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Abstract9

Graphs are fundamental tools for modelling relations among objects in various scientific fields.10

However, traditional static graphs have limitations when it comes to capturing the dynamic nature11

of real-world systems. To overcome this limitation, temporal graphs have been introduced as a12

framework to model graphs that change over time. In temporal graphs the edges among vertices13

appear and disappear at specific time steps, reflecting the temporal dynamics of the observed system,14

which allows us to analyse time dependent patterns and processes. In this paper we focus on the15

research related to sliding time windows in temporal graphs. Sliding time windows offer a way to16

analyse specific time intervals within the lifespan of a temporal graph. By sliding the window along17

the timeline, we can examine the graph’s characteristics and properties within different time periods.18

This paper provides an overview of the research on sliding time windows in temporal graphs.19

Although progress has been made in this field, there are still many interesting questions and20

challenges to be explored. We discuss some of the open problems and highlight their potential for21

future research.22
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1 Introduction30

Graphs are used to model (binary) relations among different objects. They consist of a set31

of vertices, where two of them are connected together with an edge. They have become a32

fundamental tool for modelling diverse systems and real-world problems, steaming through33

the wide range of scientific fields. Let us mention just a few of them. In Social sciences34

they can be used to model different interactions among people (for example friendships,35

communications, etc.), in Chemistry they can model chemical compounds where the vertices36

represent different atoms of the compound and edges correspond to the chemical bonds among37

them, in molecular Biology they can model physical interactions between proteins, gene38

co-expression or biochemical reactions, in Physics they model interactions among particles,39

where nodes represent interactions where particles are created or destroyed and edges are40

particles traveling between the interactions. Having such a varied application and use, it is41

not surprising that the graph theory has been the subject of extensive research over the past42

centuries.43
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When studying real-life problems, it becomes evident that this ’simple’ graph model44

is often insufficient. Many problems exhibit dynamic behavior, where the connections or45

interactions among their vertices change over time. For instance, in transportation networks,46

specific roads may be closed during certain intervals. In social networks, individuals may only47

interact at particular times of the day or month. Similarly, in information and communication48

networks, information or messages are transmitted from a source to a recipient through49

a set of connections at specific times. These graph models share a common attribute:50

their underlying graph topology or network structure undergoes discrete changes over time.51

This observation naturally gives rise to the concept of temporal graphs, which provide a52

straightforward and intuitive model for representing graphs that change over time, called53

temporal graphs.54

▶ Definition 1 (temporal graph [24]). A temporal graph G is a pair (G, λ), where G = (V, E)55

is an underlying (static) graph and λ : E → 2N is a time labeling function which assigns to56

every edge of G a set of discrete time labels.57

Due to their relevance and applicability in many areas, temporal graphs have been studied58

from various perspectives and under different names such as dynamic [9,19], evolving [7,12,16],59

time-varying [1, 17,36], and graphs over time [27].60

In most applications of temporal graphs, information can naturally only move along edges61

in a way that respects the ordering of their timestamps (i.e. time labels), that is, information62

can only flow along sequences of edges whose time labels are increasing (or non-decreasing).63

Motivated by this fact, most studies on temporal graphs have focused on “path-related”64

problems, such as e.g. temporal analogues of distance, diameter, reachability, exploration,65

and centrality [2, 3, 10,14,15,22,25,26,30,34,40]. In these problems, the most fundamental66

notion is that of a temporal path from a vertex u to a vertex v, which is a path from u67

to v such that the time labels of the time labels of the edges are increasing (or at least68

non-decreasing) in the direction from u to v. To complement this direction, several attempts69

have been recently made to define meaningful “non-path” temporal graph problems which70

appropriately model specific applications. Some examples include temporal cliques, cluster71

editing, temporal vertex cover, temporal graph coloring, temporally transitive orientations of72

temporal graphs [4, 6, 11,18,21,23,32,33,37,39].73

One of the main goals in temporal graphs’ research is to lift (algorithmic) graph theory74

models and results to a temporal/dynamic domain, in order to model natural, real world75

situations which are subject to discrete changes over time. The main challenge in this front76

is to find appropriate natural extensions and definitions of such problems. For instance, in77

static graphs, a shortest path between two vertices is a path connecting these two vertices78

with the smallest number of edges. On the other hand, in temporal graphs, there are at79

least three, equally natural, different analogues of a shortest path. First, a shortest temporal80

path from u to v is one that contains the smallest number of edges. Second, a foremost81

temporal path from u to v is one that arrives at v with the smallest time-stamp. Third, a82

fastest temporal path from u to v is one that has the smallest duration. These three types of83

temporal paths are illustrated in Figure 1.84

What is common to most of the path-related problems is that their extension from static85

to temporal graphs often follows easily and quite naturally from their static counterparts. For86

example, requiring a graph to be (temporally) connected results in requiring the existence of87

a (temporal) path among each pair of vertices. In the case of non-path related problems,88

the exact definition and its application is not so straightforward. Let us consider the case of89

cliques. Defining cliques in a temporal graph as the set of vertices that interact at least once90

in the lifetime of the graph would be a bit counter intuitive, as two vertices may just interact91
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Figure 1 In this temporal graph, the shortest path from s to t is (s, c, t) as it contains two edges;
the foremost temporal path is (s, a, b, t) as it arrives at time 5; the fastest temporal path is (s, d, e, t)
a it has duration 9 − 7 + 1 = 3.

at the first time step and never again. To help with this problem, Viard et al. [37] introduced92

the idea of the sliding time window of some size ∆, where they define a temporal clique as a93

set of vertices where in all ∆ consecutive time steps each pair of vertices interacts at least94

once. There is a natural motivation for this problem, namely to be able to find the contact95

patterns among high-school students. Following the idea of Viard et al. [37], many other96

problems on temporal graph were defined wiusing sliding time windows. In this paper we97

present an overview of works on sliding windows in temporal graphs and at the end provide98

some open problems and further ideas with potential research topics.99

2 Preliminaries and Notations100

In the literature there are many (slightly) different notations and terminologies used for101

certain structures in temporal graph. For the purpose of this paper, we fix the following102

notation and definitions.103

Given a (static) graph G = (V, E) with vertices in V and edges in E, an edge between104

two vertices u and v is denoted by uv, and in this case u and v are said to be adjacent in G.105

For every i, j ∈ N, where i ≤ j, we let [i, j] = {i, i + 1, . . . , j} and [j] = [1, j]. Throughout106

the paper we consider temporal graphs whose underlying graphs are finite and whose time107

labeling functions only map to finite sets. This implies that there is some t ∈ N such that, for108

every t′ > t, no edge of G is active at t′ in (G, λ). We denote the smallest such t by T , i. e.,109

T = max{t ∈ λ(e) | e ∈ E}, and call T the lifetime of (G, λ). Unless otherwise specified, n110

denotes the number of vertices in the underlying graph G, and T denotes the lifetime of the111

temporal graph G. We refer to each integer t ∈ [T ] as a time step of (G, λ). The instance (or112

snapshot) of (G, λ) at time t is the static graph Gt = (V, Et), where Et = {e ∈ E : t ∈ λ(e)}.113

Note that the size of a temporal graph G is |G| := |V | +
∑T

t=1 |Et|.114

For every t = 1, . . . , T − ∆ + 1, let Wt = [t, t + ∆ − 1] be the ∆-time window that starts115

at time t. For every v ∈ V and every time step t, we denote the appearance of vertex v at116

time t by the pair (v, t) and the edge appearance (or time-edge) of e at time t by (e, t). For117

t ∈ λ(e) we also say that e is active at time t in (G, λ). That is, for every edge e ∈ E, λ(e)118

denotes the set of time steps at which e is active.119

A temporal vertex subset of (G, λ) is a set of vertex appearances in (G, λ), i.e. a set of120

the form S ⊆ {(v, t) | v ∈ V, t ∈ [T ]}. For a temporal vertex subset S and some ∆-time121

window Wi within the lifetime T of (G, λ), we denote by S[Wi] = {(v, t) ∈ S | t ∈ Wi} the122

subset of all vertex appearances in S in the ∆-time window Wi. For a ∆-time window Wi123

within the lifetime of a temporal graph (G, λ), we denote by E[Wi] = {e ∈ E | λ(e)∩Wi ̸= ∅}124

the set of all edges which appear at some time step within Wi.125
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5:4 Sliding into the future: Investigating Sliding Windows in Temporal Graphs

3 Known Results on Sliding Windows126

In this section we present some of the known results on temporal graphs using sliding windows.127

As we discussed, the aim is to find a suitable definition for well motivated graph problems,128

that take in consideration also the changes that appear over time.129

3.1 Temporal Cliques130

In a (static) graph G = (V, E), a clique C ⊆ V is a collection of vertices, where every two of131

them are connected. We say that a clique C is maximal, if there exists no other vertex in132

V \ C that is connected to all of the vertices in C. There are many applications of (maximal)133

cliques for modeling real-world problems. For example, in their work Creamer et al. [13]134

calculate hierarchical structures in complex (communication) networks using cliques, and135

in [35] Samudrala and Moult use cliques in the context of protein structure modeling.136

Viard et al. [37] extended the notion of cliques to temporal graphs. Their work was137

motivated by the contact patterns among French high-school students. They studied the138

dataset with real-world contacts between individuals, captured with sensors. Where an edge139

e at time t was formed between two subjects if they were close enough to each other at time t140

for the detection to happen. The aim is to determine groups of students that were interacting141

more often. The obstacle in this case is how to naturally define such groups. If two students142

interacted only once and then never again, their interaction should not be considered as143

“valuable” as in the case when students interact more often, over certain period of time. With144

this in mind, the authors present the following natural definition of a ∆-clique.145

▶ Definition 2. A ∆-clique C in a temporal graph G = (G, λ) with a life-time T , is a pair146

(X, I), where X is a subset of vertices of G and I ⊆ [T ], such that for every two vertices147

u, v ∈ X there is a time-edge (uv, t) in G in every ∆-time window Wi ∈ I.148

Intuitively, among each pair of vertices in X there is a time-edge every ∆ time steps in149

the time interval I. The significance of the parameter ∆ is that it measures the level of150

interaction in ∆-cliques. A small value of ∆ means that the interaction among vertices has151

to occur more often compared to the case of large ∆ values. The selection of ∆ depends on152

the data set and the purpose of the analysis.153

The authors provide an algorithm that in O(2nn2m3 + 2nn3m2) time computes all154

maximal ∆-cliques of a temporal graph (G, λ), where n = V (G) and m =
∑

e∈E(G) λ(e).155

This result was further improved by Himmel et. al. [23] by providing an adaptation of the156

Bron-Kerbosch algorithm for enumerating maximal cliques, where they improve the running157

time to O(2nTm), where m = |E(G)|.158

Cliques may not be always practical for modelling real-world situations as they can be too159

restrictive, for example some edges may not exist due to measurement errors or other reasons160

specific to the application. To overcome this issue, various relaxations of the clique concept161

have been developed. One popular approach is the use of k-plexes, a degree-based relaxation162

of cliques that requires every vertex to be connected to all but at most k − 1 vertices in the163

k-plex, excluding itself. Extending this idea to temporal graphs, Bentert et al. [6] introduce164

the study of ∆ − k-plexes, where they relax the condition of ∆-clique by allowing each vertex165

to have up to k − 1 missing connections to other vertices in each ∆ consecutive time steps.166

They adapt the algorithm for ∆-cliques to enumerate them, and provide some heuristic167

speed-up techniques that are useful when dealing with practical scenarios.168
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3.2 Temporal Vertex Cover169

The vertex cover problem on a static graph G asks for a set of vertices S in V (G), of a170

minimum size, such that each edge e ∈ E(G) has at least one endpoint in S (i. e., is covered171

by at least one vertex in the vertex cover). To extend the idea to temporal graphs one needs172

to first find a relevant and well motivated definition. For example, requiring that each edge173

is covered whenever it appears (i. e., there is a vertex cover in every snapshot of the temporal174

graph), may be a bit too restrictive. A well known motivation behind the vertex cover on175

static graphs is a problem of placing security guards throughout the airport, where corridors176

represent edges and two corridors meet in a vertex. Then a vertex cover is a collection of177

corridor intersections, where we place security guards such that the airport is fully observed178

by the security. Suppose now that during the day, for some reason, certain corridors are179

not in use (some gates may be open only during specific times). And suppose now also that180

a criminal needs a specific amount of time, without any supervision, to execute an illegal181

activity. Now, to prevent all such acts, we do not need to fully monitor each sector of the182

airport all the time, but we just have to make sure we check each part often enough. With183

this in mind, Akrida et al. [4] introduced the notion of sliding window temporal vertex cover.184

185

▶ Definition 3. A ∆-sliding window temporal vertex cover S ⊆ V (G) × [T ] (or ∆-TVC for186

short) in a temporal graph (G, λ), with a lifetime T , is a collection of vertex appearances,187

such that each edge e ∈ E(G) is covered in every ∆-time window Wi ⊆ [T ], if it appears.188

When determining ∆-TVC of a given temporal graph, one wants to always find the one of189

minimum size. In their work Akrida et al. [4] first prove that a relaxed version of the problem190

(where ∆ = T , i. e., each edge has to be covered at least once in the whole lifetime T of the191

graph) is NP-hard already for the temporal graphs where the underlying graph is a star. For192

this sub-problem they prove also that the optimal solution cannot be obtained in O(2ϵT )193

time (for some small ϵ), assuming the Strong Exponential Time Hypothesis (SETH), as well194

as that it does not admit a Polynomial-Time Approximation Scheme (PTAS). For the general195

problem they provide an exact dynamic algorithm running in O(T ∆(n + m) · 2n∆(∆+1)) time196

on arbitrary temporal graphs, which cannot admit much more improvements (as it is almost197

at the lower complexity bound). They complement this result by providing an algorithm198

that, for graphs where each snapshot has a vertex cover number bounded by k, runs in an199

FPT time, when parameterized by ∆. They investigate also the problem’s approximability200

and prove that ∆-TVC does not admit a PTAS, even when ∆ = 2, maximum degree of the201

underlying graph is 3 and every connected component of each snapshot is of size at most202

7. In addition, they augment this result by providing approximation algorithms with ratios203

(i) ln n + ln ∆ + 1
2 , (ii) 2k, where k is the maximum number of appearances of an edge in a204

sliding window, (iii) d, where d is the maximum vertex degree in every snapshot.205

The study of ∆-TVC problem was then further extended by Hamm et. al. [21]. The206

researchers studied the ∆-sliding window vertex cover problem on sparse temporal graphs.207

They proved that the problem is NP-hard when ∆ ≥ 2 and the underlying graph G of208

the temporal graph (G, λ) is a path or a cycle. On the other hand, they developed a209

polynomial-time algorithm for solving T -TVC on paths and cycles, where T is the lifetime of210

the temporal graph. This raises the interesting question of whether there exists a boundary211

value for ∆ that distinguishes between the tractable and intractable categories on paths,212

thus determining the complete dichotomy of the problem. Moreover, for any ∆ ≥ 2 they213

augmented these results with a PTAS for ∆-TVC on paths and cycles, which complements214

the hardness result. In addition, the authors presented three algorithms to counter the215
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5:6 Sliding into the future: Investigating Sliding Windows in Temporal Graphs

hardness of the ∆-TVC problem for arbitrary (non-restricted) temporal graphs. The first216

algorithm is an exact algorithm for ∆-TVC with an exponential running time dependency217

on the number of edges in the underlying graph. Using this algorithm, they developed a218

polynomial-time (d − 1)-approximation algorithm for any d ≥ 3, where d is the maximum219

vertex degree in any time step (which improved on d-approximation algorithm from Akrida220

et al.). Finally, the authors presented a simple fixed-parameter tractable algorithm with221

respect to the size of an optimum solution.222

3.3 Temporal Coloring223

In a static graph G a coloring problem asks for a minimum number of colors associated to224

vertices, such that two endpoints of each edge are not assigned the same color. A classical225

motivation behind this problem is allocating radio frequencies to radio towers at specific226

locations. Here the idea is to allocate different frequencies to towers that are located close227

enough to cause an overlap in transmission. In this case each tower is represented as a node228

of the graph, where two of them are connected if the towers are positioned so close that they229

interfere with each other, and each frequency represents a different color. Now, coloring the230

graph properly results in an assignment of frequencies, that causes no interference.231

Let us consider a bit more evolved scenario, where instead of static radio towers, we232

observe mobile agents. Here every agent broadcasts information over a specific communication233

channel while it listens on all others. Therefore, when two agents are in close proximity, they234

exchange information only if they broadcast on different channels. We assume that agents235

can switch channels at any time. To ensure maximum information exchange, it is essential236

to find a schedule of assigning broadcasting channels to the agents over time that minimizes237

the number of required channels. This should allow each pair of agents to communicate at238

least once within every small time window when they are close to each other.239

Following this motivation Mertzios et al. [33] introduce the study of temporal coloring240

using sliding windows. Where one wants to determine the coloring of vertex appearances,241

using the smallest possible number of colors, such that each edge is properly colored (incident242

vertices are of different color) at least once in every ∆ consecutive time steps, if the edge243

appears. For a formal definition see the following.244

▶ Definition 4. A ∆-sliding window temporal coloring (or ∆-TC for short) in a temporal245

graph (G, λ), with a lifetime T , is a function ϕ : V (G) × [T ] → N, that assigns one color246

ϕ(v, t) to each vertex appearance, such that for every ∆-time window Wi ⊆ [T ], and every247

edge e ∈ E[Wt] there is at least one time step t ∈ Wi, where e appears and its two endpoints248

u, v are colored using different colors, i. e., (e, t) is a time-edge in (G, λ) and ϕ(u, t) ̸= ϕ(v, t).249

Mertzios et al. [32] start by studying a subcase of the problem, when ∆ = T . In this case250

the objective is to ensure that each edge is properly colored (its endpoints are of different251

color) at least once in the whole life time T of the temporal graph. Surprisingly, even the252

restricted subcase turns out to be NP-hard, already when one is asking if 2 colors are enough253

to color it properly. This presents a stark contrast to the static case, where identifying if a254

graph is 2-colorable (bipartite) can be accomplished in linear time. On the positive side they255

show that the this subcase admits a polynomial kernel, when parameterized by the number256

of vertices in the input temporal graph. For the general case they prove that the problem257

is NP-hard, and provide two algorithms for it. One is an exponential-time algorithm, that258

asymptotically matches the running time lower bound (assuming ETH), and the second one259

is a linear time FPT algorithm, with respect to the number n of vertices.260
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In addition to the above mentioned work, some other variations of coloring temporal261

graphs have been explored (e.g. example [18,29,39]), however these studies do not use the262

approach with sliding windows.263

3.4 Temporal Matching264

Given a static graph G the problem of (maximum) matching asks for a (maximum) set265

of pairwise independent edges, that is, edges that share no endpoints. This problem has266

numerous applications in fields such as scheduling and planning, chemistry modeling, job267

allocation, and more. Once the time-dimension is added to the graph model, there can be268

different ways to carry over the definition to temporal graphs.269

Following the idea of a sliding time window, Mertzios et al. [31] introduced the problem270

of ∆-Maximum Temporal Matching (∆-TM), where one wants to determine a maximum271

set of time-edges that are pairwise ∆-independent. Two time-edges (e, t), (f, t′) are ∆-272

independent if (i) e ∩ f = ∅, or (ii) e ∩ f ̸= ∅ and |t − t′| ≥ ∆. In other words, for any273

feasible solution of ∆-TM, it is not possible to match a vertex more than once within any274

time interval of duration ∆. This condition can represent scenarios where a short “recovery”275

period is needed for every vertex that participates in the matching, such as a brief period of276

rest after engaging in an energy-demanding activity.277

In contrast to the Edmonds’ polynomial-time algorithm for finding a maximum matching278

in static graphs, Mertzios et al. [31] prove that ∆-TM does not even admit an approximation279

algorithm, meaning it is APX hard, already in the case when ∆ = 2 and the lifetime T of280

the temporal graph is 3. In addition, they show that the problem remains NP-hard even if281

the underlying graph, of the input temporal graph, is just a path. On the positive side, they282

provide an approximation algorithm for any constant ∆, which achieves an approximation283

ration of 1
2 + ϵ, where ϵ = 1

2(2∆−1) . Besides that, they show that a problem admits two FPT284

algorithms, one when it is parameterized by the solution size, and the second one, when it is285

parameterized by the combined parameter ∆ and the size of a maximum matching of the286

underlying graph.287

It is worth mentioning that another related variant of Maximum Temporal Matching288

has been studied (see Baste et al. [5]). In this model the authors do not use the ∆-time289

windows, but instead require an edge to appear at least ∆ consecutive time steps, in order290

to be eligible for a matching. A temporal matching then consists of independent edge291

time-blocks of length at least ∆.292

4 Further Work293

In the previous section we presented some already completed works on temporal graphs, that294

use the idea of sliding time windows. In this section we focus on problems that, to the best295

of our knowledge, have not yet been investigated using the sliding windows, and give rise to296

some interesting research questions.297

4.1 Dominating Set298

In a static graph G, a dominating set is a subset of vertices D ⊆ V (G), such that each299

vertex V (G) is either in D or has a neighbor in D. The Dominating set problem asks for300

a dominating set of G of minimum size. One of the applications of the dominating set is301

in routing protocols for ad hoc wireless networks. The fundamental concept behind this302

approach involves identifying a dominating set within a network of devices and using these303
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5:8 Sliding into the future: Investigating Sliding Windows in Temporal Graphs

dominating nodes for message routing. More specifically, when a user u wants to transmit a304

message to a user v, the routing process consists of determining the shortest path between305

the dominating neighbors of user u and user v. By ensuring that all devices admit at least306

one dominating neighbor, this method guarantees the delivery of messages.307

In the word where these agents become mobile (i. e., they travel around the space), one308

can model this problem using temporal graph, where the aim is to find a temporal dominating309

set. Similarly as in other cases, we do not necessarily want to find a dominating set in every310

time step (as this would be to costly), therefore an approach with sliding time windows311

would be of use. We propose the following definition.312

▶ Definition 5. A ∆-sliding window temporal dominating set (∆-SWDS) is a subset of vertex313

appearances D ⊆ V (G) × [T ], of a temporal graph (G, λ), with the lifetime T , such that for314

any vertex appearance (v, t) the following holds:315

1. (v, t′) ∈ D, where |t − t′| ≤ ∆ or316

2. (u, t′) ∈ D, where u is a neighbor of v in G and |t − t′| ≤ ∆.317

Intuitively, any vertex of the underlying temporal graph is at any time step t either at most318

∆ time-units away from being in D, or it has a neighbor that is at most ∆ time-units away319

from being in D. Since the Dominating set problem is already NP-hard on static graphs, it320

remains hard also for temporal graphs. So the interesting research question for the ∆-SWDS321

would be if there exist any exact algorithms for it, i. e., some FPT algorithms, or maybe322

some approximation algorithms.323

It is important to mention that there already exist some variations of the dominating set324

problems on temporal graphs. Casteigts and Flocchini [8] propose three different definitions325

of dominating sets on temporal graphs, namely temporal dominating set, evolving dominating326

set and permanent dominating set. In the temporal and evolving dominating set, one wants327

to determine the smallest set of vertices D, such that, in the temporal case, each vertex is328

dominated in at least one time step, and in the evolving case, each vertex is dominated in329

every time step. While the evolving dominating set D consists of vertex appearances, such330

that all vertex appearances are dominated in each time step. More specifically, in the first331

two cases, once a vertex is selected to be in D it is in D for all lifetime of the graph, while in332

the last case one vertex can be in D only at specific times. Some research has been done333

for aforementioned problems. For interested readers, we recommend exploring the following334

works [20,28,38], among others.335

4.2 Edge Cover336

The minimum edge covering problem on a static graph G asks for a minimum set EC ⊆ E(G)337

of edges such that every vertex in V (G) is incident to at least one edge in EC . Calculating a338

minimum edge cover can be done in polynomial time, by finding a maximum matching and339

then extending it greedily until all vertices are covered.340

For the version of the edge covering problem on temporal graphs we propose the following341

definition.342

▶ Definition 6. A ∆-sliding window temporal edge covering (∆-SWEC) is a subset of edge343

appearances EC ⊆ E(G) × [T ], of a temporal graph (G, λ), with the lifetime T , such that344

every vertex appearance (v, t) is incident to at least one time-edge from the selected set345

EC ⊆ E × T , in every time window t ∈ W ′
t .346
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Since many problems become significantly more challenging when dealing with temporal347

graphs, it would be really interesting to explore whether the same holds true for the ∆-SWEC348

problem. Applying the exact approach used for static graphs may not yield direct results, as349

it requires to first find a (suitable definition of a) temporal maximum matching. It is worth350

noting that in Section 3.4 we presented a ∆-Maximum Temporal Matching, which turns351

out to be NP-hard.352

4.3 Periodic connectivity353

We say that a temporal graph (G, λ) is temporally connected if there exists a temporal354

path among each pair of vertices. Some results regarding the connectivity of temporal355

graphs have already been established, for example [3, 26, 30]. However, what if we introduce356

additional constraints and require that each vertex can reach any other vertex within every357

∆ time-window? In such cases, we refer to the temporal graph (G, λ) as being ∆-temporally358

connected. It would be interesting to study, for example, what is the minimum number of359

labels needed to label a given graph G in such a way that ensures ∆-temporal connectivity360

of (G, λ)? We can further restrict this problem by allowing only limited number k of labels361

to be added per each edge.362

4.4 (Temporal) Graph Classes363

Based on the properties of the studied graphs, we can assign them into different graph classes.364

For instance there are graphs that are k-colorable (can be properly colored using k colors),365

k-regular (each vertex is of degree k), or planar (can be drawn on a plane without any edges366

crossing), among others.367

To extend the concept of graph classes to the temporal setting with sliding windows, we368

propose introducing temporal graph classes. One such class could be the ∆ sliding window369

k-colorable temporal graphs, which refers to temporal graphs that can be temporally colored370

using k colors. Another class would be the ∆ sliding window k-regular temporal graphs,371

where each vertex admits exactly k different neighbors in every ∆ time-window, or perhaps372

each vertex v admits exactly k different neighbors in a time step t′ ∈ Wt for every time373

window Wt. Similarly, we can define ∆ sliding window planar temporal graphs as temporal374

graphs that are planar in some t′ ∈ Wt for every time-window Wt. Further refinement of375

these classes is possible by imposing additional restrictions. For example, we can consider376

temporal graphs that are 3-colorable in every 5-time window. In such graphs, every vertex377

appearance (v, t′) is assigned one of three colors, ensuring that within each sliding window378

Wt of size 5, there is at least one time step where the edge e, that appears in Wt is properly379

colored.380

Overall, these extensions allow for the classification of temporal graphs based on their381

temporal characteristics, enabling the exploration of various graph classes in the context of382

sliding windows.383

5 Conclusion384

The study of temporal graphs has emerged as an important area of research with significant385

implications for understanding and analyzing dynamic systems. In this paper, we have386

presented a short overview of the works on sliding windows in temporal graphs. The concept387

of a sliding time window allows us to focus on specific temporal intervals within the lifetime388

of a temporal graph, providing valuable insights into the changing behavior and patterns389

MFCS 2023



5:10 Sliding into the future: Investigating Sliding Windows in Temporal Graphs

of interactions. Give that this research field is fairly young, there are still many intriguing390

questions and challenges to be addressed. We presented some of them here and hope that391

this work inspires further exploration and investigation into these intriguing problems.392
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