate FAM but have different
backbones as SFNet. As depicted in Fig. 1, SFNets
with different backbone networks outperform competi-
tors by a large margin at the same speed. In particular,
our method adopting ResNet-18 as backbone achieves
79.8% mIoU on the Cityscapes test server with a frame
rate of 33 FPS. When adopting DF2 [29] as the back-
bone, our method achieves 77.8% mIoU with 103 FPS
and 74.5% mIoU with 134 FPS when equipped with
the DF1 backbone [29]. The results are shown in Fig. 1
(green node).

The original SFNet [30] achieves satisfactory results
on speed and accuracy trade-off, and several following
works [31] generalize the idea of SFNet into other do-
mains. However, the inference speed of SFNet still needs
to be faster due to the multi-stage features involved.
To speed up the SFNet and maintain accuracy at the
same time, we propose a new version of SFNet, named
SFNet-Lite. In particular, we design a new flow-aligned
module named Gated Dual Flow Aligned Module (GD-
FAM). Following FAM, GD-FAM takes two features
as inputs and learns two semantic flows to refine both
high-resolution and low-resolution features simultane-
ously. Meanwhile, we also generate a shared gate map
to control the flow warping processing before the final
addition dynamically. The newly proposed GD-FAM can
be appended at the end of SFNet backbone only once,
directly refining the highest and lowest resolution fea-
tures. Such design avoids multiscale feature fusion and
speeds up the SFNet by a large margin. We name our
new version of SFNet as SFNet-Lite. Moreover, to keep
the origin accuracy, we carry out extensive experiments
on Cityscapes by introducing more balanced datasets
training [5]. As a result, our SFNet-Lite with ResNet-18
backbone achieves 80.1 mIoU on Cityscapes test set but
with the speed of 49 FPS (16 FPS improvements with
slightly better performance over original SFNet [30]).
Moreover, when adopting with STDCv1 backbone, our
method can achieve 78.7 mIoU while running with the
speed of 120 FPS. The results are shown in Fig. 1 (red
node).

Since various driving datasets [28,26,25] are from
different domains, previous real-time semantic segmenta-
tion methods train different models on different datasets,
which results in that the trained models are sensitive to
trained domains and can not generalize well to unseen
domain [32]. Recently, M-Seg propose a mixed dataset
for multi-dataset semantic to achive one model for mul-
tiple dataset training and test. Motivated by above, we
verify whether our SFNet series can be more effective in
a unified dataset benchmark. Firstly, we benchmark our
SFNet and SFNet-Lite on various driving datasets [28,
27,26] in the experiment part. Secondly, we creat a chal-

lenging benchmark by mixing four challenging driving
datasets, including Cityscapes, Mapillary, BDD, and
IDD. We term our merged dataset Unified Driving Seg-
mentation (UDS). As shown in Fig. 2, our goal is to
train a unified model to perform semantic segmenta-
tion on various scenes. To the best of our knowledge,
UDS is the largest public semantic segmentation dataset
for the driving scene. In particular, we extract the typi-
cal semantic class as defined by Cityscapes and BDD
with 19 class labels and merge several classes in Map-
illary. We further benchmark representative works on
our UDS. Our SFNet also achieves the best accuracy
and speed trade-off, which indicates the generalization
ability of semantic flow. In particular, using DFNet [29]
as the backbone, our SFNet and SFNet-Lite achieve
7-9% mIoU improvements on UDS. This indicates that
our proposed FAM and GD-FAM are more practical to
multiple-dataset training.

In summary, a preliminary version of this work was
published in [30]. In this paper, we make the follow-
ing significant extensions: (1) We introduce a new flow
alignment module (GD-FAM) to increase the speed
of SFNet while maintaining the original performance.
Experiments show that this new design consistently
outperforms our previous module with higher inference
efficiency. (2) We conduct more comprehensive ablation
studies to verify the proposed method, including quan-
titative improvements over baselines and visualization
analysis. (3) We extend SFNet into Panoptic Segmen-
tation, where we achieve 1.0%-1.5% PQ improvements
over three strong baselines. (4) We further benchmark
SFNet and several recent representative methods on two
more challenging datasets, including Mapillary [27] and
IDD [26]. Our SFNet series significantly improve over
different baselines and achieve the best speed and accu-
racy trade-off. In particular, we propose a new setting
for training a unified real-time semantic segmentation
model by merging existing driving datasets (UDS). Our
SFNet series also achieve the best accuracy and speed
trade-off, which can be a solid baseline for mixed driv-
ing segmentation. We further prove the effectiveness of
SFNet and SFNet-Lite on transformer architecture on
the ADE20k dataset. Moreover, aided by the Robust-
Net [32], we further show the effectiveness of SFNet on
domain generalization setting.

2 Related Work

Generic Semantic Segmentation. Current state-of-
the-art methods on semantic segmentation are based
on the FCN framework, which treats semantic segmen-
tation as a dense pixel classification problem. Lots of
methods focus on global context modeling with dilated
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backbone. Global average pooled features are concate-
nated into existing feature maps in [33]. In PSPNet [2],
average pooled features of multiple window sizes, in-
cluding global average pooling, are upsampled to the
same size and concatenated together to enrich global
information. The DeepLab variants [34,35,8] propose
atrous or dilated convolutions and atrous spatial pyra-
mid pooling (ASPP) to increase the effective receptive
field. DenseASPP [36] improves on [37] by densely con-
necting convolutional layers with different dilation rates
to further increase the receptive field of the network.
In addition to concatenating global information into
feature maps, multiplying global information into fea-
ture maps also shows better performance [38,39,40,41].
Moreover, several works adopt the self-attention design
to encode the global information for the scene. Using
non-local operator [42], impressive results are achieved
in [43,44,4]. CCNet [45] models the long-range depen-
dencies by considering its surrounding pixels on the
criss-cross path via a recurrent way to save computation
and memory cost. Meanwhile, several works [20,7,19,
46,47] adopt encode-decoder architecture to learn the
multi-level feature representation. RefineNet [48] and
DFN [41] adopted encoder-decoder structures that fuse
information in low-level and high-level layers to make
dense prediction results. Following such architecture
design, GFFNet [9], CCLNet [49], and G-SCNN [50]
use gates for feature fusion to avoid noise and feature
redundancy. AlignSeg [51] proposes to refine the multi-
scale features via bottom-up design. IFA [52] proposes
an implicit feature alignment function to refine the mul-
tiscale feature representation. In contrast, our method
transmits semantic information top-down, focusing on
real-time application. However, only some of these works
can perform inference in real-time, which makes it hard
to employ in practical applications.

Vision Transformer based Semantic Segmenta-
tion. Recently, transformer-based approaches [53,15,12,
54] replace the CNN backbones with vision transform-
ers and achieve more robust results. Several works [12,
15,55,56] show that the vision transformer backbone
leads to better results on long-tailed datasets due to the
better feature representation and stronger pre-training
on ImageNet classification. SETR [12] replaces the pixel
level modeling with token-based modeling, while Seg-
former [55] proposes a new efficient backbone for seg-
mentation. Moreover, several works [11,10,57] adopt
Detection Transformer (DETR) [16] to treat per-pixel
prediction as a per-mask prediction. In particular, Mask-
former [10] treats the pixel-level dense prediction as a
set prediction problem. However, all of these works still
can not perform inference in real-time due to the huge
computation cost.

Fast Semantic Segmentation. Fast (Real-time) se-
mantic segmentation algorithms attract attention when
demanding practical applications that need fast infer-
ence and response. Several works are designed for this
setting. ICNet [58] uses multiscale images as input and
a cascade network to be more efficient. DFANet [59]
utilizes a light-weight backbone to speed up its network
and proposes a cross-level feature aggregation to boost
accuracy, while SwiftNet [22] uses lateral connections
as the cost-effective solution to restore the prediction
resolution while maintaining the speed. ICNet [58] re-
duces the high-resolution features into different scales
to speed up the inference time. ESPNets [60,61] save
computation by decomposing standard convolution into
point-wise convolution and spatial pyramid of atrous
convolutions. BiSeNets [62,63] introduce spatial path
and semantic path to reduce computation. Recently,
several methods [64,65,29] use AutoML techniques to
search efficient architectures for scene parsing. Moreover,
there are several works [66,67] using multi-branch archi-
tecture to improve the real-time segmentation results.
However, these works result in poor segmentation re-
sults compared with those general methods on multiple
benchmarks such as Cityscapes [25] and Mapillary [27].
Our previous work SFNet [30] achieves high accuracy
via learning semantic flow between multiscale features
while running in real-time. However, its inference speed
is still limited since more features are involved. More-
over, the capacity of multiscale features needs to be
better explored via stronger data augmentation and
pre-training. Thus, simultaneous achievement of high
speed and high accuracy is still challenging and of great
importance for real-time application purposes.
Panoptic Segmentation. Earlier works [68,69,70,71,
72] are proposed to model both stuff segmentation and
thing segmentation in one model with different task
heads. Detection-based methods [73,68,74,75] usually
represent things with the box prediction, while several
bottom-up models [76,77] perform grouping instance via
pixel-level affinity or center heat maps from semantic
segmentation results. The former introduces the complex
process, while the latter suffers from performance drops
in complex scenarios. Recently, several works [11,57,10]
propose directly obtaining segmentation masks without
box supervision. However, all of these works ignore the
speed issue. In the experiment, we further show that our
method can also lead to better panoptic segmentation
results.
Lightweight Architecture Design. Another critical
research direction is to design more efficient backbones
for the downstream tasks via various approaches [78,79,
80,66]. These methods focus on efficient representation
learning with various network search approaches. Our
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work is orthogonal to those works, since we aim to design
a lightweight and aligned segmentation head.
Multi-dataset Segmentation. MSeg [81] firstly pro-
poses to merge most existing datasets in one unified tax-
onomy and train a unified segmentation model for vari-
ant scenes. Meanwhile, several following works [82,83]
explore multi-dataset segmentation or detection. Com-
pared with MSeg, our UDS dataset mainly focuses on
the driving scene and has only 19 classes compared with
more than 100 classes in MSeg. The input images are
high-resolution and are used for auto-driving applica-
tions.
Domain Generalization in Segmentation. The goal
domain generalization (DG) [84] methods assume that
the model cannot access the target domain during train-
ing and aim to improve the generalization ability to
perform well in an unseen target domain. DG is slightly
different from multi-data segmentation. As for segmen-
tation, several works [85,86,87,32] adopt synthetic data
such as GTAV for training and real dataset such as
cityscapes for testing. Recently, RobustNet [32] disen-
tangles the domain-specific style and domain-invariant
content encoded in higher-order statistics. Our method
can also be applied in DG segmentation settings by
combing RobustNet [32], where we also find significant
improvements over various baselines.

3 Method

In this section, we will first provide some preliminary
knowledge about real-time semantic segmentation and
introduce the misalignment problem therein. Then, we
propose the Flow Alignment Module (FAM) to resolve
the misalignment issue by learning Semantic Flow and
warping top-layer feature maps accordingly. We also
present the design of SFNet. Next, we introduce the pro-
posed SFNet-Lite and the improved GD-FAM to speed
up SFNet. Finally, we describe the building process of
our UDS dataset and several improvement details for
SFNet-Lite training.

3.1 Preliminary

The task of scene parsing is to map a RGB image
X ∈ RH×W×3 to a semantic map Y ∈ RH×W×C with
the same spatial resolution H × W , where C is the
number of predefined semantic categories. Following the
setting of FPN [18], the input image X is firstly mapped
to a set of feature maps {Fl}l=2,...,5 from each net-
work stage, where Fl ∈ RHl×Wl×Cl is a Cl-dimensional
feature map defined on a spatial grid Ωl with size of
Hl×Wl, Hl =

H
2l
,Wl =

W
2l

. The coarsest feature map F5

comes from the deepest layer with the strongest seman-
tics. FCN-32s directly predicts upon F5 and achieves
over-smoothed results without fine details. However,
some improvements can be achieved by fusing predic-
tions from lower levels [1]. FPN takes a step further to
gradually fuse high-level feature maps with low-level fea-
ture maps in a top-down pathway through 2× bilinear
upsampling, which is originally proposed for object de-
tection [18] and recently introduced for scene parsing [7,
19]. The whole FPN framework highly relies on upsam-
pling operator to upsample the spatially smaller but
semantically stronger feature map to be larger in spatial
size. However, the bilinear upsampling recovers the res-
olution of downsampled feature maps by interpolating
a set of uniformly sampled positions (i.e., it can only
handle one kind of fixed and predefined misalignment),
while the misalignment between feature maps caused
by residual connection, repeated downsampling and up-
sampling operations, is far more complex. Therefore,
position correspondence between feature maps needs
to be explicitly and dynamically established to resolve
their actual misalignment.

3.2 Original Flow Alignment Module and SFNet

Design Motivation. For more flexible and dynamic
alignment, we thoroughly investigate the idea of optical
flow, which is very effective and flexible for aligning two
adjacent video frame features in the video processing
task [89,24]. The idea of optical flow motivates us to
design a flow-based alignment module (FAM) to align
feature maps of two adjacent levels by predicting a flow
field inside the network. We define such flow field as
Semantic Flow, which is generated between different
levels in a feature pyramid.
Module Details. FAM is constructed using the FPN
framework, which involves compressing the feature map
of each level into the same channel depth using two 1×1
convolution layers before passing it on to the next level.
Given two adjacent feature maps Fl and Fl−1 with the
same channel number, we up-sample Fl to the same
size as Fl−1 via a bi-linear interpolation layer. Then, we
concatenate them together and take the concatenated
feature map as input for a subnetwork that contains two
convolutional layers with the kernel size of 3× 3. The
output of the subnetwork is the prediction of the seman-
tic flow field ∆l−1 ∈ RHl−1×Wl−1×2. Mathematically,
the aforementioned steps can be written as:

∆l−1 = convl(cat(Fl,Fl−1)), (1)

where cat(·) represents the concatenation operation and
convl(·) is the 3× 3 convolutional layer. Since our net-
work adopts the strided convolutions, which could lead



6 Xiangtai Li1,2∗ et al.

Bilinear Upsampling

Low-Resolution

High-Resolution
Flow Field

After Warp

Warp

Flow Color Coding

Fig. 3: Visualization of feature maps and semantic flow field in FAM. Feature maps are visualized by averaging
along the channel dimension. Larger values are denoted by hot colors and vice versa. We use the color code proposed
in [88] to visualize the Semantic Flow field. The orientation and magnitude of flow vectors are represented by hue
and saturation, respectively. As shown in this figure, using our proposed semantic flow results in more structural
feature representation.

(b) Warp Procedure

offset

Flow Field Low Resolution High Resolution

(a) Flow Alignment Module
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(c) Overview of SFNet

Fig. 4: (a) The details of Flow Alignment Module. We combine the transformed high-resolution feature map
and low-resolution feature map to generate the semantic flow field, which is utilized to warp the low-resolution
feature map to a high-resolution feature map. (b) Warp procedure of Flow Alignment Module. The value of the
high-resolution feature map is the bilinear interpolation of the neighboring pixels in the low-resolution feature map,
where the neighborhoods are defined according to the learned semantic flow field. (c) Overview of our proposed
SFNet. ResNet-18 backbone with four stages is used for exemplar illustration. FAM: Flow Alignment Module.
PPM: Pyramid Pooling Module [2]. Best view it in color and zoom in.

to very low resolution, for most cases, the respective
field of the 3×3 convolution convl is sufficient to cover
most large objects in that feature map. Note that, we
discard the correlation layer proposed in FlowNet-C [90],
where positional correspondence is calculated explicitly.
Because there exists a huge semantic gap between higher-
level layer and lower-level layer, explicit correspondence
calculation on such features is difficult and tends to
fail for offset prediction. Furthermore, including a cor-
relation layer to address this issue would increase the
computational cost substantially, which contradicts our
objective of developing a fast and accurate network.

After having computed ∆l−1, each position pl−1 on
the spatial grid Ωl−1 is then mapped to a point pl on

the upper level l via a simple addition operation. Since
there exists a resolution gap between features and flow
field as shown in Figure 4(b), the warped grid and its
offset should be halved as Equation 2,

pl =
pl−1 +∆l−1(pl−1)

2
. (2)

We then use the differentiable bi-linear sampling mecha-
nism proposed in the spatial transformer networks [91],
which linearly interpolates the values of the 4-neighbors
(top-left, top-right, bottom-left, and bottom-right) of pl
to approximate the final output of the FAM, denoted
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by F̃l(pl−1). Mathematically,

F̃l(pl−1) = Fl(pl) =
∑

p∈N (pl)

wpFl(p), (3)

where N (pl) represents neighbors of the warped points
pl in Fl and wp denotes the bi-linear kernel weights
estimated by the distance of warped grid. This warping
procedure may look similar to the convolution operation
of the deformable kernels in deformable convolution
network (DCN) [92]. However, our method has a lot of
noticeable difference from DCN. First, our predicted
offset field incorporates both higher-level and lower-
level features to align the positions between high-level
and low-level feature maps, while the offset field of
DCN moves the positions of the kernels according to
the predicted location offsets in order to possess larger
and more adaptive respective fields. Second, our module
focuses on aligning features, while DCN works more
like an attention mechanism that attends to the salient
parts of the objects. More detailed comparison can be
found in the experiment part.

On the whole, the proposed FAM module is light-
weight and end-to-end trainable because it only contains
one 3×3 convolution layer and one parameter-free warp-
ing operation in total. Besides these merits, it can be
plugged into networks multiple times with only a mi-
nor extra computation cost overhead. Figure 4(a) gives
the detailed settings of the proposed module, while Fig-
ure 4(b) shows the warping process. Figure 3 visualizes
the feature maps of two adjacent levels, their learned
semantic flow and the finally warped feature map. As
shown in Figure 3, the warped feature is more struc-
turally neat than the normal bi-linear upsampled feature
and leads to more consistent representation of objects,
such as the bus and car.

Figure 4(c) illustrates the whole network architec-
ture, which contains a bottom-up pathway as the en-
coder and a top-down pathway as the decoder. While
the encoder has a backbone network offering feature
representations of different levels, the decoder can be
seen as a FPN equipped with several FAMs.
Encoder Part. We choose standard networks pre-
trained on ImageNet [93] for image classification as our
backbone network by removing the last fully connected
layer. Specifically, our experiments use and compare the
ResNet series [17] and DF series [29]. All backbones
consist of 4 stages with residual blocks. To achieve both
computational efficiency and larger receptive fields, we
include a convolutional layer with a stride of 2 as the first
layer in each stage, which downsamples the feature map.
We additionally adopt the Pyramid Pooling Module
(PPM) [2] for its superior power to capture contextual
information. In our setting, the output of PPM shares

the same resolution as that of the last residual module.
In this situation, we treat PPM and the last residual
module together as the last stage for the upcoming FPN.
Other modules like ASPP [35] can also be plugged into
our network, which is also experimentally ablated in the
experiment part.
Aligned FPN Decoder. Our SFNet decoder takes fea-
ture maps from the encoder and uses the aligned feature
pyramid for final scene parsing. By replacing normal
bi-linear up-sampling with FAM in the top-down path-
way of FPN [18], {Fl}4l=2 is refined to {F̃l}4l=2, where
top-level feature maps are aligned and fused into their
bottom levels via element-wise addition and l represents
the range of feature pyramid level. For scene parsing,
{F̃l}4l=2 ∪ {F5} are up-sampled to the same resolution
(i.e., 1/4 of the input image) and concatenated together
for prediction. Considering there still exists misalign-
ment during the previous step, we also replace these
up-sampling operations with the proposed FAM. To be
noted, we only verify the effectiveness of such design
in ablation studies. Our final models for the real-time
application do not contain such a replacement for better
speed and accuracy trade-off.

3.3 Gated Dual Flow Alignment Module and
SFNet-Lite

Motivation. Original SFNet adopts a multi-stage flow-
based alignment process, it leads to a slower speed than
several representative networks like BiSegNet [62,58].
Since the lightweight backbone design is not our main fo-
cus, we explore the more compact decoder with only
one flow alignment module. Decreasing the number of
FAM leads to inferior results (shown in experiment part,
see Tab. 9(d)). To make up this gap, motivated by the
recent success of gating design in segmentation [50,9],
we propose a new FAM variant named Gated Dual Flow
Alignment Module (GD-FAM) to directly align and fuse
both highest-resolution feature and lowest-resolution fea-
ture. Since there is only one aligment, which means less
operators are involved, we can speed up the inference
time.
Gated Dual Flow Alignment Module. As FAM,
GD-FAM takes two features F4 and F1 as inputs and
directly outputs a refined high resolution feature. We
up-sample F4 to the same size as F1 via a bi-linear
interpolation layer. Then, we concatenate them together
and take the concatenated feature map as input for
a subnetwork convF that contains two convolutional
layers with the kernel size of 3×3. Such network directly
outputs a new flow map ∆F ∈ RH4×W4×4.

∆F = convF (cat(F4,F1)). (4)
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(b) SFNet-Lite(a) Gated Dual Flow Alignment Module
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Fig. 5: (a) The details of GD-FAM (Gated Dual Flow Alignment Module). We combine the transformed high-
resolution feature map and low-resolution feature map to generate the two semantic flow fields and one shared
gate map. The semantic flows are utilized to warp both the low-resolution feature map and the high-resolution
feature map. The gate controls the fusion process. (b) Overview of our proposed SFNet-Lite. ResNet-18 backbone
with four stages is used for exemplar illustration. GD-FAM: Gated Dual Flow Alignment Module. PPM: Pyramid
Pooling Module [2]. Best view it in color and zoom in.

We split such map ∆F into ∆F1 and ∆F4 to jointly
align both F1 and F4. Moreover, we propose to a shared
gate map to highlight most important area on both
aligned features. Our key insight is to make full use of
high level semantic feature and let the low level feature
as a supplement of high level feature. In particular, we
adopt another subnetwork convg to that contains one
convolutional layer with the kernel size of 1× 1 and one
Sigmoid layer to generate such gate map. To highlight
the most important regions of both features, we adopt
max pooling (Maxpool) and average pooling (Avepool)
over both features. Then we concatenate all four maps
to generate such learnable gating maps. This process is
shown as following:

∆G = convg(cat(Avepool(F4,F1)).Maxpool(F4,F1))),

(5)

Then we adopt ∆G to weight the aligned high semantic
features and use inversion of ∆G to weight the aligned
low semantic features as fusion process. The key insights
are two folds. Firstly, sharing the same gates can better
highlight the most salient region. Secondly, adopting
the subtracted gating supplies the missing details in low
resolution feature. Such process is shown as following:

Ffuse = ∆GWrap(∆F1, F1)+(1−∆G)Wrap(∆F4, F4).

(6)

where the Wrap process is the same as Equation 3. Our
key insight is that a better fusion of both features can

Table 1: Speed comparison (FPS) on different devices for
SFNet and SFNet-Lite. We adopt Resnet-18 as backbone.
The FPS is measured by 1024× 2048 input images.

Device 1080-TI TTIAN-RTX 3090-RTX TITAN-RTX(TensorRT)

SFNet 18.1 20.1 24.2 33.3
SFNet-Lite 26.5 27.2 40.2 48.9

lead to more fine-grained feature representation: rich
semantic and high resolution feature map. The entire
process is shown in Figure 5(a).

Lite Aligned Decoder. The Lite Aligned Decoder is
the simplified version of Aligned Decoder, which contains
one GD-FAM and one PPM. As shown in Figure 5(b),
the final segmentation head takes the output of Ffuse

and upsampled deep features in last stage as inputs
and outputs the final segmentation map via one 1× 1

convolution over the combined inputs. Lite Aligned De-
coder speeds up the Aligned Decoder via involving less
multiscale features (only two scales). Avoiding shortcut
design can also lead to faster speed when deploying the
models on devices for practical usage. More results can
be found in the experiment part.

Speed Comparison Analysis. In Table 1, we compare
the speed of SFNet and SFNet-Lite on different devices.
SFNet-Lite runs faster on various devices. In particu-
lar, when deploying both on TensorRT, the SFNet-Lite
is even much faster than SFNet since it involves less
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Table 2: Dataset Information of our merged UDS dataset.
We merged Mapillary labels into cityscapes label format.

Dataset Name Train Images Validation Images Number of Class Labels

Cityscapes 2,975 500 19
IDD 6,993 3,000 19
Mapillary 18,000 2,000 65
BDD 7,000 1,000 19

UDS (ours) 34,968 6,500 19

cross scale branches and leads to better optimization
for acceleration.

3.4 The Unified Driving Segmentation Dataset

Motivation. Learning a unified driving-target segmen-
tation model is useful since the environment may change
a lot during the moving of self-driving cars. MSeg [81]
presents a more challenging setting while we only focus
on high resolution out-door driving scene. Since the
concepts of road scenes are limited, we only have small
label space compared with M-Seg, which it has several
common scenes (COCO [94], ADE20k [13]).

We verify the effectiveness of our SFNet series on
new setting for feature alignment in various domains
without introducing domain aware learning [32]. The
goal of UDS is to provide more fair comparison on
driving scene segmentation. To our knowledge, we are
the first to benchmark such large-scale driving datasets
using one model.
Data Process and Results. We merge four challeng-
ing datasets including Mapillary [27], Cityscapes [25],
IDD [26] and BDD [28]. Since Mapillary has 65 class
labels, we merge several semantic labels into one la-
bel. The merging process follows the previous work [32].
We set other labels as ignore region. In this way, we
keep the same label definition as Cityscapes and IDD.
For IDD dataset, we use the same class definition as
Cityscapes and BDD. For BDD and Cityscapes datasets,
we keep the original setting. The merged dataset UDS
totally has 34,968 images for training and 6,500 images
for testing. The details of the UDS dataset are shown
in Table 2. Moreover, we find that several recent self-
attention based methods [4,95,96] cannot perform well
than previous method DeeplabV3+ [8]. This implies a
better generalized method is needed for this setting. We
provide the code and model on the github pages.
Discussion. Note that despite designing more balanced
sampling methods or including domain generalization
based method can improve the results on UDS, the goal
of this work is only to verify the effectiveness of our
SFNet and SFNet-Lite on this challenging setting. Both
GD-GAM and FAM perform image feature level align-
ment, which are not sensitive to the domain variations.

Moreover, we also show the effectiveness of SFNet on
domain generation settings using RobustNet [32]. More
details can be found in experiment part.

3.5 Improvement Details and Extension.

Improvement Details. We use deeply supervised
loss [2] to supervise intermediate outputs of the decoder
for easier optimization. In addition, following [62], online
hard example mining [97] is also used by only training
on the 10% hardest pixels sorted by cross-entropy loss.
During the inference, we only use the results from the
main head. We also use uniform sampling methods to
balance the rare class during training for all benchmarks.
For the Cityscapes dataset, we also use the coarse boost-
ing training tricks [5] to boost rare classes on Cityscapes.
For backbone design, we also deploy the latest advanced
backbone STDC [66] to speed up the inference speed on
the device.
Extending SFNet into Panoptic Segmentation.
Panoptic Segmentation unifies both semantic segmenta-
tion and instance segmentation, which is a more chal-
lenging task. We also explore the proposed SFNet on
such task with the proposed panoptic segmentation
baseline K-Net [57]. K-Net is a state-of-the-art panoptic
segmentation method where each thing and stuff is rep-
resented by kernels in its decoder head. In particular, we
replace the backbone part of K-Net with our proposed
SFNet backbone and aligned decoder. Then we train
the modified model using the same setting as K-Net.

4 Experiment

4.1 Experiment Settings

Overview. We first review the dataset and training
setting for SFNet. Then, we present the result compari-
son on five road-driving datasets, including the original
SFNet and the newly proposed SFNet-lite. After that, we
give detailed ablation studies and analysis on our SFNet.
Finally, we present the generalization ability of SFNet
on the Cityscapes Panoptic Segmentation dataset.
DataSets. We mainly carry out experiments on the
road driving datasets, including Cityscapes, Mapillary,
IDD, BDD, and our proposed merged driving dataset.
We also report panoptic segmentation results on the
Cityscapes validation set. Cityscapes [25] is a bench-
mark densely annotated for 19 categories of urban scenes,
which contains 5,000 fine annotated images in total and
is divided into 2,975, 500, and 1,525 images for train-
ing, validation, and testing, respectively. In addition,
20,000 coarse-labeled images are also provided to enrich
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the training data. Images are all with the same high
resolution in the road driving scene, i.e., 1024 × 2048.
Note that we use the fine-annotated dataset for abla-
tion study and comparison with previous methods. We
also use the coarse data to boost the final results of
SFNet-Lite. Mapillary [27] is a large-scale road-driving
dataset, which is more challenging than Cityscapes since
it contains more classes and various scenes. It contains
18,000 images for training and 2,000 images for vali-
dation. IDD [26] is another road-driving dataset that
mainly contains the India scene. It contains more images
than Cityscapes. It has 6,993 training images and 981
validation images. To our knowledge, we are the first to
benchmark the real-time segmentation models on Mapil-
lary and IDD datasets. Another research group develops
the BDD dataset, which mainly contains various scenes
in American areas. It has 7,000 training images and
1,000 validation images. All the datasets, including UDS
dataset, are available online.
Implementation Details. We use PyTorch [98] frame-
work to carry out all the experiments. All networks are
trained with the same setting, where stochastic gradi-
ent descent (SGD) with batch size of 16 is used as an
optimizer, with a momentum of 0.9 and weight decay
of 5e-4. All models are trained for 50K iterations with
an initial learning rate of 0.01. As a common practice,
the “poly” learning rate policy is adopted to decay the
initial learning rate by multiplying (1 − iter

total_iter )
0.9

during training. Data augmentation contains random
horizontal flip, random resizing with a scale range of
[0.75, 2.0], and random cropping with crop size of
1024× 1024 for Cityscapes, Mapillary, BDD, IDD, and
UDS datasets. For quantitative evaluation, the mean of
class-wise Intersection-Over-Union (mIoU) is used for
an accurate comparison, and the number of Floating-
point Operations Per Second (FLOPs) and Frames Per
Second (FPS) are adopted for speed comparison. More-
over, to achieve a stronger baseline, we also adopt the
class-balanced sampling strategy proposed in [5], which
obtains stronger baselines. For the Cityscapes dataset,
we also adopt coarse annotated data boosting methods
to improve rare class segmentation quality. Our code and
model are available for reference. Also note that several
non-real segmentation methods in Mapillary, BDD, IDD,
and USD datasets are implemented using our codebase
and trained under the same setting.
TensorRT Deployment Device. The testing environ-
ment is TensorRT 8.2.0 with CUDA 11.2 on a single
TITAN-RTX GPU. In addition, we re-implement the
grid sampling operator by CUDA to be used together
with TensorRT. The operator is provided by PyTorch
and used in warping operations in the Flow Alignment
Module. We report an average time of inferencing 100

images. Moreover, we also deploy our SFNet and SFNet-
Lite on different devices, including 1080-TI and RTX-
3090. We report the results in the next part.

4.2 Main Results

Results On Cityscapes test set. We first report
our SFNet on the Cityscapes dataset in Table 3. With
ResNet-18 as the backbone, our method achieves 79.8%
mIoU and even reaches the performance of accurate
models, which will be discussed next. Adopting STDC
net as the backbone, our method achieves 79.8% mIoU
with full resolution inputs while running at 80 FPS.
This suggests that our method can be benefited from a
well-human-designed backbone. For the improved SFNet-
Lite, our method can achieve even better results than
the original SFNet while running faster using ResNet-18
as the backbone. For the STDC backbone, our method
achieves much faster speed while maintaining similar
accuracy. In particular, using STDC-v1, our method
achieves 78.8% mIoU while running at 120 FPS, a new
state-of-the-art result on balancing speed and accuracy.
This indicates the effectiveness of our proposed GD-
FAM.

Note that for fair comparison, in Table 3,
following previous works [66,63], we report the
speed using Tensor-RT devices. For the results on
the remaining datasets, we only report GPU average
inference time. The Original SFNet with ResNet-18
achieves 78.9 % mIoU, and we adopt uniform sampling,
coarse boosting, and long-time training, which leads to
an extra 0.9 % gain on the test set. The details can be
found in the following sections.
Results on Mapillary validation set. In Table 4,
we report speed and accuracy results on a more chal-
lenging Mapillary dataset. Since this dataset contains
huge resolution images and direct inference may raise
the out-of-memory issue, we resize the short size of the
image to 1,536 and crop the image and ground truth
center following [5].

As shown in Table 4, our methods also achieve the
best speed and accuracy trade-off for various backbones.
Even though the Deeplabv3+ [8] and EMANet [96]
achieve higher accuracy, their speed cannot reach the
real-time standard. In particular, for the DFNet-based
backbone [29], our SFNet achieves almost 5-6% mIoU
improvements. For SFNet-Lite, our methods also achieve
considerable results while running faster.
Results on IDD validation set. In Table 5, our
methods achieve the best speed and accuracy trade-off.
Compared with previous work STDCNet, our method
achieves better accuracy and faster speed, as shown
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Table 3: Comparison on Cityscapes test set with state-
of-the-art real-time models. For a fair comparison, the
input size is also considered, and all models use single-
scale inference. The FPS of our SFNet is evaluated on
TensorRT following [66].

Method InputSize mIoU (%) #FPS #Params

ESPNet [60] 512× 1024 60.3 132 0.4M
ESPNetv2 [61] 512× 1024 62.1 80 0.8M
ERFNet [99] 512× 1024 69.7 41.9 -
BiSeNet(ResNet-18) [62] 768× 1536 74.6 43 12.9M
BiSeNet(Xception-39) [62] 768× 1536 68.4 72 5.8M
BiSeNetv2(ResNet-18) [63] 768× 1536 75.3 47.3 -
BiSeNetv2(Xception-39) [63] 768× 1536 72.6 156 -
ICNet [58] 1024× 2048 69.5 34 26.5M
DF1-Seg [29] 1024× 2048 73.0 80 8.6M
DF2-Seg [29] 1024× 2048 74.8 55 18.9M
SwiftNet [22] 1024× 2048 75.5 39.9 11.8M
SwiftNet-ens [22] 1024× 2048 76.5 18.4 24.7M
DFANet [59] 1024× 1024 71.3 100 7.8M
CellNet [65] 768× 1536 70.5 108 -
STDC1-Seg75 [66] 768× 1536 75.3 126.7 12.0M
STDC2-Seg75 [66] 768× 1536 76.8 97.0 16.1M
HyperSeg-M [100] 512× 1024 75.8 36.9 10.1M
HyperSeg-S [100] 768× 1536 78.1 16.1 10.2M
DDRNet-23 [101] 1024× 2048 77.4 108.1 5.7M

SFNet(DF1) 1024× 2048 74.5 134.5 9.0M
SFNet(DF2) 1024× 2048 77.8 103.1 19.6M
SFNet(ResNet-18) 1024× 2048 79.8 33.3 12.9M

SFNet(STDC-1) 1024× 2048 78.1 97.1 9.1M
SFNet(STDC-2) 1024× 2048 79.8 79.9 13.1M

SFNet-Lite(ResNet-18) 1024× 2048 80.1 48.9 12.3M
SFNet-Lite(STDC-1) 1024× 2048 78.8 119.1 9.7M
SFNet-Lite(STDC-2) 1024× 2048 79.0 92.3 13.7M

Table 4: Comparison on Mapillary validation set with
state-of-the-art models. All the models are re-trained
for a fair comparison and use single-scale inference with
the same resolution input. The non-real-time models in
the first sub-table use ResNet-50 as the backbone. The
mIoU and FPS are measured input image size with 1536
× 1536. All the models are tested on a single TITAN-
RTX.

Method mIoU (%) #FPS #Params

PSPNet [2] 42.4 4.8 31.1M
Deeplabv3+ [8] 46.4 3.2 40.5M
DANet [4] 42.9 2.0 48.1M
OCRNet [95] 46.6 3.8 39.0M
EMANet [96] 47.5 4.2 34.8M

BiSeNet-V1(ResNet-18) [62] 43.2 24.3 12.9M
ICNet [58] 42.8 48.2 26.5M
DF1-Seg [29] 35.8 125.1 8.6M
DF2-Seg [29] 40.2 75.2 18.9M
STDC1 [66] 41.9 34.5 12.0M
STDC2 [66] 43.5 29.0 16.1M

SFNet(DF1) 41.4 102.2 9.0M
SFNet(DF2) 45.6 57.8 19.6M
SFNet(ResNet-18) 46.5 19.8 12.9M

SFNet-Lite(ResNet-18) 46.3 24.5 12.3M
SFNet-Lite(STDC-2) 45.8 35.8 13.7M

in the last row of Table 5. For DFNet backbone, our
methods also achieve nearly 12% mIoU relative improve-
ments. Such results indicate that the proposed FAM

Table 5: Comparison on IDD validation set with state-of-
the-art models. For a fair comparison, all the models are
re-trained and use single scale inference with the same
resolution inputs (1080× 1920 original size of IDD).

Method mIoU (%) #FPS #Params

PSPNet [2] 77.6 5.2 31.1M
Deeplabv3+ [8] 78.9 3.5 40.5M
DANet [4] 76.6 3.2 48.1M
OCRNet [95] 78.1 4.2 39.0M
EMANet [96] 77.2 4.4 34.8M

BiSeNet-V1(ResNet-18) [62] 74.4 24.5 12.9M
ICNet [58] 73.8 37.5 26.5M
DF1-Seg [29] 63.4 79.2 8.55M
DF2-Seg [29] 67.9 50.8 18.88M
STDC1 [66] 75.5 30.8 12.0M
STDC2 [66] 76.3 24.8 16.1M
Bi-Align [102] 73.9 30.2 19.2M

SFNet(DF1) 75.8 65.8 9.03M
SFNet(DF2) 76.3 37.4 19.63M
SFNet(ResNet-18) 76.8 20.2 12.87M

SFNet-Lite(ResNet-18) 76.2 26.8 12.3M
SFNet-Lite(STDC-2) 76.8 26.2 13.7M

Table 6: Comparison on BDD validation set with state-
of-the-art models. For a fair comparison, all the models
are re-trained and use single scale inference with the
same resolution inputs (720×1280 original size of BDD).

Method mIoU (%) #FPS #Params

PSPNet [2] 62.3 11.2 31.1M
Deeplabv3+ [8] 63.6 7.3 40.5M
DANet [4] 62.8 6.6 48.1M
OCRNet [95] 60.1 7.1 39.0M
EMANet [96] 61.4 9.6 34.8M

BiSeNet-V1(ResNet-18) [62] 53.8 45.1 12.9M
ICNet [58] 52.4 39.5 26.5M
Bi-Align [102] 53.4 42.1 19.2M
DF1-Seg [29] 42.5 82.3 8.6M
DF2-Seg [29] 47.8 53.4 18.9M
STDC1 [66] 52.1 45.8 12.0M
STDC2 [66] 53.8 33.0 16.1M

SFNet(DF1) 55.4 70.3 9.0M
SFNet(DF2) 60.2 47.3 19.6M
SFNet(ResNet-18) 60.6 35.6 12.9M

SFNet-Lite(ResNet-18) 60.6 44.3 12.3M
SFNet-Lite(STDC-2) 59.4 29.8 13.7M

and GD-FAM accurately align the low-resolution feature
into more accurate high-resolution and high-semantic
feature maps.
Results on BDD validation set. In Table 6, we
further benchmark the representative works on BDD
dataset. From that table, Deeplabv3+ [8] achieves the
top performance but with a much slower speed. Again,
our methods, including both original SFNet and im-
proved SFNet-Lite achieve the best speed and accuracy
trade-off. For the recent state-of-the-art method STDC-
Net [66], our SFNet-Lite achieves 5% mIoU improvement
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Table 7: Comparison on UDS testing set with state-of-
the-art models. All the models are re-trained for fair
comparison and use single scale inference with the same
resolution inputs (1024× 2048, on both resized images
and ground truth).

Method mIoU (%) #FPS #Params

PSPNet [2] 75.2 5.3 31.1M
Deeplabv3+ [8] 78.0 3.7 40.5M
DANet [4] 75.8 3.0 48.1M
OCRNet [95] 77.0 4.2 39.0M
EMANet [96] 76.8 4.4 34.8M

BiSeNet-V1(ResNet-18) [62] 73.8 24.5 12.9M
ICNet [58] 72.9 38.5 26.5M
Bi-Align [102] 73.9 30.1 19.2M
DF1-Seg [29] 62.6 75.2 8.6M
DF2-Seg [29] 66.8 45.1 18.9M
STDC1 [66] 74.0 30.2 12.0M
STDC2 [66] 75.2 24.5 16.1M

SFNet(DF1) 71.6 69.5 9.0M
SFNet(DF2) 75.5 37.5 19.6M
SFNet(ResNet-18) 76.5 19.4 12.9M

SFNet-Lite(ResNet-18) 75.3 24.5 12.3M
SFNet-Lite(STDC-1) 74.8 33.5 13.7M
SFNet-Lite(STDC-2) 75.6 30.2 13.7M

while running slower. When adopting the ResNet-18
backbone, our SFNet-Lite achieves 60.6% mIoU while
running at 44.5 FPS without TensorRT acceleration.
Results on USD testing set. Finally, we benchmark
the recent works on the merged USD dataset in Table 7.
To fit the GPU memory, we resize both images and
ground truth images to 1024 × 2048. From that table,
we find Deeplabv3+ [8] achieves top performance. Sev-
eral self-attention-based models [96,95,4] achieve even
worse results than previous Deeplabv3+ on such domain
variant datasets. This shows that the USD dataset still
leaves a huge room to improve.

As shown in Table 7, our methods using DFNet back-
bones achieve relatively 10% mIoU improvements over
DF-Seg baselines. When equipped with the ResNet-18
backbone, our SFNet achieves 76.5% mIoU while run-
ning at 20 FPS. When adopting the STDC-V2 backbone,
our SFNet-Lite achieves the best speed and accuracy
trade-off.

4.3 Ablation Studies

Effectiveness of FAM and GD-FAM. Table 8(a)
reports the comparison results against baselines on the
validation set of Cityscapes [25], where ResNet-18 [17]
serves as the backbone. Compared with the naive FCN,
dilated FCN improves mIoU by 1.1%. By appending the
FPN decoder to the naive FCN, we get 74.8% mIoU by
an improvement of 3.2%. By replacing bilinear upsam-
pling with the proposed FAM, mIoU is boosted to 77.2%,

which improves the naive FCN and FPN decoder by
5.7% and 2.4%, respectively. Finally, we append PPM
(Pyramid Pooling Module) [2] to capture global contex-
tual information, which achieves the best mIoU of 78.7 %
together with FAM. Meanwhile, FAM is complementary
to PPM by observing FAM improves PPM from 76.6%
to 78.7%. In Table 10(a), we compare the effectiveness
of GD-FAM and FAM. As shown in that table, our new
proposed GD-FAM has better performance (0.4%) while
running faster than the original FAM under the same
settings.
Positions to insert FAM or GD-FAM: We insert
FAM to different stage positions in the FPN decoder
and report the results in Table 8(b). From the first
three rows, FAM improves all stages and gets the great-
est improvement at the last stage, demonstrating that
misalignment exists in all stages of FPN and is more
severe in coarse layers. This is consistent with the fact
that coarse layers contain stronger semantics but with
lower resolution and can greatly boost segmentation
performance when they are appropriately upsampled to
high resolution. The best result is achieved by adding
FAM to all stages in the last row. For GD-FAM, we aim
to align the high-resolution features and low-resolution
directly. We choose to align F3 and the output of PPM
by default.
Ablation study on network architecture design:
Considering current state-of-the-art contextual modules
are used as heads on dilated backbone networks [35,36],
we further try different contextual heads in our methods
where the coarse feature map is used for contextual
modeling. Table 8(c) reports the comparison results,
where PPM [2] delivers the best result, while the more
recently proposed methods such as non-Local-based
heads [42] perform worse. Therefore, we choose PPM as
our contextual head due to its better performance with
lower computational cost.
Ablation on FAM design. We first explore the ef-
fect of upsampling in FAM in Table 9(a). Replacing
the bilinear upsampling with deconvolution and nearest
neighbor upsampling achieves 77.9% mIoU and 78.2%
mIoU, respectively, which are similar to the 78.3% mIoU
achieved by bilinear upsampling. We also try the various
kernel sizes in Table 9(b). A larger kernel size of 5× 5

is also tried, which results in a similar result (78.2%)
but introduces more computation cost. In Table 9(c),
replacing FlowNet-S with correlation in FlowNet-C also
leads to slightly worse results (77.2%) but increases the
inference time. The results show that it is enough to use
lightweight FlowNet-S for aligning feature maps in FPN.
In Table 9(d), we compare our results with DCN [92].
We apply DCN on the concatenated feature map of the
bilinear upsampled feature map and the feature map of
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Table 8: Ablation studies on SFNet architecture design using Cityscapes validation set.

(a) Ablation study on baseline model.

Method Stride mIoU (%) ∆a(%)

FCN 32 71.5 -
Dilated FCN 8 72.6 1.1 ↑

+FPN 32 74.8 3.3 ↑
+FAM 32 77.2 5.7 ↑
+FPN + PPM 32 76.6 5.1 ↑
+FAM + PPM 32 78.3 7.2 ↑

(b) Ablation study on insertion position.

Method F3 F4 F5 mIoU(%) ∆a(%)

FPN+PPM - - - 76.6 -
✓ - - 76.9 0.3 ↑
- ✓ - 77.0 0.4 ↑
- - ✓ 77.5 0.9 ↑

- ✓ ✓ 77.8 1.2 ↑
✓ ✓ ✓ 78.3 1.7 ↑

(c) Ablation study on context module.

Method mIoU(%) ∆a(%) #GFLOPs

FAM 76.4 - -
+PPM [2] 78.3 1.9↑ 123.5
+NL [42] 76.8 0.4↑ 148.0
+ASPP [35] 77.6 1.2↑ 138.6
+DenseASPP [36] 77.5 1.1↑ 141.5

Table 9: Ablation results on FAM design using Cityscapes validation set.

(a) Ablation study on Upsampling op-
eration in FAM.

Method mIoU (%)

bilinear upsampling 78.3
deconvolution 77.9
nearest neighbor 78.2

(b) Ablation study on kernel size k
in FAM where 3 FAMs are involved.

Method mIoU (%) Gflops

k = 1 77.8 120.4
k = 3 78.3 123.5
k = 5 78.1 131.6
k = 7 78.0 140.5

(c) Ablation with FlowNet-C [90] in FAM.

Method mIoU (%) ∆a(%)

FPN +PPM 76.6 -

correlation [90] 77.2 0.6 ↑
Ours 77.5 0.9 ↑

(d) Comparison with DCN [92].

Method F3 F4 F5 mIoU(%) ∆a(%)

FPN +PPM - - - 76.6 -
DCN - - ✓ 76.9 0.3 ↑
Ours - - ✓ 77.5 0.9 ↑

DCN ✓ ✓ ✓ 77.2 0.6 ↑
Ours ✓ ✓ ✓ 78.3 1.7 ↑

Table 10: Ablation experiment results on SFNet-Lite and GD-FAM design using Cityscapes validation set. DF:
Dual Flow. Attn: Attention. G: Gate. US: Uniform Sampling. LT: Long Training. CB: Coarse Boosting.

(a) Effectiveness of GD-FAM. FPS is measuerd with
1024 × 2048 input.

Method mIoU (%) FPS

FCN 71.5 50.3
+FPN + PPM (baseline) 76.6 40.3
+ FAM + PPM 78.3 19.4
+ one GD-FAM + PPM 78.3 24.5

(b) Ablation study on components in GD-FAM.

Method DF Atten G mIoU(%)

FPN+PPM - - - 76.6
✓ - - 77.8
✓ ✓ - 78.0
✓ ✓ ✓ 78.3

(c) Ablations study on Improving Tricks.

Method US LT CB mIoU(%)

SFNet-Lite - - - 78.3
✓ - - 78.6
✓ ✓ - 79.0
✓ ✓ ✓ 79.7

Table 11: Generalization on Various Backbone. For
SFNet series, the baseline models are without FAM
or GD-FAM. Note, GD-FAM is only used once. The
GFlops are calculated with 1024× 2048 input.

Backbone mIoU(%) ∆a(%) #GFLOPs ∆b(%)

ResNet-50 [17] 76.8 - 332.6 -
w/ FAM 79.2 2.4 ↑ 337.1 +4.5
ResNet-101 [17] 77.6 - 412.7
w/ FAM 79.8 2.2↑ 417.5 +4.8
w/ GD-FAM 80.2 2.6↑ 415.3 +2.6

ShuffleNetv2 [80] 69.8 - 17.8 -
w/ FAM 72.1 2.3 ↑ 18.1 +0.3
DF1 [29] 72.1 - 18.6 -
w/ FAM 74.3 2.2 ↑ 18.7 +0.1
DF2 [29] 73.2 - 48.2 -
w/ FAM 75.8 2.6 ↑ 48.5 +0.3

STDC-Net-v1 [66] 75.0 - 58.2 -
w/ FAM 76.7 1.7↑ 59.8 +1.6
w/ GD-FAM 76.5 1.5↑ 59.0 +0.8
STDC-Net-v2 [66] 75.6 - 85.0 -
w/ FAM 77.4 1.8↑ 86.3 +1.3
w/ GD-FAM 77.5 1.9↑ 86.2 +1.2

the next level. We first insert one DCN in higher layers
F5 where our FAM is better than it. After applying
DCN to all layers, the performance gap is much larger.
This indicates that our method can also align low-level
edges for better boundaries and edges in lower layers,
which will be shown in the visualization part.

Ablation GD-FAM design. In Table 10(b), we ex-
plore the effect of each component in GD-FAM. In par-
ticular, adding Dual Flow (DF) design boosts about
1.2% improvement. Using Attention to generate gates
rather than using convolution leads to 0.2% improve-
ment. Finally, using the shared gate design also improves
the strong baseline by 0.3%.

Ablation on Improving Details. In Table 10(c), we
explore the training tricks, including Uniform Sampling
(US), Long Training (LT) and Coarse Boosting (CB).
Performing US leads to 0.3% improvements on our
SFNet-Lite. Using LT (1000 epochs training) rather
than short training (300 epochs training) results in an-
other 0.4% mIoU improvement. Finally, adopting coarse
data boosts on several rare classes leads to another 0.7%
improvement.

generalization on Various Backbones. We further
carry out experiments with different backbone networks,
including both deep and light-weight networks, where
the FPN decoder with PPM head is used as a strong
baseline in Table 11. For heavy networks, we choose
ResNet-50 and ResNet-101 [17] to extract represen-
tation. For light-weight networks, ShuffleNetv2 [80],
DF1/DF2 [29] and STDC-Net [66] are employed. FAM
significantly achieves better mIoU on all backbones with
slightly extra computational cost. Both GD-FAM and
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(a) (b) (c) (d) (e) (f)

Fig. 6: Visualization of the learned semantic flow fields. Column (a) lists three exemplary images. Column (b)-(d)
show the semantic flow of the three FAMs in ascending order of resolution during the decoding process, following
the same color coding of Figure 3. Column (e) is the arrowhead visualization of flow fields in column (d). Column
(f) contains the segmentation results.

FAM improve the results of different backbones signifi-
cantly with little extra computation cost.
Aligned feature representation: In this part, we
present more visualization on aligned feature representa-
tion as shown in Figure 7. We visualize the upsampled
feature in the final stage of ResNet-18. It shows that
compared with DCN [92], our FAM feature is more
structural and has much more precise object boundaries,
which is consistent with the results in Table 9(d). That
indicates that FAM is not an attention effect on a fea-
ture similar to DCN, but aligns the feature towards a
more precise shape than in red boxes.

4.4 More Detailed Analysis

Detailed Improvements. Table 12 compares the de-
tailed results of each category on the validation set,
where ResNet-101 is used as backbone, and FPN de-
coder with PPM head serves as the baseline. SFNet im-
proves almost all categories, especially for ’truck’ with
more than 19% mIoU improvement. Adopting GD-FAM
leads to more consistent improvement over FAM on each
class.
Visualization of Semantic Flow. Figure 6 visualizes
semantic flow from FAM in different stages. Similar to
optical flow, semantic flow is visualized by color coding
and is bilinearly interpolated to image size for a quick
overview. Besides, vector fields are also visualized for
detailed inspection. From the visualization, we observe
that semantic flow tends to diffuse out from some posi-
tions inside objects. These positions are generally near
the object centers and have better receptive fields to ac-
tivate top-level features with pure and strong semantics.
Top-level features at these positions are then propagated
to appropriate high-resolution positions following the

Input Images Feature w/o FAM Feature w/ DCN Feature w/ FAM

Fig. 7: Visualization of the aligned feature. Compared
with DCN, our module outputs more structural feature
representation.

guidance of semantic flow. In addition, semantic flows
also have coarse-to-fine trends from the top level to
the bottom level. This phenomenon is consistent with
the fact that semantic flows gradually describe offsets
between gradually smaller patterns.

Visual Improvements on Cityscapes dataset. Fig-
ure 8(a) visualizes the prediction errors by both meth-
ods, where FAM considerably resolves ambiguities inside
large objects (e.g., truck) and produces more precise
boundaries for small and thin objects (e.g., poles, edges
of wall). Figure8 (b) shows our model can better handle
the small objects with shaper boundaries than dilated
PSPNet due to the alignment on lower layers.

Visualization Comparison on Mapillary dataset.
In Figure 9, we show the visual comparison results on the
Mapillary dataset. As shown in that figure, compared
with previous ICNet and BiSegNet, our SFNet-Lite using
ResNet-18 as backbone has better segmentation results
in cases of more accurate segmentation classification
and structural output.



SFNet: Faster and Accurate Semantic Segmentation via Semantic Flow 15

Table 12: Quantitative per-category comparison results on Cityscapes validation set, where ResNet-101 backbone
with the FPN decoder and PPM head serves as the strong baseline. Obviously, Both FAM and GD-FAM boost the
performance of almost all the categories.

Method road swalk build wall fence pole tlight sign veg. terrain sky person rider car truck bus train mbike bike mIoU

BaseLine 98.1 84.9 92.6 54.8 62.2 66.0 72.8 80.8 92.4 60.6 94.8 83.1 66.0 94.9 65.9 83.9 70.5 66.0 78.9 77.6
with FAM 98.3 85.9 93.2 62.2 67.2 67.3 73.2 81.1 92.8 60.5 95.6 83.2 65.0 95.7 84.1 89.6 75.1 67.7 78.8 79.8
with GD-FAM 98.3 86.7 93.5 63.4 67.1 68.2 73.5 81.9 92.7 64.4 95.4 84.2 68.4 95.4 85.7 91.2 83.2 67.7 79.3 81.0

Input w/o FAM w/ FAMGround Truth Input PSPNet SFNet Ground Truth
(a) (b)

Fig. 8: (a), Qualitative comparison in terms of errors in predictions, where correctly predicted pixels are shown as
black background while wrongly predicted pixels are colored with their ground truth label color codes. (b), Scene
parsing results comparison against PSPNet [2], where the improved regions are marked with red dashed boxes. Our
method performs better on both small scale and large scale objects.

Fig. 9: Qualitative comparison on Mapillary dataset. Top-left: Origin Images. Top-Left: Results of BiSegNet [62].
Down-Left: Results of ICNet [58]. Down-Right: Results of our SFNet-Lite. Improvement regions are in yellow boxes.
Best view it in color.

Visual Comparison on proposed USD dataset.
In figure 10, we present several samples from different
datasets. Compared with the original DFNet baseline,
our method can achieve better segmentation results in
terms of clear object boundaries and inner object con-
sistency. We also show the SFNet-Lite with ResNet-18
backbone in the fourth row and overlapped images in
the last row. The figure shows that our methods (SFNet
with DFV2 backbone and SFNet-Lite with ResNet-18
backbone) achieve good segmentation quality for differ-
ent domains.

Table 13: Speed Comparison on TensorRT Deployment
testing with Different Devices. The FPS is measured
with 1024× 2048 input.

Network 1080-TI TITAN-RTX RTX-3090

SFNet(resnet-18) 26.8 34.2 50.5
SFNet(stdcv2) 56.2 78.0 202.1

Speed Effect on Different Devices. In Table 13, we
explore the effect of deployment devices. In particular,
compared with the original SFNet [30], which uses 1080-
TI as a device, using a more advanced device leads to
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BDD

Mapillary

IDD

Cityscapes

Images DFNetv2 SFNet-DFNetv2 SFNet-Lite Overlapped Images

Fig. 10: Visualization results on UDS validation dataset including BDD, Maillary, IDD and Cityscapes. Our methods
achieve the better visual results in cases of clear object boundary, inner object consistency and better structural
outputs. We adopt singele scale inference and all the models are trained under the same setting. Best view it on
screen and zoom in.

Table 14: Pretraining Effect of UDS dataset. The mIoU
is evaluated on Camvid dataset [103].

Network ImageNet UDS mIoU

SFNet(resnet-18) ✓ - 73.8
SFNet(stdcv2) ✓ - 72.9

SFNet(resnet-18) - ✓ 76.5
SFNet(stdcv2) - ✓ 75.6

a much higher speed. For example, RTX-3090 results
almost twice faster as 1080-TI using ResNet-18 and four
times faster using STDCNet. Moreover, we also find that
SFNet with STDCNet [66] backbone is more friendly to
TensorRT deployment.

UDS Used for Pre-training. We further show the
effectiveness of our UDS dataset in table 14. Compared
with ImageNet [93], adopting the pre-training with the
UDS dataset can significantly boost SFNet results on
the Camvid dataset [103], which leads to a significant
margin (3-4% mIoU). This implies that the UDS dataset
can be an excellent pre-train source to boost the model
performance.

4.5 Extension on Efficient Panoptic Segmentation

Experiment Setting. In this section, we show the
generalization ability of our Semantic Flow on more
challenging task Panoptic Segmentation. We choose K-
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Table 15: Experiment results on the Cityscapes Panop-
tic validation set. ∗ indicates using DCN [92]. All the
methods use single-scale inference. We prove the gener-
alization ability of semantic flow. The FPS is measured
on one V100 card with 1024× 2048 input.

Method Backbone PQ PQth PQst #FPS

UPSNet [73] ResNet50 59.3 54.6 62.7 7.3
SOGNet [72] ResNet50 60.0 56.7 62.5 6.7
Seamless [71] ResNet50 60.2 55.6 63.6 -
Unifying [105] ResNet50 61.4 54.7 66.3 -

Panoptic-DeepLab [76] ResNet50 59.7 - - 8.2
Panoptic FCN∗ [106] ResNet50 61.4 54.8 66.6 -

K-Net [57] ResNet50 61.2 52.4 66.8 10.2
STDCv1 + K-Net Head STDCv1 58.0 50.3 62.4 23.3

SF-STDCv1 + K-Net Head STDCv1 59.2 52.9 63.3 20.3
STDCv2 + K-Net Head STDCv2 59.8 53.8 63.8 19.3

SF-STDCv2 + K-Net Head STDCv2 60.3 54.4 64.8 18.6
SF-ResNet50 + K-Net Head ResNet50 61.7 52.6 67.2 9.0

Net [57] as the prediction head, while our SFNet is
the backbone and neck for the feature extractor. All
the network is first trained on the COCO dataset and
then on the Cityscapes dataset. For COCO [94] dataset
pretraining, all the models are trained following detec-
tron2 settings [104]. We adopt the multiscale training
by resizing the input images such that the shortest side
is at least 480 and 800 pixels, while the longest is at
most 1333 pixels. We also apply random crop augmen-
tations during training, where the training images are
cropped with a probability of 0.5 to a random rectangu-
lar patch and then resized again to 800-1333 pixels. All
the models are trained for 36 epochs. For Cityscape fine-
tuning, we resize the images with a scale ranging from
0.5 to 2.0 and randomly crop the whole image during
training with batch size 16. All the results are obtained
via single-scale inference. We also report results using
the ResNet50 backbone for reference. We report the
FPS on V100 devices by averaging 100 input images.
For FPS measurement, we also include the panoptic
post-processing times.

Results on Various Baseline on Cityscapes Panop-
tic Segmentation. As shown in Table 15, our SFNet
backbone improves the baseline models in terms of the
Panoptic Quality metric by around 0.5-1.0%. The re-
sults show the generalization ability of the semantic flow
because our aligned feature representation preserves
more fine-grained information. Moreover, we compare
our methods using a stronger ResNet50 backbone. Com-
pared with K-Net [57], our methods still achieve 0.5%
PQ improvements with 1.2 FPS drop. Our method with
STDCv2 backbone achieves a strong speed and accuracy
trade-off (60.3 PQ with 18.6 FPS).

Table 16: More detailed comparison between GF-FAM
and DCN. We adopt ResNet18 as backbone.

Method Cityscapes UDS #FPS

FCN +FPN + PPM (baseline) 76.6 72.3 40.3
w one DCN 76.9 73.5 22.8
w one FAM 77.5 74.8 23.3
w one GD-FAM 78.5 75.5 24.6

Table 17: Domain generalization experiments using
SFNet and SFNet-Lite using RobustNet [32]. The base-
line methods are SFNet series with RobustNet with
no FAMs or GD-FAMs. Our methods also show better
results on BDD and IDD when trained with Cityscapes
dataset.

Method Backbone BDD IDD #FPS

baseline ResNet18 43.2 46.2 25.8
SFNet ResNet18 45.2 48.1 24.0
SFNet-Lite ResNet18 46.0 48.5 24.8
baseline STDC-2 39.2 41.4 27.5
SFNet-Lite STDC-2 41.8 44.5 26.7

4.6 More Analysis on SFNet and SFNet-Lite

Experiment Setting. In this section, we perform more
extensive experiments using SFNets. (1), We first con-
duct more experiments with DCN [92] using Cityscapes
and UDS by adding one DCN layer and one GD-FAM.
(2), Then, we perform domain generalization experi-
ments using RobustNet with different SFNet baselines,
where we train the model on the Cityscapes dataset
and test the model on BDD and IDD datasets. (3),
Next, we present the results on ADE20k datasets using
different baselines, including Semantic FPN [19] and
SegFormer [55]. For the experiments on the ADE20k
dataset, we follow the default settings from OCRNet [95],
where the crop size is set to 512 with 160k iterations
training. The GFlops are calculated with 512 × 512

inputs.
More Detailed Comparison with DCN. We carry
out a more detailed comparison between DCN and our
proposed GD-FAM. In particular, we replace GD-FAM
or FAM with a simple concatenation followed by a de-
formable convolution, where GD-FAM and FAM are
inserted in the last stage to align the last two features
for comparison. The DCN directly replaces FAM or GD-
FAM. As shown in Tab 16, our method achieves better
results (1.0-2.0% mIoU gains) on both Cityscape dataset
and UDS dataset, which share the same conclusion with
the findings in Tab. 9 (d).
Domain Generalization Testing Using Robust-
Net [32]. We further prove the domain generalization
ability of SFNet and SFNet-Lite. Our methods are based
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Table 18: Effectiveness on ADE20k dataset on Semantic-
FPN with different backbones.

Method Backbone mIoU #GFLOP

Semantic-FPN (baseline) ResNet50 37.6 72.8
SFNet ResNet50 39.0 75.2
SFNet-Lite ResNet50 38.8 74.2
Semantic-FPN (baseline) DF2 34.5 35.2
SFNet DF2 36.7 36.2
SFNet-Lite DF2 36.8 35.9

Table 19: Effectiveness on ADE20k dataset on
Transformer-based methods. B0 and B1 : backbones
in SegFormer [55].

Method Backbone mIoU #GFLops

SegFormer (baseline) B0 37.4 8.4
SFNet-Lite B0 38.2 9.4
SegFormer (baseline) B1 40.9 16.0
SFNet-Lite B1 42.2 17.6

on previous work RobustNet [32] and Semantic-FPN [19].
In particular, we follow the original open-source Robust-
Net code 1 and settings by the whitening operation in
different backbones to build the baseline. As shown in
Tab .17, our methods achieve consistent 2-3% mIoU
improvements over the RobustNet baselines on both
IDD and BDD datasets.
Experiment Results on ADE20k Dataset. In
Tab. 18, we verify the effectiveness of FAM and GD-
FAM on the more challenging dataset ADE20k. For a
fair comparison, we re-implement the baseline in the
same codebase and report our reproduced results for
Semantic-FPN. As shown in that table, we find about
1.2%-2.2% improvements over different baselines. In par-
ticular, we find the improvements on the real-time model
are stronger, which means the semantic gaps in small
models are heavier. This finding is similar in the road
driving scene datasets (see Tab. 6, Tab. 7).
Experiment Results on ADE20k Using
Transformer-based Model. In Tab. 19, we
also report the results using transformer-based model
SegFormer [55]. We also find about 0.8-1.3% mIoU
improvements over different backbones. These results
indicate that our proposed approach can also be used
in transformer-based segmenter.

5 Conclusion

In this paper, we propose to use the learned Seman-
tic Flow to align multi-level feature maps generated
by aligned feature pyramids for semantic segmentation.

1 https://github.com/shachoi/RobustNet

We propose a flow-aligned module to fuse high-level
feature maps and low-level feature maps. Moreover, to
speed up the inference procedure, we propose a novel
Gated Dual flow alignment module to align both high
and low-resolution feature maps directly. By discarding
atrous convolutions to reduce computation overhead
and employing the flow alignment module to enrich
the semantic representation of low-level features, our
network achieves the best trade-off between semantic
segmentation accuracy and running time efficiency. Ex-
periments on multiple challenging datasets illustrate
the efficacy of our method. Moreover, we merge four
challenging driving datasets into one Unified Driving
Segmentation dataset (UDS), which contains various
domains. We benchmark several works on the merged
dataset. Experiment results show that our SFNet series
can achieve the best speed and accuracy trade-off. In
particular, our SFNet improves the original DFNet on
the UDS dataset by a large margin (9.0% mIoU). These
results indicate that our SFNet can be a faster and
accurate baseline for Semantic Segmentation.
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