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ABSTRACT
Hypergeometric sequences are rational-valued sequences that sat-

isfy first-order linear recurrence relations with polynomial coeffi-

cients; that is, a hypergeometric sequence ⟨𝑢𝑛⟩∞𝑛=0 is one that satis-
fies a recurrence of the form 𝑓 (𝑛)𝑢𝑛 = 𝑔(𝑛)𝑢𝑛−1 where 𝑓 , 𝑔 ∈ Z[𝑥].

In this paper, we consider the Membership Problem for hyperge-

ometric sequences: given a hypergeometric sequence ⟨𝑢𝑛⟩∞𝑛=0 and
a target value 𝑡 ∈ Q, determine whether 𝑢𝑛 = 𝑡 for some index 𝑛.

We establish decidability of the Membership Problem under the

assumption that either (i) 𝑓 and 𝑔 have distinct splitting fields or

(ii) 𝑓 and 𝑔 are monic polynomials that both split over a quadratic

extension of Q. Our results are based on an analysis of the prime di-

visors of polynomial sequences ⟨𝑓 (𝑛)⟩∞
𝑛=1

and ⟨𝑔(𝑛)⟩∞
𝑛=1

appearing

in the recurrence relation.
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1 INTRODUCTION
Background and Motivation. Recursively defined sequences are

ubiquitous in mathematics and computer science. A fundamental

open problem in this context is the decidability of the Member-
ship Problem, which asks to determine whether a given value is

an element of a given sequence. The Skolem Problem for C-finite
sequences (those sequences that satisfy a linear recurrence relation
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with constant coefficients) is the best known variant of the Mem-

bership Problem. The Skolem Problem asks to determine whether

a given C-finite sequence vanishes at some index [4]. Decidability

of this problem is known for recurrences of order at most four

[17, 26] but is open in general. Proving decidability of the Skolem

Problem would be equivalent to giving an effective proof of the

celebrated Skolem–Mahler–Lech Theorem, which states that every

non-degenerate C-finite sequence that is not identically zero has a

finite set of zeros.

In this paper we consider the most basic case of the Membership

Problem for a class of P-finite sequences (those sequences that sat-
isfy a linear recurrence with polynomial coefficients). Specifically,

we consider the Membership Problem for the class of hypergeomet-

ric sequences. A rational-valued sequence ⟨𝑢𝑛⟩∞𝑛=0 is hypergeometric
if it satisfies a recurrence relation of the form

𝑓 (𝑛)𝑢𝑛 − 𝑔(𝑛)𝑢𝑛−1 = 0 , (1)

where 𝑓 , 𝑔 ∈ Z[𝑥] are polynomials, and 𝑓 (𝑥) has no non-negative

integer zeros. By the latter assumption on 𝑓 (𝑥), the recurrence re-
lation (1) uniquely defines an infinite sequence of rational numbers

once the initial value 𝑢0 ∈ Q is specified. The term hypergeometric
was introduced by John Wallis in the 17th century [27] and hy-

pergeometric sequences and their associated generating functions,

the hypergeometric series, have a long and illustrious history in

the mathematics literature. In particular, hypergeometric series

encompass many of the common mathematical functions and have

numerous applications in analytic combinatorics [5, 10].

The Membership Problem for hypergeometric sequences asks,

given a recurrence (1), initial value 𝑢0 ∈ Q, and target 𝑡 ∈ Q,
whether 𝑡 lies in the sequence ⟨𝑢𝑛⟩∞𝑛=0. At first glance, this problem
may seem easy to decide. Without loss of generality we can assume

that the sequence ⟨𝑢𝑛⟩∞𝑛=0 either diverges to infinity or converges

to a finite limit. If the sequence does not converge to 𝑡 then one can

compute a bound 𝐵 such that𝑢𝑛 ≠ 𝑡 for all 𝑛 > 𝐵. Such a bound can

also be computed in case one is promised that ⟨𝑢𝑛⟩∞𝑛=0 converges
to 𝑡 , by using the fact that the convergence to 𝑡 is ultimately mono-

tonic. However the above case distinction does not suffice to show

decidability of the Membership Problem! The problem is that it is

not known how to decide whether a hypergeometric seqeuence

converges to a given rational limit. The latter is related to deep

conjectures about the gamma function (see the discussion below).

In this paper we will take a different route to establish decidability

of certain cases of the Membership Problem.
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Contributions. We approach the Membership Problem by consid-

ering the prime divisors of the values of a hypergeometric sequence

⟨𝑢𝑛⟩∞𝑛=0. The overall strategy is to exhibit an effective threshold 𝐵

such that for all 𝑛 > 𝐵 there is a prime divisor of 𝑢𝑛 that is not a

divisor of the target 𝑡 . Our two main contributions are as follows:

• The Membership Problem for hypergeometric sequences

whose polynomial coefficients (as in (1)) have distinct split-

ting fields is decidable (Theorem 11).

• The Membership Problem for hypergeometric sequences

whose polynomial coefficients are monic and split over a

quadratic field is decidable (Theorem 13).

The proofs of our main results involve two different implementa-

tions of our general strategy. The proof of Theorem 11 applies the

Chebotarev density theorem to find a single prime 𝑝 ∈ Z that does
not divide the target 𝑡 but divides all members of an infinite tail

of the sequence. Meanwhile, the proof of Theorem 13 shows that

for all sufficiently large 𝑛 there exists a prime 𝑝 , that is allowed to

depend on 𝑛, such that 𝑝 divides 𝑢𝑛 but not 𝑡 . To find such a prime

we rely on (a mild generalisation of) a result of [3] concerning

prime divisors of the values of a quadratic polynomial.

Theorem 11 expands the class of sequences for which the Mem-

bership Problem can be solved and further isolates its hard instances.

The paper [22] handles perhaps the easiest sub-case of the Member-

ship Problem that does not fall under Theorem 11, namely when the

polynomial coefficients both split over Q. The second main result

of the present paper handles another naturally occurring sub-case:

when the polynomial coefficients split over the ring of integers of

a quadratic field K. A common refinement of these two cases—that

the polynomial coefficients split over K—is the subject of current
research. Generalisations of the results of [3] to higher-degree poly-

nomials are a subject of ongoing research in number theory and

potentially would allow us to extend our approach beyond the

quadratic case.

Related Work. There is a growing body of work that addresses

membership and threshold problems for sequences satisfying low-

order polynomial recurrences. Here the Threshold Problem asks to

determine whether every term in a sequence lies above a given

threshold, for example, whether every term is non-negative.

The recent preprint [12] establishes decidability results (some

conditional on Schanuel’s Conjecture) for both the Membership and

Threshold Problems for hypergeometric sequences. The approach

of [12] relies on transcendence theory for the gamma function

(as well as underlying properties of modular functions established

by Nesterenko [19]). By contrast, the algebraic techniques of the

present paper seem appropriate only for the Membership Problem.

We note that the approach of [12] requires certain restrictions, e.g.,

decidability is only unconditional when the parameters are drawn

from imaginary quadratic fields.

The problem of deciding positivity of order-two P-finite se-

quences and of deciding the existence of zeros in such sequences is

considered in [11, 14, 21, 23]. These works all place syntactic restric-

tions on the degrees of the polynomial coefficients involved in the

recurrences, and all four give algorithms that are not guaranteed to

terminate for all initial values of a given recurrence. For example,

in [11] the termination proof of the algorithm for determining pos-

itivity of order-two sequences requires that the characteristic roots

of the recurrence be distinct and that one is working with a generic

solution of the recurrence (in which the asymptotic rate of growth

corresponds to the dominant characteristic root of the recurrence).

Simple manipulations show that the Membership Problem consid-

ered in this paper is equivalent to the problem of finding a zero

term in an order-two P-finite sequence ⟨𝑢𝑛⟩∞𝑛=0 arising as a sum of

two hypergeometric sequences.

Links between the Membership and Threshold Problems and the

Rohrlich–Lang Conjecture appear in previous works [13, 22]. Here

the Rohrlich–Lang Conjecture concerns multiplicative relations for

the gamma function evaluated at rational points.

The 𝑝-adic techniques used in the present paper bear many

similarities with work on developing criteria for hypergeometric

sequences to be integer valued. For example, work by Landau in

1900 [15] uses 𝑝-adic analysis to establish a necessary and sufficient

condition for integrality in the so-called class of factorial hyper-
geometric sequences. In more recent work, Hong and Wang [9]

establish a criterion for the integrality of hypergeometric series

with parameters from quadratic fields. We observe that some of the

intermediate asymptotic results in Hong and Wang’s note are close

to [1, Corollary 3.1] (Proposition 4 herein).

Structure. The remainder of this paper is structured as follows.

We briefly review preliminary material in Section 2, including some

standard assumptions about instances of the Membership Problem

that can be made without loss of generality. In Section 3, we recall

useful technical results on the prime divisors of hypergeometric

sequences that satisfy monic recurrence relations (see (2)). In Sec-

tion 4, we prove Theorem 11. The proof of Theorem 13 is given in

Section 5. We discuss ideas for future research in Section 6. The re-

maining appendices prove technical results omitted from the main

text.

2 PRELIMINARIES
Hypergeometric Sequences. A hypergeometric sequence ⟨𝑢𝑛⟩∞𝑛=0

is a sequence of rational numbers that satisfies a recurrence of

the form (1) where 𝑓 , 𝑔 ∈ Z[𝑥] are polynomials, and 𝑓 (𝑥) has no
non-negative integer zeros. By the latter requirement on 𝑓 (𝑥), the
recurrence (1) uniquely defines an infinite sequence of rational

numbers once the initial element 𝑢0 is specified.

An instance of the Membership Problem for hypergeometric

sequences consists of a recurrence (1), an initial value 𝑢0 ∈ Q, and
a target 𝑡 ∈ Q. The problem asks to decide whether there exists

𝑛 ∈ N such that 𝑢𝑛 = 𝑡 . We say that such an instance is in standard
form if (S1) the initial condition is 𝑢0 = 1; (S2) the polynomial 𝑔(𝑥)
has no positive integer root; (S3) the target 𝑡 is non-zero; (S4) the

polynomials 𝑓 and 𝑔 have the same degree and leading coefficient.

For the purposes of deciding the Membership Problem, we can

assume without loss of generality that all instances are in standard

form. An arbitrary instance can be transformed into one satisfying

Condition (S1) by multiplying the sequence and target by a suitable

constant. Instances of the Membership Problem that fail to satisfy

Conditions (S2) and (S3) are trivially solvable. The positive integer

roots of𝑔 can be computed and for any such root𝑛0, we have𝑢𝑛 = 0

for all 𝑛 ≥ 𝑛0. Finally, for recurrences that fail Condition (S4) we
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have that

𝑢𝑛

𝑢𝑛−1
=

𝑔(𝑛)
𝑓 (𝑛)

either converges to 0 or diverges in absolute value. Under the as-

sumption that 𝑡 ≠ 0, in each case we can compute an effective

threshold 𝑛0 such that 𝑢𝑛 ≠ 𝑡 for all 𝑛 ≥ 𝑛0.

The 𝑝-adic valuation. Let 𝑝 ∈ N be a prime. Denote by 𝑣𝑝 :

Q → Z ∪ {∞} the 𝑝-adic valuation on Q. Recall that for a non-

zero number 𝑥 ∈ Q, 𝑣𝑝 (𝑥) is the unique integer such that 𝑥 can be

written in the form

𝑥 = 𝑝𝑣𝑝 (𝑥 )
𝑎

𝑏
where 𝑎, 𝑏 ∈ Z and 𝑝 divides neither 𝑎 nor 𝑏. The value 𝑣𝑝 (0) is
defined to be∞. The valuation possesses two important properties:

- 𝑣𝑝 (𝑥 + 𝑦) ≥ min{𝑣𝑝 (𝑥), 𝑣𝑝 (𝑦)} (strong triangle inequality),
- 𝑣𝑝 (𝑥𝑦) = 𝑣𝑝 (𝑥) + 𝑣𝑝 (𝑦) (multiplicative property).

Asymptotic estimates for series over primes. Given ∼ ∈ {<,=, >}
and 𝑥 ∈ Q, we denote sums over primes 𝑝 ∈ N such that 𝑝 ∼ 𝑥

by

∑
𝑝∼𝑥 . Let 𝜋 (𝑥) :=

∑
𝑝≤𝑥 1 count the number of primes of size

at most 𝑥 . The following result is a consequence of the celebrated

Prime Number Theorem.

Theorem 1. For 𝜋 (𝑥) as above, we have

𝜋 (𝑥) = 𝑥

log𝑥
+𝑂

( 𝑥

log
2 𝑥

)
.

As an aside, an element 𝑎 ∈ Z is a square modulo a prime 𝑝 ∈ N
if there exists an 𝑥 ∈ Z such that 𝑥2 ≡ 𝑎 (mod 𝑝). An element

𝑎 ∈ Z is a quadratic residue modulo 𝑝 if 𝑎 is both a square modulo

𝑝 , and furthermore 𝑎 and 𝑝 are co-prime. We denote by L𝑝 the set

of quadratic residues modulo 𝑝 .

Recall the first of Mertens’ three theorems [16] (see also [2, The-

orem 4.10]), ∑︁
𝑝≤𝑥

log 𝑝

𝑝
= log𝑥 +𝑂 (1) .

In the sequel we shall make use of the following refinement of

Mertens’ theorem.

Proposition 2. Suppose that 𝑎 ∈ Z is not a perfect square. Then∑︁
𝑝≤𝑥, 𝑎∈L𝑝

log𝑝

𝑝
=

1

2

log(𝑥) +𝑂 (1).

Proposition 2 appears in work by Selberg [24, Equation (3.3)] on

an elementary proof of Dirichlet’s theorem in arithmetic progres-

sions.

3 MONIC RECURRENCES
In this section, we study hypergeometric sequences ⟨𝑢𝑛⟩∞𝑛=0, satis-
fying first-order recurrences of the special form

𝑢𝑛 = 𝑓 (𝑛)𝑢𝑛−1 and 𝑢0 = 1, (2)

where 𝑓 ∈ Z[𝑥] has no non-negative integer roots.We call such a re-

currencemonic. We analyse the prime divisors of sequences ⟨𝑢𝑛⟩∞𝑛=0
that satisfy such a monic recurrence. In particular, we recall two

results that will serve as stepping stones toward our main decidabil-

ity theorems in the subsequent sections. Following [1], for a fixed

prime 𝑝 , the first result establishes an asymptotic estimate for the

𝑝-adic valuation 𝑣𝑝 (𝑢𝑛) as 𝑛 tends to infinity. Next, following [3],

when 𝑓 is a quadratic polynomial we prove a result that yields as-

ymptotic estimates on the size of the largest prime divisors of 𝑢𝑛 as

𝑛 tends to infinity. The restriction on the degree is necessary given

the state of the art: estimates on large prime divisors constitute

hard open problems in the theory of polynomials [7, 8].

3.1 Asymptotic growth of valuations
Let 𝑝 ∈ N be prime. Consider a hypergeometric sequence ⟨𝑢𝑛⟩∞𝑛=0,
satisfying a monic recurrence (2). Since 𝑢𝑛 =

∏𝑛
𝑘=1

𝑓 (𝑘), we have

𝑣𝑝 (𝑢𝑛) =
𝑛∑︁

𝑘=1

𝑣𝑝 (𝑓 (𝑘)).

In this section we recall the result of [1] that characterises the

asymptotic growth of 𝑣𝑝 (𝑢𝑛) in terms of the number of roots of 𝑓

in Z/𝑝Z. The key tool in this argument is Hensel’s Lemma.

Theorem 3 (Hensel’s Lemma [6, Theorem 4.7.2]). Let 𝑓 (𝑥) ∈
Z[𝑥] and assume that there exist polynomials 𝑔(𝑥) and ℎ(𝑥) such
that: i) 𝑔(𝑥) is monic, ii) 𝑔(𝑥) and ℎ(𝑥) are relatively prime modulo
𝑝 , and iii) 𝑓 (𝑥) = 𝑔(𝑥)ℎ(𝑥) (mod 𝑝).

Then for all 𝑒 > 0 there exist polynomials𝑔1 (𝑥), ℎ1 (𝑥) ∈ Z[𝑥] such
that: i) 𝑔1 (𝑥) is monic, ii) 𝑔1 (𝑥) ≡ 𝑔(𝑥) (mod 𝑝) and ℎ1 (𝑥) ≡ ℎ(𝑥)
(mod 𝑝), and 𝑓 (𝑥) = 𝑔1 (𝑥)ℎ1 (𝑥) (mod 𝑝𝑒 ).

Define a Hensel prime for 𝑓 ∈ Z[𝑥] to be a prime that does

not divide the discriminant of any irreducible factor of 𝑓 . Since

the discriminant of an irreducible polynomial is non-zero, all but

finitely many primes are Hensel primes for a given polynomial.

Given a prime 𝑝 , suppose that 𝑓 ∈ Z[𝑥] has𝑚 roots in Z/𝑝Z,
i.e., suppose that 𝑓 factors as

𝑓 = (𝑥 − 𝛼1)𝑚1 · · · (𝑥 − 𝛼ℓ )𝑚ℓ𝑔(𝑥) (mod 𝑝),
where 𝛼1, . . . , 𝛼ℓ ∈ Z, 𝑔 ∈ Z[𝑥] has no root modulo 𝑝 , and 𝑚 =

𝑚1 + · · · +𝑚ℓ . In this case, if 𝑝 is a Hensel prime for 𝑓 then for all

𝑒 > 0 we can apply Hensel’s Lemma to obtain a factorisation

𝑓 (𝑥) = (𝑥 − 𝛽1)𝑚1 · · · (𝑥 − 𝛽ℓ )𝑚ℓℎ(𝑥) (mod 𝑝𝑒 )
where 𝛽1, . . . , 𝛽ℓ ∈ Z, and ℎ ∈ Z[𝑥] has no root modulo 𝑝 . In other

words, 𝑓 has exactly𝑚 roots in the ring Z/𝑝𝑒Z.
The following result is a reformulation of [1, Corollary 3.1].

For later use, we formulate the result so as to make explicit the

dependence of the bounds for 𝑣𝑝 (𝑢𝑛) on the prime 𝑝 . The proof

remains the same.

Proposition 4 ([1, Corollary 3.1]). Suppose that ⟨𝑢𝑛⟩∞𝑛=0 satis-
fies the monic recurrence in Equation (2) with polynomial coefficient
𝑓 ∈ Z[𝑥]. Let 𝑝 be a Hensel prime of 𝑓 such that 𝑓 has𝑚 roots modulo
𝑝 . Then there exist effectively computable constants Y, 𝑛0 > 0 such
that if 𝑛 > 𝑛0,

𝑚

( 𝑛

𝑝 − 1

− Y log𝑛

log 𝑝

)
≤ 𝑣𝑝 (𝑢𝑛) ≤ 𝑚

( 𝑛

𝑝 − 1

+ Y log𝑛

log 𝑝

)
where Y depends only on 𝑓 .

Proof. The function |𝑓 (𝑥) | is eventually monotonically increas-

ing on N. There exists an effectively computable bound 𝑛0 such

that for all 𝑛 ≥ 𝑛0 and all 1 ≤ 𝑘 ≤ 𝑛, the inequality |𝑓 (𝑘) | ≤ |𝑓 (𝑛) |
holds.
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Furthermore, there exists an effective constant Y0 > 0, indepen-

dent of 𝑝 , such that for all 𝑛 ≥ 𝑛0 and all 1 ≤ 𝑘 ≤ 𝑛 we have

|𝑓 (𝑘) | < 𝑛Y0 = 𝑝Y0 log𝑛/log𝑝 .

Fix 𝑛 ≥ 𝑛0 and define 𝑒max to be the smallest power of 𝑝 such

that 𝑝𝑒max−1 ≤ |𝑓 (𝑛) | < 𝑝𝑒max
. Then

𝑒max ≤ Y0 log𝑛

log𝑝
. (3)

Since 𝑝 is a Hensel prime, by Hensel’s Lemma, there is a factori-

sation

𝑓 (𝑥) = (𝑥 − 𝛽1)𝑚1 · · · (𝑥 − 𝛽ℓ )𝑚ℓℎ(𝑥) (mod 𝑝𝑒max ) .

where𝑚 =𝑚1 + · · · +𝑚ℓ and ℎ has no zero modulo 𝑝 .

Denote by I{𝑝𝑒 | 𝑥} the function such that

I{𝑝𝑒 | 𝑥} :=
{
1 if 𝑝𝑒 | 𝑥,
0 otherwise.

Since 𝑣𝑝 (𝑓 (𝑘)) ≤ 𝑒max for all 𝑘 ≤ 𝑛, we have

𝑣𝑝 (𝑢𝑛) =
𝑛∑︁

𝑘=1

𝑣𝑝 (𝑓 (𝑘))

=

𝑛∑︁
𝑘=1

ℓ∑︁
𝑖=1

𝑚𝑖 𝑣𝑝 (𝑘 − 𝛽𝑖 )

=

𝑛∑︁
𝑘=1

ℓ∑︁
𝑖=1

𝑒max∑︁
𝑒=1

𝑚𝑖 I{𝑝𝑒 | 𝑘 − 𝛽𝑖 }

=

𝑒max∑︁
𝑒=1

ℓ∑︁
𝑖=1

𝑛∑︁
𝑘=1

𝑚𝑖 I{𝑝𝑒 | 𝑘 − 𝛽𝑖 }. (4)

Now for all 1 ≤ 𝑒 ≤ 𝑒max
the set {𝑘 ∈ N : 𝑝𝑒 | 𝑘 − 𝛽𝑖 } is an

arithmetic progression with common difference 𝑝𝑒 and so

𝑛

𝑝𝑒
− 1 ≤

𝑛∑︁
𝑘=1

I{𝑝𝑒 | 𝑘 − 𝛽𝑖 } ≤
𝑛

𝑝𝑒
+ 1, (5)

Combining inequality (5) with Equation (4) we obtain

𝑚

𝑒max∑︁
𝑒=1

( 𝑛
𝑝𝑒

− 1

)
≤ 𝑣𝑝 (𝑢𝑛) ≤ 𝑚

𝑒max∑︁
𝑒=1

( 𝑛
𝑝𝑒

+ 1

)
. (6)

Let Y := Y0 + 1. The desired result follows by sandwiching the

term

∑𝑒max

𝑒=1
1

𝑝𝑒 in (6) by

1 − |𝑓 (𝑛) |−1
𝑝 − 1

≤ 1 − 𝑝−𝑒max

𝑝 − 1

=

𝑒max∑︁
𝑒=1

1

𝑝𝑒
≤ 1

𝑝 − 1

in combination with the upper bound on 𝑒max in (3). □

3.2 Asymptotic estimate for the largest prime
divisor

Fix a polynomial 𝑓 (𝑥) := 𝑥2 + 𝛽 ∈ Z[𝑥]. We assume that −𝛽 is not a

perfect square, which is equivalent to assuming that 𝑓 is irreducible.

Let 𝑎, 𝑏 ∈ Q be such that 0 ≤ 𝑎 < 𝑏. Let 𝑐, 𝑑 ∈ N. For all 𝑛 ∈ N we

define

𝐼 (𝑛) := {𝑘 ∈ N : 𝑎𝑛 ≤ 𝑘 ≤ 𝑏𝑛} ∩ (𝑐N + 𝑑)

and

𝐹𝑛 :=
∏

𝑘∈𝐼 (𝑛)
𝑓 (𝑘) .

Informally speaking, the following theorem gives effective super-

linear lower bounds on the growth of the function that maps 𝑛 to

the greatest prime divisor of 𝐹𝑛 . The result itself and the proof are

a slight generalisation of [3, Theorem 5.1]. The main difference is

that we permit 𝐼 (𝑛) to be the intersection of an interval and an

arithmetic progression, whereas the work cited above considers

unrefined intervals 𝐼 (𝑛) = {1, . . . , 𝑛}.
Theorem 5. Let 𝑀 ∈ N. There exists an effectively computable

bound 𝐵 ∈ N such that for all 𝑛 > 𝐵 there exists a prime 𝑝 > 𝑀𝑛

that divides 𝐹𝑛 .

Proof. Given 𝑛 ∈ N, we have the prime factorisation 𝐹𝑛 =∏
𝑝 𝑝

𝑒𝑝
where 𝑒𝑝 := 𝑣𝑝 (𝐹𝑛) for each prime 𝑝 . Note that 𝑒𝑝 = 0 for

all but finitely many 𝑝 . Taking logarithms, we get

log(𝐹𝑛) =
∑︁
𝑝

𝑒𝑝 log 𝑝.

Partitioning the above sum into a sub-sum over primes at most𝑀𝑛

and a sub-sum over primes greater than𝑀𝑛, we obtain∑︁
𝑝>𝑀𝑛

𝑒𝑝 log𝑝 = log(𝐹𝑛) −
∑︁

𝑝≤𝑀𝑛

𝑒𝑝 log𝑝. (7)

The theorem at hand follows from a lower bound on the sum∑
𝑝>𝑀𝑛 𝑒𝑝 log 𝑝 on the left-hand side of (7). To this end we have

two sub-goals: give a lower bound on log(𝐹𝑛) and an upper bound

on

∑
𝑝≤𝑀𝑛 𝑒𝑝 log𝑝 .

Write 𝐴 := 𝑏−𝑎
𝑐 . The following lower bound on log(𝐹𝑛) is a

consequence of Stirling’s formula. The proof is in Appendix A. □

Claim 6. We have the bound log(𝐹𝑛) ≥ 2𝐴(𝑛 log𝑛 − 𝑛).
The next task is give an upper bound on

∑
𝑝≤𝑀𝑛 𝑒𝑝 log 𝑝 . Here

we follow the approach in [3] and further partition the sum into

those primes 𝑝 < 𝑛 (treated in Claim 7) and those primes 𝑛 ≤ 𝑝 ≤
𝑀𝑛 (treated in Claim 8).

Claim 7. There exist positive constants Y, 𝑛0 > 0 such that if
𝑛 > 𝑛0, then ∑︁

𝑝<𝑛

𝑒𝑝 log 𝑝 ≤ 𝐴𝑛 log𝑛 + Y𝑛.

Proof. Let 𝑆𝑛 be the set of primes 𝑝 < 𝑛 such that 𝑝 divides 𝐹𝑛
and 𝑝 is a Hensel prime for 𝑓 . Observe that∑︁

𝑝<𝑛

𝑒𝑝 log𝑝 −
∑︁
𝑝∈𝑆𝑛

𝑒𝑝 log𝑝 ≤ Y0 log𝑛

for an effective constant Y0. Indeed, if 𝑝 < 𝑛 is a prime divisor of

𝐹𝑛 that does not lie in 𝑆𝑛 then 𝑝 divides the discriminant of 𝑓—and

there are finitely many such primes. Thus to prove the claim it will

suffice to show the following bound for some effective constant Y1:∑︁
𝑝∈𝑆𝑛

𝑒𝑝 log 𝑝 ≤ 𝐴𝑛 log𝑛 + Y1𝑛. (8)

For 𝑝 ∈ 𝑆𝑛 , we establish an upper bound on 𝑒𝑝 which follows

from Proposition 4:

𝑒𝑝 ≤ 2𝐴𝑛

𝑝 − 1

+ Y2 log𝑛

log 𝑝
. (9)
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Here the constant Y2 is effective and independent of the prime 𝑝 .

The justification is given in Appendix A.

We next argue that there exist effective constants Y3, Y4, 𝑛1 > 0

such that the following chain of inequalities is valid for all 𝑛 ≥ 𝑛1.

We have that∑︁
𝑝∈𝑆𝑛

𝑒𝑝 log𝑝 ≤
∑︁
𝑝∈𝑆𝑛

(
2𝐴𝑛

𝑝 − 1

+ Y2
log𝑛

log 𝑝

)
log𝑝 (by (9))

≤ 2𝐴𝑛
∑︁
𝑝∈𝑆𝑛

log𝑝

𝑝 − 1

+ Y2𝜋 (𝑛) log𝑛

≤ 2𝐴𝑛
∑︁
𝑝∈𝑆𝑛

log 𝑝

𝑝 − 1

+ Y3𝑛 (by Theorem 1)

= 2𝐴𝑛
∑︁
𝑝∈𝑆𝑛

log𝑝

𝑝

(
1 + 1

𝑝 − 1

)
+ Y3𝑛

≤ 2𝐴𝑛
∑︁
𝑝∈𝑆𝑛

log𝑝

𝑝
+ Y4 .

No prime in 𝑆𝑛 divides the discriminant of 𝑓 . Since the latter is

equal to −4𝛽 , no prime in 𝑆𝑛 divides 𝛽 . In addition, every prime in

𝑆𝑛 is a divisor of 𝐹𝑛 ; i.e., a divisor of 𝑘
2 + 𝛽 for some 𝑘 ∈ 𝐼 (𝑛), we

have that 𝛽 is a quadratic residue modulo 𝑝 for every prime 𝑝 ∈ 𝑆𝑛 .

Thus, for sufficiently large 𝑛, we have that∑︁
𝑝∈𝑆𝑛

log𝑝

𝑝
≤ 1

2

log𝑛 + Y5

(by Proposition 2) for some effective constant Y5.

The desired bound (8) follows by combining the previous two

inequalities and fixing Y1 ≥ 2𝐴Y5 + Y4. □

Claim 8. There exist effectively computable constants 𝑛0, Y > 0

such that if 𝑛 > 𝑛0, then ∑︁
𝑛≤𝑝≤𝑀𝑛

𝑒𝑝 log𝑝 ≤ Y𝑛.

Proof. Let 𝑛 ∈ N. Suppose that 𝑝 > (𝑏 − 𝑎)𝑛 is a prime divisor

of 𝐹𝑛 . For such primes, we shall first show that 𝑒𝑝 := 𝑣𝑝 (𝐹𝑛) ≤ 2.

Assume, for a contradiction, that there are distinct integers 𝑘1 <

𝑘2 < 𝑘3 in 𝐼 (𝑛) such that 𝑝 divides 𝑘2
1
+ 𝛽 , 𝑘2

2
+ 𝛽 , and 𝑘2

3
+ 𝛽 . Then

𝑝 | 𝑘2
1
− 𝑘2

2
. Since 𝑝 is prime, either 𝑝 | 𝑘1 − 𝑘2 or 𝑝 | 𝑘1 + 𝑘2.

Since 0 < 𝑘2 − 𝑘1 < (𝑏 − 𝑎)𝑛 ≤ 𝑝 , we deduce that 𝑝 | 𝑘1 + 𝑘2. By

symmetric reasoning we have that 𝑝 | 𝑘2 + 𝑘3. Thus 𝑝 must also

divide (𝑘2 + 𝑘3) − (𝑘1 + 𝑘2) = 𝑘3 − 𝑘1. However, this leads to a

contradiction since 𝑝 ≥ (𝑏 − 𝑎)𝑛 ≥ 𝑘3 − 𝑘1. Hence for each prime

divisor 𝑝 | 𝐹𝑛 with 𝑝 ≥ (𝑏 − 𝑎)𝑛, we find that 𝑒𝑝 = 𝑣𝑝 (𝐹𝑛) ≤ 2.

Thus we bound the summation in the statement of the claim by∑︁
𝑛<𝑝≤𝑀𝑛

𝑒𝑝 log𝑝 ≤
∑︁

𝑝≤𝑀𝑛

2 log𝑝 ≤ 2 log(𝑀𝑛)𝜋 (𝑀𝑛) .

The desired result follows from the estimate on 𝜋 (𝑥) given by the

Prime Number Theorem (Theorem 1). □

We return to the proof of Theorem 5. From Equation (7), Claim 7,

and Claim 8, there exist positive constants Y, 𝑛0 > 0 such that if

𝑛 > 𝑛0 then ∑︁
𝑝>𝑀𝑛

𝑒𝑝 log𝑝 ≥ 𝐴𝑛 log𝑛 − Y𝑛.

In turn, the above lower bound entails that for sufficiently large𝑛,

there exist prime divisors 𝑝 | 𝐹𝑛 such that 𝑝 > 𝑀𝑛. This concludes

the proof. □

4 DECIDABILITY: DIFFERENT SPLITTING
FIELDS

In this section we show decidability of the Membership Problem

for recurrence sequences that satisfy a first-order relation of the

form (1) subject to the condition that the polynomial coefficients

𝑓 , 𝑔 ∈ Z[𝑥] have different splitting fields. To this end, it is useful to

introduce the following terminology. Let 𝑝 be a Hensel prime for 𝑓 𝑔.

We say that the recurrence (1) is 𝑝-symmetric if the two polynomials

𝑓 and 𝑔 have the same number of roots in Z/𝑝Z. Otherwise we say
that the recurrence is 𝑝-asymmetric.

We first show decidability of theMembership Problem in the case

of 𝑝-asymmetric recurrences and then we apply the Chebotarev

Density Theorem to show that every recurrence in which 𝑓 and 𝑔

have different splitting fields is 𝑝-asymmetric for infinitely many

primes 𝑝 .

Lemma 9. There is a procedure to decide the Membership Problem
for the class of hypergeometric sequences whose defining recurrences
are 𝑝-asymmetric for some prime 𝑝 .

Proof. Suppose that the hypergeometric sequence ⟨𝑢𝑛⟩∞𝑛=0 sat-
isfies the recurrence (1) and moreover that there is a prime 𝑝 with

respect to which the recurrence is 𝑝-asymmetric. We want to decide

whether such a sequence reaches a given target value 𝑡 .

Consider the sequences ⟨𝑥𝑛⟩∞𝑛=0 and ⟨𝑦𝑛⟩
∞
𝑛=0

respectively defined

by the monic recurrences 𝑥𝑛 = 𝑔(𝑛)𝑥𝑛−1, 𝑦𝑛 = 𝑓 (𝑛)𝑦𝑛−1, with
𝑥0 = 𝑦0 = 1. Then 𝑢𝑛 =

𝑥𝑛
𝑦𝑛

and hence, for the aforementioned

prime 𝑝 ,

𝑣𝑝 (𝑢𝑛) = 𝑣𝑝 (𝑥𝑛) − 𝑣𝑝 (𝑦𝑛) =
𝑛∑︁
ℓ=1

(𝑣𝑝 (𝑔(ℓ)) − 𝑣𝑝 (𝑓 (ℓ)))

by the multiplicative property.

Recall that 𝑝 is, by definition, a Hensel prime for both 𝑓 and 𝑔.

Hence, by Proposition 4, we obtain an asymptotic estimate of the

form

|𝑣𝑝 (𝑥𝑛) − 𝑣𝑝 (𝑦𝑛) | =
|𝑚𝑔 −𝑚𝑓 |𝑛

𝑝 − 1

+𝑂 (log𝑛)

where𝑚𝑓 is the number of roots of 𝑓 modulo 𝑝 and𝑚𝑔 is defined

similarly. Here the implied constant depends on 𝑓 𝑔 and 𝑝 . The

proof concludes by noting that 𝑣𝑝 (𝑡) is a constant, whereas 𝑣𝑝 (𝑢𝑛) is
bounded away from 𝑣𝑝 (𝑡) for sufficiently large𝑛 (note this threshold

is computable). We deduce that 𝑢𝑛 ≠ 𝑡 , again, for sufficiently large

𝑛, from which the desired result follows. □

We now give a sufficient condition for a recurrence to be 𝑝-

asymmetric. We use the following consequence of the Chebotarev

Density Theorem. Let K be a Galois field of degree 𝑑 over Q, and
denote by O its ring of integers. Let Spl(K) be the set of rational
primes 𝑝 such that the ideal 𝑝O totally splits in O, i.e., such that

𝑝O = 𝔭1 · · ·𝔭𝑑 where the 𝔭𝑖 are distinct prime ideals. The following

result appears as [18, Corollary 8.39] and [20, Corollary 13.10]. The

latter reference attributes the result to Bauer.
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Theorem 10. Let K and L be Galois extensions of Q such that
K ≠ L. Then Spl(K) and Spl(L) differ in infinitely many primes.

We state the main theorem of this section.

Theorem 11. There is a procedure to decide the Membership Prob-
lem for the class of hypergeometric recurrences (1) whose polynomial
coefficients have different splitting fields.

Proof of Theorem 11. Let ⟨𝑢𝑛⟩∞𝑛=0 satisfy a recurrence (1) for

which the coefficients 𝑓 and 𝑔 have respective splitting fields K
and L, with K ≠ L. Recall that there are only finitely many primes

that are not Hensel primes for 𝑓 𝑔. By Theorem 10, there exists a

Hensel prime for 𝑓 𝑔 that lies in exacly one of the two sets Spl(K)
and Spl(L). For such a prime 𝑝 , the recurrence (1) is 𝑝-asymmetric.

Hence the result follows from Lemma 9. □

We note that the recurrence (1) can be 𝑝-asymmetric even when

𝑓 and 𝑔 have the same splitting field. We demonstrate this phenom-

enon with the following example.

Example 1. Let ⟨𝑢𝑛⟩∞𝑛=0 be the hypergeometric sequence defined
by

𝑓 (𝑛)𝑢𝑛 − 𝑔(𝑛)𝑢𝑛−1 = 0 and 𝑢0 = 1, (10)

where

𝑓 (𝑥) := (𝑥2 + 1) (𝑥2 − 2) and 𝑔(𝑥) := 𝑥4 − 2𝑥2 + 9.

It is easily checked that both 𝑓 and 𝑔 have splitting field Q(
√
2, i).

However we show that 𝑓 and𝑔 have different numbers of roots inZ/7Z,
i.e., the recurrence (10) is 7-asymmetric.

It is straightforward to verify that 7 is a Hensel prime for 𝑓 𝑔 by
noting that it does not divide the discriminants of the respective irre-
ducible factors of 𝑓 and𝑔. To show that the recurrence is 7-asymmetric,
observe first that 𝑓 factors as (𝑥 + 4) (𝑥 + 3) (𝑥2 + 1) over Z/7Z,
where 𝑥2 + 1 is irreducible; thus 𝑓 has two roots in Z/7Z. On the other
hand, 𝑔 factors into a pair of irreducible quadratic polynomials over
Z/7Z and hence has no roots.

We can now follow the argumentation of Lemma 9 to decide
the Membership Problem for ⟨𝑢𝑛⟩∞𝑛=0 with respect to any given tar-
get 𝑡 ∈ Q. Consider the monic recurrences 𝑥𝑛 = 𝑔(𝑛)𝑥𝑛−1 and
𝑦𝑛 = 𝑓 (𝑛)𝑦𝑛−1, with initial conditions 𝑥0 = 𝑦0 = 1. Note that
𝑣7 (𝑢𝑛) = 𝑣7 (𝑦𝑛) −𝑣7 (𝑥𝑛). Since 𝑔 has no roots in Z/7Z, 𝑣𝑝 (𝑔(𝑘)) = 0

for all integers 𝑘 > 0. It follows that

𝑣7 (𝑥𝑛) =
𝑛∑︁

𝑘=1

𝑣7 (𝑔(𝑘)) = 0

and hence that 𝑣7 (𝑢𝑛) = 𝑣7 (𝑦𝑛).
To obtain bounds on 𝑣7 (𝑦𝑛), note that |𝑓 (𝑘) | ≤ 𝑛4 for all 𝑛 ≥ 2

and 1 ≤ 𝑘 ≤ 𝑛. Proposition 4 gives the inequality

2𝑛

6

− 10 log𝑛

log 7

≤ 𝑣7 (𝑦𝑛).

For any target 𝑡 ∈ Q, the above bound allows us to compute a threshold
𝐵 such that for all 𝑛 > 𝐵 we have Since 𝑣7 (𝑢𝑛) = 𝑣7 (𝑦𝑛) > 𝑣7 (𝑡) and
hence 𝑢𝑛 ≠ 𝑡 .

5 DECIDABILITY: QUADRATIC SPLITTING
FIELDS

In this section, we focus on the decidability of the Membership

Problem for recurrences

𝑓 (𝑛)𝑢𝑛 − 𝑔(𝑛)𝑢𝑛−1 = 0, 𝑢0 = 1 (1)

in which both 𝑓 , 𝑔 ∈ Z[𝑥] are monic and split completely over a

quadratic (degree-two) extension K of Q.
Recall that a number field K is quadratic if and only if there is a

square-free integer 𝛽 such that K = Q(
√︁
𝛽). The assumption that 𝑓

and 𝑔 are both monic ensures that the roots of both polynomials

are algebraic integers in Q(𝑠𝑞𝑟𝑡𝛽). As shown in [25, Chapter 3], the

following holds.

Theorem 12. Suppose that 𝛽 ∈ Z is square-free. Then the ring of
algebraic integers in Q(

√︁
𝛽) has the form Z[\ ], where

\ =


√︁
𝛽 if 𝛽 . 1 (mod 4),

√
𝛽−1
2

if 𝛽 ≡ 1 (mod 4) .

The main result of the section is as follows.

Theorem 13. The Membership Problem for recurrences of the
form (1) is decidable under the assumption that 𝑓 , 𝑔 are both monic
and both split over a quadratic extension K of Q.

The proof of Theorem 13 is given in Sections 5.1 to 5.4. The details

differ slightly according to the two cases for the generator \ of the

ring of integers ofK, as presented in Theorem 12. In the subsections

below, we treat the case for \ =

√
𝛽−1
2

. The necessary adjustments

for the case \ =
√︁
𝛽 are given in Appendix B. Henceforth we assume

a normalised instance of the Membership Problem, given by the

recurrence (1) and target 𝑡 ∈ Q. Our goal is to exhibit an effective

bound 𝐵 such that 𝑢𝑛 ≠ 𝑡 for all 𝑛 > 𝐵. To this end, our strategy is

to find 𝐵 such that for all 𝑛 > 𝐵 there exists a prime that divides

𝑢𝑛 but not 𝑡 . At the conclusion of the proof of Theorem 13, we

demonstrate the argument and techniques with a worked example

(Example 2) in Section 5.4.

Let 𝛽 ≡ 1 (mod 4) be a square-free integer and K = Q(
√︁
𝛽) a

quadratic field over which the polynomials 𝑓 and 𝑔 in (1) split com-

pletely. Let \ :=

√
𝛽−1
2

be such that Z[\ ] is the ring of integers of K.
Write𝑚\ (𝑥) := 𝑥2 + 𝑥 + 1−𝛽

4
∈ Z[𝑥] for the minimal polynomial

of \ .

5.1 Partitioning the roots of 𝑓 𝑔
Let R be the set of roots of 𝑓 𝑔. We partition R into disjoint subsets

(which we shall call the classes of R) with 𝛼, 𝛼 ∈ R in the same class

if and only if 𝛼 −𝛼 ∈ Z. We say that a subset of S ⊆ R is balanced if

𝑓 and𝑔 have the same number of roots inS, counting repeated roots
according to their multiplicity. A subset is unbalanced otherwise.

The linchpin of the proof of Theorem 13 is the balance of roots in

the classes.

If each class (as above) is balanced then the roots of 𝑓 and 𝑔 can

be placed in a bijection under which corresponding roots differ

by an integer and have the same multiplicity in 𝑓 and 𝑔 respec-

tively. In this case, by cancelling common factors in the expression
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𝑢𝑛 =
∏𝑛

𝑘=1

𝑔 (𝑘 )
𝑓 (𝑘 ) , we see that for 𝑛 sufficiently large 𝑢𝑛 is a rational

function in 𝑛. For such an instance, the Membership Problem re-

duces to the problem of deciding whether a univariate polynomial

with rational integer coefficients has a positive integer root, which

is straightforwardly decidable. A detailed account for this argument

is given in [22, Appendix B].

Let us now consider the case where there is an unbalanced

class C. By the assumption that 𝑓 and 𝑔 have the same degree,

there must, in fact, be at least two unbalanced classes. It follows

that there is an unbalanced class that is not contained in Z (i.e., an
unbalanced class of quadratic integers).

Here it is convenient to define the following linear ordering on R.

Given elements 𝑎\+𝑏 and 𝑎′\+𝑏′ inR (where 𝑎, 𝑎′, 𝑏, 𝑏′ ∈ Z), define
𝑎\ + 𝑏 ≺ 𝑎′\ + 𝑏′ if and only if one of the following four mutually

exclusive conditions holds:

(1) 𝑎′ ≤ 0 < 𝑎,

(2) 0 < 𝑎 < 𝑎′,
(3) 𝑎 < 𝑎′ ≤ 0,

(4) 𝑎 = 𝑎′ and 𝑏 < 𝑏′.

Note that the classes inR are intervals with respect to the order ≺.
Thus the order lifts naturally to a linear order on classes. In partic-

ular, the least unbalanced class C0 is well-defined. Let 𝛼0 = 𝑎0\ +𝑏0
be the greatest element in C0. Then {𝛼 ∈ R : 𝛼 ≼ 𝛼0} is unbal-
anced because this set is a disjoint union of balanced classes and C0.
Further, 𝑎0 > 0 because the least unbalanced class is necessarily a

subset of quadratic integers of the form 𝑎0\ + Z. Here we note that
the image of an unbalanced class under the automorphism of K

that interchanges

√︁
𝛽 and −

√︁
𝛽 is likewise an unbalanced class and

so 𝑎0 > 0.

5.2 Threshold conditions
Next we exhibit a threshold 𝐵 (defined in terms of the recurrence (1))

such that for all 𝑛 > 𝐵 there are rational integers \ ′ and 𝑝 , with

𝑝 > 𝑛 prime, satisfying the following conditions:

(P1) 𝑚\ (\ ′) ≡ 0 (mod 𝑝);
(P2) The function 𝜑 : R → Z defined by

𝜑 (𝑎\ + 𝑏) =
{
𝑎\ ′ + 𝑏 if 𝑎 > 0,

𝑎\ ′ + 𝑏 + 𝑝 if 𝑎 ≤ 0

is an order embedding of (R, ≺) in ({0, 1, . . . , 𝑝 − 1}, <).
(P3) The set {𝛼 ∈ R : 1 ≤ 𝜑 (𝛼) ≤ 𝑛} is unbalanced.
The definitions for \ ′ and 𝑝 follow. Consider the interval

𝐼 (𝑛) :=
{
𝑘 ∈ N :

6𝑛

3𝑎0 + 2

≤ 𝑘 − 1 ≤ 6𝑛

3𝑎0 + 1

}
. (11)

and let𝑀 be an upper bound on {|𝑎 |, |𝑏 | : 𝑎\+𝑏 ∈ R}, and the height
of the minimal polynomials of the elements of R. By Theorem 5,

there is an effective threshold 𝐵, which wemay assume to be greater

than 3𝑀 (𝑀+1), such that for all𝑛 > 𝐵 there exists a prime 𝑝 > 3𝑀𝑛

that divides the product ∏
𝑘∈𝐼 (𝑛)
𝑘∈2N+1

𝑘2 − 𝛽.

Furthermore, since 𝑝 is prime, we deduce that there exists 𝑘0 ∈
𝐼 (𝑛) ∩ (2N + 1) such that 𝑘2

0
≡ 𝛽 (mod 𝑝). We define \ ′ ∈ N to be

the number such that 𝑘0 = 2\ ′ + 1.

We will show that \ ′ and 𝑝 satisfy Conditions (P1)–(P3). Now

𝑚\ (\ ′) =𝑚\

(
𝑘0 − 1

2

)
≡ 𝑘2

0
− 𝛽 ≡ 0 (mod 𝑝) .

Thus \ ′ satisfies Condition (P1).

We turn next to establishing Condition (P2). Since 𝑘0 ∈ 𝐼 (𝑛) and
𝑘0 = 2\ ′ + 1, we have

(𝑎0 + 1

3
)\ ′ ≤ 𝑛 ≤ (𝑎0 + 2

3
)\ ′ . (12)

Combining (12) with the inequality 1 ≤ 𝑎0 ≤ 𝑀 and rearranging

terms gives
𝑛

𝑀+1 ≤ \ ′ ≤ 3𝑛
4
. Recalling that 𝑝 > 3𝑀𝑛 and 𝑛 > 𝐵 ≥

3𝑀 (𝑀 + 1), we conclude that

3𝑀 ≤ \ ′ ≤ 𝑝

4𝑀
. (13)

The inequality \ ′ ≤ 𝑝

4𝑀
in (13) implies that for all roots 𝑎\ +𝑏 ∈ R,

𝜑 (𝑎\ + 𝑏) is equal to

𝑎\ ′ + 𝑏 ∈
{
0, . . . ,

𝑝 − 1

2

}
if 𝑎 > 0, and

𝑎\ ′ + 𝑏 + 𝑝 ∈
{
𝑝 − 1

2

, . . . , 𝑝

}
if 𝑎 ≤ 0

(for the latter, recall that R contains no positive integers). Further,

since |𝑏 | ≤ 𝑀 < \ ′ for all 𝑎\ +𝑏 ∈ R, we conclude that 𝜑 is an order

embedding of (R, ≺) into ({0, . . . , 𝑝 − 1}, <). This establishes (P2).
Equation (12) and the inequality \ ′ ≤ 3𝑀 from (13) yields

𝜑 (𝛼0) < 𝑎0\
′ +𝑀 < 𝑛 < (𝑎0 + 1)\ ′ −𝑀 .

Hence 𝜑 (𝛼0), the image of the greatest element in C0 is upper

bounded by 𝑛. From the definition of the order (R, ≼), for 𝛼 ∈ R
we have that 𝛼 ≼ 𝛼0 if and only if 𝜑 (𝛼) ≤ 𝑛. Thus (P3) follows from

the fact that the set {𝛼 ∈ R : 𝛼 ≼ 𝛼0} is unbalanced.

5.3 Prime divisors of 𝑢𝑛
To conclude the proof, we now explain why properties (P1)–(P3)

imply that 𝑝 divides 𝑢𝑛 . Define𝜓 : Z[\ ] → Z/𝑝Z by

𝜓 (𝑎\ + 𝑏) := (𝑎\ ′ + 𝑏) mod 𝑝.

Condition (P2) entails that 𝜓 and 𝜑 agree on R, while Condition
(P1) entails that 𝜓 is a ring homomorphism. (We note in passing

that the kernel of 𝜓 is a prime ideal 𝔭 appearing in prime ideal

factorisation of 𝑝Z[\ ].) Hence the polynomial 𝑓 𝑔 splits over Z/𝑝Z
and 𝜑 maps the roots of 𝑓 𝑔 in K to roots of 𝑓 𝑔 in Z/𝑝Z.

Consider the decomposition of the 𝑝-adic valuation

𝑣𝑝 (𝑢𝑛) =
𝑛∑︁

𝑘=1

(𝑣𝑝 (𝑔(𝑘)) − 𝑣𝑝 (𝑓 (𝑘))).

Let ℎ(𝑥) be an irreducible factor of either 𝑓 or 𝑔. Then ℎ(𝑥) is
monic, of degree at most 2 and height at most𝑀 . Since 𝑝 > 3𝑀𝑛, we

easily see that |ℎ(𝑘) | < 𝑝2 for all 1 ≤ 𝑘 ≤ 𝑛 and hence 𝑣𝑝 (ℎ(𝑘)) ∈
{0, 1}. It follows that 𝑣𝑝 (𝑢𝑛) is equal to the number of roots of 𝑔

in Z/𝑝Z that lie in {1, . . . , 𝑛} minus the number of roots of 𝑓 in

Z/𝑝Z that lie in {1, . . . , 𝑛}, counting repeated roots according to

their multiplicity. Observe that this count takes place on the set

413



ISSAC 2023, July 24–27, 2023, Tromsø, Norway George Kenison, Klara Nosan, Mahsa Shirmohammadi, and James Worrell

0
𝑝−1
2

images of some balanced classes 𝜑 (C0 )

𝜑 (𝛼0 ) = 𝑎0\
′ + 𝑏0

𝑎0\
′ + 1

3
\ ′ 𝑛 𝑎0\

′ + 2

3
\ ′

1 ≤ 𝜑 (𝛼 ) ≤ 𝑛 precisely when 𝛼 ≼ 𝛼0

Figure 1: Image of 𝜑 on Z as well as the positions of constants used in the proof of Theorem thm:quadratic to determine that
𝑣𝑝 (𝑢𝑘 ) ≠ 0 for 𝑘 that satisfy 𝑎0\

′ + 1

3
\ ′ ≤ 𝑘 ≤ 𝑎0\

′ + 2

3
\ ′. Note that the preimages 𝛼 ∈ R such that 1 ≤ 𝜑 (𝛼) ≤ 𝑛 are precisely those

roots for which 𝛼 ≼ 𝛼0.

{𝛼 ∈ R : 1 ≤ 𝜑 (𝛼) ≤ 𝑛}. By Condition (P3), the aforementioned

set is unbalanced and so it quickly follows that 𝑣𝑝 (𝑢𝑛) ≠ 0.

5.4 Concluding the proof of Theorem 13
Finally, let us return to the decidability of the Membership Problem

in the setting of Theorem 13. By our standing assumption that all

instances of the problem are normalised we have that 𝑡 ≠ 0. We

have exhibited a bound 𝐵 such that for all 𝑛 > 𝐵 there exists a

prime 𝑝 > 3𝑀𝑛 such that 𝑣𝑝 (𝑢𝑛) ≠ 0. This means that if 𝑝0 is the

largest prime such that 𝑣𝑝0 (𝑡) ≠ 0 then for 𝑛 > max

(
𝐵,

𝑝0
3𝑀

)
we

have 𝑢𝑛 ≠ 𝑡 . Thus we have reduced the Membership Problem in

this setting to a finite search problem. This immediately establishes

decidability and concludes our proof of Theorem 13.

We illustrate the construction underlying Theorem 13 with a

worked example.

Example 2. Let ⟨𝑢𝑛⟩∞𝑛=0 be the hypergeometric sequence defined
by the recurrence

𝑓 (𝑛)𝑢𝑛 − 𝑔(𝑛)𝑢𝑛−1 = 0 with 𝑢0 = 1,

where 𝑓 (𝑥) := 𝑥2 − 𝑥 − 1 and 𝑔(𝑥) := 𝑥2 + 2𝑥 − 4.
The polynomials 𝑓 and 𝑔 both have splitting field K = Q(

√
5),

with ring of integers Z[
√
5−1
2

]. Define \ :=

√
5−1
2

, and write𝑚\ (𝑥) =
𝑥2 + 𝑥 − 1 for its minimal polynomial.

Since 𝑓 = (𝑥 − \ − 1) (𝑥 + \ ) and 𝑔 = (𝑥 − 2\ ) (𝑥 + 2\ + 2), the set
of roots of 𝑓 𝑔 is R = {\ + 1,−\, 2\,−2\ − 2}. The definition of the
linear ordering ≺ on R (see Section 5.1) yields

\ + 1 ≺ 2\ ≺ −2\ − 2 ≺ −\ ,

with the least unbalanced class being C0 := {\ + 1}. Define 𝑀 := 4,
which is an upper bound on {|𝑎 |, |𝑏 | : 𝑎\ +𝑏 ∈ R} and the heights of 𝑓
and 𝑔 (which are the respective minimal polynomials of the elements
of R).

Write 𝑝0 for the largest prime such that 𝑣𝑝0 (𝑡) ≠ 0. By Theorem 5,
there is a bound 𝐵 > 3𝑀 (𝑀 + 1) such that for all 𝑛 > max(𝐵, 𝑝0

3𝑀
),

there is a prime 𝑝 with 𝑣𝑝 (𝑢𝑛) ≠ 𝑣𝑝 (𝑡). This permits us to reduce the
Membership Problem for ⟨𝑢𝑛⟩∞𝑛=0 and 𝑡 to a finite search problem.

Given a target 𝑡 and sufficiently large 𝑛, the process in the proof of
Theorem 13 finds a prime 𝑝 with 𝑣𝑝 (𝑢𝑛) ≠ 𝑣𝑝 (𝑡). Below we illustrate
the idea of the proof in the specific case 𝑡 = 11

59
and 𝑛 = 61. (Here we

have 𝑝0 = 59 and hence 𝑛 > 3𝑀 (𝑀 + 1) and 𝑛 >
𝑝0
3𝑀

, as required in
the proof of Theorem 13.) We will establish the existence of a prime 𝑝
such that

𝑣𝑝 (𝑢61) ≠ 0 and 𝑣𝑝 (𝑡) = 0,

witnessing that 𝑢61 ≠ 𝑡 .

Guided by the proof of Theorem 5, we observe that prime 𝑝 :=

1481 > 3𝑛𝑀 is a divisor of∏
𝑘∈𝐼 (61)
𝑘∈2N+1

𝑘2 − 𝛽 = (752 − 5) (772 − 5) · · · (912 − 5) .

In particular, we have 𝑝 | (772 − 5). Choosing \ ′ := 77−1
2

= 38, we
observe that the pair 𝑝 and \ ′ satisfy conditions (P1)-(P3) in Section 5.2:

(P1) 𝑚\ (\ ′) = 38
2 + 38 − 1 ≡ 0 (mod 𝑝);

(P2) The map 𝜑 : R → Z/𝑝Z is an order embedding of (R, ≺) into
({0, . . . , 𝑝 − 1}, <), which can be seen by noting that

𝜑 (\ + 1) = 39 𝜑 (2\ ) = 76

𝜑 (−2\ − 2) = 1403 𝜑 (−\ ) = 1443,

whence 𝜑 (\ + 1) < 𝜑 (2\ ) < 𝜑 (−2\ − 2) < 𝜑 (−\ ).
(P3) The set {𝛼 ∈ R : 1 ≤ 𝜑 (𝛼) ≤ 61} = {\ + 1} is unbalanced.

By the arguments above, in the equation

𝑣𝑝 (𝑢61) =
61∑︁
𝑘=1

(𝑣𝑝 (𝑔(𝑘)) − 𝑣𝑝 (𝑓 (𝑘))),

the only non-zero term on the right-hand side is

𝑣𝑝 (𝑓 (𝜑 (\ + 1))) = 𝑣𝑝 (𝑓 (39)) = 𝑣𝑝 (1481) = 1.

It follows that 𝑣𝑝 (𝑢61) = −1, while 𝑣𝑝 (𝑡) = 0.

6 DISCUSSION
In light of the results in Section 4 a clear direction for further

research is to examine the decidability of the Membership Prob-

lem for recurrences whose polynomial coefficients share the same

splitting field. We recall that previous work [22] established decid-

ability when the polynomial coefficients split over the rationals.

The present work considers the case when the two polynomials

split over the ring of integers of a quadratic field. In future work

we will consider the more general case in which the all roots of

the coefficient polynomials have degree at most two. As far as the

authors are aware, the only known results in this direction are

the (un)conditional decidability results for quadratic parameters

in [12]. Extending the approach of the present paper to the case of

polynomials with roots of degree more than two would require new

results on large prime divisors on the values of such polynomials,

which is an active area of research in number theory.
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A PROOFS FOR SECTION 3
Proof of Claim 6. First note that 𝐴 = 𝑏−𝑎

𝑐 . The claim states

that

log(𝐹𝑛) ≥
2(𝑏 − 𝑎)

𝑐
(𝑛 log𝑛 − 𝑛) .

The proof is as follows. Given 𝑦 ∈ N, we first observe that∏
𝑐𝑥≤𝑦

(𝑐𝑥)2 ≥ 𝑐2𝑦
(⌊
𝑦

𝑐

⌋
!

)
2

.

By Stirling’s formula, the logarithm of the quantity above is at least

2𝑦

𝑐
log 𝑐 + 2𝑦

𝑐
log𝑦 − 2𝑦

𝑐
. (14)

Now 𝐹𝑛 =
∏

𝑘∈𝐼 (𝑛) (𝑘2 + 𝛽) is bounded from below by

𝐹𝑛 ≥
∏

𝑘∈𝐼 (𝑛)
𝑘2 ≥

∏
𝑎𝑛≤𝑐𝑥≤𝑏𝑛

(𝑐𝑥 + 𝑑)2 ≥
∏

𝑎𝑛≤𝑐𝑥≤𝑏𝑛
(𝑐𝑥)2 .

By the above, and Equation (14) we conclude that log(𝐹𝑛) is bounded
from below by

log

∏
𝑐𝑥≤𝑏𝑛

𝑐2𝑥2 − log

∏
𝑐𝑥≤𝑎𝑛

𝑐2𝑥2 ≥ 2(𝑏 − 𝑎)
𝑐

(𝑛 log𝑛 − 𝑛),

as required. □

We now prove the inequality (9) from the proof of Theorem 5.

Noting that 𝐴 = 𝑏−𝑎
𝑐 , the inequality states that

𝑒𝑝 ≤ 2𝐴𝑛

𝑝 − 1

+ Y2 log𝑛

log𝑝
(9)

Proof of Ineqality (9). If 𝑒𝑝 = 0 then the bound trivially

holds. Suppose 𝑒𝑝 > 0. Then the function 𝑓 has two roots in Z/𝑝Z.
Define 𝑔 ∈ Z[𝑥] by 𝑔(𝑥) := 𝑓 (𝑐𝑥 + 𝑑). In case 𝑝 > 𝑐 then 𝑔 also has

two roots in Z/𝑝Z. For all 𝑛 ∈ N define the products

𝐺𝑛 :=

⌊
𝑏𝑛−𝑑

𝑐

⌋∏
𝑘=1

𝑔(𝑘) and 𝐻𝑛 :=

⌈
𝑎𝑛−𝑑

𝑐

⌉
−1∏

𝑘=1

𝑔(𝑘)

Then 𝐹𝑛 =
𝐺𝑛

𝐻𝑛
and hence 𝑒𝑝 = 𝑣𝑝 (𝐹𝑛) = 𝑣𝑝 (𝐺𝑛)−𝑣𝑝 (𝐻𝑛). Applying

Proposition 4, we get, for some constant Y > 0,

𝑣𝑝 (𝐺𝑛) ≤
2(𝑏𝑛 − 𝑑)
𝑐 (𝑝 − 1) + Y log𝑛

log 𝑝
and

𝑣𝑝 (𝐻𝑛) ≥
2(𝑎𝑛 − 𝑑 − 𝑐)
𝑐 (𝑝 − 1) − Y log𝑛

log 𝑝
.

The upper bound in (9) follows, for a suitable choice of the constant

Y2, by subtracting the upper bound for 𝑣𝑝 (𝐺𝑛) from the lower bound

for 𝑣𝑝 (𝐻𝑛). □
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B SECOND CASE IN THE PROOF OF
THEOREM 13

Let 𝛽 . 1 (mod 4) be a square-free integer and K = Q(
√︁
𝛽) a

quadratic field over which the polynomials 𝑓 and 𝑔 in (1) split

completely. By Theorem 12, the ring of integers of the field K is

Z[
√︁
𝛽]. We define \ :=

√︁
𝛽 , so that 𝑚\ := 𝑥2 − 𝛽 is the minimal

polynomial of \ .

Exactly as in Subsection 5.1, we partition the set R of roots of

𝑓 𝑔 into classes, define the balanced and unbalanced classes, define

the linear ordering ≺ on R, and consider the least unbalanced class
𝐶0. Let 𝑎0\ + 𝑏0 be the greatest element in 𝐶0 and note that 𝑎0 ≥ 1

as before.

B.1 Threshold conditions
Next we exhibit a threshold 𝐵 (defined in terms of the recurrence (1))

such that for all 𝑛 > 𝐵 there are rational integers \ ′ and 𝑝 , with

𝑝 > 𝑛 prime, satisfying the three conditions (P1)–(P3) as stated in

Subsection 5.2.

The definitions for \ ′ and 𝑝 are as follows. Consider the interval

𝐼 (𝑛) :=
{
𝑘 ∈ N :

3𝑛

3𝑎0 + 2

≤ 𝑘 ≤ 3𝑛

3𝑎0 + 1

}

and let𝑀 be an upper bound on {|𝑎 |, |𝑏 | : 𝑎\+𝑏 ∈ R}, and the height
of the minimal polynomials of the elements of R. By Theorem 5,

there is an effective threshold 𝐵, which wemay assume to be greater

than 3𝑀 (𝑀+1), such that for all𝑛 > 𝐵 there exists a prime 𝑝 > 3𝑀𝑛

that divides the product ∏
𝑘∈𝐼 (𝑛)

𝑘2 − 𝛽.

Further, since 𝑝 > 3𝑀𝑛 is prime, we deduce that for 𝑛 > 𝐵 there

exists \ ′ ∈ 𝐼 (𝑛) such that (\ ′)2 ≡ 𝛽 (mod 𝑝).
We will show that \ ′ and 𝑝 satisfy Conditions (P1)–(P3). Now

𝑚\ (\ ′) ≡ (\ ′)2 − 𝛽 ≡ 0 (mod 𝑝) .
Thus \ ′ satisfies Condition (P1).

We turn next to establishing Condition (P2). Since \ ′ ∈ 𝐼 (𝑛), it
is straightforward to show that

(𝑎0 + 1

3
)\ ′ ≤ 𝑛 ≤ (𝑎0 + 2

3
)\ ′ . (15)

These bounds are identical to those in (12). In this case, Conditions

(P2) and (P3) follow by an analogous argument to that given in

Subsection 5.2.

The remaining part of the proof for the case 𝛽 ≡ 1 (mod 4),
as given in Subsection 5.3 and Subsection 5.4, carries over to the

present case without change.
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