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ABSTRACT: Two total syntheses are presented for trigoxyphins K and L, tricyclic terpenoids from Trigonostemon xyphophylloides.
The first proceeds via electrophlic cyclization in A/C-ring substrates to close the B ring at C4−C5 and then 1O2-mediated
hydroxybutenolide formation to trigoxyphin L, with Luche reduction leading to trigoxyphin K. The second route develops from
tetralone ring expansion to a B/C-ring intermediate that, by one-step O-demethylation−lactonization−isomerization, affords
trigoxyphin K and then trigoxyphin L following enolate oxygenation.

The “degraded diterpenes” trigoxyphins K and L (Figure
1)1 are two of many secondary metabolites of terpenoid

origin to be isolated from Trigonostemon xyphophylloides, a
flowering plant of the Euphorbiaeceae family. The structures
were established by extensive nuclear magnetic resonance
(NMR) spectroscopic analysis; although both are chiral, no
specific rotation data are reported, and therefore, it is not
known whether trigoxyphin K, at least, is obtained as a single
enantiomer (trigoxyphin L would likely racemize rapidly in
solution). As a result of near simultaneous reports from
different researchers of further metabolites from the same
plant, the names trigoxyphins J and K were attributed to two
daphnane diterpenoids2 unrelated in structure to trigoxyphins J
and K reported by Wu and Han. These trigoxyphins have been
found in other plants of the Euphorbiaceae family; for example,
trigoxyphin K was isolated from the stem bark of Sagotia
racemosa,3 and trigoxyphin L was isolated from the roots and
leaves of Strophioblachia glandulosa,4 although in the
publication the structure depicted was incorrectly attributed
to trigoxyphin K. Many of the metabolites are appreciably toxic
against human cancer cell lines, and beneficial cardiovascular
effects have been attributed to trigoxyphin K in a series of
patents.5

Arising from our research on harnessing engineered
cytochrome P450BM3 variants for a variety of synthetic
applications, we considered the relatively simple structures of
trigoxyphins K and L to provide an arena for evaluating a
double enzymatic oxidation of precursors, such as tricyclic
furan 3. Here, the furan would be oxidized6,7 to the
(hydroxy)butenolide and the benzene ring would be
hydroxylated8 with reactivity and selectivity tuned by choice
of the P450BM3 variant. This paper reports the synthesis of

tricycle 3, planned to be obtained by Brønsted-acid-initiated
cyclization of biaryl 4, and two separate chemical total
syntheses of trigoxyphins K and L. The metabolites generated
by enzymatic oxidation of compound 3 and related compounds
will be described elsewhere.
A short synthesis of oxidation precursor 3 was envisaged, in

which the cycloheptane (B) ring would be obtained by
connection of the C4−C5 bond by acidic activation of the
prenyl substituent in biaryl derivative 4, which, in turn, was
planned to be prepared by prenylation of Suzuki coupling9

product 5 (Scheme 1). Lithium−halogen exchange in
compound 5 and alkylation with prenyl bromide proved
unsatisfactory because the organometallic compound had
marginal stability at a temperature much above that of its
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Figure 1. Trigoxyphins K and L and potential precursor 3 via
compound 4.
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generation; however, complete alkylation with the more
reactive electrophile prenal was achieved at −78 °C to give
alcohol 6. Attempts to employ this alcohol as a cationic
cyclization precursor resulted in either simple elimination or
intractable product mixtures. Instead, Lewis acid activation10 of
epoxide 7, formed from compound 6 as a single diaster-
eomer,11 afforded tricyclic product 8 (from which the relative
configuration in epoxide 7 was confirmed retrospectively).
Pinacol-type rearrangement12 (→ 9) and Wolff−Kishner
reduction completed the synthesis, in six steps overall. Neither
enzymatic nor chemical installation of the 12-OH substituent
could be achieved from tricycle 3, but furan oxidation under
Faulkner’s conditions13 afforded 12-deoxytrigoxyphin L 10,
which gave the trigoxyphin K analogue 11 upon Luche
reduction.14

Adapting this route to incorporate the C12 phenol at the
outset was expected to excessively frontload the synthesis with
extra steps needed to access the appropriate benzenoid partner
for the Suzuki coupling. Accordingly, the next iteration sought
to establish the C ring by Robinson annulation, in which the
prenyl side chain would already be present. This new sequence
began with Grignard addition to Weinreb amide 1215 (Scheme
2) and then silylation of the so-formed ketone 13 in readiness
for 1,4-addition to methyl vinyl ketone (MVK). This step (→
14) was most effectively achieved by a modification of Loh’s
method with indium(III) chloride.16 For this application, to
avoid extensive tarring of the furan derivative, the reaction was
moderated by including a solvent and keeping the catalyst

loading to 2 mol % (cf. reported conditions: neat and 20 mol %
catalyst, respectively). Intramolecular aldol condensation under
classical conditions gave cyclohexenone 15, which was
efficiently methylenated17 (→ 16) and aromatized under
basic conditions18 to generate phenol derivative 17. The
crucial acid-catalyzed cyclization to close the B ring was
expected to require carefully chosen conditions because of the
natural tendency of furans to decompose in the presence of
both protic and Lewis acids, which, here, would be exacerbated
by attachment to a free phenol. The lack of simple alkenes as
electrophiles in Tanis’ work10 and a 0% yield in a related
cyclization19 gave further cause for concern. Noting the
particular effectiveness of 1,1,1,3,3,3-hexafluoroisopropanol
(HFIP)20 as an additive in promoting camphor sulfonic acid
(CSA)-catalyzed tandem cyclizations, Spivey’s reported
conditions21 were applied to intermediate 17. In the event,
cyclization progressed steadily to give tricyclic phenol 18, with
the only complication arising from competing deprenylation of
the substrate. Trigoxyphins L and K were then obtained by the
singlet oxidation and Luche reduction steps used previously.
Both sequences developed to this point started with

relatively expensive 3-substituted furan derivatives: the boronic
acid in the first route and the carboxylic acid in the second
route. Routes originating with the more accessible 2-
substituted furans are, however, complicated by the gem-
dimethyl functionality, and therefore, an alternative strategy
was considered. In this third approach, the A ring would be
formed as the final step from an appropriately functionalized 2-

Scheme 1. Synthesis of 12-Deoxytrigoxyphins K and L

Scheme 2. Initial Synthesis of Trigoxyphins K and L (Route 1)
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benzosuberone that, in turn, would be obtained from the ring
expansion of known tetralone derivative 19 (Scheme 3). This
ketone, obtained in three steps (∼50% yield) from 2-
methylanisole,22 was dimethylated23 (→ 20) and converted
into the corresponding alkene 21 by Wittig methylenation
under standard conditions. In model studies of the ring
expansion of 1-methylene-1,2,3,4-tetrahydronaphthalene and
its 2,2-dimethyl derivative, Silva’s modification24 of Koser’s
method with [hydroxy(tosyloxy)iodo]benzene (HTIB)25 was
found to work well. With alkene 21, however, isolated yields
were much reduced because of the ease of oxidation of the
methylene group flanked by carbonyl functionality and an
electron-rich aromatic system in the product. Efficient reaction
was restored by replacing Silva’s combination of iodobenzene
and meta-chloroperbenzoic acid (mCPBA) with a slight excess
of (diacetoxy)iodobenzene, affording cycloheptanone deriva-
tive 22. The reaction conditions for a one-step method26 using
glyoxylic acid to introduce the hydroxybutenolide functionality
required for trigoxyphin L worked well in the above-mentioned
model study; however, this process proved too harsh for
ketone 22, and complex reaction mixtures resulted. Eventually,
the most direct solution was found in enolate alkylation and
then treatment of the so-formed keto ester 23 with boron
tribromide. This latter reagent not only removed the phenolic
O-methyl substituent as expected27 but also promoted
lactonization and alkene isomerization28 to deliver trigoxyphin
K directly.29 In a reversal of the final end-game steps in the
previous two routes, trigoxyphin K was converted into
trigoxyphin L by oxygenation of the extended enolate formed
under reversible conditions.30

This project was predicated on the general idea that late-
stage oxidation of (mainly) hydrocarbon precursors could
deconstrain the analysis of target synthesis problems. Had our
initial efforts (Scheme 1) led to a direct incorporation of the
bare prenyl side chain rather than the benzylic alcohol (in
compound 6), access to target 3 would have been achieved in
just three steps. Complications arising from this unwanted
hydroxyl substituent necessitated raising the oxidation level (to
the epoxide 7) to enable clean cyclization of the B ring; in turn,
this meant that two further steps were necessary to remove the
diol functionality. Conceptually, then, this project taught that
the advantage that a late-stage oxidation approach may bring to
synthesis can be undone by redox inefficiencies in accessing
low-oxidation-state substrates.
In the first complete route (Scheme 2), direct methylenation

and isomerization of the Robinson annulation product 15

streamlined access to the B-ring cyclization precursor, leading
to a highlight of this route in the CSA/HFIP-mediated
cyclization, the first case of such a furan-terminated 7-endo-trig
cyclization onto a simple (unconjugated) alkene. Essentially all
the steps in the sequence are strategic C−C bond-forming or
redox processes, and the total syntheses are just one step
longer than the route to the 12-deoxy analogues.
The second complete route (Scheme 3) dispensed with the

previous “furan first” approach, which enabled a much more
satisfying synthesis that would, in principle, be shortened
further by an efficient direct ring expansion from 20 → 22.
Here, the finding that the conditions for de-O-methylation
would also complete the butenolide formation led to a direct
synthesis of trigoxyphin K and then trigoxyphin L in a logical
order from a redox perspective. The overall route is short (8−9
steps), efficient (∼10% overall; >75% average per step), and
both practical and scalable, appropriate for the production of
analogues by variation of the initial benzocycloalkanone and
the introduced alkyl substituents.
Further supporting synthetic studies in this project and the

outcomes of enzymatic screening applied to compound 3 and
related substrates will be reported in due course.
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