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Abstract—The Global Ecosystem Dynamics Investigation 

(GEDI) aims to provide improved characterization of forest 

structure, and plant area index (PAI) is one of many variables 

provided in the official GEDI Level 2B (L2B) product suite. 

However, since release, few quantitative validation studies have 

been conducted. To reach Stage 1 of the validation hierarchy 

proposed by the Land Product Validation (LPV) sub-group of 

the Committee on Earth Observation Satellites (CEOS) Working 

Group on Calibration and Validation (WGCV), we provide an 

initial assessment of PAI estimates from GEDI’s L2B product. 

This is achieved using 18 in situ reference measurements 

available through the Copernicus Ground Based Observations 

for Validation (GBOV) service. We show that GEDI L2B PAI 

retrievals provide a nearly unbiased estimate of effective (PAIe) 

(RMSD = 0.95, bias = 0.02, slope = 1.07), but systematically 

underestimate PAI (RMSD = 1.42, bias = -0.91, slope = 0.77). 

This is attributed to an assumed random distribution of plant 

material in the algorithm. To reach Stage 2 of the CEOS WGCV 

LPV hierarchy, continued work is needed to validate the product 

against additional in situ reference measurements covering 

further locations and time periods.  
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I. INTRODUCTION 

HE Global Ecosystem Dynamics Investigation (GEDI) 

was installed on-board the International Space Station 

(ISS) in 2018, with the aim of providing higher quality 

characterization of the structure of the world’s temperate and 

tropical forests than previously possible [1]. Based upon full-

waveform light detection and ranging (LiDAR), GEDI builds 

upon the heritage of the Ice, Cloud and Land Elevation 

Satellite (ICESat) missions, whose Geoscience Laser 

Altimeter System (GLAS) and Advanced Topographic Laser 

Altimeter System (ATLAS) instruments have already proven 

useful for characterizing forest structure [2]–[5]. 

Key variables describing the structure of forest canopies 

include plant area index (PAI) and leaf area index (LAI), 

which are unitless quantities representing half the unit surface 

area of plant or leaf material per unit horizontal ground area, 

respectively [6]. By regulating the size of the interface 

between the biosphere and atmosphere, PAI and LAI 

determine the interception of light and exert control on 

photosynthesis and plant respiration. Thus, they are critical 

variables for modelling vegetation productivity, carbon 

exchange, and the weather and climate systems [7], [8]. More 

broadly, as indicators of the density of the canopy, they 

represent useful metrics for monitoring forest condition. 

Using spaceborne passive optical instruments, a range of 

LAI and PAI products have emerged over the last twenty 

years, making use of radiative transfer models (RTMs) to link 

observed canopy spectral properties to the structural variables 

of interest [9]–[13]. The key issues with these products are 

that the adopted RTMs make simplifying assumptions about 

the canopy [14], [15], and that RTM inversion is ill-posed, in 

that multiple combinations of input parameters can result in 

similar spectral properties, confounding retrieval [15]–[17]. 

Although still subject to the ill-posed nature of the inverse 

problem, unlike passive optical instruments, active LiDAR 

instruments such as GLAS, ATLAS, and GEDI can be 

considered to provide a more direct measurement of canopy 

structure. As such, they are well-placed to minimize these 

sources of uncertainty. 

Early work using GLAS and ATLAS data investigated the 

feasibility of estimating LAI and PAI with spaceborne 

LiDAR. These studies demonstrated that good retrieval 

accuracies were achievable (r2 > 0.80, RMSE < 0.50). In 
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particular, the spaceborne LiDAR derived estimates 

demonstrated reduced bias compared to products derived from 

passive optical instruments, and were not subject to saturation 

at high LAI and PAI values [2]–[4]. Despite their potential for 

LAI and PAI estimation, however, the real-world utility of 

early spaceborne LiDAR instruments such as GLAS and 

ATLAS was severely limited by their sparse spatial sampling 

(i.e. GLAS sampled 70 m footprints every 170 m along a 

single track) [1]. By contrast, GEDI offers substantially 

increased sampling density (25 m footprints sampled every 60 

m along eight parallel tracks 600 m apart). 

Based upon the success of early studies using GLAS and 

ATLAS, PAI is one of many variables provided in the official 

GEDI Level 2B (L2B) product suite. Since release, however, 

few quantitative validation studies using in situ reference 

measurements have been conducted [18]. Validation against 

independent in situ reference measurements is essential to 

ensure fitness-for-purpose. The objective of this letter, 

therefore, is to provide an initial assessment of the accuracy of 

PAI estimates from GEDI’s L2B product. In doing so, we aim 

to reach Stage 1 of the validation hierarchy proposed by the 

Land Product Validation (LPV) sub-group of the Committee 

on Earth Observation Satellites (CEOS) Working Group on 

Calibration and Validation (WGCV), which states that 

‘product accuracy is assessed from a small (typically < 30) set 

of locations and time periods by comparison with in situ or 

other suitable reference data’ [19]. It is worth noting that 

because GEDI’s PAI retrievals do not consider clumping, they 

correspond to effective PAI (PAIe). As such, we hypothesize 

that better agreement with in situ reference measurements of 

PAIe as opposed to PAI will be observed. 

II. MATERIALS AND METHODS 

A. GEDI Data 

GEDI L2B PAI data were obtained from the 

‘LARSE/GEDI/GEDI02_B_002_MONTHLY’ collection in 

Google Earth Engine [20], which represents rasterized 

monthly composites of the original L2B vector dataset. It is 

worth noting that unlike the L3 product, the rasterized L2B 

data remain at the footprint level, and are not spatially 

interpolated (i.e. 25 m pixels representing a single GEDI 

footprint contain data, whilst surrounding pixels contain no 

data). The provided quality flags were used to restrict our 

analysis to observations meeting criteria on energy, sensitivity, 

amplitude, real-time surface tracking quality, and difference to 

a digital elevation model (i.e. L2B quality flag = 1 and L2A 

degrade flag = 0). 

B. In Situ Reference Measurements 

In situ reference measurements were obtained from the 

Copernicus Ground Based Observations for Validation 

(GBOV) service, as previously described in [21], [22]. Data 

matching GEDI observations were available at ten sites 

belonging to the National Ecological Observatory Network 

(NEON) in the United States [23], and a further site affiliated 

to the Integrated Carbon Observation System (ICOS) in 

Europe [24]. The latter site, Hainich National Park, in 

Germany, was set up as a permanently instrumented site under 

Component 2 of GBOV [25]. These sites covered a range of 

vegetation types, including deciduous forest, evergreen forest, 

grassland/herbaceous vegetation, pasture/hay, shrub/scrub, and 

woody wetlands (Table I). 

TABLE I 

SITES AT WHICH IN SITU REFERENCE MEASUREMENTS WERE 

OBTAINED 

Site Network 
Land cover 

type 
Latitude Longitude 

Canopy 

height 

(m) 

Valid 

matchups 

Range of 

in situ 

PAIe (and 

PAI) 

Blandy 

Experimental 

Farm 

NEON 
Deciduous 

forest 
39.0603 -78.0716 1.0 2 

1.4 to 3.4 

(1.5 to 

4.9) 

Central Plains 

Experimental 

Range 

NEON 
Grassland 

/herbaceous 
40.8155 -104.7460 0.4 1 < 0.1 

Dead Lake NEON 
Deciduous 

forest 
32.5417 -87.8039 30.0 2 

3.5 to 4.2 

(4.7 to 

5.6) 

Disney 
Wilderness 

Preserve 

NEON 
Pasture 

/hay 
28.1250 -81.4362 1.5 1 0.4 (0.4) 

Hainich 

National Park 
ICOS 

Deciduous 

forest 
51.0794 10.4532 35.0 3 

3.4 to 5.9 

(4.9 to 

7.7) 

Jones Ecological 

Research Center 
NEON 

Evergreen 

forest 
31.1948 -84.4686 27.0 1 1.7 (2.3) 

Onaqui NEON 
Shrub 

/scrub 
40.1776 -112.4520 1.2 1 < 0.1 

Oak Ridge NEON 
Deciduous 

forest 
35.9641 -84.2826 28.0 1 0.6 (0.8) 

Talladega 

National Forest 
NEON 

Evergreen 

forest 
32.9505 -87.3933 25.0 3 

1.0 to 1.4 
(1.3 to 

2.1) 

UNDERC NEON 
Woody 

wetlands 
46.2339 -89.5373 24.0 3 

3.6 to 3.8 

(5.2 to 

5.7) 

Note that the GEDI L2B product separates the returned 

waveform into bins of 5 m. PAI retrievals for canopies shorter 

than 5 m are, therefore, expected to be less reliable. By 

incorporating several sites with short canopies, it was our 

explicit intention to test this. In the absence of a quality flag to 

filter out such observations, information on the potential 

magnitude of errors will likely prove useful to users. 

At each site, in situ reference measurements were acquired 

using digital hemispherical photography (DHP) and processed 

with HemiPy [26], as adopted by the GBOV service, using 

default settings. At NEON sites, images were acquired in both 

upwards- and downwards-facing directions using a Nikon 

D750, D800 or D810 digital single lens reflex (DSLR) camera 

equipped with an AF Fisheye-Nikkor 16mm f/2.8D full-frame 

fisheye lens. At Hainich National Park, images were acquired 

using a Canon EOS 750D or 1300D DSLR equipped with a 

Sigma 4.5 mm F2.8 EX DC circular fisheye lens. In both 

cases, images were obtained within elementary sampling units 

(ESUs) of between 20 m x 20 m and 40 m x 40 m. Twelve 

replicates were performed in a cross pattern at NEON sites 

[27], whilst thirteen were performed for manual DHP 

acquisitions at Hainich National Park [25]. 

PAI and PAIe were derived according to [28] and [29], 

making using of gap fraction observations at the hinge angle 

of 57.5° (± 5°), such that 

𝑃𝐴𝐼 =
− ln 𝑃(𝜃57.5°)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

0.93
    (1) 
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𝑃𝐴𝐼𝑒 =
−ln 𝑃(𝜃57.5°)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

0.93
    (2) 

where ln 𝑃(𝜃57.5°)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  represents the mean of the natural 

logarithm of gap fraction values within a zenith ring centered 

at 57.5° (± 5°) over all azimuth cells and images, whilst 

ln 𝑃(𝜃57.5°)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ represents the natural logarithm of the mean gap 

fraction value within the same zenith ring. 

Values from upwards- and downwards-facing images were 

combined to provide a total value, such that 

𝑃𝐴𝐼 = 𝑃𝐴𝐼𝑢𝑝 + 𝑃𝐴𝐼𝑑𝑜𝑤𝑛    (3) 

where 𝑃𝐴𝐼𝑢𝑝 and 𝑃𝐴𝐼𝑑𝑜𝑤𝑛 represent PAI or PAIe values 

derived from upwards- and downwards-facing images, 

respectively. Uncertainties were computed following Fiducial 

Reference Measurements for Vegetation (FRM4VEG) 

guidelines [30], accounting for variability in gap fraction and 

uncertainty due to camera levelling. 

C. Spatiotemporal Matchup Procedure and Statistical 

Analysis 

Valid GEDI L2B PAI observations were matched to in situ 

reference measurements whose footprint they fell within. The 

maximum in situ reference measurement within each monthly 

compositing period was used for comparison. This strategy 

attempts to reduce the impact of errors in the in situ 

measurements, and assumes noise in the DHP data is 

negatively biased (as previously demonstrated for automated 

DHP in the case of suboptimal illumination conditions [31]). 

The footprint of the in situ reference measurements was 

approximated according to [21] as 

2 ℎ tan(𝜃) + 𝑙     (4) 

where ℎ represents the distance from the camera lens to the 

top (or bottom) of the canopy, 𝜃 represents the zenith angle 

analyzed, and 𝑙 represents the one-sided length of the ESU. 

The mean of all valid GEDI L2B observations within the 

footprint was computed (Fig. 1). 

 
Fig. 1. Illustration of the footprint matching procedure over 

Hainich National Park (canopy height = 35 m, in situ reference 

measurement footprint = 145 m) for two GEDI tracks. The 

mean of all valid GEDI L2B PAI observations (black squares) 

intersecting the footprint of each in situ reference 

measurement (green circles) was calculated. 

To assess the agreement between the GEDI L2B 

observations and in situ reference measurements, several 

statistics were calculated, including the slope, intercept, and 

coefficient of determination (r2) according to ordinary least 

squares regression. Additionally, we calculated the root mean 

square difference (RMSD), normalized RMSD (i.e. RMSD 

divided by the mean of the in situ reference measurements), 

minimum and maximum difference, bias (i.e. mean 

difference), precision (i.e. standard deviation of differences), 

and uncertainty agreement ratio (UAR). The UAR 

corresponded to the percentage of retrievals falling within the 

Sentinels for Science (SEN4SCI) uncertainty requirements of 

1 unit or 20% [22], [32], [33]. 

III. RESULTS 

A. Characteristics of In Situ Reference Measurements and 

GEDI L2B PAI data 

A total of 18 GEDI L2B PAI estimates were 

spatiotemporally coincident with the in situ reference 

measurements described in Section II. GEDI L2B PAI values 

ranged from 0.00 to 5.23, with a mean of 2.42, whilst the 

corresponding in situ reference measurements of PAIe ranged 

from 0.00 to 5.94, with a mean of 2.40 (Fig. 2). In contrast, the 

corresponding in situ reference measurements of PAI 

demonstrated a greater range (0.00 to 7.70) and were higher 

on average (mean = 3.33) (Fig. 2). 

 
Fig. 2. Frequency distribution of in situ reference 

measurements of PAIe (a) and PAI (b), in addition to 

frequency distribution of GEDI L2B PAI values (c), and 

comparison of in situ PAIe against canopy height (d). Please 

refer to Fig. 3 for interpretation of the colours in (d). 

B. Validation Results 

When analyzed on a pairwise basis, the GEDI L2B PAI 

estimates had substantially better agreement with in situ 

reference measurements of PAIe than with in situ reference 

measurements of PAI. This was demonstrated by a reduced 

RMSD (0.95 for PAIe as opposed to 1.42 for PAI) and 

NRMSD (40% for PAIe as opposed to 43% for PAI), 

increased UAR (67% for PAIe as opposed to 50% for PAI) 

(Table II), and by points lying closer to the 1:1 line in the case 
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of PAIe than in the case of PAI (Fig. 3). GEDI L2B PAI 

retrievals provided a nearly unbiased estimate of in situ 

reference PAIe (bias = 0.02, slope = 1.07), but systematically 

underestimated in situ reference PAI (bias = -0.91, slope = 

0.77) (Table II). 

 
Fig. 3. Scatterplots of GEDI L2B PAI and in situ reference 

measurements of PAIe (a) and PAI (b). Dashed lines represent 

a 1:1 relationship, dotted lines represent SEN4SCI uncertainty 

requirements, and error bars represent the expanded 

uncertainty of the in situ reference measurements at a 

coverage factor (k) of 3 (i.e. a ~ 99% confidence interval). 

TABLE II 

VALIDATION METRICS FOR GEDI L2B PAI WITH RESPECT TO IN 

SITU REFERENCE MEASUREMENTS OF PAIE AND PAI 

Statistic PAIe PAI 

r2 0.78 0.78 

Slope 1.07 0.77 

Intercept -0.16 -0.14 

RMSD 0.95 1.42 

NRMSD (%) 39.50 42.51 

Minimum difference -1.37 -2.82 

Maximum difference 1.61 0.78 

Bias 0.02 -0.91 

Precision 0.98 1.12 

UAR (%) 66.67 50.00 

IV. DISCUSSION AND CONCLUSION 

Relatively few studies have attempted to directly validate 

estimates of PAI from spaceborne LiDAR instruments against 

in situ reference measurements, with most studies relying on 

reference PAI values derived from airborne LiDAR or passive 

optical imagery. Exceptions include [4], who developed and 

validated an empirical model relating GLAS observations to in 

situ reference PAIe measurements from the LI-COR LAI-2000 

over a study site in the Tibetan Plateau, as well as [3] and [34], 

who developed physically-based PAIe and PAI retrieval 

approaches for GLAS data, validating them against in situ 

reference measurements using the Tracing Radiation 

Architecture of Canopies (TRAC) instrument in Heilojiang 

Province and the Tibetan Plateau, respectively. Our results are 

consistent with these studies, which reported better agreement 

with in situ reference measurements of PAIe (r2 = 0.79 to 0.85, 

RMSD = 0.31 to 0.49) than PAI (r2 = 0.74, RMSD = 1.18). 

Given that GEDI L2B PAI estimates assume a random 

distribution of plant material (i.e. no clumping), the closer 

agreement with in situ reference measurements of PAIe as 

opposed to PAI is not unexpected. Since the bias with respect 

to in situ reference measurements appeared to be quite 

systematic for each vegetation type, it is possible that land 

cover based bias corrections could be applied to correct the 

GEDI L2B PAI estimates, though more data would be needed 

to confirm this possibility. 

Whilst only a limited number of in situ reference 

measurements were available with which to validate the GEDI 

L2B PAI product, it is encouraging that from these 

measurements, GEDI L2B PAI retrievals appear to provide a 

nearly unbiased estimate of PAIe. Nevertheless, it should be 

noted that for the deciduous forest and woody wetlands sites 

where PAIe > 3, GEDI observations were characterized by 

substantial range that was not observed in the in situ reference 

measurements. Although this could be symptomatic of an 

issue in the GEDI data, it could equally result from the various 

sources of uncertainty that our results are subject to, including 

those associated with the in situ reference measurements 

themselves, the method used to approximate their footprint, 

and the spatiotemporal mismatch between the in situ reference 

measurements and GEDI observations. In future work, the 

latter source of uncertainty could be better understood by 

investigating sensitivity to the number of GEDI observations 

averaged (where multiple GEDI observations fall within an in 

situ reference measurement’s footprint). 

Although spaceborne LiDAR instruments such as GEDI 

cannot yet provide the same spatiotemporal coverage as 

passive optical instruments, they could prove a useful source 

of information for calibration and validation of products 

derived from these latter instruments, providing an 

independent measurement of PAIe that is more directly related 

to canopy structure. Given that the spatial resolution of 

imagers on-board missions such as Sentinel-2 (20 m) and 

Landsat 8/9 (30 m) is a close match to GEDI’s 25 m footprint, 

future work should focus on intercomparison of the GEDI 

L2B PAI product with biophysical variable retrievals from 

these missions, including those derived using the Sentinel-2 

Level 2 Prototype Processor (SL2P) [22], [33]. 

As a result of the uncertainties in our study, continued work 

is needed to validate the GEDI L2B PAI product against 

additional in situ reference measurements covering further 

locations and time periods, with a particular focus on the 2 m 

to 24 m height range that was not well represented by our data 

(Fig. 2d). Indeed, Stage 2 of the CEOS WGCV LPV hierarchy 

requires that validation is carried out at over at least 30 

locations and time periods. In addition to dedicated field 

campaigns, efforts should be placed on leveraging existing in 

situ reference datasets that cover the mission’s lifetime. For 

example, although NEON collects DHP at 47 sites, only data 

from 24 of these sites have been processed and are available 

under the GBOV service so far. Routine data collected by 

networks such as ICOS, the Terrestrial Ecosystem Research 

Network (TERN) in Australia [35], and the Chinese 

Ecosystem Research Network (CERN) [36] should also be 

investigated to increase the number of spatiotemporal 

matchups available for validation. 
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