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Many cloud service providers (CSPs) offer an on-demand service with a small delay. Motivated by the reality

of cloud ecosystems, we study non-interruptible services and consider a differentiated service model to

complement the existing market by offering multiple service level agreements (SLAs) to satisfy users with

different delay-tolerance. The model itself is incentive compatible by construction. Two typical architectures

are considered to fulfill SLAs: (i) non-preemptive priority queues, and (ii) multiple independent groups of

servers. We leverage queueing theory to establish guidelines for the resultant market: (a) under the first

architecture, the service model can only improve the revenue marginally over the pure on-demand service

model; (b) under the second architecture, we give a closed-form expression of the revenue improvement

when a CSP offers two SLAs and derive a condition under which the market is viable. Additionally, under

the second architecture, we give an exhaustive search procedure to find the optimal SLA delays and prices

when a CSP generally offers multiple SLAs. Numerical results show that the achieved revenue improvement

can be significant even if two SLAs are offered. Our results can help CSPs design optimal delay-differentiated

services and choose appropriate serving architectures.
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1 INTRODUCTION
The Infrastructure-as-a-Service market grew to total $90.9 billion in 2021 [1], and has attracted

plenty of users with different purposes to run their applications on cloud servers [2]. As an essential

option, many CSPs offer the standard on-demand service with a negligible delay so that users

can always access computing resource fast. While delay is a key constraint to resource efficiency

[3], users often differ in the sensitivity to it [4, 5]. Price differentiation by delay is an important

direction to both satisfy user preference and improve CSP revenue. An example is Amazon Elastic
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Cloud Compute (EC2) that offers delay-tolerant spot service together with the standard on-demand

service, which can closely satisfy the need of users with different delay-tolerance; other such

CSPs include Microsoft Azure and Google Cloud whose delay-tolerant services are called low-

priority VMs and preemptive VM instances respectively [11–13, 15]. However, CSPs typically

do not reveal operational details behind spot and on-demand services to the public since this is

commercially sensitive information. As an ecosystem, queueing theory is often used to analyze its

performance while incentive compatibility is needed to ensure user truthfulness, thus eliminating

the unpredictable effect of non-truthful strategic behaviour on performance [7, 8].

Abhishek et al. propose a potential way of operating spot and on-demand services and describe

the on-demand market by a multi-server queue and the spot market by a preemptive priority

queue [9]. Each user may be characterized by an initial willingness-to-pay (WTP) that decreases

linearly with the delay. The associated slope 𝑐 defines how sensitive users are to delay, and is

called delay-cost type. Users choose to join one market or neither to maximize their surpluses. For

the spot market, users bid to access shared servers. Higher bidders can immediately interrupt the

service being delivered to lower bidders. Each type of users has an individual service class whose

delay relies on the load of higher bidders. Abhishek et al. also give a pricing rule to guarantee the

Bayesian-Nash incentive compatibility (BNIC), i.e., a user will truthfully bid 𝑐 if others do so [9].

Dierks and Seuken significantly extend the framework of Abhishek et al. by considering additional

realistic constraints such as the preemption costs in spot market and the capacity finiteness of

on-demand market and derive an easy-to-check condition under which a complementary spot

market is viable [10, 11].

Differently from [9, 10], we consider the following dimensions rooted in the reality and par-

ticipant’s need of cloud ecosystems. First, the standard on-demand service has existed for years

and attracted plenty of users. Its price, denoted by 𝑝 , is predefined, moderate, and well accepted

by these users, although they have potential diversity in delay tolerance. Our characterization of

WTP is intended to embody this reality directly, and it defines how much discount is needed in

order to let delay-tolerant users accept delayed services, since we want to complement the existing

on-demand service with delayed services and study how this affects the user behavior and CSP gain.

Thus, we let the initial WTPs of all users be 𝑝 , implying their acceptance of on-demand service,

and their WTPs still decrease with the delay. Second, the number of user delay-cost types is large

and it may be operationally costly to maintain an individual SLA for each type of users [17]. Third,
we focus on non-preemptive scheduling, i.e., the service is continuously provisioned to every user

with no interruption. Admittedly, the interruptible service of [9, 10] has an advantage that servers

are always allocated to the highest bidders to generate a high revenue. However, preemptions often

involve saving and recovering the states of preempted servers and can be costly [18, 19]. Users are

also burdened with extra complexity while facing interruptible service [20–22]. In this paper, we

are interested in studying whether a non-interruptible service system is still viable.

The standard on-demand service is designed with the principle of “one size fits all” to satisfy all

types of users. To complement this, we propose a model of service offerings based on a limited

number of SLAs to provide multiple classes of services. These SLAs include both on-demand service

for latency-critical jobs and delayed services for delay-tolerant jobs at lower prices. The fulfillment

of SLAs relies on an underlying architecture of servers to process the incoming jobs. Two typical

architectures are considered. One architecture is similar to the spot market in [9, 10] but is described

by a non-preemptive priority queue, called the priority-based sharing (PBS) architecture. The other

simply divides servers into multiple groups that independently take charge of different SLAs, called

the separated multi-SLAs (SMS) architecture. The service model supported by the PBS architecture

(resp. by the SMS architecture) is called a PBS-based service system (resp. a SMS-based service

system).
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The proposed service system may benefit all market participants. Potential users get opportunity

to satisfactorily trade their delay tolerance for cheaper service, without extra burden to manage

interruptions since non-preemptive services are offered. The CSP can thus attract more such users

from its competitors and establish its reputation. In queueing systems, the larger the delay, the

higher the resource utilization. Delay-differentiated services may allow processing more workload

than a pure on-demand service, possibly improving its revenue by proper pricing.

In this paper, we study the above non-interruptible service system that offers 𝐿 SLAs. It is

dominant-strategy incentive compatible (DSIC) by construction: every user truthfully reports its

delay-cost type, regardless of what others do. Its viability is measured by the ratio of its revenue to

the revenue of a pure on-demand service model. The main results of this paper are as follows:

(i) Regarding the PBS-based service system, we give an upper bound of the revenue improvement,

which is independent of the delay tolerances of users and the job arrival rate of users

(see Section 5.4). This bound somehow shows that it can only achieve a marginal revenue

improvement. This implies its unviability and the necessity of studying the SMS-based service

system.

(ii) Regarding the SMS-based service system that offers two SLAs (i.e., 𝐿 = 2), we derive under

mild assumptions the optimal SLA delays and prices to maximize the CSP’s revenue and

give a closed-form expression of the revenue improvement. This leads to a condition under

which the SMS-based system is viable. The condition shows that the system is viable if the

delay-tolerance level of the user population is greater than a threshold that relates to the

delay of on-demand service, the average job arrival rate per server, and the second moment

of the job service time distribution (see Section 5.5); here, numerical results are accompanied

to show that the CSP can achieve a significant revenue improvement under a wide range of

conditions.

(iii) Regarding the SMS-based service system that offers multiple SLAs (i.e., 𝐿 ≥ 2), we give an

exhaustive search procedure that finds the optimal SLA prices and delays (see Section 5.6).

This allows us to give numerical results to show the performance of the SMS-based system

in more cases (e.g., 𝐿 ≥ 3), highlighting that (a) the revenue improvement is non-decreasing

in 𝐿 and (b) the improvement in the case of 𝐿 = 2 is of the same order of magnitude as the

improvements in the case of 𝐿 ≥ 3 (see Section 6).

We note that all these results hold when the WTP functions are linear [9–13, 15]. For analytical

tractability, such a case is often studied to get rich insight. Except the second result above, our

results can also hold when the WTP functions are concave [15] (Section 3.1.1). Even so, we can

see in our numerical experiments that the conclusions for linear WTPs can serve as a guide to the

performance in the case with concave WTPs.

The rest of this paper is organized as follows. In Section 2, we introduce the related work. We

describe the proposed delay-differentiated service model in Section 3. Next, we study in Section 4

the related pricing problems. We describe two architectures in Section 5 to support the service

model differently, and analyze their performance and optimal parameter configuration; here, we

also give numerical results for the SMS-based service system with 𝐿 = 2. In Section 6, additional

numerical results are given to show the performance of the SMS-based system in more cases. Finally,

we conclude this paper in Section 7.

2 RELATEDWORK
A market of heterogeneous users can often be divided into relatively more homogenous sub-

groups/segments of users that share similar characteristics. Differentiated services are thus provided
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[46, 47]. A typical example is the spot and on-demand services of Amazon EC2 that are for latency-

critical and delay-tolerant jobs respectively. The on-demand service has a fixed price with a small

delay. For the spot service, users bid. A lower bidder will get served with a larger delay but pay a

lower price. A CSP’s objective includes (i) revenue maximization [9, 12–16], (ii) profit maximization

[4, 10, 11, 31], and (iii) social welfare maximization [28–30, 32]. When CSPs are public organizations

or companies, social welfare maximization is their objective. Companies like Amazon and Microsoft

are private where revenue and profit maximization is important; here, profit is total revenue minus

total cost. In marketing, market share is a key indicator of the market competitiveness of a CSP (i.e.,

how well a CSP is doing against its competitors), and it is the percentage of the total revenue in a

market that a CSP’s business makes up [50]. For example, Gartner annually publishes the market

shares of major CSPs [1]. Anyway, revenuemanagement itself is also a branch of operations research

[51]. The hybrid on-demand and spot services are mainly distinguished by the characteristics of

their service models and the ways that servers are used to serve jobs (i.e., how queues are formed

and jobs are processed). In the following, we introduce these related works.

Interruptible services are studied in [4, 9–15, 28–30, 32], while in this paper and [16, 31] the offered

services are non-interruptible, i.e., every job is processed continuously once started. Specifically,
the first model of spot and on-demand services is proposed in [9, 10] and has been introduced in the

last section. The realization of such service is defined by a preemptive priority queue. Differently,

we explore two architectures for realizing it since the realization with a non-preemptive priority

queue performs poorly in our scenario. Our work is motivated by the situation that the on-demand

service has well been accepted by plenty of users and its price is predefined, depending on not

only user WTPs but also competition. We focus on service differentiation among such users and

assume that users have the same initial WTP for the fastest on-demand service. The frameworks of

[9, 10] works with the assumption that there are 𝑛 classes of users whose initial WTPs are among

𝑛 different values when the delay is zero; some users with low WTPs may not choose any service.

In both frameworks, the WTP of a user decreases as the delay increases and the decreasing speed

depends on its delay-cost type. Kilcioglu and Maglaras consider the setting in which the CSP has

infinite servers like [9]. They specify the correlation (e.g., sublinear) between the WTP of each user

under the minimal delay and its sensitivity to delay, and study the revenue improvement brought

by the offering of spot service [12].

The second service model focuses on enabling users to utilize the idleness of on-demand market.

The idle periods of servers appear at random and are utilized as spot services by users who bid the

highest [24]. Taking the effect of preemptions into account, Wu et al. show that the challenge of

offering such spot service is to guarantee the immediacy of on-demand service and the persistence

of spot service while sharing servers [14]. Then, they give an integral resource allocation and pricing

framework for this purpose, and it forms a DSIC mechanism. Further, an analytical expression is

given to show the revenue improvement brought by such spot service whose viability is further

illustrated numerically. Chen et al. consider two spot pricing schemes [13]. The first is a uniform

discount scheme and they derive the optimal discount price, given the customers’ expectation of

the preemption probability. The second is an interruption-based discount scheme, which provides

customers with compensation for interruptions. The authors compare analytically or numerically

the revenue improvements brought by the two schemes in different situations.

Interestingly, regardless of the architecture of servers to realize spot services, the viability of

the interruptible spot service can also be studied by identifying factors that affect revenue and

characterizing user’s sensitivity to market variability. Song and Guérin use probability distributions

to characterize spot prices and job’s value and sensitivity to delay. They derive a condition under

which a spot service is viable and give the optimal pricing and bidding strategies for a CSP and

its users [15]. In this paper and [9–11], users all need to truthfully report their delay-cost types to
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the CSP. In contrast, in [12, 15] spot prices are assumed to be drawn from a discrete set known by

all users. Thus, each user’s optimal bid has a value from this set and doesn’t directly disclose the

value of its delay-cost type, although the bid is still related to its delay-cost type. Boodaghians et

al. consider processing non-preemptive jobs on a single server [16]. Job parameters are assumed

to be drawn from an underlying distribution known by the CSP. They design a truthful posted

price mechanism, which aims to maximize the revenue in expectation; here, a user doesn’t need to

report its private information such as job value and delay requirement to the CSP explicitly.

Amazon EC2 is a major CSP. Understanding its internal pricing scheme is important in that its

users can better know how to use spot services cost-effectively and other CSPs can get informed of

the secret of Amazon EC2’s success, i.e., the way that Amazon generates revenue. Ben-Yehuda et al.
study the statistical characteristics of the past spot prices in Amazon EC2 market and reveal that in

practice Amazon probably sets the spot prices artificially to create uncertainty [6]. Finally, spot

services are popular in that users can trade their delay tolerance for cheaper service. However, it

is preemptive and creates significant complexity that users have to face [20, 25–27]. Tools have

to be created to help users manage preemptions [21, 22], which establishes a barrier to the use of

spot/delayed service.

There are many nice works that use auction theory to explore potential frameworks for pricing

and managing computing resources. These frameworks take into account additional requirements

of jobs such as soft or hard deadlines [4, 28–30] and virtual machine configuration [31, 32] where

the availability of resource to a user depends on its bid and is unstable. In contrast to the above

spot services and the delay-differentiated services of this paper, these works don’t consider an

important business constraint in practice: any CSP who wants to maintain its attractiveness must

offer a standard on-demand service alongside any other offerings [11, 14], since like what we do

in our daily life, many users want a stable access to the computing service at a fixed unit price.

Methodologically, these works [4, 28–32] use the theory of approximation algorithms and analyze

the worst-case performances of their resource allocation and pricing schemes. This is different from

our work and the above works [9–15], which analyze the expected performance of an ecosystem

and some of which are based on queueing theory [9–11, 14].

Differently from all works above, Dierks and Seuken consider the objective of maximizing

the utilization of servers [48]. They propose a heuristic server allocating policy that specifies a

condition to judge whether each arriving job is admitted into the system and served. This policy

needs knowledge of the variances of jobs. Finally, a pricing scheme is proposed to simply incentivize

users to classify their jobs into different types where each type of jobs have similar variances. They

show that the proposed variance-based policy can improve the utilization of servers significantly. In

a two-provider market setting, the authors also perform a game-theoretic analysis of the resulting

competitive effects [49].

3 A QOS-DIFFERENTIATED SERVICE MODEL
In this section, we describe the proposed QoS-differentiated service model, and the associated

questions to be addressed. The service model is generic and we postpone the description of the

ways of fulfilling its SLAs, which will be given after we study the model properties.

3.1 A QoS-Differentiated Service Model
Users arrive at the service system over time. Each user 𝑗 requests at time 𝑎 𝑗 to continuously utilize

a server for some time 𝑠 𝑗 . We equivalently refer to such a request as a job 𝑗 , 𝑎 𝑗 as arrival time, and 𝑠 𝑗
as service time. Upon arrival, a job may get served with some delay 𝜑 , i.e., it will get served at time

𝑎 𝑗 +𝜑 ; then, the service stops until the job is continuously served for a duration 𝑠 𝑗 . Once a user gets
enough service time, it departs. The standard on-demand service in cloud markets represents the
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fastest service to satisfy all users. We use 𝑇 and 𝑝 to denote its delay and its price of utilizing one

server per unit of time, and they are fixed exogenous parameters: 𝑇 is the minimum delay before a

user can get served where 𝜑 ≥ 𝑇 , and 𝑝 is the maximum price that a user need to pay for service.

3.1.1 Delay-Cost Function. The WTP of a user will decrease as the delay increases. Each user has

an individual delay-cost type 𝛼 , which measures its sensitivity to the delay. For example, for a user

of a larger 𝛼 , its WTP decreases faster as the delay increases. Generally, the users’ WTPs will be

characterized by a family of functions, denoted by 𝑢 (𝛼, 𝜑).

Property 1. The WTP function 𝑢 (𝛼, 𝜑) is assumed to have the following properties where 𝛼 is a
positive real number and 𝜑 ∈ [𝑇, +∞):

(i) Normalisation: for all 𝛼 ∈ R+, we have 𝑢 (𝛼,𝑇 ) = 𝑝 ;
(ii) Non-increasing: fixing the value of 𝛼 , 𝑢 (𝛼, 𝜑) is decreasing in 𝜑 ;
(iii) Monotone Parametrisation: fixing the value of 𝜑 , 𝑢 (𝛼, 𝜑) is decreasing in 𝛼 ;
(iv) Decreasing speed: fixing the value of 𝜑 , 𝜕𝑢

𝜕𝜑
is decreasing in 𝛼 .

Given the specific form of 𝑢 (𝛼, 𝜑), each user will choose a specific delay-cost type 𝛼 that can

best fit its sensitivity to delay. The first subproperty implies that, every user can accept on-demand

service at a price 𝑝 since its WTP is 𝑝 when the delay is𝑇 . The second subproperty means that, the

WTP will decrease as the delay 𝜑 increases. The third subproperty states under the same delay 𝜑

that, the larger the value of 𝛼 , the smaller the WTP 𝑢 (𝛼, 𝜑). Thus, when the delay increases from 𝑇

to a larger 𝜑 , a user of larger 𝛼 has more value loss and is more sensitive to delay.
𝜕𝑢
𝜕𝜑

represents the

slope of the tangent line at a point. The fourth subproperty guarantees that, if a user has a larger 𝛼 ,

the decreasing speed of its WTP is also larger.

For analytical tractability, the literature of cloud services [9–13, 15] follows the convention that

the WTP functions are linear, where the WTP of a user decreases by 𝛼 if it experiences one time

unit of delay, to capture the phenomenon that a user’s WTP decreases as the delay increases; then,

we have

𝑢 (𝛼, 𝜑) = 𝑝 − 𝛼 · (𝜑 −𝑇 ), 𝜑 ∈ [𝑇, +∞). (1)

In the extreme case that a user has 𝛼 = 0, it is insensitive to delay and its WTP is still 𝑝 even if it

experiences an infinite delay. In the case that a user has 𝛼 → +∞, it is extremely sensitive to delay

and its WTP becomes negative even if it experiences a delay 𝜑 slightly larger than𝑇 . There may be

another type of WTP functions that are concave [15], e.g.,

𝑢 (𝛼, 𝜑) = 𝑝 − (𝛼 · (𝜑 −𝑇 ))3. (2)

Such functions may be useful for scenarios where the WTPs of delay-tolerant users decrease slowly

before the delay increases to a threshold, after which users become very sensitive to delay and

their WTPs decrease sharply [33]. For instance, in [15], Song and Guérin give analytical results for

the linear case like [9–13] while numerical results are also given for the concave case.

We thus propose Property 1 to generalize both linear and concave WTP functions and make our

conclusions generic whenever possible. Except the results in Section 5.5, the theoretical results of

this paper hold if the WTP function satisfies Property 1. The linear WTP function allows deriving

a closed-form expression of the performance of a SMS-based system in Section 5.5. The analytical

results in the case of the linear WTP functions can serve as a guide to the case of the concave

WTP functions, which is illustrated in Section 6.2.4. Even if the CSP offers a service system whose

government is built on the assumption that the WTP functions of all users are linear, a user with

a specific delay-cost type 𝛼 , whose WTP function satisfying Property 1 is actually concave, still

has ways to participate in the service system. For example, its concave WTP function 𝑢 ′ can be
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User
Report its type 𝛼 Cloud provider who 

offers 𝐿 SLAs

Assign the 𝑙𝛼-th SLA 

Computation by Definition 3.1

Fig. 1. The interaction between users and a CSP.

lower bounded by a linear WTP function 𝑢 ′′, i.e., 𝑢 ′′(𝛼, 𝜑) ≤ 𝑢 ′(𝛼, 𝜑); here, 𝑢 ′′ is defined by two

points of 𝑢 ′ in a two-dimensional space: (𝑇, 𝑝) and (𝑥, 0), where 𝑢 ′(𝛼, 𝑥) = 0. The user can use 𝑢 ′′

to participate in the service system and trade its delay tolerance for cheaper services.

Remarks. In this paper, the expected behaviors and performance of the system are analyzed. In

reality, a user is typically an organization or company who engages in some long-term activities

[2], and it is characterized by a set of features such as its delay-cost type. The user’s jobs are

dynamically generated and submitted to the CSP over time. Users of the same features will have

the same strategy to participate in the cloud service system and are treated by the CSP in the same

way (e.g., assigned to the same service class, pay the same unit price). From the CSP’s perspective,

a physical user with many jobs can be viewed as many (virtual) users each of which has a single job

and the same features as the physical user. Thus, theoretically, for ease of mathematical modeling

and analysis, it is often assumed without loss of generality that one user represents one job in

literature [9–13, 15], while each user is maximizing its expected surplus.

3.1.2 Service Model. The CSP plans to offer 𝐿 SLAs to serve its users. For all 𝑙 ∈ [1, 𝐿], the 𝑙-th SLA

specifies a delay 𝜑𝑙 and the price 𝑝𝑙 of utilizing a server per unit of time; for the users operating

under the 𝑙-th SLA, whenever their requests arrive, the CSP guarantees that the expected delay of

delivering service is at most 𝜑𝑙 . The first SLA represents the standard on-demand service in cloud

markets, and it is for latency-critical users who are not willing to tolerate significant delays. Thus,

𝑝1 and 𝜑1 equal the price and delay of an on-demand service. The prices of the other SLAs are

lower than 𝑝1, at the expense of delaying the delivery of computing services to their consumers;

here, we let

𝑇 = 𝜑1 < 𝜑2 < · · · < 𝜑𝐿 . (3)

Further, we have for all 𝑙 ∈ [1, 𝐿 − 1] that the price of the 𝑙-th SLA is larger than the price of the

(𝑙 + 1)-th SLA; otherwise, users would prefer the 𝑙-th SLA with a smaller delay. Thus, we have

𝑝 = 𝑝1 > 𝑝2 > · · · > 𝑝𝐿 . (4)

The interaction process between a CSP and its users is illustrated in Fig. 1. Specifically, each user

refers to the specific form of WTP functions 𝑢 (𝛼, 𝜑) used by the CSP (e.g., (1)), and will choose a

positive real number 𝛼 ∈ R+ such that 𝑢 (𝛼, 𝜑) can best fit its sensitivity to delay; then, it reports

the chosen 𝛼 to the CSP. Users of the same 𝛼 is said to have the same delay-cost type. The CSP

aims to satisfy all its users, without rejecting any service request, since all users can accept the

on-demand service. Under an arbitrary SLA 𝑙 ∈ [1, 𝐿], the surplus of a user is its WTP minus the

SLA price, i.e., 𝑢 (𝛼, 𝜑𝑙 ) − 𝑝𝑙 . According to the reported type, the CSP will choose one SLA for each

type of users such that their surplus is maximized. Formally, we have the following definition.

Definition 3.1. A user of type 𝛼 is assigned to the 𝑙𝛼 -th SLA defined below:

𝑙𝛼 = argmax𝑙 ∈[1,𝐿] 𝑢 (𝛼, 𝜑𝑙 ) − 𝑝𝑙 . (5)
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8 X. Wu, F. De Pellegrini and G. Casale

The CSP regulates that, if a user achieves the same maximum surplus under multiple SLAs, it will

be assigned to the SLA whose number is the largest.

Finally, we assume without loss generality that each SLA will be assigned a non-empty set

of users. The case that a CSP offers 𝐿 SLAs but there exist Z SLAs that are assigned no users is

equivalent to the case that 𝐿 − Z SLAs are offered and each SLA is assigned a non-empty set of

users, where Z ≤ 𝐿. In fact, as we will see from the numerical results, the revenue of a CSP increases

slightly as 𝐿 increases.

3.2 System Objectives
The setting of jobs basically follows [9, 10]. An exception is that we consider the case that all users

have the same WTP to accept the standard on-demand service. Thus, users are differentiated by

their delay-cost types. As described in Section 3.1, each user corresponds to a job. Multiple users

may have the same type. All types constitute a finite set Φ; the minimum and maximum values of

the elements of Φ are 𝛼 and 𝛼 . Let 𝑃 (𝛼) ∈ (0, 1) denote the probability that an arriving user has a

delay-cost type 𝛼 , where ∑
𝛼 ∈Φ

𝑃 (𝛼) = 1. (6)

The mean arrival rate of the jobs of all types is Λ, and the mean job size is 𝑠 .

Differently from [9, 10], we need to determine which SLA a specific type of users belong to. A

user’s WTP is dominated by its delay-cost type 𝛼 . By Definition 3.1, its SLA assignment depends

on its type 𝛼 and the prices and delays of the 𝐿 SLAs. For all 𝑙 ∈ [1, 𝐿], let Φ𝑙 denote the set of the

types of users assigned to the 𝑙-th SLA; under the assumption at the end of Section 3.1.2, we have

Φ𝑙 ≠ ∅. (7)

Let P = {Φ1,Φ2, · · · ,Φ𝐿}. Since each user can accept the standard on-demand service (i.e., the first
SLA), it will be assigned to one of the 𝐿 SLAs; thus, we have⋃𝐿

𝑙=1
Φ𝑙 = Φ. (8)

By Definition 3.1, each user will be assigned to a single SLA and we have Φ𝑙1 ∩ Φ𝑙2 = ∅ for all
𝑙1, 𝑙2 ∈ [1, 𝐿] with 𝑙1 ≠ 𝑙2. The mean job arrival rate of the 𝑙-th SLA is

Λ𝑙 = Λ ·
∑

𝛼 ∈Φ𝑙

𝑃 (𝛼). (9)

For all 𝑙 ∈ [1, 𝐿], the 𝑙-th SLA guarantees that its jobs experiences a delay of at most 𝜑𝑙 . The P
determines the job arrival rate of each SLA by (9). Roughly, in a queueing system, the more the

available servers, the smaller the expected delay of serving jobs. When there are 𝑥 servers and P is

given, the expected delay 𝑡𝑙 of the jobs of SLA 𝑙 ∈ [1, 𝐿] is a non-increasing function of 𝑥 . Suppose

there are a total of 𝑥 =𝑚 servers for fulfilling all SLAs. The CSP will provide the minimum number

𝑚 of servers needed to fulfill SLAs such that

ℎ(𝑚,P) = (𝑡1, 𝑡2, · · · , 𝑡𝐿) ≤ (𝜑1, 𝜑2, · · · , 𝜑𝐿). (10)

We will leverage queueing theory to concretize the function ℎ(·), which is elaborated in Section 5;

see (16) and (18). Exogenous parameters are parameters that are not affected by other variables in

the system, while endogenous parameters are parameters that are influenced by other factors in

the system. In Fig. 2, we illustrate the main exogenous and endogenous parameters of this paper.

The relations implied by the blue arrows (resp. the golden arrows) will be introduced in Section 4

(resp. Section 5). Theoretically, given the set of the exogenous parameters in Fig. 2, we will study in

this paper the way of determining the endogenous parameters and evaluate the performance of the

proposed service mode. The total workload of users that is processed per unit of time under the
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Table 1. Key Notation

Symbol Explanation

𝐿 the number of SLAs

𝜑𝑙 the delay of the 𝑙-th SLA

𝑝𝑙 the price of the 𝑙-th SLA

𝑇 the delay of on-demand service where 𝜑1 = 𝑇

𝑝 the price of on-demand service where 𝑝1 = 𝑝

𝑚 the total number of servers possessed by a CSP

Λ the total job arrival rate

𝑠 the mean job size

_𝑙 at a single server, the job arrival rate of the 𝑙-th SLA

ˆ_𝑙 at a single server, the total job arrival rate of the first 𝑙 SLAs

Φ the set of the types of all users

𝑃 (𝛼) the probability that an arriving user/job has a delay-cost type 𝛼

𝛼 (resp. 𝛼) the maximum (resp. minimum) type of Φ
Φ𝑙 the set of the types of the users who are assigned to the 𝑙-th SLA

P the set {Φ1, · · · ,Φ𝐿}
𝛼1, · · · , 𝛼𝐿+1 a division of Φ used to define Φ1, · · · ,Φ𝐿 by (12)

𝑡𝑙 the expected job delay of the 𝑙-th SLA

𝐺 the revenue of the proposed delay-differentiated service model

Exogenous Endogenous

Number of SLAs: 𝐿

Delay of on-demand service: 𝑇

Price of on-demand service: 𝑝

Number of Servers: 𝑚

Set of user types: Φ

Distribution of user types: 𝑃

Aggregate job arrival rate: Λ

Mean job service time: 𝑠

Numbers of servers assigned 

to SLAs: 𝑚𝑙 𝑙=1
𝐿

User types assigned 

to SLAs: Φ𝑙 𝑙=1
𝐿

Job arrival rates 

of SLAs: Λ𝑙 𝑙=1
𝐿

SLA delays: 

𝜑𝑙 𝑙=1
𝐿

Expected job 

delays: 𝑡𝑙 𝑙=1
𝐿

SLA prices：
𝑝𝑙 𝑙=1

𝐿
Revenue obtained per 
unit of time: 𝐺

Proposition 4.1

Eq. (9)

Proposition 5.1

Proposition 4.6Eq. (11)

Eq. (17)
Eq. (16) or (18)

Fig. 2. Exogenous and endogenous parameters: 𝑥 → 𝑦 denotes the dependence of the parameter 𝑦 on the
parameter 𝑥 ; when it comes to the SMS architecture, additional parameters {𝑚𝑙 }𝐿𝑙=1 are involved, which will
be introduced later in Section 5.1.3.

𝑙-th SLA is𝑤𝑙 = Λ𝑙 · 𝑠 . The revenue from the 𝑙-th SLA per unit of time is 𝑝𝑙 ·𝑤𝑙 . The total revenue

obtained per unit of time is

𝐺 =
∑𝐿

𝑙=1
𝑝𝑙 ·𝑤𝑙 =

∑𝐿

𝑙=1
𝑝𝑙 ·

∑
𝛼 ∈Φ𝑙

𝑃 (𝛼) · Λ · 𝑠 . (11)

The CSP’s objective is to maximize the revenue (11) while satisfying (10). Its decision variables are

those endogenous variables, including {𝜑𝑙 }𝐿𝑙=2, {𝑝𝑙 }
𝐿
𝑙=2 and P.

As illustrated in Fig 1, each user needs to report its type information to the CSP. However, this

information is private and users may seek possible ways to maximize their surplus by misreporting

their type information. A mechanism is said to be DSIC if a user gains most or at least not less
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ො𝛼1ො𝛼2

𝜙1𝜙2

ො𝛼3

𝑝2 = 𝑢 ො𝛼2, 𝜑2 𝑝1 = 𝑝

Market Segments

SLA Prices

Fig. 3. Market Segmentation and SLA Prices in the case that two SLAs are offered (i.e., 𝐿 = 2): each blue
square represents a type of users.

by being truthful, regardless of what the others do [23]. We will prove that the proposed service

model is DSIC. In the context of this paper, we have the following definition.

Definition 3.2. Every user of type 𝛼 will report a type 𝛼 ′ to the CSP, with the aim to maximize

its surplus. Our service framework is said to be DSIC if the user’s surplus is maximized when it

truthfully reports its type, i.e., 𝛼 ′ = 𝛼 , no matter whether the other users will truthfully do so.

Now, we have described the system objectives as far as the CSP and users are concerned. In the

next section, we will first give some market properties in the aspects of SLA assignment P, SLA
prices and incentive compatibility. These results are independent of the way of fulfilling the SLAs

to satisfy (10), which will be introduced in Section 5. The main notation of this paper is summarized

in Table 1.

4 MARKET PROPERTIES
In this section, we study the related market properties. Specifically, in Section 4.1, we show a

structural property of the endogenous parameters {Φ𝑙 }𝐿𝑙=1 illustrated in Fig. 2. In Section 4.2, we

derive the form of the optimal SLA prices {𝑝𝑙 }𝐿𝑙=2, which relate to the market segmentation {Φ𝑙 }𝐿𝑙=1
and the SLA delays {𝜑𝑙 }𝐿𝑙=1; the proposed service model is also shown to be DSIC. These results are

the basis to leverage queueing theory to analyze the revenue and viability of the proposed service

systems in the next section.

4.1 Structural Market Segmentation
In this subsection, we will show that there exists a segmentation of the interval

[
𝛼, 𝛼

]
into 𝐿

consecutive sub-intervals such that a user whose type value is in the 𝑙-th sub-interval is assigned

to the 𝑙-th SLA where 𝑙 ∈ [1, 𝐿]. In other words, while assigning users to SLAs, the classes of users

are non-increasing in their type values.

4.1.1 Results. Suppose we are given an arbitrary setting of the SLA delays 𝜑1, 𝜑2, · · · , 𝜑𝐿 and

prices 𝑝1, 𝑝2, · · · , 𝑝𝐿 that satisfy (3) and (4).

Proposition 4.1. There exists a sequence 𝛼1, 𝛼2, · · · , 𝛼𝐿+1 ∈ Φ such that the 𝑙-th SLA will be
assigned the users of type 𝛼 ∈ Φ𝑙 , where 𝛼 = 𝛼𝐿+1 < · · · < 𝛼2 < 𝛼1 = 𝛼 and Φ𝑙 is a subset of user
types defined below:

Φ𝑙 =

{
Φ ∩ (𝛼𝑙+1, 𝛼𝑙 ] , if 𝑙 ∈ [1, 𝐿 − 1],
Φ ∩ [𝛼𝐿+1, 𝛼𝐿] , if 𝑙 = 𝐿.

(12)

Proposition 4.1 is illustrated in Fig. 3. The sequence 𝛼1, 𝛼2, · · · , 𝛼𝐿+1 defines a particular assign-
ment of user types to SLAs, i.e., Φ1,Φ2, · · · ,Φ𝐿 . In the rest of this paper, we will simply call such

a sequence as a specific market segmentation. By Proposition 4.1, while maximizing the revenue

(11), the endogenous variable P = {Φ1,Φ2, · · · ,Φ𝐿} is transformed into the market segmentation

𝛼1, 𝛼2, · · · , 𝛼𝐿+1.
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4.1.2 Proof Outline. Now, we provide an overview of the proof of Proposition 4.1. First, a user’s
sensitivity to delay determines the degree of WTP reduction as the delay increases. Intuitively, if a

user is more sensitive to delay, its WTP will decrease more while facing the same increment in

delay. Formally, we have the following relation.

Lemma 4.2. Let us consider two arbitrary users of types 𝛼1 and 𝛼2 with 𝛼1 > 𝛼2, and two SLAs
𝑘1 and 𝑘2 with 𝑘1 < 𝑘2. The user of type 𝛼1 is more sensitive to delay as explained for Property 1;
the SLA delays satisfy 𝜑𝑘1 < 𝜑𝑘2 by (3). Then, we have that the difference of the WTPs of the user
of type 𝛼1 under the 𝑘1-th and 𝑘2-th SLAs is larger than its counterpart for the user of type 𝛼2, i.e.,
𝑢 (𝛼1, 𝜑𝑘1 ) − 𝑢 (𝛼1, 𝜑𝑘2 ) > 𝑢 (𝛼2, 𝜑𝑘1 ) − 𝑢 (𝛼2, 𝜑𝑘2 ).

Second, we show an orderly pattern in SLA assignment. By Definition 3.1, each user is assigned

to a SLA under which its surplus is maximized. Driven by Lemma 4.2, we can prove that, a user of

larger 𝛼 is more sensitive to delay and will be assigned to a SLA with a smaller delay. Formally, we

have the following conclusion.

Lemma 4.3. Let us consider two users of types 𝛼1 and 𝛼2 where 𝛼1 > 𝛼2. If the users of types 𝛼1 and
𝛼2 are respectively assigned to the SLAs 𝑘1 and 𝑘2 (i.e., 𝛼1 ∈ Φ𝑘1 and 𝛼2 ∈ Φ𝑘2 ), then we have that
𝑘1 ≤ 𝑘2, where the SLA delays satisfy 𝜑𝑘1 ≤ 𝜑𝑘2 by (3).

Finally, with the assumption in Section 3.1.2, each SLA will be assigned a non-empty set of user

types, i.e., Φ𝑙 ≠ ∅ for all 𝑙 ∈ [1, 𝐿]. For two SLAs 𝑘1 and 𝑘2, if 𝑘1 < 𝑘2, we have by Lemma 4.3 that

the type value in Φ𝑘1 is larger than the type value in Φ𝑘2 . Since each user can accept the first SLA

with a non-negative surplus, no users will be rejected and each user will finally be assigned to a

specific SLA. We can thus derive Proposition 4.1. To sum up, Proposition 4.1 is built on Lemma 4.3,

which is based on Lemma 4.2. See Appendix A.1 for their detailed proofs.

4.2 Optimal DSIC Mechanism
By Proposition 4.1, there is a structural market segmentation. In this subsection, suppose we

are given an arbitrary market segmentation {Φ𝑙 }𝐿𝑙=1 and SLA delays {𝜑1}𝐿𝑙=1. Then, we derive the
corresponding optimal SLA prices {𝑝1}𝐿𝑙=2 to maximize the revenue (11).

4.2.1 Results. Below, we use the predefined market segmentation 𝛼1, 𝛼2, · · · , 𝛼𝐿+1 and SLA delays

𝜑1, 𝜑2, · · · , 𝜑𝐿 to define 𝐿 parameters 𝑝1, 𝑝2, · · · , 𝑝𝐿 that will be used to define SLA prices.

Definition 4.4. Let 𝑢−
𝑙
= 𝑢 (𝛼𝑙 , 𝜑𝑙−1) − 𝑢 (𝛼𝑙 , 𝜑𝑙 ) for all 𝑙 ∈ [2, 𝐿] where 𝑢−𝑙 is the difference of the

WTPs of a user of type 𝛼𝑙 respectively under the (𝑙 − 1)-th and 𝑙-th SLAs. We define parameter 𝑝𝑙 to

be such that (i) 𝑝1 = 𝑢 (𝛼1, 𝜑1) = 𝑝 , i.e., the price of on-demand instances, and (ii) for all 𝑙 ∈ [2, 𝐿],
𝑝𝑙 is the maximum possible 𝑝𝑙 that satisfies 𝑝𝑙 ≤ 𝑝𝑙−1 − 𝑢−𝑙 , i.e., 𝑝𝑙 = 𝑝𝑙 (𝛼1, · · · , 𝛼𝑙 , 𝜑1, · · ·𝜑𝑙 ) =
𝑝𝑙−1 − 𝑢−𝑙 = 𝑝1 −

∑𝑙
𝑙 ′=2 𝑢

−
𝑙 ′ .

The SLA prices, the SLA delays and the market segmentation are three correlated market features,

and one feature changes as the others change. Given the set of user types Φ, the resultant market

segmentation relates to the particular SLAs prices and delays according to Definition 3.1. When

the SLA prices are set to 𝑝1, 𝑝2, · · · , 𝑝𝐿 , the resultant market segmentation depends on these newly

given SLA prices and the predefined SLA delays, and we denote it by 𝛼 ′
1
, 𝛼 ′

2
, · · · , 𝛼 ′

𝐿+1. We need

to verify the consistency between the predefined and resultant market segmentations, and check

whether 𝛼 ′
𝑙
= 𝛼𝑙 for all 𝑙 ∈ [1, 𝐿] or not. For all 𝑙 ∈ [1, 𝐿], we still relate Φ𝑙 to 𝛼1, 𝛼2, · · · , 𝛼𝐿+1, and

Φ𝑙 is given in (12). The following proposition shows the consistency.

Proposition 4.5. Suppose the SLA prices are set to 𝑝1, 𝑝2, · · · , 𝑝𝐿 and the SLA delays are the
predefined 𝜑1, 𝜑2, · · · , 𝜑𝐿 . For all 𝑙 ∈ [1, 𝐿], the users of type 𝛼 ∈ Φ𝑙 are assigned to the 𝑙-th SLA, i.e.,
the resultant market segmentation is still 𝛼1, 𝛼2, · · · , 𝛼𝐿+1.
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The following conclusion is a main result of this section.

Proposition 4.6. Suppose we are given an arbitrary market segmentation 𝛼1, 𝛼2, · · · , 𝛼𝐿+1 and the
SLA delays 𝜑1, 𝜑2, · · · , 𝜑𝐿 . Then, we have that (i) the proposed service model is DSIC, and (ii) when
the SLA prices 𝑝1, 𝑝2, · · · , 𝑝𝐿 are set to 𝑝1, 𝑝2, · · · , 𝑝𝐿 , we have that 𝑝1, 𝑝2, · · · , 𝑝𝐿 are the optimal SLA
prices to maximize the CSP’s revenue.

If two SLAs are offered, we have by Proposition 4.6 that the price of the second SLA is 𝑝2 = 𝑝2 =

𝑢 (𝛼2, 𝜑2), which is also illustrated in Fig. 3. The users of the second SLA are more delay-tolerant

and can accept more delay. 1 − 𝑢 (𝛼2,𝜑2)
𝑝

is the discount offered to the users. For example, suppose

𝑝 = 1, 𝛼2 = 4 and 𝜑2 −𝑇 = 0.1; then, if the WTP function is (1), 𝑢 (𝛼2, 𝜑2) = 0.6 and the discount

is 40%. Proposition 4.6 is independent of the architectures of servers used for fulfilling SLAs and

provides the relation of the SLA prices {𝑝𝑙 }𝐿𝑙=1 to the market segmentation {𝛼𝑙 }𝐿+1𝑙=1
and the SLA

delays {𝜑𝑙 }𝐿𝑙=1.

4.2.2 Proof Overview. Now, we give an overview of the proofs of Propositions 4.5 and 4.6. The

detailed proofs can be found in Appendix A.2. To prove Proposition 4.5, we first consider the

surpluses of a user of type 𝛼 ∈ Φ𝑙 under two adjacent SLAs whose numbers are simultaneously no

larger or smaller than 𝑙 . Roughly, its surplus under the SLA whose number is closer to 𝑙 is always

larger, as shown below.

Lemma 4.7. Suppose the SLA prices are set to 𝑝1, 𝑝2, · · · , 𝑝𝐿 and the SLA delays are the predefined
𝜑1, 𝜑2, · · · , 𝜑𝐿 . Given two arbitrary 𝑙, 𝑙 ′ ∈ [1, 𝐿], let us consider a user of type 𝛼 ∈ Φ𝑙 and its surplus
under the 𝑙 ′-th SLA. The surplus of this user is such that (i) in the case that 𝑙 ′ ∈ [2, 𝑙],
• if 𝛼 = 𝛼𝑙 and 𝑙 ′ = 𝑙 , its surpluses under the 𝑙 ′-th and (𝑙 ′ − 1)-th SLAs are the same;
• otherwise, its surplus under the 𝑙 ′-th SLA is larger than its surplus under the (𝑙 ′ − 1)-th SLA;

and (ii) in the case that 𝑙 ′ ∈ [𝑙, 𝐿 − 1], its surplus under the 𝑙 ′-th SLA is larger than its surplus under
the (𝑙 ′ + 1)-th SLA.

See Appendix A.2 for the proof of Lemma 4.7. By Lemma 4.7, we can use the transitivity of

inequalities to derive for all 𝑙 ∈ [1, 𝐿] that the user of type 𝛼 ∈ Φ𝑙 achieves the maximum surplus

under the 𝑙-th SLA and will thus be assigned to the 𝑙-th SLA when the SLA prices are set to 𝑝1, 𝑝2,

· · · , 𝑝𝐿 and the SLA delays are the predefined 𝜑1, 𝜑2, · · · , 𝜑𝐿 . We can thus prove Proposition 4.5

and derive that the resultant market segmentation equals the predefined market segmentation.

The idea in proving Proposition 4.6 is as follows. In our service model, a nice property is that it

always assigns each user to a SLA under which the user’s surplus is maximized. Naturally, when a

user misreports its type, it may be assigned to a SLA under which the user gains a smaller surplus.

Thus, users have no willingness to misreport and our service framework is DSIC. On the other

hand, given the market segmentation 𝛼1, 𝛼2, · · · , 𝛼𝐿+1, all users of type 𝛼 ∈ Φ𝑙 will be assigned to

the 𝑙-th SLA where 𝑙 ∈ [1, 𝐿]. We can show that 𝑝1, 𝑝2, · · · , 𝑝𝐿 are the maximum possible prices to

guarantee this, and they are thus optimal.

5 SUPPORTING ARCHITECTURES AND PERFORMANCE
In Sections 3 and 4, we study a generic service model that offers 𝐿 SLAs and its pricing properties.

The SLA fulfillment relies on proper provision of servers to jobs to satisfy (10). In Section 5.1,

we will introduce the PBS and SMS architectures respectively, which are two candidate server

architectures used to serve jobs and fulfill SLAs; here, we also give the relations between the

endogenous parameters {Λ𝑙 }𝐿𝑙=1, {𝑡𝑙 }
𝐿
𝑙=1

and {𝑚𝑙 }𝐿𝑙=1 illustrated in Fig. 2. The service model together

with each architecture forms an integral service system. In Section 5.2, we give the baseline used
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to show the performance of the proposed service systems. In Section 5.3, we formally derive the

relation between {𝑡𝑙 }𝐿𝑙=1 and {𝜑𝑙 }
𝐿
𝑙=1

while maximizing a CSP’s revenue.

In the rest of this section, we present the main results of this paper. Specifically, we give a

performance bound in Section 5.4, which somewhat reveals the inviability of the PBS-based service

system. For the SMS-based service system, we give in Section 5.5 a closed-form expression of

its revenue improvement on a pure on-demand service system when two SLAs are offered; here,

numerical results are also accompanied to illustrate that the SMS-based service system can achieve

a significant revenue improvement under a wide range of conditions. Finally, when more than

two SLAs are offered, an exhaustive search procedure is given in Section 5.6 to determine the

optimal SLA prices and delays, which allows for giving more numerical results in the next section

to illustrate the performance of the SMS-based service system.

5.1 Two Supporting Architectures
Now, we introduce the two architectures. A CSP has a total of𝑚 servers. When a job 𝑗 arrives, it is

assigned to a server that will serve it for a duration 𝑠 𝑗 . We will respectively consider (i) the PBS

architecture and (ii) the SMS architecture. In the former, an arriving job will be assigned to one

of the𝑚 servers, and the order of serving the jobs at a server depends on their priorities, which

depend on the SLAs to which they belong. In the latter, servers are separated into 𝐿 groups and

each exclusively serves the jobs of the same SLA. We leverage queueing theory to give the relation

between the expected delay 𝑡𝑙 of each SLA 𝑙 ∈ [1, 𝐿] and the job arrival rate Λ𝑙 .

5.1.1 Preliminary. The performance of cloud service systems closely relates to the particular

policy that assigns arriving jobs to servers. Before elaborating the architectures, we first introduce

these polices. Suppose there are𝑚′ servers to serve a particular group of jobs and the mean job

arrival rate is Λ′. Typical dispatching policies include (i) Random: for every job , it chooses every

server with the same probability
1

𝑚′ and assign 𝑗 to the chosen server [34, 35], and (ii) Round-Robin
(RR): jobs are assigned to servers in a cyclical fashion with the 𝑗-th job being assigned to the 𝑖-th

server where 𝑖 = 𝑗 𝑚𝑜𝑑𝑚′ [36]. Under both policies, jobs are evenly dispatched over the𝑚′ servers.
At each server, the arriving jobs form a single queue with the same mean job arrival rate _′ = Λ′

𝑚′

[37]. The service time of a job is denoted by a random variable 𝑋 and the mean 𝑠 of 𝑋 is normalized

to be one, i.e., 𝑠 = 1.

In practice, the RR and Random policies are supported by Amazon EC2 to dispatch jobs to

servers while on-demand users are being served [38]. Their prevalence is due to the following

reasons. Each job needs an individual job assignment decision. Such policies do not need the

knowledge of server states and can form a distributed scheduler where numerous job assignment

decisions could be done instantaneously, thus reducing the scheduling delays. On the other hand,

the maintenance of the state information of all servers relies on a heartbeat mechanism where

servers communicate on their states with a centralized scheduler at a specific frequency and the job

assignment decisions are also made at such a frequency [39]. In large-scale cloud server systems, to

reduce communication overhead, the frequency has to be low, which leads to that the scheduling

delay is too large [18, 40, 41]. Thus, a distributed scheduler is used in cloud service systems.

5.1.2 The PBS Architecture. In the PBS architecture, whenever a job arrives, it is assigned to one of

the𝑚 servers by some dispatching policy described above. The total job arrival rate is Λ and the

job arrival rate at a single server is

_ = Λ/𝑚 ∈ (0, 1). (13)

At every server, the jobs have 𝐿 priority classes. For all 𝑙 ∈ [1, 𝐿 − 1], the jobs of SLA 𝑙 have higher

priority to utilize servers than the jobs of SLAs 𝑙 +1, and are said to have a priority 𝑙 . At the moments
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⋯

⋯

⋯

⋯ ⋮

A pool of mixed jobs 

of different SLAs
𝑚 servers

dispatching

The priority-based queue at each server

Fig. 4. The priority-based sharing architecture with 𝐿 = 2: grey rectangles denote all jobs that are dispatched
to multiple servers in spite of their SLAs; at a single server, the jobs of the first SLA (denoted by orange
rectangles) have a higher priority to be served than the jobs of the second SLA (denoted by golden rectangles).

of job completion, the server becomes idle and will select a new job of the highest priority to serve,

and jobs of the same priority will be chosen in a first-come-first-served (FCFS) discipline. While a

job 𝑗 is being served, the nonpreemptive rule is applied, that is, the job will continuously occupy a

server for a duration 𝑠 𝑗 even if other jobs of higher priorities arrive.

Now, we give the mean delay 𝑡𝑙 of the jobs of each SLA 𝑙 ∈ [1, 𝐿]. By (7) and (9), at each server,

the job arrival rate of the 𝑙-th SLA is

_𝑙 = Λ ·
∑

𝛼 ∈Φ𝑙

𝑃 (𝛼)/𝑚 = _ ·
∑

𝛼 ∈Φ𝑙

𝑃 (𝛼) > 0. (14)

The total arrival rate of the jobs of SLAs 1,· · · , 𝑙 is

ˆ_𝑙 =
∑𝑙

𝑙 ′=1
_𝑙 ′ where

ˆ_𝐿 = _. (15)

The jobs of all SLAs at every server form a single queue and their job arrivals are described as a

Poisson process with rate _. The service time 𝑋 of jobs is assumed to follow a general distribution

where the mean 𝑠 is one. Such a queue is usually denoted by𝑀/𝐺/1. We can directly use the result

for a𝑀/𝐺/1 queue with priority in [3] and get the delay of the jobs of the 𝑙-th SLA

𝑡𝑙 =
0.5 · _ · 𝐸 [𝑋 2]

(1 − ˆ_𝑙−1) · (1 − ˆ_𝑙 )
, (16)

where 𝑙 ∈ [1, 𝐿], ˆ_0 is set to zero trivially, and 𝐸 [𝑋 2] is the secondmoment of𝑋 , i.e., its mean-squared

value.

5.1.3 The SMS Architecture. In the SMS architecture, the𝑚 servers are separated into 𝐿 groups,

and each group has𝑚𝑖 servers, where

𝑚 =
∑𝐿

𝑙=1
𝑚𝑙 . (17)

Differently from the PBS architecture, there are 𝐿 additional endogenous variables {𝑚𝑙 }𝐿𝑙=1, whose
optimal values need to be determined subsequently. The 𝑙-th group is used to exclusively serve

the jobs of the 𝑙-th SLA, and every job that belongs to the 𝑙-th SLA will be assigned to one of the

𝑚𝑙 servers under some dispatching policy such as Random or RR. At every server, the jobs will

be served in a FCFS discipline. By (9), the total job arrival rate of the 𝑙-th SLA is Λ𝑙 ; then, the job

arrival rate at a single server is _𝑙 =
Λ𝑙

𝑚𝑙
. The jobs at every server forms a single queue, and when it
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⋮

⋯

⋯

⋯

⋯ ⋮

The first SLA

The second SLA

A pool of jobs 𝑚1 servers

𝑚2 servers

dispatching

The FCFS queue at each server

Fig. 5. The separated multi-SLAs architecture with 𝐿 = 2 and𝑚1 +𝑚2 =𝑚: colored rectangles denote jobs of
different SLAs while colored circles denote servers of different SLAs.

is a M/G/1 queue, we have from [3] that the job delay of the 𝑙-th SLA is

𝑡𝑙 = 0.5 · _𝑙 · 𝐸 [𝑋 2]/(1 − _𝑙 ). (18)

Beyond the above architectural description, we will use in this paper an exponential, hyperexpo-

nential, or heavy-tailed distribution to model the service time 𝑋 . As often used in cloud and server

systems [34, 40, 55, 56], they have available closed-form expressions for 𝐸 [𝑋 2] and can guarantee

the existence of 𝐸 [𝑋 2], which enable analytically evaluating the performance of the architectures

above. When 𝑋 follows an exponential distribution [34, 40], we have

𝐸 [𝑋 2] = 2 · 𝑠2 = 2. (19)

When 𝑋 follows a hyperexponential distribution [40], it can be characterized by ℎ tuples (𝜋𝑖 , [𝑖 )
where 𝑖 ∈ [1, ℎ] and ∑ℎ

𝑖=1 [𝑖 = 1: 𝑋 has a probability [𝑖 to follow an exponential distribution with

rate 𝜋𝑖 . For an exponential distribution with rate 𝜋𝑖 , its mean is
1

𝜋𝑖
. The mean of 𝑋 is

𝑠 =
∑ℎ

𝑖=1

[𝑖

𝜋𝑖
= 1 (20)

and the second moment of 𝑋 is

𝐸 [𝑋 2] =
∑ℎ

𝑖=1

2

𝜋2

𝑖

· [𝑖 . (21)

When 𝑋 follows a Pareto distribution that is a type of heavy-tailed distribution [34, 41, 54], we

consider the case where all jobs have finite sizes and the second moment of 𝑋 exists (i.e., 𝑎 > 2).

Then, we have

𝐸 [𝑋 2] = 𝑎 · 𝑥2𝑚
𝑎 − 2 =

(𝑎 − 1)2
𝑎2 − 2 · 𝑎 > 1 if 𝑎 > 2 (22)

where 𝑎 is the shape parameter and 𝑥𝑚 ∈ (0, 1) is the scale parameter when 𝐸 [𝑋 ] = 𝑎 ·𝑥𝑚
𝑎−1 = 1.

When 𝑋 follows a log-normal distribution that is also a type of heavy-tailed distribution [54–56],

the second moment of 𝑋 always exists and we have

𝐸 [𝑋 2] = 𝑒2·𝑏+2·𝑐
2

= 𝑒𝑐
2

> 1 (23)

where 𝑏 and 𝑐 > 0 are two parameters, 𝐸 [𝑋 ] = 𝑒𝑏+
𝑐2

2 = 1, and the variance is 𝑒𝑐
2 − 1.
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5.2 Benchmark: The Standard On-demand Service System
The delay-differentiated service system of this paper can be viewed as a complement to the standard

on-demand service model, which will be used as a benchmark. In a pure on-demand system, all

jobs are served with a short delay and processed with the same priority on the𝑚 servers. Upon

arrival of each job, it will be dispatched to one of the𝑚 servers under some policy and the jobs at

the same server will be served in a FCFS discipline. The total job arrival rate is Λ𝑜𝑑 , and the job

arrival rate at a single server is _𝑜𝑑 =
Λ𝑜𝑑

𝑚
. Similar to (18), we have that the delay of all jobs is

𝑡 = 0.5 · _𝑜𝑑 · 𝐸 [𝑋 2]/(1 − _𝑜𝑑 ). (24)

The job delay will be no larger than 𝑇 , which requires that 𝑡 ≤ 𝑇 .
We denote by 𝐺𝑜𝑑 the maximum revenue that an on-demand service system can achieve when

a CSP has 𝑚 servers. The on-demand service has a fixed price 𝑝 and guarantees a small delay

of at most 𝑇 . A CSP’s revenue is maximized when the delay is 𝑇 and we have by (24) that the

corresponding job arrival rate at a single server is as follows:

_𝑜𝑑 = 𝑇 /(𝐴 +𝑇 ), (25)

where 𝐴 = 0.5 · 𝐸 [𝑋 2]. Further, we have
𝐺𝑜𝑑 =𝑚 · 𝑝 · _𝑜𝑑 · 𝑠 =𝑚 · 𝑝 ·𝑇 /(𝐴 +𝑇 ). (26)

Let 𝐺 denote the revenue of our delay-differentiated service system. The viability of our service

system is mainly indicated by the ratio of 𝐺 to 𝐺𝑜𝑑 , denoted by 𝛾 :

𝛾 = 𝐺/𝐺𝑜𝑑 . (27)

If 𝛾 > 1, our service system achieves a higher revenue than the on-demand service system; the

larger the value of 𝛾 , the higher the revenue improvement. 𝛾 − 1 represents how much the revenue

is improved by when our service system is used. For example, if 𝛾 = 1.5, it means that the revenue

is improved by 50%.

5.3 Optimal SLA Delays
Suppose there are𝑚 servers and the aggregate job arrival rate is Λ. For all 𝑙 ∈ [1, 𝐿], the arrival rate
of jobs bound to the 𝑙-th SLA is Λ𝑙 . In the PBS architecture, the𝑚 servers are shared among the jobs

under all SLAs. In the SMS architecture, the servers are divided into 𝐿 groups and the jobs under the

𝑙-th SLA are assigned𝑚𝑙 servers to process its jobs where
∑𝐿

𝑙=1
𝑚𝑙 =𝑚. For our delay-differentiated

service system, no matter which architecture in Section 5.1 is used, the expected job delay under

the 𝑙-th SLA type is denoted by 𝑡𝑙 and determined by (16) or (18).

As described in (10), the expected delay 𝑡𝑙 of the jobs of the 𝑙-th SLA should be no larger than the

delay 𝜑𝑙 that this SLA defines. The first SLA represents the standard on-demand service and its SLA

delay is 𝑇 . Intuitively, we should keep the other SLA delays as small as possible, i.e., 𝜑𝑙 = 𝑡𝑙 for all

𝑙 ∈ [2, 𝐿], in order to maximize the revenue. In fact, by doing so, we can make every SLA price as

high as possible, which can be proved by analyzing the structure of the SLA prices in Definition 4.4.

Formally, the SLA delays relate to the expected job delays in the following way.

Proposition 5.1. In order to maximize the revenue of a CSP, we have for all 𝑙 ∈ [2, 𝐿] that the
SLA delay 𝜑𝑙 should be the expected delay 𝑡𝑙 of the jobs of the 𝑙-th SLA, no matter which supporting
architecture is used.

See Appendix B for the proof of Proposition 5.1. With Proposition 5.1, we will further analyze in

the rest of this section the performance of our service system respectively under the PBS and SMS

architectures.
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5.4 A Performance Bound of the PBS-based Service System
In this subsection, we will study the performance of the proposed service system when it is built on

the PBS architecture. Priority queues are common in literature. It is desirable to show the viability

of a PBS-based service system before we turn to study other architectures. When it comes to the

PBS architecture, we use 𝐺𝑝𝑏𝑠 to denote the revenue of our delay-differentiated service system. As

described in (27), 𝛾 is the ratio of 𝐺𝑝𝑏𝑠 to 𝐺𝑜𝑑 . We will get an upper bound of 𝛾 that is close to one.

This implies that, at best, it can marginally outperform the on-demand service system, which will

discourage the adoption of a PBS-based service system.

Proposition 5.2. The performance of a PBS-based service model is upper bounded by 1 + 𝑇
𝐴
times

the optimal performance of the standard on-demand service model, in terms of the revenue, where
𝐴 = 0.5 · 𝐸 [𝑋 2].

See Appendix C.1 for the proof of Proposition 5.2. Now, we illustrate the intuition in this proof.

For example, when the service time 𝑋 follows an exponential distribution, we have 𝐸 [𝑋 2] = 2 by

(19). For the first SLA, we have
ˆ_1 ∈ (0, 1) by (13), (14) and (15); by (10), the constraint that the

delay of the first SLA is no larger than 𝑇 , where 𝑡1 ≤ 𝑇 , requires that _ < 𝑇 , which is due to (16).

This means that the total load _ of a server is low and the performance of a PBS-based service

system is poor, since 𝑇 is small.

The bound in Proposition 5.2 is only related to the delay 𝑇 of the first SLA and the second

moment 𝐸 [𝑋 2] of the job service time distribution. As mentioned at the end of Section 5.1, there are

four typical distributions to model the job service time in the literature for cloud and server systems

[34, 40, 41, 55, 56]. Below, we use these distributions to numerically illustrate the performance

bound in Proposition 5.2.

When 𝑋 follows an exponential distribution, we have 𝐴 = 1 by (19). When 𝑋 follows a hyperex-

ponential distribution, we use an example in [40] to set ℎ = 2, [1 = 0.75 [2 = 0.25; we let 𝜋1 ∈ (0, 1),
which represents more jobs have relatively smaller service times. Given the value of 𝜋1, we can get

the value of 𝜋2 by (20) and further the value of 𝐴 by (21), which is illustrated in Appendix C.2; here,

we have 𝐴 > 1. When 𝑋 follows a Pareto distribution with 𝑎 > 2 or a log-normal distribution, we

have 𝐴 > 0.5 by (22) and (23). To sum up, we have that, the upper bound in Proposition 5.2 is at

most 1 +𝑇 when 𝑋 follows an exponential or hyperexponential distribution and at most 1 + 2 ·𝑇
when 𝑋 follows a Pareto distribution with 𝑎 > 2 or a log-normal distribution. Thus, the PBS-based

service system can only outperform the standard on-demand service system marginally, since the

delay of the first SLA 𝑇 is small. In the rest of this paper, we will solely focus on studying the

SMS-based service system alone.

5.5 A Closed-Form Result for the SMS-based System with Two SLAs
In this section, we provide under mild assumptions a closed-form expression of the revenue

improvement of a SMS-based service system over a pure on-demand service system, in the case

of 𝐿 = 2. Even in this simple case, the revenue improvement is remarkable and comparable to its

counterpart in the case of offering more SLAs, as shown later. A specific setting of the service system

can be defined by parameters such as the number of possessed servers, and the job arrival rate and

the population’s delay tolerance. A direct result of the closed-form expression is an operational

region of these parameters in which the SMS-based system can always lead to an increment in

the revenue. Given a specific setting, one can also compute the optimal revenue improvement and

system configuration easily.

Assumptions. In cloud markets, both the amount of servers and the population size are large so

that the revenue from a single server or user could be negligible, in comparison with the total

revenue. To obtain analytical results, we relax in this subsection the constraint that the number of
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servers assigned to each SLA is integer and allow the number to be fractional; we also allow the

distribution of user types to be continuous. The total revenue after relaxation approximates the

total revenue of an integer solution, which can be testified later: Fig. 7(b) gives the optimal revenue

improvement 𝛾∗ computed by the closed-form results here; Fig. 10(a) contains the values of 𝛾∗ in
the case of 𝐿 = 2, which are computed by an exhaustive search procedure in the next subsection

that gives an optimal solution for the discrete case.

In computing services, some typical conventions are followed for analytical tractability. Specifi-

cally, the WTP functions are linear and satisfy (1) [9, 10, 15]. A uniform distribution is often used to

model users’ valuations and delay-tolerances so that each segment of users can well be represented

in the system [10, 14, 15, 41, 42]. The price of on-demand service is normalized to be one, i.e., 𝑝 = 1.

Given a delay-cost type 𝛼 , let

𝜑 ′𝑧 = 1/𝛼
and we have by (1) that a user’s WTP becomes zero when the delay reaches 𝜑𝑧 = 𝜑 ′𝑧 +𝑇 ; each type

𝛼 corresponds to a unique 𝜑 ′𝑧 , which is referred to as the relative zero-WTP point. For each arriving

job, we assume that its relative zero-WTP point 𝜑 ′𝑧 follows a continuous uniform distribution over

(0, 𝜏], which is equivalent to defining the probability distribution 𝑃 of Section 3.2. For the jobs with

𝜑 ′𝑧 → 0, they cannot tolerate any delay larger than 𝑇 since their WTP would become negative.

The value of 𝜏 represents the overall delay-tolerance level of the population. The lower and upper

bounds of 𝛼 are 𝛼 and 𝛼 . Correspondingly, we have 𝛼 = 1/𝜏 and 𝛼 → +∞, and the user types are

distributed over [1/𝜏, +∞) to include both delay-sensitive and delay-tolerant jobs.

The on-demand service represents the fastest service and 𝑇 denotes the delay to deliver service

and is a system parameter.𝑚 is the amount of servers that a CSP has. The external market condition

is defined by Λ and 𝜏 ; here, Λ is the total arrival rate of all jobs with different delay-tolerances. We

call the tuple of these parameters (𝑇,𝑚,Λ, 𝜏) as a system setting. Under a specific setting, the CSP
needs to determine the optimal proportion of jobs and the optimal number𝑚𝑙 of servers assigned

to each SLA 𝑙 ∈ [1, 𝐿].
Problem Formulation. By Proposition 4.1, there exists a partition point 𝛼2 = 𝑦 such that all users

of type 𝛼 ∈ (𝑦, 𝛼] are assigned to the first SLA while the others of type 𝛼 ∈
[
𝛼,𝑦

]
are assigned to

the second SLA where 𝐿 = 2. Herein, 𝑦 defines the market segmentation {𝛼𝑙 }𝐿+1𝑙=1
: Φ1 = (𝑦, 𝛼] and

Φ2 =
[
𝛼,𝑦

]
. Correspondingly, let 𝑥 = 1/𝑦, denoting a relative zero-WTP point in (0, 𝜏]; the jobs

whose relative zero-WTP points are in (0, 𝑥) are assigned to the first SLA while the other jobs are

assigned to the second SLA. The mean job arrival rate of all users is Λ. Since the relative zero-WTP

point of each arriving job is uniformly distributed over (0, 𝜏], we have like (9) that the job arrival
rates for the first and second SLAs are respectively:

Λ1 = Λ · 𝑥/𝜏 and Λ2 = Λ · (𝜏 − 𝑥)/𝜏 (28)

where Λ = Λ1 + Λ2. Under a system setting, our decision variable is 𝑥 and the revenue that a

CSP obtains per unit of time is denoted by 𝐺 (𝑥) and given later in (37). We focus on the system

performance in the case that

𝑥 ∈ (0, 𝜏) and _𝑜𝑑 ·𝑚 < Λ < 𝑚. (29)

By (28), the former guarantees a positive job arrival rate for each SLA; the latter says that the

total job arrival rate in a SMS-based service system is larger than the one in an on-demand service

system but does not exceed the processing capacity of the𝑚 servers. By (26) and (27), the revenue

improvement of a SMS-based system over the on-demand service system is as follows:

𝛾 (𝑥) = 𝐺 (𝑥)/𝐺𝑜𝑑 = (𝐴 +𝑇 ) ·𝐺 (𝑥)/(𝑇 ·𝑚). (30)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article . Publication date: April 2023.



Delay and Price Differentiation in Cloud Computing 19

For our SMS-based service system, we will seek for the optimal 𝑥∗ under which the optimal revenue

𝐺 (𝑥∗) is achieved, which will be a function of the setting (𝑇,𝑚,Λ, 𝜏). Under the optimal 𝑥∗, we
make the following definition.

Definition 5.3. We define a feasible operational region as a condition of the system setting (𝑇, 𝑚,

Λ, 𝜏) under which the SMS-based service system improves the revenue of a CSP over the standard

on-demand service system. In other words, in the feasible operational region, we have 𝛾 (𝑥∗) > 1.

SystemConfiguration.Now, we derive the relation of the endogenous variables𝜑2, 𝑝2 and {𝑚𝑙 }2𝑙=1
to the decision variable 𝑥 . For the first SLA, its SLA delay is an exogenous parameter 𝑇 and we

have by (18) and (25) that the job arrival rate per server is

_1 = _𝑜𝑑 = 𝑇 /(𝐴 +𝑇 ). (31)

The number𝑚1 of servers assigned to the first SLA is determined by _1 and Λ; then, we have

𝑚1 =
Λ1

_1

(𝑎)
=

Λ · (𝐴 +𝑇 )
𝜏 ·𝑇 · 𝑥 and 𝑚2

(𝑏)
= 𝑚 − Λ · (𝐴 +𝑇 )

𝜏 ·𝑇 · 𝑥 (32)

where equality (a) is due to (28) and (b) is due to (17). Regarding the second SLA, the job arrival

rate per server is

_2 =
Λ2

𝑚2

(𝑎)
=

𝑇 · Λ · (𝜏 − 𝑥)
𝜏 ·𝑇 ·𝑚 − Λ · (𝐴 +𝑇 ) · 𝑥 (33)

where equality (a) is due to (28) and (32); the SLA delay is as follows:

𝜑2

(𝑏)
= 𝑡2

(𝑐)
= 𝐴 · _2 ÷ (1 − _2)

(𝑑)
=

𝐴 ·𝑇 · Λ · (𝜏 − 𝑥)
𝜏 ·𝑇 ·𝑚 − Λ · (𝐴 +𝑇 ) · 𝑥 ÷

𝜏 ·𝑇 · (𝑚 − Λ) − Λ · 𝐴 · 𝑥
𝜏 ·𝑇 ·𝑚 − Λ · (𝐴 +𝑇 ) · 𝑥

=
𝐴 · Λ
𝜏
· 𝜏 − 𝑥
(𝑚 − Λ) − 𝐴 ·Λ

𝑇 ·𝜏 · 𝑥

(34)

where equality (b) is due to Proposition 5.1, (c) is due to (18), and (d) is due to (33). Due to (29), we

have 𝜑2 > 𝑇 since _2 =
Λ−𝑚1 ·_𝑜𝑑
𝑚−𝑚1

> _𝑜𝑑 . Since 𝜑2 > 0, we have 𝑥 < 𝑚−Λ
𝐴 ·Λ ·𝑇 · 𝜏 . Due to (25) and (29),

it is easy to verify
𝑚−Λ
𝐴 ·Λ ·𝑇 · 𝜏 ∈ (0, 𝜏). Thus, the effective range of 𝑥 is as follows:

𝑥 ∈ (0, (𝑚 − Λ) ·𝑇 · 𝜏/(𝐴 · Λ)) . (35)

By Proposition 4.6, the prices of the first and second SLAs are

𝑝1 = 𝑝 = 1 and 𝑝2 = 𝑝1 + (𝑢 (𝑦, 𝜑2) − 𝑢 (𝑦, 𝜑1)) = 𝑢 (𝑦, 𝜑2) = 𝑢 (1/𝑥, 𝜑2)
(𝑎)
= 1 − (𝜑2 −𝑇 ) /𝑥 (36)

where 𝜑1 = 𝑇 and equality (a) is due to (1). The CSP’s revenue 𝐺 , defined in (11), is concretized as

follows:

𝐺 (𝑥) = 𝑝1 · Λ1 + 𝑝2 · Λ2

(𝑎)
=

𝑥

𝜏
· Λ +

(
1 − 1

𝑥
· (𝜑2 −𝑇 )

)
· 𝜏 − 𝑥

𝜏
· Λ = Λ − Λ

𝜏
· 𝜏 − 𝑥

𝑥
· (𝜑2 −𝑇 )

(𝑏)
= Λ − Λ

𝜏
· 𝜏 − 𝑥

𝑥
·
(
𝐴 · Λ
𝜏
· 𝜏 − 𝑥
(𝑚 − Λ) − 𝐴 ·Λ

𝜏 ·𝑇 · 𝑥
−𝑇

)
(37)

where equality (a) is due to (28) and (36), and (b) is due to (34). The CSP’s objective is to maximize

(37), subject to the constraint (29). The revenue 𝐺 (𝑥) and the revenue improvement 𝛾 (𝑥) in (30)

achieve the maximum values under the same 𝑥 = 𝑥∗.
Results. The main results of this subsection are as follows. The related proofs are given in Appen-

dix D.
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Proposition 5.4. Let𝜓 =

√
𝑇
𝐴
·
(

1

_𝑜𝑑
− 1

_

)
where _ = Λ

𝑚
, _𝑜𝑑 = 𝑇

𝑇+𝐴 and 𝐴 = 0.5 · 𝐸 [𝑋 2]. Given a

system setting {𝑚,Λ,𝑇 , 𝜏}, the optimal revenue improvement is achieved when

𝑥∗ = 𝜏 · (1 −𝜓 ) . (38)

Let 𝜌 = _
_𝑜𝑑

> 1. The optimal revenue improvement is

𝛾 (𝑥∗) = 𝜌 − 𝜌 · 𝑇 2

𝐴 · _ · 𝜏 ·
𝜌 − 1
(1 −𝜓 )2 . (39)

With Proposition 5.4, we can determine the optimal values of the other endogenous variables 𝜑2,

𝑝2 and {𝑚𝑙 }2𝑙=1 in (32), (34) and (36). By Proposition 5.4 and Definition 5.3, we have

Corollary 5.5. The feasible operational region of a CSP is such that

𝜏 >
𝜌 ·𝑇 2

𝐴 · _ ·
(
1 −

√
𝑇
𝐴
·
(

1

_𝑜𝑑
− 1

_

))2 =
𝑇 · (𝐴 +𝑇 )

𝐴 ·
(
1 −

√
1 + 𝑇

𝐴
− 𝑇

𝐴
· 𝑚Λ

)
2
. (40)

Corollary 5.5 shows that, only if the system setting {𝑚,Λ,𝑇 , 𝜏} satisfies the relation (40), a CSP

can improve its revenue by implementing a SMS-based service system. A noticeable feature is that,

a CSP can improve its revenue only if the overall delay-tolerance level 𝜏 of the user population

exceeds some threshold. This threshold relates to the delay𝑇 of on-demand service, the average job

arrival rate per server _ = Λ
𝑚
, and the second moment 𝐸 [𝑋 2] of the job service time distribution.

By Proposition 5.4, the larger the value of 𝜏 , the higher the revenue improvement. The revenue

improvement 𝛾 (𝑥∗) is bounded by 𝜌 .

Under a given system setting (𝑇,𝑚,Λ, 𝜏), a CSP can use Proposition 5.4 to optimally determine

the proportion of jobs assigned to each SLA; then, it can compute the optimal system configuration

by (32), (34) and (36). Also, a CSP can easily compute the optimal revenue improvement by (37) to

evaluate whether it can benefit from a delay-differentiated market. All in all, the resulting optimal

revenue improvement 𝛾 (𝑥∗) is a function of the system setting and it also has rich implications in

understanding the delay-differentiated cloud market, where a system setting includes the market

conditionΛ and 𝜏 and other parameters𝑚 and𝑇 .We can see from (39) that, the revenue improvement

depends on the average load per server _ = Λ
𝑚
, rather than any single parameter𝑚 or Λ, and can

also be denoted as 𝛾 (𝑇, _, 𝜏). 𝑇 is a fixed parameter and is set to a larger value 0.02 [10]. A larger

value often implies a higher revenue from the on-demand market. We can vary the market condition

to see how the revenue improvement changes accordingly. For example, we will below vary the

value of _ that changes from 0.02 to 0.16 with a stepsize 0.01, and the value of the population’s

delay-tolerance level 𝜏 that changes from 1 to 8 with a stepsize 0.2.

Suppose the job service time follows an exponential distribution, i.e., 𝑋 ∼ Exponential; then

we have 𝐴 = 1 by (19). The revenue improvement 𝛾 is illustrated in Fig. 6 where only the positive

revenue improvement is shown. The feasible operational region of a CSP is illustrated by the blue

area in Fig. 7(a) and it implies that a CSP can gain under a wide range of market conditions. Given

an estimated range of the market conditions, one can easily see from Fig. 6 the possible revenue

improvement with a delay-differentiated market. Fixing the average load per server _, the CSP can

see that the revenue improvement 𝛾 increases as the delay-tolerance level 𝜏 increases. Given the

delay-tolerance level 𝜏 , the revenue improvement 𝛾 first increases as the load _ per server increases

and then begins to decrease as the load increases further. In practice, a CSP like Amazon EC2 or

Microsoft Azure often has rich capital and can adapt its capacity𝑚 to maintain its load per server

at a desired level to maximize the revenue [57]. Under a given delay-tolerance level 𝜏 , the optimal
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Fig. 6. Revenue Improvement 𝛾 under Varying Conditions (_, 𝜏), where 𝑋 ∼ Exponential.

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

The Average Load per Server 

1

3

5

7

D
el

ay
-T

ol
er

an
ce

 L
ev

el
 

(a) Feasible Operational Region. (b) Optimal Revenue Improvement.

Fig. 7. 𝑋 ∼ Exponential: in plot (a), the blue area illustrates the region of _ and 𝜏 in which a CSP can achieve
a revenue improvement; given the delay-tolerance level, each red point represents the optimal load per server
under which a CSP achieve the maximum revenue improvement. In plot (b), given the delay-tolerance level 𝜏 ,
each blue point illustrates the maximum revenue improvement achieved under the optimal load.

load _ is illustrated by the red point in Fig. 7(a) and the corresponding revenue improvement is

illustrated in Fig. 7(b).

In addition, we consider the case where the job service time follows a log-normal distribution

(i.e., 𝑋 ∼ Log-normal) and exhibits higher variability [55], which is used to examine the robustness

of the SMS-based service system. We take the setting that the variance of 𝑋 is 5 [56] and have𝐴 = 3

by (23). We note that, under this setting, the revenue improvement 𝛾 brought by the PBS-based

service system is upper bounded by 1 + 𝑇
3
≈ 1.007 by Proposition 5.2, which is small. Similarly to

the 𝑋 ∼ Exponential case, the revenue improvement is illustrated in Fig. 8. The feasible operational

region of a CSP is illustrated by the blue area in Fig. 9(a); under a specific delay-tolerance level 𝜏 ,

the maximum revenue improvement is illustrated in Fig. 9(b). To sum up, the revenue improvement

of the SMS-based service system in the case of 𝑋 ∼ Log-normal is still significant under a wide

range of conditions and is similar to its counterpart in the case of 𝑋 ∼ Exponential.

5.6 Optimally Configuring the SMS-based Service System
Our objective is tomaximize the revenue. In this subsection, we show a procedure that can determine

the optimal SLA delays and prices of a SMS-based service system when multiple SLAs are offered.
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Fig. 8. Revenue Improvement 𝛾 under Varying Conditions (_, 𝜏), where 𝑋 ∼ Log-normal.
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(a) Feasible Operational Region. (b) Optimal Revenue Improvement.

Fig. 9. 𝑋 ∼ Log-normal: each plot has the same meaning as Fig. 7

By Proposition 4.1, we have that the market is segmented by a sequence. Suppose the mar-

ket segmentation is 𝛼1, 𝛼2, · · · , 𝛼𝐿+1 and the number of servers assigned to different SLAs are

𝑚1,𝑚2, · · · ,𝑚𝐿 . They can uniquely determine the SLA delays and prices, and the job arrival rate of

each SLA. Specifically, the market segmentation determines the job arrival rate of each SLA by

(9). Further, for all 𝑙 ∈ [1, 𝐿], the number𝑚𝑙 determines the job arrival rate per server of the 𝑙-th

SLA and the SLA delay 𝜑𝑙 by (18) and Proposition 5.1. Given the market segmentation and the SLA

delays, we have shown in Section 4.2 the corresponding optimal SLA prices by Proposition 4.6. By

(11), the job arrival rate of each SLA and the SLA prices determine the revenue. Thus, our decision

variables are 𝛼2, · · · , 𝛼𝐿 and𝑚1, · · · ,𝑚𝐿 with the aim of maximizing the revenue, where 𝛼1 = 𝛼 ,

𝛼𝐿+1 = 𝛼 , and
∑𝐿

𝑙=1
𝑚𝑙 =𝑚.

The parameters 𝛼1, 𝛼2, · · · , 𝛼𝐿+1 uniquely corresponds to an element in the following set A =

{(𝛼1, 𝛼2, · · · , 𝛼𝐿+1) | 𝛼 = 𝛼1 > 𝛼2 > · · · > 𝛼𝐿+1 = 𝛼, 𝛼2, 𝛼3, · · · , 𝛼𝐿 ∈ Φ} where 𝛼𝑙 = 𝛼𝑙 for all

𝑙 ∈ [1, 𝐿 + 1]. The parameters𝑚1,𝑚2, · · · ,𝑚𝐿 uniquely correspond to an element in the following

setM = {(𝑖1, 𝑖2, · · · , 𝑖𝐿+1) | 0 = 𝑖1 < 𝑖2 < · · · < 𝑖𝐿+1 =𝑚}; here,𝑚𝑙 is set to 𝑖𝑙+1 − 𝑖𝑙 for all 𝑙 ∈ [1, 𝐿].
We can give a procedure to determine the optimal tuples in A andM such that the CSP achieves

the maximum revenue; then, the corresponding delays and prices under these two tuples will be

the optimal ones. The optimal tuples can be found by searching each possible pair of tuples in A
andM. The corresponding procedure is presented in Algorithm 1. Its optimality is formalized in

the following proposition whose proof can be found in Appendix E.
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Algorithm 1: Optimal Parameter Configuration

1 𝐺∗ ← 0, A ′← A,M ′←M; // 𝐺∗: record the current optimal revenue; A′ and M′:
record the tuples unexamined yet respectively in A and M

2 whileM ′ ≠ ∅ do
3 Get a tuple (𝑖1, 𝑖2, · · · , 𝑖𝐿+1) fromM ′, and the 𝑙-th group is assigned𝑚𝑙 = 𝑖𝑙+1 − 𝑖𝑙 servers;
4 while A ′ ≠ ∅ do
5 Get a tuple 𝑠𝑒𝑞 = (𝛼1, 𝛼2, · · · , 𝛼𝐿+1) from A ′;
6 Compute the job arrival rate Λ𝑙 of the 𝑙-th SLA by Equation (9) and Proposition 4.1;

7 For all 𝑙 ∈ [1, 𝐿], compute the expected job delay 𝑡𝑙 of the 𝑙-th SLA by (18);

8 if 𝜑1 ≤ 𝑇 < 𝜑1 < 𝜑2 < · · · < 𝜑𝐿 then

9 Set the delay 𝜑𝑙 of the 𝑙-th SLA to 𝑡𝑙 for all 𝑙 ∈ [2, 𝐿], and 𝜑1 to 𝑇 ;

10 Use Proposition 4.6 to compute the optimal prices of SLAs 𝑝1, 𝑝2, · · · , 𝑝𝐿 ;
11 Compute the revenue 𝐺 by (11), where𝑤𝑙 = Λ𝑙 · 𝑠 =𝑚 · _𝑙 · 𝑠;
12 if 𝐺 > 𝐺∗ then
13 𝐺∗ ← 𝐺 , 𝜑∗

𝑙
← 𝜑𝑙 , 𝑝

∗
𝑙
← 𝑝𝑙 ,𝑚𝑙 ←𝑚∗

𝑙
, for all 𝑙 ∈ [1, 𝐿]; // record the

optimal SLA delays and prices, and division of servers

14 Delete 𝑠𝑒𝑞 from A ′;
15 Delete the tuple (𝑖1, 𝑖2, · · · , 𝑖𝐿+1) fromM ′;

Proposition 5.6. Algorithm 1 gives the optimal delays and prices of SLAs, and its time complexity
is O

(
𝑚𝐿−1 · 𝑛𝐿−1

)
.

6 NUMERICAL RESULTS
In this section, we use Algorithm 1 in Section 5.6 to give some numerical results to show the

performance of the proposed SMS-based service system in more cases (e.g., 𝐿 ≥ 3), as a complement

to the numerical results in Section 5.5 where 𝐿 = 2. Specifically, in Section 6.1, we give the basic

experimental setting. Related numerical results are presented in Section 6.2. Besides, we also

examine the proposed service system under other possible settings; due to the page limit, please

see Appendix F for the details.

6.1 Experimental Setting
There are a total of𝑚 servers. We fix the number of servers𝑚 = 100 and allocate a proper proportion

of servers to each SLA. The on-demand price 𝑝 (i.e., the price 𝑝1 of the first SLA) is normalized as 1,

and its delay𝑇 is 0.02. Suppose that the WTP function is a linear function in (1). Given a delay-cost

type 𝛼 , let 𝜑 ′𝑧 =
1

𝛼
and a user’s WTP becomes zero when the delay is 𝜑𝑧 = 𝜑 ′𝑧 +𝑇 , as described in

Section 5.5; here, 𝜑 ′𝑧 is called the relative zero-WTP point of a user of type 𝛼 and its value reflects

the user’s delay sensitivity. There are 𝑛 = 50 types of users and for all 𝑖 ∈ [1, 𝑛] the WTP of the

𝑖-th type of users becomes zero when the delay is 𝜑𝑧,𝑖 = 𝑇 + 𝜑 ′𝑧,𝑖 . The first type of users is the
most delay-sensitive and its WTP becomes zero even if the delay is slightly larger than 𝑇 ; thus,

we set 𝜑 ′𝑧,1 = 𝜖 , where 𝜖 is arbitrarily small. For all 𝑖 ∈ [2, 50], we set 𝜑 ′𝑧,𝑖 = (𝑖 − 1) · 𝜎 , and have

𝜑𝑧,1 < 𝜑𝑧,2 < · · · < 𝜑𝑧,50. The value of 𝜎 determines the delay-tolerance level of the user population,

and if it is large, the population has a high delay-tolerance level. We consider three cases where the

delay-tolerance level is low, medium and high with 𝜎 = 0.02, 0.04, and 0.08 respectively; then, the

maximum of the relative zero-WTP points is 0.98, 1.96, and 3.92 respectively.
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(b) Revenue Improvement under Varying Load

Fig. 10. In plot (a), the stars of same color illustrate the optimal revenue improvements under the same
delay-tolerance level (specified by 𝜎) but respectively with 𝐿 = 2, 3, 4, and 5. In plot (b), under the low
delay-tolerance (i.e., 𝜎 = 0.02), the stars of same color illustrate the revenue improvement 𝛾 under the same
number of SLAs 𝐿 but varying load _.

The mean arrival rate of the jobs of all types is Λ; the service time of jobs follows an exponential

distribution and their mean is normalized as one, i.e., 𝑠 = 1, where 𝐸 [𝑋 2] = 2 by (19). Users are

independently and uniformly distributed over the 𝑛 types, and the mean job arrival rate of each type

is
Λ
𝑛
. Then, 𝜌 = Λ

𝑚
· 𝑠 = _ denotes the average load per server when all𝑚 servers are considered. We

denote by𝐺∗𝑠𝑚𝑠 the optimal revenue achieved by Algorithm 1. In an on-demand service system,𝐺𝑜𝑑

denotes its revenue and is defined in (26). The following ratio is the main performance metric in our

experiments: 𝛾 = 𝐺∗𝑠𝑚𝑠/𝐺𝑜𝑑 . Specifically, if 𝛾 > 1, the SMS-based service system will outperform

the on-demand system; the larger the value of 𝛾 , the higher the revenue improvement.

6.2 Numerical Results
In Section 6.2.1, we illustrate the performance of the proposed SMS-based service system in a

basic case defined in Section 6.1. This setting has three features: (i) the job service time follows

an exponential distribution, (ii) the users’ delay-tolerance distribution is basically uniform, and

(iii) the WTP functions are linear. In each of the following three subsubsections, we will vary one

feature, while keeping the other features unchanged, to check the performance of the proposed

system. In this paper, the mean job service time is normalized to be one like [40, 45]. In the first

four subsubsections, the delay 𝑇 of on-demand service is set to 0.02, i.e., this delay represents 2% of

the mean job service time. In Section 6.2.5, we check the performance of the proposed system with

other larger or smaller values of 𝑇 , which somewhat shows that the applicability of the proposed

system is extensive and not limited to a specific workload.

6.2.1 Revenue Improvement in the Basic Case. In this subsubsection, we consider the basic

case defined in Section 6.1. In the experiments, we vary the average load per server _ that increases

from 0.02 with a stepsize 0.01, where 0.02 is a value slightly larger than _𝑜𝑑 in (25). Given the number

𝐿 of SLAs and the delay-tolerance level specified by 𝜎 , we illustrate in Fig. 10(a) the maximum

revenue improvement 𝛾 , which is achieved when _ increases to some specific value; here, the red,

blue and magenta stars are for the cases of low, medium and high delay-tolerance respectively. For

example, in the low delay-tolerance case with 𝐿 = 2, the maximum revenue improvement is 1.829

and it is achieved when _ = 0.05. From the figure, we can see a remarkable revenue improvement

ranging from 182.9% to 370.8%. In the case of same delay-tolerance, we can see that (i) the larger the

number 𝐿 of SLAs, the higher the revenue improvement 𝛾 , and (ii) the higher the delay-tolerance,

the higher the revenue improvement.
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(a) The Prices of Different SLAs (b) The Delays of Different SLAs

Fig. 11. Regardless of the value of 𝐿, the price and delay of the first SLA are 1 and 0.02. In plot (a), under the
low delay-tolerance level, the stars of same color illustrate the prices of different SLAs given the number of
SLAs 𝐿, e.g., the red star illustrates the price of the second SLA when 𝐿 = 2. In plot (b), the stars of same color
illustrate the prices of different SLAs given the number of SLAs 𝐿, e.g., the red star illustrates the delay of the
second SLA when 𝐿 = 2.
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(b) Revenue Improvement under Varying Load

Fig. 12. Both plots illustrate the case where the users’ delay-tolerance distribution is head-intensive. In plots
(a) and (b), the stars of same color have the same meaning as the stars in Fig. 10, except that the experiments
of plot (b) is taken with the medium delay-tolerance level 𝜏 = 1.96.

However, the revenue improvement when a CSP offers two SLAs (i.e., 𝐿 = 2) is comparable to

its counterparts with more SLAs offered (i.e., 𝐿 ≥ 3). This implies that, in practice, offering two

SLAs may be enough to achieve a significant revenue improvement while keeping the simplicity in

implementation. The service model of this paper can be viewed as a complement to the on-demand

service, and it can attract potential delay-tolerant users from the market and improve the revenue

efficiency. We illustrate in Fig. 10(b) how the revenue improvement 𝛾 varies as the average load per

server _ increases. Observing the stars of same color, the revenue improvement 𝛾 first increases

and then begins to decrease as _ increases.

Next, we illustrate in Fig. 11(a) and Fig. 11(b) the SLA prices 𝑝2, · · · , 𝑝𝐿 and delays 𝜑2, · · · , 𝜑𝐿
in the low delay-tolerance case; here the price and delay of the first SLA are 1 and 0.02. This

helps understand that the users can benefit from a delay-differentiated market by trading their

delay-tolerance for a lower price to get services. For example, when 𝐿 = 2, we observe the red stars

and have that the price 𝑝2 and delay 𝜑2 of the second SLA are 0.6375 and 0.09974. This means that

the delay-tolerant users, who are assigned to the second SLA, can get a discount of up to 36.25%.

6.2.2 Revenue Improvement under Non-uniform Delay-tolerance Distributions. In the

experiments of Section 6.2.1, we basically use a uniform distribution to generate the relative zero-

WTP points of users, which is introduced in Section 6.1. Now, we give numerical results under the
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(b) Revenue Improvement under Varying Load

Fig. 13. Both plots illustrate the case where the users’ delay-tolerance distribution is tail-intensive. In plots
(a) and (b), the stars of same color have the same meaning as the stars in Fig. 12.

other two types of distribution. The relative zero-WTP point 𝜑 ′𝑧,1 of the first user is still set to 𝜖 .
Then, we choose 49 values, whose range is in (0.02, 𝜏], from a normal distribution whose mean is

𝑥 , whose standard deviation is 2, and whose shape is symmetric about the mean 𝑥 . We use these

49 values as the relative zero-WTP points of the other 49 users. With a given 𝜏 , the two types of

delay-tolerance distribution are set in the following way:

Head-intensive. We set 𝑥 = 0.02 and the 49 values are chosen from the right side of the mean

0.02; then, more users have smaller delay-tolerances (i.e., smaller relative zero-WTP points).

Tail-intensive. We set 𝑥 = 𝜏 and the 49 values are chosen from the left side of the mean 𝜏 ;

then, more users have larger delay-tolerances (i.e., larger relative zero-WTP points).

Here, 𝜏 is an upper bound of the relative zero-WTP points of all users and represents the delay-

tolerance level of the user population. In the experiments below, 𝜏 will be set to 0.98, 1.96, and 3.92

respectively, which correspond to 𝜎 = 0.02, 0.04 and 0.08 in the uniform case.

Like the experiments in Section 6.2.1, the average load per server _ is varied; then, under each

pair of (𝜏, 𝐿), Fig. 12(a) illustrates the maximum revenue improvement in the case where the

delay-tolerance distribution is head-intensive, while Fig. 13(a) illustrates the maximum revenue

improvement in the tail-intensive case. Together with Fig. 10(a), we have the following observations.

First, when the delay-tolerance level is low (i.e., 𝜏 = 0.98), the relative zero-WTP points of all users

are densely distributed over a small interval between 𝜖 and 0.98; then, the distribution type has

little effect on the revenue improvement, as illustrated by the red stars of 10(a), Fig. 12(a), and

13(a). Second, when the delay-tolerance level is higher (i.e., 𝜏 = 1.96 or 3.92), it is observed that,

under the same (𝜏, 𝐿), the revenue improvement 𝛾 under the tail-intensive distribution is larger

than the revenue improvement 𝛾 under the uniform distribution, which is larger than the revenue

improvement 𝛾 under the head-intensive distribution, as illustrated by the blue or magenta stars

of Fig. 10(a), Fig. 12(a), and Fig. 13(a). Finally, we illustrate in Fig. 12(b) and Fig. 13(b) how the

revenue improvement 𝛾 varies as the average load per server _ increases in the head-intensive and

tail-intensive cases respectively.

6.2.3 Revenue Improvement with a Non-exponential Service Time Distribution. In this

subsubsection, we consider the case where the job service time follows a log-normal distribution

(i.e., 𝑋 ∼ Log-normal) and exhibits higher variability [55]. We take the setting that the variance

of 𝑋 is 5 [56] and have 𝐴 = 3 by (23). In the experiments, we vary the average load per server _

that increases from 0.007 with a stepsize 0.005, where 0.007 is a value slightly larger than _𝑜𝑑 in

(25). Under each pair of (𝜎, 𝐿), Fig. 14(a) illustrates the maximum revenue improvement 𝛾 , where a

significant revenue improvement is still achieved. From Fig. 10(a) and Fig. 14(a), it is observed that
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Fig. 14. Both plots illustrate the case where 𝑋 ∼ Log-normal. In plots (a) and (b), the stars of same color have
the same meaning as the stars in Fig. 10, except that the experiments of plot (b) is taken with the highest
delay-tolerance level 𝜎 = 0.08.
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Fig. 15. Both plots illustrate the case of concave WTP functions. In plots (a) and (b), the stars of same color
have the same meaning as the stars in Fig. 10.

the revenue improvements in the exponential and log-normal cases are similar. Such observation

can also be obtained from Fig. 7(b) and Fig. 9(b). Finally, we illustrate in Fig. 14(b) how the revenue

improvement 𝛾 varies as the average load per server _ increases.

6.2.4 Revenue Improvement under ConcaveWTP Functions. In this subsubsection, we give
some numerical results when the concave WTP function (2) is applied. Still, like the experiments in

Section 6.2.1, the average load per server _ is varied; the related results are illustrated in Fig. 15.

From Fig. 10(b) and Fig. 15(b), the revenue improvement under concave WTP functions exhibits

similar phenomenon to its counterpart under linear WTP functions. Roughly, as the delay increases,

the WTPs of users with concave WTP functions decrease more slowly than their counterparts with

linear WTP functions in Section 6.2.1. Thus, from Fig. 10(a) and Fig. 15(a), it is observed that, under

a particular condition in terms of the number 𝐿 of SLAs and the population’s delay-tolerance level

defined by 𝜎 , the revenue improvement under concaveWTP functions is higher than its counterpart

under linear WTP functions. Under the same average load per server, it is observed from Fig. 10(b)

and Fig. 15(b) that the revenue improvement under concave WTP functions is also higher. The

performance of the proposed SMS-based system, under the basic case where the WTP functions

are linear, is a lower bound of and can serve as a guide to the performance of the proposed system

under the concave WTP functions.

6.2.5 Revenue Improvement with Different 𝑇 . In this subsubsection, we consider the effect

of the delay𝑇 of on-demand service on the revenue improvement. We set𝑇 to three different values

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article . Publication date: April 2023.



28 X. Wu, F. De Pellegrini and G. Casale

(a) Optimal Revenue Improvement under Different𝑇

0 0.01 0.03 0.05 0.07 0.09 0.11
The Average Load per Server 

1

2

3

4

R
ev

en
ue

 Im
pr

ov
em

en
t 

T = 0.005
T = 0.01
T = 0.03

(b) Revenue Improvement under Varying Load

Fig. 16. Both plots illustrate the revenue improvements under different values of 𝑇 , where 𝜎 is set to 0.04. In
plots (a) and (b), the stars of same color have the same meaning as the stars in Fig. 10.

0.005, 0.01, and 0.03 respectively and take experiments with a fixed delay-tolerance level defined by

𝜎 = 0.04. In the experiments, we vary the average load per server _ that increases from 𝑇 with a

stepsize 0.005, where𝑇 is a value slightly larger than _𝑜𝑑 in (25) since 𝐴 = 1 by (19). Given a pair of

(𝐿,𝑇 ), we illustrate in Fig. 16(a) the maximum revenue improvement 𝛾 , which is achieved when

_ increases to some specific value. Here, the numerical results with 𝑇 = 0.02 is given by the blue

stars of Fig. 10(a). From Fig. 16(a), it is observed that the revenue improvement is decreasing in

𝑇 , given the value of 𝐿. In [35], the workload traces from Google are studied where the averaged

job service time can be multiple hours, e.g., 11.11 hours. With this example, 𝑇 can range between

0.003 and 0.0075 after normalization, if the on-demand service is provided in 2-5 minutes upon

request. Given the value of 𝐿, if the proposed system achieves a good performance when 𝑇 = 0.02,

it achieves a better performance with 𝑇 ∈ [0.003, 0.0075], which is illustrated by the blue stars of

Fig. 10(a) with 𝑇 = 0.02 and the red stars of Fig. 16(a) with 𝑇 = 0.005.

Finally, we give some observation from Fig. 10(b), Fig. 12(b), Fig. 13(b), Fig. 14(b) and Fig. 15(b)

where a specific value of 𝜎 is applied in each plot and we show how the revenue improvement

varies with the average job arrival rate _ per server. It is observed that, in practice, if 𝑇 is set to

the same value of 0.02, the job arrival rate _ per server can be set to around 0.05 with which a

significant revenue improvement can be achieved; here, the value of _ = 0.05 seems independent of

the factors including the delay-tolerance level of users (𝜏 = 0.98, 1.96, or 3.92), the delay-tolerance

type distribution (uniform, head-intensive, or tail-intensive), the second moment of the job service

time distribution (𝐸 [𝑋 2] = 2 or 6), and the WTP functions (linear or concave). Thus, the question

on how to estimate the value of _ to achieve a significant revenue improvement may be solved

by observing these numerical results. However, it is still related to the value of the delay 𝑇 of

on-demand services, as indicated by Fig. 16(b).

7 CONCLUSION
In cloud markets, there exist both latency-critical jobs and jobs that could tolerate different degrees

of delay. The resource efficiency of a system depends largely on the job’s latency requirements and

the resulting resources allocation strategy. We propose a delay-differentiated pricing and service

model where multiple SLAs are provided, as a complement to the existing on-demand service system.

The resulting market structure is studied and we thus derive the pricing rule: under the proposed

framework the mechanism is seen to be DSIC and the CSP’s revenue is maximized. We consider

the PBS and SMS architectures, respectively, for fulfilling SLAs: the first appears prevalent in the

literature while the second appears a rather appealing alternative due to its simplicity. We focus on

non-preemptive services: the system analysis performed on these two architectures discourages the
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adoption of the PBS architecture and justifies the preference to the SMS-based service system. For

the SMS-based system, we further leverage queueing theoretical models to determine the optimal

SLA delays and prices when multiple SLA are offered. We also give a closed-form expression of

the revenue improvement over the pure on-demand service model in the case that two SLAs are

offered. Numerical results show that, the CSP can achieve a significant revenue improvement even

in the case that two SLAs are offered, which is comparable to the revenue improvement when more

than two SLAs are offered.

As shown by the numerical results of Section 6.2, the revenue improvement is non-decreasing

in the number of SLAs offered. One may consider how to determine the optimal number of SLAs

[52, 53], which is an important question worth studying in future. It would also be interesting to

extend our model to consider the case where the job service time is inversely correlated with its

delay sensitivity.
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A PROOFS FOR MARKET PROPERTIES
A.1 Proofs Relating to Proposition 4.1
Proof of Lemma 4.2. Let 𝜑 ∈ [𝑇, +∞). It suffices to prove the conclusion that 𝑔(𝜑) = 𝑢 (𝛼2, 𝜑) −
𝑢 (𝛼1, 𝜑) is an increasing function of 𝜑 ; then, the lemma holds since 𝑔(𝜑𝑘2 ) > 𝑔(𝜑𝑘1 ). To prove this,

we note that the derivative of 𝑔(𝜑) is

𝑔′(𝜑) = 𝜕𝑢 (𝛼2, 𝜑)
𝜕𝜑

− 𝜕𝑢 (𝛼1, 𝜑)
𝜕𝜑

.

Since 𝛼1 > 𝛼2, we have 𝑔
′(𝜑) > 0 by the fourth point of Property 1, and 𝑔(𝜑) is increasing.

Proof of Lemma 4.3. We prove this by contradiction. Suppose 𝑘2 < 𝑘1 and the SLA delays satisfy

𝜑𝑘2 < 𝜑𝑘1 . The user of type 𝛼1 (resp. 𝛼2) achieves the maximum surplus under the SLA 𝑘1 (resp. 𝑘2),

and we thus have

𝑢 (𝛼1, 𝜑𝑘1 ) − 𝑝𝑘1 ≥ 𝑢 (𝛼1, 𝜑𝑘2 ) − 𝑝𝑘2 (41)

𝑢 (𝛼2, 𝜑𝑘1 ) − 𝑝𝑘1 ≤ 𝑢 (𝛼2, 𝜑𝑘2 ) − 𝑝𝑘2 (42)

Multiplying (41) by -1 and adding the resulting inequality to (42), we have 𝑢 (𝛼2, 𝜑𝑘1 ) −𝑢 (𝛼1, 𝜑𝑘1 ) ≤
𝑢 (𝛼2, 𝜑𝑘2 ) −𝑢 (𝛼1, 𝜑𝑘2 ). However, since 𝛼1 > 𝛼2 and 𝑘2 < 𝑘1, we have by Lemma 4.2 that 𝑢 (𝛼1, 𝜑𝑘2 ) −
𝑢 (𝛼1, 𝜑𝑘1 ) > 𝑢 (𝛼2, 𝜑𝑘2 ) − 𝑢 (𝛼2, 𝜑𝑘1 ), which contradicts the previous inequality.

Proof of Proposition 4.1. Each type of users will be assigned to some SLA, and Φ𝑙 denotes the

set of the types of the users assigned to the 𝑙-th SLA for all 𝑙 ∈ [1, 𝐿]. Let 𝛼𝑙 denote the maximum

type in Φ𝑙 such that only the users of type 𝛼 ≤ 𝛼𝑙 will possibly be assigned to the 𝑙-th SLA. For all

𝑙 ∈ [1, 𝐿 − 1], when the users of types 𝛼𝑙 and 𝛼𝑙+1 are respectively assigned the 𝑙-th and (𝑙 + 1)-th
SLAs, we have by Lemma 4.3 that 𝛼𝑙 > 𝛼𝑙+1, which can be easily proved by contradiction. A user

of type 𝛼 will be assigned to a SLA whose number is no larger than one (i.e., the first SLA) since
𝛼 ≥ 𝛼1. Thus, we have 𝛼1 = 𝛼 .
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By Lemma 4.3, we also have that (i) for all 𝑙 ∈ [1, 𝐿 − 1] every user of type 𝛼 ∈ (𝛼𝑙+1, 𝛼𝑙 ] ∩ Φ will

be assigned to a SLA whose number 𝑙 ′ is no smaller than 𝑙 but no larger than 𝑙 + 1, and (ii) every

user of type 𝛼 ∈
[
𝛼, 𝛼𝐿

]
∩ Φ will be assigned to a SLA whose number is no smaller than 𝐿 since

𝛼 ≤ 𝛼𝐿 . In the first case, 𝛼 > 𝛼𝑙+1 and 𝛼𝑙+1 is the maximum type of Φ𝑙+1; thus 𝑙
′
will be smaller than

𝑙 + 1 and equal 𝑙 . The proposition thus holds.

A.2 Proofs Relating to Proposition 4.5 and 4.6
Proof of Proposition 4.5. In the case that 𝛼 ≠ 𝛼𝑙 , we have by Lemma 4.7 the conclusion that,

(i) for all 𝑙 ′ ∈ [2, 𝑙], the user achieves a higher surplus under 𝑙 ′-th SLA than under the (𝑙 ′ − 1)-th
SLA, and (ii) for all 𝑙 ′ ∈ [𝑙, 𝐿 − 1], it achieves a higher surplus under the 𝑙 ′-th SLA than under the

(𝑙 ′+ 1)-th SLA; thus, the user achieves the highest surplus under the 𝑙-th SLA. In the case that 𝛼 = 𝛼𝑙 ,

we still have the above conclusion, except that the user achieves the same surplus under the 𝑙-th

and (𝑙 − 1)-th SLAs when 𝑙 ′ ∈ [2, 𝑙] and 𝑙 ′ = 𝑙 ; thus, the user achieves the maximum surplus under

both the 𝑙-th and (𝑙 − 1)-th SLAs. According to Definition 3.1, the proposition holds in both cases.

Proof of Proposition 4.6. Let us consider a user of type 𝛼 ∈ Φ𝑙 who reports to the CSP that its

type is 𝛼 ′. No matter what the other users do, we have by Proposition 4.5 that it achieves the

maximum surplus under the 𝑙-th SLA and will be assigned by the CSP to the 𝑙-th SLA when it

truthfully reports its type, i.e., 𝛼 ′ = 𝛼 . Thus, it cannot gain more by misreporting its type, since

misreport can lead to that it is assigned to the 𝑙-th SLA or the other SLAs. The first point thus holds

by Definition 3.2.

The objective of our framework is to maximize (11); given the market segmentation 𝛼1, · · · , 𝛼𝐿+1
defined in Proposition 4.1, the job arrival rate of each SLA is fixed by (9) and we have the conclusion

that the larger the SLA prices, the larger the value of 𝐺 . The first SLA’s price 𝑝1 is fixed and equals

𝑝 . In order to guarantee the truthfulness of the users of type 𝛼 ∈ Φ𝑙 , a necessary condition is that

𝑢 (𝛼, 𝜑𝑙−1) − 𝑝𝑙−1 ≤ 𝑢 (𝛼, 𝜑𝑙 ) − 𝑝𝑙 , for all 𝑙 ∈ [2, 𝐿].
Then, it holds for all 𝛼 ∈ Φ𝑙 that

𝑝𝑙 ≤ 𝑝𝑙−1 − (𝑢 (𝛼, 𝜑𝑙−1) − 𝑢 (𝛼, 𝜑𝑙 ));
by Lemma 4.2, 𝑢 (𝛼, 𝜑𝑙−1) −𝑢 (𝛼, 𝜑𝑙 ) achieves the maximum value when 𝛼 = 𝛼𝑙 . Further, irrespective

of the value of 𝑝𝑙−1, the maximum possible value of 𝑝𝑙 is 𝑝𝑙 for all 𝑙 ∈ [2, 𝐿]. Thus, the second point

holds.

Proof of Lemma 4.7. In the first case, if 𝛼 = 𝛼𝑙 and 𝑙 ′ = 𝑙 , the surplus difference of the user

under the 𝑙 ′-th and (𝑙 ′ − 1)-th SLAs is (𝑢 (𝛼𝑙 , 𝜑𝑙 ) − 𝑝𝑙 ) − (𝑢 (𝛼𝑙 , 𝜑𝑙−1) − 𝑝𝑙−1); it equals zero due to

Definition 4.4. Otherwise, we have either 𝛼 < 𝛼𝑙 or 𝑙
′ < 𝑙 : in the former, 𝛼 < 𝛼𝑙 ≤ 𝛼𝑙 ′ since

𝑙 ′ ∈ [2, 𝑙]; in the latter, 𝛼 ≤ 𝛼𝑙 < 𝛼𝑙 ′ . Thus, we have 𝛼 < 𝛼𝑙 ′ . The user’s surplus difference under

two adjacent SLAs 𝑙 ′ and 𝑙 ′ − 1 is
(𝑢 (𝛼, 𝜑𝑙 ′) − 𝑝𝑙 ′) − (𝑢 (𝛼, 𝜑𝑙 ′−1) − 𝑝𝑙 ′−1)
(𝑎)
= (𝑢 (𝛼𝑙 ′, 𝜑𝑙 ′−1) − 𝑢 (𝛼𝑙 ′, 𝜑𝑙 ′)) − (𝑢 (𝛼, 𝜑𝑙 ′−1) − 𝑢 (𝛼, 𝜑𝑙 ′))

(𝑏)
> 0;

here, equation (a) is due to Definition 4.4, and (b) is due to Lemma 4.2. In the second case, we

have 𝛼𝑙 ′+1 < 𝛼 since 𝛼 ∈ (𝛼𝑙+1, 𝛼𝑙 ] and 𝑙 ′ ≥ 𝑙 , and the user’s surplus difference under the 𝑙 ′-th and

(𝑙 ′ + 1)-th SLAs is

(𝑢 (𝛼, 𝜑𝑙 ′) − 𝑝𝑙 ′) − (𝑢 (𝛼, 𝜑𝑙 ′+1) − 𝑝𝑙 ′+1)
(𝑐)
= (𝑢 (𝛼, 𝜑𝑙 ′) − 𝑢 (𝛼, 𝜑𝑙 ′+1)) − (𝑢 (𝛼𝑙 ′+1, 𝜑𝑙 ′) − 𝑢 (𝛼𝑙 ′+1, 𝜑𝑙 ′+1))

(𝑑)
> 0;

here, equation (c) is due to Definition 4.4, and (d) is due to Lemma 4.2. Hence, the lemma holds.
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B PROOF OF PROPOSITION 5.1
We prove this by contradiction. We have 𝜑𝑙 ≥ 𝑡𝑙 for all 𝑙 ∈ [2, 𝐿]. Let us consider an optimal solution

where the SLA delays and prices are 𝜑∗
𝑙
and 𝑝∗

𝑙
for all 𝑙 ∈ [2, 𝐿], and the market segmentation

is 𝛼1, 𝛼2, · · · , 𝛼𝐿+1. Suppose there exists some SLA 𝑙 ∈ [2, 𝐿] such that 𝜑∗
𝑙
> 𝑡𝑙 ; let 𝑙

′
denote the

minimum such 𝑙 , where 𝜑∗
2
= 𝑡2, · · · , 𝜑∗𝑙 ′−1 = 𝑡𝑙 ′−1 if 𝑙

′ > 2. If we decrease the delay of the 𝑙 ′-th
SLA to 𝑡𝑙 ′ and keep the others unchanged, we denote the corresponding prices by 𝑝

1
, · · · , 𝑝𝐿 . It

suffices to prove the conclusion that 𝑝𝑙 > 𝑝∗
𝑙
for all 𝑙 ∈ [𝑙 ′, 𝐿] and 𝑝𝑙 = 𝑝∗

𝑙
for all 𝑙 ∈ [2, 𝑙 ′ − 1] if

𝑙 ′ > 2. This will lead to that the revenue (11) increases, which contradicts the assumption that

𝑝∗
1
, · · · , 𝑝∗

𝐿
are optimal; the proposition thus holds. Now, we prove the conclusion. The SLA prices

are determined by Proposition 4.6. First, we have 𝑝∗
𝑙
= 𝑝𝑙 for all 𝑙 ∈ [2, 𝑙 ′ − 1] if 𝑙 ′ > 2; this is due to

that 𝜑∗
2
, · · · , 𝜑∗

𝑙 ′−1 does not change. Second, for the 𝑙
′
-th SLA, we have

𝑝𝑙 ′ = 𝑝𝑙 ′−1 + 𝑢 (𝛼𝑙 ′, 𝑡𝑙 ′) − 𝑢 (𝛼𝑙 ′, 𝑡𝑙 ′−1)
(𝑎)
> 𝑝∗

𝑙 ′−1 + 𝑢 (𝛼𝑙 ′, 𝜑
∗
𝑙 ′) − 𝑢 (𝛼𝑙 ′, 𝜑

∗
𝑙 ′−1) = 𝑝∗

𝑙 ′ .

The inequality (a) is due to that 𝑝𝑙 ′−1 = 𝑝∗
𝑙 ′−1, 𝑢 (𝛼𝑙 ′, 𝑡𝑙 ′) > 𝑢 (𝛼𝑙 ′, 𝜑∗𝑙 ′), and 𝑡𝑙 ′−1 = 𝜑∗

𝑙 ′−1. Third, for the
(𝑙 ′ + 1)-th SLA, we have

𝑝𝑙 ′+1 = 𝑝𝑙 ′ + 𝑢 (𝛼𝑙 ′+1, 𝜑∗𝑙 ′+1) − 𝑢 (𝛼𝑙 ′+1, 𝑡𝑙 ′)
= 𝑝𝑙 ′−1 + 𝑢 (𝛼𝑙 ′, 𝑡𝑙 ′) − 𝑢 (𝛼𝑙 ′, 𝜑∗𝑙 ′−1) + 𝑢 (𝛼𝑙 ′+1, 𝜑

∗
𝑙 ′+1) − 𝑢 (𝛼𝑙 ′+1, 𝑡𝑙 ′)

(𝑏)
> 𝑝∗

𝑙 ′−1 + 𝑢 (𝛼𝑙 ′, 𝜑
∗
𝑙 ′) − 𝑢 (𝛼𝑙 ′, 𝜑

∗
𝑙 ′−1) + 𝑢 (𝛼𝑙 ′+1, 𝜑

∗
𝑙 ′+1) − 𝑢 (𝛼𝑙 ′+1, 𝜑𝑙 ′) = 𝑝∗

𝑙 ′+1.

Here, the inequality (b) is due to Lemma 4.2. Fourth, if 𝑙 ′ + 2 ≤ 𝐿, for all 𝑙 ∈ [𝑙 ′ + 2, 𝐿], we have by a

simple mathematical induction that

𝑝𝑙 = 𝑝𝑙−1 + 𝑢 (𝛼𝑙 , 𝜑∗𝑙 ) − 𝑢 (𝛼𝑙 , 𝜑
∗
𝑙−1)

(𝑐)
> 𝑝∗

𝑙−1 + 𝑢 (𝛼𝑙 , 𝜑
∗
𝑙
) − 𝑢 (𝛼𝑙 , 𝜑∗𝑙−1) = 𝑝∗

𝑙 ′ .

Here, the inequality (c) is due to 𝑝𝑙−1 > 𝑝∗
𝑙−1.

C THE PERFORMANCE OF A PBS-BASED SERVICE SYSTEM
C.1 Proof of Proposition 5.2
In a PBS-based service system, all jobs of different SLAs are commonly executed on the𝑚 servers. In

this paper, the mean job service time 𝑠 is normalized to be one. The first SLA offers service at a fixed

price 𝑝 and guarantees a small delay of at most𝑇 , and we have by (16) that 𝜑1 = _ ·𝐴/
(
1 − ˆ_1

)
≤ 𝑇 ,

where 0 < ˆ_1 < _ < 1. Thus, we get

_ < 𝑇 /𝐴. (43)

A CSP’s revenue 𝐺𝑝𝑏𝑠 is given in (11) and we can get an upper bound for 𝐺𝑝𝑏𝑠 :

𝐺𝑝𝑏𝑠

(𝑎)
=

𝐿∑
𝑙=1

𝑝𝑙 ·𝑚 · _𝑙
(𝑏)
≤ 𝑝 ·𝑚 ·

𝐿∑
𝑙=1

_𝑙
(𝑐)
= 𝑝 ·𝑚 · _

(𝑑)
< 𝑝 ·𝑚 · 𝑇

𝐴
, (44)

where equality (a) is due to (14); (b) is due to (4), i.e., 𝑝𝑙 ≤ 𝑝 for all 𝑙 ∈ [1, 𝐿]; (c) is due to (6), (8),

(14) and (15); (d) is due to (43). By (26), (27), and (44), we have

𝛾 =
𝐺𝑝𝑏𝑠

𝐺𝑜𝑑

= 𝐺𝑝𝑏𝑠 ·
𝐴 +𝑇

𝑚 · 𝑝 ·𝑇 < 1 + 𝑇
𝐴
. (45)

Proposition 5.2 thus holds.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article . Publication date: April 2023.



34 X. Wu, F. De Pellegrini and G. Casale

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1

1

10

20

A

Fig. 17. The Value of 𝐴 under Varying 𝜋1.

C.2 Illustration
We vary the value of 𝜋1 from 0.2 to 0.95 with a step size 0.05, and compute the corresponding value

of 𝜋2 by (20); then, we can get the value of 𝐴 by (21), which is illustrated by the red stars in Fig. 17,

where 𝐴 > 1.

D PROOFS FOR THE CLOSED-FORM RESULT
We first give some preliminaries to prove Proposition 5.4. By (30) and (37), we have

𝛾 (𝑥) = 𝐴 +𝑇
𝑚 ·𝑇 · Λ −

𝐴 +𝑇
𝑚 ·𝑇 ·

Λ

𝜏
· 𝜏 − 𝑥

𝑥
·
(
𝐴 · Λ
𝜏
· 𝜏 − 𝑥
(𝑚 − Λ) − 𝐴 ·Λ

𝜏 ·𝑇 · 𝑥
−𝑇

)
(46)

We will derive the derivative of 𝛾 (𝑥), denoted by
𝜕𝛾

𝜕𝑥
(see Section D.1). Fortunately, the roots of

𝜕𝛾

𝜕𝑥
= 0 satisfy some nice properties (see Section D.2). We can thus derive the monotonicity of 𝛾 (𝑥)

and obtain when 𝛾 (𝑥) achieves the maximum value (see the proof of Proposition 5.4 below). The

proof of Corollary 5.5 follows from Proposition 5.4 and Definition 5.3.

D.1 The Derivative of the Revenue Improvement Function
Lemma D.1. The derivative of 𝛾 (𝑥) is as follows:

𝜕𝛾

𝜕𝑥
=
(𝐴 +𝑇 ) · Λ2

𝜏 ·𝑇 · 𝑎 · 𝑥2 + 𝑏 · 𝑥 + 𝑐
𝑥2 ·

(
𝑚 − Λ − Λ·𝐴

𝑇 ·𝜏 · 𝑥
)
2

(47)

where

𝑎 =
𝐴2 · Λ
𝑚 · 𝜏 ·𝑇 −

𝐴

𝜏
+ 𝐴 · Λ
𝑚 · 𝜏 , 𝑏 = 2 · 𝐴 ·

(
1 − Λ

𝑚
− 𝐴 · Λ
𝑚 ·𝑇

)
, 𝑐 =

(
𝐴 +𝑇 − 𝑇 ·𝑚

Λ

)
· (1 − Λ

𝑚
) · 𝜏 .

Proof. Let

𝐵 = − (𝐴 +𝑇 ) · Λ
𝑇 ·𝑚 · 𝜏 , 𝐶 =

𝐴 · Λ
𝜏

, 𝐷 =𝑚 − Λ, and 𝐸 =
𝐴 · Λ
𝜏 ·𝑇 (48)

𝛾 (𝑥) =
( 𝜏
𝑥
− 1

)
·
(
𝐶 · 𝜏 − 𝑥

𝐷 − 𝐸 · 𝑥 −𝑇
)
. (49)

Then,
𝜕𝛾

𝜕𝑥
and

𝜕𝛾

𝜕𝑥
have the following relation:

𝜕𝛾

𝜕𝑥
= 𝐵 · 𝜕𝛾

𝜕𝑥
.

First, some components of
𝜕𝛾

𝜕𝑥
are listed below:

𝛾1 (𝑥) = 𝐶 · 𝜏 · 𝜏 − 𝑥
𝑥 · (𝐷 − 𝐸 · 𝑥) , 𝛾2 (𝑥) = 𝐶 · 𝜏 − 𝑥

𝐷 − 𝐸 · 𝑥 , and 𝛾3 (𝑥) =
𝑇 · 𝜏
𝑥

.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article . Publication date: April 2023.



Delay and Price Differentiation in Cloud Computing 35

Then, we have

𝛾 (𝑥) = 𝛾1 (𝑥) − 𝛾2 (𝑥) − 𝛾3 (𝑥) +𝑇 . (50)

Second, we give the derivatives of these components:

𝜕𝛾1

𝜕𝑥
= 𝐶 · 𝜏 · −𝑥 · (𝐷 − 𝐸 · 𝑥) − (𝜏 − 𝑥) · (𝐷 − 2 · 𝐸 · 𝑥)

𝑥2 · (𝐷 − 𝐸 · 𝑥)2

=
𝐶 · 𝜏 ·

(
−𝐸 · 𝑥2 + 2 · 𝐸 · 𝜏 · 𝑥 − 𝜏 · 𝐷

)
𝑥2 · (𝐷 − 𝐸 · 𝑥)2

(51a)

𝜕𝛾2

𝜕𝑥
= 𝐶 · −(𝐷 − 𝐸 · 𝑥) + 𝐸 · (𝜏 − 𝑥)(𝐷 − 𝐸 · 𝑥)2

= 𝐶 · (𝜏 · 𝐸 − 𝐷) · 𝑥
2

(𝐷 − 𝐸 · 𝑥)2 · 𝑥2

(51b)

𝜕𝛾3

𝜕𝑥
= −𝑇 · 𝜏

𝑥2
= −

𝑇 · 𝜏 ·
(
𝐷2 − 2 · 𝐷 · 𝐸 · 𝑥 + 𝐸2 · 𝑥2

)
𝑥2 · (𝐷 − 𝐸 · 𝑥)2

(51c)

Third, by (50), we get the derivative of
𝜕𝛾

𝜕𝑥
:

𝜕𝛾

𝜕𝑥
= 𝐵 · 𝜕𝛾

𝜕𝑥
= 𝐵 ·

(
𝜕𝛾1

𝜕𝑥
− 𝜕𝛾2

𝜕𝑥
− 𝜕𝛾3

𝜕𝑥

)
= 𝐵 · (𝐷𝐶 + 𝐸

2𝑇𝜏 − 2𝐸𝐶𝜏)𝑥2 + 2𝐸 (𝐶𝜏2 − 𝐷𝑇𝜏)𝑥 + (𝑇𝐷2𝜏 − 𝐷𝐶𝜏2)
𝑥2 (𝐷 − 𝐸𝑥)2

= 𝐵 · 𝑎 · 𝑥
2 + ˆ𝑏 · 𝑥 + 𝑐

𝑥2 · (𝐷 − 𝐸 · 𝑥)2

(52)

where we have by (48) that

𝑎 = −Λ
2 · 𝐴2

𝑇 · 𝜏 + (𝑚 − Λ) ·
𝐴 · Λ
𝜏

, ˆ𝑏 = 2 ·
(
𝐴2 · Λ2

𝑇
− (𝑚 − Λ) · 𝐴 · Λ

)
𝑐 = 𝜏 · (𝑚 − Λ) · (𝑇 ·𝑚 −𝑇 · Λ −𝐴 · Λ).

We can get (47) from (52). □

D.2 Properties of Roots
Let 𝛾 ′(𝑥) = 𝑎 ·𝑥2 +𝑏 ·𝑥 +𝑐 , which is a part of (47). By (35), the effective range of 𝑥 is

(
0, 𝑚−Λ

𝐴 ·Λ ·𝑇 · 𝜏
)

in which
𝜕𝛾

𝜕𝑥
has the same sign as 𝛾 ′(𝑥). In the following, we will study the quadratic equation

𝛾 ′(𝑥) = 0, in terms of its quadratic coefficient, determinant and roots. We can thus derive the sign

of 𝛾 ′(𝑥) and the monotonicity of 𝛾 (𝑥) in
(
0, 𝑚−Λ

𝐴 ·Λ ·𝑇 · 𝜏
)
. Let

_ =
Λ

𝑚
and 𝜌 =

_

_𝑜𝑑
(53)

where _𝑜𝑑 = 𝑇
𝐴+𝑇 , which enable us to simplify the expressions of 𝑎, 𝑏, 𝑐:

𝑎 =
𝐴

𝜏
· (𝜌 − 1), 𝑏 = 2 · 𝐴 · (1 − 𝜌), 𝑐 = 𝑇 · 𝜏 · (𝜌 − 1) ·

(
1

_
− 1

)
. (54)
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The discriminant of the quadratic equation 𝛾 ′(𝑥) = 0 is

Δ = 𝑏2 − 4 · 𝑎 · 𝑐 = 4 · 𝐴2 · (𝜌 − 1)2 · 𝑇
𝐴
·
(
1

_𝑜𝑑
− 1

_

)
. (55)

If Δ ≥ 0, its two roots are denoted by 𝑥1 and 𝑥2:

𝑥1 =
−𝑏 −

√
Δ

2 · 𝑎 = 𝜏 · ©«1 −
√
𝑇

𝐴
·
(
1

_𝑜𝑑
− 1

_

)ª®¬ and 𝑥2 =
−𝑏 +

√
Δ

2 · 𝑎 = 𝜏 · ©«1 +
√
𝑇

𝐴
·
(
1

_𝑜𝑑
− 1

_

)ª®¬ (56)

where 𝑥1 < 𝑥2.

Lemma D.2. Regarding the quadratic equation 𝛾 ′(𝑥) = 0, we have that
• its quadratic coefficient and discriminant are positive, i.e, 𝑎 > 0 and Δ > 0.
• its two roots satisfy 𝑥1 ∈

(
0, 𝑚−Λ

𝐴 ·Λ ·𝑇 · 𝜏
)
and 𝑥2 ∈ (𝜏, +∞).

Proof. By (29) and (53), we have _ > _𝑜𝑑 and 𝜌 > 1. By (54) and (55), we have 𝑎 > 0 and Δ > 0.

We have

0

(𝑎)
<

√
𝑇

𝐴
·
(
1

_𝑜𝑑
− 1

_

)
(𝑏)
=

√
1 − 𝑇

𝐴
·
(
1

_
− 1

)
(𝑐)
< 1. (57)

The relation (a) is due to 0 < _𝑜𝑑 < _; (c) is due to _ ∈ (0, 1); (b) is due to _𝑜𝑑 = 𝑇
𝐴+𝑇 . Thus, we have

𝑥1 ∈ (0, 𝜏) and 𝑥2 ∈ (𝜏, +∞).
Now, we prove 𝑥1 <

𝑚−Λ
𝐴 ·Λ ·𝑇 · 𝜏 :

𝑚 − Λ
𝐴 · Λ ·𝑇 · 𝜏 − 𝑥1 =

𝑚 − Λ
𝐴 · Λ ·𝑇 · 𝜏 − 𝜏 ·

©«1 −
√
𝑇

𝐴
·
(
1

_𝑜𝑑
− 1

_

)ª®¬
=
𝜏 ·𝑇
𝐴
· ©«𝑚Λ − 𝐴 +𝑇

𝑇
+

√
𝐴

𝑇
·
(
1

_𝑜𝑑
− 1

_

)ª®¬
(𝑑)
=
𝜏 ·𝑇
𝐴
·

√
𝐴

𝑇
·
(
1

_𝑜𝑑
− 1

_

)
· ©«1 −

√
𝑇

𝐴
·
(
1

_𝑜𝑑
− 1

_

)ª®¬
(𝑒)
> 0.

The relation (d) is due to (25) and (53); (e) is due to (57). □

D.3 Proofs Relating to Proposition 5.4 and Corollary 5.5
Proof of Proposition 5.4. By Lemma D.2, we have that 𝛾 ′(𝑥) > 0 when 𝑥 ∈ (0, 𝑥1) and 𝛾 ′(𝑥) < 0

when 𝑥 ∈ (𝑥1, 𝑚−Λ
𝐴 ·Λ ·𝑇 ·𝜏).

𝜕𝛾

𝜕𝑥
has the same sign as 𝛾 ′(𝑥). Thus, we have 𝛾 (𝑥) is increasing in (0, 𝑥1)

and decreasing in (𝑥1, 𝑚−Λ
𝐴 ·Λ ·𝑇 · 𝜏), and it achieves the maximum value when 𝑥 = 𝑥1, i.e., 𝑥∗ = 𝑥1.

We also use the parameters 𝜌 and _ in (53) to simplify the expression of 𝛾 (𝑥) in (46) and have that:

𝛾 (𝑥) = 𝜌 − 𝜌 · 𝜏 − 𝑥
𝑥
· 1
𝜏
·
(

𝐴 · Λ − 𝐴 ·Λ·𝑥
𝜏

(𝑚 − Λ) − 𝐴 ·Λ
𝜏 ·𝑇 · 𝑥

−𝑇
)

= 𝜌 − 𝜌 · 𝜏 − 𝑥
𝑥
· 1
𝜏
·
(
𝐴 · Λ − (𝑚 − Λ) ·𝑇
(𝑚 − Λ) − 𝐴 ·Λ

𝜏 ·𝑇 · 𝑥

)
= 𝜌 − 𝜌 · 𝜏 − 𝑥

𝑥
· 𝑇
_
· 𝜌 − 1(

1

_
− 1

)
· 𝜏 − 𝐴

𝑇
· 𝑥

.

(58)
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Let𝜓 =

√
𝑇
𝐴
·
(

1

_𝑜𝑑
− 1

_

)
∈ (0, 1) by (57); here, we have

𝐴
𝑇
·𝜓 2 = 1

_𝑜𝑑
− 1

_
. With 𝑥∗ = 𝑥1 = 𝜏 · (1 −𝜓 ),

the maximum revenue improvement is

𝛾 (𝑥∗) = 𝜌 − 𝜌 · 𝜓

1 −𝜓 ·
𝑇

_
· 𝜌 − 1(

1

_
− 1

)
· 𝜏 − 𝐴

𝑇
· (1 −𝜓 ) · 𝜏

= 𝜌 − 𝜌 · 𝜓

1 −𝜓 ·
𝑇

_
· 𝜌 − 1
𝜏 ·

(
𝐴
𝑇
·𝜓 − 𝐴

𝑇
·𝜓 2

)
= 𝜌 − 𝜌 · 𝑇 2

𝐴 · _ · 𝜏 ·
𝜌 − 1
(1 −𝜓 )2 .

(59)

Proof of Corollary 5.5. In the feasible operational region, a CSP can improve its revenue with

the SMS-based service system, i.e., 𝛾 (𝑥∗) > 1, and we have

𝜌 − 𝜌 · 𝑇 2

𝐴 · _ · 𝜏 ·
𝜌 − 1
(1 −𝜓 )2 > 1. (60)

Thus, the feasible operational region is as follows:

𝜏 >
𝜌 ·𝑇 2

𝐴 · _ ·
(
1 −

√
𝑇
𝐴
·
(

1

_𝑜𝑑
− 1

_

))2 =
𝑇 · (𝐴 +𝑇 )

𝐴 ·
(
1 −

√
1 + 𝑇

𝐴
− 𝑇

𝐴
· 𝑚Λ

)
2
. (61)

E PROOF OF PROPOSITION 5.6
Algorithm 1 searches each possible pair of (𝛼1, 𝛼2, · · · , 𝛼𝐿+1) and (𝑖1, 𝑖2, · · · , 𝑖𝐿+1) respectively in A
andM (lines 1, 2, 3, 15, 4, 5, 14 of Algorithm 1), and computes the corresponding revenue under this

pair (lines 6-11). Among all pairs that have been searched so far, it records the current maximum

revenue and the corresponding SLA delays and prices, and the numbers of servers assigned to SLAs

(lines 1, 12, 13). Thus, the algorithm will return the optimal solution. The sizes ofM and A are

respectively polynomial in𝑚 and 𝑛 (i.e.,
(
𝑚
𝐿−1

)
and

(
𝑛

𝐿−1
)
). The loop in line 4 is nested in the loop in

line 2; hence, the time complexity is O
(
𝑚𝐿−1 · 𝑛𝐿−1

)
.

F MORE EXPERIMENTS
In this section, we examine the proposed service system under other possible settings. In Section F.1,

we show the performance of our service model under the architecture of [9–11], which is a hybrid

of the PBS and SMS architectures. Our service system is built on some task assignment policies

used in practice, as shown in Section 5.1.1. In Section F.2, we show the performance of our service

model under other advanced policies that may be of future interest.

F.1 Comparison with a Hybrid Architecture
As seen in Section 1, our framework differs from [9–11] in several aspects. Nevertheless, the service

model in Section 3 and 4 is generic. The architecture of [9, 10] can be adapted to our model,

and roughly viewed as a hybrid of the PBS and SMS architectures. Specifically, all servers are

separated into two parts: the first are used to fulfill the first SLA, as done by the first group of

the SMS architecture; the second use priority queues to fulfill the SLAs 2, · · · , 𝐿, as done by the

PBS architecture. Specially, when the number of SLAs is two (i.e., 𝐿 = 2), the SMS and hybrid

architectures are the same and the model has the same performance under both architectures,

which can achieve a significantly larger revenue than the pure on-demand service model. Generally,

the PBS-based service system performs worse than the SMS-based system; it can be expected that

the hybrid architecture has a in-between performance, as shown later.
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Fig. 18. Revenue Ratio 𝛾 with 𝐿 SLAs: the stars of same color illustrate the values of 𝛾 under the same
delay-tolerance level (specified by 𝜎) respectively with 𝐿 = 2, 3, 4, and 5.

We still consider the case where the WTP function is (1) and denote by 𝐺∗
ℎ𝑦𝑏

the maximum

revenue achieved by our service model under the hybrid architecture. For all 𝑙 ∈ [2, 𝐿], let ˆ_′
𝑙
denote

the total job arrival rate of SLAs 2, · · · , 𝑙 at a single server; we can derive the expected delay 𝑡𝑙 of

the 𝑙-th SLA by (16) and (19), and have

𝑡𝑙 =
ˆ_′
𝐿(

1 − ˆ_′
𝑙−1

)
·
(
1 − ˆ_′

𝑙

) , (62)

where
ˆ_′
1
is set to zero trivially. The value of 𝐺∗

ℎ𝑦𝑏
can be computed by a small modification of the

line 7 of Algorithm 1 where for all 𝑙 ∈ [2, 𝐿] we change to use (62) to compute 𝑡𝑙 . The revenue ratio

𝛾 , defined below, is used to show which of the SMS and Hybrid architectures is better:

𝛾 = 𝐺∗
ℎ𝑦𝑏
/𝐺∗𝑠𝑚𝑠 .

If 𝛾 ≤ 1, the service model under the hybrid architecture will be no better than the SMS-based

service system. This is exactly shown by our numerical results illustrated in Fig. 18.

The reason for 𝛾 ≤ 1 is mainly due to the correlation of the SLA delays in the hybrid architecture,

which leads to that all SLAs have larger delays and thus smaller prices. We have by (62) that

the expected delays 𝑡2, · · · , 𝑡𝐿 are all constrained by the total job arrival rate
ˆ_′
𝐿
, which is the

average load per server in the second part. For example, in the low delay-tolerance case with

𝐿 = 4, the first and second parts have 51 and 49 servers respectively. The market segmentation

is (𝛼2, 𝛼3, 𝛼4) = ( 1

0.22
, 1

0.36
, 1

0.60
). For the aggregate job arrival rates of the second part, we have

( ˆ_′
2
, ˆ_′

3
, ˆ_′

4
) = (0.01429, 0.03878, 0.08163). Due to the effect of

ˆ_′
4
on the delay, the 2nd, 3rd, and 4th

SLAs have similar yet large delays and we have (𝜑2, 𝜑3, 𝜑4) = (0.08282, 0.08616, 0.09248). Such SLA

delays further lead to lower SLA prices (𝑝2, 𝑝3, 𝑝4) = (0.6859, 0.6761, 0.6652) and a lower revenue

improvement than the SMS-based service system.

In contrast, the delays of different SLAs in the SMS architecture are independent by (18). The

numbers of servers assigned to different SLAs are (𝑚1,𝑚2,𝑚3,𝑚4) = (47, 15, 18, 20). The market

segmentation is (𝛼2, 𝛼3, 𝛼4) = ( 1

0.20
, 1

0.32
, 1

0.56
). The average job arrival rates per server of the 2nd,

3rd, and 4th SLAs are (_2, _3, _4) = (0.04000, 0.06667, 0.1150). By (18), we have that the SLA

delays of the 2nd and 3rd SLAs are smaller: (𝜑2, 𝜑3, 𝜑4) = (0.04167, 0.07143, 0.1299). This leads
to that the prices of the 2nd and 3rd SLAs are larger, achieving a higher revenue improvement:

(𝑝2, 𝑝3, 𝑝4) = (0.8796, 0.7804, 0.6721). The revenue ratio is 𝛾=0.8624.
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Fig. 19. Both plots illustrate the case when the PTC policy is used. In plots (a) and (b), the stars of same color
have the same meaning as the stars in Fig. 10.

F.2 Advanced Task Assignment Policies
The Random and Round-Robin policies are two typical policies adopted in real cloud service systems,

as introduced in Section 5.1.1. Alternatively, there may also be other advanced polices worth

exploring. The choice of polices needs to find a right tradeoff between the actual implementing

cost, the scalability and the performance, which may be of independent interest in future. In

this subsection, we take the Power of Two Choices (PTC) policy as an example to illustrate the

performance of our service system under such advanced policies. The PTC policy works as follows:

for every arriving job 𝑗 , randomly choose two of the𝑚 servers, probe them, and assign it to the

server with less queued jobs. This policy is interesting in that it has been implemented in modern

cluster systems and performance engineering tools [43, 44], although it brings about additional

communication and coordination overheads and we have not seen its application to public cloud

service systems.

For the PTC policy, analytical results are available when the job arrival follows a poisson process

and the job service time follows an exponential distribution with mean 𝑠 = 1 [45]. Suppose under

the SMS architecture that the mean job arrival rate per server of the 𝑙-th SLA is _𝑙 where 𝑙 ∈ [1, 𝐿].
We have that the expected delay of the 𝑙-th SLA is

𝑡𝑙 =
∑∞

𝑖=2
_2

𝑖−2
𝑙

= _2
𝑙
+ _6

𝑙
+ _14

𝑙
+ · · · . (63)

When the PTC policy is applied to the SMS-based service system, we can still use Algorithm 1 to

determine the optimal system configuration, with (18) replaced by (63); here, we still use the linear

functions (1) as the WTP functions. _𝑜𝑑 denotes the job arrival rate per server of the on-demand

market. Since the maximum possible delay of the on-demand market is 𝑇 , we have that _2
𝑜𝑑
≤ 𝑇

and an upper bound of _𝑜𝑑 is

√
𝑇 . Thus, the revenue of an on-demand market 𝐺𝑜𝑑 is bounded and

approximated by𝑚 ·
√
𝑇 . 𝐺 denotes the revenue of a SMS-based service system.

𝐺

𝑚 ·
√
𝑇
is a lower

bound of
𝐺
𝐺𝑜𝑑

and will be used to indicate the revenue improvement 𝛾 in this subsection.

Similarly to Section 6.2.1 and 6.2.4, we vary the average load per server _ that increases from 0.15

with a step size 0.01, and calculate the revenue improvement 𝛾 . The related results are illustrated

in Fig. 19; specifically, given the number of SLAs 𝐿 and the population’s delay-tolerance level,

Fig. 19(a) illustrates the maximum revenue improvement 𝛾 achieved while varying the value of _.

From Fig. 19, a delay-differentiated market under the PTC policy exhibits similar patterns to its

counterpart under the random or Round-Robin policy and can still achieve a significantly higher

revenue improvement.
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Fig. 20. Both plots illustrate the results in the low delay-tolerance case. In plot (a), the stars illustrate the
improvement a to the utilization of servers respectively with 𝐿 = 2, 3, 4 and 5, when the Random and PTC
policy are applied to the SMS-based service system. In plot (b), given the number of SLAs 𝐿. the stars illustrate
the average price 𝑝 .

We can also see from Fig. 19(a) and Fig. 10(a) that, under the same condition in terms of the

number of SLAs and the population’s delay-tolerance, the revenue improvement under the PTC

policy is lower. The reason is as follows. The PTC policy can achieve an exponential improvement

to the waiting time that a job spends in a queueing system. This implies that, an on-demand service

system under the PTC policy can achieve a higher utilization of servers, given the delay 𝑇 that it

guarantees. Thus, such advanced policies are good for an on-demand service system, in terms of

the utilization and revenue. On the other hand, we define the utilization improvement a as the ratio

of the average load per server _ under the SMS-based system to the average load per server _𝑜𝑑
under the on-demand system, i.e., a = _/_𝑜𝑑 , where 𝑠 = 1. The average price 𝑝 of utilizing a server

per unit of time is𝐺∗𝑠𝑚𝑠/(𝑚 · _). The related results in the low delay-tolerance case are illustrated in

Fig. 20; here, the random and Round polices have the same performance. By delay differentiation,

our SMS-based service system under the Random or Round-Robin policy can achieve a higher

utilization improvement than the system under the PTC policy. Thus, given the number of SLAs 𝐿,

in the case that the average value 𝑝 that is obtained from every server is similar, the SMS-based

service system under the Random or Round-Robin policy achieves a higher revenue improvement.
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