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COMFormer: Classification of Maternal-Fetal and
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Abstract—Monitoring the healthy development of a fetus
requires accurate and timely identification of different maternal-
fetal structures as they grow. To facilitate this objective in an
automated fashion, we propose a deep-learning-based image
classification architecture called the COMFormer to classify
maternal-fetal and brain anatomical structures present in two-
dimensional fetal ultrasound images. The proposed architecture
classifies the two subcategories separately: maternal-fetal (ab-
domen, brain, femur, thorax, mother’s cervix, and others) and
brain anatomical structures (trans-thalamic, trans-cerebellum,
trans-ventricular, and non-brain). Our proposed architecture
relies on a transformer-based approach that leverages spatial and
global features by using a newly designed residual cross-variance
attention (R-XCA) block. This block introduces an advanced
cross-covariance attention mechanism to capture a long-range
representation from the input using spatial (e.g., shape, texture,
intensity) and global features. To build COMFormer, we used a
large publicly available dataset (BCNatal) consisting of 12, 400
images from 1,792 subjects. Experimental results prove that
COMFormer outperforms the recent CNN and transformer-based
models by achieving 95.64% and 96.33% classification accuracy
on maternal-fetal and brain anatomy, respectively.

Index Terms—Fetal ultrasound, maternal-fetal, deep learning,
convolutional neural network, transformer.

I. INTRODUCTION

PRENATAL ultrasonography is a non-invasive, real-time
imaging modality employed during pregnancy. Ultra-

sound (US) scanning has the advantage of using non-ionizing
radiation, is convenient, and is safer for pregnant women than
other imaging modalities like magnetic resonance imaging
(MRI) or computed tomography (CT). In two-dimensional US,
fetal biometry, consisting of measurement of the head circum-
ference (HC), femur length (FL), biparietal diameter (BPD),
and abdominal circumference (AC), is used for gestational age
estimation and fetal growth monitoring [1]. US can also assist
the functional health of the fetus, such as the assessment of
the fetal heart rate and the bladder.

Acquisition of fetal US standard planes and anatomical
structure classification has received significant attention in the
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recent literature [2]–[4]. Bridge et al. [5] identified the fetal
heart from every frame of the US scan videos by applying a
particle-filtering-based method. Chen et al. [6] use domain-
transferred CNNs to classify fetal abdomen images from non-
abdomen images with parameter weights transferred from a
CNN trained on natural images. Yaqub et al. [7] presented
a random forest-based method for classifying six fetal US
planes. In related work, Carneiro et al. used a probabilistic
boosting-tree to detect and classify fetal anatomical struc-
tures [8]. In another work, Yaqub et al. [9] also developed a
system that investigates if all relevant anatomical fetal views
have been included in a subject’s imaging record. Baumgartner
et al. [10] proposed SonoNet, a pre-trained CNN architecture
focused on detecting 13 planes from US video clips using a
supervision-based CNN method. Savioli et al. [11] investigated
the automatic measurement of the vascular diameter of the
fetal abdominal aorta from US images using a CNN with
a convolution-gated recurrent unit (C-GRU). The C-GRU
takes advantage of the signal’s temporal redundancy, and a
regularised loss function called CyclicLoss to improve prior
knowledge about the periodicity of the observed signal. Yasrab
et al. [12] and Chen et al. [13] use spatio-temporal methods
to classify fetal US images at the frame level.

There is also work exploring using augmentation-based
approaches or auxiliary information to improve the perfor-
mance of CNN architectures for standard plane detection.
Specifically, Lee et al. [14] introduces a particular approach
to augmentation to improve the performance of fetal standard
plane classification models. Ahmed et al. [15] and Cai et
al. [16] make use of visual heatmaps to assist in identifying
standard planes depicting the abdominal circumference in
fetal US images. A multi-scale model integrated with an
attention mechanism is used by Xhi et al. [17] where the
author segments the fetal heart and lungs in US images. A
recent study with 12,400 US images from 1,792 subjects [18]
classifies the common maternal-fetal US images using some
recently made available ImageNet pre-trained CNN models.
That study [18] makes their dataset publicly available and is
used in this paper to enable benchmarking of our approach.

Transformer-based methods have achieved great attention
and some success in the medical imaging domain [19]. As
an alternative to CNNs, transformers can extract long-range
dependencies and highlight prominent feature representations
through their self-attention mechanism. A limited study has
reported the effectiveness of recent transformers-based ap-
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Fig. 1: Example images from the “BCNatal” dataset [18] (a) for the maternal-fetal anatomy dataset, specifically, the abdomen,
brain, femur, thorax, mother’s cervix, and any “other” US plane, and (b) for the brain anatomy dataset, specifically, the trans-
thalamic, trans-cerebellum, trans-ventricular and “non-brain” US plane.

proaches in US image analysis. Gheflati et al. [20] used a
vision transformer and different augmentation strategies to
classify breast US images. Plotka et al. [21] introduced a
model called BabyNet that predicts the birth weight of the
fetus from an US video. Yang et al. [22] propose a fetal
head circumference auto-measurement method that combines
a transformer and a CNN to extract a meaningful feature
representation that incorporates both the local and global
features from the US images.

1) Motivation: Detecting anatomical planes for fetal as-
sessment is recognized as a highly-skilled task in which the
quality of ultrasound decision-making depends on a sono-
grapher’s skill. Even when a sonographer is trained to a
high level, there can be significant inter- and intra-observer
acquisition variability [23]–[26]. The motivation behind this
work is to support sonographers in detecting standardised
planes promptly, allowing for more optimal use of expert
sonographers’ and operators’ time without compromising the
quality and accuracy of maternal-fetal structure identifications.
The need for such support is more apparent when considering
scenarios requiring the determining of different views of the
same structure or when classifying substructures within the
same anatomical structure. Due to the quality of its prediction
and the speed of the automated solution compared to manual
identification, COMFormers are well-suited for implementa-
tion in a real-life clinical setting. Automating the clinical
workflow may allow more subjects to be screened in a clinic
session. Classifying anatomical structures - maternal or fetal
- through COMFormers may support that objective.

2) Contribution: This paper presents a new automated vi-
sion transformer-based architecture called COMFormer, which
uses a Residual Cross-Covariance Attention Guided Trans-
former to classify maternal-fetal and brain anatomical struc-
tures in fetal ultrasound images. The proposed architecture is
inspired by the cross-covariance attention (XCA) block from
previous work [27], which enhances the discriminability of
key features in targeted regions. The XCA plays a critical

role in determining the relevance of input tokens to others.
However, this process can be computationally expensive and
lead to small gradients in deeper networks. The proposed resid-
ual cross-variance attention (R-XCA) block utilises residual
connections to prevent minimal gradients and facilitate the
learning process of COMFormer. These connections also play
a crucial role in preserving the original spatial information
from the input, which is necessary and important for fetal
US image classification. With the R-XCA block, our model
can effectively focus on different parts of the fetal input
image while residual connections ensure that the original
spatial details are not lost. The COMFormer integrates low
and high-level information such as texture, shape, and anatomy
boundaries to improve feature extraction. Additionally, it in-
cludes local patch interaction (LPI), feed-forward network
(FFN), and fully connected (FC) layers to improve information
flow between channels and extract per-patch information. We
evaluate the performance of the COMFormer architecture on
a publicly available fetal ultrasound dataset of 1, 792 subjects.
The proposed model is used to classify maternal-fetal anatomy
into six different anatomical planes (abdomen, brain, femur,
thorax, mother’s cervix, and others) and fetal brain anatomy
(trans-thalamic, trans-cerebellum, trans-ventricular, and non-
brain) into four sub-classes. It is important to note that
the COMFormer architecture is used separately to train and
evaluate the above two classification tasks. Our experiments
demonstrate that the COMFormer architecture achieves com-
petitive classification results compared to recent CNN and
transformer-based methods. We also conduct a design justi-
fication study to validate the effectiveness of each component
in the COMFormer architecture.

The paper is structured as follows. Section II provides
an overview of the ”BCNatal” dataset and introduces the
proposed COMFormer architecture. Section III presents the
experimental results, comparing various CNN and transformer-
based models. Finally, Section IV concludes the paper by sum-
marizing the main findings and suggesting possible directions
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Fig. 2: Class-wise image distribution of “BCNatal”dataset [18], (a) for the maternal-fetal anatomy dataset, including fetal
abdomen (FA), brain (FB), femur (FF), and thorax (FT), mother’s cervix (MC) and any other (OT) US plane, (b) for the brain
anatomy dataset, including trans-thalamic (TT), trans-cerebellum (TC), trans-ventricular (TV) and rest of the non-brain (NB)
US plane.
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Fig. 3: Histograms of image quality metrics computed for the 12,400 fetal US images: (a) brightness score and (b) blurriness
score.

for future research.

II. MATERIALS AND METHOD

This section provides an overview of the fetal US dataset
used in the study and describes the architectural design of a
Residual Cross-Covariance Attention (R-XCA) block, along
with its interconnected elements, for the identification of fetal
anatomical structures in US images.

A. Dataset

We used the publicly available “BCNatal” dataset [18].
It consists of 12, 400 fetal US images from 1, 792 subjects
and was collected between October 2018 and April 2019
from the routine clinical procedures during the second and
third trimesters of the pregnancy screening. Fig. 1 shows
some example images from the “BCNatal” dataset. The fetal

gestational age ranged from 18 to 40 weeks based on crown-
rump length measurement. Several operators collected all the
fetal US images with similar experiences from a total of
six different US machines, including three Voluson E6 (GE
Medical Systems, Zipf, Austria), one Voluson S8, one Voluson
S10, and one Aloka (Aloka CO., LTD.) by using an abdominal
curved probe with a frequency range from 3 to 7.5MHz and a
2 to 10-MHz vaginal transducer. The original dataset is split
into two sub-sets: the maternal-fetal dataset, including fetal
anatomy abdomen (FA), brain (FB), femur (FF), thorax (FT),
mother’s cervix (MC), and any other (OT) US plane, and the
brain anatomy dataset, including trans-thalamic (TT), trans-
cerebellum (TC), trans-ventricular (TV), and rest of the other
non-brain(NB) US plane. A single expert manually labelled all
images. Note that all the images are stored in ‘.png’ format
and contain no patient metadata information. Fig. 2 illustrates
the class-wise image distributions of the datasets.
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1) Image Quality Assurance: To ensure the best US image
quality before feeding a training image into the deep neural
network, we used two image quality metrics called bluriness
scores [28], [29] and brightness. Blurriness score: The
blurriness score was estimated by utilizing the variance of
the intensity of the fetal ultrasound (FUS) image, denoted as
IFUS(Xc, Yc), which was smoothed using a Gaussian filter
Gf (Xc, Yc), as described in [29]. The Gaussian filter is
mathematically expressed as follows:

Gf (Xc, Yc) =
1

(2πσ2)
e−

(Xc
2+Yc

2)
2σ2 , (1)

Here σ represents the standard deviation of the Gaussian
distribution, and Xc and Yc denote the image coordinate of
IFUS(Xc, Yc). Additionally, we employed the Laplacian op-
erator to calculate the gradient variation (∇IFUS) of the image
IFUS in two dimensions. This was achieved by summing the
second partial derivatives in Cartesian coordinates, yielding
the following expression:

∇2IFUS(Xc, Yc) =
∂2IFUS

∂Xc
2 +

∂2IFUS

∂Yc
2 , (2)

It is worth noting that a low score indicated the image was
blurry, while a high value showed that the fetal ultrasound
image was sharp based on the measured gradient variation.
Brightness score: It assists in identifying various fetal ultra-
sound image characteristics. Sometimes, the acoustic shadows
or excess of subcutaneous fat present in the patient absorb the
energy that creates a poor image. In this regard, we employed
the brightness estimation algorithm proposed by [30]. Fig. 3
plots a histogram of the US image quality scores for all
image samples. In training and testing, we ignored the images
with a brightness score lower than 20 (see Fig. 3a), which
corresponds to a very dark anatomical region in the US image.
An image with a blurriness score of less than 100 (see Fig. 3b)
was also not used in training or testing. Overall, we exclude
the 615 (5%) number of the images of the entire dataset.

B. COMFormer Architecture

Our COMFormer architecture incorporated a residual cross-
covariance attention block (R-XCA) block to leverage both
local ( i.e., shape, texture, intensity, etc.) and global fetal US
image features using a cross-covariance attention mechanism
to learn learning long-range representation. As shown in Fig. 4,
the COMFormer incorporated three main blocks: R-XCA,
local patch interaction (LPI), and feed-forward network (FFN).
We provide a brief description of each layer below.

1) Residual Cross-Covariance Attention Block (R-XCA):
The proposed R-XCA is an attention technique highlighting
the meaningful features from input US. The R-XCA functions
between the channel’s dimension instead token in the input
sequence. In other words, it minimizes the quadratic com-
plexity between each dimension of the token embeddings. It
is important to note that the token represents the whole US
image when each image is divided into a series of patches that
feed into the COMFormer input.

To apply the self-attention mechanism, consider a sequence
of NT entities (I1, I2,.....,In) by I ∈ RNT×di where NT
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Fig. 4: Overview of the COMFormer layer.

corresponds to the number of tokens, and each dimensionality
di. Note that di includes the batch, token, and dm refers to
the batch size, the number of elements for sequence, and the
dimensions of the embedding vector per US input element to
the sequence, respectively. Input image I is linearly projected
to queries (Q), keys (K), and values (V ). Note that queries are
a set of vectors that need to estimate the attention, and keys are
also a set of vectors demanded to calculate the attention against
others. The queries, keys, and values leveraged the weight
metrics of Wq ∈ Rdi×dq , Wk ∈ Rdi×dk , and Wv ∈ Rdi×dv

that extract the feature representation. The output of Q, K
and V measured the K = IWk, Q = IWq , and V = IWv

respectively.
The main aim of the self-attention mechanism is to cap-

ture the relation between all of the NT individuals through
encoding entities concerning global contextual information.
Therefore, the attention maps can be expressed as follows [27]:

A(K,Q) = Softmax
(
QK⊤/

√
dk

)
(3)

Where Q, K, and V stand for the queries, keys, and values,
respectively. The dimension of the queries and keys is denoted
by dk. Furthermore, the self-attention outcome is a weighted
accumulation of the TN token features in V , where the weights
are formulated as:

Attention(Q,K, V ) = A(K,Q)V (4)

The cross-covariance attention [27] estimate the covariance
among the features of the key and query matrices can be
defined as:

XC-Attn(Q,K, V ) = VAIC(K,Q), (5)

where,AIC(K,Q) = Softmax
(
K̂⊤Q̂/τ

)
(6)

Here the Softmax is used to generate the attention vectors,
and τ is the learnable temperature that allows the convergence
of the network training.

Finally, the residual cross-covariance attention (R-XCA)
block can be written as:

R-XCA(Q,K, V ) = XC-Attn(Q,K, V ) + I (7)

The R-XCA model represents an attention-based approach
to leverage the cross-covariance of patch representation pro-
jections (keys and queries) at each layer and automatically
constructs one-dimensional filters. These filters are then used
to extract relevant meaningfulness information from every
patch.
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Fig. 5: Architectural details of the Local Patch Interaction
(LPI) block.

2) Local Patch Interaction (LPI) Block: Fig. 5 shows
the detailed architectural description of the LPI block. It
belongs to the standard convolutional block that utilizes
some tensor reshaping and permuting procedures. It involves
two depth-wise 3 × 3 convolutional layers with in-between
batch normalization and a non-linear Gaussian Error Linear
Unit (GELU) [31] activation function. The LPI block added
directly after each R-XCA block provides communication
between patches. In other words, it provides a solution to
combine knowledge between tokens in the US input sequence.
The first convolutional layer has a kernel size of 3 × 3. The
second convolutional layer follows the first layer structure
except for the output, which relies on the number of input
channels. The layer normalization provides the normalization
of all the activations of an individual CNN layer from a
batch by accumulating statistics from a single training case.
Usually, the output of the R-XCA block keeps the shape
of HW × d. Note that H , W , and d correspond to the
height, width, and depth, respectively. However, performing
a standard convolution operation in a 2-dimensional plane
requires reshaping the size to H ×W × d. Once the features
are processed, it is reshaped to the original shape of HW ×d.

3) Feed-Forward Network (FFN): The Feed-Forward Net-
work (FFN) consists of a single hidden layer that incorporates
the four-dimensional hidden components. For an input I , FNN
can be expressed as follows:

FFN(I) = σ (IW1 + b1)W2 + b2 (8)

Here, σ is a GELU activation function. FFN encourages
interaction across all features when there is no feature
interaction in the LPI block.

4) Class Attention: We also employed class attention layers
that average the patch embeddings of the previous COM-
Former layer by assigning them to a class (CLS) token via
single-way attention between the CLS tokens and the patch
embeddings. Note that the class token attends to the patches
and provides the most suitable regions of a US image.

C. Cost Function

Since the dataset [18] is imbalanced, choosing an appropri-
ate loss function is critical for successfully training a deep
learning-based model. Our study used two cost functions:

Cross-Entropy (CE) and Focal Loss (FL). The CE loss is
defined as:

LCE(fegt, fepd) = −
m∑
j=1

fegt.log(fepdj) (9)

where m refers to the number of classes (in our case, six and
four classes), fegt is the label defined by the clinical expert
(ground-truth), and fepdj is the softmax probability of the jth

class.
The FL [32] applies a scaling factor to the softmax CE

loss to reduce the associated loss for successfully identified
instances while concentrating on challenging ones. FL is
defined as:

LFL(fegt, fepd) =−
m∑
j=1

(1− fepdj)
γ .log(fepdj) (10)

where the hyperparameter γ ∈ [0.5, 2].

D. Training Details

We employed the same dataset distribution as stated in
previously published work [18]. We rescaled the original input
fetal US image to a spatial resolution of 224× 224 pixels. To
avoid overfitting, we applied data augmentation, specifically
rotation of 30 degrees, horizontal and vertical flipping with a
probability of 0.5, and a scaling factor of 0.25. We computed
the mean and standard deviation of intensity across a single-
channel US image and normalized all the samples accordingly.
The model had a patch size of 16×16, embedded dimension of
768, depth, and a number of heads was each set to 12. We used
an SGD optimizer with an initial learning rate of 0.001. All
models were trained for 100 epochs with a batch size of four.
At the end of the training, all model weights were saved based
on the highest classification accuracy yielded on the validation
set. Note that we trained all the methods employed with their
default hyperparameter settings proposed in their literature. We
used the same input size, loss function, and number of epochs
to train the proposed COMFormer and compared methods. We
report classification results using four established performance
evaluation metrics: accuracy, precision, recall, and F1-score.

III. EXPERIMENTAL RESULTS

This section assesses the effectiveness of the proposed
COMFormer and compares it against existing CNN and
transformer-based models that were pre-trained on ImageNet.
We examine various model versions with different input reso-
lutions and investigate the impact of data augmentation and
loss function type. Initially, we conducted experiments for
the six-class maternal-fetal anatomy classification and then
applied the best-performing COMFormer configuration to the
four-class brain anatomy classification task.

A. Comparison of CNN and Transformers-based Models to
Classify the Maternal-fetal Anatomical Plane

Table I presents a comparison results between the proposed
COMFormer architecture and previously published models for
maternal-fetal anatomical plane classification. To make a fair
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TABLE I: Comparison of the proposed model performance (%) for classifying the maternal-fetal anatomical plane with the
four CNN and five recent transformers-based models. The best significant scores are in bold.

Methods Accuracy Precision Recall F1-score
CNN-based
VGG-16 [33] 92.28 90.78 92.02 91.39
ResNet-101 [34] 93.06 91.53 93.59 92.54
ResNetXt-101 [35] 93.37 91.87 94.08 92.96
DenseNet-169 [36] 93.50 92.51 93.88 93.18
Transformers-based
ViT [37] 93.29 92.13 93.49 92.80
BEiT [38] 93.93 93.14 93.91 93.52
CaiT [39] 93.41 93.58 93.99 93.78
Swin [40] 93.47 93.51 93.60 93.55
XCiT [41] 93.59 93.62 94.03 93.82
COMFormer (w/o QA) 94.76 93.12 94.55 93.83
COMFormer 95.64 94.65 95.87 95.23

comparison, we fine-tuned four CNN-based models pre-trained
on ImageNet from; VGG-16 [33], ResNet-101 [34], ResNetXt-
101 [35], and DenseNet-169 [36]. Similarly, we also fine-
tuned five recent vision transformer-based models; ViT [37],
BEiT [38], CaiT [39], Swin Transformer [40], and XCiT [27].
Experimental results confirmed that COMFormer achieved the
highest classification results with the accuracy score of 95.64%
than the other methods.

In CNN-based models, we found that DenseNet-169
marginally yielded the best results of 93.50% with the second-
highest ResNeXt-101. Each DenseNet-169 layer received col-
lective US feature information from the previous layers using a
densely connected CNN. In simple terms, the last output layer

collects all the features representation from every single layer,
which contributes to better classification performance than for
other compared methods. VGG-16 and ResNet-101 obtained
similar classification performance in all the evaluation metrics.
For the transformer-based models, BEiT achieved the second-
best results to COMFormer with an approximate 2% for all the
measured metrics. ViT, CaiT, and Swin performed similarly
by achieving results in the range of 93%. These methods
process the input US into small patches through a self-attention
mechanism that only emphasizes capturing global features
of maternal-fetal anatomical plane structure features and has
limited aggregation of local spatial information. Additionally,
we have performed experiments without the quality assurance

Fig. 6: Visualisation results of the activation maps. For every column, we show an input maternal-fetal anatomical plane, the
corresponding activation maps from the outputs of the CNN-based DenseNet-169, XCiT, and the COMFormer model. Note
that the input image of the first row from left to right is the fetal abdomen (FA), fetal brain (FB), fetal femur (FF) and fetal
thorax (FT), mother’s cervix (MC), and any other (OT) image plane, respectively. The proposed model has captured the most
important anatomical structures in the presence of several imaging artefacts. The residual attention highlighted the salient
features and ignored the unwanted ones.
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Fig. 7: Illustration of a confusion matrix using COMFormer
for classifying the maternal-fetal anatomical plane in the US.

(a) (b) (c)

Fig. 8: Misclassification of the OT class images predicted by
the COMFormer. Note that (a), (b), and (c) refers to the FB,
FF, and FT classes, respectively. Here, GT and PR belong to
the ground-truth and prediction, respectively.

(w/o QA) step when training the COMFormer and found that
it decreased the classification results with 1% when compared
against utilizing it.

To complement our quantitative findings, Fig. 6 shows some
examples of activation maps of the best performance achieved
by the DenseNet-169, XCiT, and COMFormer architecture.
It is important to note that the intensity of the red colour
represents where the model pays more attention when making
the final prediction, and blue represents the less informative
regions or pixels. From the visual inspection, the example
images contain the six maternal-fetal anatomy structures with
various imaging artefacts, including shadows, speckle noise,
and neighbouring tissues. The DenseNet-169 highlighted most
of the pixels present in the images. Its convolutional filters
receptive field activated to capture the additional discussed
artefacts. It also highlighted the hypoechoic tissues of the
fetal abdomen, fetal brain, fetal femur, and other planes in
examples I , II , III , and V I , respectively. However, examples
IV and V refer to the FT and MC in which DenseNet-169
filters emphasize the neighbouring grey pixels that contain the
higher speckle noise rather than focusing on the anatomy.

In turn, the XCiT model captured the anatomical structure
but was not accurate as the proposed COMFormer. It paid
more attention to the background regions and less to targeted

TABLE II: The COMFormer model class-wise results for
classifying the maternal-fetal anatomy in US.

Classes Accuracy Precision Recall F1-score
FA 95.81 90.98 95.81 93.33
FB 99.32 99.19 99.32 99.25
FF 94.27 88.37 94.27 91.23
FT 94.69 95.27 94.70 94.98
MC 99.68 99.54 99.69 99.61
OT 91.43 94.55 91.44 92.97

Fig. 9: The receiver operating characteristic (ROC) curve
using COMFormer for the maternal-fetal anatomical plane
classification task.

pixels. The COMFormer model precisely captured the anatom-
ical structures while ignoring the US imaging artefacts. The
R-XCA block with a cross-covariance attention mechanism
focused on the targeted anatomical pixels shown in all six
examples.

Fig. 7 shows the confusion matrix of the COMFormer for
the maternal-fetal anatomical plane classification. From the
experimental findings, the COMFormer correctly classified
most of the maternal-fetal anatomical structures in the US,
regardless of OT class, where 11% of the images were
classified incorrectly into different categories. We discovered
that some of the FT and FF class images are predicted as the
OT. Similarly, the OT class images with 7.5% samples are
confused with the FT and FF classes. The OT class features
are mostly in-distributed with FT and FF classes, making it
difficult for a model to differentiate precisely between them.
We identified the misclassified samples labelled initially to the
OT. With the help of COMFormer prediction scores and visual
inspection of the misclassified cases, we found that they shared
FF, FB, and FT classes images, as shown in Fig. 8. From
the experimental findings and visual inspection, we found that
the OT samples share similar features, as the COMFormer
predicted them as their actual class based on their maternal-
fetal anatomical structures.

Fig. 9 presents the ROC curve obtained using the COM-
Former for the maternal-fetal anatomy plane classification
task. All six classes achieved very high AUC with an average
score of 99%. The COMFormer produced fewer misclassi-
fication and showed its strength in correctly predicting the
multiple anatomical structures while ignoring the artefacts
present in the US, as shown in Fig. 6. Moreover, the last
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Fig. 10: t-SNE feature visualization of the maternal-fetal classification by (a) DenseNet-169, (b) XCiT, and (c) COMFormer .

layer features representations were obtained by embedding the
6-dimensional class vector of the DenseNet-169, XCiT, and
COMFormer into 2 dimensions for maternal-fetal anatomy
classification shown using t-distributed stochastic neighbour
embedding (t-SNE) [42] in Fig. 10. The results indicate
that DenseNet-169 and XCiT class feature clusters exhibited
overlapping patterns with other classes, resulting in misclassi-
fication. We can graphically depict the inter-class variability of
the classes. We can better analyze the heterogeneity among the
test set samples using the t-SNE visualization. For example,
FF, MC, FA, FT, and FB classes are distinguishable as a
cluster. In contrast, we can identify classes with lower classi-
fication accuracy, like those overlapping with OT. In addition,
Table II summarises the class-wise performance metrics of
COMFormer with the accuracy score of 95.81%, 99.32%,
94.27%, 94.69%, 99.68%, and 91.43% to classify FA, FB,
FF, FT, MC, and OT, respectively.

B. COMFormer Design Justification Experiments on
Maternal-fetal Anatomy Classification

Next, we examine COMFormer performance by measuring
the effects of changing input image resolution sizes, the impact
of data augmentation, and loss functions on the performance of
a six-class maternal-fetal anatomy classification task. Finally,
we kept the best COMFormer parameters setting leveraged
to train and evaluate in classifying the four-class fetal brain
anatomy structures.

1) Effect of changing the input image resolution: In this
study, we compared training with images of two different
resolution sizes with 384 × 384 and 224 × 224 pixels. The
dimensions of the original images are different, the heights
and widths ranging from 787 to 196 and from 1605 to 280
pixels, respectively. Note that we resized the images using
bilinear interpolation that contains their original resolution
to the two discussed sizes. Table III shows the results for
changing the input image size in classifying the maternal-fetal
anatomy structures. We noticed that, with the resolution size of
224×224, the COMFormer achieved a higher performance of
1% than 384× 384 for all the metrics. The fetal US contains
additional noise that affects these grey pixels and does not
help the model learn meaningful features. With the size of
224× 224 pixels, holding less noise allows COMFormer that

TABLE III: Evaluating the effect of variation in the input
image size on COMFormer performance.

Image size Accuracy Precision Recall F1-score
384 ×384 95.33 94.51 95.14 94.82
224 ×224 95.64 94.65 95.87 95.23

learns significant anatomical key spatial and global features in
the US.

2) Effect of data augmentation: Table IV presents the
results of verifying the effect of adding data augmentation to
COMFormer. As can be seen, adding the additional diversity
in feature representation enhances classification results in the
range of 0.5% − 1% in terms of accuracy, precision, recall,
and F1 scores. The data augmentation fills the semantic gap
and helps the COMFormer training to be more generalised.

TABLE IV: Evaluating the effect of with and without data
augmentation using COMFormer.

Data aug. Accuracy Precision Recall F1-score
No 95.20 93.56 95.09 94.72
Yes 95.64 94.65 95.87 95.23

3) Effect of choice of the loss function: Table V compares
models built with two different loss functions, CE and FL.
Experimental results show that the model with FL outperforms
the model with CE loss for all metrics with an improvement
of 0.5− 1%.

TABLE V: Evaluating the effect of the loss function using
COMFormer.

Loss function Accuracy Precision Recall F1-score
CE 95.09 94.32 94.84 94.56
Focal 95.64 94.65 95.87 95.23

C. Brain Anatomy Classification

Table VI demonstrates the class-wise COMFomer perfor-
mance for classifying the brain anatomical planes in the US.
We already explored the best parameter of the COMFomer
on the maternal-fetal classification task that translated to the
brain anatomy classification task. We separately trained and
evaluated the model for four-class brain anatomy prediction.
The experimental results show COMFomer provided average
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Fig. 11: Visualisation results of the activation maps for the
brain anatomy class generated using the COMFormer. Each
class presents a single example in which the model pays more
attention to provide a final prediction. Examples I, II, III, and
IV correspond to the TC, TT, TV, and NB.

Fig. 12: Illustration of a confusion matrix using COMFormer
for classifying brain anatomy plane.

accuracy and F1-scores of 89.08% and 89.37%, respectively.
The model focused on capturing the TC, TT, and TV brain
anatomy that ignored the neighbour background with artefacts
present in the US, as shown in Fig. 11. However, the NB
class contains an anatomical structure of not a brain presented
in Fig. 11 (IV) where the model only highlights the majority
of the grey pixels. In the remaining examples, such as I, II,
and III, the COMFomer focuses on the targeted anatomical
structures highlighted in red and ignores the background.

Fig. 12 shows the confusion matrix of the brain anatomy

TABLE VI: The COMFormer model class-wise results for
classifying the brain anatomy in US.

Classes Accuracy Precision Recall F1-score
NB 99.78 99.87 99.84 99.86
TC 90.86 90.54 84.66 87.50
TT 89.55 85.51 91.76 88.52
TV 76.15 86.62 77.15 81.61

Fig. 13: Illustration of ROC curve using COMFormer to
classify the brain anatomy in the fetal US.

Fig. 14: t-SNE feature visualization of the brain anatomy
classification by COMFormer.

planes classification obtained through the COMFormer. The
NB contains the images which do not correspond to the brain
structure classified correctly with only a 0.28% error rate.
However, the TV has an error rate of 24% in which the
images incorrectly predicted to the TT. We found a similar
misclassification in the TT class, where 37 and 42 samples
predicted the TV and TC, respectively. In addition, the TC
class images feature 29 images overlapped with TT. The
model wrongly predicted about 6 − 8% samples to TC and
TT categories. We also measured the class-wise AUC scores
shown in Fig. 13. All four brain anatomy classes achieved
higher AUC scores greater than 97%.

To classify brain anatomy, the last layer embedding of the
COMFormer is a 4-dimensional class vector that maps into 2
dimensions for visualizing the t-SNE in Fig. 14. The resulting
plot reveals that the NB and TC classes are distinct and form
separate clusters. However, the feature space for the TT and
TV classes overlaps significantly.

Fig. 15 illustrates three instances of misclassification, where
the classes NB, TC, and TV were incorrectly predicted as TT.
The NB example contains some outer spatial brain structures
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(a) (b) (c)

Fig. 15: Samples misclassified as TT by the COMFormer
model. Here (a), (b), and (c) belong to the ground-truth (GT)
labels of NB, TC, and TV brain anatomy classes, respectively.

with hyperechoic circular boundaries that are similar to the TT
class features. Similarly, the TC class example appears to TT,
and the model misclassifies it. In contrast, the TV image has
poor contrast and displays acoustic shadows, which the model
incorrectly identified as TT.

D. Discussion and limitations

We have proposed a transformer-based COMFormer archi-
tecture to classify the maternal-fetal and brain anatomical
structures from US images. For this purpose, we designed
a residual cross-covariance attention block that computes
the attention in channels or feature dimensions. We found
that previously studied transformers used their self-attention
mechanism which does not aggregate the local feature in-
formation and required significantly more training samples
to achieve better classification performance than CNNs. We
utilized a publicly available fetal US dataset, in which both
different sub-classes samples are very distinct based on their
anatomical structures. A common architecture was in build-
ing two models. The first model was applied to maternal-
fetal anatomical structures classification that achieved higher
results by extracting local and global features where other
compared methods failed to deal with challenging artefacts.
The heat maps of the proposed model focused on targeted
anatomical structures while ignoring the artefacts such as
acoustic shadows and neighbouring hyperechoic tissues. We
also assess the strength of COMFormer architecture for the
brain anatomy classification task. Our experimental results
surpassed the recent work [18] by 2.5% for classifying the six
class maternal-fetal anatomical structures. However, we also
compared our model results for brain anatomy with [18] and
achieved a higher accuracy of 11%.

The study’s limitations arise from the lack of heterogeneity
in the fetal ultrasound dataset, which introduces potential bias
and limits the generalizability of the findings. The resulting
classification model may not perform well across diverse
populations, resulting in reduced accuracy and reliability in
clinical settings. Additionally, the single dataset may fail to
capture the full range of fetal structures, anatomical variations,
and developmental anomalies, thereby limiting the applica-
bility of the study’s conclusions. To improve the accuracy,
reliability, and inclusiveness of fetal ultrasound interpretations,
it is crucial to obtain a more diverse and representative
dataset. Furthermore, it has come to our attention that this
study needs more comprehensive coverage of crucial fetal
anatomical aspects since we only considered limited maternal

fetal and brain anatomy structures without the inclusion of a
specific ’None’ class that represents the absence of any kind
of anatomical structure in an image. As a result, our future
endeavors will be dedicated to addressing these significant
gaps.

IV. CONCLUSION

This paper presents the transformer-based COMFormer
architecture to classify maternal-fetal and brain anatomical
structures in 2D US images. We designed a new residual cross-
covariance attention (R-XCA) block that improved the clas-
sification results from the original cross-covariance attention
layers. The COMFormer model has been trained and validated
on a publicly available dataset called “BCNatal” with models
built for two classification tasks. We have presented a broad
range of justification experiments that present the effectiveness
of the proposed model. By extracting complex features from
challenging US images, the COMFormer model has exceeded
the limitations of several CNN and transformer-based models,
resulting in highly accurate results. The suggested model
accurately identifies the maternal-fetal and brain structures that
could help monitor the healthy development of fetuses. Future
work will explore the applicability of the proposed approach
for fetal US image classification for different trimesters and
on-scan video clips to incorporate the temporal aspect of real-
time ultrasound scans.

ACKNOWLEDGMENTS

This work was supported in part by the InnoHK-funded
Hong Kong Centre for Cerebro-cardiovascular Health Engi-
neering (COCHE) Project 2.1 (Cardiovascular risks in early
life and fetal echocardiography).

REFERENCES

[1] S. Płotka, A. Klasa, A. Lisowska, J. Seliga-Siwecka, M. Lipa,
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