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Abstract: Introduction: Convolutional neural networks (CNNs) have maintained their dominance
in deep learning methods for human action recognition (HAR) and other computer vision tasks.
However, the need for a large amount of training data always restricts the performance of CNNs.
Method: This paper is inspired by the two-stream network, where a CNN is deployed to train the
network by using the spatial and temporal aspects of an activity, thus exploiting the strengths of both
networks to achieve better accuracy. Contributions: Our contribution is twofold: first, we deploy an
enhanced spatial stream, and it is demonstrated that models pre-trained on a larger dataset, when
used in the spatial stream, yield good performance instead of training the entire model from scratch.
Second, a dataset augmentation technique is presented to minimize overfitting of CNNs, where we
increase the dataset size by performing various transformations on the images such as rotation and
flipping, etc. Results: UCF101 is a standard benchmark dataset for action videos, and our architecture
has been trained and validated on it. Compared with the other two-stream networks, our results
outperformed them in terms of accuracy.

Keywords: deep learning; human action recognition; overfitting; two-stream network

1. Introduction

Video-based human action recognition (HAR) is one of the most significant study fields
in computer vision, with algorithms becoming more effective by the day. HAR has many
applications ranging from surveillance, video tagging, activity/event detection, etc. [1,2].
The main goal in human action recognition is to automatically detect the sort of actions that
are being performed in the video, e.g., archery, basketball shooting, horse riding, etc. It is a
very difficult task owing to the many problems it entails, such as camera motion, varying
lighting conditions, backdrop bombardment, various human forms, occlusion, perspective
fluctuation, and so on. Such varied changes in the videos make this task challenging and
interesting to solve using automated methods. However, the impact of these problems
varies depending on the type of action. The four primary kind of action are gestures,
interactions, actions, and group activities.

Several researchers have used different modalities for handling HAR, including sensor-
based methods [3] and video streams [4]. Due to the vast availability of video data, a major
portion of researchers concentrate on video processing for HAR, which is the significant
topic of work in this paper as well.

Different strategies have been used to extract the motions inside the pictures and
videos. In general, recent research on HAR mainly focuses on spatial and temporal models.
Sparse segments are used to simulate long-term temporal structure in temporal segment
networks (TSNs) [5]. The utilization of the concept that models learn hierarchical motion
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patterns within image space has been employed to address diverse temporal modeling
challenges in 3D CNN networks [6,7]. Tracking characteristics are employed to improve the
effectiveness of temporal modeling [7,8]. As HAR is a challenging domain, the authors in [9]
provided a thorough literature review of the available datasets. They identified around
68 different datasets, of which 28 are heterogeneous and 40 are for specific human actions.

In [4], the authors proposed a three-step framework for human activity recognition
comprising background subtraction, parameter extraction, and evaluation. In [10], the
authors presented a knowledge representation framework to detect the occurrence of
specific events defined as targets in the surveillance scenario. In [11], the authors presented
high-level video event modeling and recognition based on a Petri net. The results shown
are encouraging as the event recognition is fully automated. In [12], the authors presented a
framework to jointly learn a view-invariance transfer dictionary, and subsequently a view-
invariant classifier. This framework has allowed them to obtain improved performance on
the available video datasets.

In [13–15], the authors emphasize using convolutional networks (ConvNets) for this
task of HAR. Researchers have shown that temporal filters, such as local spatiotemporal
filters, can be applied to spatiotemporal objects such as actions, making it possible to use
spatial recognition ideas on temporal objects [14–16]. This difference between time and
space is significant, and different techniques have been examined, such as adding optical
flow networks (which simulate motion) [17] or modeling time sequences in recurrent
structures (which represent patterns in nature) [18–20].

The two-stream architecture is based on a hypothesis that came out of neuroscience
research called the two-stream hypothesis [13], which states that the visual cortex has
two separate pathways: (i) the ventral pathway, which processes information about the
visual attributes of objects such as shape and color, and (ii) the dorsal pathway, that
responds to transformations in the object, and to spatial relationships as an object of motion.
In a typical implementation of a two-stream network, both streams use a different set of
inputs to classify actions. One of the streams is trained on stacked RGB images, hence is
referred to as ‘the spatial stream’. The second stream, referred as ‘the temporal stream’, uses
motion vector-based images as its input to train, which need to be computed beforehand,
and thus this can also be time consuming. As both streams use different types of inputs to
train their networks, they can take advantage of different methods of feature representation
and extraction, combining the strengths of both. Both streams are merged via different
techniques to form ‘the two-stream network’, and the classification results are calculated.
However, the problem of overfitting exists in both streams as deep learning networks need
a large amount of data for stable weight training.

As mentioned earlier, the two-stream network approach made a breakthrough in
action recognition as some activities are time oriented (temporal) and others are scene
oriented (spatial) in a single dataset. Using any single approach would fail to recognize
other types of activity. Hence, we used the two-stream network approach.

The contributions of this paper are as follows:

• We demonstrate (using experiments) that using pre-trained models in the spatial
stream yields good performance results as compared to training the entire model from
scratch and it also saves time. We achieve this by freezing the classification layers
of the original two-stream model [13] and attaching the feature extraction layers of
different pre-trained models one by one and then training the fully connected layers
only to check which model performs best. After selecting the best model, we fine-tune
the whole network to see if the results can be improved.

• We present a strategy to deal with the problem of overfitting by using dataset aug-
mentation. The main reason behind overfitting is the limited dataset provided to a
deep network to train its model. We incorporate dataset augmentation to increase
our dataset size using different augmentation techniques, including horizontal image
flipping and rotation.
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Our proposed method can avoid training the entire model from scratch, which saves
time and avoids the use of high-cost computational resources without compromising the
results. The remaining paper is structured as follows: Section 2 gives the relevant state of
the art work performed in this domain of video-based HAR, Section 3 gives the details of
the proposed methodology, Section 4 gives the implementation details, and this is followed
by the experimental results in Section 5 and conclusions in Section 6.

2. State of the Art

In [13], the authors use threefold cross-validation to improve HAR accuracy. Initially,
they introduce a concept of two-stream ConvNet that mixes spatial and temporal networks.
Secondly, they claim that despite little training data, a ConvNet can be trained on dense
optical flow from several consecutive frames and yet achieve outstanding results. They
finalize their presentation by demonstrating the potential application of multitask learning,
which can effectively amplify the volume of training data and improve performance as a
whole. The most important feature is local trajectory pooling, with spatial and temporal
tubes that are coordinated across spatiotemporal layers to concentrate on trajectories. Even
while the network can detect the optical flow along the trajectories, it ignores trajectories in
spatial pooling. However, the designed network still needs to catch up with the current
state-of-the-art shallow representation [21] in terms of the achieved accuracy.

In [22], spatiotemporal ResNets were used as a combination of these two methods. To
begin, residual connections between the appearance and motion channels of a two-stream
architecture were injected to allow for spatiotemporal stream interaction. Then, the learned
convolutional filters were applied to adjacent feature maps in time to convert pre-trained
image ConvNets to spatiotemporal networks.

In their subsequent paper [23], the same authors have reduced the parameters by
merging the spatial and temporal networks at a convolutional layer, with no performance
loss. A spatiotemporal architecture was designed for two-stream networks comprising a
novel temporal and a convolutional fusion layers, which were connected to the networks.
Regarding performance, the innovative design exceeded the top rank on two common
benchmark datasets without significantly increasing the number of parameters. According
to the findings, it was found that learning correspondence between ConvNet characteristics
that are very abstract in both space and time is extremely important.

In [24], remodeling of the dataset was deployed for initializing model learning by
using the augmentation of data, and ResNet101 layer parameters trained on datasets such
as ImageNet were used to deal with the overfitting issues caused by having less data.
Deeper ConvNet was developed for learning the complexity of action. Using a disorder
testing and training method, the model and procedure may provide a substantial boost
in action recognition. The experiments showed that the strategy beats current top-ranked
methodologies on two advanced datasets, the UCF101 [25] and the KTH action datasets [26].
The temporal network with deeper convolutional networks did not perform well compared
to the appearance networks on the UCF101 dataset during the experimental evaluation.
The following potential alternative might help to overcome this constraint where it was
proposed to capture information on motion with a deep temporal structure by adopting
deeper recurrent neural networks (RNNs).

A two-stream adaptive graph convolutional network (2S-AGCN) was designed specif-
ically for action recognition in [27], which uses the skeleton technique. In this technique,
graph convolutional networks (GCNs) are used, which model the human body skeleton as
spatiotemporal graphs. The backpropagation technique may learn the network architecture
either uniformly or individually as it goes along. Making this data-driven technique part
of the model increases the model’s flexibility for constructing graphs and increases the
model’s generality for varying data samples. To explain both first-order and second-order
information, a two-stream framework was developed, and a significant improvement in
recognition accuracy was achieved.
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In [28], the authors proposed a motion-attentive transition network for zero-shot video
object segmentation. They named this network MATNet; it uses a two-stream encoder
network to treat motion and appearance independently in separate streams. The authors
tested their network on four challenging public benchmark datasets and showed the
effectiveness of their network.

In [29], residual images were used to feed the temporal stream of the network rather
than conventional optical flow images. This reduced the computational requirements, due
to less data to process, and increased the accuracy in comparison to the state of the art
models. Because residual frames offer minimal information on object appearance, they
utilized a 2D convolutional network to extract appearance features and combined them
with residual frame findings to build a two-path solution, reporting a marked improvement
in the speed of execution and accuracy. Table 1 shows the state-of-the-art research work on
the UCF101 dataset, where we have summarised the work of researchers who have used
optical flow.

Table 1. Summary of performance of state-of-the-art methods on UCF101 dataset.

Author Method Optical Flow Accuracy (%)

[13] Spatial and temporal two-stream networks 3 86.9
[22] Spatiotemporal ResNet 7 93.4
[23] Late fusion of two-stream network 7 93.5
[24] Deeper two-stream ConvNets 3 95.1
[28] Two-stream ResNets with encoder/decoder setup 3 82.4
[29] Two-path network 7 90.6

3. Proposed Methodology

The block diagram of the proposed deep two-stream convolutional network is shown
in Figure 1 with its respective spatial and temporal streams. The spatial stream uses each
video frame as a single image for feature extraction and processing. It uses a pre-trained
ImageNet model [30] as the feature extraction part. For the temporal stream architecture,
we use a stack of optical flow fields as input to the architectures. Doing so achieves
two goals: firstly, the data being processed reduces as there are less data in optical flow
fields as compared to RGB images; secondly, the optical flow will capture the moving
regions in an image, thus making it easier to identify the HAR. The details of each stream
architecture are given in Sections 3.2 and 3.3.

 
 

 
 
 
 
 
 
 
 
  

Figure 1. Proposed two-stream network’s architecture.

3.1. Dataset

The UCF101 dataset contains a total of 13,320 videos from 101 human action classes
extracted from videos in the wild. It has the widest variety in terms of actions, and it is the
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most complex dataset to date in this domain, with substantial differences in camera motion,
object look and position, object size, perspective, cluttered backdrop, light conditions,
and so on. This is a supplement to UCF50 dataset, that contains 50 activities. Because
most accessible action recognition datasets are unrealistic and produced by actors, UCF101
intends to inspire future action recognition research by learning and exploring new realistic
action categories. The videos are divided into 25 action groups, where each group may
contain 4–7 clips. The details of the dataset are given in Table 2.

Table 2. Summary of UCF101 dataset.

Activity Details

Actions 101
Clips 13,320
Groups per Action 25
Clips per Group 4–7
Total Duration 1600 min
Min. Clip Length 1.06 s
Resolution 320 × 240
Max. Clip Length 71.04 s
Frame Rate 25 fps

3.2. Spatial Stream

For some actions, a single frame from the whole video can be enough to recognize the
actions correctly. This can be true mostly for actions that involve human–object interactions
such as playing a guitar, discus throwing, hammering, or basketball. As in these action
videos, recognizing an object correctly in a frame can lead to recognizing the associated
action successfully. Keeping this hypothesis in mind, the spatial stream can simply be
called a modified version of the image classification stream, which takes a single RGB
image as input for action recognition.

Enhanced Spatial Stream

As discussed earlier, the spatial stream is in fact an image recognition architecture.
Keeping this analysis in mind, we use advanced pretrained models like ImageNet to our
advantage and train the classification part only instead of training the original CNN model
from scratch. Then, we fine-tune them on our dataset (UCF101) using a transfer learning
technique [31] to form an enhanced spatial stream by adding a fully connected layer at the
end and running the training session for a few iterations. The proposed architecture of our
enhanced stream is shown in Figure 2, where the feature extraction part of the pre-trained
model is merged with the classification part of the original architecture from a two-stream
network [13].

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Enhanced model of spatial stream.

ImageNet [30] is a well-known dataset that has been extensively used in computer
vision since its publication in 2015. The dataset contains over 100,000 classes and has been
made available for educational and non-commercial research purposes. Several research
teams, including Google, Nvidia, etc., have trained their models on this dataset and have
made their trained models available for research purposes. Table 3 contains different
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models trained on ImageNet with the details of the number of layers in the model and the
number of parameters being used in the specific model.

Table 3. Details of models pre-trained on ImageNet.

Model Layers Parameters

InceptionV3 159 23,851,784
VGG-16 23 138,357,544
Xception 126 22,910,480
MobileNet 88 4,253,864
MobileNetV2 88 3,538,984
NASNetMobile − 5,326,716
DenseNet121 121 8,062,504
DenseNet169 169 14,307,880

In our experiments, we have have found quite a few similarities between the Ima-
geNet and UCF101 datasets. As an example, UCF101 dataset has a class “WalkingWithDog”
involving dogs, while the ImageNet also has examples containing dogs, such as “Maltese-
Dog”. Because of the similarities in the types of task between the two datasets, we used
pre-trained models on ImageNet for our problem and tailored them to fit our problem by
using transfer learning techniques. The different pre-trained models listed in Table 3 will
be evaluated individually by training the classification layers only. The best-performing
model will be selected and further fine-tuned to check for any further improvement in
the performance.

3.3. Optical Flow Convolutional Networks

Although for certain activities, a single frame can be enough for recognizing object-
oriented activities, however, time-oriented activities such as running, jogging, etc., need
special input. Here, we describe the input to the ConvNet model for the temporal stream.

Optical flow displacement fields are stacked multiple times to form the input for the
temporal stream. Such inputs will explicitly describe the motion between two consecutive
frames. As a result, the network is freed of the need to estimate motion and can focus on
pattern recognition. We present the details of the proposed optical flow based architecture
in Figure 3.

 
 
 
 
  
 

 
 
 
 
 
 
  

Figure 3. Convolutional model of our proposed architecture.

Stacked Optical Flow

Dense optical flow refers to a collection of displacement vectors, denoted as dt, which
represent the motion between pairs of consecutive frames in a sequence, where d is the
displacement vector that represents the movement direction between two consecutive
frames in frame t, as in Figure 4a,b. The displacement vector is a point (u, v), at locations
u and v in a frame t, which moves to the corresponding point in frame t + 1, thus, can be
denoted by dt(u, v) for the tth frame. The horizontal component dx

t and vertical component
dy

t of the displacement vector and their optical flow representation as an image can be seen
in Figure 4.

In the corresponding image, only the outlined region is being moved during two
consecutive frames (an arm of the person). Figure 4a,b show the movement detection
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of the arm. Now, Figure 4c of the image shows the x component of the vector d and
Figure 4d shows the y component of the vector d. Both the x and y components in the
images are represented by white and black colors in the respective images. Motion across
the consecutive frames is represented by stacking the vertical and horizontal components’
displacement vectors of L continuous frames to form a total of 2L input channels. A
ConvNet input volume Iτ ∈ Rw×h×2L for a video frame of width w and height h, for
temporal stream with an arbitrary input τ, can be denoted as in Equations (1) and (2).

Iτ(u, v, 2k− 1) = dx
τ+k−1(u, v) (1)

Iτ(u, v, 2k− 1) = dy
τ+k−1(u, v) (2)

u = [1; w],

v = [1; h],

k = [1 : L].

 
 

(a)

 
 

(b)

 
 

(c)

` 

(d)
Figure 4. Output of the optical flow; (a,b) are the two consecutive video frames, (c,d) corresponding
horizontal and vertical components of displacement vector from frames (a,b).

3.4. Avoiding Overfitting

Overfitting is mainly caused by having a small amount of data available to train a deep
network. To tackle this issue, we adapt some helpful techniques to minimize overfitting in
the spatial and temporal streams.

3.4.1. Dataset Augmentation for Spatial Stream

Data augmentation is a technique that allows practitioners to substantially enhance
the variety of data available for training models without gathering new data. When
training large neural networks, data augmentation methods such as trimming, padding,
vertical and horizontal flipping, and rotation are frequently employed. However, data
augmentation and its strategies that capture data invariances have received less attention
than the neural network designs themselves. These techniques were employed during the
training phase on the dataset to increase the number of images. Horizontal flip, horizontal
shift, vertical shift, and rotation transformations were used to increase the total number of
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images from 2,482,325 to 2,693,322 images, resulting in an increase of 8.5% in the overall
size of the dataset.

3.4.2. Data Variation for Temporal Stream

Instead of clipping the prominent areas of the picture center, as performed in [32],
we incorporated a method of data variation in our proposed work to enhance the data
variety. All frames are cropped from four corners by randomly choosing the height and
width for each set, which was to make use of multiple scale representations. After resizing
the clipped areas to 224× 224 and flipping them horizontally, they were presented to the
proposed model as input for training the network. This kind of augmentation method
significantly increases the variability in inputs during the training process, which helps to
minimize the issue of overfitting.

4. Implementation Details
4.1. Network Configuration

Figure 2 shows the structure of the spatial stream used for training the spatial network.
The pre-trained model MobileNet, is used for feature extraction, followed by two dense 6
and dense 7 layers. The two-stream network is formed by combining the spatial and
temporal streams. So, after enhancing the spatial stream and checking the results, we
combined the two streams.

Figure 3 shows the layer structure of our ConvNet architecture used by the temporal
stream. It is comparable to the network of [13] and corresponds to the CNN-M-2048 design
of [33]. The rectification (ReLU) activation function is used for all hidden weight layers;
max-pooling is performed across 3× 3 spatial windows with stride 2; and local response
normalization is performed using the same parameters as in [32].

Both networks are combined to formulate the proposed two-stream network, as shown
in Figure 1, by averaging the softmax scores from both streams.

4.2. Training

The training method for both streams may be regarded as a modification of the method
in reference [32]. The mini-batch stochastic gradient descent with momentum, set to 0.9,
is used to learn the network weights. For the temporal stream, we calculate an optical
flow volume I for the chosen training frame. A fixed size 224× 224× 2L input is randomly
chopped from corners and flipped from that volume, as discussed earlier. In the spatial
stream, each batch generates 128 frames cropped down to 224× 224 by sampling 128 videos
(uniformly across all activities). The learning rate is first set to 10−2 for both streams
and then gradually reduced according to a predetermined schedule that is maintained
throughout all training sets. When training both streams from scratch, models are run for
50,000 iterations, whereas the enhanced spatial stream is trained for just 2000 iterations
(classification layer training + fine-tuning). In the end, softmax scores from both models
are fused by averaging the softmax scores.

4.3. Testing

For the temporal stream, we selected a predetermined number of chunks/segments
(5 in our case) from each video with an equal temporal gap between the chunks. We then
extracted 10 frames [32] from each chunk and passed them as input for validation. The
classification results throughout the whole video are then calculated by averaging the
results from all chunks. Spatial stream validation is also carried out in the same manner
with the difference that only a single frame from the predetermined number of chunks is
passed to the network for validation.
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5. Experimental Results
5.1. Evaluation Protocol

We experimented on the UCF101 dataset, which is the benchmark for action videos
and is currently the largest dataset available in this field of computer vision. It contains
101 different classes, which can be split into four categories. There are 13,320 videos in
the entire dataset. For evaluation, we used k-folds cross-validation, where k = 3. The
training set contains around 9324 videos, and the test set contains around 3996 videos. The
classification accuracy is used as the performance measure, and the reported metric is the
mean classification accuracy across three splits. Comparisons are performed with different
architectures based on the accuracy of split 1. The mean classification accuracy across three
splits of data was compared with the state of the art.

5.2. Temporal Stream

We first evaluated the temporal stream architecture by providing the network with
a single and dense optical flow input which was discussed previously. Performance
was measured by training the architecture from scratch on UCF101 with different input
configurations. First, we used a single optical flow as an input with a dropout rate of 0.5
for better generalization. Single optical flow frame did not provide impressive results, with
only 71.6% accuracy, so we then used dense input by stacking five frames and observed an
increase of almost 7% in the results. Further increasing the stacking (L = 10) does not help
significantly as compared to the previous setting, so we kept it to L = 5. Table 4 shows
that using dense stacking of optical flow (L > 1) yields good results as compared to using
a single frame. This shows the importance of the temporal aspect of an activity. Figure 5
shows the accuracy curve of the temporal stream by plotting the training and testing results,
whereas Figure 6 shows the loss curves of the stream.

Table 4. Temporal stream accuracy on UCF101 (split 1) with dropout rate = 0.5.

Input Configuration Accuracy (%)

Single-frame Optical Flow (L = 1) 71.6

Multiple Optical Flow (L = 5) 78.3

Multiple Optical Flow (L = 10) 80.2

 
  

Figure 5. Temporal stream accuracy curve.
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Figure 6. Temporal stream loss curve.

5.3. Spatial Stream

To assess the spatial stream, three scenarios are considered. First, we deployed the
original architecture shown in Figure 3 and trained it from scratch on UCF101 with the same
configuration as that of the temporal stream. This took a lot of time to train and showed
poor results, with an accuracy of just 41.6%. Secondly, we adopted the enhanced spatial
stream, for which we first evaluated the pre-trained models listed in Table 3 by training
them on our dataset. Finally, we fine-tuned the best-performing model from Table 3 on the
enhanced dataset.

Figure 7 shows the performance of enhanced spatial stream by using different pre-
trained models and then fine-tuning them on UCF101. We can see that MobileNet performs
best, with an accuracy of 75.2%. Moreover, Figure 7 also gives us the idea that almost every
pre-trained model we utilized performed better than the original model. Fine-tuning the
enhanced spatial stream on UCF101 leads to improvements because the ImageNet and
UCF101 datasets are slightly different, and the feature extraction part still needs to learn
the dataset through fine-tuning.
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Figure 7. Pre-trained models’ performance.

Based on the data given in Figure 7, we picked the MobileNet model since it has the
best performance. After that, we trained classification layers and fine-tuned the entire
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model with the augmented dataset this time. It can be seen in Table 5 that it outperformed
the standard MobileNet model, with a 1.53% increase in accuracy.

Table 5. Spatial stream performance on UCF101 (split 1).

Input Configuration Accuracy (%)

Training from scratch 41.60

MobileNet (fine-tuning on UCF101) 75.23

MobileNet (fine-tuning on augmented UCF101) 76.70

5.3.1. Fusion

In this section, we assess the overall two-stream model. Multiple strategies have been
adopted in recent years by researchers to combine the temporal and enhanced spatial
streams. One possible approach is to make a stack of joint layers on top of classification
layers and then train it, but this leads to overfitting, so we fused the two streams by
averaging their softmax scores. The results in Table 6 show the significance of combining
both streams, as the overall accuracy is 9.43% greater than the temporal stream results and
12.93% greater than the spatial stream.

Table 6. Fusion results of two-stream network on UCF101 (split 1).

Input Configuration Accuracy (%)

Temporal Stream 80.20

Enhanced Spatial Stream 76.70

Fusion by Averaging 89.63

5.3.2. Comparison with State of the Art

Finally, we compare the overall results of our approach with the state-of-the-art
methodologies by comparing the mean accuracies over three splits of UCF101. For that,
the temporal stream was trained on dense optical flow images which were extracted
beforehand, with a stack of L = 5 frames. The spatial stream on the other hand used
pretrained MobileNet. Further improvements were achieved by fine tuning the spatial
stream on the augmented data. Both streams were fused in the end by averaging their
softmax scores to produce the results. We first compared the results of both streams with
other state-of-the-art methods. Table 7 shows the comparisons as well as the models used
by other methodologies in the motion and appearance stream. We can see that our spatial
stream performed much better than the original spatial stream in [13], i.e., an increase of
6% in accuracy. For the temporal stream, we used the same model as [13].

Table 7. Comparison of appearance and motion path with other SOA models.

Method
Appearance Motion

Model Acc (%) Model Acc (%)

K. Simonyan [13] AlexNet 73.00 CNN 83.70

C. Feichtenhofer [23] VGG-16 82.60 VGG-16 86.25

C. Feichtenhofer [22] ResNet 82.29 ResNets 87.0

L. Shi [27] ResNeXt 85.20 ResNeXt 87.00

Proposed MobileNet 79.00 CNN 82.60
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The results in Table 8 show the overall comparison with state-of-the-art methods,
and we observe that our results performed well compared to almost all of them, with an
accuracy of 91.20%.

Table 8. Comparison with other SOA models (mean accuracy).

Model Accuracy (%)

Two-Stream Network [13] 86.90

Two-Stream Network Fusion [23] 91.40

Residual Two-Stream Network [22] 91.70

Residual Frames Two-Stream Network [29] 91.80

Temporal Stream Network 82.60

Enhanced Spatial Stream Network 79.00

Proposed Two-Stream Network 91.20

In this research, our goal was to recreate the existing two-stream network for HAR
by enhancing its spatial stream and, therefore, we only compared our method with some
corresponding methods, shown in Tables 7 and 8. Our spatial stream result outperformed
the original two-stream model [13]. In [22,23,29] researchers used very deep networks
which require a lot of computation power and time to train them. Keeping in view the edge
they have over us in terms of computational power, our model still outperformed most of
them when comparing the overall accuracy over three splits, as shown in Table 8.

6. Conclusions

The key goal of our research was to develop a reliable HAR network. Various tech-
niques were discussed in this paper to cope with the problems faced by two-stream net-
works including overfitting, and their effects were measured. Different configurations
of inputs were also considered, and the results were compared with published research.
Here, we proposed an enhanced form of the original spatial stream. Several strategies were
deployed to reduce the overfitting issue posed by the insufficient datasets. Using data
augmentation and transfer learning, a critical improvement in HAR has been attained. The
empirical experiments have shown that the proposed architecture’s results are better than
the top-ranked model in terms of accuracy, with 91.2% accuracy on the UCF101 dataset.

While the currently applied methodology provides good results for the used dataset,
future research into new alternatives for the proposed system may enhance precision.
Using transfer learning in the temporal stream can provide good results. Furthermore,
by adding more activities to the existing datasets, overfitting can be further minimized.
Furthermore, the current study offers foundational principles for future researchers to
investigate more configurations in the stated architecture, which will aid in the HAR
system’s high achievement level.
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