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Accelerating drug target inhibitor discovery with a deep
generative foundation model
Vijil Chenthamarakshan1†, Samuel C. Hoffman1†, C. David Owen2,3, Petra Lukacik2,3,
Claire Strain-Damerell2,3, Daren Fearon2,3, Tika R. Malla4, Anthony Tumber4,
Christopher J. Schofield4, Helen M.E. Duyvesteyn5, Wanwisa Dejnirattisai6, Loic Carrique5,
Thomas S. Walter5, Gavin R. Screaton6, Tetiana Matviiuk7, Aleksandra Mojsilovic1, Jason Crain8,9,
Martin A. Walsh2,3*, David I. Stuart2,5*, Payel Das1*

Inhibitor discovery for emerging drug-target proteins is challenging, especially when target structure or active
molecules are unknown. Here, we experimentally validate the broad utility of a deep generative framework
trained at-scale on protein sequences, small molecules, and their mutual interactions—unbiased toward any
specific target. We performed a protein sequence-conditioned sampling on the generative foundation model
to design small-molecule inhibitors for two dissimilar targets: the spike protein receptor-binding domain (RBD)
and the main protease from SARS-CoV-2. Despite using only the target sequence information during the model
inference, micromolar-level inhibition was observed in vitro for two candidates out of four synthesized for each
target. Themost potent spike RBD inhibitor exhibited activity against several variants in live virus neutralization
assays. These results establish that a single, broadly deployable generative foundation model for accelerated
inhibitor discovery is effective and efficient, even in the absence of target structure or binder information.
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INTRODUCTION
De novo molecular design, the proposing of previously unidentified
compounds with desired properties, is a challenging problem with
applications in drug discovery and materials engineering. For in-
stance, a key objective in the drug discovery workflow is to identify
candidate molecules that can interact with and inhibit a known
drug-target protein and/or associated pathways with measurable ac-
tivity. Searching for those inhibitor compounds that serve as the
chemical starting points for further design of drug candidates typ-
ically involves high-throughput screening of libraries containing
standard chemical compounds or smaller chemical fragments.
Success rates for this method are between 0.5% and 1% (1), depend-
ing on the size of the library screened (typically on the order of 104
entries) and target characteristics. This low success rate is in part
due to the immense search space, now estimated to span between
1033 and 1080 feasible molecules (2), from which only a minute frac-
tion typically has the traits sought. Exhaustive enumeration of this
vast chemical space is infeasible, and prioritization of compounds to
be screened is therefore challenging to perform with confidence.

In addition to the need for thousands of screening experiments,
the initial selection of the library frequently requires detailed struc-
tural information on the target protein of interest bound to already

reported ligands, which is often not readily available. Further, dis-
covery is often performed using hand-crafted rules and heuristics to
link existing fragments and/or to avoid impractical synthetic path-
ways. Many inhibitor discovery approaches tend to focus on com-
pounds that have similar molecular structures to known inhibitors,
whereas more promising compounds could be found in other, pre-
viously less explored, molecular structures. Finally, inhibitor dis-
covery can be expensive, due to the cost of infrastructure,
compounds, and reagents. Consequently, the cost of developing a
single drug is high, reaching up to $2.8 billion, while the duration
from concept to market typically exceeds a decade (3). Therefore, a
more efficient approach is urgently needed, to enable distillation of
previously unidentified and promising molecules from the vast
chemical space, which includes molecules not yet synthesized.
This approach will enable experimental validation of a small selec-
tion of candidates, resulting in a higher inhibitor discovery rate, at a
reduced time and cost.

Deep learning–based generative models have the potential to
enable discovery of previously unidentified molecules with
desired functionality in a “rule-free” manner, as they aim to first
learn a dense, continuous representation (hereafter referred to as
a latent vector) of known chemicals and then modify the latent
vectors to decode into unseen molecules. Such models thus offer
access to previously unexplored chemical space unrestricted by con-
scious human bias. However, for the task of target-specific drug-like
inhibitor design, an “inverse molecular design” (4) approach must
be used, where the navigation through the learned chemical repre-
sentation is guided by molecular property attributes, such as target
inhibition activity and drug-likeness. In the case of designing inhib-
itors against a previously unidentified target, a sufficient amount of
exemplar molecules is required, which is likely unavailable and re-
quires costly and time-consuming screening experiments to obtain.
As most existing deep generative frameworks [see Sousa et al. (5) for
a review of generative deep learning for targeted molecule design]
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still rely on learning from target-specific libraries of binder com-
pounds, they limit exploration beyond a fixed library of known
and monolithic molecules while preventing generalization of the
machine learning framework toward previously unidentified
targets. As a result, while some studies (6–8) that use deep genera-
tive models for target-specific inhibitor design have been experi-
mentally validated, to our knowledge, demonstrations of those
models to tackle validated inhibitor discovery across dissimilar
protein targets, without having access to detailed target-specific
prior binding data (e.g., target binder molecules), have not been
reported.

Our work demonstrates the real-world applicability of a single,
unified inhibitor design framework, based on a deep generative
foundation model, across different target proteins simultaneously.
The generative framework only requires more readily available
target sequence information to guide the design. Further, the
work considers (i) off-target binding of the designed hits to
account for potential downstream adverse effects, (ii) identifying
hits even in the case of unknown binders, and (iii) prioritizing com-
pounds that are readily synthesizable. We use CogMol (9), a deep
generative model, to propose previously unidentified and chemical-
ly viable inhibitor designs for two important and distinct severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targets
—the receptor-binding domain (RBD) of the spike (S) protein
and the main protease (Mpro) protein. The deep generative frame-
work, built upon large-scale data of chemical molecules, protein se-
quences, and protein-ligand binding data, serves as a generative
foundation model for the target-aware inhibitor molecule design
without any further fine-tuning on the target-specific data and
can extrapolate to target sequences not present in the original train-
ing data. This broad generality of the CogMol framework therefore
places it within the emerging class of “foundation models” (10, 11),
which are pretrained on a broad set of unlabeled data and can be
used for different downstream tasks with minimal fine-tuning. A
set of previously unidentified molecules targeting SARS-CoV-2
proteins, which were designed by CogMol, was shared under the
Creative Commons license in April 2020 in the IBM COVID-19
Molecule Explorer platform (12). Here, we provide the first exper-
imental validation of the broad utility and readiness of the CogMol
deep generative framework, by synthesizing and testing the inhibi-
tory activity of a number of prioritized designs against SARS-CoV-2
RBD of the S protein and Mpro protein. We further demonstrate the
applicability of the binding affinity predictor model used in the
CogMol framework by subjecting it to virtual screening of a
library of lead-like chemicals and successfully identifying three
compounds that were confirmed to be bound at the active site of
the Mpro by crystallographic analysis, one of which showed micro-
molar inhibition.

To our knowledge, the present study provides the first validated
demonstration of a single generative machine intelligence frame-
work that can propose previously unidentified and promising in-
hibitors for different protein drug targets with a high success rate
while only using protein sequence information during design.
The demonstrated broad-spectrum antiviral activity of the designed
spike inhibitor against the SARS-CoV-2 variants of concern
(VOCs) further establishes the potential of such a deep generative
framework to accelerate and automate the hit discovery cycle, a
process known to suffer from low yield and high attrition rates, as

well as advance our scientific understanding about less-explored
drug targets.

RESULTS
Attribute-conditioned molecule generation with a deep
generative model
The overall inhibitor discovery pipeline is described in Fig. 1 and
consists of three main steps: (A to C) candidate design in a
target-conditioned manner using the deep generative framework,
(D) in silico screening for candidate prioritization, and (E) wet lab-
oratory validation of prioritized molecules. For de novo molecule
design, we used the deep generative framework CogMol as a foun-
dation, which enables the design of inhibitor molecules for different
targets, without requiring training or fine-tuning the model on
target-specific data. Hereafter, we refer to machine-designed previ-
ously unidentified compounds as de novo compounds throughout
the rest of the paper.

CogMol works as follows: First, it uses a variational autoencoder
(VAE) (13), a popular class of deep learning–based generative
models, as the generative foundation (Fig. 1A). AVAE is composed
of a pair of neural nets—the encoder-decoder pair. The encoder
neural network maps the simplified molecular-input line-entry
system (SMILES) (14) string of a molecule into a low-dimensional
representation. We will denote the encoder as qϕ(z∣x), where z is a
latent encoding of input SMILES x and ϕ represents the encoder
parameters. The decoder pθ(x∣z), which is also a neural network,
then converts the latent vector z back into the reconstructed
SMILES x. The encoder in a VAE is probabilistic in nature as it
outputs latent encodings that are consistent with a Gaussian distri-
bution. The decoder is therefore stochastic—it samples from the
latent distribution to produce an output x. The encoder-decoder
pair is trained end-to-end to optimize two objectives simultane-
ously. The first objective includes minimizing a loss term to
ensure accurate reconstruction of an input SMILES from the corre-
sponding latent embedding. The second objective consists of a reg-
ularization term to constrain the latent encodings to a standard
normal distribution. The resulting latent space is continuous, en-
abling smooth interpolation as well as random sampling of
diverse molecules from the latent space. To learn meaningful
latent molecular representations that have general knowledge
about diverse chemicals, in CogMol the VAE is trained on more
than 1.6 × 106 small molecules from public databases (see Materials
and Methods for details).

Once the chemical latent representation is learned, CogMol per-
forms attribute-conditioned sampling on that representation to
generate unseen molecular entities with properties biased toward
the design specifications. Specifically, the goal is to design drug-
like molecules with a high binding affinity to the target protein of
interest. Two z-based property predictors are used: a quantitative
estimate of drug-likeness (QED) predictor and a target-molecule
binding (strong/weak) predictor. Both predictors used the z encod-
ings of molecules as input. For the binding predictor, the protein
sequence embeddings from a preexisting deep neural net (15) was
concatenated with the molecular latent encodings and trained on
the general protein-molecule binding affinity data available in the
BindingDB database (Fig. 1B). Performance of the attribute predic-
tors is reported in Materials and Methods.
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Given a target protein sequence of interest, those two predictors
are used together to sample molecules with desired properties from
the latent space, by using the CLaSS sampling method proposed by
Das et al. (16). CLaSS relies on a rejection sampling schema to
accept/reject molecules while sampling from a density model of
the z embeddings. Acceptance/rejection criteria are determined
by the output probabilities of property predictors. See Materials
and Methods and algorithm S1 for further details on CLaSS.

Note, the CogMol generative framework relies on a chemical
VAE, a protein sequence encoder, and a set of molecular property
predictors, all of which are pretrained on large amount of broad
data—i.e., chemical SMILES, protein sequences, and available
protein-ligand binding affinities. The generative framework thus
has important information already encoded about protein sequence
homologies, chemical similarities, and protein-drug binding rela-
tions. This allows the framework to serve as a foundation, as it is
instantly adaptable to different targets, without any further model
retraining or fine-tuning on target-specific data. The approach
further saves time and cost associated with generating target-

specific binder libraries or resolving the target structure, which
are typically considered as privileged information, i.e., not
broadly available. The model can also extrapolate to a target that
does not share high similarity with the training data. This is
indeed the case for the SARS-CoV-2 targets considered (see table
S1) where the lowest Expect value, a measure of sequence homology
(lower values indicate high homology), with respect to the Bind-
ingDB protein sequences is 0.51 (query coverage = 40%) and 1.9
(query coverage = 26%) for Mpro and spike RBD, respectively.
This analysis implies that both targets are not substantially similar
to the protein sequences in the BindingDB database that was used
for training the binding predictor, spike RBD being more distinct
than Mpro; nor do they share any substantial sequence, structure,
or functional similarity to each other.

Candidate prioritization from the machine-designed
ligand library
The next stage includes in silico screening of generated candidates
(Fig. 1D) to prioritize them for synthesis and wet laboratory

Fig. 1. Overview of our inhibitor discovery workflow driven by CogMol, a sequence-guided deep generative foundation model. (A and B) Molecular Variational
AutoEncoder (VAE) training on large-scale chemical SMILES (x) data and mapping of existing protein-ligand affinity relations on the VAE latent space (z) by training a
binding predictor, respectively. For the latter, we leverage pretrained neural network (NN) embeddings of a large volume of protein sequences. (C) Schematic represen-
tation of Controllable Latent (attribute) Space Sampling (CLaSS), which samples from the model of VAE latent vectors by using the guidance from a set of molecular
property predictors (e.g., protein binding) such that, for a given target protein sequence, sampled z vectors corresponding to strong target binding affinity are accepted,
while vectors corresponding toweak target binding affinity are rejected. The accepted z vectors are then decoded into molecular SMILES. (D) Candidates are then ranked
and filtered according to chemical properties, docking score to target structure, and predicted retrosynthetic feasibility and toxicity. (E) A small set of prioritized mol-
ecules are synthesized, followed by wet laboratory testing in specific in vitro assays to confirm target inhibition. (F) In the present case, for each target, of the four
molecules tested, two showed promising levels of inhibition. The hit discovery rate reported is therefore the fraction of the AI-designed compounds that were synthesized
and experimentally tested, which showed inhibition in target-specific assays. We also report approximate sample sizes and timeline for each stage of our discovery
workflow. Note the timeline does not include the training and testing of the generative and predictive machine learning models.
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evaluation. For practical considerations, we sought to keep the
number of prioritized machine-designed de novo compounds to
be synthesized and tested very small—around 10 for each target,
as opposed to screening thousands of existing chemicals in a
more traditional setup, as synthesis of previously unknown chemi-
cals is costly and time-consuming, particularly during a global pan-
demic. Careful analysis, including machine learning–based
retrosynthesis predictions, was conducted to define this set. We
used a combination of physicochemical properties (estimated
using cheminformatics), target-molecule binding free energy pre-
dicted by docking simulations, and retrosynthesis and toxicity pre-
dictions by using machine learning. For retrosynthesis prediction,
we used the IBM RXN platform (17) that is based on a transformer
neural network trained on chemical reaction data. For toxicity pre-
diction, an in-house neural network–based model trained on pub-
licly available in vitro and clinical toxicity data was used. See
Materials and Methods for details of candidate filtering and prior-
itization criteria. At the end of the in silico screening, the number of
candidates per target was around 100, which was further narrowed
down to around 10 per target by using the discretion of Enamine
Ltd., the chemical manufacturer. Feasibility of the predicted reac-
tion schema, as evaluated by organic synthetic chemist experts, as
well as commercial availability and cost of the predicted reactants,
was used to finalize the candidate synthesis list. The final four can-
didates for each target were chosen based on the synthesis cost and
delivery time, as provided by Enamine.

Synthesis of de novo compounds
Figure 2 lists the eight de novo compounds designed by the gener-
ative machine learning framework that were synthesized (see tables
S2 and S3 for the predicted molecular properties). Details of the ex-
perimental synthesis protocols are provided in Materials and
Methods and figs. S1 to S3. We also provide a comparison
between the predicted and the actual retrosynthetic pathways for
those eight machine-designed compounds in table S4. Five were
synthesized using the top predicted pathway of IBM RXN. For
two compounds, GEN626 and GEN777, predictions were found
to be unsuccessful, so alternative pathways as designed by
Enamine were used (see Materials and Methods for details). For
GXA104, reactants included in the RXN prediction were not avail-
able, so an alternative route was used. Overall, these results show the
usefulness of machine learning–based retrosynthesis predictions for
reliably identifying plausible candidates and recommending viable
synthesis routes.

De novo RBD-targeting compounds exhibit spike-based
pseudovirus and live virus inhibition
For the CogMol-designed compounds targeting the spike RBD, we
measured their neutralization ability using a spike-containing pseu-
dotyped lentivirus and a live viral isolate. These results are summa-
rized in Fig. 3. Out of the four candidates, GEN725 and GEN727
showed IC50 (half-maximal inhibitory concentration) values less
than 50 μM (18.7 and 2.8 μM, respectively), indicating discovery
of previously unidentified hits with reasonable inhibition of the
pseudovirus at a 50% success rate (Fig. 3A). GEN727 exhibited
live virus neutralization ability as well (Fig. 3B).

We further checked if GEN727 is effective across different SARS-
CoV-2 variants. We compared the neutralization of viral VOCs
—Alpha, Beta, Delta, and Omicron—with neutralization of

Victoria (SARS-CoV-2/human/AUS/VIC01/2020), a Wuhan-
related strain isolated early in the pandemic from Australia, in
both pseudovirus and live virus. Figure 3C shows that GEN727 neu-
tralizes spike-containing pseudovirus across all VOCs with an IC50
value between 0.7 and 2.8 μM. Live virus data also show inhibition
with an IC50 of less than 50 μM for Victoria, Alpha, Beta, and
Delta (Fig. 3D).

The virus neutralization results do not demonstrate direct inter-
actions of GEN727 with the spike. To probe this, we performed
thermofluor measurements to determine if GEN727 affected the
stability of the spike. The presence of the compound appeared to
reduce the speed of the transition of the spike to a less stable
form; after overnight incubation at pH 7.5, very little of the spike
population remained in the more stable form with the higher Tm
of 65°C (see fig. S9).

De novo spike inhibitors target the conserved lipid-binding
pocket in RBD
It should be noted that the detailed binding pose data have been im-
possible to obtain for the RBD with either of the de novo inhibitors.
Therefore, we used in silico simulations to provide insight into the
plausible binding modes. We first perform docking simulations on
the generated molecules in the presence of spike RBD [Protein Data
Bank (PDB) ID: 7Z3Z; see Materials and Methods for details].
Figure 4 reveals that GEN727 contacts with several tyrosines and
hydrophobic residues, such as Tyr365, Tyr369, and Phe374, from
RBD. Docking simulations revealed an interaction pattern similar
to that of GEN727 for GEN725 as well (see fig. S10). Those tyrosines
and phenylalanines constitute the lipid-binding pocket of the spike
RBD. It has been found that the pocket is conserved across seven
coronaviruses that infect humans and, therefore, may offer a
target for broadly active antiviral agents (18). This pocket is
distant and distinct from the sites of binding of the vast majority
of neutralizing antibodies, which cluster at the site of ACE2
binding (see Fig. 4E). Binding of the lipid has been reported to sta-
bilize the closed form of the spike, thereby interfering with receptor
interactions, virion attachment, and subsequent host cell entry (18–
20). Further, the lipid binding is considered “a conserved hallmark
in pathogenic β-coronavirus spike proteins from SARS-CoV to
Omicron” and experiments show that lipid treatment of cells that
are already SARS-CoV-2–infected substantially reduces the produc-
tion of virions or induces deformity in the produced virions (21).
Recently, nuclear magnetic resonance experiments (22) have con-
firmed binding of a drug molecule Lifitegrast to the lipid binding
pocket, which is used to treat symptoms of dry eye and has shown
dose-dependent antiviral potency against SARS-CoV-2 in vitro
(23). Earlier in vitro experimental study showed no substantial
direct interaction between the lipid molecule and human ACE2
(24), consistent with the lower docking score (−8.1 kcal/mol for
RBD versus −7.4 kcal/mol for human ACE2) between GEN727
and ACE2 found in our calculations. Also, docking reveals attach-
ment of GEN727 to ACE2 at a site, which is far from the spike
binding site (see fig. S11). GEN727 is also quite dissimilar to Lifite-
grast, with a Tanimoto similarity of only 0.113.

The docking of GEN727 strikingly recapitulates the binding of
the natural lipid (see Fig. 4D), suggesting that the lipid binding
function maintains the conserved site targeted by GEN727.
Further insight into GEN727 binding to the lipid binding site
comes from molecular dynamics (MD) simulations (see Materials
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Fig. 2. De novo designed and commercially sourced molecules. (A) Molecules with the prefix “Z” are molecules from the Enamine Advanced Collection catalog
targeting Mpro. Molecules with the prefix “GEN” are generated candidates targeting the spike RBD (B), while those with the prefix “GXA” are generated candidates tar-
geting Mpro (C).
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and Methods). Figure 5 shows stable interactions between GEN727
and conserved residues from the lipid binding pocket throughout 1
μs of simulation time. Consistently, the total GEN727-RBD interac-
tion energy estimated from the MD simulation is −46.68 ± 0.64
kcal/mol.

The failure to experimentally resolve the binding pose of
GEN727 likely stems from the fact that GEN727 binds to the lipid
binding pocket. As a consequence of the biological function, the
pocket becomes occupied at an early stage in the formation of the
particle. Once the particle is released, there is a rather rapid conver-
sion to a more open form and the loss of lipid. This conversion is
not reversible, and we have been unable to rebind the natural lipid
or any other compound. The viral and pseudoviral assays circum-
vent this by allowing substitution of the lipid by the compound (and
subsequent blocking of the virus replication cycle) at an earlier stage
in the virus life cycle than we can capture in our structural studies.
Nevertheless, the thermofluor results (fig. S9) showed an (albeit
weak) indication that incubation of spike with GEN727 somewhat

destabilized the spike, suggestive of a direct interaction underlying
its broad-spectrum neutralization ability.

The viral and pseudoviral neutralization experiments and the
simulation findings reported in this study, together with the
recent literature, thus further open the door for a lipid-mimetic an-
tiviral intervention strategy, as a small molecule, which is designed
by artificial intelligence (AI) and putatively targets the conserved
lipid binding pocket, shows broad-spectrum antiviral activity for
the first time.

Mpro inhibition of de novo and commercially sourced
compounds
To establish the generalizability and readiness of our framework, we
next provide experimental validation results of the four prioritized
de novo Mpro inhibitor candidates. Enzymatic inhibition by the
CogMol-designed Mpro-specific molecules was measured by solid-
phase extraction purification linked to mass spectrometry (Rapid-
Fire MS) (25). The results are presented in Fig. 6A. Out of the four

Fig. 3. SARS-CoV-2 spike neutralization assays. Neutralization assay against SARS-CoV-2 pseudotyped lentivirus (A) and Victoria live virus (B) for four CogMol-gen-
erated compounds with DMSO as a control. (C) The most effective compound, GEN727, was selected for a pseudoviral neutralization assay against Victoria, Alpha, Beta,
Gamma, Delta, and Omicron variants of concern (VOCs), as well as (D) the live virus neutralization assay. Error bars show the standard error of each measurement over
two trials.
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Fig. 4. Docked structure of SARS-CoV-2 spike protein RBD in complex with GEN727. (A) Ribbon representation with transparent surface of the spike trimer. Wheat,
gray, and light pink color is used to delineate each protomer. GEN727 (shown in stick representation) docked to a spike monomer structure is superimposed for reference.
(B) Surface representation depicting the overall docking pose of GEN727 at the lipid binding site of the spike RBD. (C) Schematic of GEN727 interacting with the RBD. (D)
Docked GEN727 (cyan) in reference to stearic acid lipid (magenta) bound to the spike RBD. (E) Stearic acid binding pocket. Stearic acid (shown as sticks, almost completely
buried) is distant from the sites of binding of most neutralizing antibodies, which attach much higher up the molecule, overlapping the site of attachment of ACE2 (the
green surface) and thereby blocking attachment to the host cell.
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de novo compounds tested for this target, GXA70 and GXA112
both showed Mpro inhibition in the micromolar range, with IC50
values of 43 and 34.2 μM, respectively. These data are considered
to be a good baseline for initial hit discovery, similar to those
used in the prior studies (7, 26–29). This, again, implies a 50%
success rate of hit discovery for Mpro. It is important to note that
prior studies do leverage knowledge of existing active molecules,
which is not the case in the present work, as the goal here is to sim-
ulate the scenario of targeting less explored proteins. Further, al-
though target structure–based docking simulations are used for
candidate prioritization, the inhibitor design by inferring from
CogMol relies only on the target protein sequence and does not
need detailed characterization of the ligand binding pocket within
the target protein. This advantage is useful while designing inhibi-
tors for previously unidentified targets and/or little-known binding
pockets in a well-studied target.

We further tested the generalizability of the pIC50 predictor
(trained directly on the molecular SMILES and protein sequences)
by validating predictions on selected commercially available lead-
like compounds from the Enamine Advanced Collection (30). For
this purpose, we selected the top three Enamine compounds based
on their predicted pIC50. One of these Enamine compounds showed
inhibition (IC50 = 35.5 μM). Based on these results, we cocrystal-
lized Mpro in the presence of this compound (ID Z68337194) and
successfully obtained crystals (see table S5). The crystal structure de-
termined revealed Z68337194 bound in the active site pocket. Struc-
tures of the other two commercially available compounds selected
based on the pIC50 predictions were also found bound to the active
site of Mpro, although these compounds showed no detectable inhi-
bition of Mpro using the RapidFire MS–based assay.

Insights into the binding mode of the Mpro inhibitors
Detailed analysis of the structure obtained for the complex of Mpro

with Z68337194 (see Fig. 6, B to D) reveals that the sulfonamide

group sits in the P4 subsite (31) and the amine forms an electrostatic
interaction with the backbone carbonyl of Glu166. This interaction
mimics that made by the P4 site amide of nirmatrelvir (PF-
07321332) (see fig. S12) (32). Z68337194 occupancy refines to ap-
proximately 50%. In the active site, shifts are observed in the posi-
tions of Pro168, Leu167, Glu166, and Met165 to accommodate ligand
binding. The compound does not sit deeply in the active site and
does not interact with the catalytic machinery, providing opportu-
nities to elaborate upon the compound to take advantage of further
subsites. In the captured crystal form, the active site sits at the inter-
face between symmetry-related protein monomers, and as a result, a
symmetry-related molecule provides additional interactions—pri-
marily a stacking interaction between the ligand phenylamine
ring and Pro252. Additionally, a hydrophobic pocket in the symme-
try mate formed primarily by Gln256 and Val297 accommodates the
chlorinated ring.

As experimental determinations of the structure of Mpro in
complex with the validated de novo inhibitors were not fruitful,
we used docking simulations to provide insight into the plausible
binding modes with the target structure [PDB ID: 6LU7 (31) for
Mpro]. As shown in Fig. 7, both GXA112 and GXA70 revealed
mainly hydrophobic contacts to the residues from the P1 and P2
subsites, which are the hotspots of interactions (31). The hydrogen
bonding pattern revealed by the two molecules is, however, starkly
different: GXA112 forms hydrogen bonding mainly with P1′ site
(T25), whereas GXA70 interacts with the P2 residues (D187 and
Y54). The nonextensive and diverse interaction pattern of the de
novo and commercially sourced Mpro inhibitors reported in this
study is consistent with reported observations for noncovalent in-
hibitors (33).

Fig. 5. Model of GEN727 in the lipid binding pocket of SARS CoV-2 RBD. (A) Snapshot from MD simulation at the end of 1 μs. (B) Plot of protein-ligand distance
[between the center of mass of GEN727 (shown in cyan/blue) and the center of mass of the lipid binding pocket, heavy atom only, in nm], as a function of simulation time
(in ps). The lipid binding pocket is defined by five Phe residues, Phe338, Phe342, Phe374, Phe377, and Phe392.
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Novelty of the de novo designs and comparison with
known SARS-CoV-2 inhibitors
To characterize the novelty of the de novo bioactive hits, we identi-
fied the nearest compound from the PubChem database, in terms of
their Tanimoto similarity (34) estimated using Morgan fingerprints
(35). Figure 8 reveals that none of the de novomolecules shares ≥0.7
Tanimoto similarity with PubChemmolecules. For additional anal-
yses, see table S6.

Drug-likeness analysis of validated hits
Finally, we have predicted the drug-like nature and the medicinal
chemistry friendliness of the experimentally validated hits found
in this study, which are either de novo designed or commercially
available. For this purpose, the SwissADME (36) software was
used. Table S7 provides a summary of those results (complete anal-
ysis reports can be found in figs. S13 to S18), suggesting that the
inhibitor hits satisfy several typical properties of drug-like, orally bi-
oavailable compounds in terms of the drug-likeness scores and bio-
availability. Further, the compounds rarely contain any medicinal
chemistry alerts and fulfill most criteria for lead-likeness. These
analyses are consistent with low predicted toxicity and positive
target selectivity (see Materials and Methods and tables S2 and
S3). Such favorable bioavailability and drug-likeness suggest

potential of these inhibitor hits as a starting point for further opti-
mization toward compounds with more potency and better phar-
macokinetic properties, by using various machine learning–based
optimization techniques (37) and/or medicinal chemistry
approaches.

DISCUSSION
The discovery of drug-target protein inhibitors has been greatly ad-
vanced by the combined power of numerous in silico approaches.
Nevertheless, even the most effective methods face broad challenges
that are at the same time inherent to general inverse molecular
design tasks and specific to biological target-ligand binding chem-
istry. The first of these pertains to the vastness of the chemical space
being explored and its impact on the throughput and practical
utility of the prevailing methods. For example, the use of docking
or molecular simulation methods to screen on the order of 108 to
109 commercially available compounds would incur a prohibitively
high computational cost, estimated to reach 10 central processing
unit (CPU) years (38) per target (as opposed to screening of less
than a thousand machine-designed de novo candidates via
docking in the present study).

Fig. 6. Inhibition of SARS-CoV-2 Mpro by machine-designed de novo and commercially sourced compounds. (A) Half-maximal inhibitory concentration (IC50) from
RapidFire MS experiments for de novo and commercial Mpro inhibitor candidates. Symbol “—” indicates that no inhibition was detected. Candidates marked with † had
successful crystal structures determined. (B toD) Crystal structure of the SARS-CoV-2Mpro in complex with Z68337194. (B) Ribbon representation with transparent surface
of the Mpro dimer colored in wheat and light pink to delineate each protomer. The active site of each protomer is shown with Z68337194 in stick representation. (C)
Surface representation showing the overall bindingmode of Z68337194 at the active site of Mpro. (D) Schematic representation of the interactions of Z68337194withMpro.
Residues indicated with * are from a symmetry-related Mpro protomer.
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The second challenge is availability of critical information:
While methods such as pharmacophore modeling and molecular
docking and simulations have been used successfully in virtual
screening or design of molecules (26–28, 38–40), such approaches
generally rely upon initial design constructs obtained from available
crystal structure(s) of a target protein bound to a candidate com-
pound or fragment hits. For example, Glaab et al. (27) have reported
experimental validation of computationally screened Mpro inhibi-
tors: out of 95 candidates tested in vitro, 2 showed IC50 values
less than 50 μM. A variety of different computational approaches
were used for screening: (i) searching for the nearest neighbors of
a known Mpro inhibitor, (ii) Mpro structure-based screening using
molecular docking followed by molecular simulations, and (iii)
binding prediction using a machine learning model trained on ex-
isting Mpro binders and nonbinders. Such knowledge of structures

bound to known inhibitors is not guaranteed to be available for all
drug targets of interest and may take months to derive experimen-
tally, and consequently, these approaches are not broadly applicable
to the case where target structures or inhibitors are unknown. Re-
cently, the field of structural biology has been revolutionized by
deep learning–based methods [e.g., AlphaFold (41) and RoseTTA-
Fold (42)] for predicting the three-dimensional structure of a
protein from its sequence. While they predict structures with
often astonishing accuracy, the structural models derived from
neural networks are still relatively limited in aiding the understand-
ing of natural protein function, in particular understanding the in-
teractions with protein partners or small ligands. Therefore, the
deduction of functional ligand and drug interaction still remains
predominantly reliant on resource-intensive experimental

Fig. 7. Docked structures of SARS-CoV-2 Mpro with GXA112 and GXA70. Surface representation depicting the overall ligand binding modes of (A) GXA112 and (C)
GXA70 at the active site of Mpro. Schematic representation of the ligand interactions with Mpro for (B) GXA112 and (D) GXA70.
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(bio)chemical techniques, e.g., assays, structural determination, and
synthesis.

In general, reliance on privileged information (the target protein
structure and/or known hits) confines the discovery space to the
neighborhood of known chemical entities (27). This dependency
therefore presents a practical challenge to expand the accessible
chemical exploration space and to devise more readily generalizable
approaches to inhibitor design for multiple targets, the structure
and binders of which may not be known.

Previous generative machine learning models that have been
subject to experimental validation of de novo–designed molecules
were primarily either trained or fine-tuned on a target-specific
ligand library (6, 7, 43–47). This work establishes the basis for an
alternative discovery paradigm, wherein a generative model is
used to discover previously unidentified inhibitor hits for different
protein targets in an automated fashion. To our knowledge, this is
the first validated demonstration of a single generative model en-
abling successful and efficient discovery of drug-like inhibitor mol-
ecules for two very different target proteins, based only on the
protein sequence that is used during model inference. The genera-
tion of previously unidentified, drug-like, target-specific inhibitor
molecules is automated, as the approach performs attribute-con-
trolled sampling on the learned abstract molecular representation
space and does not rely on virtual screening of generated com-
pounds that were designed using cumbersome rule-based fragmen-
tation [e.g., as in Morris et al. (26)]. Moreover, to our knowledge,
none of the earlier studies considers the challenging, but highly
practical, scenario of designing and experimentally validating in-
hibitors for several distinct targets in parallel, without using the
target binder information, which resembles the scenario of relative-
ly unknown targets. Further, to our knowledge, evaluation of AI-
generated retrosynthesis pathway predictions against wet laboratory
compound production has not been reported at this scale for AI-
designed, previously unidentified inhibitors. Learning from com-
parisons between actual and predicted synthesis pathways can
help the AI model to be more accurate and provide better coverage.

The sequence information of previously unidentified drug
targets typically emerges at a much faster (days versus months)
pace than their detailed structural information, thanks to the

latest advances in sequencing. The structural deduction of target-
ligand interaction takes even longer. In contrast, as shown in
Fig. 1, it took us less than a week to design and prioritize the set
of candidate molecules to be synthesized and tested in wet labora-
tory for the two SARS-CoV-2 targets, as our approach does not
reply on target structure or binder information. The information
on SARS-CoV-2 sequences was made publicly available starting
around January of 2020, and CogMol-designed candidates were
open-sourced in the IBM COVID-19 Molecule Explorer platform
in April 2020. While the prioritized de novo compounds were
ordered in August 2020, the first round of wet laboratory validation
was completed in October 2020. This rapid pace of previously un-
identified drug-like inhibitor discovery across two distinct drug
targets, when the world was experiencing a pandemic, shows the
potential of a sequence-guided generative machine learning–
based framework to help with better pandemic preparedness and
other global emergencies.

The overall success rate of inhibitor discovery found here is 50%
for both targets, which required synthesizing and screening only
four compounds per target. In addition, one of the three commer-
cially sourced compounds also showed Mpro inhibition. This result
shows promise of the proposed approach, particularly when com-
pared to a <10% hit discovery obtained typically using high-
throughput screening (1, 27). Additionally, the validated de novo
inhibitors reported in this study appear to be distinct, based on mo-
lecular similarity analyses with existing chemicals and SARS-CoV-2
inhibitors, indicating substantial creativity by the generative frame-
work, which is not possible when screening known compounds.
The compounds also satisfy criteria of drug-likeliness and bioavail-
ability. The efficiency of inhibitor discovery realized here and the
demonstrated generalizability to distinctly dissimilar targets advo-
cate for pretraining on a large volume of general data, e.g., chemical
SMILES, protein sequences, and protein-ligand binding affinities.
Conceptually, this is a key feature of so-called foundation models
(10, 11), which are trained on broad data at scale and can be
easily adapted to many tasks. This perspective is also consistent
with the recent work, establishing the informative nature of a
deep language model trained on a large number of protein sequenc-
es, in terms of capturing fundamental properties (16, 48). Thus, the

Fig. 8. Molecular similarity with PubChem compounds. Top: Validated de novo compounds targeting (A) Mpro and (B) spike RBD. Bottom: Most similar molecules from
PubChem. Values in parenthesis indicate Tanimoto similarity between the machine-designed and nearest PubChem molecules.
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validation of the framework reported here satisfies the generally ac-
cepted criteria of a foundation model, in the sense that it is trained
on a broad set of unlabeled data, without a specific bias to a partic-
ular target, and is applicable without little or no fine-tuning to the
general target-specific inhibitor discovery problem. The broad-
spectrum efficacy across SARS-CoV-2 VOCs of the most potent
spike hit observed is a further example of the foundational aspect
of the model: The VOC sequences were never made available to
the generative framework during training or inference. Moreover,
to our knowledge, this is the first report of a previously unidentified
spike-based noncovalent inhibitor that exhibits broad-spectrum an-
tiviral activity. This contrasts with therapeutic monoclonal antibod-
ies (mAbs), the only drugs currently in use that target the spike
protein, where rather few are effective across VOCs (49). While
the mutability of the spike is obvious because of the pressure to
escape antibody neutralization, the widespread use of small-mole-
cule drugs will also apply a strong pressure—as seen for instance in
the rapid development of resistance to the first generation of
anti–HIV-1 drugs. The choice of a binding site that is likely to be
preserved to maintain a biological function, as seems to be the case
with the RBD lipid pocket, is probably about the best we can do in
the early stages of drug discovery to build in some resilience.

Together, the results presented here establish the efficiency, gen-
erality, scalability, and readiness of a generative machine intelli-
gence foundation model for rapid inhibitor discovery against
existing and emerging targets. Such a framework, particularly
when combined with autonomous synthesis planning and robotic
synthesis and testing (8), can further enhance preparedness for
novel pandemics by enabling more efficient and precise antiviral
design, which can chart a path toward better therapeutics. The gen-
erality and efficiency of the mechanisms used in CogMol for pre-
cisely controlling the attributes of generated molecules, by
plugging in property predictors post hoc to a learned chemical rep-
resentation, makes it suitable for broader applications in advancing
molecular and material discoveries. For example, a similar frame-
work has already enabled previously unidentified photoacid gener-
ator molecule design in a data-efficient manner for performant and
sustainable semiconductor manufacturing, which has been validat-
ed by subject matter experts (SMEs) (50).

There remains substantial scope for improving the discovery
power of the machine intelligence framework. For example, incor-
poration of the 3D structural information of the binding pocket,
when available, can be used, together with the sequence informa-
tion, to encode the target (51, 52), or the encoding of the residues
composing the binding pocket can be used to guide the binder mol-
ecule design. However, it is noteworthy that guiding the binder gen-
eration by the target sequence information opens other avenues of
exploration, such as designing of modulators or designing inhibi-
tors that act via different mechanism. For example, the docking
and MD simulations indicate that the experimentally validated
Mpro inhibitors are orthosteric, while the spike inhibitors are allo-
steric in nature. Specifically, it is established that lipid binding in-
hibits by an allosteric mechanism, namely, restraining the RBDs to a
conformation where they cannot engage the ACE2 receptor. The
generations can be further constrained by secondary properties
(e.g., solubility, number of hydrogen bonding donor/acceptor
sites, and structural diversity), which are potential directions for
further work. Iterative optimization methods (37), based on exper-
imental feedback, can be adopted to improve the initial discoveries.

Active learning paradigms can be explored for improving the
process efficiency.

We would like to emphasize that the success of the inhibitor
design or subsequent optimization depends on the guidance
from, and therefore, accuracy of, the inhibitory potency predictor.
The predictor, in the present study, is trained on IC50 values report-
ed in the BindingDB database. It is noteworthy that as the drug
target becomes dissimilar to the ones covered within the database,
as in the case of spike RBD in the present case, the confidence of the
AI predictor naturally gets lower. Also, the BindingDB database has
a dataset bias toward micromolar level inhibitors, as evident by the
mean (6.34) and SD (1.46) of the reported pIC50 values, which is
carried over to the affinity predictor trained on this database.
Further confirming this point, only 14.2% of reported IC50 values
in our training set are in the range of <0.01 μM, while 81.14% fall
in the range of 0.01 to 100 μM.

This proof-of-concept study validates a small number of com-
pounds selected from ≈100 top-ranked AI designs, which are select-
ed based on several factors, such as cost and human effort required
for synthesis during a pandemic, as well as off-the-shelf availability
of the reactants. It is possible that the compounds that were not se-
lected for final validation can have similar or better inhibitory po-
tential, calling for further large-scale investigation that is beyond the
scope this proof-of-concept study. Future work will also consider
investigating the effect of training the generative model on
broader-scale data, e.g., as used in recently published MoLFormer
model (53), to explore the previously unexplored areas (molecules
with atypical scaffolds) of the inhibitor landscape.

It should be also emphasized that this proof-of-concept study
does not include experimental validation of other relevant attributes
considered, such as ADME properties, of the discovered molecules,
which is beyond the scope of this work. Further studies are needed
to confirm binding mechanisms of the proposed inhibitors to
SARS-CoV-2 targets. Nevertheless, we believe that, when combined
with medicinal chemistry approaches and human expert supervi-
sion, the de novo compounds reported here, as well as the frame-
work, may serve as inspiration for a unique and interesting class
of broad-spectrum antivirals.

MATERIALS AND METHODS
CogMol overview
SMILES VAE as a molecule generator
CogMol leverages a VAE (13, 54) paradigm as the base generative
model for molecules. The encoder in the VAE encodes molecules
to a latent vector representation. The decoder maps latent vectors
back to molecules. Arbitrary molecules are generated by sampling
from the latent space. Here, molecular SMILES is used as the input
and output to the encoder and the decoder, respectively. A bidirec-
tional gated recurrent unit (GRU) with a linear output layer was
used as an encoder. The decoder contained a three-layer GRU
with a hidden dimension of 512 units and dropout layers with a
dropout probability of 0.2. The parameters for the encoder-
decoder pair is learned by optimizing a variational lower bound
on the log-likelihood of the training data. The loss objective is com-
posed of a reconstruction loss and a Kullback-Leibler (KL) diver-
gence [a measure of divergence between the fixed prior
distribution p(z), standard normal in this case, and the learned
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distribution qϕ(z∣x)] term:

LVAEðθ;ϕÞ ¼ EqϕðzjxÞ½logpθðx jzÞ� � DKL½qϕðz jxÞkpðzÞ�

This implies that samples can be generated from random points
in the latent space, while points close in the latent space will be
decoded into chemically similar molecules.

The VAE was first trained for 40 epochs on 1.6 million chemical
molecules from the MOSES benchmarking dataset (55), which was
chosen from the larger ZINC Clean Leads (56) collection. Then,
along with the KL and reconstruction loss, the VAE was also
jointly trained for another 15 epochs to predict the molecular attri-
butes QED and synthetic accessibility (SA) from the latent vectors z.
Two separate linear regression models were trained such that the
VAE latent space becomes organized based on those physical prop-
erties and thus serves as an approximation of the joint probability
distribution of molecular structure and the chemical properties
(57). The training was further continued for 50 epochs on around
211,000 ligand molecules from the BindingDB database (58). This
paradigm therefore served as a molecule generator that is unbiased
toward any particular target. The detailed evaluation of the final
model is reported in (9).

The final VAE generates SMILES strings by sampling from
qϕ(z∣x) that are 99% unique and exhibit greater than 90% chemical
validity, while root mean square errors (RMSEs) on the QED and
SA prediction are 0.0262 and 0.0175, respectively. The comparison
of the unconditionally generated molecules from CogMol with five
baseline generative models is reported in table S8, showing compa-
rable performance in terms of producing molecules that are valid,
unique, diverse, and pass different medicinal chemistry and
other filters.
Molecular attribute predictors for conditional generation
Two predictors trained on the latent z vectors were used for target-
specific inhibitor molecule design, which are also drug-like. The
QED regressor was composed of four hidden layers with 50 units
each and ReLU nonlinearity. Further, a target-chemical binder
(strong/weak) predictor was trained on the latent z vectors of chem-
icals and the pretrained protein sequence embeddings (15), which
used the data released as part of DeepAffinity (59). A pIC50 value of
>6 was used as a threshold to decide if a compound was a strong
binder. The protein embeddings and the molecular embeddings
were concatenated and passed through a single hidden layer with
2048 units and ReLU nonlinearity. The z-basedQED and pIC50 pre-
dictors yield an RMSE of 0.0281 and 1.282, respectively. These sets
of predictors were used for controlled sampling from the VAE
model to design molecules with desired attributes.
CLaSS sampling used for conditional generation in CogMol
We briefly describe Conditional Latent (attribute) Space Sampling
(CLaSS) (16) here. CLaSS uses (i) a density model of the VAE latent
representation and (ii) a set of molecular attribute predictors trained
on the VAE latent vectors to generate molecules in an attribute-con-
trolled manner. For this purpose, a rejection sampling approach
using Bayes’ theorem is used. To elaborate further, first an explicit
density model is learned on the latent embeddings of the training
data to ensure that sampling is uniformly random. A Gaussian
mixture model with 100 components and diagonal covariance ma-
trices was used for this purpose. Assuming that the attributes are all
independent of each other and can be conditioned on the latent

embeddings (i.e., the latent space encompasses all combinations
of attributes), Bayes’ rule was then used to define the conditional
probability of a sample, given certain properties in terms of the pre-
dictor models above. Finally, we use this definition in a rejection
sampling scheme such that samples drawn from the density
model are accepted according to the product of the attribute predic-
tor scores. For more details, see algorithm S1. Generating the
875,000 samples for each target took around 2 days using an
NVIDIA Tesla K80 GPU.

Ranking and prioritization
The filtering criteria included molecular weight (MW) less than 500
Da, QED greater than 0.5, SA less than 5, and octanol-water parti-
tion coefficient (logP) less than 3.5. MW, SA, logP, and QED were
calculated using the RDKit toolkit (60). A pIC50 predictor trained
on DeepAffinity (59) data was also used for ranking the designed
molecules based on predicted affinity (AFF). A SMILES-based
binding affinity (pIC50) predictor was used for this purpose.
SMILES sequences were first embedded using long short-term
memory units (LSTMs). Those SMILES embeddings were then con-
catenated with pretrained protein embeddings (15), resulting in
RMSE of 0.8426 on the test data. A threshold for predicted pIC50
affinity with the respective target sequence was set—greater than
8 for molecules targeting Mpro and greater than 7 for molecules tar-
geting the spike RBD. This affinity predictor was also used to esti-
mate target selectivity (SEL) (9), defined as the excess affinity to the
target compared to a random set of proteins, lack of which is a
known cause for drug candidate failure. A positive selectivity
value therefore indicates less promiscuous nature of a molecule
and is considered as a good candidate for further evaluation.

The molecules were also evaluated for predicted toxicity (61)
across a total of 12 in vitro (62) and 1 clinical end-points (63).
Morgan fingerprints were used as the input features for the toxicity
prediction model. A multitask deep neural network containing a
total of four hidden layers was used (61): Two layers were shared
across all toxicity endpoints, and two were specific to each of the
endpoints. A ReLU activation was used for all layers except for
the last, for which a sigmoid activation was used. Molecules that
were predicted to have no toxicity to any of the toxicity endpoints
were progressed in the workflow.

We then ran docking simulations on a prioritized set of designed
molecules, less than 1000, with their respective target structures, as
the docking energy can provide an indication of actual inhibition.
For spike, we used a lipid-bound conformation (PDB ID: 7Z3Z) and
kept the protomer frozen during docking, as the goal was to find
molecules that dock to the lipid-bound spike RBD. Our intent
was to exploit the conserved hydrophobic lipid binding pocket for
developing inhibitors that can trap the spike protein in the closed
conformation as this is known to have reduced interaction with
the host ACE2 receptor (18, 19), rather than targeting the ACE2
binding region that is prone to frequent mutation, resulting in bal-
ancing ACE2 receptor binding and allowing escape from neutraliz-
ing antibodies. For Mpro, we used a monomer from the first
structure determined and deposited with the PDB for SARS-CoV-
2 Mpro complexed with the covalent inhibitor N3 [PDB ID: 6LU7
(31)] and set the search space to fully encompass the receptor.
Docking was performed using AutoDock Vina (64) run blindly
over the entire protein structure with an exhaustiveness of 8, and
repeated five times to find the optimal conformation. Compounds
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with a binding free energy given by docking of less than −8.4 kcal/
mol with Mpro were selected. For the generated spike compounds,
we prioritized those that exhibited a binding free energy less than
−7.5 kcal/mol. Further, we prioritized the compounds that were
docked less than 3.9 Å from the lipid binding pocket in the final
docked configurations.

The surface and ribbon representations of ligands docked (or
bound) to the target structure were produced with either PyMol
(65) or chimeraX (66), and the protein-ligand interaction plots
were produced with LigPlot+ (67).

In contrast with large-scale screening, docking is only used to
provide additional validation of the binding affinity predictor
model and therefore can be run after filtering candidates based
on the easily computed properties described above. After this filter-
ing, we were left with fewer than 1000 molecules combined between
the two targets on which to run docking. Each simulation takes only
a few minutes and can be run independently in parallel, which
means that the entire in silico screening can be performed in less
than a day when run on a compute cluster consisting of Intel
Xeon E5-2600 v2 processors.

Molecular dynamics
MD simulations were started from the lowest energy docked struc-
ture. The complexes were then solvated in a box of SPC/E (68) water
molecules, and two chloride ions were added to neutralize the
charge. Simulations were performed at 300 K using periodic boun-
dary conditions and the all-atom optimized potentials for liquid
simulations (OPLS-AA) force field (69). After equilibrating at
proper temperature and pressure, two independent production sim-
ulations were run, each for 1 μs, using a modified Berendsen ther-
mostat and a Parrinello-Rahman pressure coupling at 1 atm.
GROMACS software (70) (version 2022.3) with CUDA support
was used for all simulations using an NVIDIA A100 GPU. A 2-fs
time step was used. The stability of the complex was monitored
using the intermolecular distance as defined in Fig. 5, which was
estimated using the gmx distance function. Intermolecular interac-
tion energies from MD simulation were estimated using
gmx energy.

Retrosynthesis prediction
We assessed synthesis plausibility for the previously unidentified
compounds, as a major challenge in driving successes in molecular
discovery is to devise plausible and efficient synthesis-planning pro-
tocols. Here, we applied the recent advances made by machine
learning–based approaches to predict retrosynthetic routes from
large reaction databases. To estimate the ease of synthesizability
and facilitate synthesis planning of the selected compounds, we pre-
dicted the retrosynthesis pathways for each candidate using the IBM
RXN platform (17). RXN combines a transformer neural network
for forward reaction prediction and graph exploration techniques to
evaluate retrosynthesis paths, scoring them according to probabili-
ty. The path is terminated when all reagents are found to be com-
mercially available. Candidates for which RXN was unable to
determine a feasible retrosynthesis route or which terminated
with noncommercially available compounds were removed from
consideration. For each prediction, we used the following parame-
ters: maximum single step reactions (depth), 6; minimum accep-
tance probability for a single step, 0.6; maximum number of
pathways (beams), 10; number of steps between removal of low

probability steps (pruning), 2; and maximum execution time, 1
hour. Commercial availability was determined by searching the
eMolecules database (71) with a restriction on lead time of 4
weeks or less but no restriction on price.

In the next section, we provide a detailed comparisons between
predicted retrosynthesis and actual synthesis routes, which is also
summarized in table S4. We considered three main aspects in the
comparison: number of reaction steps leading to the final
product, overlap of the products in the intermediate reaction
steps, and overlap of reactants used in the reactions. We chose the
best path from the top six predicted for comparison by optimizing
first for product overlap and then for reactant overlap. Overall, the
total number of actual reaction steps showed good agreement with
predictions, generally only off by one or two steps. This was con-
firmed by the overlap of intermediate products, which showed
that retrosynthesis often predicted the correct high-level path.
Product overlap is highly variable, though, since there are relatively
few per route (often only two or three). The actual synthesis routes
even used many of the same reactants as predicted, although occa-
sionally alternatives had to be found due to stock limitations. In
general, the retrosynthesis prediction was used as a starting point
and any “major” deviations required were considered a failure.
Around 90 to 95% of the top 100 generated compounds turned
out to be synthesizable, based on the retrosynthesis pathway predic-
tions by IBM RXN (9) and human evaluation from SMEs at
Enamine. Design prioritization to a small representative set was
achieved by considering time, reactant and reagent availability,
and amount of human effort.

Synthesis protocols
In this section, we compare the retrosynthesis predictions to the
actual routes used to synthesize the molecules: GEN727 was synthe-
sized according to the best RXN-predicted method (fig. S1). The
synthesis of GEN725 was carried out by analogy to the best RXN
strategy. SNAr ester synthesis in N,N′-dimethylformamide (DMF)
gave intermediate compound 13 with high yield. Cross-coupling of
13 with sulfonamide-pinacolborane led to the final product with a
moderate yield (fig. S2). Several unsuccessful attempts were made to
carry out the first step according to the retrosynthetic strategy for
GEN626, which led to obtaining the desired intermediate with
very low yield. As a result, the synthetic pathway was changed.
SNAr reaction was carried out with cyanide 8, which was followed
by hydrolysis of intermediate compound 10 (obtained with a mod-
erate yield). Reduction of nitro-group of 11 led to GEN626 (fig. S3).
Unfortunately, following the pathway suggested by retrosynthesis
for GEN777 did not give good results and the synthetic strategy
needed to be changed. We synthesized acyl chloride 5, which
reacted with methyl amine on the next step. Thereafter, amide 6
was treated by PCl5 and the resulting intermediate was reacted in
situ with azide anion (fig. S4).

Synthesis orders for designed compounds were placed with
Enamine on 4 August 2020 (received by Enamine PO:8000109)
and on 4 September 2020 (received by Enamine PO:8001023).
Structures were added to the automated chemical design (ACD)
commercial database as a part of regular auto-update of Enamine’s
catalog. Enamine did not have boc-amino pinacolborane 20 in stock
and could not follow the proposed retrosynthetic strategy for
GXA104. Unprotected amino-pinacolborane was available, and so
the strategy was changed, which made it possible to obtain GXA104

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Chenthamarakshan et al., Sci. Adv. 9, eadg7865 (2023) 21 June 2023 14 of 19



in fewer steps. At first, 20was reacted with carboxylic acid 19, which
led to amide 21. Cross-coupling of 21 with 3-iodo-1H-indazole led
to GXA104 (fig. S5). GXA56 was synthesized according to the top
RXN-predicted method (fig. S6). GXA70 was synthesized by
analogy to the best RXN-predicted method. Minor modifications
were made to the synthetic steps, such as use of other bases and
organic solvents (not notable for a whole scheme). The RXN strat-
egy was chosen due to high reactivity of trichlorotriazine with
amines and the need to substitute only one chlorine at the first
stage (it is easier to be controlled with less nucleophilic aniline com-
pared to more nucleophilic aliphatic secondary amines) (fig. S7).
The RXN-predicted strategy for GXA112 was followed as closely
as possible. The last synthetic step [reaction with SO2(NH2)2] led
to the final product with very low yield. To improve it, mono-
Boc–protected SO2(NH2)2 was synthesized and reacted with 26.
Boc-protected final product 30 was obtained and readily depro-
tected via trifluoroacetic acid cocktail (fig. S8). Spectroscopic char-
acterization of synthesized de novo compounds can be found in
table S9.

Cloning, protein production, and crystallization
Mpro production
The Mpro coding sequence was codon-optimized for expression in
Escherichia coli and synthesized by Integrated DNA Technologies.
The Mpro expression construct used for crystallization comprises an
N-terminal glutathione S-transferase region, an Mpro autocleavage
site, the Mpro coding sequence, a hybrid cleavage site recognizable
by 3C Human Rhinovirus (HRV) protease, and a C-terminal 6-his-
tidine tag (72). The overall construct was flanked by In-Fusion com-
patible ends for insertion into Bam HI–Xho I cleaved pGEX-6P-1
(Sigma). Protein expression, purification, and crystallization were
carried out in similar conditions to those previously described by
Douangamath et al. (73). Specifically, crystals were obtained from
0.1 M MES (pH 6.5), 15 PEG4K, and 5% dimethyl sulfoxide
(DMSO) using drop ratios of 0.15 μl of protein, 0.3 μl of reservoir
solution, and 0.05 μl of seed stock.
Genetic constructs of spike ectodomain
The construct is comprised of the gene encoding amino acids 1 to
1208 of the SARS-CoV-2 spike glycoprotein ectodomain, with mu-
tations of RRAR > GSAS at residues 682 to 685 (the furin cleavage
site) and KV > PP at residues 986 to 987, as well as inclusion of a T4
fibritin trimerization domain, an HRV 3C cleavage site, a 8xHis tag
and a Twin-Strep-tag at the C terminus, as reported by Wrapp et al.
(74). All vectors were sequenced to confirm that clones were correct.
Spike protein production
Recombinant spike ectodomain was expressed by transient trans-
fection in human embryonic kidney (HEK) 293S GnTI- cells
(American Type Culture Collection, CRL-3022) for 9 days at
30°C. Conditioned medium was dialyzed against 2× phosphate-
buffered saline (pH 7.4) buffer. The spike ectodomain was purified
by immobilized metal affinity chromatography using Talon resin
(Takara Bio) charged with cobalt followed by size exclusion chro-
matography using HiLoad 16/60 Superdex 200 column in 150
mM NaCl, 10 mM Hepes (pH 8.0), 0.02% NaN3 at 4°C.

X-ray screening of Mpro binding compounds
Compounds were dissolved in DMSO and directly added to the
crystallization drops, giving a final compound concentration of 10
mM and DMSO concentration of 10%. The crystals were left to soak

in the presence of the compounds for 1 to 2 hours before being har-
vested and flash-cooled in liquid nitrogen without the addition of
further cryoprotectant. X-ray diffraction data were collected on
beamline I04-1 at Diamond Light Source and automatically pro-
cessed using the Diamond automated processing pipelines (75).
Analysis was performed as outlined previously (73). Briefly, XChe-
mExplorer (76) was used to analyze each processed dataset that was
automatically selected, and electron density maps were generated
with Dimple (77). Ligand binding events were identified using
PanDDA (78), and ligands were modeled into PanDDA-calculated
event maps using Coot (79). Restraints were calculated with
AceDRG (80) or GRADE (81), structures were refined with
Refmac (82) and Buster (83), and models and quality annotations
were cross-reviewed. We have added PanDDA event maps in fig.
S19 for structures of the protein-hit complexes obtained. The
PanDDA algorithm takes advantage of the large number of datasets
collected during a fragment campaign to detect partial-occupancy
ligands that are typically not readily detected in normal crystallo-
graphic maps and thus provides a better indication of bound com-
pounds or hits than traditional omit maps.

Dose response assay for measuring Mpro inhibition
The solid-phase extraction C4-cartridge coupled RapidFire 365
Mass Spectrometry (SPE RFMS)–based high-throughput dose re-
sponse assay has been described (25). In brief, Mpro inhibitors
were dry dispensed in an 11-point threefold dilution series using
acoustic liquid transfer robot (Labcyte 550) in 384-well polypropyl-
ene plate (Greiner Bio-One). Mpro (0.3 μM) was dispensed across
the well (25 μl per well) using Multidrop Combi (Thermo Scien-
tific), and the reaction was incubated at ambient temperature. Com-
pounds were incubated with the protein for 15min, following which
the 11-mer substrate peptide TSAVLQ/SGFRK-NH2 (4 μM) was
dispensed (25 μl per well) for probing inhibition activity. Reaction
was quenched by addition of 10% aqueous formic acid (5 μl per
well) after 10-min incubation with the substrate at an ambient tem-
perature. After addition of each reagent, the plates were centrifuged
for 30 s (Axygen Plate Spinner Centrifuge). Samples were analyzed
by RapidFire (RF) 365 high-throughput sampling robot (Agilent)
connected to an iFunnel Agilent 6550 accurate mass quadrupole
time-of-flight (Q-TOF) mass spectrometer [operating parameters:
capillary voltage (4000 V), nozzle voltage (1000 V), fragmentor
voltage (365 V), drying gas temperature (280°C), gas flow (13
liters/min), sheath gas temperature (350°C), sheath gas flow (12
liters/min)]. The peptide/protein sample was loaded onto a solid-
phase extraction (SPE) C4-cartridge and washed with 0.1% (v/v)
aqueous formic acid to remove nonvolatile buffer salts (5.5 s, 1.5
ml/min) before elution with aqueous 85% (v/v) acetonitrile con-
taining 0.1% (v/v) formic acid (5.5 s, 1.25 ml/min). The cartridge
was reequilibrated with 0.1% (v/v) aqueous formic acid (0.5 s,
1.25 ml/min), and sample aspirator was washed with an organic
and aqueous wash before the injection of next protein: peptide
mixture sample onto the SPE cartridge.

Datawere extracted with RapidFire integrator software (Agilent),
and mass/charge ratio (m/z) (+1) was used for both N-terminal
fragment TSAVLQ (681.34 Da) and the 11-mer substrate peptide
(1191.68 Da). The percentage Mpro activity [N-terminal product
peak integral/(N-terminal product peak integral + substrate peak
integral) � 100] was calculated in Microsoft Excel, and normalized
data were transferred to Prism 9 for nonlinear regression curve
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analysis. IC50 values are reported as themean of technical duplicates
(n = 2; mean ± SD). Signal to noise and Z′ factor were calculated in
Microsoft Excel (Z′ > 0.8) (25).

Spike thermal shift-based binding assay
Thermofluor (differential scanning fluorimetry) experiments were
performed in triplicate in 96-well white polymerase chain reaction
(PCR) plates using a 1300-fold excess of small molecule (in DMSO)
to 1.5 μg of spike monomer in 50 μl of buffer per well. An Agilent
MX3005p RT-PCR instrument (λex 492 nm/λem 585 nm) was used
to monitor the fluorescence change of a 3× final concentration of
SYPRO Orange dye (Thermo) in an “increasing-sawtooth” temper-
ature profile where the temperaturewas increased in 1°C increments
from 25°C to 98°C with the fluorescence recorded at 25°C. Four of
the synthesized compounds were investigated using thermofluor
assay to assess effect upon stability. Several conditions were
tested: in 20 mM sodium acetate (pH 4.6), 150 mM NaCl, a
storage buffer at which long term stability was observed to be
much improved (84); in 50 mMHepes (pH 7.5), 200 mM NaCl im-
mediately after buffer exchange from the storage buffer; after incu-
bation overnight at pH 7.5; and after incubation overnight at pH 7.5
in the presence of the compound. Raw fluorescence data were ana-
lyzed using Microsoft Excel and the JTSA software (85) using a five-
parameter model to produce melting temperature (Tm) values. Note
that fresh spike protein exhibits a single melting transition, which
can be characterized as a melting point, Tm, of 65°C in neutral pH
buffer. At a reduced pH 4.6, the single melting transition is at 62°C.
As spike is incubated in pH 7.5, a second transition appears at a
lower temperature with a Tm of 50°C. This transition increases as
a proportion of the total melt until it is the only transition observed
and correlates with a presumed conformational change of the spike
trimer to a less stable form.

Focus reduction neutralization assay for measuring SARS-
CoV-2 live virus neutralization of spike RBD-targeting
compounds
Vero-CCL-81 cells (100,000 cells per well) were seeded in a 96-well,
cell culture–treated, flat-bottom microplates for 48 hours. Com-
pounds were serially diluted and incubated with approximately
100 foci of SARS-CoV-2 for 1 hour at 37°C. The mixtures were
added on cells and incubated for further 2 hours at 37°C followed
by the addition of 1.5% semisolid carboxymethyl cellulose (CMC)
overlay medium to each well to limit virus diffusion. Twenty hours
after infection, cells were fixed and permeabilized with 4% parafor-
maldehyde and 2% Triton X-100, respectively. The virus foci were
stained with human anti-SARS-CoV-2 nucleocapsid protein (anti-
NP) mAb (mAb206) and peroxidase-conjugated goat anti-human
immunoglobulin G (IgG) (A0170; Sigma), and visualized by
adding Trueblack Peroxidase Substrate. Virus-infected cell foci
were counted on the classic AID EliSpot reader using AID
ELISpot software. The percentage of focus reduction was calculated
by comparing the number of foci in treated wells with the number
in untreated control wells, and IC50 was determined using the probit
program from the SPSS package.

Pseudoviral neutralization assay for measuring inhibition
of SARS-CoV-2 pseudovirus entry of spike RBD-targeting
compounds
Pseudotyped lentiviral particles expressing SARS-CoV-2 S protein
were incubated with serial dilutions of compounds in white opaque
96-well plates for 1 hour at 37°C. The stable HEK293T/17 cells ex-
pressing human ACE2 were then added to the mixture at 15,000
cells per well. Plates were spun at 500 relative centrifugal force
(RCF) for 1 min and further incubated for 48 hours. Finally,
culture supernatants were removed followed by the addition of
Bright-Glo Luciferase assay system (Promega, USA). The reaction
was incubated at room temperature for 5 min, and the firefly lucif-
erase activity wasmeasured using CLARIOstar (BMGLabtech). The
percentage of neutralization of compounds toward pseudotyped
lentiviruses was calculated relative to the untreated control, and
IC50 was determined using the probit program from the
SPSS package.
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