
 

 
 
 
 
 
 
Yin, H., Tian, D., Lin, C., Duan, X., Zhou, J., Zhao, D. and Cao, D. (2023) 
V2VFormer$++$: Multi-Modal Vehicle-to-Vehicle Cooperative Perception 
via Global-Local Transformer. IEEE Transactions on Intelligent 
Transportation Systems, (doi: 10.1109/TITS.2023.3314919)  
 
There may be differences between this version and the published version. 
You are advised to consult the published version if you wish to cite from it. 
 
 
 
 
 
 
 
 
 

http://eprints.gla.ac.uk/307651/ 
 
      
 

 
 
Deposited on 3 October 2023 

 

 

 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 

 
 
 

https://doi.org/10.1109/TITS.2023.3314919
http://eprints.gla.ac.uk/307651/
http://eprints.gla.ac.uk/


1
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Transformer
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Jianshan Zhou , Dezong Zhao , Senior Member, IEEE, and Dongpu Cao

Abstract— Multi-vehicle cooperative perception has recently
emerged for facilitating long-range and large-scale perception
ability of connected automated vehicles (CAVs). Nonetheless,
enormous efforts formulate collaborative perception as LiDAR-
only 3D detection paradigm, neglecting the significance and
complementary of dense image. In this work, we construct
the first multi-modal vehicle-to-vehicle cooperative percep-
tion framework dubbed as V2VFormer++, where individual
camera-LiDAR representation is incorporated with dynamic
channel fusion (DCF) at bird’s-eye-view (BEV) space and
ego-centric BEV maps from adjacent vehicles are aggregated
by global-local transformer module. Specifically, channel-token
mixer (CTM) with MLP design is developed to capture global
response among neighboring CAVs, and position-aware fusion
(PAF) further investigate the spatial correlation between each
ego-networked map in a local perspective. In this manner,
we could strategically determine which CAVs are desirable
for collaboration and how to aggregate the foremost infor-
mation from them. Quantitative and qualitative experiments
are conducted on both publicly-available OPV2V and V2X-Sim
2.0 benchmarks, and our proposed V2VFormer++ reports the
state-of-the-art cooperative perception performance, demonstrat-
ing its effectiveness and advancement. Moreover, ablation study
and visualization analysis further suggest the strong robustness
against diverse disturbances from real-world scenarios.

Index Terms— Vehicle-to-vehicle (V2V) cooperative perception,
multi-modal fused perception, autonomous driving, transformer,
3D object detection, intelligent transportation systems.

I. INTRODUCTION

AS THE cutting-edge technology, autonomous driving
is regarded as the trend of intelligent transportation
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system (ITS), that provides a promising solution to trou-
blesome problems including traffic congestion, collision, and
emission pollution [1]. With the development of deep learn-
ing and computer vision, environmental perception as the
essential component of self-driving system, has also made
great progress on such object detection [2], [3], [4], [5] and
segmentation [6], [7] tasks, receiving substantial performance
improvement both on accuracy and efficiency. Due to the
complex traffic scenarios and varying physical conditions, it is
difficult to ensure the robust and safe sensing performance
purely depended on ego-view information. Therefore, how to
exploit and aggregate multi-source information to enhance the
perception ability is the hot-spot issue both in academia and
industry.

Vehicle-to-vehicle (V2V) cooperative perception has
recently emerged based on information fusion and
data sharing, that strategically incorporates multi-view
surroundings from neighboring connected automated vehicles
(CAVs) via low-latency vehicular communication [8]. In this
way, several perception challenges occurred in various driving
scenario, i.e., bind spot, beyond line-of-sight, occlusion, etc.,
could be significantly alleviated, simultaneously enabling
self-driving car with long-range and large-scale perception
ability as shown in Fig. 1. According to different collaborative
strategies, current works [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18] on multi-agent perception can be divided
into three folds. On one hand, early fusion [9] transmits raw
sensor data from each vehicle into a targeted one, however,
it fails to meet the requirement of real-time system due to
the unaffordable computational overhead and communication
bandwidth. On the other hand, late fusion [10], [11]
straightforwardly re-weights the individual detections via
mathematical operations (i.e., sum and average) or attention
mechanism, greatly improving the running speed. Whereas,
false positives in different vehicles could be amplified in
this way, and the accumulated spatial displacement would
damage multi-agent collaborative performance step-by-step.
Intermediate feature collaboration [12], [13], [14], [15], [16],
[17], [18] has gained increasing popularity due to its better
trade-off between accuracy and speed, that projects compact
feature representation (e.g., BEV map) from CAVs into a
unified coordinate for comprehensively understanding the
traffic scenario in a global view. Given multiple BEV features,
graph-based methods [12], [13], [14], [15], [16], [17] create
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Fig. 1. The advantage of cooperative perception. Left. The car fails to
perceive the potential threat of public vehicle (PV) in advance when driving
at the intersection. With the help of connected automated vehicle (CAV),
holistic-view information could be transmitted to the ego-vehicle (Ego) for
circumventing traffic conflict in the blind-spot area. Right. The detection result
is visualized in the bird’s-eye-view (BEV) space.

a weighted collaboration diagram where each node denotes
a single vehicle with their real-time pose information, and
pair-wise edge defines the relationship between adjacent
vehicles via spatial weight matrix. Moreover, transformer-
based algorithms perform self-attention or cross-attention
operation on the encoded sequence to capture both local
and global dependencies among CAVs. As an alternative,
keypoint representation is efficiently selected by Farthest
Point Sampling (FPS) for highlighting significant point,
which would be further preserved only if it exists in candidate
proposal [18]. In conclusion, the pipeline of these works is to
combine inter-vehicle representations for feature enhancement
at the ego coordinate, while it easily suffers from feature
ambiguity and semantic deficiencies because of the sparsity
and unevenness of LiDAR point. More importantly, previous
collaboration strategies explicitly construct spatial feature
relation after projecting into a reference coordinate, but it
is non-trivial to investigate the channel interactions across
CAVs in the global.

In this paper, we cast vehicle-to-vehicle perception into
3D object detection task, and develop multi-modal vehicle-
to-vehicle cooperative perception framework termed as
V2VFormer++. For each CAV, a camera-LiDAR paradigm
is proposed for overcoming the drawback of LiDAR-only
detection, which compensates accurate geometry with dense
context (i.e., texture, profile, etc.) for versatile surrounding
description. To obtain the expressive representation in the
unified plane, we project two heterogeneous modalities into the
birds’-eye view (BEV) space via view transformation, and fur-
ther design a simple yet efficient multi-modal fusion module
dynamic channel fusion (DCF) for pixel-point correspondence
aggregation in an adaptative manner. In this way, abundant
semantic attribute at each ego-centric perspective could be ade-
quately exploited with marginal computational budget. As for
vehicle-to-vehicle perception, a novel global-local transformer
strategy is proposed to aggregate intermediate features from
CAVs. Specifically, we firstly adopt the channel-token mixer
(CTM) with MLP design to calculate the global response
among different vehicles, and thus each ego-networked pair
is matched according to correlation score. To concern more
about the region of interest (RoI), position-aware fusion (PAF)

is introduced for attending to the informative area across all
vehicles, and pixel-wise feature semantics in the local is also
explored with a self-attention transformer. Finally, we perform
comprehensive empirical studies on both OPV2V [19] and
V2X-Sim 2.0 [20] datasets, the proposed V2VFormer++

achieves the state-of-the-art collaborative perception accu-
racy, which overperforms the counterparts (e.g., multi-vehicle
single-modal and multi-vehicle multi-modal) by a substantial
margin. Moreover, ablation analysis on diverse configuration
and scenarios further suggests its robustness and generality
against real-world interruptions.

In summary, the contributions of this work are mainly
described as follows:

[1] We propose V2VFormer++, the first multi-modal
vehicle-to-vehicle cooperative perception framework that con-
sumes heterogeneous modalities from separate vehicle for
enhancing multi-agent collaboration performance.

[2] Dynamic channel fusion (DCF) module is designed for
correspondence aggregation from camera and LiDAR BEV
maps in an adaptative manner.

[3] Global-local transformer collaboration is an interme-
diate fusion strategy where channel-token mixer (CTM) is
developed for capturing global response among CAVs and
position-aware fusion (PAF) module is utilized to explore
spatial semantics in a local perspective.

[4] Without bells and whistles, our V2VFormer++ reports
the state-of-the-art cooperative detection performace on both
OPV2V [19] and V2X-Sim 2.0 [20] benchmarks, which out-
performs all alternatives over a remarkable margin. Besides,
ablation study and visualization result further demonstrate
its robustness againse varied disturbances from real-world
scenarios.

II. RELATED WORKS

This section aims to review the related studies on
LiDAR-based and camera-LiDAR 3D object detection, as well
as vehicle-to-vehicle cooperative perception.

A. LiDAR-Based 3D Detection

According to various data formats, LiDAR-based 3D detec-
tion can be broadly divided into three categories: point-based,
voxel-based and hybrid representations. The pipeline of
point-based algorithm directly consumes the raw LiDAR data
with PointNet [21] and PointNet++ [22] architectures for
reliable geometrical feature extraction, the former of which
adopts set abstraction (SA) operator to aggregate point-wise
representation and utilizes transform network (T-Net) for fea-
ture alignment in both input and feature levels, while the
latter of which further learning both local and global contexts
from point cloud via hierarchical sampling method. For 3D
detection task, 3DSSD [23] simultaneously introduce distance
(D-) and feature (F-) farthest point sampling (FPS) strategies
to handle the sparsity of point representation, and conduct
object localization and classification via an SSD (single-stage
detector)-like architecture. To better distinguish foreground
point from the background, CenterPoint [24] extracts keypoint
feature to predict 3D bounding boxes from the center points
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of objects, and IA-SSD [24] leverages instance-aware features
with SSD architecture for 3D object detection. Voxel-based
detector is an efficient paradigm where 3D point space is
firstly discretized into regular grids, and convolutional net-
work is then introduced to process the fine-grained feature
encoded within each voxel. As the pioneering work, VoxelNet
[25] designs stacked voxel feature encoding (VFE) layer
to point-wise information extraction, and 3D convolution is
then utilized for intermediate feature aggregation in the local.
To accelerate the inference speed, SECOND [26] develop 3D
sparse convolution for high-efficiency voxel feature encod-
ing, while PointPillars [27] collapses point cloud into a
2D representation and uses sparse convolutional backbone
instead. Motivated by the idea of 2D Faster RCNN [28],
Deng et al. [29] propose a two-stage 3D detection framework
named as Voxel RCNN with better trade-off between accuracy
and efficiency, that firstly generates coarse 3D candidate
proposals and performs box refinement via voxel RoI pool-
ing layer in the second stage. Moreover, CAGroup3D [30]
explores full convolution 3D pooling to enhance the backbone
feature within each proposal box, pursuing for ultimate detec-
tion performance. Studies on incorporating point-wise with
voxel-wise features for 3D object detection have recently been
a hot-spot issue. STD [31] follows a sparse-to-dense detection
paradigm that obtains accurate proposals from the raw point
with novel spherical anchor, and generates compact represen-
tation from sparse point expression via pointspool. PV-RCNN
[32] summarizes the 3D scene into a set of keypoint with voxel
set abstraction module, and abstracts proposal-specific feature
into a dense grid by RoI grid pooling. Besides, PV-RCNN++

[33] introduces a position-sensitive fusion module for feature
enhancement both on point cloud and voxel grids. Part-A2

Net [34] consists of part-aware and part-aggregation stage, the
former of which aims at high-quality proposal generation with
intra-object part location, while the latter of which conducts
box refinement according to the spatial location relationship
after pooling. SE-SSD [35] adopts a pair of teacher and student
detectors with an effective IoU-based matching strategy and
consistency ODIoU loss for performance boost. Moreover,
Noh et al. [36] proposes a new HVPR architecture that inte-
grates point-based and voxel-based features into a single
3D representation, and designs attentive multi-scale feature
module to learn scale-aware information from sparse and
irregular point patterns. In this paper, we adopt PointPillars as
the single-vehicle LiDAR backbone for the trade-off between
efficiency and accuracy.

B. Camera-LiDAR 3D Object Detection

Camera-LiDAR fused perception [5] has demonstrated its
meliority and drawn broad attention for 3D detection recently,
which compensates the sparsity, uncertainty, and semantic
fragmentation of lidar-only methods. Without the sophisti-
cated process for pseudo-LiDAR generation, Pointpainting
[37] designs a sequential-based fusion mechanisms that firstly
decorates raw point cloud with the pixel-wise semantic score
produced by image segmentation network and then put them
into any LiDAR-only pipeline. 3D-CVF [38] projects a dense

camera voxel onto the BEV plane, and concatenates each
modality through an adaptive gated attention map. Further-
more, Chen et al. [39] establishes pixel-voxel view association
via a learnable perspective alignment rather than an inherent
projection matrix, being flexibly desirable for the consistency
of heterogeneous representation. Yang et al. [40] introduces
a novel modality-specific encoder-decoder structure with the
throughout bilateral cross-attention span coordinate to reserve
the utmost intra-characteristic in an unmixing way. To bridge
the information gap between image and LiDAR, MVP [41]
lifts each pixel into 3D virtual point for gathering geometrical
structure, while Jiao et al. [42] proposes a multi-depth unpro-
tection (MDU) block to compensate the depth blur and the
mismatch of multi-granularity geometric for more pronounced
detection. Recently, Transfusion [43] is the first attempt to
introduce the transformer into camera-LiDAR 3D detection
due to its superiority in long-range dependency modeling.
It applies two sequential decoder layers to softly associate
object query with the coarse LiDAR and fine-gained image
features on BEV plane, enhancing the perception performance
stage-by-stage. Similarly, UVTR [44] extends image-specific
space into the voxel by transformer-based decoder and prob-
ability depth distribution, and further performs cross-attention
feature interaction via knowledge transfer. BEVFusion [45]
converts multi-modal streams into a canonical coordinate, and
adopt a dynamic fusion strategy to prevent the failure case
from LiDAR malfunction. In this paper, we aim at a simple and
grace pixel-point fusion paradigm where heterogeneous feature
could be transformed into a unified representation, and two
BEV maps are projected onto the height-agnostic ego plane in
a self-adaptation aggregation.

C. Vehicle-to-Vehicle Cooperative Perception

Vehicle-to-vehicle (V2V) collaborative perception has
recently emerged with advanced vehicular communication and
information fusion, and thus provides an effective solution
to alleviate the beyond-line-of-sight and blind-spot challenges
caused by single-agent detector. In general, this pipeline incor-
porates multi-view surrounding sensory data from connected
automated vehicles (CAVs) with the ego-centric observations
to facilitate the global perception ability, and according to dif-
ferent cooperative phase, prior works could be mainly divided
into early, immediate, and late collaboration. Cooper [9]
primarily shares multi-resolution LiDAR point, and projects
own sparse representation into a compact space followed by a
sparse point-cloud object detection (SPOD) network to adapt
low-density point clouds. Whereas, it causes unaffordable
computation overhead in the early-fusion way. Late fusion
methods conversely combines independent predictions from
diverse vehicles, and conduct proposal refinement to produce
the final result [11], [46], [47]. Hurl et al. [11] introduces
trust mechanism for secure message selection, and integrates
a novel TruPercept to re-weight the output according to
consistency score. However, this approach easily suffers from
unsatisfactory result due to the over-reliance on individual
prediction. For the sake of trade-off between perception
accuracy and inference latency, intermediate feature combi-
nation among neighboring vehicles has been widely explored
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Fig. 2. The architectural diagram of V2VFormer++. For each vehicle, two-stream network with modality-specific backbone is adopted for camera-LiDAR
feature extraction in BEV plane (with sparse cross-attention SCA module for camera-view transformation), and dynamic channle fusion (DCF) is designed
for fine-grained pixel-point aggregation. Given multi-modal BEV map, data compression and sharing are performed to generate a group of feature map F i

cav
at ego-vehicle coordinate. Subsequently, global-local transformer collaboration strategy is proposed for channel semantic exploration and spatial correlation
modeling among adjacent CAVs. Finally, the multi-vehicle fused map F joint is fed into prediction header for object classification and localization regression.

to pursue for favorable performance gains. Wang et al. [14]
proposes a graph-based method to iteratively capture and
update geographic information for each vehicle by convo-
lutional gated recurrent unit (ConvGRU). To emphasize the
agent importance, DiscoNet [15] discards highly-similar pixel
among vehicles through an edge weight matrix, and constructs
the holistic geometry topology via knowledge distillation.
To simulate the effect of transmission latency in the real world,
Liu et al. [12] presents a three-step handshake communication
protocol including request, match and connect, determining
which collaborator to interact with. Moreover, Liu et al. [13]
considers a learnable self-attention mechanism to infer
whether the ego agent performs an extra communication
to obtain more information. Hu et al. [16] develops a novel
sparse confidence graph to mask the insignificant element
for feature compression. As fine-grained and dense predic-
tion from vehicle-mounted cameras, Xu et al. [48] investigates
camera-only map prediction framework under the BEV plane,
which utilizes a novel fused axial (FAX) attention to recon-
struct dynamic scene on the ground plane. Despite remarkable
performance achieved by the abovementioned algorithms, they
mostly focus on spatial correlation among CAVs in the local
region, without global feature interaction for overlapping
semantic refinement. In this work, we attempt to design a novel
intermediate feature collaboration dubbed V2VFormer++,
that explicitly captures global response among each vehicle,
and the ego-networked pair exploits the transformer-based

operation for attending to local discriminative feature in a
position-wise manner.

III. METHODOLOGY

In this section, we would introduce the proposed multi-
modal vehicle-to-vehicle cooperative perception framework
V2VFormer++. As depicted in Fig. 2, the overall architecture
mainly contains four parts: (1) modality-specific backbone
for multi-view camera and LiDAR point feature extraction;
(2) pixel-point fusion module for semantic and geometrical
information aggregation in an adaptative manner; (3) global-
local transformer for the informative area attended with
self-attention mechanisms; (4) prediction header for producing
object localization and classification score.

A. Modality-Specific Backbone

To promote effective feature learning from different modal-
ities, we adopt modality-specific backbone for camera and
LiDAR representation extraction. For an individual vehicle,
given a set of surrounding-view image as I = I1, I2, . . . , Im ,
ResNet-style backbone [49] is adopted for comprehensive
feature learning from camera image, which contains several
strided 3 × 3 convolutional layers followed by batch nor-
malization (BN) [50] and rectified linear unit (ReLU) [51].
Moreover, the shortcut connection is also constructed with
1 × 1 convolution, thus enabling stable gradient propagation
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Fig. 3. The schematic diagram of BEV map generation from camera feature.
The BEV map Fbev

cam is initialized by a group of X -Y grids sampled from
the world coordinate. Simultaneously, sliding-window sampling method is
utilized to partition the BEV and multi-scale camera map F i j

cam into a smaller
proportion. After linear projection, the query (Qbev), key (Kcam ) and value
(Vcam ) embeddings are fed into sparse cross-attention (SCA) module for
iterative BEV map update.

and information delivery. In this way, camera branch pro-
duces multi-scale feature map F i j

cam ∈ RH j
×W j

×Ccam (i =

1, . . . , m; j = 1, . . . , n), where H j , W j and Ccam denote the
height, width and channel number of feature map at different
resolutions, and n is the number of feature scale.

Previous works [52], [53], [54] on spatial projection from
perspective to bird’s-eye view (BEV) spaces explicitly perform
depth estimation via camera intrinsic and extrinsic parameters,
however, feature ambiguity and inaccurate correspondence
inevitably damage the final performance instead. In this work,
we primarily sample a group of grids in X -Y plane from
the world coordinate, and then project them into the image
plane, forming a BEV map Fbev

cam within the perception range,
as shown in Fig. 3. To exploit depth information from various
camera setups, a novel sparse cross-attention (SC A) module
is adopted for feature interaction between the frontal image
and BEV representation. Specifically, an adaptative sliding-
window sampling strategy is firstly utilized to partition the
resolution of multi-scale feature F i j

cam and BEV Fbev
cam maps

into a smaller proportion, with affordable computational over-
head. Given the window size w1 = D × D and w2 = G × G
(G > D), the resulting feature patch and BEV grid are denoted

by F i j
cam ∈ R

H j
D ×

W j
D ×Ccam and Fbev

cam ∈ R
Hbev

G ×
W bev

G ×Cbev
cam ,

respectively. With independent linear projection, we fur-
ther produce the query Qbev , key Kcam and value Vcam
from two partitioned sequences, followed by position embed-
dings to highlight the spatial information. Consequently,
sparse cross-attention process can be mathematically described
as Eq. 1-Eq. 4:

Qbev = Linear(Fbev
cam),

Kcam = Linear(F i j
cam),

Vcam = Linear(F i j
cam), (1)

Q̂bev = SC A(Qbev, Kcam, Vcam) + Qbev (2)

SC A(Q, K , V ) = Multi Head(Concat[σ(
Qt K T

t
√

d
)Vt ])

Fig. 4. The schematic diagram of dynamic channel fusion (DCF). Given
camera-LiDAR BEV maps Fbev

img and Fbev
lidar , DCF concatenates them in

an element-wise manner, and 3 × 3 convolution is adopted to explore the
valuable semantic and geometric information. After global average pooling
operator and MLP (implemented by 1 × 1 convolution), sigmoid function
δ(·) produces the activation probability for channel feature re-weighting. As a
result, multi-modal fused map Fsingle is generated from each single-view
encoder module.

t = 1, · · · , h (3)

Qbev = Q̂bev + F F N (L N (Q̂bev)) (4)

where Linear(·) is the linear projection with a fully-connected
layer, Multi Head(·) is the multi-head self-attention layer,
Concate[·] is element-wise feature concatenation, σ(·) is the
softmax function, h is the head number, F F N (·) defines the
feed forward network implemented with multi-layer percep-
tron, and L N (·) is the layer normalization [55].We conduct
three SCA blocks for hierarchical feature aggregation and
spatial correlation modeling, and finally, the image BEV map
can be expressed as Fbev

img ∈ RH×W×Cbev
img .

For the LiDAR branch, we adopt PointPillars [27] backbone
for point feature extraction. Denoted the raw point cloud
as P = {p1, p2, · · · , pc} (pc = (xc, yc, zc, r)), where xc,
yc, zc, r and c represent the spatial coordinates, reflectance
and number of point, a stacked pillar tensor is formed with
corresponding index, and we utilize a simple PointNet [21]
architecture for pillar feature extraction. To generate the
pseudo-BEV image, these features are further scattered back
to the X -Y plane, and 2D CNN backbone is introduced for
merging multi-resolution maps into a dense LiDAR BEV
feature Fbev

lidar ∈ RH×W×Cbev
lidar .

B. Pixel-Point Fusion Module

Given modal-agnostic BEV representations Fbev
img ∈

RH×W×Cbev
img and Fbev

lidar ∈ RH×W×Cbev
lidar , an intuitive idea is to

concatenate them together for multi-modal feature enhance-
ment. Nonetheless, it easily suffers from spatial misalignment
due to the inherent heterogeneity, and direct concatena-
tion or sum operation generally causes coarse information
fusion without fully object semantic supervision. To this end,
we design a dynamic channel fusion (DCF) module to exploit
image and LiDAR contextual information in a channel-wise
manner as depicted in Fig. 4. More specifically, we concatenate
each pair of pixel-point feature according to the index, and
3 × 3 convolution is adopted to explore the valuable semantic
and geometric cues, resulting in the re-organized feature
Fconv . To highlight the object discriminability, global average
pooling operator G AP(·) is imposed on feature channel, and
a multi-layer perceptron (MLP) with sigmoid function δ(·) is
further utilized to produce the channel activation probability.
Finally, we multiply it with the convolved feature Fconv to
generate the joint feature map Fsingle ∈ RH×W×Cbev

lidar with
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Fig. 5. The schematic diagram of global-local transformer. Given a group
of ego-centric feature map F i

cav , channel token mixer (CTM) generate
a “patch×channels” table via pooling operators, and after a MLP mod-
ule, softmax function σ(·) outputs the global response value, forming the
channel-mixing map F̂ i

cav . In the position-aware attention fusion (PAF),
tokenization is performed to partition the embedding into a series of fixed-size
window features, and multi-head self-attention (MHSA) is further adopted to
explore the spatial correlation of each ego-networked vehicle. Noted that the
appended relative bias B is responsible for contextual relation encoding for
each query-key pair.

respect to each vehicle. The whole process can be formulated
as Eq. 5:

Fconv = Conv(Concat[Fbev
img, Fbev

lidar ])

Fsingle = δ(M L P(G AP(Fconv))Fconv (5)

In general, DCF provides an effective solution to exploit
channel semantics from both modalities in the unified top-
down plane, and this simple module does not damage the
inference speed due to its efficient design yet.

C. Global-Local Transformer

For each networked vehicle, we develop an encoder-decoder
architecture where the fused map Fsingle is fed into stacked
1 × 1 convolutions for progressive data compression, and
several de-convolutions are accordingly performed for feature
recovery, dubbed as F̃single. To compensate spatial-temporal
asynchronization, we also adopt an affine transformation
8i

cav→ego(F̃single)(i = 1, · · · , k) to project different CAV fea-
tures into the ego-centric view, where 8i

cav→ego denotes the
warping function using the sensor calibration matrix, and
k is the number of nearby car. As a result, we obtain a
group of feature maps F i

cav =
{

F1
cav, · · · , Fego, Fk

cav

}
at the

ego-vehicle coordinate within the communication range, where
Fego implies the targeted vehicle.

Previous works typically enhance individual feature map by
neither receiving all representations from CAVs in the vicinity
nor discarding the entire messages provided by low-relevance
collaborators, the former of which unavoidably causes feature
redundancy in the overlapping area, while the latter of which
probably results in inadequate information interactions across
vehicles. To these ends, we propose a novel global-local trans-
former that consists of channel-token mixer (CTM) for channel
semantic filtering and mixing across inter-vehicle patches in
a holistic view, and a position-aware attention fusion (PAF)
for spatial correlation modeling in the local region. Fig. 5
illustrates the overall structure of global-local transformer.

1) Channel-Token Mixer (CTM): The two-stage transfor-
mation can be referred to tokenization and mixing process.
Given the CAV feature maps F i

cav =
{

F1
cav, · · · , Fego, Fk

cav

}
∈

RH×W×Cbev
lidar ×k , we primarily leverage 3D feature pooling

operator (i.e., global max-pooling (G M P(·)) and global
average pooling (G AP(·)) to reflect the channel-wise
information particularity and commonality, respectively.
Then, feature vectorization is performed by concatenat-
ing and flattening ( f latten(·)) them into a sequence of
image tokens, forming a “patches×channels” table T ∈

RS×C (S = 1 × 1 × 1, C = 2k). The whole process can be
described as Eq.6:

T = Flatten(Concat[G M P(F i
cav), G AP(F i

cav)]) (6)

Subsequently, Mixer conducts linear feature projection into
a hidden space via a two-layer MLP, followed by layer
normalization and Gaussian error linear unit (G E LU (·)).
It acts on the rows of table T , maps RC

→ RChid → RC ,
and shares information across all rows, thus promoting for
channel communication. Finally, sofxmax function is applied
for channel-wise importance evaluation, and we multiply it
with the CAV maps in an element-wise manner, as formulated
in Eq.7:

F̂ i
cav = σ(W2

⊗
G E LU (L N ((W1

⊗
T )∗, j ))))F i

cav,

i = 1, · · · , k

j = 1, · · · , Chid (7)

where W∗ denotes the weight of linear projection,
⊗

is
the matrix mulplication, ()∗, j implies the operator on feature
channel, Chid is the tunable channel number in the hidden
layer and F̂ i

cav ∈ RH×W×Cbev
lidar ×k denotes the channel-mixing

feature map. Benefited by the powerful of MLP, CTM is
capable of dynamically filtering the irrelevant representation
(i.e., overlapping signal), meanwhile capturing the global
response scattered in per-location map. More importantly,
it strategically performs feature mixing across channel to
enhance the valuable information expression, with significant
memory savings.

2) Position-Aware Attention Fusion (PAF): To further
capture the long-range dependencies among vehicles,
transformer-based architecture is widely applied with
self-attention mechanism to explore spatial relationship
of each ego-networked map. Nonetheless, it requires much
longer training epochs for convergence, and dense dot-product
operation brings unbearable computational budget. In this
work, we design a position-aware attention fusion (PAF)
module, that is composed of sparse window-based tokenization
and self-attention mechanism with relative offset for local
feature interactions across all locations. Formally, channel-
mixing map F̂ i

cav ∈ RH×W×Cbev
lidar ×k is linearly projected

into the high-dimensional space to generate three feature
embeddings Fe

∈ RH×W×C (e = 1, 2, 3 and C = Cbev
lidar

for brevity). Subsequently, we partition them into a series
of 3D non-overlapping window w3 with a size of N × N ,
respectively, forming F1

win , F2
win and F3

win are in the same
dimension ( H

N ×
W
N )× (N × N × k)× C . It is highlighted that

window-level partition can reach an effective tokenization than
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intensive computation on the per-pixel map. Consequently,
each token is flattened to generate a sequence of query
(Q), key (K) and value (V), and we further introduce a
multi-head self-attention (M H S A(·)) layer with relative
bias B to explore intra- and inter-vehicle spatial correlation.
Analogous to position embedding (PE), B is a fixed-size
window index responsible for contextual relation learning
from each query-key pair. Mathematically, PAF procedure
can be described as Eq. 8-Eq. 11:

Fe
win = Window[Linear(F̂ i

cav)], e = 1, 2, 3

Q = Flatten(F1
win),

K = Flatten(F2
win),

V = Flatten(F3
win), (8)

Q̂ = M H S A(Q, K , V ) + Q (9)
M H S A(Q, K , V ) = Multi Head

(Concate[σ(
Qt K T

t
√

d
+ B)Vt ])

t = 1, · · · , h (10)

Q = Q̂ + F F N (L N (Q̂)) (11)

where Window[·] implies the window-level patch partition.
We utilize two-layer self-attention operation for exploiting
fine-grained position information, and multi-vehicle fused map
can be referred to as F joint ∈ RH×W×C×k . Taken the advan-
tage of window-level attention, PAF module is not only robust
to pose estimation and offset error, but the contour-aware
attribute (e.g., edge and boundary) can also facilitate the
detection performance on hard object.

D. Prediction Header

As commonly done [14], [16], [17], [48], the joint feature
map F joint is then fed into classification and regression heads
for object category and localization prediction, respectively.
Notably, the post process with non-maximum suppression
(NMS) is adopted for redundant proposal removal.

During model training, the loss function L contains classifi-
cation Lcls and regression Lreg parts. Given the ground-truth
box Bgt = (x, y, z, w, l, h, θ), where (x, y, z) denotes the
object center, (w, l, h) defines the 3D box dimension, and θ

is the heading orientation, we adopt focal loss [56] (F L(·))

to balance the background-foreground sample, and smooth-
L1 function is utilized for supervising 3D box size. Detailed
information can refer to Eq. 12-Eq. 14:

L = β1Lcls + β2Lreg (12)
F L(pt ) = −αt (1 − pt )

γ log(pt ) (13)

smoothL1(x) =

{
0.5x2, i f |x | < 1,

|x | − 0.5, otherwise.
(14)

where β1 = 1.0 and β2 = 2.0 are the weight parameters,
α and γ are the hyperparameter of focal loss, pt is the
estimated softmax probability. Noted that heading orientation
θ is encoded by sinusoidal function (i.e., sin(θgt − θpred))
before smooth-L1 computation, where θgt and θpred present
the ground-truth and predicted angles, respectively.

IV. EXPERIMENTS

In this section, quantitative and qualitative experiments
are conducted on vehicle-to-vehicle perception benchmarks to
investigate the effectiveness of our proposed framework and
its components. Detailed information (i.e, dataset, implemen-
tation, ablation study, etc.) would be described as follows.

A. Datasets

OPV2V is a large-scale vehicle-to-vehicle collaborative
perception dataset, which is built on the top of OpenCDA plat-
form [57] and CARLA simulator [58]. Generally, it contains
12k frames of 3D point clouds and RGB images generated
by four vehicle-mounted cameras and one 64-channels LiDAR
sensor, with 230k 3D box annotations covered a full 360◦ view.
In our experiment, the detection range is set to [-64,64] m,
[-40,40] m and [-3,1] m along the x , y and z axes, respectively.
The model is trained and validated with 6765 and 1980 sam-
ples, and we test the final cooperative performance on 2170
Default and 550 Culver City splits.

V2X-Sim 2.0 is a synthesized multi-modal bench-
mark for vehicle-to-everything (V2X) perception evaluation,
co-simulated by CARLA and micro-traffic simulator SUMO
[59]. It is composed of 100 scenes durated a 20-second
traffic flow at the intersection of three CARLA towns, with
37.2k training, 5k validation and 5k test data. Each scene
has 2-5 CAVs equipped with six cameras and one 32-channel
LiDAR, as well as GPU and IMU sensors. Similarly, the
perception area is limited to [-32,32]m×[-32,32]m× [-3,2]m
in our study.

B. Implementation Details

The experimental platform is based on 8 NVIDIA Tesla
V100 GPUs, and we define the communication range as
70m by default. For OPV2V [19], we introduce the curricu-
lum learning strategy [60] to imitate the human cognition
mechanism: the model is trained for 35 epochs at sim mode
and another 10 epochs with real setting (e.g., localization
error, async overhead, etc.), optimized by Adam [61] with
0.0002 initial learning rate, 0.02 weight decay and cosine
learning rate scheduler. Besides, several tricks (i.e., warmup
and early-stop) are also adopted for training stability, and the
score and IoU thresholds for NMS post-processing are set to
0.6 and 0.15, respectively. As for V2X-Sim 2.0 [20], we follow
DiscoNet settings, and technique details can refer to [15]. The
score and IoU thresholds for NMS procedure are set to 0.6
and 0.15.

The image cropped with a reslution of 520×520 pixels is fed
into ResNet-34 [49] encoder for multi-scale feature extraction,
and the generated BEV grid is 0.25m. We take four attention
heads (h = 4), and the window size D = (8, 8, 16) and G =

(16, 16, 32) in hierarchical SCA module. Moreover, the voxel
size is set to (0.25, 0.25, 4) along x-y-z axis, and in global-
local transformer, the window size N is 4. Unless otherwise
stated, we report the 3D detection average precision (AP) at
0.5 and 0.7 IoU thresholds for a fair comparison.
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TABLE I
DETECTION RESULTS ACHIEVED BY COBEVT [48], WHERE2COMM [16], V2VNET [14] AND V2VFORMER++ ON OPV2V TEST SPLITS,

WE HIGHLIGHT THE BEST ACCURACY AT 0.5 AND 0.7 IOU THRESHOLDS WITH BOLD FONT

TABLE II
DETECTION RESULTS ACHIEVED BY WHEN2COM [13], WHO2COM [12], V2VNET [14], DISCONET [15] AND V2VFORMER++ ON V2X-SIM

2.0 TEST SET. BESIDES, WE LIST THE UPPER-BOUND AND LOWER-BOUND PERFORMANCE, AND THE BEST ACCURACY AT 0.5
AND 0.7 IOU THRESHOLDS IS ALSO HIGHLIGHTED WITH BOLD FONT

C. Quantitative Results

Table I illustrates the cooperative perception result of
our proposed V2VFormer++ and four counterparts on both
OPV2V Default and Culver City splits. On the one hand,
we remove the camera stream from each single-view module,
and evaluate LiDAR-only detection performance, dubbed as
V2VFormer++-L. It is observed that our proposed method
outperforms the CoBEVT [48] and Where2comm [16] meth-
ods over considerable performance gains of 2.3% ∼ 7.5%
and 2.0% ∼ 2.8% AP@0.7 at Default and Culver City sets,
suggesting its effectiveness and superiority. On the other hand,
we append the same camera stream into the LiDAR-only
cooperative detectors (i.e., V2VNet [14], CoBEVT [48],
Where2comm [16]), and assess the multi-modal detection
accuracy. Our proposed V2VFormer++ reports the top collab-
orative perception performance: it achieves 93.5% and 89.5%
AP at 0.5 and 0.7 IoU thresholds on Default, which surpasses
three alternatives by 0.3% ∼ 0.9% AP@0.5 and 0.1% ∼ 1.7%
AP@0.7. Moreover, V2VFormer++ is on par with the first-
tier Where2comm [16] (only 0.2% AP behind) on Culver City,
demonstrating its competitiveness and adaptation.

Simultaneously, collaborative detection result on V2X-Sim
2.0 test set is also tabulated in Table II, and we reproduce
different fusion strategies (e.g., Early, Intermediate and Late)
based on the DiscoNet [15]. Without bells and whistles,
our V2VFormer++ achieves the state-of-the-art cooperative
detection accuracy with 72.7% AP@0.5 and 65.5 AP@0.7,
respectively. Compared with the other intermediate counter-
parts (e.g., DiscoNet [15]), V2VFormer++ receives more than
10% AP boosts at both two IoU thresholds, implying the
advancement of proposed feature collaboration. Furthermore,
it outperforms the Upper-bound by 9.4% AP@0.5 and 5.3%
AP@0.7 margins. We argued that the model fails to lever-
age the meaningful information from adjacent CAVs due to
noisy raw point cloud, while our intermediate representation
provides rich object semantic and geometric information for
faciliating collaborative perception performance reasonably.

D. Ablation Study

For simplicity, ablation study would be investigated on
OPV2V Default and Culver City splits, to measure the effec-
tiveness and robustness of our proposed framwork.
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Fig. 6. Ablation study of the robustness test. Notably, all experiments are conducted on OPV2V Default split. Left. The relationship between position error
and AP result at 0.7 IoU threshold; Middle. The relationship between heading error and AP result at 0.7 IoU threshold; Right. The relationship between time
delay and AP result at 0.7 IoU threshold.

TABLE III
ABLATION STUDY OF THE EFFECTIVENESS OF INDIVIDUAL

COMPONENTS ON OPV2V TEST SPLITS. THE ACCURACY GAINS/
DROPS ARE HIGHLIGHTED WITH DIFFERENT COLORS IN

THE BRACKETS, RESPECTIVELY

1) Effectiveness of Component: For clarify, we choose
V2VNet [14] as the baseline that acheives 85.0% AP@0.5 and
72.0% AP@0.7% in Default, 80.9% AP@0.5 and 64.0%
AP@0.7 in Culver City, respectively, as tabulaetd in Table III.
When appending camera branch with dynamic channel fusion
(DCF), it provides 7.6% ∼ 19.0% accuracy gain at 0.5 and
0.7 IoU thresholds. Furthermore, we replace the spatially
aware graph neural network(GNN) proposed by V2VNet
[14] with global-local transformer to measure its contribu-
tion to collaborative perception. Likewise, it offers 10.0%
AP@0.7 gains in Default. Finally, V2VFormer++ incorpo-
rates DCF with global-local transformer into the baseline,
and the best performance is observed, demonstrating the
effectiveness of each component.

To further investigate heterogeneous data fusion under the
single-vehicle view, we extend the LiDAR-only detectors (e.g.,
V2VNet [14], CoBEVT [48] and Where2comm [16]) with
camera stream, and adopt two camera-LiDAR aggregation
methods for comparison. As shown in Table IV, dynamic
channel fusion (DCF) presents a better multi-modal feature
combination than concatenation (Concate) among different
collaboration frameworks: despite slight performance drop,
it steadily provides 0.4% ∼ 1.0% AP@0.5 increments and
0.4% ∼ 4.0% AP@0.7 promotions on both Default and Culver
City sets. Benefited by channel pooling and re-weighting
operations, DCF is able to fully exploit semantic and geo-
metric information from various modalities, and expressive
multi-modal representation is favorable for cooperative per-
formance enhancement.

2) Robustness Test: To analyze the robustness of coopera-
tive perception, we firstly adopt curriculum learning on several

TABLE IV
ABLATION STUDY OF PERFORMACE CONTRIBUTION PROBIDED BY
MULTI-MODAL FUSION METHODS ON OPV2V TEST SPLITS. THE
ACCURACY GAINS/DROPS ARE HIGHLIGHTED WITH DIFFERENT

COLORS IN THE BRACKETS, RESPECTIVELY

multi-modal perception frameworks, and list the cooperative
result of OPV2V Default set under different mode config-
urations as tabulated in Table V. Notably, Sim/Real modes
define the desirable/real-world transmission without/with data
compression, while Perfect/Noisy conditions stand for the
ideal/corrupted environments without/with localization error
(e.g., Gaussion noise) and communication latency (uniform
distribution over 200ms), respectively.

Obviously, the proposed V2VFormer++ shows the strong
robustness against different corruptions: it achieves a favor-
able detection accuracy of 84.9% AP@0.5 and 58.5%
AP@0.7 on the Sim+Noisy level, and offers 6.0% and 16.9%
AP gains under the Real environment. When transferring
from Perfect to Noisy in the Real setting, all collabora-
tions suffer from a subtantial accuracy decline, e.g., 6.3%
AP@0.5 and 10.9% AP0.7 in V2VNet. Our V2VFormer++

reports an acceptable performance drops in 2.1% AP@0.5 and
9.6% AP@0.7, suggesting the perferable stability and
generality.

We further add Gaussian noise and uniform distribution to
simulate different real disturbances, and the anti-interference
ability of position error, heading error and communication
delay is verified as illustrated in Fig. 6. Evidently, our proposed
method reveals the remarkable and advantageous performance
against localization offset over Gaussion distribution with stan-
dard deviation (std) σxyz ∈ [0, 0.5]m, while the counterparts
(e.g., CoBEVT [48]) experiences an appearant performance
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Fig. 7. Visualization results of attention map activated by dynamic channel fusion (DCF) module. Four common scenarios (i.e., Straight, Merge, Curve
and Intersection) are randomly selected from the left to the right, and a pair of LiDAR ground-truth (GT) and attention map is correspondingly listed in each
column. Noted that a spot with larger activated value implies higher potential of target ocurred in this area.

Fig. 8. Visualization results of attention map activated by global-local transformer collaboration strategy. Four common scenarios (i.e., Straight, Merge,
Curve and Intersection) are randomly selected from the left to the right, and a pair of LiDAR ground-truth (GT) and attention map is correspondingly listed
in each column. Noted that a spot with larger activated value implies higher potential of target ocurred in this area.

decline with the increasing offset value. Besides, it is non-
susceptible to varying heading noise with std σr yp ∈ [0◦, 1◦

],
and also maintains favorable AP results under [0, 400]ms
time delay. Generally, it is suggested that V2VFormer++

holds the outstanding robustness and anti-interference ability
confronted with severe real scenarios. Owing to curriculum
learning strategy, the model could explore inherent and signif-
icant information step-by-step, and we deem these knowledges
would faciliate to retain considerable perception performance

even under various corruptions. More importantly, global-local
transformer collaboration strategy incorporates the ego-centric
perspective with multi-view representations organically, which
is helpful to hard-sample perception in such the occluded and
line-of-beyond areas.

E. Qualitative Results

Finally, qualitative experiments are performed to deeply
analyze how the fuison module make effect. And we also
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Fig. 9. Detection visualizations in OPV2V test split. For top to bottom, we list the original camera image, LiDAR ground-truth (GT), and perception results
achieved by CoBEVT [48], Where2comm [16] and V2VFormer++. Noted that the GT and predicted boxes are drawn with red and green colors, respectively,
and we also highlight the superiority and advancement of V2VFormer++ with blue circle. Evidently, our proposed method shows more accurate and robust
collaborative detection performance compared to other methods, even in heavily occluded, blind-spot and line-of-beyond areas.

showcase the cooperative detection results to reflect the advan-
tage of our proposed V2VFormer++.

1) Attention Map: As depicted in Fig. 7 and Fig. 8,
we seperately exhibit a pair of LiDAR ground-truth (GT)
and activation map after DCF and global-local transformer
collaboration at the straight, merge, curve, intersection sit-
uations. Thanks to the effective DCF design, the activated
spot can approximately correspond to the target area in the
LiDAR GT, allowing the model to focus on the high potential

or region of interest (RoI) of object. DCF explores feature
channel semantics in a dynamic point-wise manner, and thus
valuable information could be fully expoited from camera
and LiDAR modalities. Similarly, global-local transformer
consumes multi-view representations from adjacent CAVs via
channel-wise and position-aware importances. It would pro-
vide a broader and longer probing range, and the highlighted
spots could guide the model to detect the occluded or rarely-
seen objects.



12

TABLE V
ABLATION STUDY OF MODEL ROBUSTNESS AGAINST VARIOUS MODE

CONFIGURATIONS ON OPV2V Default SPLIT. THE ACCURACY GAINS
ARE HIGHLIGHTED IN THE BRACKETS, RESPECTIVELY

2) Detection Visualization: As listed in Fig. 9, we display
the visualizations in comparison of our V2VFormer++ with
CoBEVT [48] and Where2comm [16] methods. Typically, our
proposed algorithm consistently maintains much precise and
robust detection results, particularly in challenging and ambin-
guous scenes. It still shows outstanding perception ability
in those hard samples (i.e., occluded, blind-spot and line-
of-beyond areas) that other counterparts fails, suggesting its
supriority and advancement.

V. CONCLUSION

In this paper, we make the first attempt to vehicle-to-
vehicle cooperative framework with multi-modal represen-
tation, dubbed as V2VFormer++. For individual vehicle,
two-stream architecture with sparse cross-attention (SCA)
transformation and dynamic channel fusion (DCF) is pro-
posed for camera-LiDAR feature aggregation under the unified
bird’s-eye-view (BEV) space, thus exploiting semantic and
geometric informaiton fully. To leverage inter-vehicle cor-
relation from adjacent CAVs better, we design a two-stage
global-local transformer collaboration strategy where channel
token mixer (CTM) captures the global response scattered
in per-location map and postion-aware fusion (PAF) explores
the spatial relationship of each ego-networked pair in the
local perspective. Empirical experiments are conducted on
both OPV2V [19] and V2X-Sim 2.0 [20] benchmarks, and
the results demonstrate our proposed V2VFormer++ ourper-
forms all counterparts by a substantial margin, suggesting
its effectiveness and superiority. Moreover, ablation study
and visualization analysis further reveal the strong robustness
against various disturbances from real-world scenarios.

Future works would cotinue to investigate how adverse fac-
tors influent make impact on multi-agent percepton algorithm,
e.g., latency, lossy package, etc. Also, how to optimize infer-
ence efficiency is comparatively essential for the practical
deployment.
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