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Abstract—Textual logical reasoning, especially question-answering (QA) tasks with logical reasoning, requires awareness of particular
logical structures. The passage-level logical relations represent entailment or contradiction between propositional units (e.g., a concluding
sentence). However, such structures are unexplored as current QA systems focus on entity-based relations. In this work, we propose
logic structural-constraint modeling to solve the logical reasoning QA and introduce discourse-aware graph networks (DAGNs). The
networks first construct logic graphs leveraging in-line discourse connectives and generic logic theories, then learn logic representations
by end-to-end evolving the logic relations with an edge-reasoning mechanism and updating the graph features. This pipeline is applied to
a general encoder, whose fundamental features are joined with the high-level logic features for answer prediction. Experiments on three
textual logical reasoning datasets demonstrate the reasonability of the logical structures built in DAGNs and the effectiveness of the
learned logic features. Moreover, zero-shot transfer results show the features’ generality to unseen logical texts.

Index Terms—Natural Language Processing, Logical Reasoning, Question Answering, Multi-Turn Dialogue Reasoning, Graph Neural
Networks, Supervised Learning, Zero-shot Learning.
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1 INTRODUCTION

Natural language understanding in progress is introducing investi-
gation of machines’ reasoning capabilities. The recent anticipated
logical reasoning requires advanced comprehension of uncovering
hidden logical structures. A representative task is logical reasoning
QA [2], [3]. It collects questions from standardized exams such
as GMAT and LSAT. Each question provides a passage, several
answer options, and a question sentence about logical relations,
structures, or fallacies. To predict the correct answer, machines need
to identify the conclusion and premises in the text and understand
how they support or contradict each other. Another representative
is multi-turn dialogue reasoning [4], which requires the machine
to predict the next utterance that is logically consistent with the
conversation.

In principle, logical structures consist of two critical factors,
logical components, and logical relations. The core logical compo-
nents include conclusion and premises, usually complete sentences
or subordinate clauses. The logical relations, on the other hand,
are mainly entailment, refutation, or contradiction between these
sentences. Moreover, the key phrases in the statements indicate
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dialogue-understanding tasks to investigate the adaptation from formal text
to informal language.

inference patterns. Practically, an example is illustrated in Figure 1.
To find the flaw in the argument, one first needs to identify the
conclusion and premises. Indicated by the clue words such as
“conclude”, “if”, and “then”, the third sentence is the conclusion,
whereas the first two sentences provide supporting premises.
Indicated by the connectives and the key terms as highlighted,
the premises are further decomposed into two entailing structures.
From the repeating key terms, one can find the inference patterns
A → B and ¬A → ¬B in the two premises, respectively.
According to the context, Premise 2 is derived from Premise 1,
which then derives the conclusion of ¬B. However, the reasoning
in this argument contradicts the law of contraposition, which is
A → B ` ¬B → ¬A. This leads to the correct option A. In
contrast, one can hardly answer this question regardless of the
logical structure.

However, many existing deep models often neglect how to
mine such appropriate logical structures, and consequently, is
hard to learn logic features to handle complex reasoning. For
example, traditional deep QA systems [5], [6], [7] and retrieval-
based dialogue systems [8], [9] learn to match key entities between
the passage and the question. Though mastering previous tasks, they
only perform slightly better than random in logical reasoning. More
recent QA systems [10], [11], [12], [13] construct discrete structures
according to co-occurrence and coreference of named entities and
simulate multi-hop reasoning [14], [15] with graph neural networks
[16]. Similarly, numerical reasoning systems [17] encode numerical
relations between numbers with the topology of graphs. Moreover,
current Fact-Checking models [18], [19] and NLI models [20], [21],
[22] focus on semantic matching for better knowledge retrieval or
estimating the inference type between sentence pairs. In contrast,
solving logical reasoning requires awareness of inference patterns
beyond knowledge. Therefore, current structures and reasoning
processes are insufficient for solving textual logical reasoning,
as the core logical structure includes passage-level relations over
clause-like units.
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Fig. 1. An example of logical reasoning QA (left) and the logical structure-
based solution (right). Inference patterns are found by linguistic clues.
The logical units are the conclusion or premises, which are the sentential
text spans. The highlighted key terms indicate the logical variables in
logical reasoning.

On the other hand, recent advances in transformer-based pre-
trained language models (PLMs) [23], [24], [25], [26], [27] have
witnessed great success in extensive natural language tasks [28],
[29], [30], but fail logical reasoning [2], [3], [4]. The PLMs are
trained on large numbers of unlabeled corpora, and the transformer-
based architecture with multiple self-attention layers facilitates the
encoding of contextualized representations. They learn syntactic
and semantic structures in an implicit manner [31]. Besides,
several works [21], [22], [32] incorporate explicit syntactic or
semantic structural constraints into PLMs and further improve the
representations. However, the highlighted token correlations do not
guarantee appropriate logical components and relations. Moreover,
although the community further observes some reasoning capability
[33] from these pure transformer-based models, it is not sufficient
for advanced reasoning.

Therefore, several questions are remained open: How to
construct logical structures to benefit the systems for textual logical
reasoning? And how to better learn logic representations?

To this end, we propose discourse-aware graph networks
(DAGNs) to focus on inference patterns and learn general logic
representations. To do this, DAGNs construct logical structure
from the plain text as structural constraints, then learns logic
representations by end-to-end evolving the logic relations in the
graphs and updating the graph features. Generally speaking, the
logic graphs are built via linguistic clues and logic theories so that
are easily applied to new text. The logic representation learning
applies an edge-reasoning mechanism over the constructed graphs,
then conducts graph reasoning to update the logic graph features,
which leverages fundamental embeddings from a general encoder
such as PLM. Specifically, the logic graph construction uses
discourse connectives such as “because” and “if ” [34] as text
span delimiters. They indicate the logical relations and delimit
the texts into clause-like logical units, which is in line with the
intuition in informal logic theories [35], [36]. The delimited text
spans are regarded as logical reasoning units. The logic graphs
are formed with text spans as nodes, connected by linguistic and
logical edges.

Logic representation learning is a graph reasoning process. It
first discovers advanced logical relations from the constructed
logic graphs, for instance, multi-hop relations with different
edge types. The relation discovery is an iterative edge selection
and propagation procedure inspired by the previous meta-path
generation model [37]. Given the updated logical relations, it
then initializes the graph features with token embeddings, then
performs graph reasoning to aggregate the node embeddings by a
node-weighted graph convolutional network. The output multi-hop
logic features are further fused with the fundamental embeddings
to provide hierarchical features for downstream prediction. The
learning process leverages underlying features such as pre-trained
contextual embeddings and merely needs a few rounds of fine-
tuning, and is therefore efficient.

We conduct comprehensive experiments on three datasets,
including two logical reasoning QA datasets [2], [3] and one
multi-turn dialogue understanding dataset [4] in both supervised
and zero-shot scenarios. In general, DAGNs outperform the state-
of-the-art models in supervised settings, showing strong generality
in zero-shot transfer. The results show that the edge-reasoning
mechanism leads to logical feature generality and model stability.
The logic graphs are proved effective for learning general and
transferrable logic representations. This indicates the importance
of focusing on inference patterns beyond knowledge in logical
reasoning tasks.

The contributions of this paper are summarized as follows:
• We explore effective discourse-aware graph networks

(DAGNs) for textual logical reasoning. The model constructs
logic graphs as structural constraints then learns to identify
advanced logical relations and learn logic representations by
the graphs.

• The edge-reasoning mechanism evolves the logical relations
to adapt the logic representation learning, which results in
feature generality and model stability.

• The proposed logic graph construction uses generic textual
clues and logic theories and is easily applied to new texts.
Meanwhile, graph-based representation learning leverages
fundamental encoding techniques; hence is handy for fine-
tuning and is widely applicable.

• Experiments on three datasets indicate that DAGNs are
superior in textual logical reasoning and provide beneficial
logical information. Besides, DAGNs show strong generality
to unseen logical questions.

2 PRELIMINARIES

2.1 Task: Logical Reasoning QA
Logical reasoning QA requires a machine to understand the logic
behind the text, for example, identifying the logical components,
logical relations, or fallacies.

For multiple-choice logical QA, given a logical passage, a
question, and several candidate answer options, a machine needs to
predict the answer by understanding the logic of the passage. We
give notations for convenient discussion. For a logical reasoning
question (passage, question, options), we denote the
sequences passage, question, and option as Sp, Sq , Sco,
respectively, where c ∈ C, c is the candidate index and C is the
overall number of candidates. Then a machine’s inputs are Sc =
[Sp;Sq;S

c
o], c ∈ C , where “;” denotes sequence concatenation.

Similarly, for multi-turn dialogue reasoning, a machine is given
dialogue context and multiple candidate responses and is required to
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give the logically correct response according to the dialogue context.
For a single dialogue (dialogue context, candidate
responses), we denote the sequences dialogue context
and candidate response as Sd and Sr, respectively. The
machine’s inputs are Sc = [Sd;S

c
r ] for each c ∈ C. Predicting

the answer from C options needs to give ranking scores pc for all
c ∈ C .

2.2 Logic Theories for Logical Reasoning QA
Logic theories study symbolic reasoning processes in daily lan-
guage use. It can be generally grouped into informal logic [35],
[36] and formal logic [38]. The informal logic uncovers reasoning
structure in context. In contrast, formal logic extracts the language
into symbolic axiomatic systems to evaluate its validity. Both
inspire the modeling for logical reasoning QA.

2.2.1 Informal Logic
Logical Components in Arguments. Informal logic [35], [36]
studies the structural reasoning processes in argumentation. The
structure is named argument [39]. An example argument is:

A and B; therefore C.

Here, “A”, “B” and “C” are propositions, and“C” is a conclusion
drawn from the two premises “A” and “B”. Hence in this discrete
structure, conclusion and premise are two fundamental logical
components, which are usually complete sentences or sub-sentences
[40].
Inference Indicators. To uncover the logical components from
text and reconstruct the structure, informal logic has organized
frequently encountered indicators that prompt the premise or
conclusion. Representative premise indicators involve “since”,
“because”, “for”, “given that” and so forth. Meanwhile, conclusion
indicators include “therefore”, “so”, “consequently” and others.

Inspired by these, we reconstruct logical structures for logical
reasoning QA by leveraging such inference indicators as text
delimiters, which segment the passage into multiple sentences or
clauses that properly are the basic reasoning units. The indicators
themselves then signify corresponding logical relations between
the units.

2.2.2 Formal Logic
Deviation of Logical Expressions. In formal logic system such
as first-order logic (FOL), extensive well-formed formulae (i.e.,
logical expressions) are derived from a few axioms and rules. The
soundness of derivation guarantees that the derived expressions are
true if only the axioms are true [38].

For example, in first-order propositional logic, the modus
ponens rule is as follows:

P → Q,P ` Q. (1)

Thus, if α∧β → γ is an axiom and is true, and α∧β is true, then
it is derived that γ is true.

Another example is that given that we have the rule of addition:

P ` P ∨Q, (2)

then say α → β is an axiom and is true, then (α → β) ∨ γ as a
derived expression is true.

Therefore, it is observed that in the logical expression deriva-
tion, the expressions that are derived from each other are correlated

only if they have shared variables, such as the α ∧ β in the first
example and the α → β in the second one. This motivates us to
build the variable edges in the logic graph construction.
Validity of Expressions and Instantiation. If a logical expression
is valid, its multiple instantiations are true as they follow the same
valid reasoning process. For instance, two instantiations of the
modus ponens rule in eq. (1) are as follows:

Example 2.1 (Instantiation of modus ponens). “All men are mortal.
Socrates is a man. Therefore, Socrates is mortal.” It is obtained by
grounding P to “be men”, and Q to “be mortal”.

Example 2.2 (Instantiation of modus ponens). “All birds can fly.
Eagles are birds. Therefore, eagles can fly.”. It is obtained by
grounding P to “be bird”, Q to “can fly”.

We can tell that the statements in Example 2.1 and Example 2.2
are true. Albeit they are in diverse topics, as we know that their
shared reasoning skeleton, i.e., the modus ponens rule, is valid.

Furthermore, in logical texts, the logical reasoning processes
are performed in a natural language format. The logical variables
are embedded. One of the hints for such logical variables is the
topic-related terms, which are mainly the recurring topic words
or phrases, such as the “men” and “mortal” in Example 2.1 and
the “birds” and “fly” in Example 2.2. Accordingly, we provide
topic-related terms detection in our graph node construction.

3 DISCOURSE-AWARE GRAPH NETWORKS

The proposed discourse-aware graph networks (DAGNs) have two
main components: logic graph construction and logic represen-
tation learning. The logic graph construction contains strategies
of logical unit delimitation, topic-related term detection, graph
node arrangement, and graph edge definition. Meanwhile, logic
representation learning is a graph reasoning process that takes
contextual encoding as input, updates features with the logic graph
constraints, merges multiple features, and is trained end-to-end for
logical QA prediction.

§3.1 introduces the overall strategy of logic graph construction.
§3.2 describes the logic representation learning process. The
overlook of DAGNs is demonstrated in Figure 2.

3.1 Logic Graph Construction
Given a logical reasoning question (passage, question,
options) or (dialogue context, candidate
responses), which is formalized as Sc, c ∈ C as described in
§2.1, we construct logic graphs Gc = {Vc, Ec}, c ∈ C .

We describe the graph node and edge definition separately.
The graph nodes are text’s segmented sentences or sub-sentences,
indicated by discourse-aware connectives. Each node is further
attached with topic-related terms and is assigned a node type. As
for the graph edges, discourse-connective edges and variable edges
link the nodes differently. The overall construction is illustrated in
Figure 3.

3.1.1 Nodes via Discourse Unit Delimitation
It is studied that clause-like text spans delimited by discourse
relations can be discourse units that reveal the rhetorical structure
of texts [34], [41]. We further observe that such discourse units are
essential logical propositions in logical reasoning, such as premise
or conclusion. As the example shown in Figure 3, the “while” in
the passage indicates a comparison between the attributes of the
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Fig. 2. The discourse-aware graph networks (DAGNs) pipeline mainly consists of (1) logic graph construction (2) logic representation learning. The
logic graph construction module takes a logical QA data point as input and constructs logic graphs. The logic representation learning module then
performs graph reasoning upon the constructed logic graphs. Besides, the encoder provides fundamental embeddings for the pipeline.

“analog system” and that of the “digital system”. The “because” in
the option uncovers that “error cannot occur in the emission of
digital signals” as a premise to the conclusion “digital systems are
the best information systems”.

This observation is agreed with informal logic theories [35],
[36], which study uncovering logical structure from the texts and
have conventional in-line logical indicators. For example, acknowl-
edged premise indicators include “since”, “because”, “given that”.
Conclusion indicators include “therefore”, “so”, “consequently”,
and so forth. Most of these indicators are discourse connectives.

Some discourse parsers [42], [43] perform discourse unit
segmentation. However, discourse parsing is still challenging, and
the parsers are not general to new data, such as logical reasoning
questions. For example, SegBot [43] is good on the RST-DT dataset
but does not work well on the standardized exam texts as in the
ReClor dataset. Thus, we customize discourse unit delimitation
strategy for logical texts.

We use the Penn Discourse TreeBank (PDTB 2.0) [34] to help
draw discourse connectives. PDTB 2.0 contains discourse relations
that are manually annotated on the 1 million Wall Street Journal
(WSJ) corpus and are broadly characterized into “Explicit” and
“Implicit” connectives. The former ones are explicitly present in
sentences such as discourse adverbial “instead” or subordinating
conjunction “because”, whereas the latter ones are inferred by
PDTB annotators between successive pairs of text spans split by
punctuation marks such as “.” or “;”. We take all the “Explicit”
connectives as well as common punctuation marks to form our
discourse-aware delimiter library, presented in Table 1. Each logical
text is split into elementary discourse units (EDUs) by all the
delimiters in the library. The EDUs are taken as graph nodes V .

Nodes with Topic-Related Terms. The desired key terms
are those real nouns or phrases that repeatedly appear in the
text. Such nouns or phrases are instantiations of logical variables
in propositions. As a result, replacing such terms with abstract
variables or terms in other topics does not change the process
of reasoning. For example, in Figure 3, the first two sentences
indicate a comparison of “signal” between “analog system(s)” and
“digital system(s)”. Performing abstraction by replacing “signal”
with variable γ, “analog system(s)” with variable α, and “digital
system(s)” with variable β, the propositions are free from the topic
of electronics, but the comparison relation is retained.

We use a sliding window to collect the recurring phrases.
Given the input logical text, stemming is first applied to handle
morphological diversity. Then, the sliding window loops over n-
grams and records the reoccurrence. Next, all the stop words and
overlapped substrings are filtered. The resulting topic-related terms
are attached to the nodes according to which text segment they
belong.

Binary Node Types. The text of logical reasoning QA
consists of two possible structures: (passage, question,
options) or (dialogue context, candidate
responses). We regard passage or dialogue context
as context texts that carry the main logical reasoning structure,
whereas regard (question, options) or candidate
responses as candidate texts that are added to the context texts
and should remain their logical consistency.

According to the discourse unit delimitation, the graph nodes
are naturally from the context texts or the candidate texts. Therefore,
we define two disjoint and independent node sets: context node set
Vu and candidate node set Vv . Vu∪Vv = V and Vu∩Vv = ∅. The
interplay between the two node sets formulates logical consistency
between the context and the candidate texts.

3.1.2 Edge Definition
Discourse-Connective Edges. We directly use the discourse-aware
delimiters to build the discourse-connective edges. The intuition
is that the delimiters indicate the in-line logical relations, as
demonstrated in informal logic theories [35], [36]. Therefore, the
“Explicit” connectives and the punctuation marks are taken as
two types of edges, and we name them explicit-connective edges
and implicit-connective edges, respectively. One edge is added
between the EDUs before and after each delimiter, with the edge
type corresponding to the delimiter. If “Explicit” and “Implicit”
connectives are present simultaneously, we choose only to use the
“Explicit” connectives. Besides, considering the disjoint node sets
Vu and Vv , the discourse-connective edges only connect nodes
within the same node-set. The edges are undirected.

As shown in Figure 3, the two nodes EDU2 = “digital systems
cannot produce signals that ... units” and EDU3 = “With ...
disadvantage” are connected with an implicit-connective edge.
The nodes EDU1 = “A signal in a pure analog system ... detailed”
and EDU2 = “digital systems cannot produce signals that ... units”
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TABLE 1
The discourse-aware delimiter library.

Explicit Connectives once, although, though, but, because, nevertheless, before, for example, until, if, previously, when,
and, so, then, while, as long as, however, also, after, separately, still, so that, or, moreover, in addition,
instead, on the other hand, as, for instance, nonetheless, unless, meanwhile, yet, since, rather, in fact,
indeed, later, ultimately, as a result, either or, therefore, in turn, thus, in particular, further, afterward,
next, similarly, besides, if and when, nor, alternatively, whereas, overall, by comparison, till, in contrast,
finally, otherwise, as if, thereby, now that, before and after, additionally, meantime, by contrast, if then,
likewise, in the end, regardless, thereafter, earlier, in other words, as soon as, except, in short, neither
nor, furthermore, lest, as though, specifically, conversely, consequently, as well, much as, plus, and,
hence, by then, accordingly, on the contrary, simultaneously, for, in sum, when and if, insofar as, else, as
an alternative, on the one hand on the other hand

Punctuation Marks
(Implicit Connectives) . , ; : ? ! <s> </s>

Fig. 3. The logic graph construction is based on in-line discourse
connectives which split the text into segments as logical units and form
the graph nodes.

are joint with the explicit-connective edge when both “,” and
“while” are between them. Besides, the nodes EDU6 and EDU7 are
adjacent in the input text, but there is no discourse-connective edge
between them because they are from different node sets.

As a comparison, we also try different edge linking strategies
for the discourse-connective edges, including random edge linking,
full-connection, and single edge type. We further discuss these
strategies and their benefits to logical reasoning in Section 4.5.1.

Given the binary node sets Vu and Vv , we denote the adjacency
matrices of explicit-connective and implicit-connective edges as:

AE =

(
AEu 0u,v
0v,u AEv

)
and AI =

(
AIu 0u,v
0v,u AIv

)
,

where AE∗ and AI∗ denote the inner-set edge linkings.
Variable Edges. Variable edges connect the disjoint context

nodes Vu and candidate nodes Vv , representing the derivations
between logical propositions. The intuition is that when the
candidate nodes from the correct option are joined with the context
nodes, the logical consistency is retained, while the intervention of
the candidate nodes from the distracting options will disturb the
logic graphs.

For simulating such logical consistency as in logical expression
derivation, edges are added to those EDU nodes that carry at least
one shared variable. Practically, the variables are regarded as the
tagged topic-related terms. Thus, given the disjoint node sets, if a

node pair shares a topic-related term, an edge is added between
them.

As illustrated in Figure 3, EDU2 =“digital systems cannot
produce signals that ... units” and EDU10 =“digital systems are
the best information systems” represent two propositions, and they
share the key term “digital systems”, therefore they are connected
with a variable edge. Similarly, EDU1 =“a signal ... detailed” and
EDU11 =“error cannt occur in the emission of digital signals”
share the key term “signal” and are connected with a variable edge.
The edges are undirected.

Formally, given the binary node sets Vu and Vv , for each node
pair (vu, vv), where vu ∈ Vu and vv ∈ Vv , when there is a key
term κ that κ ∈ vu and κ ∈ vv , a variable edge is added between
them. As a result, the adjacency matrix of the variable edges is:

AS =

(
0u BSu,v
BSv,u 0v

)
,

where BSu,v and BSv,u are incidence matrices between Vu and Vv .

3.2 Logic Representation Learning
Given a logical question and its constructed graphs, we now
build a logic-based model that is end-to-end trained for logic
representation learning. The model takes the question and graphs
as input, encodes the input sequence, conducts edge evolving and
graph reasoning to produce logic representations, then fuses the
fundamental encodings for downstream prediction. The reasoning
module is a plugin module to a general encoder and leverages
the contextual features. Hence the overall model only needs a few
rounds of fine-tuning for feature updates. Figure 4 demonstrates
the learning pipeline.

3.2.1 The End-to-End Learning Pipeline
Text Inputs. For a logical question, the input sequences Sc, c ∈ C
are formulated as described in Section 2.1. Each Sc is further
truncated into tokens Sc = (sc1, s

c
2, ..., s

c
L) where L denotes the

number of tokens.
Graph Inputs. Each Sc has a corresponding logic graph Gc.

The nodes correspond to elementary discourse units (EDUs) in Sc,
which are recorded by Dc(l) = n, a position mapping from token
position l to segment position n. n 6 N , l 6 L with L tokens
and N EDUs in total. The edges are of three types, and the model
takes their adjacency matrices {Ac,E , Ac,I , Ac,S}.

Token Encoding. The Sc, c ∈ C are individually fed into
a shared encoder E and obtain the token embeddings: E(Sc) =
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Fig. 4. The logic representation learning process. Logic graph reasoning starts with node initialization from an encoder and produces logic
representations. The initial token embeddings and the high-level logic embeddings are fused for downstream prediction.

(tc1, t
c
2, ..., t

c
L), where tc∗ ∈ Rb and b is the dimension of a token

embedding.
Logic Edge Reasoning. Given the adjacency matrices

{Ac,E , Ac,I , Ac,S}, a module softly selects the edge types, then
perform matrix multiplication to propagate new edges. The soft
propagated edges are then converted into adjacency matrices
{Ac,(h)}h∈H , and H is the maximum hops of graph reasoning.
The set of adjacency matrices are then updated with the propagated
edges Ā = {Ac,E , Ac,I , Ac,S}

⋃
{Ac,(h)}h∈H . As a result, the

evolved graph Ḡc contains the multi-hop inference edges derived
from hybrid logical relations. The parameters in the soft edge
selection are updated via end-to-end training.

Logic Graph Reasoning. Given the token embed-
dings (tc1, t

c
2, ..., t

c
L) and the graph inputs Dc(l) = n,

{Ac,E , Ac,I , Ac,S}
⋃
{Ac,(h)}h∈H , logic representations are

learned via graph reasoning. Node embeddings are initialized
by merging the token embeddings according to Dc(·), then are
updated via multi-step message propagation through the adjacency
matrices. Afterword, the updated node embeddings are assigned to
each token by Dc(·) again as the learned logic representation for
each token.

Feature Fusion. For each token, the learned high-level
logic representation and the fundamental contextual embedding
are fused. Furthermore, the token embeddings are pooled for
downstream prediction. For each option c, the model obtains a
pooled embedding p̂c.

Option Ranking. Each option embedding p̂c is fed into a
linear layer to get a ranking score. Furthermore, the probabilities
for selecting the options are obtained by a softmax function:

p̂c = Wp̂c + b, (3)

pc =
ep̂

c∑
c∈C

ep̂c
. (4)

Overall Objective Function. Given single question in-
put (passage, question, options) or (dialogue
context, candidate responses), the model is end-to-

end trained by cross-entropy loss with option labels yc:

L = −
∑
c∈C

yclog(pc). (5)

3.2.2 Logic Edge Reasoning
The edge-reasoning mechanism is demonstrated in Algorithm 1.
Given a logic graph with three edge types, we concatenate
their corresponding adjacency matrices with an identity matrix
Ā(0) = [AE ;AI ;AS ; I]. The soft edge selection weighted sum
the adjacency matrices Ā(0), and outputs the soft selected edges
Γ(0):

Γ(0) = Ā(0) · softmax(W(0)). (6)

whereW(0) ∈ RN×N is a weight matrix initialized with normal
distribution.

Then the edge reasoning is performed in an iterative manner
and updates the final edge set Ā. During the process, another soft
edge selection is performed and yields Γ̂. Then given the Γ̂ and the
soft edge matrix from the last iteration Γ(i−1), an edge propagation
is performed by matrix multiplication between them, and produces
the i-hop soft edge matrix:

Γ(i) = Γ(i−1)Γ̂. (7)

The resulting Γ(i) is converted into a new adjacency matrix
Ā(i) if the soft edge element exceeds a threshold δ, which is added
to the final edge set Ā.

To further increase the diversity of hybrid edges, the edge
reasoning process is repeated for d times and also updates Ā. The
logic graph is then updated with the hybrid edges G = (V, E∪EH),
where EH is the edge set corresponds to Ā.

3.2.3 Logic Graph Reasoning
This section illustrates the detailed logic representation learning
process. This process is conducted via graph reasoning by a graph
neural network. It consists of node initialization, graph reasoning,
and logic embedding assignment for each token.

Node Initialization. The graph nodes are EDUs, therefore
they are initialized with token embeddings to leverage contex-
tual information. Given token embeddings (t1, t2, ..., tL) and
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Algorithm 1: Logic Edge Reasoning

Input: A logic graph G with explicit-connective edges AE ,
implicit-connective edges AI , and variable edges AS ,
identity matrix I , edge-extraction threshold δ, the max
hop H

Output: The set of hybrid logical edges Ā

1 // Initialization

2 Ā(0) ← [AE ;AI ;AS ; I], W(0) ← N (0, 1)

3 Γ(0) ← edgeSelection(Ā(0),W(0))
4 Ā← ∅
5 // Edge Reasoning

6 for i = 1 : H do
7 W(i) ← N (0, 1)

8 Γ̂← edgeSelection(Ā(0),W(i))

9 Γ(i) ← edgePropagation(Γ(i−1), Γ̂)

10 Ā(i) ← edgeExtraction(Γ(i), δ)

11 Ā← Ā ∪ {Ā(i)}
12 end
13 return Ā

the logical unit delimitations D(l) = n, the node embedding
corresponding to the n-th EDU (denoted as Un) is then calculated
via v(0)

n = M(
∧

D(l)∈Un
tl), where D(l) ∈ Un denotes the tokens

in the n-th EDU and M is the merging function. Specifically, we
use a trivial M, which is sum pooling the token embeddings:
v
(0)
n =

∑
D(l)∈Un

tl.

Graph Reasoning. Given a logic graph G = (V, E), where
E = EE ∪EI ∪ES ∪EH , for a node vi ∈ V , Ni = {j|(vj , vi) ∈
E} indicates its neighbors. The node embeddings are updated via:
the explicit-connective edges EE , the implicit-connective edges EI ,
the variable edges ES , and the hybrid edges EH . The corresponding
adjacency matrices are AE , AI , AS and Ā.

For stability, we first normalize the variable matrix AS =(
0u BSu,v
BSv,u 0v

)
with:

B̂Su,v = D−1u,vB
S
u,v, B̂Sv,u = D−1v,uB

S
v,u (8)

where D−1u,v is the degree matrix of BSu,v and similar to D−1v,u.
Then node features are updated via multiple graph learning

layers to obtain multi-hop logic representations. For node vi, its
initial node embedding is v

(0)
i . Given node embedding v

(k−1)
i

from the (k − 1)-th layer, a node weight is first calculated via
linear transformation with a sigmoid function σ:

αi = σ(Wα(v
(k−1)
i ) + bα), (9)

then message propagation is conducted by simultaneously consid-
ering three relation types and taking information from the neighbors
vj ∈ Ni:

ṽ
(k−1)
j = Wγv

(k−1)
j + bγ , (10)

ṽ
(k−1)
i =

1

|Ni|
(
∑
j∈Ni

∑
E∈{E,I,S}

αjA
E
jiṽ

(k−1)
j ). (11)

The node embedding for the k-th layer is finished by joining
the embeddings:

v
(k)
i = ReLU(Wηv

(k−1)
i + ṽ

(k−1)
i + bη), (12)

where Wη and bη are weight and bias respectively.

Global Graph Representation. The updated node embed-
dings {vi}i∈N are fed into a dot-product self-attention layer [44]
and obtains {vGi }i∈N , which are then weighted summed into the
global graph representation. The weights αGi are simply set to 1 in
this case.

vG =
∑
i∈N

αGi v
G
i . (13)

Token-wise Logical Embeddings. The updated node em-
beddings are assigned to each token. For each l ∈ L, based on
D(l) = n, we have:

tλl = vn. (14)

3.2.4 Feature Fusion
After logic representation learning, each token, now has an
original token embedding, and a logical embedding. The start-
token embedding pairs to the global graph representation vG,
representing the correspondence between the text and the structure.
The embeddings are fused with a hierarchical fusion, followed by
pooling.

Hierarchical Fusion. For each token scl ∈ Sc, l 6 L,
the fundamental token embeddings tl and the high-level logic
embeddings tλl are added up, followed by a layer normalization
[45]:

t̂l = LayerNorm(tλl + tl). (15)

The resulting token embedding sequence (t̂0, t̂1, t̂2, ..., t̂L)
are further fed into a bidirectional GRU [46] with residual structure
[47] and layer normalization:

t̄l = Bi-GRU(t̂l), (16)

el = LayerNorm(t̂l + t̄l). (17)

Segment-wise Pooling. The hierarchically fused embeddings
(e1, e2, ..., eL) are separated into three segments: the first-token
segment e1, the passage segment {ep∗} = (e2, ..., eM ), and
question-option segment {eo∗} = (eM+1, ..., eL), 1 < M < L.
The passage embeddings and the question-option embeddings are
further merged into two single embeddings ep and eo via segment-
wise attention pooling, respectively:

αp =
ee

p
m∑

m∈[2,M ] e
{ep

m}
, ep =

∑
m∈[2,M ]

αpe
p
m, (18)

αo =
ee

o
m∑

m∈[M+1,L] e
{eo

m}
, eo =

∑
m∈[M+1,L]

αoe
o
m. (19)

At last, the three segment-wise embeddings are integrated via
concatenation and a single-layer perceptron with normalization:

e = [e1; ep; eo], (20)

p̂ = LayerNorm(GeLU(Wσe + bσ)). (21)

4 EXPERIMENT

To validate the logic graph construction and the representation
learning, we conduct experiments on three textual logical reasoning
datasets, including logical reasoning QA and multi-turn dialogue
reasoning. We analyze and discuss graph construction and model
components in representation learning. Besides, we conduct a
generalization test among the datasets via zero-shot learning.
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TABLE 2
Experimental results on ReClor dataset. Accuracies (%) are reported.

Test-E and Test-H represent the EASY and HARD set of ReClor testing,
respectively.

Method ReClor

Dev Test Test-E Test-H

Chance 25.00 25.00 25.00 25.00
Human - 63.00 57.10 67.20
Ceiling Performance - 100.00 100.00 100.00

Semantic Matching
FastText [48] 32.00 30.80 40.20 23.40
Bi-LSTM 27.80 27.00 26.40 27.50

Transformer-based PLMs
GPT [23] 47.60 45.40 73.00 23.80
GPT-2 [49] 52.60 47.20 73.00 27.00
BERT-Large-MC [24] 53.80 49.80 72.00 32.30
RoBERTa-Large-MC [25], [50] 62.60 55.60 75.50 40.00

Graph Models
Focal Reasoner (RoBERTaLarge) [51] 66.80 58.90 77.05 44.64
DAGNs (RoBERTaLarge) 66.80 61.00 79.09 46.79

Data-Augmented Methods
LReasoner (RoBERTaLarge) [52] 66.20 62.40 81.40 47.50
LReasoner (RoBERTaLarge)† 64.70 58.30 77.60 43.10
MERIt (RoBERTaLarge) [53] 67.80 60.70 79.60 45.99
DAGNs + LReasoner (RoBERTaLarge) 69.00 61.90 79.55 48.04
DAGNs + MERIt (RoBERTaLarge) 68.40 62.40 80.45 48.21
† This result is reproduced and reported by MERIt [53].

4.1 Datasets

ReClor [2] is a multiple-choice QA dataset with 6,138 logical
reasoning questions modified from standardized tests such as
GMAT and LSAT. The questions are split into train/dev/test sets
with 4,638/500/1,000 questions respectively. ReClor contains 17
question types, including questions about logical components (such
as “Necessary Assumptions”, “Sufficient Assumptions”), logical
relations (such as “Strenghthen”, “Weaken”), reasoning evaluation
(such as “Evaluation”, “Technique”) and so forth. The passages
contain a mass of complex sentences with uncommon words. The
training set and the development set are available. The test set
is hold-out and split into an EASY subset and a HARD subset
according to the performance of the BERT-base model [24]. The
test results are obtained by submitting the test predictions to the
leaderboard. The evaluation metric is accuracy.

LogiQA [3] is also a multiple-choice QA dataset with logical
reasoning questions. It consists of 8,678 questions collected from
the National Civil Servants Examinations of China and manually
translated into English by professionals. LogiQA contains 5
question types. It shares some of the reasoning types with ReClor,
for example, “Sufficient Conditional Reasoning”. The texts are less
lexically complex than that in ReClor. The dataset is randomly split
into train/dev/test sets with 7,376 / 651 / 651 samples respectively.

MuTual [4] is a multi-turn dialogue reasoning dataset that
evaluates logical reasoning in retrieval-based dialogue systems.
The response selection task has four candidate responses for each
dialogue, all relevant to the dialogue context, but only one is
logically correct. The distracting answers are highly lexically
overlapped with the context; hence it is challenging to solve text
matching solely. The modified version MuTualplus includes a safe
response (e.g., “Could you repeat that?”) among the candidates and
is more challenging in logical reasoning. The evaluation metrics
include recall at position 1 (R@1), recall at position 2 (R@2), and

TABLE 3
Experimental results on LogiQA dataset. Accuracies (%) are reported.

Method LogiQA

Dev Test

Chance 25.00 25.00
Human - 86.00
Ceiling - 95.00

Lexical Matching
Word Matching [54] 27.49 28.37
Sliding Window [55] 23.58 22.51

Deep QA Systems
Stanford Attentive Reader [5] 29.65 28.76
Gated-Attention Reader [6] 28.30 28.98
Co-Matching Network [6] 33.90 31.10

Transformer-based PLMs
BERT-Large-MC [24] 34.10 31.03
RoBERTa-Large-MC [25], [50] 35.02 35.33

Graph Models
Focal Reasoner (RoBERTaLarge) [51] 41.01 40.25
DAGNs (RoBERTaLarge) 39.63 42.09

Data-Augmented Methods
LReasoner (RoBERTaLarge)‡ [52] 36.10 38.86
MERIt (RoBERTaLarge) [53] 42.40 41.50
DAGNs + LReasoner (RoBERTaLarge) 40.86 42.24
‡We applied the official code on the LogiQA data.

Mean Reciprocal Rank (MRR) in 4 candidate responses. Since the
passages are dialogues between two speakers, this dataset has more
verbal and informal texts than ReClor and LogiQA. The dataset
is randomly split into training, development, and test sets with an
8:1:1 ratio.

4.2 Implementation Details

Logic Graph Construction. For multiple-choice QA (ReClor
and LogiQA), each question contains a passage, a question,
and several candidate options. Similarly, each sample contains
a dialogue context and multiple candidate responses in the dialogue
reasoning dataset. Therefore, considering the different contexts of
the candidates, we construct logic graphs for each candidate by
pairing every candidate with the passage and the question.
Graph Reasoning. For ReClor and LogiQA, we set the maximum
length of the input token sequence to 256. The input format
is “<s> passage </s> question || option </s>”,
where <s> and </s> are the special tokens for RoBERTa [25]
model, and || denotes concatenation, following previous works
[2], [3]. And the number of stacked GNN layers is 2 for ReClor
and 3 for LogiQA. The model is optimized with AdamW [58] with
the learning rates 1e-5 for graph reasoning and 5e-6 for parameters.
The epsilon is set to 1e-6. A linear scheduler is used and the
warmup steps are set to 4,000.

For MuTual, the maximum input length is set to 320. For the
dialogue context sequence, we insert a separator token (“</s>” for
RoBERTa and “[SEP]” for ELECTRA) between each adjacent
utterance pair, following [57]. And the GNN iteration step is 1. The
model is optimized with AdamW [58] with a learning rate of 4e-6
and an epsilon of 1e-8. A linear scheduler is used and the warmup
proportion is set to 1%.

For all datasets, the edge reasoning is performed in 2 hops. The
edge-extraction threshold is set to 0.25. The edge repetition d is
set to 2. The hidden sizes in GRU and perceptron are also set to
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TABLE 4
Experimental results on the MuTual development set. Recalls (R@1, R@2) and Mean Reciprocal Rank (MRR) are reported.

Method MuTual MuTualplus

R@1 R@2 MRR R@1 R@2 MRR

Chance 25.00 50.00 60.40 25.00 50.00 60.40
TF-IDF 27.60 54.10 54.10 28.30 53.00 76.30
Dual LSTM [56] 26.60 52.80 53.80 - - -
SMN [8] 27.40 52.40 57.50 26.40 52.40 57.80
DAM [9] 23.90 46.30 57.50 26.10 52.00 64.50

Transformer-based PLMs
BERT-Base [24] 65.70 86.70 80.30 51.40 78.70 71.50
RoBERTa-Base [25] 69.50 87.80 82.40 62.20 85.30 78.20
GPT-2 [49] 33.50 59.50 58.60 30.50 56.50 56.20
GPT-2-FT [49] 39.80 64.60 62.80 22.60 57.70 52.80
BERT-Base-MC [24] 66.10 87.10 80.60 58.60 79.10 75.10
RoBERTa-Base-MC [25] 69.30 88.70 82.50 62.10 83.00 77.80
RoBERTa-Large-MC [25] 85.10 94.47 91.63 73.25 91.76 85.11

Dialogue Systems
Focal Reasoner (RoBERTaBase) [51] 73.40 90.30 84.90 63.70 86.10 79.10
MDFN (RoBERTaLarge) [57] 84.50 95.30 91.40 - - -
MDFN (ELECTRALarge) [57] 92.30 97.90 95.80 - - -

Ours
DAGNs (RoBERTaLarge) 86.79 96.50 92.73 78.22 92.55 88.14
DAGNs (ELECTRALarge) 92.55 98.19 95.97 82.73 95.26 90.51

1,024. The weight decay is set to 0.01 for all. The overall dropout
rate is 10%. The model is trained for 30 epochs with a batch size
of 16 on one Nvidia Tesla V100 GPU.

4.3 Results in Supervised Scenarios
4.3.1 ReClor Dataset
Compared Methods. FastText [48] and Bi-LSTM learns seman-
tics matching. FastText learns n-gram features for text classification,
whereas Bi-LSTM learns contextual features with recurrent net-
work architecture. Transformer-based pre-trained language models
(PLMs) learn contextual embeddings from large-scale corpora.
We also compare with the state-of-the-art Focal Reasoner [51],
LReasoner [52], and MERIt [53]. The Focal Reasoner is a graph-
based model that builds ad-hoc graphs with entity-based nodes
and coreference edges. The LReasoner trains the PLMs with a
contrastive learning framework, and the negative samples are
constructed by pre-defined logical expressions. MERIt performs
domain-specific pre-training also in a contrastive learning manner,
where the augmented data is constructed via graph meta-paths. To
conduct fair comparisons with LReasoner and MERIt, we train
DAGNs by including the augmented negative data. The resulting
models are denoted as “DAGNs + LReasoner” and “DAGNs +
MERIt”, respectively. For “DAGNs + LReasoner”, logic graphs for
the negative samples are constructed in the same manner. Then the
model is fine-tuned with the contrastive learning objective function
follows [52]. For “DAGNs + MERIt”, logic graphs for the negative
instances are constructed as usual. The model is fine-tuned with the
pre-trained checkpoints from [53]. The compared Focal Reasoner,
LReasoner, MERIt, and the proposed DAGNs all use RoBERTaLarge

as the backbone PLM for a fair comparison.
Results. Table 2 demonstrates the results on the ReClor
dataset. The DAGNs (RoBERTaLarge) outperform Focal Reasoner
(RoBERTaLarge) in both ReClor and LogiQA, demonstrating the
effectiveness of the logic graph-constrained learning. Moreover, the
results of “DAGNs + LReasoner (RoBERTaLarge)” and “DAGNs +
MERIt (RoBERTaLarge)” also outperform their counterparts. This

indicates that the structural constraints are still beneficial regardless
of training schemes. Further, compared to the PLM counterpart
RoBERTaLarge, DAGNs (RoBERTaLarge) show significant improve-
ments. This indicates that the logic graphs provide useful informa-
tion beyond the contextual embeddings learned from the plain texts,
which is beneficial to reasoning. Moreover, the improvements
on the test-HARD set are significant. DAGNs (RoBERTaLarge)
achieve 46.79%, which is comparable to the strong LReasoner
(RoBERTaLarge) and MERIt (RoBERTaLarge) with augmented data.
“DAGNs + LReasoner (RoBERTaLarge)” and “DAGNs + MERIt
(RoBERTaLarge)” also show great improvements over LReasoner
(RoBERTaLarge) and MERIt (RoBERTaLarge), respectively. The
overall observations indicate the effectiveness of DAGNs and
the structural logic representations are beneficial for challenging
reasoning questions.

4.3.2 LogiQA Dataset

Compared Methods. The word matching [54] and sliding window
[55] perform lexical matching between the passage-question pair
and candidate answers. Deep QA systems, including Stanford
Attentive Reader [5], Gated-Attention Reader [6], and Co-Matching
Network [7] calculate semantic similarity or use fine-grained
attention mechanisms to match the context and the candidate
answers. The performances are around chance, which indicates
that the lexical or semantic matching is insufficient for catching
the logic behind the texts. Transformer-based pre-trained language
models (PLMs) perform better than lexical or semantic matching,
but the results are still inferior. It is indicated that the powerful
contextual embeddings partially help the logical reasoning QA,
but the inferiority of the lack of logical structure is obvious. We
also compare with the state-of-the-art methods Focal Reasoner
[51], LReasoner [52], and MERIt [53]. Similar as in the ReClor
dataset, the compared Focal Reasoner, LReasoner, MERIt, and the
proposed DAGNs all use RoBERTaLarge as the backbone PLM for
a fair comparison.
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TABLE 5
Zero-shot transfer between ReClor and LogiQA compared with

supervised learning results. “RoBERTa-L” means “RoBERTa-Large”.
“DAGNs-CT” indicates full training on the target dataset after zero-shot

transfer.

Method LogiQA→ ReClor ReClor→ LogiQA

Dev Test Test-E Test-H Dev Test

RoBERTa-L 41.40 38.30 41.82 35.54 35.79 37.94
DAGNs 44.20 41.90 46.59 38.21 41.47 39.94
DAGNs-CT 60.60 55.40 77.73 37.86 41.63 43.78

Method ReClor LogiQA

Dev Test Test-E Test-H Dev Test

RoBERTa-L 62.60 55.60 75.50 40.00 35.02 35.33
DAGNs 66.80 61.00 79.09 46.79 39.63 42.09

TABLE 6
Zero-shot transfer from ReClor to MuTual and LogiQA to Mutual

compared with supervised learning results. “DAGNs-CT” indicates full
training on the target dataset after zero-shot transfer.

Method ReClor→ MuTual ReClor→ MuTualplus

R@1 R@2 MRR R@1 R@2 MRR

RoBERTa-Large 41.31 69.64 64.61 37.25 63.43 61.21
DAGNs 48.53 74.60 70.56 45.37 71.90 67.67
DAGNs-CT 80.70 92.21 90.53 73.14 90.07 85.46

Method LogiQA→ MuTual LogiQA→ MuTualplus

R@1 R@2 MRR R@1 R@2 MRR

RoBERTa-Large 25.96 51.58 58.00 21.44 48.53 55.68
DAGNs 58.24 81.38 76.94 48.42 75.73 70.14
DAGNs-CT 83.63 93.91 91.91 74.15 90.97 85.98

Method MuTual MuTualplus

R@1 R@2 MRR R@1 R@2 MRR

RoBERTa-Large 85.10 94.47 91.63 73.25 91.76 85.11
DAGNs 86.79 96.50 92.73 78.22 92.55 88.14

Results. Table 3 shows the results on the LogiQA dataset.
DAGNs (RoBERTaLarge) also outperform the Focal Reasoner
(RoBERTaLarge) on the LogiQA test set. Moreover, The DAGNs
(RoBERTaLarge) also outperform the data-augmented LReasoner
(RoBERTaLarge) and MERIt (RoBERTaLarge) on the test set. Fur-
thermore, using the training paradigm in LReasoner, “DAGNs
+ LReasoner (RoBERTaLarge)” also show superiority over LRea-
soner (RoBERTaLarge) and MERIt (RoBERTaLarge). The results
demonstrate that this method is generally effective for logical
reasoning questions, regardless of training paradigms. The logic
graph constraint provides beneficial guidance to representation
learning and is superior to augmented plain texts.

4.3.3 MuTual Dataset
Compared Methods. The TF-IDF, Dual LSTM [56], SMN [8],
and DAM [9] conduct semantic text matching between dialogue
context and candidate responses by using similarity of feature
attention. According to the recall at positions 1 and 2, these methods
select the correct responses by chance. The MRRs are also all lower
than chance. This is not surprising considering the high lexical
overlap between the context and the negative responses. For pre-
trained LMs, GPT [23], and GPT-2 [49] perform as poorly as
the text-matching methods, indicating that the generative models
are inferior in reasoning. BERT [24] and RoBERTa [25] show

TABLE 7
Ablation of graph representation and structure on ReClor.

Method ReClor

Dev Test Test-E Test-H

DAGNs 66.80 61.00 79.09 46.79

Graph representation
random node embeddings 60.60 56.40 76.36 40.71

Graph structure
homogeneous variable edges 63.60 59.30 77.73 44.82
fully-connected edge linking 63.00 56.10 74.32 41.79
random edge linking 61.00 55.90 74.09 41.61
single edge types 62.80 57.70 75.00 44.11
clause nodes 63.40 56.60 75.23 41.96
sentence nodes 60.40 57.30 74.32 43.93

TABLE 8
Ablation of model components (ReClor dev and test accuracy (%)). ER
indicates the edge-reasoning mechanism. GB indicates the global graph
representation. NT indicates binary node types. VE indicates variable

edges.

Method ReClor

Dev Test Test-E Test-H

DAGNs 66.80 61.00 79.09 46.79
w/o GB 62.00 60.10 77.73 46.25
w/o ER 66.80 59.80 78.64 45.00
w/o ER, GB 67.40 59.50 78.41 44.64
w/o NT 63.40 58.70 77.05 44.29
w/o NT, VE. [1] 65.20 58.20 76.14 44.11
w/o graph reasoning 55.20 52.00 74.77 34.11

better performances, especially the RoBERTa-Large model. We
also compare with Focal Reasoner [51] and MDFN [57]. Focal
Reasoner is a graph-based model with entity-based nodes and
coreference relations. MDFN uses multiple attention masks to
decouple the contextual representations in utterance-aware and
speaker-aware manners, then fuse the representation with a gate.
We follow MDFN to use RoBERTaLarge and ELECTRALarge as the
backbone PLMs for a fair comparison.
Results. Table 4 shows the compared results on the MuTual
datasets. DAGNs surpass the compared methods, including graph-
based model and attention mask-based decoupling-fusion network.
The results demonstrate that our proposed method is effective for
less formal text such as multi-turn dialogue.

4.4 Results in Zero-shot Scenarios
We conduct zero-shot transfer experiments among the three datasets
to see whether the constructed logic graph structure helps the
models with unseen logical reasoning questions. Considering the
similarity between ReClor and LogiQA and the distinguishment of
MuTual, we first train the models on LogiQA, then conduct direct
testing on the ReClor development set and test set in a zero-shot
manner, and vice versa. We then train the models on ReClor or
LogiQA, respectively, then evaluate the MuTual development set
in a zero-shot way. For further comparison, we conduct continue
full training on the target datasets. The results are demonstrated in
Table 5 and Table 6.

4.4.1 Zero-shot Transfer between ReClor and LogiQA
Comparing the results in the zero-shot setting and that in the
supervised learning setting, it is surprising that the pre-trained LM
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Fig. 5. Performance comparison among DAGNs, DAGNs with non-local GNNs, and DAGNs without the edge-reasoning mechanism over multiple
GNN layers.

and our DAGNs both show generality to some extent. Transferring
from LogiQA to ReClor, RoBERTa-Large reaches 38.30% in the
test set, which is only 17.3 points behind that in the supervised
learning setting. DAGNs (LogiQA → ReClor) achieve 41.90%
in the test set compared to 59.50% in the supervised learning
setting. Interestingly, the generality in the EASY subset is harder.
Both PLM and DAGNs accuracies are around 40% in the zero-
shot setting, but they achieve over 75% in the supervised learning
setting. But the transfer in the HARD subset does not lose much.
The performances in the zero-shot setting are over 35%, being
comparable to the supervised-learning counterparts. Moreover,
DAGNs (ReClor → LogiQA) achieve 41.47%/39.94% on the
development and test sets, comparable to 39.63%/42.09% of
the fine-tuning model. The experimental results indicate that
the generality of DAGNs is better than RoBERTa-Large, both
transferring from LogiQA to ReClor and from ReClor to LogiQA.
It is indicated that the DAGNs improve the generality with the
logic graphs and logic representations.

Moreover, after fine-tuning the zero-shot models on the target
data, DAGNs-CT (ReClor→ LogiQA) reaches 43.78% on the test
set, DAGNs-CT (LogiQA→ ReClor) reaches 55.40% on the test
set, and over 30% on the test-EASY set, while the performance
on test-HARD is only 0.35% inferior, which is still comparable. It
is indicated that the transfer does not harm the performance given
that the source and target data are different in reasoning types and
data distribution.

4.4.2 Zero-shot Transfer to MuTual
The RoBERTa-Large struggles with the transfer, especially from
LogiQA. RoBERTa-Large (LogiQA→ MuTual/MuTualplus) only
achieves results around chance. This may be due to that the MuTual
dataset shares less familiarity with the ReClor or LogiQA dataset,
and the ReClor dataset is more challenging with more complex
sentences and logical structures, so learning from ReClor makes
solving the MuTual dataset easier. In contrast, the LogiQA provides
less beneficial structural information for solving MuTual.

DAGNs (ReClor→MuTual/MuTualplus) outperform RoBERTa-
Large (ReCLor → MuTual/MuTualplus). Similar results are ob-
served between DAGNs (LogiQA → MuTual/MuTualplus) and
RoBERTa-Large (LogiQA→ MuTual/MuTualplus). The improve-
ments of transferring to MuTualplus are more significant than trans-
ferring to MuTual, which relives the struggle of RoBERTa-Large.
The observations are coherent with that in the ReClor→ LogiQA
setting. The results demonstrate that given MuTual/MuTualplus are
significantly different from ReClor/LogiQA in data distribution
and reasoning types, DAGNs show superiority in logical reasoning
transfer.

Further fine-tuning on the MuTual/MuTualplus results in signifi-
cant performance growth. R@1 of DAGNs-CT (ReClor/LogiQA→
MuTual) are 80.70% and 83.63%, of DAGNs-CT (ReClor/LogiQA
→ MuTualplus) are 73.14% and 74.15%, respectively, which are
comparable to their fine-tuning counterparts. The result improve-
ments further demonstrate that DAGNs learn beneficial and general
logic representations.

4.5 Ablation Study
We conduct an ablation study further to explore the benefits of each
part of our model. We take a close look at the model components,
the importance of the graph components, and the effect of GNN
layer stacks.

4.5.1 Importance of Graph Components
We further validate each graph component. Since the logic graph
structure is significant to logical reasoning, we carefully modify
the components of the logic graph and observe the performances.
The results are shown in Table 7.

We first vary the graph representation. The node embeddings
in DAGNs are initialized with the EDU embeddings merged from
the contextual token embeddings. We modify the pre-trained and
merged EDU features with randomly initialized embeddings. The
development set accuracy drops to 60.60% and the test set to
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Fig. 6. Performance comparison on question types in the ReClor test
set. The numbers in parenthesis mean the number of samples in each
question type over the test set scale.

56.40%. It is worth noting that the accuracy in the HARD subset
falls from 44.64% to 40.71%. It is a significant descent and
demonstrates that the node features initialized from contextual
embeddings are beneficial to logic graph reasoning.

We then vary the graph structure by modifying the edges and the
nodes. We make two changes to the edges: (1) modifying the edge
linking and (2) modifying the edge type. For edge linking, we first
add variable edges within the context nodes and the candidate nodes
(homogeneous variable edges), respectively. The performances drop
to 63.60% on the development set, and 59.30% / 77.73% / 44.82%
on the test / test-EASY / test-HARD sets, respectively. The results
indicate that the homogeneous variable edges are redundant to the
logic graphs. A possible reason is that the discourse connective
edges within the context nodes and the candidate nodes are dense
to some extent, so the homogeneous variable edges do not provide
further information for the node feature update. Then, we ignore
discourse relations and connect every pair of nodes, turning the
graph fully connected. The resulting development accuracy drops to
63.00%, and test accuracy drops to 56.10%. Moreover, we remove
all the edges from the logic graphs and randomly assign edges
among the nodes with a Bernoulli distribution. The development set
accuracy drops to 61.00%, and the test set the precision to 55.90%.
The performances indicate that the fully-connected edge linking
has unnecessary connections, while the random edge linking misses
some linkings with helpful information. It reveals that in the logic
graph we built, edges link EDUs in reasonable manners.

For uncovering the contribution of edge types, instead of the
differentiation of explicit discourse relations and implicit ones,
all edges are regarded as a single type. With a single edge type,
the model reaches 62.80% on the development set and 57.70%
on the test set, which is 4.6% and 1.8% inferior to the entire
model. Therefore the two discourse-related edge types provide
some helpful information to the model.

The nodes in the logic graphs act as reasoning units and are
critical to logic representation learning. In substitution for EDUs,
we use clauses or sentences as graph nodes. To obtain clause
nodes, we remove “Explicit” connectives during discourse unit
delimitation so that delimiters are only punctuation marks. For
sentence nodes, we further reduce the delimiter library to solely

period (“.”). The development and test accuracies drop to 63.40%
and 56.60% with the modified graphs with clause nodes. When
replaced with coarser sentence nodes, the performance drops to
60.40% and 57.30%. This indicates that clause or sentence nodes
carry less discourse information and act poorly as logical reasoning
units.

4.5.2 Model Components
To see the benefits of each component in the representation learning,
we carefully remove them from the model, and the results on
ReClor are shown in Table 8. We first remove the edge-reasoning
mechanism, and the results drop to 66.80%/59.80%/78.64%/45.00%
on the development/test/test-EASY/test-HARD sets, which indi-
cates the effectiveness of the edge-reasoning mechanism. Then, we
remove the global node representation, from both full DAGNs
and the DAGNs without edge-reasoning mechanism. Further
performance drops are observed. It is indicated that the global
graph representation catches some logical consistency between the
context and candidates. We then reduce the node types to only one
type. As a result, the logic graphs only have a single node type.
The dev accuracy drops dramatically from 67.40% to 63.40%. The
test accuracy is slightly inferior, from 59.50% to 58.70%. Then,
the variable edges are further removed from the model. The test
accuracy further declines to 58.20%. Therefore, the logic graphs
have reasonable structures for the logical reasoning QA task.

We further remove the whole graph reasoning operation. As
a result, the hierarchical fusion is removed. The performance
drops dramatically. It is indicated that the lack of graph reasoning
leads to the absence of logic-aware features and degenerates the
performance. It demonstrates the necessity of logical structures.

4.5.3 Effect of GNN Layer Stacks
We change the number of the stacked GNN layers in our model
to see how the graph reasoning steps affect the performances.
We compare the performances between the full DAGNs and the
model without the edge-reasoning mechanism. We run both the
DAGNs with and without the edge-reasoning mechanism in this
setting. Moreover, to compare the edge-reasoning mechanism
with the non-local graph neural networks [59], [60] for solving
the over-smoothing problem [61], [62] over the GNN layer stacks,
we also compare with the DAGNs with non-local GNNs [59] as
a replacement of the edge-reasoning mechanism. The results are
demonstrated in Figure 5.

Overall, the results show that the full DAGNs with the edge-
reasoning mechanism perform steadily over multiple GNN layers,
while the model without the edge-reasoning mechanism shows
fluctuation and deterioration when the GNN iteration grows.
Specifically, the DAGNs without edge-reasoning mechanism reach
peak performances with around two-step aggregation, after which
decreases due to the general over-smoothing problem. In contrast,
performance gains are observed in the full DAGNs, especially on
the test and test-HARD sets. This indicates that shallow aggregation
is insufficient for complex logical reasoning tasks, while the
learnable edge-reasoning mechanism greatly relieves the over-
smoothing problem in graph reasoning so that the model achieves
deeper multi-hop reasoning as required. One of the reasons is that
the soft edge propagation in the edge-reasoning mechanism reasons
new edges, which provides shortcuts for meaningful multi-hop
relations and then accelerates the effective node feature update.
As a result, the graph model takes fewer iterations to learn the
multi-hop relations.
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Fig. 7. Visualization of DAGNs with the learned hybrid edges and node weights. In this case, the correct answer is option A.
The DAGNs give the correct answer.

Moreover, the DAGNs with non-local GNNs also show perfor-
mance stability over multiple GNN layers, but are generally inferior
to the DAGNs with the edge-reasoning mechanism. The results
indicate that the edge-reasoning mechanism is superior in logical
reasoning problems. The reason can be that the “attention-guided
sorting” in the non-local GNNs pulls the distant nodes together
according to a randomly initialized calibration vector, which is
less informative than the edge propagation in the edge-reasoning
mechanism to understand the logical relations.

4.6 Question Types
The ReClor dataset contains multiple question types corresponding
to diverse logical reasoning capabilities. We evaluate models in
each question type, and the results are demonstrated in Figure 6.

Generally speaking, DAGNs perform better on most types of
problems. In question types such as “Evaluation”, “Technique”, and
“Most Strongly Supported” that have high demands for knowledge
of logical structures, the performance boosts over baseline models
are significant. Therefore, the logic graphs are helpful to identify
logical roles, such as the conclusion. Moreover, the questions
of “Weakening” and “Implication” are extremely challenging,
and DAGNs also achieve improvements. It is indicated that the
constructed logic graphs provide weakening relation and entailment
relation information. Other types of questions in which DAGNs
perform well are “Strengthen”, “Conclusion/Main Point”, “Explain
or Resolve”, “Principle” and so forth.

In three question types, “Match Flaws”, “Identify a Flaw”, and
“Necessary Assumption”, DAGNs perform inferior to the RoBERTa-

Large, especially in the challenging “Match Flaws” questions.
Therefore, although the logic graphs and representation learning
are beneficial overall, they do not cover each logical reasoning
type. The “Match Flaws” questions also require awareness of
logical structures and paring the structures in the passage and
the options. Since the texts are logically flawed, the logic graphs
directly constructed from the texts are not logically sound. Hence
the learned logic representations are less desirable.

4.7 Visualization

To further investigate the interpretability of the model, we visu-
alize the generated hybrid edges and the learned node weights,
respectively.

We first visualize the hybrid edges generated by the edge-
reasoning mechanism, and two cases are shown in Figures 7 and 8.
In option A in Figure 7, the edge-reasoning mechanism generates a
3-hop hybrid edge between node (8) and node (10), which bridges
the question node and the key statement in the candidate. Moreover,
the edge-reasoning mechanism learns the 2-hop edges (node (7),
node (8)) and (node (7), node (9)). As node (7) is the conclusion,
the edge-reasoning mechanism builds the hybrid edges for node (7)
to help understand the argument and find the flaw. In contrast, in
option C in this case, the key connections are lacking. Similarly, in
the case of Figure 8, in option B, the model connects node (0) and
node (4), which are the speaker and his/her opinion. The learned
edges between node (9) and node (10), and between node (9) and
node (11), builds connections between the speaker’s opinion, the
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Fig. 8. Visualization of DAGNs with the learned hybrid edges and node weights. In this case, the correct answer is option C.
The DAGNs give the correct answer.

question, and the assumption in the candidate answer, which help
find the inconsistency between (9) and (11). In option C, the graph
has dense connections, especially between the context nodes and
candidate nodes. The generated hybrid edges are relatively few. A
reason is that the constructed edges are sufficient for identifying
the logical consistency.

Moreover, we visualize the graph node weights from multiple
model variants, and two cases are presented in Figures 9 and 10
here. The node weights are the αi in Expression (7) demonstrated
in Section 3.2.3 in the manuscript. The five model variants are (a)
the full model DAGNs, (b) the DAGNs learned from LogiQA and
then perform on the ReClor in a zero-shot manner, (c) the DAGNs
without the edge-reasoning mechanism, (d) The DAGNs with
fully-connected edge linking, and (e) the DAGNs with sentence
nodes. In Figure 9, we observe that models (a) and (b) show
better discrimination among the options as well as connections
between the passage and the option. Interestingly, the zero-
shot model (b) shows meaningful node attendance as the full-
training model. Model (c) shows that without the learnable edge-
reasoning mechanism, the model still being able to attend to the
significant node such as node (3) that indicates an entailment, but
the discrimination among the options is weaker. Model (d) shows
that the model gives almost even attention to the sentences in the
passage, nodes (2) and (5) have the highest weights, showing that
the model is more interested in real entities and events, but it is less

aware of the conclusion or premise. Model (e) with sentence nodes
still attends to the conclusion sentence, but the coarse-grained
delimitation does not provide sufficient information for telling the
correct answer. Similar observations are found in Figure 10. The
model (d) with fully-connected edge linking fails the question with
vague discrimination among the nodes.

5 RELATED WORKS

5.1 Textual Reasoning

Textual reasoning tasks such as reasoning QA [15], [63], [64],
[65], Fact-Checking [66], and natural language inference (NLI)
[67], [68] validate systems’ reasoning with multiple schemes and
granularity. Knowledge-based QA [63], [69], [70], [71], [72], [73],
[74] provides large-scale knowledge bases [75], [76] for question
answering. Multi-hop QA [14], [15] requires models to reason
over multiple documents and find supporting facts for the question.
Commonsense reasoning QA [64], [77], [78] requires reasoning out
the unstated world knowledge behind it. Moreover, Fact-Checking
[66] needs the models to retrieve supporting evidence for the
given claims, while NLI [67], [68] requires the models to tell the
inference relations between the given sentence pairs.

The previous QA [14], [15], [64] and Fact-Checking tasks [66]
require models to retrieve supporting knowledge from a large set of
documents. The models focus on effective knowledge retrieval and
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(a) DAGNs

(b) Zero-shot transfer (source: LogiQA)

(c) W/o edge-reasoning

(d) Fully-connected edge linking

(e) Sentence node

Fig. 9. Visualization of node weights learned from five models: DAGNs, DAGNs without the edge-reasoning mechanism, DAGNs with fully-connected
edge linking, DAGNs zero-shot transferred from LogiQA, and DAGNs with sentence nodes. In this case, the correct answer is option A. In the
passage, the EDU indices (*) in green are node delimitations from the full logic graph, and the indices in red are from the sentence nodes. The
DAGNs, DAGNs w/o edge-reasoning give the correct answer.
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(a) DAGNs

(b) Zero-shot transfer (source: LogiQA)

(c) W/o edge-reasoning

(d) Fully-connected edge linking

(e) Sentence node

Fig. 10. Visualization of node weights learned from five models: DAGNs, DAGNs without the edge-reasoning mechanism, DAGNs with fully-connected
edge linking, DAGNs zero-shot transferred from LogiQA, and DAGNs with sentence nodes. In this case, the correct answer is option A. In the
passage, the EDU indices (*) in green are node delimitations from the full logic graph, and the indices in red are from the sentence nodes. The
DAGNs, DAGNs w/o edge-reasoning give the correct answer.
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semantic matching. For example, HGN [12] constructs hierarchical
graphs to aggregate clues from the different granularity of evidence
such as paragraph selection and supporting fact extraction. GEAR
[18] constructs fully-connected evidence graphs with evidence-
claim pairs as nodes for claim verification. Such models do not
uncover text structures or simulate the reasoning processes with a
given document. In contrast, solving logical reasoning questions
requires the models to first reconstruct the structural reasoning
process behind the text, and identify the logical components
and relations, after which they can answer the questions about
conclusion, assumption, argumentation strength, and logical fallacy.
To achieve this, DAGNs use discourse-aware graphs to identify
the logical components and use the variable edges to simulate
the patterns. As a result, the graph reasoning under the structural
constraints focuses on logic feature updates. Moreover, the edge-
reasoning mechanism adapts the logical relations during training
for more general logic representations.

On the other hand, previous tasks focus on the awareness of
commonsense and world knowledge. For example, KagNet [79] and
MHGRN [80] encode subgraphs from ConceptNet [81] and learn
entity-based relational paths to answer commonsense questions.
K-Adapter [82] injects knowledge into pre-trained models. For
solving NLI [67], DRCN [20] aggregates the semantics, while
SemBERT [21] and SGNet [22] learn semantics under different
linguistic constraints. In contrast, logical reasoning QA focus on
inference patterns rather than knowledge. For example in Figure 1,
the correct inference pattern is the law of contraposition: “if A
implies B, then not-B implies not-A, and vice versa,” which is
the key to the question. The law is true regardless of the details
in A and B. Such knowledge-inference disentanglement provides
generality to unseen reasoning data. To this end, DAGNs is a pilot
study for modeling the inference structure rather than focusing on
knowledge.

Moreover, the recent Focal Reasoner [51] for logical reasoning
QA also performs graph reasoning. However, the constructed
graphs extract entities and coreference relations following the
previous QA models, which shows inferiority in capturing the
logical relations between statements. Besides, LReasoner [52]
trains the PLMs with a contrastive learning framework, and the
negative samples are constructed by pre-defined logical expressions.
The negative samples are derived by logical expressions. MERIt
[53] performs domain-specific pre-training also in a contrastive
learning manner, where the augmented data is constructed via
graph meta-paths. However, the injected logic-biased data is in
natural language format, and the model they use is plain PLM,
which models the logical reasoning process implicitly. It remains
unclear how explicit logic formulation facilitates QA systems and
what kind of logical structure is beneficial. Hence, in contrast, this
paper focuses on logic-biased deep models that explicitly model
the logical reasoning process and obtain the desired logic features.
Our method also leverages PLMs but does not use augmented data.
Hence this study is orthogonal to the previous [52].

5.2 Discourse Applications

Discourse information provides a high-level understanding of texts
and hence is beneficial for many natural language tasks, for instance,
text summarization [83], [84], [85], [86], neural machine translation
[87], and coherent text generation [88]. There are also discourse-
based applications for reading comprehension. DISCERN [89]
segments texts into EDUs and learns interactive EDU features.

Mihaylov and Frank [90] provide additional discourse-based
annotations and encode them with discourse-aware self-attention
models. However, such information is not yet considered in logical
reasoning. Unlike previous works, this work builds discourse-aware
logic graphs by first using discourse relations as graph edges that
connect EDUs, then learning the discourse features via message
passing with graph neural networks.

In natural language processing, the most influential theories of
discourse structure are the Rhetorical Structure Theory (RST) [41]
and Lexicalized Tree-Adjoining Grammar for Discourse (DLTAG)
[91]. RST studies reconstructing tree-like structures for texts. The
D-LTAG focuses on detecting discourse relations within local
text units, and the units are disjoint sentences or two clauses in a
sentence. Inspired by the theories, several treebanks are constructed,
and the most influential ones are RST-DT [92] and PDTB [92].
Models [42], [93], [94], [95], [96] are trained on these treebanks
to accomplish discourse parsing. And discourse parsing is also
applied for downstream applications [89], [97], [98], [99].

However, current discourse parsers are primarily trained on
small datasets via supervised learning, where the representative
corpus is the 1 million-word Wall Street Journal (WSJ) Corpus.
As a result, it is challenging for the parsers to transfer to unseen
texts, especially in new topics or domains. Therefore, these parsers
are not applicable for logical structure parsing. In this paper, we
customize rules to perform discourse segmentation and relation
detection based on observations of the argument passages.

6 CONCLUSION

This paper explores a structure-based solution to textual logical
reasoning that explicitly models the logical reasoning process. The
challenges include: (1) Uncovering the inference structure from
plain texts for effective structural constraints. (2) Learning the
inference processes rather than the knowledge for effective logical
reasoning.

To address the problems, we propose discourse-aware graph
networks (DAGNs) with logic graph construction and logic
representation learning. To construct beneficial logical structures,
DAGNs get inspired by logic theories and convert plain text into
logic graphs via several factors. The in-line discourse connectives
indicate logical relations; hence are applied as text delimiters and
split passages into clause-like logical units. Then the recurring
topic-related terms are detected. The graph edges are two folds: the
discourse connectives indicate logical relations, and the variable
connection simulates logical expression derivation.

For learning the logic features, DAGNs take the constructed
graphs as input and perform soft edge selection and propagation
to produce multi-hop hybrid relations. It then updates the node
features via several steps of graph reasoning. The graph network
leverages contextual encoding and learns the logic representations,
which are then fused for downstream prediction.

Extensive experiments are conducted on two logical reason-
ing QA datasets and one multi-turn dialogue reasoning dataset.
The results demonstrate the overall superiority of DAGNs. The
constructed logic graph structure is reasonable, and the edge-
reasoning mechanism helps learn general logic representations and
improves model stability. The zero-shot transfer results show that
DAGNs perform remarkably well on unseen reasoning questions,
which indicates that the learned logic representations are general
in reasoning and beyond knowledge.
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