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Abstract— In a real-world scenario of load forecasting, it is crucial to determine the energy consumption in
electrical networks. The energy consumption data exhibit high variability between historical data and newly
arriving data streams. To keep the forecasting models updated with the current trends, it is important to
fine-tune the models in a timely manner. This article proposes a reliable inductive transfer learning (ITL)
method, to use the knowledge from existing deep learning (DL) load forecasting models, to innovatively develop
highly accurate ITL models at a large number of other distribution nodes reducing model training time. The
outlier-insensitive clustering-based technique is adopted to group similar distribution nodes into clusters. ITL
is considered in the setting of homogeneous inductive transfer. To solve overfitting that exists with ITL, a novel
weight regularized optimization approach is implemented. The proposed novel cross-model methodology is
evaluated on a real-world case study of 1000 distribution nodes of an electrical grid for one-day ahead hourly
forecasting. Experimental results demonstrate that overfitting and negative learning in ITL can be avoided by
the dissociated weight regularization (DWR) optimizer and that the proposed methodology delivers a reduction
in training time by almost 85.6% and has no noticeable accuracy losses.

Résumé— Dans un scénario réel de prévision de la charge, il est crucial de déterminer la consommation
d’énergie dans les réseaux électriques. Les données relatives à la consommation d’énergie présentent une
grande variabilité entre les données historiques et les nouveaux flux de données. Afin de maintenir les modèles
de prévision à jour avec les tendances actuelles, il est important d’affiner les modèles en temps voulu. Cet
article propose une méthode fiable d’apprentissage par transfert inductif (ITL), pour utiliser les connaissances
des modèles de prévision de la charge par apprentissage profond (DL) existants, afin de développer de manière
innovante des modèles ITL très précis à un grand nombre d’autres nœuds de distribution, en réduisant le temps
d’apprentissage du modèle. La technique de regroupement insensible aux valeurs aberrantes est adoptée pour
regrouper les nœuds de distribution similaires en grappes. L’ITL est considérée dans le cadre d’un transfert
inductif homogène. Pour résoudre le problème de surajustement qui existe avec l’ITL, une nouvelle approche
d’optimisation régularisée par le poids est mise en œuvre. La nouvelle méthodologie de modèle croisé proposée est
évaluée sur une étude de cas réelle de 1000 nœuds de distribution d’un réseau électrique pour la prévision horaire
à un jour. Les résultats expérimentaux démontrent que le surajustement et l’apprentissage négatif dans l’ITL
peuvent être évités par l’optimiseur de régularisation de poids dissocié (DWR) et que la méthodologie proposée
permet de réduire le temps de formation de près de 85,6 % et n’entraîne pas de perte de précision notable.

Index Terms— Clustering models, inductive transfer learning (ITL), load forecasting, predictive models, smart
grids.
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I. INTRODUCTION

RECENTLY, electrical energy forecasting has received
significant attention with developments in the areas of

computational sciences and machine learning (ML). Accurate
energy forecasting is crucial to the long- and short-term capac-
ity planning of an electrical utility. It also provides benefits
such as avoiding overgeneration and undergeneration of energy
and assisting in efficient and sustainable energy generation. It
helps utilities in operational decisions such as load switching,
infrastructure development, enhancing reliability, providing
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predictability, and scheduling maintenance of power systems
such that there is minimal effect on the services delivered to
the customers.

Data-driven methodologies have been used in different
works to forecast energy with different time horizons leading
to three branches: long-, medium-, and short-term forecast-
ing [1]. The training of the ML models and achieving high
accuracy of predictions requires a huge amount of histor-
ical energy consumption data. ML algorithms are mainly
categorized into three types: supervised, unsupervised, and
reinforcement learning models [2].

Short-term load forecasting (STLF) in smart grids has
employed models, such as autoregressive integrated moving
average (ARIMA) [3], linear regression (LR) [4], neural net-
works (NNs) [5], [6], [7], support vector machines (SVMs) [8],
and random forests [9] in supervised learning. In unsupervised
learning, dimensionality reduction models [10], [11], such as
principal component analysis (PCA) and linear discriminant
analysis (LDA), and clustering models [6], [12], such as
k-Means and k-Medoids, have been used.

In smart grids, the data are generated at a very high frame
rate [13]. At the distribution level of a nationwide grid,
there are more than hundreds of thousands of distribution
transformers. To provide hourly STLF, it is important to
train these hundreds of thousands of ML models within the
forecasting horizon of STLF. The proposed methodology aims
to tackle this challenge with the clustering and inductive
transfer learning (ITL) framework. In addition, at newly
installed distribution nodes, an adequate amount of historical
data may not be available. In cases of unavailability of large
amounts of historical energy consumption data, it is required
that the prediction models are trained with limited amounts
of data to achieve sufficiently high accuracy. Furthermore,
it is important to note that the supervised ML algorithms
commonly presume that the training points and testing points
belong to the same statistical data distribution and that large
amounts of historical data are available [14]. However, the
statistical data distribution and patterns of energy consumption
have high variability between historical and future data points.
Hence, it is crucial to transfer the knowledge obtained from
models that are trained on historical data to develop and train
ML models on current energy consumption data points. In this
work, a methodology with the aim of knowledge transfer is
presented. The methodology uses inductive transfer ML to
transfer the knowledge from existing trained models to newer
models or newer applications. Transfer learning (TL), in cases
of low data availability, increases data variance and completes
the voids due to missing records leading to more accurate
predictions.

With the use of TL, a model trained on data following a sta-
tistical distribution can be improved to test with high accuracy
on data following different distributions, unlike conventional
ML models which perform effectively only when training and
testing data follow the same statistical data distribution. The
TL leverages the knowledge from past experience to use it
with a different and new domain or with a new statistical
distribution. The capabilities of TL have previously been

utilized in diverse fields and have also been introduced in
works on time series forecasting [15], [16], [17]. Nevertheless,
these works did not consider the possibility of overfitting in
TL models. When TL is applied, it is generally observed that
the optimizer converges to a local minimum rather than a
global minimum or a local minimum that provides near-true
solutions. It is known that NN optimization is nonconvex.
Although it is not always possible to converge to a global
minimum, convergence to a near optimum solution is a must.
The application of TL in models is more prone to overfitting
and poor generalization. In this work, we have implemented
dissociated weight regularization (DWR) in the weight update
rule to break out of local minima, which in turn eliminates
negative learning between different models. In addition, TL is
integrated with an unsupervised clustering technique with a
key reason to reduce the model training time by a large
factor.

To the best of our knowledge, there has been no previous
work that proposed the hybrid multistage approach involving
outlier-insensitive clustering and overfitting-eliminating ITL.
This work proposes a weight-regularized technique to elim-
inate negative learning and avoid overfitting while apply-
ing TL. The contributions of this work are summarized as
follows.

1) STLF in very large electrical systems, such as nation-
wide grids, requires hundreds of thousands of models
to be trained in a very short time. To overcome
this challenge, a novel hybrid deep-learning (DL)
and clustering-based ITL methodology is proposed to
forecast short-term energy consumption at distribution
nodes with faster convergence and in short times. This
methodology aims to identify the distribution nodes
that have similar trends of energy consumption, cluster
these nodes together, and execute TL across different
clusters.

2) TL models are prone to overfitting. The possibility of
curbing the negative transfer of knowledge has been
investigated. It was observed that the clustering-based
approach and the proposed ITL between similar distribu-
tion units within a cluster eliminate the negative transfer
of knowledge.

3) Furthermore, to avoid overfitting of TL models and to
eliminate negative TL between dissimilar distribution
units or across clusters, a novel DWR technique is
proposed. DWR during optimizing the cost function
while training DL models eliminates overfitting.

4) Different from the conventional method of developing
models one each for a large number of distribution
nodes, the proposed multistage methodology provides
enhanced scalability with reduced training time and no
loss in accuracy. The proposed approach decreases the
count of models required for forecasting in a large grid
network. The methodology can be scaled to any larger
sized grid.

5) The ITL-based forecasting approach aims to alleviate the
data absence problem that exists only at newly installed
electric distribution nodes.
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TABLE I
RELATED WORK

6) The performance evaluation demonstrates that there is
an 85.6% reduction in train time accomplished with the
presented approach.

The remainder of this article is structured as follows.
Section II discusses the related work in DL, clustering-
based load forecasting, and TL. Section III presents the pro-
posed methodology for utilizing transfer ML on DL models.
Section IV presents a case study that has been conducted to
validate the proposed methodology and discusses the results.
Finally, Section V presents the conclusion of the research and
future work.

II. RELATED WORK

A wide range of approaches used to anticipate short-term
load is presented in the literature. They may be roughly cate-
gorized into three groups: statistics, ML, and DL techniques.
Table I includes a selection of the most noteworthy publica-
tions from each category, outlining the proposed forecasting
methodologies, as well as the evaluation metrics to validate the
proposed methodology and the forecasting accuracies. Table I
also shows whether TL was used in the actual research or not
in addition to the limitations of the work.

In addition, the subsequent parts of this section present the
related work in two divisions. The first division discusses
the STLF methods based on DL and clustering approaches.
The second division presents the literature on TL for load
forecasting applications.

A. Load Forecasting

The need for highly accurate forecasting models and the
advent of smart meters led to sensor-based forecasting models.
The load forecasting models have been trained at various levels
of a grid, such as household level, substation level, feeder
level, and distribution nodes level. Different features, such
as lag hour values of power demand, season, and weather
variables, including temperature, cloud cover, humidity, and
precipitation intensity, have been used to forecast energy
consumption for short-, medium-, or long-term levels [18].
Since the models are data-driven, they require large volumes
of data to generate highly accurate models. With the smart
meters being installed and having been installed recently, huge
volumes of data are not available at newly installed nodes
of the smart grid. Hence, it is required to explore how the
knowledge from trained models at nodes with huge historical
data can be transferred to models at nodes with fewer data
available.

Deep neural networks (DNNs) have been the forerunner
in the generation of highly accurate forecasting models.
Shi et al. [19] presented that the uncertainty in energy con-
sumption could be modeled by the use of DL. It is also
crucial that overfitting is avoided that generally prevails with
a high number of layers in the DNNs. The authors proposed
a novel pooling-based deep recurrent NN (RNN) to address
the overfitting by increasing data variety and size. The case
study was performed at the household level after developing a
bespoke DL application with the TensorFlow framework and
they reported that their proposed model performs up to 6.5%
better in terms of root-mean-square error (RMSE) compared
to classical deep RNNs.

Kong et al. [12] addressed the issue of uncertainties of
load at the household level by the use of DNNs called long
short-term memory (LSTM) with inherent long-term memory
capabilities. Their work also included the electrical appliances’
energy consumption in the training data and found that the
accuracy improved curbing the uncertainty in load predictions.
In addition, DL models have been used as part of ensemble
models in various works to forecast energy consumption with
higher accuracy. Cao et al. [20] used a deep belief network
with bagging and boosting variants in an ensemble model.

Moreover, clustering techniques have been utilized in pre-
vious works to group similar customers, days, or weather
conditions. The clustering techniques provide merits of reduc-
ing the variance of uncertainties within each cluster and,
also, these decrease the count of models to be built for
the same number of units when compared to nonclustering
techniques. Goehry et al. [21] presented a methodology
based on random forests and sequential expert aggrega-
tion showing that their proposed methodology performs
better than the classical hierarchical clustering strategy.
Wang et al. [22] employed a k-means clustering algorithm
with better results when compared to nonclustering strategies.
Other clustering algorithms employed for load forecasting
include k-Medoids clustering [23] for similar day clustering,
expectation–maximization clustering [24], Gaussian mixture
clustering [25], density-based spatial clustering of applications
with noise (DBSCAN) [26], and hierarchical clustering [25].

B. Transfer Learning

In the past decade, TL has gained widespread research
interest from researchers in different fields of study due to its
inherent capability of transferring the knowledge gained while
training from one application to another. Ribeiro et al. [28]
used TL with seasonal and trend adjustment to enhance the
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forecasts of energy used in a building with the aid of models
trained on data from similar buildings. An improvement of
11.2% in mean absolute percentage error (MAPE) of predic-
tions was reported after the use of TL. Their work assumes the
similarity of buildings in terms of energy consumption to apply
TL and did not employ clustering-based techniques to group
different buildings. Their case study also limits the application
of TL to similar buildings. In this article, the clustering-based
techniques are employed, and in addition, TL is applied to
similar distribution nodes with an improvement of training
time and testing accuracy and between dissimilar clusters
using weight regularization with an improvement of time and
accuracy.

In [15], energy predictive models based on convolutional
NNs (CNNs) and TL are proposed. In this article, energy
predictive models were tested on a case study of 23 customers
against the seasonal ARIMA (SARIMA) model and fresh
CNN model. The results proved that the performance in terms
of accuracy is improved when the models are pretrained
using TL.

Ye and Dai [16] proposed an ensemble model of online
TL kernel-based extreme learning machines. The results pre-
sented in their work depict that the use of TL improves the
performance in terms of accuracy compared to standard ML
models. Their work utilizes extreme learning machines that are
basically NNs with one hidden layer. The developed approach
using extreme learning machines provided many benefits such
as eliminating the need for optimizing the number of hidden
layers and optimizing a smaller number of parameters [29].
Evident from diverse and numerous research works, the DL
models display high accuracy while dealing with the time-
dependent energy forecasting problems if the tendency to
overfitting is controlled [30]. Hence, in our work, the use of
TL is extended to DL models.

Qureshi et al. [17] proposed a two-stage prediction model
for wind power based on an ensemble of nine deep autoen-
coders in the first phase and deep belief networks in the second
phase. The work was based on five datasets from wind farms.
The TL was utilized in the training of deep autoencoders from
two to nine using the knowledge obtained during the training
of the first deep autoencoder. Their results indicate that the
use of TL overperforms the baseline regression models based
on ARIMA and support vector regression (SVR). However,
the performance of their ensemble model without the use of
TL for autoencoders 2–9 has not been discussed. It is unclear
if the improvement in performance is due to the ensemble of
the optimized deep autoencoders or due to TL. In our work,
the comparison is performed between the same DL model with
and without TL to comment and discuss the accuracy and train
time improvement due to the technique of TL specifically.
Besides, the performance of our proposed methodology is
evaluated against several benchmark forecasting models.

III. PROPOSED METHODOLOGY

In this section, a detailed introduction of the proposed
methodology for STLF using ITL on clustering-based DL
models is presented.

The aim of the methodology is multifold. The main objec-
tive of this work is to increase the accuracy of predictions
of hourly energy consumption in a reasonable time frame.
The methodology is applicable to make many predictions
such as Photovoltaic (PV) power forecasting, wind energy
forecasting, and energy consumption. Importantly, the aim of
the methodology is to apply TL so that the knowledge, network
structure, and network parameters are transferred from already
existing trained models to newer models or tasks. For tasks
with insufficient data to efficiently train a model, TL provides
enhanced accuracy in forecasting. For other tasks, TL provides
faster convergence of models reducing model training time.

A. Data Acquisition and Processing

1) Data Acquisition: In this work, real-world datasets
from the nationwide Spanish Electrical Grid are utilized. The
acquired data are power consumption records at the 1000 dis-
tribution nodes in the grid. The data consist of 24 072 709 time
series hourly energy consumption samples between the period
of 1 January 2017 and 28 September 2019. The lag hour values
of energy, i.e., past energy consumption values, and season
are added as features in the dataset for all of the models that
are developed. In addition, the time series features, such as
year, month, day, and hour, are appended as data attributes.
The feature domain across all the tasks remains the same.
The optimal number of lag hour values, to predict the hourly
load consumption one day ahead in the future, is realized to
be 24 from our previous work [6] on the same dataset. The
dataset of the target model or target task is split into 80% for
training, 10% for validation, and 10% for testing. Once the
sliding window lag hour features and time series features are
added to the dataset, it eliminates the autocorrelation between
the consecutive recordings and generates a possibility of cross
validation on this time series energy consumption data. Tenfold
cross validation has been utilized in this work for performance
evaluation.

For benchmarking case study, an open-source electricity
load diagrams dataset [31] is utilized to provide a compar-
ative evaluation of our proposed methodology against bench-
mark and state-of-the-art models. The data are available for
370 users and contain 140 256 power usage instances for each
user.

2) Data Processing: For the given attributes A1 and A2, the
normalization function φ is a linear transformation such that
φ(A1) and φ(A2) values are in the same domain and possess a
similar scale. The normalization function changes the values
recorded at distinct scales to an identical scale and within
a uniform domain such that these values can be compared
and processed in conjunction. Data normalization enhances the
accuracy of ML models, and hence, it is considered a crucial
preprocessing technique. In this work, minimum–maximum
(min–max) feature scaling is incorporated to bring attribute
values within the range [0, 1]. The min–max scaling in the
range [0, 1] is represented by the following equation:

a′ =
a − Amin

Amax − Amin
(1)
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where a′ is the transformed value, a is the primitive value,
Amin is the minimum value, and Amax is the maximum value
of the attribute. If unnormalized input features are fed to
ML models, the loss function is likely to have elongated
valleys [32]. Optimizing a cost function raises an issue as
the gradient steeps with respect to a few parameters. This in
turn causes large oscillations in the search space of weights
due to steep slope bounces. One way to compensate for this
is optimization with a small learning rate. This in turn raises
another problem of slower convergence, larger training time,
and disproportionate weight assessment. Normalizing inputs
makes loss function more symmetrical and, in turn, makes
optimization easier to achieve. The gradients tend to point
toward a global minimum even with a larger learning rate,
thereby increasing accuracy, achieving faster convergence, and
reducing training time.

B. Model Construction Stage

The proposed solution utilizes the outlier-insensitive clus-
tering and ITL-based DNN model with weight regularization
to improve the accuracy of predictions. The details of the
proposed clustering-based and DWR ITL methodology for
load forecasting are presented in Algorithm 1.

1) Clustering Phase: As depicted in Algorithm 1, the first
phase of the proposed methodology is the clustering phase.
Initially, the energy matrix E is constructed using the energy
consumption data available from the smart meter at each
distribution transformer. The constructed energy matrix E can
be notated as follows:

ETF×H =
(
ei, j
)
∈ Rτ,h (2)

where
(
ei, j
)

is a matrix of size tf× h, h denotes the number
of hours for which the data are available, and τ denotes the
number of distribution transformers.

For the 1000 distribution transformers dataset, the size of the
matrix E is 1000 × 24 024. In the next step of Algorithm 1,
the dissimilarity matrix is constructed based on the criterion
function of Minkowski dissimilarity. The constructed square
and symmetric dissimilarity matrix are notated as follows:

DMTFxTF =
(
di,k
)
∈ Rτ,τ . (3)

The pairwise dissimilarity between any two distribution
transformers i and k is calculated as follows [6]. As an attempt
to reduce the NP-hardness of the optimization, the Minkowski
order (q) is fixed to first order

di,k =

 h∑
j=1

∣∣Ei, j − Ek, j
∣∣q

1
q

. (4)

Once constructed, the dissimilarity matrix is passed as an
argument to the clustering algorithm along with the optimized
hyperparameter kopt that represents the optimal number of
clusters. The hyperparameter kopt in the k-Medoids algorithm
cannot be learned directly, and hence, the elbow curve method
is employed to discover the optimal value of k, which yields
the least within-cluster error [6]. The elbow curve is the
illustration analysis between the number of clusters (k) and

Algorithm 1 Proposed Methodology
Input:
D: distribution node energy datasets, δ: weight decay factor,
imax : maximum number of iterations while training, L: no. of layers
Initialize Cluster numberk = 1, a = 1.
Outputs:
Phase 1: Clustering phase
1: Compute Energy matrix E of all transformers.
2: Compute Dissimilarity Matrix DM using (4).
3: Determine clusters of similar transformers using k-Medoid clustering
and elbow curve method [6]. Return optimal number of clusters as kopt .
Method 1: sourceModel (D1

S)

4: Train a base model (M1
S) on D1

S using proposed weight regularized
optimizer and return the parameters of trained model. Return M1

S .
Method 2: TLmodelDevelopment (M1

S, DT )
5: Initialize target model attributes & parameters with those of M1

S .
6: for i = 1, 2, . . . , imax do the following on Data DT
7: for l = 1, 2, 3, . . . , L do
8: do forward propagation as follows:
9: compute Sl

=
(
2l)T x l−1

10: compute x(l) =

[
1

σ
(
Sl) ]

11: end for
12: compute h

(
x
)
= x (L)

13: for l = L , L − 1, L − 2, . . . , 1 do
14: do backward propagation as follows:
15: compute f l

j in all unfrozen layers
16: end for
17: update weights: θ

(l)
j

w
←− (δ) ∗ θ

(l)
j ηx l−1

i f l
j .

18: Iterate till variations of θ
(l)
j ≤ ε.

19: end for
20: Model (MT ) is developed. return MT .
Phase 2: Transfer learning within cluster
21: for k = 1 to kopt do
22: A t/f 1 in cluster k is selected as source domain i.e., D1

S = Dk[a]
23: Invoke sourceModel method with argument D1

S . M1
S is returned.

24: for τ in cluster k from k[a + 1] to k[−1] do
25: TLmodelDevelopment is invoked with arguments M1

S & Dτ .
26: Model (τ, k) = returned model MT
27: increment τ .
28: end for
29: end for
Phase 3: Transfer learning between dissimilar clusters
30: Cluster 1 is selected as source domain i.e., D1

S = Dk=1

31: Invoke sourceModel method with argument D1
S . M1

S is returned.
32: for k = 2 to kopt do
33: T Lmodel Development is invoked with argument M1

S&Dk .

34: Model(k) = returned modelMT .

35: Increment k.
36: end for

the within-cluster sum of squares error and the elbow or
the dip in the curve reveals the optimal number of clus-
ters kopt. An outlier-insensitive k-Medoid clustering algorithm
is adapted to group similar distribution nodes into clusters.
At the low level, the clustered models for the grouped profiles
and the individual models for each transformer are devised
using a DNN framework.

2) Transfer Learning: TL is a technique of ML in which
the knowledge gained during the training of a model on a
domain of features is leveraged to improve the performance of
training another model or task on the same or different domain
of features [33]. TL eliminates the assumption that the training
data and testing data observe the same data distribution. The
merits of TL are the following: training is done with less or
little data, training gets faster, and model accuracy increases.
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Fig. 1. Traditional learning.

Fig. 2. TL.

Consider that feature domain Fs , label Vs , and task Ts

correspond to the source application, and feature domain Ft ,
label Vt , and task Tt correspond to the target application. The
TL aims to improve the performance of task Tt using the
knowledge obtained in task Ts , where Ts ̸= Tt .

Fig. 1 shows the process of traditional ML where the
knowledge gained after training one model is not retained or
reused in further models. The training of a newer model or
task is executed from scratch. Fig. 2 shows the process of
transfer ML where the knowledge gained after training one
model (trained model 1 in Fig. 2) is transferred to further
models (model 2). The weights, knowledge of features, and
the network structure are transferred to the training stage for
the new task.

The TL process has the benefits of improving the baseline
performance of predictions and improving the time to train an
ML model [14]. The following are the multiple types of TL
algorithms.

1) Transductive TL (Data Features Are Not the Same
Between the Different Tasks) [34]: If the tasks Ts and
Tt that are different infer that the source domain Fs and
the target domain Ft are also different, then it is called
transductive TL.

2) ITL (Data Features Are the Same Between Different
Tasks) [35]: If the tasks Ts and Tt that are different
infer that the source domain Fs and target domain Ft

are the same, then it is called ITL. If the source label
Vs exists, then this learning is called multitask learning.
The learning is unsupervised in the absence of labels
in the tasks, and in such cases, the algorithm is called
self-taught TL.

3) Unsupervised TL [36]: In this type of learning, the
source tasks Ts and Tt are different, the domains Fs and
Ft are similar, and the labels are not available in both
tasks.

Fig. 3. NN perceptron.

a) Theoretical perspective of TL in cross-model load
forecasting using neural networks: Consider a trained NN
structure with three layers, as shown in Fig. 3. The input layer
with I+1 inputs with (I+1)th node as bias node, H+1 hidden
units with (H + 1)th node as bias node, and P outputs.
Consider that the NN model is already trained on training
data with N records, i.e., {(x1, y1), (x2, y2), . . . , (xN , yN )}.
Since the training is complete, it is safe to assume that the
optimal weights have been determined with objective function
on minimum training error. Consider that the weights between
the input-hidden connections and hidden-output connections
are wih and vhp, respectively, where 1 ≤ i ≤ I + 1, 1 ≤
h ≤ H + 1, and 1 ≤ p ≤ P . With TL, it is expected to
train the model with training record N + 1 (refers to training
record from the new dataset) input xN+1 such that the predicted
value from the model is equal to the true value of output,
i.e., yN+1 = ŷN+1. The transfer of training with data from
a new dataset should minimize the effect on training errors
En(1 ≤ n ≤ N ) of previous historical data, i.e., minimize the
weight sensitivity. The cost objective for weight sensitivity can
be given by T ≜ (1/8)

∑N
n=1

∑P
p=1 E2

np. The goal of TL is to
determine the weights 4wih(N + 1) and vhp(N + 1) such that
these do not have any effect on weight sensitivity represented
by the objective function (S) that balances the tradeoff between
weight sensitivity objective function T and error of prediction,
for instance, N + 1. The objective function S is given by the
following:

S ≜ T +
λ

2

P∑
p=1

(
y(N+1)(p) − ŷ(N+1)(p)

)
(5)

where λ is the tradeoff coefficient to balance the evolutionary
training error and preevolutionary training error

T ≜
1
8

N∑
n=1

P∑
p=1

E2
np (6)

T ≜
1
8

N∑
n=1

P∑
p=1

(
(I+1)H∑

ih

δEnp

δwih
wih(N+1)+

(H+1)∑
h

δEnp

δvhp
vhp(N+1)

)2

.

(7)

The weight sensitivities of change in error can be given by
(10) and (13)

δEnp

δwih
=

δ

δwih

(
yp(n)− ŷp(n)

)2 (8)
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δEnp

δwih
= 2 ∗

(
yp(n)− ŷp(n)

)(
0−

δ ŷp(n)

δwih

)
(9)

δEnp

δwih
= −2 ∗

(
yp(n)− ŷp(n)

)δ ŷp(n)

δwih
(10)

δEnp

δvhp
=

δ

δvhp

(
yp(n)− ŷp(n)

)2 (11)

δEnp

δvhp
= 2 ∗

(
yp(n)− ŷp(n)

)(
0−

δ ŷp(n)

δvhp

)
(12)

δEnp

δvhp
= −2 ∗

(
yp(n)− ŷp(n)

)δ ŷp(n)

δvhp
. (13)

From (10) and (13), we modify (7) as follows:

T ≜
N∑

n=1

P∑
p=1

[∑
ih

[
−
(
yp(n)− ŷp(n)

)δ ŷp(n)

δwih
wih(N + 1)

]]

+

∑
h

[
−
(
yp(n)− ŷp(n)

)δ ŷp(n)

δvhp
vhp(N + 1)

]2

. (14)

Let yp(n) ≜
∑H+1

h uh(n)vhp and uh(n) ≜ f
(
u∗h(n)

)
, where

f (·) is the activation function of the hidden layer neuron
and u∗h(n) ≜

∑I+1
i xi (n)wih . It is important to note that

x I+1(n) = 1 and uH+1(n) = 1 since the input node I + 1 and
hidden node H + 1 are bias neurons in the artificial NN
considered. Therefore, the change of prediction with respect to
the weights in the hidden-to-output layer connections is given
by the following:

δ ŷp(n)

δvhp
= uh(n) (15)

where 1 ≤ h ≤ H + 1 and 1 ≤ p ≤ P .
The change of prediction with respect to the weights in the

input-to-hidden layer connections is given by the following:

δ ŷp(n)

δwih
=

[
δ ŷp(n)

δuh(n)

][
δuh(n)

δwih

]
(16)

δ ŷp(n)

δwih
=

[
δ ŷp(n)

δuh(n)

][
δuh(n)

δu∗h(n)

][
δu∗h(n)

δwih

]
(17)

δ ŷp(n)

δwih
= vhp(n)

δ f (x)

δx
xi (n)|{x = uh} (18)

δ ŷp(n)

δwih
= vhp(n)uh(n)(1− uh(n))xi (n) (19)

where 1 ≤ i ≤ I + 1, 1 ≤ h < H , and 1 ≤ p ≤ P .
It implies that

T ≜
1
8

N∑
n=1

P∑
p=1

[
−
(
yp(n)− ŷp(n)

) (I+1)H∑
ih

×
[
vhp(n)uh(n)(1− uh(n))xi (n)wih(N + 1)

]
−
(
yp(n)− ŷp(n)

) (I+1)H∑
ih

[
uh(n)vhp(N + 1)

]]2

. (20)

In TL, we try to minimize the objective function S that
balances the tradeoff between minimizing weight sensitivity
T on a historically trained model and the error of predictions
on data from a new dataset, i.e., S ≜ T+(λ/2)(

∑P
p=1[(yp(n+

1)− ŷp(n + 1))].

Fig. 4. Homogeneous ITL through fine-tuning.

Fig. 5. Clustering-based methodology with TL.

b) Inductive TL in the proposed methodology: In this
work, we use homogeneous ITL by fine-tuning through all
layers for target tasks. The homogeneous TL is shown in
Fig. 4. As shown in Fig. 4, dataset 1 is employed to train
model 1 from scratch, i.e., the weights of hidden layers in the
base model are optimized. During the development of model
x , the base layers from model 1 are utilized without freezing
and the fine-tuning is performed through all layers.

The overall methodology of the construction of load fore-
casting models is shown in Fig. 5. The data of 1000 distribu-
tion nodes are passed through the clustering stage to form a
group of similar distribution nodes into clusters. The optimal
number of clusters is determined to be 93 clusters [6]. Similar
distribution nodes are formed into clusters.

In the next stage of methodology, a forecasting model one
each for a cluster is developed using TL, that is, a forecasting
model (model 0) is first trained from scratch on the source
dataset (cluster 0). Second, the model is retrained on target
datasets (cluster 1, cluster 2, . . . , cluster n) through fine-
tuning all the layers in the NN. For convenience, the clustered
models formed using TL are denoted as Clus-TL-DNN and the
clustered models formed without TL framework are denoted as
Clus-DNN where DNN indicates the inherent DL NN model.
The accuracies of Clus-TL-DNN are compared with those of
Clus-DNN.
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TABLE II
TUNED HYPERPARAMETERS OF THE BEST PERFORMING DL MODEL

The next stage of the proposed methodology involves the
creation of models within clusters. These are individual models
developed for each dataset. Already, the datasets, which are
similar in energy consumption patterns, have been clustered
together in the previous stage. Now, the knowledge transfer
is performed only between the distribution datasets within the
same clusters to eliminate any negative transfer of knowledge.
In the first subset of experiments, TL is used to construct the
subsequent models within a cluster using knowledge transfer
from the source domain within the same cluster. For conve-
nience, these models are denoted as Ind-TL-DNN. To develop
source domains from cluster 1 onward, we utilize a weight
regularization optimizer to transfer knowledge from source
domain within cluster 0. The use of weight regularization
eliminates negative learning when knowledge transfer occurs
between clusters. In another subset of experiments, the indi-
vidual models are developed without the use of any TL. For
convenience, these models are denoted as Ind-DNN.

The models are compared using the RMSE or MAPE for
accuracy and training time for execution time. RMSE is a
metric of forecasting accuracy in statistics and is given by
(21). Also, MAPE is represented by (22)

RMSE =

√√√√ 1
M

M∑
i=1

(
P ′i − Pi

)2 (21)

MAPE =
100
M

M∑
i=1

∣∣∣∣ P ′i − Pi

Pi

∣∣∣∣ (22)

where P ′i is the forecast load demand, Pi is the actual load,
and M denotes the number of data points.

3) Deep Neural Network: To obtain an efficient and accu-
rate DNN model, a search space for hyperparameters, such
as weight initialization strategy, number of hidden layers,
number of neurons, activation function, batch size, training
epoch, and learning rate, was defined. After a search space
was defined, a halving randomized search CV method was
employed for hyperparameter tuning. Multiple comparative
experiments were performed to confirm the model hyperpa-
rameters that are mentioned in Table II. The best performing
DL model determined considering training time and accuracy
was a DNN consisting of one input layer, four hidden layers,
and one output layer. The number of neurons in the input
layer equaled the number of independent data attributes. The
number of neurons in the hidden layers was set to 75, 50,
40, and 30. The output layer consisted of one node because

TABLE III
TESTING OF CLUSTERED MODELS ON CLUSTER DATA WITH AND

WITHOUT TL FRAMEWORK APPLIED BETWEEN CLUSTERS

the model tackled regression. Rectified linear unit (ReLU)
activation function [37] was used as activation in the hidden
layers, whereas the identity function was used as activation
in the output layer. The loss function utilized was the mean-
squared error. Adam optimizer and its proposed DWR invari-
ant had been employed for optimization. The models were
implemented on a Keras framework. The training process
used the Xavier normal weight initialization strategy. Based
on the epoch-convergence history graph, the optimal number
of epochs was set to 50 with a batch size of 128. After training,
the models are saved as .pkl files for later use. The old models
are used as starting points for training newer models with the
help of TL to achieve faster convergence.

IV. EXPERIMENTAL RESULTS

Extensive experiments were performed to evaluate the per-
formance of the ITL-based methodology. The utilized datasets
are the power consumption records at ten and 1000 distribution
nodes in the electrical network.

In one set of experiments, individual models are developed
using the individual datasets, and in another set of experiments,
the clustering approach is applied to group the similar distri-
bution nodes into groups depending on the similarity metric
of hourly power usage.

The employed approach is the k-Medoid clustering tech-
nique to eliminate the sensitivity to outliers in data analytics.
According to the within-cluster error elbow curve, the ideal
count of clusters is determined as 3 for ten distribution nodes
data and as 93 for 1000 distribution nodes dataset [6].

The initial cluster (cluster 0) is trained using the conven-
tional way without any TL. The other clusters are trained with
the help of TL from cluster 0 and the fine-tuning is performed
using the corresponding dataset of the cluster. The knowledge
from the training of cluster 0 is used for training cluster 1,
cluster 2, and so on.

A. Results on Ten Distribution Nodes Dataset

The performance of traditional learning and TL between
dissimilar clusters on clustered models for ten distribution
nodes dataset is shown in Table III. The RMSE of cluster 1
shows significant improvement after the transfer of knowledge.
However, the performance of the model for cluster 2 shows
a negative transfer of learning, indicating that the model con-
verged to a local minimum rather than a global optimization
point. The negative learning can be explained because the
TL is performed between the dissimilar distribution nodes
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TABLE IV
TESTING OF CLUSTERED MODELS ON INDIVIDUAL DISTRIBUTION NODE

DATASETS WITH AND WITHOUT TL FRAMEWORK

APPLIED BETWEEN CLUSTERS

belonging to different clusters. A few potential solutions that
can be considered to avoid convergence to local minima
are the following [38], [39]: 1) considering cyclic learning
rate; 2) using stochastic gradient descent (SGD) with warm
restarts; 3) considering high values for learning rate; 4) using
metaheuristic algorithms such as gray-wolf algorithm, ant
colony optimization, and harmony search; and 5) variants
of optimizers such as vanilla gradient descent, QHAdam,
YellowFin, AggMo, QHM, and Demon. The negative TL can
be removed when the transfer of knowledge happens between
the distribution nodes that are similar. This is observed in
subsequent tables. Moreover, the improvement with TL is
more pronounced when the data for target tasks are not
sufficiently large. In this work, weight regularization is utilized
along with Adam optimizer to eliminate negative learning
when the knowledge transfer is to occur between dissimilar
clusters.

The ten distribution nodes are clustered into three clusters.
With the k-Medoid clustering algorithm, it was determined
that the three clusters of distribution nodes are: {0, 1, 2, 6},
{5}, and {3, 4, 7, 8, 9}. One clustered model based on
DNNs was developed for each cluster. Thus, the three clustered
models have been developed and these have been tested on the
individual datasets of the distribution nodes and the results of
the performance with and without the use of TL are shown
in Table IV. The first column in Table IV represents the
distribution node number or transformer number (tf). The
similar distribution nodes are grouped into the same clusters;
however, any two clusters are assumed to be dissimilar. With
the transfer of knowledge between dissimilar clusters, it is
possible that the transfer is either positive or a little on the
negative side. However, the gain in the execution or training
time is always positive. The gain in time is shown in Table V.
From Table V, it is clear that the time to train the models with
TL is much less than the time to train the models without TL.

If TL is between similar distribution nodes, there is no neg-
ative knowledge transfer. The k-Medoid clustering algorithm
depending on the criterion of similar energy usage clustered
the ten distribution nodes into the clusters {0, 1, 2, 6}, {5}, and
{3, 4, 7, 8, 9}. To eliminate the negative TL, the knowledge

TABLE V
CLUSTER TRAINING TIMES AFTER TESTING OF CLUSTERED MODELS

WITH TL APPLIED BETWEEN CLUSTERS

TABLE VI
TESTING OF INDIVIDUAL MODELS ON INDIVIDUAL DISTRIBUTION NODE

DATASETS WITH TL APPLIED WITHIN CLUSTERS

Fig. 6. Cluster training times for 1000 distribution nodes with TL applied
between clusters.

from the model of dataset 0 should be transferred only to
develop models on datasets 1, 2, and 6. Dataset 5 should have
its model developed from scratch. The knowledge from the
model of dataset 3 should be transferred to develop models
on datasets 4, 7, 8, and 9. The use of the clustering-based
methodology eliminated any negative TL and the results are
described in Table VI. The negative TL between dissimilar
clusters is eliminated by the weight regularization technique
proposed in Section IV-C.

B. Results on 1000 Distribution Nodes Dataset

The performance of TL with respect to training time has also
been verified with a second case study on 1000 distribution
nodes that, according to elbow curve and k-Medoid clustering,
were grouped into 93 clusters, and the models were developed
using DNNs. As shown in Fig. 6, the time to train the
clustered models using TL is always less when compared to
the time taken to train the clustered models without TL. This
confirms that the TL allows for faster convergence of models.
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TABLE VII
PERFORMANCE OF TL ON 1000 DISTRIBUTION NODES DATASET

The performance of TL in coalition with the clustering layer
on the 1000 distribution nodes dataset is shown in Table VII.
It takes 3.23 min to develop 93 clustered models using
TL when compared to 2.20 h of training time without TL.
However, the MAPE varies from 7.22% to 14.37% when TL
is employed between dissimilar clusters.

C. Weight Regularization to Eliminate Negative Learning
Between Dissimilar Datasets

For TL between dissimilar clusters, utilization of an
improved Adam optimizer was proposed to eliminate any
negative learning and to break out from local convergence.
The first optimization step involves the use of a cyclical
learning rate in which the learning rate is initialized to a larger
value and is scheduled to decrease subsequently to prevent the
avoidance of global minima. The proposed optimizer invariant
is utilized with DWR and cyclical learning rate to eliminate
overfitting and to break out from local minima toward the
global minimum.

The weight update rule in the general Adam optimizer is
given by the following:

θ(t) = θ(t − 1)− α f (23)

where f is the effective gradient term and α is the learning
rate.

The general Adam optimizer is characterized by a large step
size when gradient change is less and a smaller step size when
gradient change is rapid, and the adaptability in step size is
performed by maintaining moving averages (called moments)
of gradient over the steps.

The implemented optimizer invariant employs DWR. This
allows for weight regularization without the association of
hyperparameters such as learning rate (α) and weight decay
factor (δ).

The weight update rule in the proposed DWR-Adam opti-
mizer invariant is given by the following:

θ(t) = (δ)θ(t − 1)− α f. (24)

The weight decay factor is introduced as a coefficient to
the weight of the previous iteration and lies between 0 and 1.

Fig. 7. TL between clusters—testing on cluster data.

Fig. 8. TL between clusters—testing on individual transformer data.

This forces the weights learned to be small, and thus, the
model generalizes better. For convenience, the clustered mod-
els using DWR are denoted by Clus-TL-DWR-DNN.

1) Weight Regularization on Ten Nodes Dataset:
Figs. 7 and 8 show the performance of TL after weight reg-
ularization on ten distribution nodes dataset. The results,
obtained after the testing of clustered models is performed
on cluster data, are shown in Fig. 7. The graph of TL with
weight decay regularization is at the lower bound of error
when compared to the model development without TL for
clusters 1 and 2. At no point, the error is high in the
case of model development after TL. This indicates that the
negative learning has been eliminated by the use of weight
regularization in the optimizer.

The results, obtained after the testing of clustered models on
individual transformers’ data, are shown in Fig. 8. The graph
of TL with weight decay regularization is at the lower bound of
error when compared to the model development without TL for
all the transformers, including tf 1, tf 8, tf 3, tf 6, tf 7, and tf 9.
At no point, the error is high in the case of model development
after TL. This corroborates that the negative learning has been
eliminated by the use of weight regularization in the optimizer.

2) Weight Regularization on 1000 Nodes Dataset: The per-
formance of TL after weight regularization on the 1000 distri-
bution nodes dataset is presented in Table VII. To analyze the
performance of the proposed weight regularization TL model-
ing (Clus-TL-DWR-DNN), several state-of-the-art benchmark
models, including LR, ARIMA, and deep LSTMs, are selected
as comparative methods, as shown in Table VII. Weight
regularization utilized during objective function optimization
in the proposed model eliminates negative knowledge transfer.
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TABLE VIII
PERFORMANCE OF TL WHEN THE DATA AVAILABILITY IS LOW

Fig. 9. TL results when the data availability is low.

TABLE IX
COMPETITIVE EVALUATION AGAINST STATE-OF-THE-ART MODELS

The proposed Clus-TL-DWR-DNN has a higher overall devel-
opment time of 20.17 min while maintaining an average
MAPE error to a minimum of 7.20% when compared to
clustering-based TL modeling that has 3.23 min as develop-
ment time and an average MAPE of 31.96%.

D. Results on Targets With Smaller Datasets

Besides, the effect of TL has been analyzed with smaller
datasets. As observed in Fig. 9, for smaller datasets, the model
developed from scratch has low accuracy when compared
to the model with knowledge transferred from a similar
distribution point. As the size of the dataset increases, the
accuracy of both the models, with and without TL, increases,
and when a threshold size is reached, these models have very
close accuracy values. The results of the performance of TL,
when the data availability is low, are verified on the available
dataset (see Table VIII). As shown in Table VIII, the model
with TL performs 38% better than the model without TL when

the data size for the second model is 5% of the original dataset.
In all the cases of data availability, the TL model outperforms
the conventional model by 13%–43%.

E. Benchmark Case Study for Competitive Evaluation

The proposed multilayer methodology is compared against
the state-of-the-art models generated on a normalized bench-
mark dataset and the results are tabulated in Table IX.
As shown in Table IX, the proposed model has the least
training time of 10.2506 s and a highly competitive accuracy
with an nRMSE of 0.1057.

V. CONCLUSION AND FUTURE WORK

This article proposed a methodology to develop highly
accurate trained models even in case of the unavailability of
historical data in large quantities. The methodology employs
an ITL mechanism to improve the accuracy of the newer mod-
els from the knowledge gained during the training of a similar
task in the past. The proposed TL model not only improves the
accuracy for smaller datasets but also improves the execution
time to reach convergence for any size of training data. The
effectiveness of the proposed methodology is verified through
a case study of hourly energy forecasting where the model
predicts hourly load 24 h ahead of time and the used features
are 24 past lag values, season, and time series extracted
features. The set of experiments was executed for multiple
distribution energy datasets while using clustering and addi-
tionally, without clustering. The DNNs are used for training
the forecasting regression models. The proposed methodology
enables the use of the trained TL models from the scenario
where large quantities of historical energy consumption data
are available to the scenario where the available data are small.
To eliminate the negative transfer of knowledge, the TL is
employed between datasets with similar energy consumption
patterns and similar datasets are determined by the first stage
of clustering in the proposed methodology. In cases of knowl-
edge transfer between dissimilar clusters, the proposed weight
regularization-based TL approach eliminates negative learning.
The overall results indicate that the knowledge transfer using
the proposed methodology improves the accuracy of newer
models, reduces the time of convergence, and reduces training
time for DL models compared to that of models without TL.

In future studies, we plan to utilize different correlation
coefficients instead of clustering techniques to determine the
similarity between distribution nodes before employing TL
between similar nodes. In this work, only one dataset is
considered as a source dataset disregarding the fact that the
other datasets may contain useful patterns for the target task.
Hence, in the future, we plan to perform multisource TL to
enhance the accuracy performance.
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