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Diffusion through semi-permeable structures arises
in a wide range of processes in the physical and
life sciences. Examples at the microscopic level range
from artificial membranes for reverse osmosis to lipid
bilayers regulating molecular transport in biological
cells to chemical and electrical gap junctions. There are
also macroscopic analogues such as animal migration
in heterogeneous landscapes. It has recently been
shown that one-dimensional diffusion through a
barrier with constant permeability κ0 is equivalent
to snapping out Brownian motion (BM). The latter
sews together successive rounds of partially reflecting
BMs that are restricted to either the left or the
right of the barrier. Each round is killed when its
Brownian local time exceeds an exponential random
variable parameterized by κ0. A new round is then
immediately started in either direction with equal
probability. In this article, we use a combination
of renewal theory, Laplace transforms and Green’s
function methods to show how an extended version
of snapping out BM provides a general probabilistic
framework for modelling diffusion through a semi-
permeable barrier. This includes modifications of the
diffusion process away from the barrier (e.g. stochastic
resetting) and non-Markovian models of membrane
absorption that kill each round of partially reflected
BM. The latter leads to time-dependent permeabilities.

1. Introduction
Diffusion through semi-permeable barriers or
membranes arises in a wide range of processes in the
physical and life sciences. At the microscopic level, a
semi-permeable membrane is a biological or artificial
membrane that only allows certain molecules to pass
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through it. This can be quantified more precisely in terms of the membrane permeability, which is
the passive diffusion rate of molecules across the membrane. The permeability of any specific
molecule depends on properties such as its size and ionic charge. Artificial semi-permeable
membranes include a variety of materials that are specifically designed for filtration. A well-
known example is water filtration via reverse osmosis. There are many examples of permeable
structures in biological cells, which regulate the flow of proteins and ions between different
subcellular compartments and the exchange of molecules with the extracellular environment
[1–3]. Molecular transport is typically mediated by protein-based pores embedded in the lipid
bilayer of the plasma membrane and membrane-bound organelles. In addition, scaffolding
proteins within the plasma membrane act as semi-permeable barriers to lateral diffusion [4].
An important example of a semi-permeable barrier at the multicellular level is a gap junction.
Gap junctions are small non-selective channels that provide a direct diffusion pathway between
neighbouring cells. They are formed by the head-to-head connection of two hemichannels
or connexons, one from each of the two coupled cells [5–7]. Gap junctions are prevalent
in most animal organs and tissues, providing a mechanism for both electrical and chemical
communication between cells. Finally, permeable barriers are found at the ecological level where,
e.g. animal dispersal is affected by the presence of roads and fences within a heterogeneous
landscape [8–10].

The classical boundary condition for a semi-permeable membrane takes the flux across
the membrane to be continuous and to be proportional to the difference in concentrations
on either side of the barrier [11–15]; the constant of proportionality is the permeability. For
example, consider one-dimensional diffusion with a semi-permeable barrier at x = 0. Let u(x, t)
be the concentration at position x ∈ R at time t. The boundary value problem (BVP) for u(x, t)
(understood as a weak solution) takes the form

∂u(x, t)
∂t

= D
∂2u(x, t)
∂x2 , x �= 0 (1.1a)

and

J(0±, t) = κ0[u(0−, t) − u(0+, t)], (1.1b)

where J(x, t) = −D∂xu(x, t), D is the diffusivity and κ0 is the (constant) permeability. The permeable
or leather boundary condition (1.1b) is a particular version of the thermodynamically derived
Kedem–Katchalsky equations [16,17]. One limitation of the macroscopic model is that it is not
based on a fundamental microscopic theory of single-particle diffusion. This has motivated a
number of studies of random walks on lattices in which semi-permeable barriers are represented
by local defects [18,19]. Moreover, a Fokker–Planck description of single-particle diffusion
through a semi-permeable membrane has recently been derived by taking an appropriate
continuum limit of a random walk model [20]. An alternative approach to modelling single-
particle diffusion is to use stochastic differential equations (SDEs). It has been known for a long
time that to formulate Brownian motion (BM) in a bounded domain, it is necessary to modify
the standard Wiener process. For example, one can implement totally and partially reflecting
boundaries by introducing a Brownian functional known as the boundary local time [21–26].
The latter determines the amount of time that a Brownian particle spends in the neighbourhood
of points on the boundary. (In terms of the Fokker–Planck description, a totally (partially)
reflecting boundary corresponds to a Neumann (Robin) boundary condition.) The extension
of one-dimensional BM to include a semi-permeable barrier is more recent and is based on
the so-called snapping out BM [27]. Snapping out BM involves sewing together two partially
reflecting BMs, one restricted to x< 0 and the other restricted to x> 0. Suppose that the particle
starts in the domain x> 0. It realizes positively reflected BM until its local time exceeds an
exponential random variable with parameter κ0. It then immediately resumes either negatively
or positively reflected BM with equal probability, and so on. Note that snapping out BM is related
to the more familiar skew BM first introduced by Ito and McKean [28]. Skew BM evolves as
standard BM reflected at the origin so that the next excursion is chosen to be positive with
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a fixed probability p. It has a wide range of applications, particularly in mathematical finance
[29–32].

In this article, we show how the snapping out BM introduced in Ref. [27] can be used to
develop more general probabilistic models of one-dimensional diffusion through semi-permeable
membranes. We begin, in §2, by describing how to formulate totally and partially reflecting BM in
terms of Brownian local times. We then derive a last renewal equation that relates the probability
density of snapping out BM with the corresponding probability density for partially reflected BM.
The renewal equation is solved using Laplace transforms and Green’s function methods, resulting
in an explicit expression for the probability density of snapping out BM. We thus establish that
the probability density satisfies equation (1.1). Note that our renewal method is equivalent to the
resolvent operator formulation of Ref. [27], since they both rely on the strong Markov property.
However, expressing the dynamics in terms of a renewal process facilitates the various extensions
considered in the remainder of the article.

In §3, we extend the snapping out BM by incorporating the effects of stochastic resetting,
whereby the position of the particle is randomly reset according to a Poisson process with
resetting rate r. Stochastic resetting has become an important paradigm for understanding non-
equilibrium stochastic processes, with a variety of applications in optimal search problems
and biophysics (see the review [33] and references therein.) Examples in cell biology include
Michaelis–Menten reaction schemes [34,35], DNA elongation and backtracking [36], cytoneme-
based morphogenesis [37] and the binding of focal adhesions during cell motility [38]. One of
the particularly useful features of stochastic resetting is that it can be applied to virtually any
stochastic process. In addition, if resetting erases all previous history of particle position then
renewal theory can be used to obtain explicit analytical solutions. As far as we are aware, the
problem of diffusion through a semi-permeable membrane with resetting has not been considered
before. One non-trivial feature of this example is that there are two distinct renewal processes, one
associated with position resetting and the other with each round of absorption and restart at the
membrane interface. We show how to modify the renewal equation of snapping out BM and use
this to calculate the non-equilibrium stationary state (NESS) in the presence of resetting. We show
that the NESS is independent of κ0, but that relaxation to the NESS is κ0-dependent.

In §4, we combine snapping out BM with the so-called encounter-based model of partial
absorption [39–42]. The basic idea is to to kill a given round of partially reflecting BM when
the local time exceeds a non-exponential rather than an exponential random variable. This is
motivated by experimental observations that various surface-based reactions are better modelled
in terms of a reactivity that depends on the amount of time a particle is in contact with the surface
(as determined by the local time) [43,44]. For example, the surface may need to be progressively
activated by repeated encounters with a diffusing particle, or an initially highly reactive surface
may become less active due to multiple interactions with the particle, a process known as
passivation. To determine the probability density in the case of generalized surface reactions, we
construct a first rather than a last renewal equation. We show that the corresponding boundary
condition at the interface involves a time-dependent permeability with memory. Finally, in §5, we
indicate how to extend the theory to higher spatial dimensions.

2. The snapping out Brownian motion
To develop a general probabilistic model of a semi-permeable membrane, we first need to
consider the probabilistic version of the one-dimensional model (1.1) based on the snapping out
BM introduced by Lejay [27]. One of the key ingredients is formulating partially reflecting BM on
[0, ∞) in terms of the local time Lt at x = 0.

(a) Partially reflected Brownian motion
Let W be a Wiener process on R and define totally reflected BM according to the function
Xt = F(Wt) ≡ √

2D|Wt|. To determine the stochastic differential equation (SDE) for Xt, we use the
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standard Ito formula [21,22,25]

dXt = f ′(Wt) dWt + 1
2

f ′′(Wt) dt. (2.1)

These derivatives are understood in the distributional sense. That is,

f ′(x) =
√

2D sgn(x) and f ′′(x) = 2
√

2Dδ(x),

where sgn(x) = −1 for x ≤ 0 and +1 for x> 0. Hence,

dXt =
√

2D sgn(Wt) dWt + Dδ(Xt) dt, (2.2)

with δ(Xt) defined on the half-line. Integrating with respect to time implies that

Xt =
∫ t

0
sgn(Ws) dWs + Lt,

where

Lt = D
∫ t

0
δ(Xs) ds, (2.3)

and dLt = Dδ(Xt) dt. This is the distribution-based version of the local time of X at x = 0, which is
defined as follows:

Lt = lim
ε→0+

D
ε

∫ t

0
I{0 ≤ Xs ≤ ε} ds,

where I is the indicator function. It can be shown that Lt exists and is a non-decreasing, continuous
function of t. Moreover, the corresponding probability density p(x, t|x0), p(x, t|x0) dx = P[x ≤ Xt <

x + dx| X0 = x0] satisfies the diffusion equation on [0, ∞) with the totally reflecting boundary
condition J(0, t) = 0. Here, J(x, t) = −D∂xp(x, t) is the probability flux.

Partially reflected BM, also known as elastic BM, combines reflected BM Xt with a stopping
condition that halts the stochastic process when the local time Lt(X) exceeds a random
exponentially distributed threshold �̂ [26]. That is, the particle is absorbed at x = 0 at the stopping
time

T = inf{t> 0 : Lt > �̂}, P[�̂ > �] ≡Ψ (�) = e−κ0�/D. (2.4)

It can then be shown that the marginal density for particle position (before absorption),

p(x, t|x0) dx = P[x ≤ Xt < x + dx, t< T |X0 = x0],

satisfies the diffusion equation with a Robin boundary condition at x = 0 [26]:

∂p(x, t|x0)
∂t

= D
∂2p(x, t|x0)

∂x2 , x> 0 (2.5a)

and
D∂xp(0, t|x0) = κ0p(0, t|x0), p(x, 0|x0) = δ(x − x0). (2.5b)

The constant κ0 is known as the reactivity or rate of absorption.

(b) Brownian motion in the presence of a semi-permeable membrane
We now turn to the snapping out BM introduced by Lejay [27] and show how it is equivalent
to single-particle diffusion through a semi-permeable barrier. We proceed by constructing a last
renewal equation that relates the probability density of snapping out BM with the corresponding
probability density of partially reflected BM. Our analysis is equivalent to the resolvent operator
formalism presented in Ref. [27], but it is more amenable to generalizations developed in
subsequent sections.

The behaviour of the stochastic process is described as follows. Without loss of generality,
assume that the particle starts at X0 = x0 ≥ 0. It realizes positively reflected BM until its local time
Lt at x = 0+ is greater than an independent exponential random variable �̂ of parameter κ0. Let T0
denote the corresponding stopping time. The process immediately restarts as a new reflected BM
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with probability 1/2 in either [0+, ∞) or (−∞, 0−] and a new local time �t1 at x = 0± for t1 = t − T0.
Again the reflected BM is stopped when �t1 exceeds a new exponential random variable at the
stopping time T2 etc. It can be proven that the snapping out BM is a strong Markov process1 on
the disjoint space G = (−∞, 0−] ∪ [0+, ∞). The strong Markov property means that we can use
renewal theory to analyze the evolution of the associated probability density and show that it
satisfies the classical semi-permeable boundary condition (1.1b).

Let ρ(x, t|x0) denote the probability density of the snapping out BM with the initial condition
X0 = x0 and set

ρ(x, t) =
∫∞

−∞
ρ(x, t|x0)g(x0) dx0, (2.6)

for any continuous function g on G with
∫∞

−∞ g(x0)dx0 = 1. Similarly, set

p(x, t) = H(x)
∫∞

0
p(x, t|x0)g(x0) dx0 + H(−x)

∫ 0

−∞
p(−x, t| − x0)g(x0) dx0, (2.7)

where H(x) is the Heaviside function and p(x, t|x0) for x, x0 ≥ 0 is the solution to the Robin BVP
(2.5). It follows that ρ(x, 0) = p(x, 0) = g(x). In the special case that g(x) is an even function of x, then
ρ(x, t) = ρ(−x, t) for all x ≥ 0, and there is no net flux through the membrane although individual
particles cross the membrane. On the other hand, if g(x0) = 0 for x0 < 0 and κ0 > 0, then ρ(x, t)
will have positive definite measure on (−∞, 0] even though p(x, t) = 0 for x< 0 and all t ≥ 0. (An
analogous result holds if g(x0) vanishes on [0, ∞).)

Given these definitions and the strong Markov property, there exists a last renewal equation of
the form

ρ(x, t) = p(x, t) + κ0

2

∫ t

0
p(|x|, τ |0)[ρ(0+, t − τ ) + ρ(0−, t − τ )] dτ , x ∈ G, κ0 > 0. (2.8)

The first term on the right-hand side represents all sample trajectories that have never been
absorbed by the barrier at x = 0± up to time t. The corresponding integrand represents all
trajectories that were last absorbed (stopped) at time t − τ in either the positively or negatively
reflected BM state and then switched to the appropriate sign to reach x with probability 1/2.
Since the particle is not absorbed over the interval (t − τ , t], the probability of reaching x ∈ G

starting at x = 0± is p(|x|, τ |0). The probability that the last stopping event occurred in the interval
(t − τ , t − τ + dτ ) irrespective of previous events is κ0 dτ . It is convenient to Laplace transform the
renewal equation (2.8) with respect to time t by setting ρ̃(x, s) = ∫∞

0 e−stρ(x, t) dt etc. This gives

ρ̃(x, s) = p̃(x, s) + κ0

2
p̃(|x|, s|0)[ρ̃(0+, s) + ρ̃(0−, s)], x ∈ G. (2.9)

(Note that equation (2.9) is equivalent to the resolvent operator equation (8) of [27].) Setting x = 0±
in equation (2.9), summing the results and rearranging shows that

ρ̃(0+, s) + ρ̃(0−, s) = Γ (s)
1 − κ0̃p(0, s|0)

,

with Γ (s) ≡ p̃(0+, s) + p̃(0−, s). Substituting back into equations (2.9) yields the explicit solution:

ρ̃(x, s) = p̃(x, s) + κ0Γ (s)/2
1 − κ0̃p(0, s|0)

p̃(|x|, s|0), x ∈ G. (2.10)

The next step is to evaluate p̃(|x|, s|x0). Laplace transforming equations (2.5) shows that
p̃(x, s|x0), x> 0 satisfies the BVP

D
∂ 2̃p(x, s|x0)

∂x2 − s̃p(x, s|x0) = −δ(x − x0), x> 0 (2.11a)

1Recall that a continuous stochastic process {Xt t ≥ 0} is said to have the Markov property if the conditional probability
distribution of future states of the process (conditional on both past and present states) depends only on the present state not
on the sequence of events that preceded it. That is, for all t′ > t, we have P[Xt′ ≤ x|Xs, s ≤ t] = P[Xt′ ≤ x|Xt]. The strong Markov
property is similar to the Markov property, except that the ‘present’ is defined in terms of a stopping time.
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and

D
∂ p̃(0, s|x0)

∂x
= κ0̃p(0, s|x0). (2.11b)

That is, we can identify p̃(x, s|x0) with the Robin Green’s function for the modified Helmholtz
equation on [0, ∞). Writing the general solution for x< x0 as

p̃(x, s|x0) = A e−√
s/Dx + B e

√
s/Dx (2.12)

and substituting into the Robin boundary condition shows that

p̃(x, s|x0) = B

(
e
√

s/Dx +
√

sD − κ0√
sD + κ0

e−√
s/Dx

)
. (2.13)

By using the fact that the bounded solution for x> x0 is proportional to e−√
s/Dx, imposing

continuity of p̃(x, s|x0) across x0 and matching the discontinuity in the first derivative yields the
solution

p̃(x, s|x0) = 1

2
√

sD

(
e−√

s/D|x−x0| +
√

sD − κ0√
sD + κ0

e−√
s/D(x+x0)

)
. (2.14)

It immediately follows that

p̃(|x|, s|0) = 1√
sD + κ0

e−√
s/D|x|, (2.15)

and, hence, equation (2.10) becomes

ρ̃(x, s) = p̃(x, s) + κ0 e−√
s/D|x|

2
√

sD
Γ (s), x ∈ G. (2.16)

Note that in the limit κ0 → 0, we have ρ̃(x, s) → p̃(x, s). The fact that the particle may be found on
either side of the barrier, even though it is now impenetrable, is simply an artefact of the initial
distribution g(x0).

It follows from equation (2.16) that the density ρ̃(x, s) satisfies the Laplace transform of the
semi-permeable membrane BVP (1.1) under the initial condition ρ(x, 0) = g(x) and κ0 → κ0/2. First,
taking the second derivative of equations (2.16) for x �= 0± and using equation (2.11a) shows that

D
∂2ρ̃(x, s)
∂x2 − sρ̃(x, s) = −g(x), x ∈ G. (2.17)

Second, equation (2.16) implies that

ρ̃(x, s) + ρ̃(−x, s) = p̃(x, s) + p̃(−x, s) + κ0 e−√
s/D|x|

√
sD

Γ (s) (2.18a)

and
ρ̃(x, s) − ρ̃(−x, s) = p̃(x, s) − p̃(−x, s) (2.18b)

for x> 0. Differentiating equation (2.18a) with respect to x and taking x = 0+ we have

∂xρ̃(0+, s) − ∂xρ̃(0−, s) = ∂x̃p(0+, s) − ∂x̃p(0−, s) − κ0

D
Γ (s). (2.19)

The Robin boundary condition (2.11b) implies that

∂x̃p(0+, s) − ∂x̃p(0−, s) = κ0

D
[̃p(0+, s) + p̃(0−, s)] = κ0

D
Γ (s).

Hence,
D∂xρ̃(0+, s) = D∂xρ̃(0−, s). (2.20)

Similarly, differentiating equation (2.18b) with respect to x and taking x = 0+ gives

D∂xρ̃(0+, s) + D∂xρ̃(0−, s) = D∂x̃p(0+, s) + D∂x̃p(0−, s)

= κ0[p(0+, s) − p(0−, s)] = κ0[ρ̃(0+, s) − ρ̃(0−, s)]. (2.21)
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Finally, combining equations (2.20) and (2.21) yields the permeable boundary condition

D∂xρ̃(0±, s) = κ0

2
[ρ̃(0+, s) − ρ̃(0−, s)]. (2.22)

This establishes that the snapping out BM Xt is the single-particle realization of the stochastic
process whose probability density evolves according to the diffusion equation with a semi-
permeable membrane at x = 0. It also follows that if g(x0) is an even function of x0, then ρ̃(x, s) is
an even function of x so that the flux through the membrane is zero. In other words, it effectively
acts as a totally reflecting barrier even though κ0 > 0. It can also be checked that the solution of
equation (2.16) reduces to

ρ̃(x, s) = 1

4
√

sD

(
e−√

s/D|x−x0| + e−√
s/D(x+x0)

)
, x> 0. (2.23)

There are a number of reasons why it is advantageous to formulate diffusion through a semi-
permeable barrier in terms of snapping out BM. Firstly, it provides a method for simulating
Brownian motion in the presence of such a barrier [27]. Second, rather than solving a Fokker–
Planck of the form (1.1), we can express the (weak) solution for ρ in terms of the solution p of
partially reflected BM. However, the major advantage within the context of the current article
is that it provides a powerful framework for developing more general probabilistic models of
diffusion through semi-permeable membranes, as we illustrate in §§3 and 4.

(c) Thin-layer approximation
It is instructive to relate the above probabilistic model of single-particle diffusion through a semi-
permeable barrier to a recent study based on a Fokker–Planck description [20]. The latter was
derived by taking a continuum limit of a continuous-time random walk model with a defect.
Here, we briefly show how the Fokker–Planck description is equivalent to using a thin-layer
approximation of a semi-permeable barrier. In Ref. [27], it is proven that the solution of the
thin-layer BVP converges in distribution to the solution of the snapping out BM.

To derive the thin-layer approximation, we first consider BM in G with a jump discontinuity
in the diffusivity at x = 0. That is, D(x) = [D+ − D−]H(x) + D−. Introduce the stochastic process

Xt = F(Xt) ≡
√

2D+H(Wt)Wt +
√

2D−H(−Wt)Wt.

Applying Ito’s formula (2.1) with

f ′(x) =
√

2D+H(x) +
√

2D−H(−x), f ′′(x) =
√

2D+δ(x) −
√

2D−δ(−x)

yields the SDE

dXt = [
√

2D+H(Wt) +
√

2D−H(−Wt)] dWt + 1
2

[
√

2D+δ(Wt) −
√

2D−δ(−Wt)] dt.

Using sgn(Xt) = sgn(Wt) and δ(±Wt) =√
2D±δ(Xt) gives the skew BM [27,29,31]:

dXt = [
√

2D+H(Xt) +
√

2D−H(−Xt)] dWt + [D+−D−]δ(Xt) dt

=
√

2D(Xt) dWt + D+−D−
D++D−

dL0
t (X), (2.24)

where L0
t is the local time

L0
t (X) = D++D−

2

∫ t

0
δ(Xs) ds. (2.25)

The corresponding Ito FPE is then Q1

∂p
∂t

= ∂

∂x
∂D(x)p(x, t)

∂x
− ∂[D+−D−]δ(x)p(x, t)

∂x
= ∂

∂x

[
D(x)

∂p(x, t)
∂x

]
. (2.26)

Now consider the thin-layer problem shown in figure 1. Outside the layer [−a, a], the
diffusivity is D, whereas within the layer, it is D0. Following from the previous calculation, we
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–a a

D DD0

J(–a–) J(a+)

p(a) – p(–a)

Figure 1. Thin-layer problem. In the small a limit, we have J(−a−)≈ J(a+)≈ (κ0/2)[p(a+) − p(a−)]. (Online version in
colour.)

have the Ito SDE:

dXt =
√

D(Xt) dWt + D − D0

D + D0
dLa

t (X) + D0 − D
D + D0

dL−a
t (X), (2.27)

where D(x) = D for |x|> a and D(x) = D0 for |x|< a, and the corresponding FPE

∂p
∂t

= ∂

∂x

[
D(x)

∂p(x, t)
∂x

]
. (2.28)

Integrating the FPE across x = −a and x = +a, respectively, yields the flux continuity conditions

D∂xp(−a−, t) = D0∂xp(−a+, t), D0∂xp(a−, t) = D∂xp(a+, t). (2.29)

Suppose that D0 = κ0a and consider the limit a → 0. In the small-a regime, we have

p(a, t) − p(−a, t) ≈ 2a∂xp(−a+, t) ≈ 2a∂xp(a−, t). (2.30)

Combining the various results gives, to leading order,

D∂xp(−a, t) ≈ D∂xp(a, t) ≈ D0

2a
[p(a, t) − p(−a, t)].

Finally, taking the limit a → 0+ recovers the permeable barrier boundary condition. Moreover,
equation (2.28) is equivalent to the FPE description derived in [20].

3. Diffusion through a semi-permeable membrane with stochastic resetting
Let us return to the case of partially reflected BM in [0, ∞), which is now supplemented by the
resetting condition Xt → ξ ∈ [0, ∞) at a random sequence of times generated by a Poisson process
with constant rate r. This particular problem has previously been studied in Refs. [45,46]. The
probability density pr(x, t|x0) evolves according to the modified Robin BVP

∂pr

∂t
= D

∂2pr

∂x2 − rpr + rQr(x0, t)δ(x − ξ ), x> 0 (3.1a)

and

D
∂pr

∂x
= κ0pr, x = 0, pr(x, 0|x0) = δ(x − x0). (3.1b)

We have introduced the marginal distribution

Qr(x0, t) =
∫∞

0
pr(x, t|x0) dx, (3.2)
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which is the survival probability that the particle has not been absorbed at x = 0 in the time
interval [0, t], having started at x0. The r subscript indicates the solution is in the presence of
resetting. Note that in the limit κ0 → 0, the boundary at x = 0 becomes totally reflecting so that
Qr = 1, and we recover the standard forward equation for 1D diffusion with resetting [47,48].
On the other hand, if κ0 → ∞, then the boundary is totally absorbing.

Laplace transforming equations (3.1a) and (3.1b) gives

D
∂ 2̃pr(x, s|x0)

∂x2 − (r + s)pr(x, s|x0) = −[δ(x − x0) + rQ̃r(x0, s)δ(x − ξ )], x> 0 (3.3a)

and

D
∂ p̃r(x, s|x0)

∂x
= κ0̃pr(x, s|x0), x = 0. (3.3b)

Using the fact that p̃(x, s|x0) is the Green’s function for partially reflecting BM without resetting,
see equation (2.14), it follows that

p̃r(x, s|x0) = p̃(x, r + s|x0) + rQ̃r(x0, s)̃p(x, r + s|ξ ), 0< x<∞. (3.4)

Finally, Laplace transforming equation (3.2) and using (3.4) shows that

Q̃r(x0, s) =
∫∞

0
p̃r(x, s|x0) dx =

∫∞

0
p̃(x, r + s|x0) dx + rQ̃r(x0, s)

∫∞

0
p̃(x, r + s|ξ ) dx

= Q̃(x0, r + s) + rQ̃r(x0, s)Q̃(ξ , r + s), (3.5)

where Q̃ is the Laplace transform of the survival probability without resetting:

Q̃(x0, s) = 1 − e−√
s/Dx0

s
+ e−√

s/Dx0

s + κ0
√

s/D
. (3.6)

Rearranging equation (3.5) thus determines the survival probability with resetting in terms of the
corresponding probability without resetting:

Q̃r(x0, s) = Q̃(x0, r + s)
1 − rQ̃(ξ , r + s)

. (3.7)

For κ0 > 0, the steady-state survival probability vanishes with or without resetting, since 1D
diffusion is recurrent so that absorption eventually occurs. Indeed,

Q∗
r (x0) = lim

s→0
sQ̃r(x0, s) = lim

s→0

sQ̃(x0, r)
1 − rQ̃(ξ , r)

= 0. (3.8)

(Note that Q̃(ξ , r) �= 1/r when κ0 > 0.) On the other hand, if κ0 = 0 (totally reflecting boundary at
x = 0), then Q̃r(x0, s) = 1/s for all x0 <∞, and thus, Q∗

r (x0) = 1. In this special case, there exists a
non-equilibrium stationary state (NESS) given by

p∗
r (x) = lim

s→0
s̃pr(x, s|x0) = lim

s→0
s[̃p(x, r + s|x0) + rQ̃r(x0, s)̃p(x, r + s|ξ )]

= r̃p(x, r|ξ ) = r

2
√

rD

[
e−√

r/D|x−ξ | + e−√
r/D|x+ξ |

]
, x> 0, (3.9)

which recovers the well-known result of Refs. [47,48].
We now observe that partially reflecting BM with resetting is also a strong Markov process,

since there is no memory of previous histories following resetting to ξ . This means that a modified
version of the renewal equation (2.10) for snapping out BM holds when resetting is included. For
simplicity, suppose that we sew together positively and negatively reflecting BMs such that the
former resets to ξ and the latter to −ξ with ξ ≥ 0+, see figure 2. This symmetric resetting protocol
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x = 0– x = 0+

x

reset

x0

reset

–� �

Figure 2. Single-particle diffusion through a semi-permeable membrane with stochastic resetting to±ξ . (The dynamics is
extended into two dimensions for ease of visualization.) The snapped out BM starts on the right-hand side of the membrane,
say, and undergoes one reset to+ξ before passing through the membrane to the left-hand side. However, in this domain, the
particle resets to−ξ and so on. Resetting events that cross the membrane are forbidden. (Online version in colour.)

means that p̃r(x, s) = p̃r(−x, s). It follows that the renewal equation (2.10) becomes2

ρ̃r(x, s) = p̃r(x, s) + κ0Γr(s)/2
1 − κ0̃pr(0, s|0)

p̃r(|x|, s|0), x ∈ G, κ0 > 0 (3.10)

with Γr(s) = p̃r(0+, s) + p̃r(0−, s). Note that our resetting protocol is space dependent due to the fact
that we exclude resetting events that involve a particle crossing the semi-permeable membrane
to the other side. Hence, spatial position Xt ≥ 0+ (Xt ≤ 0−) can only reset to x = ξ (x = −ξ ). (Most
models of stochastic resetting take resetting to be independent of the current location Xt [33].
Examples of space-dependent resetting protocols can be found in Refs. [48–50].) This means that
we have to work with the modified renewal equation (3.10) that keeps track of which side of the
membrane a particle is located, rather than using a renewal equation that directly relates ρr(x, t) to
ρ(x, t). In other words, we cannot simply introduce the resetting protocol into the Fokker–Planck
equation for ρ(x, t).

(a) Non-equilibrium stationary state
One of the common characteristic features of non-absorbing diffusion processes with stochastic
resetting is that there exists a non-equilibrium stationary state (NESS), which is maintained by
non-zero probability fluxes [33]. In the case of snapping out BM with resetting, the points x = ±ξ
act as probability sources, whereas all positions x �= ±ξ are potential probability sinks. Although
each partially reflected BM is killed by absorption at the semi-permeable barrier, the stochastic
process is immediately restarted so that snapping out BM is not killed. We will derive the NESS
using the renewal equation (3.10). Multiplying both sides by s and taking the limit s → 0 gives

ρ∗
r (x) = lim

t→∞
ρr(x, t) = lim

s→0
sρ̃r(x, s)

= κ0

2
lim

s→∞
sΓr(s)

1 − κ0̃pr(0, s|0)
p̃r(|x|, s|0). (3.11)

We have used the fact that partially reflected BM with resetting does not have a non-trivial NESS,
that is, limt→∞ pr(x, t) = 0. The existence of the NESS for snapping out BM can be established by
showing that 1 − κ0pr(0, s|0) = O(s). Setting x = x0 = 0 in equation (3.4) and using equation (2.14)

2We could consider a more general resetting protocol in which Xt → ξ+ > 0 when Xt ≥ 0+ and Xt → ξ− < 0 when Xt ≤ 0− with
|ξ−| �= ξ+ by an appropriate modification of the renewal equation.
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yields

p̃r(0, s|0) = p̃(0, r + s|0) + rQ̃r(0, s)̃p(0, r + s|ξ )

= 1√
(r + s)D + κ0

[
1 + re−

√
(r+s)/Dξ Q̃r(0, s)

]
. (3.12)

Equations (3.6) and (3.7) give

Q̃r(0, s) = 1/[r + s + κ0
√

(r + s)/D]

1 − (r/(r + s))
(

1 − e−
√

(r+s)/Dξ
)

− (r/(r + s + κ0
√

[r + s]/D)) e−
√

(r+s)/Dξ

= r + s

s[r + s + κ0
√

(r + s)/D] + κ0r
√

(r + s)/D e−
√

(r+s)/Dξ
. (3.13)

By substituting into equation (3.12) and rearranging, we find that

p̃r(0, s|0) = 1√
(r + s)D + κ0

[
1 + 1

κ0

√
(r + s)D

1 + (s/rκ0)[r + s + κ0
√

(r + s)/D]
√

D/(r + s)e
√

(r+s)/Dξ

]

= 1√
(r + s)D + κ0

[
1 +

√
(r + s)D
κ0

(
1 − s[r + κ0

√
r/D]

rκ0

√
D
r

e
√

r/Dξ + O(s2)

)]

= 1
κ0

[
1 − s

κ0

√
D
r

e
√

r/Dξ

]
+ O(s2). (3.14)

It immediately follows that 1 − κ0̃pr(0, s|0) = O(s), and thus,

ρ∗
r (x) = κ2

0
2

√
r
D

e−√
r/DξΓr(0)̃pr(|x|, 0|0). (3.15)

The factor Γr(0) is

Γr(0) = p̃r(0+, 0) + p̃r(0−, 0) =
∫∞

−∞
g(x0)[̃p(0, r||x0|) + rQ̃r(|x0|, 0)̃p(0, r|ξ )] dx0

= 1√
rD + κ0

∫∞

−∞
g(x0)

[
e−√

r/D|x0| + rQ̃(|x0|, r)
1 − rQ̃(ξ , r)

e−√
r/Dξ

]

= 1
κ0

∫∞

−∞
g(x0) dx0 = 1

κ0
. (3.16)

Hence, the NESS takes the form

ρ∗
r (x) = κ0

2

√
r
D

e−√
r/Dξ p̃r(|x|, 0|0). (3.17)

As expected, ρ∗
r (x) is independent of the initial distribution g(x0) and is an even function of x ∈ G.

Finally, combining equations (3.4), (3.6) and (3.7) shows that

p̃r(x, 0|0) = p(x, r|0) +
√

rD
κ0

e
√

r/Dξ p̃(x, r|ξ )

= 1√
rD + κ0

e−√
r/Dx + e

√
r/Dξ

2κ0

(
e−√

r/D|x−ξ | +
√

rD − κ0√
rD + κ0

e−√
r/D(x+ξ )

)

= 1
2κ0

(
e−√

r/Dx + e
√

r/Dξ e−√
r/D|x−ξ |

)
(3.18)

and

ρ∗
r (x) = r

2
1

2
√

rD

(
e−√

r/D(x+ξ ) + e−√
r/D|x−ξ |

)
= p∗

r (|x|)
2

, (3.19)

where we have used equation (3.9). Note that the NESS is independent of κ0 for κ0 > 0 and has
the following interpretation. In the long time limit, the particle spends an equal amount of time
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42–2–4 0

ρ r
* (

x)

position (x)

r = 2

r = 10.1
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0.4
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0

Figure 3. Analytical (continuous black curves) and kinetic Monte Carlo simulations of the NESS for snapping out BM and
different resetting rates r. In the simulations we use time steps of size δt = 10−6, and perform N = 106 runs. Other model
parameters are D= ξ0 = κ0 = 1. (Online version in colour.)

on either side of the barrier where it undergoes repeated rounds of partially reflecting BM with
resetting. Thus, each side forms the NESS p∗

r (|x|) but is weighted by a factor of 1/2. The limit
κ0 → 0 is singular, since the relative weight of the density on either side of the barrier will depend
on the initial density g(x0). In figure 3, we show that there is good agreement between the exact
analytical solution (3.19) and Monte-Carlo simulations of snapping out BM with resetting.

(b) Relaxation time
Although ρ∗

r (x) is independent of the permeability κ0, the time-dependent relaxation to the NESS
will be κ0 dependent. In the case of homogeneous diffusion in R

d, one can use large deviation
theory to show that the approach to the stationary state exhibits a dynamical phase transition,
which can be interpreted as a traveling front separating spatial regions for which the probability
density has relaxed to the NESS from those where transients persist [51]. Recently, we introduced
an alternative method for characterizing the relaxation process, which is based on the notion of
an accumulation time [52]. We proceeded by decomposing the probability density into decreasing
and accumulating components and showed how the latter evolved in an analogous fashion to the
formation of a concentration gradient in diffusion-based morphogenesis. The accumulation time
for the latter is the analogue of the mean first passage time of a search process, in which the
survival probability density is replaced by an accumulation fraction density [53–55].

Following Ref. [52], consider the function

Zr(x, t) = 1 − ρr(x, t)
ρ∗

r (x)
, (3.20)

and define

Tr(x) =
∫∞

0
Zr(x, t) dt = lim

s→0
Z̃r(x, s). (3.21)

Laplace transforming equation (3.20) gives

Z̃r(x, s) = 1
s

[
1 − sρ̃r(x, s)

ρ∗
r (x)

]
,
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Figure 4. Accumulation time for the snapping out BMwith resetting. (a) T∗r (x) is plotted as a function of x for various resetting
rates r and absorption rates κ0 with ξ = 1. We also set D= 1 and g(x0)= δ(x − x0) with x0 = 1. (b) Corresponding plots
for various resetting positions ξ with κ0 = 1and r = 1. (Since, T∗r (x) is an even function of x, we only show plots for x > 0.)
(Online version in colour.)

and, hence,

Tr(x) = lim
s→0

1
s

[
1 − sρ̃r(x, s)

ρ∗
r (x)

]
= − 1

ρ∗
r (x)

d
ds

[sρ̃r(x, s)]
∣∣∣∣
s=0

. (3.22)

We have used the identity ρ∗
r (x) = lims→0 sρ̃r(x, s). In applications to morphogenesis where

particle number is not conserved, it is typically assumed that Zr(x, t) is a non-negative function of
x for all t> 0 (no overshooting), so that Tr(x) can be interpreted as the mean accumulation time to
the stationary state. However, positivity of Zr(x, t) for all x does not hold in the case of stochastic
processes due to probability conservation. Nevertheless, as shown in Ref. [3], one can decompose
Tr(x) into negative and positive parts and interpret the latter as an accumulation time. Since the
first term in equation (3.10) does not contribute to the NESS and generates a negative contribution
to Tr(x), we define the accumulation time as follows:

T∗
r (x) = − 1

ρ∗
r (x)

d
ds

[s(ρ̃r(x, s) − p̃r(x, s))]
∣∣∣∣
s=0

. (3.23)

In figure 4, we plot T∗
r (x) as a function of x, x> 0, for various choices of model parameters

and the initial condition g(x0) = δ(x − x0). A number of observations can be made. Firstly, T∗
r (x)

for fixed x is a decreasing function of κ0 and an increasing function of ξ , which reflects the fact
that each round of partially reflected BM takes longer on average. Secondly, there is a cross-over
phenomenon, whereby T∗

r (x) is a non-monotonic function of the resetting rate r for fixed x. This
is further illustrated in figure 5, which indicates that T∗

r (x) for fixed x is a unimodal function of r
with a minimum at an x-dependent rate r∗(x). Thirdly, T∗

r (x) asymptotically approaches a linear
function of x, which is consistent with previous findings in other systems [51,52]. Finally, note
that if we had considered Tr(x) rather than T∗

r (x), then Tr(x) would be negative for locations close
to the membrane.

4. Encounter-based version of snapping out Brownian motion
Another possible extension of snapping out BM is to modify the rule for killing each round of
partially reflected BM. This is equivalent to changing the absorption process on either side of the
semi-permeable barrier. We proceed by using the so-called encounter-based model of absorption
[39–42], which replaces the exponential distribution for the stopping local time threshold �̂,
see equation (2.4), by a non-exponential distribution. The basic idea is to introduce the joint
probability density or generalized propagator for the pair (Xt, Lt), where Xt ∈ [0, ∞) is partially
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Figure 5. Accumulation time for the snapping out BM with resetting. T∗r (x) is plotted as a function of r for various spatial
locations x. We also set D= 1, ξ = 1, κ0 = 1 and g(x0)= δ(x − x0) with x0 = 1. (Online version in colour.)

reflected BM and Lt is the local time at x = 0:

P(x, �, t|x0) dx d� := P[x ≤ Xt < x, x + dx, �≤ Lt < �+ d�|X0 = x0, �0 = 0].

Since the local time only changes at the membrane boundary x = 0, the evolution equation within
the bulk of the domain is simply

∂P
∂t

= D
∂2P
∂x2 , x> 0, �≥ 0, t> 0. (4.1)

The non-trivial step is determining the boundary condition at x = 0. Here, we give a heuristic
derivation that considers a thin layer in a neighbourhood of the boundary given by the interval
[0, h] with

Lh
t = D

h

∫ t

0

[∫ h

0
δ(Xt′ − x) dx

]
dt′. (4.2)

By definition, hLh
t /D is the residence or occupation time of the process Xt in the boundary layer

[0, h] up to time t. Although the width h and the residence time in the boundary layer vanish
in the limit h → 0, the rescaling by 1/h ensures the non-trivial limit Lt = limh→0 Lh

t . Moreover,
from conservation of probability, the flux into the boundary layer over the residence time hδ�/D
generates a corresponding shift in the probability P within the boundary layer from �→ �+ δ�.
That is, for � > 0,

−J(h, �, t|x0)hδ�= [P(0, �+ δ�, t|x0) − P(0, �, t|x0)]h,

where J(x, �, t|x0) = −D∂xP(x, �, t|x0). Dividing through by hδ� and taking the limits h → 0 and
δ�→ 0 yields −J(0, �, t|x0) = ∂�P(0, �, t|x0), � > 0. Moreover, when �= 0, the probability flux
J(0, 0, t|x0)δ� is identical to that of a Brownian particle with a totally absorbing boundary at x = 0,
which we denote by J∞(0, t|x0). Combining all of these results yields the boundary condition

− J(0, �, t|x0) = −J∞(0, t|x0)δ(�) + ∂P(0, �, t|x0)
∂�

. (4.3)

It can also be shown that P(0, 0, t|x0) = −J∞(0, t|x0). For a more detailed derivation of the boundary
condition (4.3), see Refs. [39,41]. Finally, Laplace transforming equations (4.1) and (4.3) with
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respect to � by setting

P̃(x, z, t|x0) =
∫∞

0
e−z�P(x, �, t|x0) d�, (4.4)

we find that the P̃(x, z, t|x0) is the solution to the Robin BVP (2.5) with κ0 = Dz and z the Laplace
variable.

The aforementioned is consistent with the observation that partially reflected BM is obtained
by supplementing reflected BM with a stopping condition that halts the stochastic process
when the local time Lt(X) exceeds a random exponentially distributed threshold �̂. This can be
established as follows. Given that Lt is a non-decreasing process, the condition t< T is equivalent
to the condition Lt < �̂. This implies that

p(x, t|x0) dx = P[x ≤ Xt < x + dx, Lt < �̂|X0 = x0]

=
∫∞

0
d� ψ(�)P[x ≤ Xt < x + dx, Lt < �|X0 = x0]

=
∫∞

0
d�ψ(�)

∫ �
0

d�′[P(x, �′, t|x0) dx],

where ψ(�) = −Ψ ′(�) = (κ0/D)e−κ0�/D. By using the identity

∫∞

0
d� u(�)

∫ �
0

d�′ v(�′) =
∫∞

0
d�′ v(�′)

∫∞

�′
d� u(�)

for arbitrary integrable functions u, v, it follows that

p(x, t|x0) =
∫∞

0
P(x, �′, t|x0)

[∫∞

�′
ψ(�) d�

]
d�′ =

∫∞

0
Ψ (�)P(x, �, t|x0) d�. (4.5)

Hence, the probability density of partially reflected BM is equivalent to the Laplace transform of
the local time propagator with z = κ0/D acting as the Laplace variable. Assuming that the Laplace
transform can be inverted, we can then incorporate a non-exponential probability distribution
Ψ (�) such that the corresponding marginal density is

pΨ (x, t|x0) =
∫∞

0
Ψ (�)P(x, �, t|x0) d�=

∫∞

0
Ψ (�)L−1

� P̃(x, z, t|x0) d�. (4.6)

One major difference from the exponential law Ψ (�) = e−κ0�/D is that the stochastic process Xt is
no longer Markovian. One way to see this is to note that a non-exponential distribution can be
generated by an �-dependent absorption rate, κ = κ(�). That is,

Ψ (�) = exp(−D−1
∫ �

0
κ(�′) d�′). (4.7)

Given that the probability of absorption now depends on how much time the particle spends
in a neighbourhood of the boundary, as specified by the local time, it follows that the stochastic
process has memory.

We now define a generalized snapping out BM as follows. Again we assume that the particle
starts at X0 = x0 ≥ 0. It realizes positively reflected BM until its local time Lt at x = 0+ is greater
than an independent random variable �̂ with a non-exponential distribution Ψ (�) = P[�̂ > �]. It
then randomly determines its sign with probability 1/2 and restarts as a new reflected BM in
either [0+, ∞) or (−∞, 0−], and so on. Although each round of partially reflected Brownian motion
is non-Markovian, all history is lost following absorption and restart so that we can construct a
renewal equation. However, it is now more convenient to use a first rather than a last renewal
equation.
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Let pΨ (x, t) denote the extended probability density on x ∈ G with

pΨ (x, t) = H(x)
∫∞

0
pΨ (x, t|x0)g(x0) dx0 + H(−x)

∫ 0

−∞
pΨ (−x, t| − x0)g(x0) dx0, (4.8)

where pΨ (x, t|x0) for x, x0 ≥ 0 is the generalized partially reflecting BM. Let QΨ (t) denote the
corresponding survival probability

QΨ (t) =
∫∞

−∞
pΨ (x, t) dx. (4.9)

It follows that the first passage time density for absorption is fΨ (t) = −dQΨ (t)/dt. The first renewal
equation then takes the form

ρΨ (x, t) = pΨ (x, t) + 1
2

∫ t

0
[ρΨ (x, t − τ |0+) + ρΨ (x, t − τ |0−)]fΨ (τ ) dτ , x ∈ G. (4.10)

The first term on the right-hand side represents all sample trajectories that have never been
absorbed by the barrier at x = 0± up to time t. The corresponding integrand represents all
trajectories that were first absorbed (stopped) at time τ and then switched to either positively or
negatively reflected BM state with probability 1/2, after which an arbitrary number of switches
can occur before reaching x at time t. The probability that the first stopping event occurred in the
interval (τ , τ + dτ ) is fΨ (τ )dτ . Laplace transforming the renewal equation (4.10) with respect to
time t by setting ρ̃Ψ (x, s) = ∫∞

0 e−stρΨ (x, t) dt etc. gives

ρ̃Ψ (x, s) = p̃Ψ (x, s) + 1
2

[ρ̃Ψ (x, s|0+) + ρ̃Ψ (x, s|0−)]̃fΨ (s), x ∈ G. (4.11)

Moreover, f̃Ψ (s) = 1 − sQ̃Ψ (s). To determine the factor ρ̃Ψ (x, s|0+) + ρ̃Ψ (x, s|0−), we set g(x0) =
[δ(x0 − 0+) + δ(x − 0−)]/2 in equation (4.11). This gives

ρ̃Ψ (x, s|0+) + ρ̃Ψ (x, s|0−) = p̃Ψ (|x|, s|0) + [ρ̃Ψ (x, s|0+) + ρ̃Ψ (x, s|0−)]̃fΨ (0, s),

which can be arranged to obtain the result

ρ̃Ψ (x, s|0+) + ρ̃Ψ (x, s|0−) = p̃Ψ (|x|, s|0)
sQ̃Ψ (0, s)

.

Substituting back into equations (4.11) yields the explicit solution

ρ̃Ψ (x, s) = p̃Ψ (x, s) + 1 − sQ̃Ψ (s)
2sQ̃Ψ (0, s)

p̃Ψ (|x|, s|0), x ∈ G. (4.12)

It can be checked that equations (2.10) and (4.12) agree when Ψ (�) = e−κ0�/D so that p̃Ψ (x, s|x0) →
p̃(x, s|x0) and Q̃Ψ (x0, s) → Q̃(x0, s) with p̃ and Q̃ given by equations (2.14) and (3.6), respectively.
Indeed, since

p̃(0, s|x0) = 1√
sD + κ0

e−√
s/Dx0 ,

we see that 1 − sQ̃(x0, s) = κ0̃p(0, s|x0) and, hence,

1 − sQ̃(s) = κ0Γ (s) and sQ̃(0, s) = 1 − κ0̃p(0, s|0).

It remains to calculate p̃Ψ . From equation (2.14), we have

P(x, z, s|x0) ≡
∫∞

0
e−st

[∫∞

0
e−z�P(x, �, t|x0) d�

]
dt

= 1

2
√

sD

(
e−√

s/D|x−x0| +
√

sD − Dz√
sD + Dz

e−√
s/D(x+x0)

)
. (4.13)
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Inverting the Laplace transform in z gives

P̃(x, �, s|x0) = 1

2
√

sD

(
e−√

s/D|x−x0| − e−√
s/D(x+x0)

)
δ(�)

+ 1
D

e−√
s/D(x+x0) e−√

s/D�. (4.14)

By substituting into equation (4.6) after Laplace transforming the latter with respect to t, we obtain
the result

p̃Ψ (x, s|x0) = 1

2
√

sD

(
e−√

s/D|x−x0| − e−√
s/D(x+x0)

)
+ 1

D
e−√

s/D(x+x0)Ψ̃ (
√

s/D). (4.15)

It immediately follows that

p̃Ψ (x, s|0) = p̃Ψ (0, s|x) = 1
D

e−√
s/DxΨ̃ (

√
s/D) (4.16)

and

Q̃ψ (x0, s) = 1 − e−√
s/Dx0

s
+ e−√

s/Dx0

√
sD

Ψ̃ (
√

s/D). (4.17)

Hence, equation (4.12) reduces to the form

ρ̃Ψ (x, s) = p̃Ψ (x, s) + e−√
s/D|x|

2
√

sD
ΓΨ (s), x ∈ G, (4.18)

where

ΓΨ (s) =
[

1 −
√

s
D
Ψ̃ (
√

s/D)

] ∫∞

−∞
e−√

s/D|x0|f (x0) dx0. (4.19)

Since the propagator satisfies the diffusion equation in the bulk of the domain, the density
ρΨ (x, t) does too. The remaining issue concerns the boundary condition at the interface. By using
similar arguments to §2, equations (2.18)–(2.21), we find

ρ̃Ψ (x, s) + ρ̃Ψ (−x, s) = p̃Ψ (x, s) + p̃Ψ (−x, s) + e−√
s/D|x|

√
sD

ΓΨ (s), (4.20a)

ρ̃Ψ (x, s) − ρ̃Ψ (−x, s) = p̃Ψ (x, s) − p̃Ψ (−x, s), (4.20b)

D∂xρ̃Ψ (0+, s) − D∂xρ̃Ψ (0−, s) = D∂x̃pΨ (0+, s) − D∂x̃pΨ (0−, s) − Γψ (s), (4.21a)

and D∂xρ̃Ψ (0+, s) + D∂xρ̃Ψ (0−, s) = D∂x̃pΨ (0+, s) + D∂x̃pΨ (0−, s). (4.21b)

Differentiating equation (4.15) for x< x0 implies that

D∂x̃pΨ (x, s|x0) = 1
2

(
e
√

s/D(x−x0) + e−√
s/D(x+x0)

)
−
√

s
D

e−√
s/D(x+x0)Ψ̃ (

√
s/D), (4.22)

and, hence,

D∂x̃pΨ (0, s|x0) =
[

1 −
√

s
D
Ψ̃ (
√

s/D)

]
e−√

s/Dx0 . (4.23)

This shows that

D∂x̃pΨ (0+, s) − D∂x̃pΨ (0−, s) = ΓΨ (s). (4.24)

We deduce from equation (4.21a) that D∂xρ̃ψ (0+, s) = D∂xρ̃Ψ (0−, s). In other words, the flux
through the membrane is continuous as it is in the standard permeable boundary condition.
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Equation (4.21b) then implies that

2D∂xρ̃ψ (0±, s) = ψ̃(
√

s/D)

[∫∞

0
e−√

s/Dx0 f (x0) dx0 −
∫ 0

−∞
e
√

s/Dx0 f (x0) dx0

]

= Dψ̃(
√

s/D)
Ψ̃ (

√
s/D)

[̃pΨ (0+, s) − p̃Ψ (0−, s)]

= Dψ̃(
√

s/D)
Ψ̃ (

√
s/D)

[ρ̃Ψ (0+, s) − ρ̃Ψ (0−, s)]. (4.25)

In the exponential case, ψ(�) = (κ0/D)Ψ (�), and we recover the permeable boundary condition
(2.22). For non-exponential distributions, the boundary condition involves a time-dependent
permeability. More specifically, setting

κ̃(s) = Dψ̃(
√

s/D)
Ψ̃ (

√
s/D)

, (4.26)

and using the convolution theorem, the boundary condition in the time domain takes the form

2D∂xρψ (0±, t) =
∫ t

0
κ(τ )[ρΨ (0+, t − τ ) − ρΨ (0−, t − τ )] dτ . (4.27)

For the sake of illustration, suppose that ψ(�) is given by the gamma distribution:

ψ(�) = γ (γ �)μ−1 e−γ �

Γ (μ)
, μ> 0, (4.28)

where Γ (μ) is the gamma function. The corresponding Laplace transforms are expressed as
follows:

ψ̃(z) =
(

γ

γ + z

)μ
and Ψ̃ (z) = 1 − ψ̃(z)

z
. (4.29)

Here, γ determines the effective absorption rate. If μ= 1, then ψ reduces to the exponential
distribution with constant reactivity κ0 = Dγ . The parameter μ thus characterizes the deviation
of ψ(�) from the exponential case. If μ< 1 (μ> 1), then ψ(�) decreases more rapidly (slowly) as a
function of the local time �. Substituting the gamma distribution into equation (4.26) yields

κ̃(s) =
√

sDγ μ

(γ + √
s/D)μ − γ μ

. (4.30)

If μ= 1, then κ̃(s) = γD = κ0 and κ(τ ) = κ0δ(τ ). An example of μ �= 1 that has a simple inverse
Laplace transform is μ= 2:

κ̃(s) = D
√

Dγ 2

2
√

Dγ + √
s

= κ2
0/

√
D

2κ0/
√

D + √
s

(4.31)

and

κ(τ ) = κ2
0√
D

[
1√
πτ

− 2κ0√
D

e4κ2
0 τ/D erfc(2κ0

√
τ/D)

]
, (4.32)

where erfc(x) = (2/
√
π )

∫∞
x e−y2

dy is the complementary error function. Example plots of κ(τ ) are
shown in figure 6. It can be seen that κ is a monotonically decreasing function of time whose
rate of decay depends on κ0 and D. Asymptotically expanding erfc(x) in equation (4.32) using the
formula

erfc(x) ∼ 1√
π

e−x2
∞∑

k=0

(−1)k (2k)!
22kk!

1
x2k+1

(4.33)

shows that κ(t) is heavy-tailed with

κ(t) ∼
√

D
π

1
8t3/2 , t → ∞. (4.34)
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Figure 6. Plot of permeability functionκ (t) as a function of time t for various values ofκ0 withD= 10 (solid curves) andD= 1
dashed curves. (Online version in colour.)

5. Conclusion
In this article, we have developed a general probabilistic framework for modelling one-
dimensional diffusion through semi-permeable membranes. We took as our starting point the
snapping out BM recently introduced by Lejay [27]. The latter sews together successive rounds
of partially reflecting BM in either the positive or negative x domains. The major advantage of
this formulation is that the probability density of particle position satisfies a renewal equation
that can be generalized by appropriate modifications of the underlying partially reflected BM. As
our first example, we considered partially reflected BM with stochastic resetting, which resulted
in a diffusion process through a semi-permeable membrane with a non-trivial NESS. Although
the NESS was independent of the permeability κ0, the associated relaxation process was κ0
dependent. Our second example used an encounter-based method to modify the absorption
process that kills a given round of partially reflected BM. This resulted in diffusion through a
semi-permeable membrane with a time-dependent permeability.

Although we focused on one-dimensional diffusion processes, the basic renewal equation
framework generalizes to higher spatial dimensions. However, the analysis is significantly more
difficult. (Indeed most studies of skew BM and its generalizations are based on one-dimensional
diffusions. A discussion of some mathematical papers on higher-dimensional skew BM can be
found in [27].) For the sake of illustration, consider diffusion in R

d that contains a closed bounded
subdomain M. We treat the boundary ∂M separating the two open domains R

d\M and M as a
semi-permeable membrane with ∂M+ (∂M−) denoting the side approached from outside (inside)
M. The higher-dimensional version of equation (1.1) is then

∂u(x, t)
∂t

= D∇2u(x, t) x ∈ G ≡ (Rd\M) ∪ M (5.1a)

and
J(x±, t) = κ0[u(x−, t) − u(x+, t)], x± ∈ ∂Ω±, (5.1b)

where J(x, t) = −D∇u(x, t) · n and n is the unit normal directed out of M, see figure 7.
The major difference from the one-dimensional case is that it is now necessary to keep track

of where on the boundary each round of partially reflected BM is killed, and from where the next
round is initiated. In particular, suppose that whenever partially reflected BM is killed at a point
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Rd

n

–

Figure 7. Example configuration for diffusion through a higher-dimensional semi-permeable membrane. (Online version in
colour.)

y+ ∈ ∂M+, a new round is immediately started from either y+ or y− with equal probability, etc.
The higher-dimensional version of the last renewal equation (2.8) is then

ρ(x, t) = p(x, t) + κ0

2

∫ t

0

{∫
∂M

p(x, τ |y+)[ρ(y+, t − τ ) + ρ(y−, t − τ )] dy
}

dτ , x ∈ R
d\M (5.2a)

and

ρ(x, t) = q(x, t) + κ0

2

∫ t

0

{∫
∂M

q(x, τ |y−)[ρ(y+, t − τ ) + ρ(y−, t − τ )] dy
}

dτ , x ∈M, (5.2b)

where p(x, t|y) and q(x, t|y) are the probability densities for partially reflected BM in the domains
Rd\M and M, respectively. In addition,

p(x, t) =
∫

Rd\M
p(x, t|x0)g(x0) dx0, q(x, t) =

∫
M

q(x, t|x0)g(x0) dx0, (5.3)

where g(x0) is the initial probability density in G. Elsewhere we will show that the solution ρ(x, t)
of the integral equation (5.2) satisfies a BVP of the form (5.1). This will allow us to introduce
stochastic resetting and encounter-based models of absorption in an analogous fashion to the 1D
case. However, finding an explicit solution for ρ is more difficult than the 1D case, even after
Laplace transforming. One exception is taking ∂M to be a (d − 1)-dimensional sphere and using
spherical symmetry. This recovers a renewal equation similar in form to (2.8) with x replaced by
the radial coordinate. Another possibility is to Laplace transform the renewal equation and carry
out a Neumann series expansion of the integral equation in y for small κ0.

Finally, as indicated by Lejay [27], since snapping out BM generates sample paths of single-
particle diffusion through semipermeable interfaces, it could be used to develop numerical
schemes for generating solutions to the corresponding BVP. Indeed, SDEs in the form of
underdamped Langevin equations have recently been used to implement efficient computational
schemes for finding solutions to the diffusion equation in the presence of one or more
semipermeable interfaces [56,57].
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