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 Abstract 
 Low levels of cellular oxygen, also known as hypoxia, is a major characteristic of solid 

 tumours. Cancer hypoxia is associated with poor prognosis, resulting in prometastatic and 

 angiogenic effects as well as inducing resistance to both chemo- and radiotherapeutic 

 treatments. Despite the critical role that low oxygen tensions play in cancer progression, the 

 clinical use of hypoxia-targeting treatments is still extremely low due to the absence of both 

 accurate and cost-effective methods available to measure hypoxia. 

 One promising technique to measure hypoxia are gene expression signatures. As opposed 

 to other methods, usually more expensive or invasive, gene expression signatures can be 

 used to measure hypoxia from cancer biopsies, and even in retrospective cohorts. During 

 the last twenty years, more than fifty hypoxia gene expression signatures have been 

 developed. These expression signatures were derived using a variety of computational 

 methods and different experimental conditions. For example, some signatures have been 

 derived  in vitro  , others  in vivo  only and others using  both approaches including one or more 

 cancer types. As a result, the scientific community has to decide which of the plethora of 

 signatures to use in their experiments and clinical trials, but which signature and which way 

 of summarising a signature into a “score” is most appropriate for which scenario is currently 

 unknown. 

 This work is the largest and most comprehensive analysis and validation of the 53 published 

 hypoxia gene expression signatures to date. Hypoxia gene expression scores were 

 calculated on publicly available gene expression data from ~1,000 cell line samples (the 

 Gene Expression Omnibus) and ~6,000 clinical samples (The Cancer Genome Atlas) and 

 compared to the same score on normoxic samples. These hypoxia signature scores were 

 compared to the scores derived from more than 7.5 million Random Gene Signatures (RGS) 

 to determine whether they were truly able to measure hypoxia. 

 15 



 The overall most effective signature and score combination on cell line samples was the 

 Sorensen 2010 signature using the median score. This achieved an impressive 92.84% 

 accuracy in identifying hypoxic samples in 98 cell lines. In clinical samples, the Buffa 2010 

 signature using the mean score appears most appropriate as it fulfils the three key criteria of 

 a) being on average higher in tumour samples than in normal tissue samples, b) differing in 

 performance compared to random gene signatures c) serving as a strong prognostic marker 

 (using a number of different thresholds) across 10 important tumour types. However, large 

 prospective clinical studies with multiple measures of hypoxia are urgently needed to affirm 

 our recommendation. This work lays down a new benchmark in how to measure hypoxia and 

 the novel method used may transform how gene expression signatures in multiple fields 

 might be evaluated in years to come. 
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 Chapter 1: Gene expression signatures as 
 markers of hypoxia and the concept of 

 synthetic lethality 
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 1.1 Introduction 

 The lifetime incidence of cancer is currently one in two  1  . This increasing burden of 

 cancer on society necessitates new therapeutic interventions. The three pillars of cancer 

 treatment: surgery, radiotherapy and targeted therapies, need optimisation to improve 

 patient survival. By far the least optimised are targeted therapies, perhaps due to the 

 biological heterogeneity and evolutionary nature of malignancies. However, over the past 20 

 years, there have been some notable successes, for instance BRAF inhibitors and then 

 checkpoint inhibitors transforming patient survival in melanoma  2  ,  3  ,  4  . A major driver of 

 treatment resistance, and hence a promising area for targeted therapy is low oxygen tension 

 (hypoxia) which is an extremely common characteristic of the tumour microenvironment. 
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 1.2 Hypoxia in cancer 

 Hypoxia is associated with poor prognosis in many different tumour types, including 

 breast  5  , bladder  6  , gastric  7  , head and neck  8  , liver  9  ,  lung  10  , oesophageal  11  and prostate  12  . 

 Indeed, several factors combine to induce hypoxia in tumour cells, particularly a mismatch 

 between oxygen supply and demand. Proliferating cancer cells provide an increasing 

 demand for oxygen, where aberrant angiogenesis cannot keep pace. Further, the 

 neovasculature associated with tumours tends to be poorly organised and not placed 

 optimally to provide oxygen to the tumour cells: oxygen can only diffuse about 160 mm in 

 tissue  13  . This low oxygen environment places a selective  pressure upon cells as they are 

 forced to either adapt or die. 

 Humans have an inbuilt oxygen sensing mechanism, the hypoxia-inducible factor 

 (HIF) system  14  , which is a major effector of metabolic  changes in hypoxia. HIF is an 

 αβ-heterodimer that was originally identified as a DNA-binding factor that mediates 

 hypoxia-inducible activity of the erythropoietin 3′ enhancer  15  . Later it was identified in a wide 

 variety of cells suggesting the HIF system had a broader role than simply in erythropoietin 

 synthesis  16  . It is important to note that HIF-α and  HIF-β subunits have different isoforms 

 which can have different functions and abundances, including HIF-1α, HIF-2α, HIF-3α and 

 HIF-1β. Importantly, alpha subunits (HIF-α) rise in low oxygen tensions. HIF-1α and HIF-2α 

 appear closely related and able to interact with hypoxia response genetic elements (HREs) 

 to induce transcription. HIF-3α is less well understood, but appears to be involved in 

 negative regulation of the hypoxic response through an alternatively spliced transcript  17  . In 

 contrast, beta subunits (HIF-β) interact with DNA and are constitutively-expressed proteins 

 classified as aryl hydrocarbon receptor nuclear translocators (ARNT).  Only the dimeric form, 

 containing both α and β subunits, is active as a transcription factor. 
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 The HIF system is responsible for oxygen sensing in mammalian cells. HIF-1α is its 

 cytoplasmic component and is normally maintained at a low level, its production being 

 balanced by destruction under the influence of the Von Hippel-Lindau (VHL) protein, a 

 ubiquitin ligase. When destruction is prevented, HIF-1α builds up in the cytoplasm, moves to 

 the nucleus and, in combination with HIF-1β, triggers the expression of a set of genes 

 associated with hypoxia (see below). 

 It is the stability of cytoplasmic HIF-1α that is dependent on oxygen. When normal 

 levels of oxygen are present, a cytoplasmic prolyl hydroxylase will hydroxylate HIF-1α and 

 the hydroxylated form is subject to ubiquitinylation/destruction. Levels of HIF-1α  are thus 

 kept low. In hypoxia, proline hydroxylation, which requires oxygen as a substrate, is 

 prevented and HIF-1α destruction does not occur. At low oxygen tensions, therefore, HIF-1α 

 can move to the nucleus to generate a  transcription factor HIF-1α/HIF-1β (Fig 1.1), whose 

 target is the ‘hypoxia-responsive element’, found upstream of a number of genes, with the 

 consensus sequence  5′-RCGTG-3′ (R = purine)  . 
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 Figure 1.1:  The hypoxia inducible factor (HIF) system 

 In normoxia, HIF-1α in the cytoplasm is hydroxylated on pro402 and pro564, leading to its 

 ubiquitinylation by the VHL protein and subsequent destruction in the proteasome. In low 

 oxygen tensions hydroxylation cannot occur, and HIF1α levels rise in the cytoplasm. HIF-1α 

 moves into the nucleus where it combines with HIF-1β, forming a transcription factor, and 

 stimulates transcription of hypoxia responsive genes via a hypoxia response genetic element 

 (HRE). Figure from BioRender. 
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 The stabilisation of HIF-1  α  has a number of downstream  effects directly and indirectly 

 on a variety of pathways, including glycolysis (e.g. LDHA), iron metabolism (e.g. TF) and 

 angiogenesis (e.g. VEGF-A). Activation of the HIF system promotes tumour growth 

 particularly by stimulating angiogenesis (VEGF genes are activated), enabling a good supply 

 of nutrients to the growing tumour. HIF-1  α  stabilisation  also changes the cellular milieu of 

 non-coding RNAs that can influence gene expression, particularly microRNAs such as the 

 oncomiRs miR-182  18  and miR-210  19  . Thus perhaps it  is unsurprising that hypoxia can 

 influence several of the classical and emerging Hallmarks of Cancer  20  , including sustaining 

 angiogenesis  21  and reprogramming energy metabolism  22  .  In support of this model, defects in 

 VHL promote tumour growth and VHL itself can be thought of as a tumour suppressor 

 protein. 

 As well as changing the cells themselves, hypoxia influences the efficacy of 

 treatment. One key area in which it plays a role is in external beam radiotherapy with 

 photons. The majority of damage done to cancer cells using this modality is through indirect 

 effects, with hydroxyl radicals from water needing oxygen in order for them to cause damage 

 to DNA. Indeed, hypoxic cells are about three-fold more resistant to photon based ionising 

 radiation. In systemic anti-cancer therapy, hypoxia too provides a challenge as if a tissue is 

 hypoxic, it is suggestive that conventional drug delivery through blood supply will also be 

 reduced. Therefore there have been efforts to combat hypoxia in a number of different ways 

 ranging from reducing hypoxia in tumours to targeting hypoxic cells specifically. To address 

 the low oxygen levels, red cells transfusions and erythroid stimulating agents to increase 

 haemoglobin levels have been trialled  23,24  as well  as oxygen mimetics (e.g. nimorazole  25  ), 

 carbogen (98% oxygen with 2% carbon dioxide)  26  and  even hyperbaric oxygen  27  . As regards 

 exploiting the hypoxic environment to target treatments, viral vectors  28  , hypoxia-activated 

 prodrugs  29  and drugs targeted at specific hypoxia-induced  cellular pathways  30  have all been 

 investigated. Recent work has highlighted promise in repurposing drugs from other fields to 
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 actually decrease tumour oxygen consumption, thus minimising hypoxia. In particular, the 

 anti-protozoal drug atovaquone, used to treat  Pneumocystis jiroveci  pneumonia and 

 commonly in combination with proguanil hydrochloride in prophylaxis of malaria has perhaps 

 unexpectedly shown promise. Atovaquone has been shown to significantly reduce oxygen 

 consumption across a variety of tumour cell lines (FaDu, HCT116, DLD-1, H1299 lung 

 carcinoma, A549, H460, MCF7, T24 and PSN-1) both in vitro and in mouse models  31  . The 

 mechanism responsible for the decrease in oxygen consumption secondary to atovaquone is 

 the inhibition of oxidative phosphorylation specifically at mitochondrial complex III of the 

 electron transport chain. Subsequent work in humans (n=30) has confirmed that hypoxic 

 areas in non-small cell lung cancer appear to reduce following administration of the 

 well-tolerated atovaquone  32  , paving the way for a  phase III trial to assess its effect on patient 

 outcomes. However, as yet, no hypoxia modifier or targeted therapy is routinely used in the 

 UK and a multitude of trials have not shown clinical benefit in humans. A commonly cited 

 reason for this has been the complexity surrounding stratification of patients, e.g. if patients 

 are stratified to receive hypoxia modifying therapy and they have non-hypoxic tumours, they 

 may not receive any clinical benefit. Therefore it is important to ascertain which tumours are 

 hypoxic to change these promising benchside therapies into clinical staples. 

 Hypoxia can be measured in a number of ways, some more invasive than others but 

 as yet none is used routinely in the clinic. The most direct and considered the “gold 

 standard” measure of oxygen tension is an oxygen electrode. However its utility is limited by 

 accessibility and also limited areas of the tumour can be sampled. Further, this approach 

 does not differentiate between regions of hypoxia and areas of necrosis which may be less 

 biologically relevant. Oxygen electrodes have been used in clinical studies but other 

 approaches that could be easily integrated into the standard clinical pathway are looking 

 more promising. 
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 Other hypoxia measuring solutions can be split into cross-sectional imaging 

 techniques, the more experimental area of circulating markers of hypoxia and a variety of 

 methods that can be applied to tumour biopsy. A number of cross-sectional imaging 

 approaches exist tending to use magnetic resonance imaging (MRI) or positron emission 

 tomography (PET). Two notable examples using MRI include blood oxygenation level 

 dependent (BOLD) MRI and  oxygen-enhanced MRI (OE-MRI  or tissue oxygenation level 

 dependent (TOLD) MRI  )  33  . BOLD MRI is based upon the  intrinsic effective transverse 

 relaxation rate whereas, TOLD MRI is based on T1-weighted contrast. Both have been 

 widely debated, and perhaps are best employed in combination to overcome the drawbacks 

 of both, e.g. TOLD MRI seems to relate more to radiation response whereas BOLD MRI 

 seems to show larger size changes under hypoxia  34  .  PET scans to measure hypoxia have 

 tended to use Fluorine-18 (  18  F) fluoromisonidazole  [18F-MISO] or Copper-64 (  64  Cu) 

 diacetyl-bis(N4-methylthiosemicarbazone) [64Cu-ATSM] as tracers, with increased retained 

 Fluorine-18 (  18  F) or Copper-64 (  64  Cu) implying low  oxygen levels within the tumour. Good 

 correlation between these two tracers has been described in rodent models of brain tumours 

 (r ~0.8)  35  . Notably, these techniques rely on clinical  facilities having suitable strength MRI 

 machines and also tracer availability, but these techniques theoretically can be repeated 

 over time. 

 Serological markers of hypoxia too have the advantage that they can be measured 

 serially. The current frontrunner in this field is the hypoxia-induced tumour-associated 

 glycoprotein osteopontin  36  . Elevated plasma levels  have been shown to be associated with 

 poor survival following curative intent radiotherapy in head and neck cancer  37  as well as in 

 sarcoma patients  38  . Other proposed biomarkers of hypoxia  are hepatocyte growth factor 

 (HGF) and interleukin-8 (IL-8)  39  but in all cases,  further evaluation is needed, particularly in 

 intercorrelation with other validated hypoxic markers. One potentially salient limitation is that 
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 the serological biomarker cannot differentiate the origin of hypoxic tissue in patients with 

 multiple tumour sites (i.e. in metastasis) and this might be relevant in radiotherapy planning. 

 A more established benchside approach for measuring hypoxia tumours is using 

 immunohistochemistry for targets downstream of HIF-1α. Commonly used protein targets 

 include carbonic anhydrase-9 (CA9) and glucose transporter 1 (GLUT1)  40  . An advantage of 

 this approach is that immunohistochemistry can be used to identify the intracellular location 

 of protein (e.g. membrane, nuclear, cytoplasmic) and help in protein quantification. However 

 this approach is somewhat subjective even in the most automated protocols, and variation in 

 antibody performance may influence ultimate interpretation. 

 A very promising approach that can be applied to routine tumour biopsies relates to 

 measuring RNA gene expression related to hypoxia. Although biopsies can be challenging 

 or even impossible in some tumours, they are the gold standard before treatment is 

 commenced. Further with the reduction in sequencing costs, measuring “gene expression 

 signatures” as surrogates of hypoxia has become an attractive option. However, one must 

 be mindful that assessing hypoxia by measuring cellular adaptation i.e. by genes or proteins 

 can potentially be subject to error if attention is not paid to mutational status. For instance, 

 mutations in the key HIF pathway player VHL should cause reduced breakdown of HIF-1  α 

 (see  Fig. 1.1  )  , and thus should make a cell appear  “hypoxic” judging on gene/protein 

 expression even in normoxic conditions. However, this assumption has not as yet been 

 proven using a variety of gene expression signatures. And this issue is potentially easily 

 circumvented by undertaking a parallel salient mutational screen as part of the RNASeq 

 analysis needed to work out the hypoxia gene expression signature score. 

 Unlike the aforementioned strategies, these hypoxia gene expression signatures 

 have the potential to stratify patients in retrospective data series. This opens up other data 

 sources not specifically aimed at studying hypoxia as useful additions to hypoxia analyses; 
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 one such resource could be the The Cancer Genome Atlas (TCGA) dataset. This allows 

 advanced big data and deep learning approaches to be employed which otherwise might be 

 less fruitful, e.g. artificial neural networks. 

 A number of hypoxia gene expression signatures have been developed using a 

 variety of approaches  13  . A common approach has been  to derive signatures  in vitro  using 

 microarrays by comparing cells in normoxia and hypoxia. Focus was mainly placed on 

 upregulated genes under hypoxia, and genes significantly upregulated or reaching a 

 research determined threshold were termed as “hypoxia gene expression signature”. Such 

 signatures have attracted some scrutiny when clinical translation was proposed due to the 

 difference between cell lines and the human tumour microenvironment. Therefore clinical 

 datasets started to become the focus when deriving new hypoxia signatures. Previous 

 knowledge of hypoxia-regulated genes was used to identify coregulated genes using a 

 variety of bioinformatic methods. A signature from our laboratory was pioneering in this field. 

 Winter et al. 2007 developed a “hypoxia metagene” through clustering genes from  in vivo 

 human head and neck cancer samples (n = 59) with 10 well-known hypoxia-regulated genes 

 (VEGF, ADM, GLUT1, PDK-1, ENO1, HK2, PFKB3, CA9, AK3, and CCNG2)  41  . The median 

 RNA expression for all the genes in the metagene (signature of 99 genes) was found to be a 

 prognostic factor for recurrence-free survival in an independent cohort of head and neck 

 cancer patients (n = 60). Further, the median score for this signature was also found to be a 

 marker of metastasis-free and overall survival in a human breast cancer dataset (n = 295), 

 suggesting such signatures of hypoxia could be used in different cancer types aside from the 

 ones in which they are derived. 

 This approach was then refined and expanded to create a common, compact and 

 highly prognostic hypoxia metagene. Buffa and colleagues in 2010 used previously validated 

 “seed genes” which were known to be hypoxia responsive. A larger number of  in vivo  cancer 
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 samples from three head and neck and five breast cancer studies (combined n = 1,136) 

 were used to identify co-expression patterns which were then used to define a hypoxia 

 signature or “metagene”. The hypoxia metagene (51 genes) was then seen to be prognostic 

 in independent breast and lung cancer datasets. 

 Subsequently, comprehensive work from our group then went on to mine the 

 literature for hypoxia signatures to identify commonalities and potential differences: Harris et 

 al. identified 32 published hypoxia signatures in 2015 (  Table 1.1  ), 27 derived from cell lines 

 and five originating from human samples. Further, Harris et al. highlighted that the size of the 

 signatures varied markedly from four to 759 genes and clinically derived signatures were 

 found to have less genes on average than their in vitro derived counterparts (61 vs 85 

 genes). This data was recovered by a systematic interrogation of Pubmed, Scopus, Web of 

 Science, hypoxiadb and genesigdb using the search terms ‘hypoxia signature’ or ‘hypoxia’ 

 AND/+ ‘signature’. They also highlighted the important issue of gene reannotation of the 

 generated signatures, potentially influencing their utility. For instance, the understanding of 

 genes and proteins change as our biological understanding and resolution evolves, for 

 instance VEGF was discovered initially, but subsequently VEGF-B, VEGF-C and VEGF-D 

 were discovered and the “original” VEGF was renamed VEGF-A. Further, it is now 

 acknowledged that there are different splicing isoforms of various transcripts, leading to 

 another level of complexity. Since this publication RNASeq has become a more common 

 method of RNA quantification but similar issues still remain as authors still tend to report 

 gene symbols rather than transcript ids. It was also highlighted that both  in vitro  and clinically 

 derived signatures have both been shown to be prognostic and predictive signatures in 

 certain settings  42,43  , however more essential work  is needed on evaluating the signatures in 

 other datasets. In addition, there is minimal discussion on the most appropriate way to apply 

 these signatures in terms of summary statistics (e.g. median vs mean etc) or their utility 

 across multiple datasets and cancers. Discussing with the authors [personal 
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 communication], this was felt to be an area of interest but out of the scope of this particular 

 manuscript as this would have formed more of a research focus rather than a review. 

 Therefore, although slightly dated, this review lays a solid foundation for this work, leaving 

 the important open research questions of where these hypoxia signatures can be used and 

 how best to apply them. Indeed, the true versatility of signatures in denoting hypoxia across 

 cell lines and different experimental conditions and thus clinical samples is not well 

 described and needs revisiting as few signatures have been evaluated over large cohorts or 

 over a number of different cancer types. Also, perhaps surprisingly, there is no consensus on 

 how best to employ these signatures in terms of their summary statistics, to define hypoxic 

 tumours within the wealths of publicly available genomic data (e.g. does Principal 

 Component Analysis 1  44  (PCA1) perform better than  Gene Set Variation Analysis  45  (GSVA) 

 or vice versa). Even the recent extensive study published by et Bhandari et al. did not 

 address this  46  despite looking for the molecular hallmarks  of tumour hypoxia across the 

 TCGA dataset. Here, the authors used several signatures and showed the utility of gene 

 expression signatures in classifying tumour hypoxia based on their molecular profile, such as 

 the mutational landscape of hypoxia in prostate cancer or hypoxia and tumour subclonal 

 evolution. This study showed the clinical relevance of hypoxia signatures and their ability in 

 quantifying hypoxia across different cancer types. However, a systematic comparison of 

 different signatures and scores was still missing and as Yang et al point out there is  no 

 consensus on the ideal method to define tumors as hypoxic and no methodological study to 

 date assessing and comparing the performance of the different methods  47  and I hope to 

 address this. 
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 Pubmed ID  Author & publication date  Number of gene 
 symbols  Reference 

 10706099  Koong et al, 2000  10  48 

 12947397  Denko et al, 2003  80  49 

 15093745  Jogi, et al, 2004  107  50 

 15100389  Ning et al, 2004  104  51 

 15374877  Manalo et al, 2005  107  52 

 15833863  Wang et al, 2005  56  53 

 15994966  Detwiller et al, 2005  27  54 

 16849508  Bosco et al, 2006  177  55 

 16507782  Mense et al, 2006  111  56 

 16740701  Aprelikova et al, 2006  236  57 

 16417408  Chi et al, 2006  111  58 

 16565084  Elvidge et al, 2006  181  59 

 16595741  Peters et al, 2006  159  60 

 17532074  Seigneuric et al, 2007 (early 0% O  2  )  71  61 

 17532074  Seigneuric et al 2007, (early 2% O  2  )  34  61 
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 17532074 
 Seigneuric et al, 2007 (common 

 genes between early 0% and 2% O  2 
 signatures) 

 14  61 

 17409455  Winter et al, 2007  99  41 

 17187782  Shi et al, 2007  32  62 

 17320280  Sung et al, 2007  90  63 

 18984585  Beyer et al, 2008  159  64 

 20592013  Van Malenstein et al, 2009*  7 (3*)  65 

 19491311  Benita et al, 2009*  81 (57*)  66 

 19832978  Fardin et al, 2009  8  67 

 19291283  Hu et al, 2009  13  68 

 20652058  Fardin et al, 2010  35  69 

 20429727  Sorensen et al, 2010  27  70 

 20087356  Buffa et al, 2010  51  71 

 20416888  Ghorbel et al, 2010  166  72 

 21846821  Toustrup et al, 2011  15  42 

 21325071  Ghazoui et al, 2011  70  73 

 22356756  Starmans et al, 2012  759  74 

 23820108  Eustace et al, 2013  26  43 
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 Table 1.1:  Hypoxia gene expression signatures found by Harris et al. 2015 

 Emboldened signatures are those which used approaches involving analysis of clinical 

 samples whereas starred (*) signatures contain both up- and downregulated genes. 
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 1.3 Aims 

 Bearing the aforementioned in mind, the aims of my DPhil are as follows: 

 ●  Overarching:  complete the most comprehensive analysis  of hypoxia gene expression 

 signatures to date 

 ○  identify all published hypoxia gene expression signatures in the literature 

 ○  determine the best summary scores to be used with hypoxia signatures 

 ○  determine which hypoxia signatures and scores best identify cells under 

 hypoxia in retrospective  in vitro  datasets 

 ○  explore the performance of the hypoxia signatures and their scores in a large 

 clinical dataset spanning common cancer types (TCGA) 
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 Chapter 2: Materials and methods 
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 Assessment of hypoxia signatures requires several approaches. This section 

 presents the different datasets and methods that have been used for this project, including 

 some statistical concepts to better understand the power of the analyses as well as the 

 critical points and future developments. Code related to this work can be found in  Appendix 

 6  . 

 2.1 Hypoxia gene expression signatures 

 A gene expression signature consists of a collection of one or more genes whose 

 expression levels reflect a specific biological status of the sample under examination. These 

 can be derived in a number of different ways, including training mathematical classification 

 models such as Generalized Linear Models (GLM) to identify the genes that are able to 

 better discriminate between two different classes (e.g. Hypoxia vs Normoxia). Harris et al.  13 

 defined two main methods for the identification of hypoxia gene expression signatures: (i) 

 the “traditional”  in vitro  approach, where genes have  been selected according to their 

 expression in cell lines, and (ii) an alternative approach in which a combination of cell lines 

 data and clinical samples have been used for generating the signatures. 

 Published hypoxia gene expression signatures were identified from two main sources 

 (summarised in  Fig. 2.1  ): 

 1.  A previously published extensive literature review from our group  13  containing 32 

 signatures 

 2.  Interrogating Web of Science, Scopus and Pubmed databases using the query: 

 (“hypoxia signature”  ) OR (  “hypoxia”  AND  “signature”  ) 

 This approach undercovered signatures that had been developed on specific cancer 

 types and in different oxygen tensions. For example, the Ragnum signature was developed 
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 studying the gene expression patterns in prostate cancer cell lines whereas the Elvidge 

 signature only used MCF7 breast cancer cell lines. Another interesting signature is the 

 Seigneuric score which was obtained under different conditions of hypoxia (anoxia and 2% 

 oxygen). 

 Figure 2.1:  Identification of gene expression hypoxia  signatures 

 This approach identified 53 signatures by combining a) the list from Harris et al. published in 

 2015 (the table on the left is adapted from the publication) with b) the results of a search on 

 Web of Science, Scopus and Pubmed to identify the most recent signatures. The review 

 collected 32 signatures (those highlighted in bold have been derived using clinical samples). 

 The other 21 signatures were identified using the query on the three comprehensive online 

 resources. 
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 2.2 Reannotation of hypoxia signatures 

 Gene expression signatures have been developed using a variety of sequencing 

 technologies. Over the last decade, before the advent of Next Generation Sequencing 

 (NGS) at reasonable cost, microarrays were widely used to derive gene expression 

 signatures. However, the most recent signatures tend to use RNA sequencing data or other 

 gene expression technologies (e.g. Illumina Beadchip) for deriving hypoxia signatures. The 

 authors of the signature related papers mainly report the genes in their publications as Gene 

 Name (or HGNC symbol) and rarely include more specific elements such as microarray 

 Probe ID or the Ensembl/Entrez Gene ID. This provides a challenge as biological 

 understanding evolves over time as does gene nomenclature. A commonly used way to 

 uniform gene annotations across signatures involves converting all the gene names from the 

 articles into more stable gene identifiers, such as Ensembl gene IDs, using Ensembl 

 biomaRt  75  . However, this conversion might be quite  problematic for two reasons: 

 1.  Gene names change over time  : for example, the Vascular  Endothelial 

 Growth Factor A (VEGFA) gene, which plays a key role in hypoxia, was 

 previously reported as VEGF. Thus any signatures that contain VEGF, will 

 lose this gene during the conversion process using Ensembl BiomaRt. 

 2.  Ensembl annotation database change over time  : a new  release of the 

 Ensembl dataset could result in loss of information about Probe IDs or gene 

 names if these are outdated, since Ensembl does not include outdated 

 annotations in its relational database. For example, the above-mentioned 

 VEGF gene name is not available on the recent Ensembl release. 

 Therefore, in order to convert gene names from papers into Ensembl gene IDs using 

 biomaRt, it is critical to reannotate gene names into their most updated version. For this 

 task, the multi-symbol checker from HGNC was used  76  .  Fig.2.2  shows an example output of 

 the multi-symbol checker. The “Approved symbol” column reports the most recent gene 
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 symbol from the input gene symbol. Each gene expression signature was reannotated using 

 the multi-symbol checker to convert each gene symbol to the latest “Approved symbol”. In 

 case more Alias symbols were suggested, the Relevance Score on GeneCards  77  was 

 manually used to select the most relevant annotation. Gene names annotated as protein 

 coding were prioritised. 

 Once updated to the most recent and relevant gene symbol, genes in the signature 

 were converted into Ensembl Gene IDs using biomaRt (Ensembl 107: Jul 2022). Finally, a 

 conversion dictionary was created to match each Ensembl Gene ID with any other external 

 annotation such as Probe IDs or Ensembl transcript IDs. A list of all gene symbols and 

 Ensembl Gene IDs is available in  Appendix 1  . 
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 Figure 2.2  :  Multi-symbol checker from HGNC 

 Output from the HGNC multi-symbol checker using the following hypoxia-associated genes 

 as input: CART, CPO, HK2 and SCL2A1. For HK2 with multiple aliases, the HK2 symbol was 

 kept. 
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 2.3 Calculation of hypoxia scores 

 Hypoxia gene expression signatures can be reduced to a single measure, known as 

 a hypoxia score. Hypoxia scores are single values indicating the level of hypoxia in biological 

 samples and can be calculated using different techniques  78  .  Six main scores are commonly 

 used in the literature: Mean score, Median score, PCA1 score, ssGSEA, GSVA and PLAGE. 

 Each of these scores are derived using different methods: 

 1.  Mean  score: mean value of the expression of the genes  in the signature. 

 2.  Median  score: median value of the expression of the  genes in the signature. 

 3.  PCA1  score: this score is obtained by selecting the  first element in the Principal 

 Component Analysis (PCA1)  44  . 

 4.  ssGSEA  score: a single-sample extension of Gene Set  Enrichment Analysis (GSEA). 

 The ssGSEA enrichment score represents the degree to which the genes in a 

 particular gene set are coordinately up- or down-regulated within a sample  79  . 

 5.  GSVA  score: the Gene Set Variation Analysis (GSVA)  score is a method designed to 

 assess the collective behaviour of functionally related genes forming a set  45  . 

 6.  PLAGE  score: the Pathway-level activity of gene expression  (PLAGE) operates by 

 quantifying the level of 'activity' of each pathway in different samples  80  . 

 Each score gives a different summary of the data and has potential advantages and 

 drawbacks. For example, the mean score is more likely to be swayed by outliers compared 

 to the median. However, due to methodological restrictions only Mean, Median, GSVA and 

 ssGSEA could be evaluated (discussed further in Chapter 2.5). In order to reduce bias, all 

 53 signatures were examined using these summary scoring methods. This was done to 

 ascertain the most appropriate combination of score and signature for both cell lines and 

 clinical samples. The scores were calculated using the sigQC package  81  using R v4.2.0. 
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 2.4 Datasets used 

 Two main data repositories have been used in this study:  (i)  the Gene Expression 

 Omnibus (GEO) archive to determine the performance of hypoxia signatures  in vitro  on both 

 cancer and non-cancer cell lines and  (ii)  The Cancer  Genome Atlas (TCGA) for evaluating 

 the effectiveness of hypoxia signatures in clinical samples. 

 2.4.1 The Gene Expression Omnibus 

 The Gene Expression Omnibus (GEO) archive  82  is an  international public repository 

 that archives and freely distributes microarray, next-generation sequencing, and other forms 

 of high-throughput functional genomics data submitted by the research community. The 

 GEO archive genomic data are organised in  Series  ,  identified by the letters “GSE” followed 

 by the series number (e.g. GSE153291). Series link together a group of related samples and 

 provide a focal point and description of the whole study, including information about 

 extracted data, processing, analyses and conclusions. Each Series contains information 

 about: 

 ●  Platforms  : A platform record is composed of a summary  description of the array or 

 sequencer. A Platform ID is reported with the letters “GPL” and the platform number. 

 For example, GPL570 is the corresponding ID for the Affymetrix Human Genome 

 U133 Plus 2.0 Array. One platform can be assigned to multiple Series. 

 ●  Samples  : a Sample record describes all the conditions  under which an individual 

 Sample was handled. Each Sample is identified with a unique ID, the letters “GSM” 

 followed by the sample number (e.g. GSM71498). 

 Batch effects can occur due to different technical and experimental conditions in 

 addition to the sequencing technology used, such as the lab users and the consumables 

 utilised. Combining all samples from different Series together in a unique dataset could 
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 introduce batch effects that could lead to inaccurate conclusions. To overcome this potential 

 problem, I assessed the performance of hypoxia signatures by evaluating the difference 

 between paired hypoxic/normoxic samples according to the following rules: 

 1.  Both samples must be part of the same Series and sequenced using the same 

 technology (same Platform ID, e.g. both sequenced using GPL570 from Series 

 GSE153291) 

 2.  Both samples are from the same cell line (for example, MDA-MB-231 samples 

 cannot be combined with MCF-7 samples) 

 To date, GEO stores more than  175,000  Series,  23,200  Platforms and  550,000 

 Samples. Unfortunately, to ease the uploading process for researchers, the GEO archive 

 collects most of the information as  unstructured  data  (e.g. free text). Thus, all the information 

 such as oxygen concentration, time under hypoxia, cell type or additional treatments need 

 manual curation. In this study, the GEO database was queried to identify cell line 

 experiments testing hypoxic conditions at different time points and oxygen concentrations. 

 Other exogenous conditions in addition to hypoxia such as exposure to a low glucose 

 environment and experiments involving hypoxia mimicking agents were also identified. The 

 following query was used on the Advanced Search engine on GEO: 

 ("cancer"[All Fields] AND "hypoxia"[All Fields]) AND 

 "human"[Organism] AND ("gse"[Entry Type]) AND ("expression profiling 

 by array"[DataSet Type] OR "expression profiling by high throughput 

 sequencing"[DataSet Type] OR "expression profiling by rt 

 pcr"[DataSet Type]) 

 To summarise, the following criteria were included in the query: 

 ●  Series must contain the word “  Hypoxia”  and “  Cancer”  in any of the fields in the Series 

 description 
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 ●  Experiments must have been performed using human-derived biological samples 

 ●  Gene expression profiles were obtained using high-throughput sequencing or arrays 

 The query identified 204 Series and a total number of 2,134 Samples. Three 

 sequential filtering rules were then applied: 

 1.  Rule #1  : The first filtering was performed on each  Series by looking at its 

 experimental description. Series containing at least one  in vitro  hypoxic sample and 

 one normoxic control were selected leaving 103 Series and 1511 samples after the 

 filtering 

 2.  Rule #2  : The second filtering consisted of removing  all Series that have not been 

 published or referenced in any peer-reviewed article, leaving 97 Series and 1423 

 samples after this step 

 3.  Rule #3  : The third filtering was performed by manual  curation of all the Series and 

 their corresponding papers, retrieving experimental information such as cell lines, 

 oxygen tensions used, etc. Series were excluded if any samples in the Series 

 reported different annotation between the Series information in GEO and the 

 information in the scientific article. 

 A total number of 88 Series and 973 samples that survived the final filtering step are 

 discussed more in Chapter 3 and are investigated in detail in Chapters 4 and 5. Both 

 RNA-seq and microarray gene expression data were used in their post-processed form, as 

 used in their published reference papers. A further normalisation step was included for 

 RNA-seq data, converting each gene expression value into Transcript Per Million (TPM). 
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 2.4.2 The Cancer Genome Atlas (TCGA) 

 The Cancer Genome Atlas (TCGA) is a “landmark cancer genomics program”, 

 coordinated by the National Cancer Institute and National Human Genome Research 

 (USA)  83  . The project includes profiling of 20,000 primary cancer samples from 33 cancer 

 types with in some cases matched normal samples. Alongside this there is a wealth of 

 detailed clinical information including, e.g. stage, histological type etc. the TCGA data has 

 been made publicly available in an anonymised fashion for the scientific community. The 

 analyses presented in this work focus on mRNA expression in the TCGA samples in 10 key 

 solid tumours where at least 30 normal tissue samples were available to evaluate against to 

 investigate the performance of hypoxia signatures (discussed further in Chapter 2.6). 
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 2.5 Evaluating hypoxia signatures and scores in cell lines 

 The performance of hypoxia signatures was evaluated against Random Gene Sets 

 (RGS) of the same length as the original hypoxia signature to ensure they performed 

 significantly better than random sets of genes. This is particularly important as previous work 

 has highlighted the interesting finding that unrelated and random gene signatures have been 

 linked to clinical outcomes likely by chance  84  . Thus,  this study seeks signatures and 

 summary scores for hypoxia that outperform RGS using a permutation-based analysis. 

 Further, each Series was tested separately to avoid experimental biases and batch effects, 

 i.e. samples from GSE15530 were not compared to samples from GSE3188, even if 

 belonging to the same cell line as discussed in Chapter 2.4.1. 

 First and foremost, it is important to define how the hypoxia scores can be evaluated 

 in controlled cell line experiments. These scores are assessed by looking at their value 

 according to the oxygen status of the samples (hypoxic or normoxic). For example, a 

 hypoxic sample would be expected to have a higher hypoxia score than a normoxic sample. 

 Which score and signature is chosen may influence this as illustrated in  Fig. 2.3  . Here, the 

 ssGSEA score using the Buffa signature for the hypoxic sample is lower than the ssGSEA 

 score for the normoxic sample (  Fig. 2.3a)  . This suggests  the scoring system might be 

 suboptimal compared to the mean score where the score for the hypoxic sample is greater 

 than that for the normoxic sample (  Fig. 2.3b)  . 

 One way of measuring how a signature differentiates between hypoxic/normoxic 

 pairs consists of calculating the absolute value between their two hypoxia scores (Euclidean 

 distance) (  Fig. 2.4  ). Measuring this Euclidean distance  lays the foundation of the innovative 

 method presented in this study and the evaluation against RGS. Given a hypoxia signature 

 and a score method, the Euclidean distance  is calculated as follows, with  𝑑 
 𝑆𝐼𝐺 

( ℎ𝑦𝑝 ,  𝑛𝑜𝑟𝑚 )

 and  representing the score of the hypoxic and normoxic samples respectively:  ℎ 
 𝑠𝑐𝑜𝑟𝑒 

 𝑛 
 𝑠𝑐𝑜𝑟𝑒 
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 𝑑 
 𝑆𝐼𝐺 

( ℎ𝑦𝑝 ,  𝑛𝑜𝑟𝑚 )   = ( ℎ 
 𝑠𝑐𝑜𝑟𝑒 

−     𝑛 
 𝑠𝑐𝑜𝑟𝑒 

) 2    

 If a hypoxia signature and score combination is working well, you may expect a large 

 distance,  . The same approach also is carried out using an RGS and this too  𝑑 
 𝑆𝐼𝐺 

( ℎ𝑦𝑝 ,  𝑛𝑜𝑟𝑚 )

 gives a Euclidean distance, defined as  . One may expect the  𝑑 
 𝑅𝐺𝑆 

( ℎ𝑦𝑝 ,  𝑛𝑜𝑟𝑚 )

 to be less than the hypoxia signature  if the hypoxia  𝑑 
 𝑅𝐺𝑆 

( ℎ𝑦𝑝 ,  𝑛𝑜𝑟𝑚 )  𝑑 
 𝑆𝐼𝐺 

( ℎ𝑦𝑝 ,  𝑛𝑜𝑟𝑚 )

 signature is working correctly. This effect is demonstrated in  Fig. 2.3  using the mean score 

 for both the Buffa signature (  Fig. 2.3c  ) and one RGS  (  Fig. 2.3d  ) on one hypoxic/normoxic 

 pair. For ease of illustration, only one RGS is shown, but to further enhance statistical 

 robustness, multiple different RGS can be used to calculate multiple  . These  𝑑 
 𝑅𝐺𝑆 

( ℎ𝑦𝑝 ,  𝑛𝑜𝑟𝑚 )

 distances from multiple RGS can then be used to derive a null distribution and can be 

 compared to the hypoxia signature  on each individual pair of normoxic and  𝑑 
 𝑆𝐼𝐺 

( ℎ𝑦𝑝 ,  𝑛𝑜𝑟𝑚 )

 hypoxic samples. This is demonstrated in  Fig. 2.5  on one pair of samples:  𝑑 
 𝑆𝐼𝐺 

( ℎ𝑦𝑝 ,  𝑛𝑜𝑟𝑚 )

 was compared to the  from 500 different RGS. The red bar in  Fig. 2.5a  𝑑 
 𝑅𝐺𝑆 

( ℎ𝑦𝑝 ,  𝑛𝑜𝑟𝑚 )

 indicates that only the hypoxia signature belongs to the last quantile (Frequency = 1) when 

 using the mean score. However, in  Fig. 2.5b  , the  using ssGSEA score falls  𝑑 
 𝑆𝐼𝐺 

( ℎ𝑦𝑝 ,  𝑛𝑜𝑟𝑚 )

 in the same quantile as 16 other  . This suggests that mean score works  𝑑 
 𝑅𝐺𝑆 

( ℎ𝑦𝑝 ,  𝑛𝑜𝑟𝑚 )

 better than ssGSEA in this experiment using the Buffa signature. This can be measured by 

 calculating a significance value (  ) as below (with  representing the correction  𝑝  ε =     0 .  00199 

 factor) and this was repeated for all hypoxic/normoxic pairs of samples in each GEO  Series  : 

 𝑝    =     1    −    ( 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒     𝑜𝑓     𝑠𝑐𝑜𝑟𝑒 ÷  100 )   +     ε 

 The percentile of score is the number of distances (expressed as percentage) in the 

 distribution that are lower than the  . For example, a percentile of score of  𝑑 
 𝑆𝐼𝐺 

( ℎ𝑦𝑝 ,  𝑛𝑜𝑟𝑚 )

 100% means that all the 500  are lower than the  as in  Fig.  𝑑 
 𝑅𝐺𝑆 

( ℎ𝑦𝑝 ,  𝑛𝑜𝑟𝑚 )  𝑑 
 𝑆𝐼𝐺 

( ℎ𝑦𝑝 ,  𝑛𝑜𝑟𝑚 )

 2.5b.  However, if a score in the normoxic sample is  greater than that in the hypoxic sample 
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 using the hypoxia gene expression signature, the significance between the two samples is 

 automatically made non-significant (  ). The correction factor  is used in the  𝑝    =     1  ε 

 permutation test to prevent a zero p-value, occurring when no RGS outperforms the original 

 signature. This correction factor is calculated as the lowest possible p obtainable from the 

 permutation test when only one random signature performs better than the original signature 

 (  ).  1/501 =  0 .  00199 

 GEO Series have multiple hypoxic and normoxic samples, including replicates. 

 All combinations of hypoxic samples and normoxic samples from the same GEO series were 

 analysed as pairwise combinations, as opposed to averages across samples, to provide 

 more detailed results and insights (  Fig. 2.4  ). 

 The last step of the analysis consists of calculating the classification accuracy of 

 each signature as the ratio between the number of significant pairwise combinations 

 (threshold  p<0.005  ) over the total number of combinations  for each cancer type or 

 experimental condition. The p-value corresponds to the probability of rejecting the null 

 hypothesis, in which RGS perform better than the original signature. Therefore, a stringent 

 threshold of p=0.005 was chosen in order to allow a maximum of three RGS to outperform 

 the original signature and allow the original signature to still remain significant ( 

 ). Accuracy is reported as the percentage of correct classifications. For  3/501    =     ~0 .  005 

 example, if 80 hypoxic/normoxic pairwise combinations out of 100 tested on all the breast 

 cancer cell lines are significant compared to their respective RGS (as described above), the 

 accuracy is stated as 80% in breast cancer. This approach was repeated for each of the four 

 scoring metrics (Mean, Median, ssGSEA  79  and GSVA  45  ). A summary of the entire data 

 workflow is shown in  Fig. 2.6  . 

 N.B.  PCA1  44  and PLAGE  80  cannot be assessed using the  above method as there is no way 

 to tell if the direction of the implied variance using the hypoxia signature is the same as in 
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 any RGS. For instance, PCA1 using the Buffa hypoxia signature may have a score of -0.5 in 

 one sample and 0.5 in one RGS in the same sample. However, as the score is based on 

 variance, positivity and negativity can vary and thus it is impossible to tell if the hypoxia 

 score of -0.5 and 0.5 are both actually the same score or opposite. 

 Figure 2.3:  Hypoxia scores and distance calculation  against RGS 

 The scatterplots were generated using Buffa signature on one normoxic (GSM390200, 

 highlighted in blue) and one hypoxic (GSM390196, highlighted in red) sample from the 

 Series GSE15530. In Panel a) the Mean (right) and the ssGSEA (left) scores are plotted on 

 the x-axis against the percentage of Oxygen. The Mean score of the hypoxic sample is 

 greater than the score of the normoxic sample. Viceversa, the ssGSEA score of the hypoxic 
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 sample is lower than the score of the normoxic sample, resulting in a wrong classification. 

 Panel b) shows that the distance calculated using the mean score between the two samples 

 is ~24x higher (left image,  ) than the distance observed between the same  𝑑 =  ~0 .  7 

 samples using a RGS of the same length (right image,  ).  𝑑 =  ~0 .  03 
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 Figure 2.4:  Pairwise combination and distance calculation  of hypoxic/normoxic pairs 

 The Series GSE17188 is characterised by two MDA231 breast cancer sub cell lines (LM2 

 and SCP2) including 12 samples, 8 hypoxic and 4 normoxic, whose GEO sample identifiers 

 (starting with GSM) are reported in the  Sample_id  column. These unique identifiers are 

 automatically assigned when samples are uploaded on the GEO archive (a). The dataset 

 was split by cell type, as reported in Chapter 2.4.1, and analysed separately. For example, 

 LM2 cell lines data were divided into hypoxic and normoxic samples (b). Hypoxic samples 
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 were compared to normoxic samples defining a list of all possible pairwise combinations. 

 Finally, for each pairwise combination, the geometric distance was calculated. 
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 Figure 2.5:  Distribution of the distances calculated  using hypoxia signatures and 500 

 random gene sets for a pairwise combination (GSM71498 vs. GSM71501) from the 

 Series GSE3188 using Buffa signature with mean (a) and ssGSEA (b) scores. 

 Y axis represents the number of gene sets falling in a given quantile. X axis represents the 

 Euclidean distance calculated between the two samples. Blue bars only contain random 

 gene sets, red bars denote the quantile where the hypoxia signature belongs to. A p-value of 

 0 means that no RGS outperforms the original signature. 
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 Figure 2.6:  A summary of the data workflow presented  in this study. 

 After a manual curation of GEO Series and the division into multiple subsets according to 

 experimental conditions and cell line type (a), the four hypoxia scores (mean, median, GSVA 

 and ssGSEA) have been calculated using sigQC on each hypoxia signature. For each score 

 and hypoxia signature, the Euclidean distance was calculated on each hypoxic/normoxic 

 pairwise combination in random gene sets versus hypoxia signatures (b). Finally, the 

 assessment of the scoring methods (c) was obtained by calculating the accuracy of 

 classification of a signature via a comparison of the p-values on each experimental 

 condition. 
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 2.6 Evaluating hypoxia signatures and scores in clinical data 

 The evaluation of hypoxia signatures in clinical data is more challenging compared to 

 cell lines. Unlike cell line experiments, where it is possible to induce a controlled hypoxic 

 response (e.g. culturing in hypoxic chambers), this cannot be done in clinical samples. 

 Consequently, it is not possible to evaluate the performance of a signature following the 

 same procedure that was used for cell line experiments. 

 To attempt to overcome this limitation, perhaps a good compromise in evaluating the 

 efficacy of hypoxia signatures in clinical tumour samples consists of comparing their 

 performance against a set of normal tissues. The TCGA project has profiled tumour-adjacent 

 normal tissues (NAT) in a number of patients with different cancer types. Interrogation of 

 these samples has shown NAT to have a transcriptomic profile that is highly correlated with 

 healthy normal tissues  85  , so using NAT in lieu of  a normoxic control appears a potentially 

 worthwhile strategy as it is unlikely healthy tissue would be more hypoxic than cancer 

 samples. 

 Another major issue in the field is that no large datasets exist including multiple 

 markers of hypoxia such as oxygen electrode measurements, immunohistochemistry and 

 F-MISO PET. Even if this were in existence, which approach should be considered the most 

 accurate is an area of considerable debate. Thus, one is left in a situation of inferring 

 hypoxic status from existing samples and so multiple evaluation steps are needed to define 

 the most promising signature for clinical use. I defined three steps to assess hypoxia 

 signatures to identify the most promising signature and score for use in clinical samples: 

 1.  Hypoxia scores in cancer samples vs. NAT  : hypoxia  scores from cancer 

 biopsies should not, on average, be lower than NAT 

 ∴  Evaluation Step 1: Do hypoxia signatures scores  tend to be higher in 

 tumours? 
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 2.  Hypoxia scores vs. scores from RGS  : the difference observed between 

 hypoxia signature scores from cancer samples and NAT should be more 

 significant than the equivalent difference observed from RGS. 

 ∴  Evaluation Step 2: Do hypoxia signatures scores  tend to outperform random 

 gene signatures of the same length when comparing NAT and tumour 

 tissues? 

 3.  The prognostic power of hypoxia signatures  : a valid  hypoxia signature is 

 associated with poor prognosis across several cancer types  86  . 

 ∴  Evaluation Step 3: Do hypoxia signature scores from  tumours confer 

 prognostic information? 
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 2.6.1 Evaluation Step 1: Do hypoxia signatures scores tend to be higher 
 in tumours? 

 One would expect tumour tissue to be, on average, more hypoxic than normal tissue 

 due to metabolic demand outstripping aberrant blood vessel supply. Normoxic tumours, in 

 fact, should have hypoxia scores similar to NAT (  Fig.  2.7a  ). Here the difference across solid 

 tumours in TCGA for each signature was examined. The distributions of hypoxia signature 

 scores in the cancer tissues with NAT were compared using the  nonparametric 

 Mann-Whitney U (example shown in  Fig. 2.7b  )  . Finally,  by assuming that the average 

 hypoxia score in the cancer samples will exceed that in NAT (but not the other way around), 

 an alternative hypothesis has been defined as follows: 

 Let  T(u)  and  N(u)  be the cumulative distribution functions  of the distributions underlying 

 x and y, respectively. Then the distribution underlying x (Tumour hypoxia scores) is 

 stochastically greater than the distribution underlying y (NAT hypoxia scores), i.e.  T(u) > 

 N(u)  for all u. 

 I.e. if the hypoxia signature scores in the cancer group are on average lower than NAT then 

 the assumption is violated and the difference is called non-significant. 
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 a) 

 b) 
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 Figure 2.7:  An example of Evaluation Step 1 

 Hypoxia scores in normoxic tumours should have similar values to those in NAT. Boxplot  (a) 

 shows the difference between hypoxic and normoxic samples (defined as the highest and 

 lowest quantiles respectively) versus NAT using the Buffa signature mean score. The boxplot 

 in  (b)  represents the distribution of Sorensen ssGSEA  scores across the 10 TCGA cancer 

 types included in this study. Blue and orange boxes describe normal and cancer tissues 

 respectively. P-values are calculated using the nonparametric Mann-Whitney-U. Differences 

 are considered as non-significant if the distribution of NAT hypoxia scores is higher than 

 cancer tissues, as in Liver Hepatocellular Carcinoma (LIHC) and Prostate Adenocarcinoma 

 (PRAD). 
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 2.6.2 Evaluation Step 2: Do hypoxia signatures scores tend to 
 outperform random gene signatures of the same length when comparing 
 NAT and tumour tissues? 

 Chapter 2.5 demonstrates the importance of comparing hypoxia signatures with 

 RGS. The same concepts can be applied to clinical samples. However, instead of evaluating 

 pairs of samples, here the focus will be on testing if significant differences can be observed 

 between the distributions of hypoxia scores in tumour vs. NAT. Three main analyses are 

 involved in this evaluation step. For each signature, score and cancer type: 

 1.  The non-parametric Mann-Whitney U test on the original hypoxia signature is used to 

 calculate a p-value, as explained in the Evaluation Step 1 (Chapter 2.6.1) 

 2.  500 RGS are generated and the p-value between the distribution of tumour hypoxia 

 scores vs NAT hypoxia scores is calculated with Mann-Whitney U 

 3.  Finally, a Signature Performance Index (SPI, expressed in percentage) was derived 

 by calculating how many times the p-value from the original hypoxia signature is 

 lower than any of the 500 RGS p-values. For example, if 490 RGS out of 500 have a 

 higher p-value than the original hypoxia signature, the SPI will be equal to 98% 

 It is noteworthy to mention that the sample size of both cancer and adjacent normal 

 tissues will be the same in each of the 500 RGS. This approach enables the comparison of 

 500 p-values from the simulations with the p-values from the original signature to derive the 

 SPI and determine if the hypoxia signature is more “significant” than any RGS. 
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 Figure 2.8:  An example of Evaluation Step 2 

 The plot represents the distribution of the Buffa GVSA score in TCGA breast cancer (BRCA) 

 and the performance of seven random gene sets (RGS 1, RGS 10 etc). Boxplot and 

 statistical conventions as in  Fig. 2.7  . The Buffa  signature has the lowest p (4.744e-41). 

 59 



 2.6.3 Evaluation Step 3: Do hypoxia signature scores from tumours 

 contain prognostic information? 

 Hypoxia is a key characteristic of solid tumours and previous studies have shown its 

 correlation with poor prognosis of cancer patients  87–89  .  Thus, this step consists of evaluating 

 the prognostic power of hypoxia signatures that performed well on the two previous steps in 

 the TCGA dataset. Prognostic performance was investigated by using both two commonly 

 used survival analysis techniques, the Kaplan-Meier (KM) estimator and the Cox 

 Proportional Hazard (CPH) model. 

 The KM estimator is a non-parametric statistic used to derive the survival function 

 from lifetime data. Traditionally, the mean or median values of the hypoxia scores on clinical 

 samples are used to categorise the samples into “Low” and “High” hypoxic groups. This 

 evaluation step investigates whether comparing tumour samples against NAT might also be 

 worthwhile. Survival analysis of the following groups was also carried out: 

 ●  Those samples  above and below the maximum NAT  sample  hypoxia score (max 

 normal) 

 ●  Those samples  above and below the mean NAT  sample  hypoxia score (mean 

 normal) 

 ●  Those samples  above and below the median NAT  sample  hypoxia score (median 

 normal) 

 The log-rank test was used to compare the survival distribution between samples. This 

 approach, in addition to the CPH, was included to test whether selecting a heuristic 

 threshold to determine hypoxic and normoxic samples is valid. The KM estimator was 

 calculated using the Python module lifelines v.0.26.4. 

 CPH analyses were also carried out using Python module lifelines v.0.26.4. The 

 proportional hazards assumption was tested using Schoenfeld residuals. Observation time 
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 was ended by date of death or end of monitoring period, from five years since diagnosis. 

 Hypoxia scores were investigated as continuous variables in multiply-adjusted models. 

 Models were adjusted for the following categorical variables: age (10 year age groups), 

 stage and histological type. Sex was used as a strata in the model. 
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 Chapter 3: Identifying and evaluating different 
 hypoxia signature scores 
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 3.1 Identifying hypoxia signatures 

 A key step in this work was to identify hypoxia gene expression signatures from the 

 literature. I then go on to establish which have the widest utility and applicability. Hypoxia 

 signatures were identified by interrogating Pubmed, Scopus and Web of Science using the 

 search terms ‘hypoxia signature’ or ‘hypoxia’ AND/+ ‘signature’ as per Harris et al. 2015. 

 This search was discussed with the Bodelian library team and felt to be appropriate. 

 This systematic approach identified 53 signatures which tended to be reported as 

 gene symbols. This was 21 more than previously identified by our group (  Table 3.1  ). The 

 signatures ranged from 759 genes long (Starmans  74  )  to four genes long (Mo  90  ). Their mean 

 and median lengths were 72 and 32 respectively. 22 signatures were derived from clinical 

 samples, leaving 31 derived from solely  in vitro  approaches.  Within these subdivisions, 

 signatures derived from clinical samples ranged from 4 to 166 in length with a median 

 number of 19 genes (to the nearest gene). Whereas  in vitro  signatures tended to be longer 

 with a median number of genes as 42. The median  in  vitro  signature length in this work was 

 smaller than that seen by Harris et al in 2015 (42 as against 85) and in signatures derived 

 from clinical samples it was 19 vs 61. All the signatures identified and their gene symbols are 

 found in the  Appendix 1. 

 Surprisingly, perhaps, no gene was found in all 53 signatures. This could reflect their 

 origin in terms of the derived tissues’ response to hypoxia (different cell lines/ tumour types) 

 or this might reflect differences in experimental conditions. Nonetheless, several genes were 

 seen in a number of different signatures and this is summarised in  Table 3.2  . The top 20 

 most frequently occurring genes from this analysis are found in the left hand column 

 whereas the right hand column details the results of Harris et al. 

 The comparison between the top 20 genes from the hypoxia signatures in this work 

 and from Harris et al. yields a number of similarities and some striking differences. The 
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 major difference seen is that VEGFA is the gene most frequently observed across these 53 

 signatures but does not feature in the top 20 genes seen previously. This is the result of a 

 “trivial” change in nomenclature, as in the previous work several signatures listed VEGF and 

 others listed VEGFA. After correcting for this artefact, VEGFA is now found to be the most 

 common gene affected in hypoxia, participating in 26 signatures (  Fig. 3.1a  ). Overall, some 

 signatures share a good number of genes with other hypoxia signatures whereas others do 

 not share any gene. This depends on several factors, such as number of genes in the 

 signature or the cancer types they have developed for (  Fig. 3.1b  ). 

 VEGFA is a growth factor that promotes angiogenesis. As such, it is produced in 

 response to low oxygen tensions in tissues, under the influence of the HRE/HIF-1 system. It 

 acts particularly on endothelial cells, promoting the formation of capillaries. It is a 

 homodimer, with eight conserved cysteine residues organised into a characteristic ‘cystine 

 knot’ structure. Its target, VEFGR (particularly VEFGR2) is a tyrosine kinase receptor 

 situated on endothelial cells and, typically for a growth factor, stimulates cell growth and 

 division through a series of mitogenic kinases (PI3 kinase and Akt, protein kinase C, MAPK). 

 VEGFA also increases blood vessel permeability through its suppressive effects on cell 

 adhesion molecule production (ICAM-1, VCAM1) and was originally identified as a vascular 

 permeability factor. This combination of increased endothelial cell proliferation, and 

 loosening of cell-cell contacts, is instrumental in driving capillary growth  91  . 

 VEGFA is of particular interest in the growth of tumours. Solid tumours in particular 

 become hypoxic due to insufficient blood supply, which is overcome by their production of 

 VEGFA, promoting angiogenesis locally. VEGFA antagonists have been explored as 

 anti-cancer agents. Interestingly, VEGFA also suppresses the anti-tumour immune response 

 by suppressing the maturation of dendritic cells and CD8+ T cells, while switching the T cell 

 population in tumours to the more passive Treg lymphocytes  92  . 

 The second most commonly featured gene is NDRG1. NDRG1 (N-myc downstream 

 regulated gene 1) was the gene most frequently found in the analysis of previous signatures. 
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 It has a hypoxia response element in its promoter and has been shown to be upregulated by 

 the HIF system in hypoxia, while decreasing in mutant VHL systems. Defects in NDRG1 are 

 associated with demyelination neuropathies (e.g. Charcot-Marie-Tooth Type 4D syndrome)  93  . 

 High levels of NDRG1 are found in several types of tumour, where it appears to be 

 induced as a tumour suppressor protein linked to the TP53 system. Its expression is 

 inhibited by the oncogene N-myc. As such it promotes apoptosis and promotes DNA repair 

 via the O6-methylguanine-DNA methyltransferase (MGMT). The precise function of NDRG1 

 is unknown, but its pleiotropic effects, and range of interactions, suggest it may have some 

 role as a scaffold protein; it also stabilises the spindle checkpoint (by interaction with tubulin) 

 and interacts with cadherin (inhibiting metastasis). This complex series of interactions may 

 explain why it is found to be protective in some cancers (prostate, colon and pancreatic 

 cancer), while associated with poor prognosis in others (bladder, hepatocarcinoma)  94  . 

 The next most commonly featured gene is PGK1, ranked fourth previously and third 

 in this analysis. Perhaps surprisingly, PGK1 is a glycolytic enzyme, catalysing the first 

 ATP-generating step in glycolysis, and thus a central enzyme in a general housekeeping 

 function in cells. Like other glycolytic enzymes (e.g. LDH-A, PDK1), its levels rise under the 

 influence of HIF1α as glycolysis becomes more important to energy production as oxygen 

 levels decline. Unusually, however, PGK1 is secreted into the bloodstream and has been 

 claimed to promote angiogenesis. In addition, PGK1 will stimulate the production of HIF1α 

 by binding to its HRE, giving rise to a potential positive feedback system. Possibly as a result 

 of one of these effects, high levels of PGK1 are associated with a variety of tumours 

 (endometrial, breast and gastric cancers). The very different functions of PGK1 as both 

 enzyme and transcription factor have led to designating PGK1 a ‘moonlighting’ enzyme. 

 P4HA1 is the fourth commonest gene in this analysis and was in the top five 

 previously (third). P4HA1 is the catalytic subunit of the tetrameric prolyl hydroxylase (A2B2), 

 participating in the hydroxylation of collagen and the maturation of this structural protein. Its 

 level rises under the influence of the HIF system, and it has been suggested that levels of 
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 this enzyme alone provides a reliable hypoxia signal, at least in head and neck squamous 

 cell carcinomas  95  . As implied above, P4HA1 is commonly  raised in cancers, possibly as 

 collagen is needed to provide a structural framework for tumour growth. There is an 

 interesting interplay between the various prolyl hydroxylases and oxygen sensing. 

 Hydroxylation of HIF1α involves a proline hydroxylase, PHD, and the resultant hydroxylated 

 HIF1α is degraded in the cytoplasm, leading to the absence of expression of the hypoxia 

 stimulated genes. Increased levels of P4HA1, however, leads to the stabilisation of HIF1α 

 and expression of these genes. This appears not to be due to effects at the gene level - 

 there is no change in HIF synthesis - but paradoxically the P4HA1 hydroxylase inhibiting 

 HIF1α hydroxylation. This has been suggested to be due to increased P4HA1 outcompeting 

 the PHD for the 2-oxoglutarate that both enzymes require as a cofactor. As an additional 

 twist to this system, the result is that P4HA1 will increase HIF1α levels, which in turn will 

 promote P4HA1 levels, another potential positive feedback system  96  . 

 The fifth most frequent gene across all the hypoxia signatures is DDIT4. DDIT4 (DNA 

 damage induced transcript 4) - also known as REDD1 - is another protein known to be 

 raised in hypoxia, and contains a HRE in its promoter region (induced by the HIF system). 

 However, its levels are also induced to rise by other stresses such as radiation and energy 

 depletion, possibly by interacting with the TP53 system. 

 DDIT4 is a heterodimer and acts by inhibiting mTOR (the master controller of cell 

 growth) by activating the TSC complex - hence the link to p53. This means it will repress cell 

 growth and promote autophagy. DDIT4 is short lived (minutes), being subject to 

 ubiquitinylation and proteosome destruction like HIF-1α and p53, suggesting it can respond 

 rapidly to increasing or decreasing stress. DDIT4 tends to be overexpressed in tumour cells 

 (so consistently that it may be used as a cancer marker in some tissues). Its inhibitory 

 effects on mTOR, suppressing cell growth would suggest it has tumour suppressor activity, 

 but paradoxically - like many of these proteins - it also can act as an oncogene in ovarian 

 cancer cell lines. High levels of DDIT4 are associated with resistance to cancer therapies, 
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 although whether this is due to the association with hypoxia is unknown. A recent review of 

 this protein is given by Tirado-Hurtado et al.  97  . 

 Pubmed 
 ID  Signature  Cell line  Cell/Tissue origin*  # gene 

 symbols 
 Experimental 

 conditions  Ref. 

 10706099  Koong 2000  FaDu 
 SiHa 

 Pharynx (transformed 
 keratinocytes) 

 Cervix (transformed 
 keratinocytes) 

 10  0.05%O2, 24h 
 48 

 12947397  Denko 2003 
 NCK, NDK, NCF, 
 SiHa, C33a, FaDu 

 Cervix (keratinocytes and 
 stromal fibroblasts)  80 → 72 (?) 

 Various as 
 detailed in 

 48,98–100 

 49 

 15093745  Jogi 2004 

 SK-N-BE(2), 
 SH-SY5Y, SK-N-F1, 

 IMR-32, LA-N-2, 
 LA-N-5, SK-N-RA 

 Brain (neuroblastoma)  107 → 103  1%O2, 72h 
 50 

 15100389  Ning 2004  HAECs  Aortic endothelial cells  104 → 99  1%O2, 8-24h 
 51 

 15374877  Manalo 2005  ECs  Coronary artery endothelial 
 cells  107 → 105  1%O2, 24h 

 52 

 15833863  Wang 2005  HEK293T  Kidney  56 → 55  1%O2, 16h 
 53 
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 15994966  Detwiller 2005 

 HT1080 
 10T1/2 
 SVR 

 HEK293 

 Fibrosarcoma 
 Fibroblast (mus musculus) 
 Pancreas (mus musculus) 

 Kidney 

 27  1%O2, 48h 
 54 

 16417408  Chi 2006 

 ECs 
 SMCs 

 HMECs 
 RPTECs 

 Coronary artery endothelial 
 cells 

 Smooth muscle cells 
 Mammalian epithelial cells 

 Renal proximal tubule 
 epithelial cells 

 111  0.1-2%O2, 
 1-24h 

 58 

 16507782  Mense 2006  HFAs  Fetal astrocytes  111 → 94  1%O2, 24h 
 56 

 16565084  Elvidge 2006  MCF7  Breast  181 → 173  1%O2, 16h 
 DMOG, 16h 

 59 

 16595741  Peters 2006  HPAECs  Pulmonary artery endothelial 
 cells  159 → 158  1%O2, 8-24h 

 60 

 16740701  Aprelikova 
 2006  MCF7  Breast  236 → 230  0.5%O2, 8h 

 57 

 16849508  Bosco 2006  PBMC  Peripheral blood monocytes  177 → 173  1%O2, 16h 
 55 

 17187782  Shi 2007  LX-2  Hepatic stellate cells  32 → 31  1%O2, 8-24h 
 62 

 68 



 17320280  Sung 2007  CNE-2, C666-1, 
 HONE-1, HK1 

 Head and neck 
 (nasopharyngeal carcinoma)  90  0.1%O2, 16h 

 63 

 17409455  Winter 2007  Clinical samples  Head and neck (squamous 
 cell carcinoma)  99 → 97 

 41 

 17532074  Seigneuric 
 2007 (common) 

 HMECs from Chi 
 2006  Mammary epithelial cell  14  0-2%O2, 

 1-24h 
 61 

 17532074  Seigneuric 
 2007 (early0) 

 HMECs from Chi 
 2006  Mammary epithelial cell  71 → 68  0-0.02%O2, 

 1-6h 
 61 

 17532074  Seigneuric 
 2007 (early2) 

 HMECs from Chi 
 2006  Mammary epithelial cell  34 → 31  2%O2, 

 12-24h 
 61 

 18984585  Beyer 2008 
 HeLa 

 HEK293 
 786-0 

 Cervix 
 Kidney 

 Renal cancer 
 159 → 158  0.2-1%, 24h 

 64 

 19291283  Hu 2009  Clinical samples  Breast  13 
 68 

 19491311  Benita 2009 

 DLD-1 
 HCT116, SW480, 

 Lovo 
 Panc-1 
 HeLa 
 MCF7 

 Colorectal 
 Colon 

 Pancreas 
 Cervix 
 Breast 

 57 → 54  1%O2, 18h 
 66 

 69 



 19832978  Fardin 2009 

 GI-LI-N, ACN, 
 GI-ME-N, IMR-32, 

 LAN-1, 
 SK-N-BE(2)C, 

 SK-N-F1, SK-N-SH 

 Brain (neuroblastoma)  8  1%O2, 18h 
 67 

 19884889  Lendhal 2009 

 HeLa, P493-6, 
 HCT116, Hep3B, 

 MCF7, RCC4, 
 SK-N-BE(2)C, 
 (E-MEXP-836) 

 Cervix, Burkitt's lymphoma, 
 Colon, Liver, Breast, Kidney 

 (VHL mutated), Brain 
 (neuroblastoma) 

 23 
 Different 

 conditions 
 101 

 20087356  Buffa 2010  Clinical samples  Head and Neck (squamous 
 cell carcinoma), Breast  51 

 71 

 20416888  Ghorbel 2010  Clinical samples  Cyanotic tetralogy of Fallot 
 (TOF)  166 → 158 

 72 

 20429727  Sorensen 2010 

 SiHa 
 FaDuDD 

 UTSCC5, UTSCC14, 
 UTSCC15 

 Cervix 
 Head and neck (squamous 

 cell carcinomas) 
 27 → 26  0-5% O2, 24h 

 70 

 20592013  Van Malenstein 
 2010  HepG2  Liver  4  2%O2, 72h 

 65 

 20652058  Fardin 2010 

 GI-LI-N, ACN, 
 GI-ME-N, IMR-32, 

 LAN-1, 
 SK-N-BE(2)C, 

 SK-N-F1, SK-N-SH 

 Brain (neuroblastoma)  35  1%O2, 18h 
 69 

 21325071  Ghazoui 2011  Clinical samples  Breast  70 → 68 
 73 

 70 



 21846821  Toustrup 2011 

 UTSCC5, UTSCC14, 
 UTSCC15 

 FaDu 
 SiHa 

 Head and neck 
 Cervix  15  O2 < 2.5 mm 

 Hg (electrode) 
 42 

 22356756  Starmans 2012 
 DU145 
 HT29 
 MCF7 

 Prostate 
 Colon 
 Breast 

 759 → 756  0%O2, 1-24h 
 74 

 22890239  Halle 2012  HeLa, SiHa, CaSki, 
 Clinical samples  Cervix  31  0.2%, 24h 

 102 

 23820108  Eustace 2013  Clinical samples  Laryngeal cancer 
 Bladder cancer  26 → 25 

 43 

 25216520 
 Boidot 2014 
 (Continuous 

 Hypoxia) 

 MCF-7, 
 MDA-MB-231, T47D, 
 A549, Widr, HCT116 

 WTP53, HCT116 
 -/-P53, HT29, 

 Colo-205, LoVo, 
 HCT15, SiHa, PC3, 

 U373, HepG2, 
 Hep3B, PLC/PRF/5, 

 SK-HEP-1, A498, 
 HT1080, 

 Clinical samples 

 Breast 
 Colon 

 Prostate 
 Colorectal 

 Liver 
 Fibrosarcoma 

 98 → 93 
 (~50 based 

 on 
 heatmap) 

 1%, 24h  103 

 25216520 
 Boidot 2014 

 (Cyclic 
 Hypoxia) 

 MCF-7, 
 MDA-MB-231, T47D, 
 A549, Widr, HCT116 

 WTP53, HCT116 
 -/-P53, HT29, 

 Colo-205, LoVo, 
 HCT15, SiHa, PC3, 

 U373, HepG2, 
 Hep3B, PLC/PRF/5, 

 SK-HEP-1, A498, 
 HT1080, 

 Clinical samples 

 Breast 
 Colon 

 Prostate 
 Colorectal 

 Liver 
 Fibrosarcoma 

 96 → 90 
 (~50 based 

 on 
 heatmap) 

 Cycling 
 Hypoxia - 30 
 min 1% O2 + 

 30 min 
 Normoxia, 

 24h 

 103 
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 25461803  Ragnum 2015 
 22Rv1, LNCaP, 
 PC-3, DU 145, 

 Clinical samples 
 Prostate  32  0.2%, 24h  104 

 27012812  Fjeldbo 2016  Clinical samples  Cervix  6  105 

 28324887  Suh 2017  Clinical samples  Head and neck  21 
 (5) 

 106 

 28400426  Yang 2017  Clinical samples  Bladder  24  47 

 30037853  Ye 2018 

 MCF-7, MCF10A, 
 MCF12A, 

 MDA-MB-157, 
 MDA-MB-175, 
 MDA-MB-231 , 
 MDA-MB-436, 
 MDA-MB-468, 

 SKBR3, 
 SUM1315MO2, 

 SUM185PE, 
 SUM229, 

 SUM149PT, 
 SUM159PT, 

 SUM225CWN, 
 T47D, ZR-75-1 

 Breast  42  1%, 24h  107 

 29729848  Yang 2018 
 (Prostate) 

 PNT2-C2, LNCaP, 
 DU-145, PC-3, 

 Clinical samples 
 Prostate  28 

 (14) 
 1%, 24h  108 

 29423096  Yang 2018 
 (Sarcoma) 

 HT1080, SKUT1, 
 sNF96.2, 93T449, 
 SW684, SW872, 
 SW982, Clinical 

 samples 

 Soft tissue sarcoma  24  1%, 24h  109 
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 30257451  Trong 2018 

 NCH551b, NCH612, 
 NCH620, NCH645, 
 NCH421k, NCH601, 
 NCH644, NCH660h 

 Brain (glioma)  5 
 (2) 

 1.5%, 72h  110 

 30973670  Chen 2019  A549, HCC827  Lung (adenocarcinoma)  17  1%, 72h  111 

 31572060  Zou 2019  Clinical samples  Colorectal  14 
 (9) 

 112 

 32887635  Zhang 2020  Huh-7, HepG2, 
 Clinical samples  Liver  3  0-1%, 24 h  113 

 32724434  Wang 2020  Clinical samples  Breast  14 
 (7) 

 114 

 33133157  Shou 2020  Clinical samples  Skin (melanoma)  7 
 (3) 

 115 

 32500034  Lin 2020  Clinical samples  Brain (glioma)  5  116 

 32655624  Mo 2020  Clinical samples  Lung (adenocarcinoma)  4  90 
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 32655701  Sun 2020  Clinical samples  Early-stage lung 
 (adenocarcinoma) 

 16 
 (11) 

 117 

 32887267  Tardon 2020 
 Ge835, Ge898, 

 Ge904, LN18, and 
 LN229 

 Brain (glioblastoma 
 multiforme)  19  1%, 48h  118 

 Table 3.1:  Published hypoxia signatures assessed in  this study 

 Published hypoxia signatures, identified by PubMed ID, first author name and year of 

 publication. Table indicates originating group, source of tissue, associated malignancy and 

 hypoxia conditions tested. The number of genes identified in the signature is given in column 

 5, the → symbol indicates the number of genes that survived the reannotation step (Chapter 

 2.2). Downregulated genes (if any) are reported in parentheses and a question mark 

 indicates whether it was possible to identify the up- and down-regulated genes in the 

 signature from the manuscript. 
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 Top 20 most frequent genes in hypoxia 
 signatures 

 (Di Giovannantonio 2022) 

 Most frequent genes in hypoxia signatures 
 using best annotation available 

 (probeset IDs from Harris et al. 2015) 

 VEGFA  Vascular Endothelial Growth Factor A  NDRG1  N-myc downstream regulated 1 

 NDRG1  N-myc downstream regulated 1  P4HA1  prolyl 4-hydroxylase, alpha polypeptide I 

 PGK1  phosphoglycerate kinase 1  BNIP3L  BCL2/adenovirus E1B 19kDa interacting 
 protein 3-like 

 P4HA1  prolyl 4-hydroxylase, alpha polypeptide 1  PGK1  phosphoglycerate kinase 1 

 DDIT4  DNA Damage Inducible Transcript 4  ADM  adrenomedullin 

 BNIP3L  BCL2/adenovirus E1B 19kDa interacting 
 protein 3-like 

 BNIP3  BCL2/adenovirus E1B 19kDa interacting 
 protein 3 

 PDK1  Pyruvate Dehydrogenase Kinase 1  BNIP3P1  BCL2/adenovirus E1B 19kDa interacting 
 protein 3 pseudogene 1 

 BNIP3  BCL2/adenovirus E1B 19kDa interacting 
 protein 3 

 ALDOC  aldolase C, fructose-bisphosphate 

 ALDOC  aldolase C, fructose-bisphosphate  PLOD2  procollagen-lysine, 2-oxoglutarate 
 5-dioxygenase 2 

 SLC2A1  solute carrier family 2 (facilitated glucose 
 transporter), member 1 

 P4HA2  prolyl 4-hydroxylase, alpha polypeptide 2 

 P4HA2  Prolyl 4-Hydroxylase Subunit Alpha 2  DDIT4  DNA-damage-inducible transcript 4 

 ADM  adrenomedullin  MXI1  MAX interactor 1, dimerization protein 

 HILPDA  Hypoxia Inducible Lipid Droplet 
 Associated 

 ERO1L  ERO1L 
 ERO1-like (S. cerevisiae) 

 FAM162A  Family With Sequence Similarity 162 
 Member A 

 SLC2A1  solute carrier family 2 (facilitated glucose 
 transporter), member 1 

 BHLHE40  Basic Helix-Loop-Helix Family Member 
 E40 

 ANGPTL4  angiopoietin-like 4 

 ANGPTL4  angiopoietin-like 4  -  - 

 KDM3A  Lysine Demethylase 3A  -  - 

 ERO1A  Endoplasmic Reticulum Oxidoreductase 1 
 Alpha 

 -  - 

 MXI1  MAX Interactor 1, Dimerization Protein  -  - 

 HK2  Hexokinase 2  -  - 
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 Table 3.2:  The most frequently appearing genes across 53 published hypoxia 

 signatures. 

 The table is ordered in descending order of frequency of genes found in hypoxia signatures 

 (e.g. NDRG1 was the second most commonly found gene in signatures investigated by Di 

 Giovannontio et al. but most commonly found in those investigated by Harris et al.) The left 

 hand side of the table was generated during the systematic hypoxia signature identification 

 stage of this thesis (see methods for search query). The gene symbol and brief description 

 of the gene is given. The right hand side of the table is a comparison with the study of Harris 

 et al who identified 32 hypoxia signatures in 2015. Matched colours indicate genes found in 

 both analyses, and highlight the rank of each gene in each study to easily contrast how 

 genes in common to many signatures have changed in rank between the two studies. 
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 b) 
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 Figure 3.1:  a) Frequency of 20 most common genes amongst the 53 published 

 hypoxia signatures, as identified in Table 3.2 (left hand column). b) Number of genes 

 overlapping across all the signatures analysed in the study. 

 The commonly found genes across signatures (a) are arranged in descending order from the 

 most commonly found at the top (VEGFA) to the 20th most common (HK2). Horizontal scale 

 indicates the number of signatures where those genes are found. The number of overlapping 

 genes across all signatures included in the study is shown in b). Both x- and y-axis are the 

 signatures and the total number of genes in the signatures are shown in parenthesis. 

 Masked squares (plain white) mean there is no overlap between the two signatures. 
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 This analysis reveals other genes not identified previously as common to hypoxia 

 signatures. Within the top 20 most frequently occuring in the analysis, these are HILPDA, 

 FAM162A, BHLHE40, KDM3A, ERO1A (although reannoted from ERO1L), MXI1 and HK2. 

 Perhaps the most intriguing of these is HILPDA (Hypoxia-Inducible Lipid Droplet Associated 

 protein) which has been shown to promote cancer progression through hypoxia dependent 

 and independent pathways  119  but recently has been  linked to evasion of anti-tumour 

 immunity. Indeed, tumour infiltrating macrophages (TAMs) infiltration has been found to be 

 significantly increased in tissues with high HILPDA expression and HILPDA positively 

 correlates with immunosuppressive genes, such as PD-L1  120  .  This potential 

 immunosuppressive effect of HILPDA may occur through lipid accumulation in macrophages 

 as has been seen in adipose tissue within mouse models of obesity  121  . This effect in part 

 may help to give an explanation for poor prognosis associated with hypoxia when targeted 

 with immunotherapy. 
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 3.2 Hypoxia signatures in different technologies 

 Our scientific understanding increases as technology evolves. Platforms for 

 measuring gene expression are no exception. The first technique applied historically, the 

 polymerase chain reaction, is excellent at measuring the gene expression of a single target 

 but can be labour intensive in multi-hypothesis/hypothesis-free studies when reporting the 

 whole transcriptome is the aim, as required for ‘gene signatures’. In the late 1990s and early 

 2000s, microarrays made measurement of the transcriptome vastly easier. Microarrays 

 comprise a set of sequences arranged in a grid pattern representing the entire genome or a 

 set of genes of interest. As in the polymerase chain reaction, measurement in these arrays 

 involves first converting mRNA to cDNA to improve stability. The DNA molecules are then 

 cut into fragments by restriction endonucleases and fluorescent markers attached (e.g. 

 Cyanine 3 [Cy3]). The fluorescent labelled DNA fragments then bind to their complementary 

 sequences on the microarray chip. Fluorescence emission is measured by passing a laser 

 over the chip, with the higher emission indicating the greater abundance of cDNA and thus 

 initial mRNA  122  . Initial hypoxia signatures were identified  using this technology. 

 However, within this approach, results have been seen to differ between competing 

 manufacturers (e.g. Affymetrix and Illumina) and as biological understanding evolved, 

 different platforms have adapted at different rates. This makes interpretation of signatures 

 potentially complex as many papers report the gene symbols annotated from the array and 

 not the initial probeset IDs. Indeed, our group suggested a minimum of three annotations 

 should be submitted for all microarray studies to allow accurate re-annotation (probeset ID, 

 ensembl ID and gene symbol)  13  . 

 The next major step in mRNA measuring technology comes from RNA sequencing 

 (RNASeq). As with microarray technology, mRNA is converted to cDNA but the cDNA is then 

 sequenced and mapped against a reference genome. On top of providing gene expression 

 levels, RNASeq provides an additional level of detail by measuring alternative levels of 

 81 



 splice variants and non-coding RNAs. This high-throughput sequencing method is expected 

 to supersede microarrays. 

 The combination of different methodological approaches (microarrays and RNASeq) 

 and different platforms within each presents a challenge when interpreting signatures and 

 combining datasets. To standardise signatures across different datasets, the HGNC 

 Multi-symbol checker was used to update symbols from all the published hypoxia signatures 

 to the approved most recent alias (see Methods). This approach allowed consistency in 

 gene ontology. 

 Even with this approach, certain genes from published signatures were missing from 

 (and hence undetectable in) certain platforms and experiments. This is illustrated in  Fig. 3.2 

 and  Fig. 3.3  where the percentage of missing genes  in each signature (signatures on y axis) 

 across the hypoxia experimental datasets found in GEO (x axis) is shown. In  Fig. 3.2  , one 

 can see that in GPL3423, an Affymetrix custom microarray platform, a large percentage of 

 genes expected in the signatures are missing in a large proportion of signatures, some even 

 with 100% missing (Fjeldbo and Zhang). But even in a non-custom Affymetrix platform 

 (GPL16686) a large percentage of genes are missing (e.g. 77% in Fardin 2010 and 75% in 

 Mo). The challenge of missing genes also presents itself in some RNASeq datasets (  Fig. 

 3.3  ). For example, GPL16791 (Illumina HiSeq 2500)  is used in the GEO series GSE109367 

 and also four other series (Table 3.3). However, even with the same technology, the 

 percentage of missed genes in GSE109367 is much higher (see  Fig. 3.3  ); this is likely 

 because of different approaches in downstream analysis. 

 Therefore, to be able to interpret signature performance amongst different 

 technologies and different experiments, platforms (bottom axis) from the subsequent 

 analysis where ≥12 out of 53 hypoxia signatures (≥20%) had ≥20% of genes that are not 

 detectable on that specific platform ID were removed. This excluded four microarray platform 

 IDs (GPL91, GPL17692, GPL16686 and GPL3423 - right hand side of  Fig. 3.2  ) and two 

 RNASeq experiments (GSE1419417 using GPL23227 and GSE109367 using GPL16791 - 
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 right hand side of  Fig. 3.3  ) from the analysis.  Table 3.3  also highlights the diversity of 

 platforms used in hypoxia experiments on GEO. 
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 Figure 3.2:  Percentage of genes missing in each signature  in hypoxia-related 

 microarray experiments 

 Summary of percentage missing genes in each signature for all the microarray platforms in 

 GEO hypoxia experiments. Top row denotes type of manufacturer and if a custom platform. 
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 Signature names are found on the y-axis and GEO platform IDs are on the x-axis. The 

 lighter the colour of the square, the higher the percentage of missing genes for that signature 

 in the platform in question. 
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 Figure 3.3:  Percentage of genes missing in each signature  in hypoxia-related 

 RNASeq experiments 

 Summary of percentage missing genes in each signature for all the RNASeq platforms in 

 GEO hypoxia experiments. Top row denotes the type of manufacturer. Signature names are 

 found on the y-axis and GEO platform (GPL) and series (GSE) IDs are on the x-axis. The 

 86 



 lighter the colour of the square, the higher the percentage of missing genes for that signature 

 in the platform and series in question. 
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 Company  Technology 
 type  Platform  Platform 

 ID 
 Number of 
 GEO series  GEO Series IDs 

 Affymetrix  Microarray  [HG_U95A] Affymetrix Human 
 Genome U95A Array  GPL91  1  GSE1056 

 Affymetrix  Microarray 
 [HG-U133_Plus_2] Affymetrix 

 Human Genome U133 Plus 2.0 
 Array 

 GPL570  10 

 GSE3188; GSE53012; 
 GSE39042; GSE9350; 

 GSE17353; GSE58049; 
 GSE3045; GSE3051; 
 GSE35973; GSE4086 

 Affymetrix  Microarray 

 [HG-U133_Plus_2] Affymetrix 
 Human Genome U133 Plus 2.0 

 Array [cdf: 
 HGU133Plus2_Hs_ENTREZG.cd 

 f] 

 GPL13668  1  GSE29641 

 Affymetrix  Microarray  [HG-U133A_2] Affymetrix Human 
 Genome U133A 2.0 Array  GPL571  2  GSE29406; GSE19197 

 Affymetrix  Microarray  [HG-U133A] Affymetrix Human 
 Genome U133A Array  GPL96  1  GSE3188 

 Affymetrix  Microarray  [HG-U219] Affymetrix Human 
 Genome U219 Array  GPL13667  1  GSE60729 

 Affymetrix  Microarray 
 [HTA-2_0] Affymetrix Human 

 Transcriptome Array 2.0 
 [transcript (gene) version] 

 GPL17586  2  GSE117775; GSE147516 

 Affymetrix  Microarray 
 [HuEx-1_0-st] Affymetrix Human 

 Exon 1.0 ST Array 
 [HuEx-1_0-st-v2,mainR3,A20071 

 112,EP.cdf] 
 GPL10520  1  GSE57613 

 Affymetrix  Microarray 
 [HuEx-1_0-st] Affymetrix Human 

 Exon 1.0 ST Array [transcript 
 (gene) version] 

 GPL5175  3  GSE66894; GSE37340; 
 GSE27523 

 Affymetrix  Microarray 
 [HuGene-1_0-st] Affymetrix 
 Human Gene 1.0 ST Array 
 [transcript (gene) version] 

 GPL6244  8 
 GSE38061; GSE30979; 
 GSE42791; GSE71280; 

 GSE124524; GSE42416; 
 GSE111259; GSE65168 

 Affymetrix  Microarray 
 [HuGene-2_0-st] Affymetrix 
 Human Gene 2.0 ST Array 
 [transcript (gene) version] 

 GPL16686  1  GSE99766 

 Affymetrix  Microarray 
 [HuGene-2_1-st] Affymetrix 
 Human Gene 2.1 ST Array 
 [transcript (gene) version] 

 GPL17692  1  GSE81416 

 Affymetrix  Microarray  [PrimeView] Affymetrix Human 
 Gene Expression Array  GPL15207  1  GSE67549 

 Affymetrix  Microarray 
 Affymetrix GeneChip Human 
 Genome U133 Plus 2.0 Array 

 [CDF: Hs133P_Hs_REFSEQ_10] 
 GPL9419  1  GSE18494 

 Affymetrix  Microarray 
 Affymetrix Human Genome U133 

 Plus 2.0 Array [Brainarray 
 Version 13, 

 HGU133Plus2_Hs_ENTREZG] 
 GPL14877  1  GSE41491 

 Affymetrix  Microarray  Affymetrix Human Genome U133  GPL15445  1  GSE75101 
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 Plus 2.0 Array 
 [CDF:gahgu133plus2_2.2.0] 

 Affymetrix 
 Custom  Microarray  Stanford Denko EOS Human 35K 

 Genechip v1.1  GPL3423  1  GSE4186 

 Agilent  Microarray 
 Agilent-012391 Whole Human 

 Genome Oligo Microarray 
 G4112A (Feature Number 

 version) 
 GPL1708  1  GSE33438 

 Agilent  Microarray 
 Agilent-014850 Whole Human 

 Genome Microarray 4x44K 
 G4112F (Feature Number 

 version) 
 GPL4133  2  GSE55563 

 Agilent  Microarray 
 Agilent-014850 Whole Human 

 Genome Microarray 4x44K 
 G4112F (Probe Name version) 

 GPL6480  1  GSE33521 

 Agilent  Microarray 
 Agilent-026652 Whole Human 
 Genome Microarray 4x44K v2 

 (Probe Name version) 
 GPL13497  1  GSE78245 

 Agilent  Microarray 
 Agilent-039494 SurePrint G3 

 Human GE v2 8x60K Microarray 
 039381 (Probe Name version) 

 GPL17077  2  GSE117036; GSE117041 

 Illumina  Microarray  Illumina HumanHT-12 V3.0 
 expression beadchip  GPL6947  2  GSE45301; GSE15530 

 Illumina  Microarray  Illumina HumanHT-12 V4.0 
 expression beadchip  GPL10558  13 

 GSE72723; GSE63562; 
 GSE59729; GSE80657; 
 GSE89891; GSE41666; 

 GSE125177; GSE111246; 
 GSE118683; GSE107300; 
 GSE42868; GSE45362; 

 GSE147384 

 Illumina  Microarray  Illumina HumanHT-12 WG-DASL 
 V4.0 R2 expression beadchip  GPL14951  2  GSE55211; GSE55212 

 Illumina  Microarray  Illumina HumanWG-6 v3.0 
 expression beadchip  GPL6884  6 

 GSE7272; GSE36562; 
 GSE55212; GSE61799; 
 GSE30019; GSE47533 

 Illumina  Microarray  Sentrix Human-6 Expression 
 BeadChip  GPL2507  1  GSE3188 

 BGISEQ  RNASeq  BGISEQ-500 (Homo sapiens)  GPL23227  1  GSE141941 

 Illumina  RNASeq  HiSeq X Ten (Homo sapiens)  GPL20795  1  GSE120611 

 Illumina  RNASeq  Illumina Genome Analyzer IIx 
 (Homo sapiens)  GPL10999  1  GSE90599 

 Illumina  RNASeq  Illumina HiSeq 2000 (Homo 
 sapiens)  GPL11154  6 

 GSE104193; GSE106305; 
 GSE69599; GSE113353; 
 GSE71401; GSE139673 

 Illumina  RNASeq  Illumina HiSeq 2500 (Homo 
 sapiens)  GPL16791  5 

 GSE109367; GSE81513; 
 GSE129344; GSE85353; 

 GSE149132 

 Illumina  RNASeq  Illumina HiSeq 4000 (Homo 
 sapiens)  GPL20301  5 

 GSE120886; GSE111653; 
 GSE85353; GSE149132; 

 GSE95280 
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 Illumina  RNASeq  Illumina NextSeq 500 (Homo 
 sapiens)  GPL18573  7 

 GSE106305; GSE108833; 
 GSE107848; GSE107692; 
 GSE82104; GSE123856; 

 GSE153291 

 Promega  RNASeq  AB 5500xl Genetic Analyzer 
 (Homo sapiens)  GPL16288  1  GSE52695 

 Table 3.3:  Platforms used in hypoxia gene expression  experiments in the Gene 

 Expression Omnibus (GEO) 

 The frequency platforms and technologies used in hypoxia-related experiments in GEO. 

 Light pink highlights microarrays and purple RNASeq. The most common platform used was 

 the llumina HumanHT-12 V4.0 expression beadchip in 13 GEO series. 
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 3.3 Summarising hypoxia signatures into scores 

 Upon identifying the 53 published hypoxia signatures, converting them into approved 

 symbols, and identifying useful datasets, the study moved to evaluate the most effective 

 methods for summarising these signatures into a convenient score that could potentially be 

 used to denote hypoxia by scientists and clinicians alike.. Several approaches could be 

 used. From the literature, six promising ways to convert the signatures into scores were 

 identified. 

 ●  Mean:  sum the expression values for each of the genes  in the signature and 

 divide by the number of genes in the signature. 

 ●  Median:  arrange all gene expression values in numerical  order from lowest to 

 highest. The median value separates the upper half of the data values from 

 the lower half. 

 ●  PCA1:  PCA1 is a value derived from Principal Component  Analysis (PCA). 

 PCA is a common dimensionality-reduction method used in bioinformatics. It 

 allows us to reduce the dimensionality of large datasets, such as 

 gene-expression data, by summarising all this information into one or multiple 

 scores. PCA1 is the first principal component derived through this method 

 and  is the score that represents the largest amount of variance given by 

 genes in the signature within the dataset. 

 ●  GSVA  45  :  GSVA is a type of Gene Set Enrichment (GSE)  analysis which 

 estimates variation of pathway activity in an unsupervised manner. The initial 

 step of GSVA is to evaluate the expression of a gene (high vs low) within the 

 dataset whilst normalising each expression value to a common scale. The 

 classical maximum deviation method then provides a score that penalises 

 deviations that are large in both tails, thus emphasising genes that are 

 concordantly activated in one direction only. However, this comes at the 
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 theoretical disadvantage that if genes in the same pathway are expressed in 

 opposing directions (some over, some under expressed) then the score will 

 be minimal. 

 ●  PLAGE  80  :  PLAGE is an unsupervised, single sample enrichment  method 

 based on PCA. The expression of each pathway gene set is standardised 

 over the samples to give estimates of each pathway activity. These estimates 

 are then used as coefficients of the first right-singular vector of the singular 

 value decomposition of the gene set. 

 ●  ssGSEA  123  :  ssGSEA is an extension of the Gene Set  Enrichment Analysis 

 (GSEA) which can be applied to individual samples rather than a whole 

 dataset. 

 Mean, median, PC1, GSVA, PLAGE and ssGSEA scores of hypoxia signatures 

 should change with hypoxia, and therefore, one could perhaps use these as an indicator of 

 cell line and tissue hypoxia. However, this has never been systematically tested. To 

 investigate this, the six scores of a pioneering signature from our laboratory (Buffa 2010)  71 

 were calculated on a publicly available dataset of MCF-7 cells (GSE153291, ER+ breast 

 cancer cells)  from Wu et al.  124  . In this experiment,  MCF-7 breast cancer cells were 

 incubated either in normoxic conditions or subjected to hypoxia (1% oxygen) for 24 hours. 

 There were three normoxic (GSM4639878, GSM4639879, GSM4639880) and three hypoxic 

 (GSM4639881, GSM4639882, GSM4639883) replicates. Here, the performance of the Buffa 

 signature in correctly identifying hypoxic cells was examined, using scores from each of the 

 six aforementioned approaches. The performance of the signature was finally evaluated 

 using the signature assessment package sigQC, which calculated the six scores in 

 question  81  . 
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 3.4 Buffa signature summary scores applied to dataset 

 GSE153291 

 The median score of the gene expression values has been proposed to indicate the 

 degree of hypoxia. This analysis examines the efficacy of not just the median, but also the 

 mean, PCA1, GSVA, PLAGE, and ssGSEA scores of the Buffa signature in identifying 

 hypoxic MCF-7 cells in a laboratory experiment. The performance of the Buffa signature in 

 this dataset was also evaluated using sigQC  81  . 

 Laboratory data comes from the freely accessible Gene Expression Omnibus (GEO) 

 portal. Dataset GSE153291 was generated as part of a study looking at long intergenic 

 non-coding RNAs (lincRNAs) in hypoxia, specifically lincNORS which appears to be a 

 non-coding regulator of the cellular sterol homeostasis  124  .  To assess hypoxia signature 

 efficacy is a novel use of this dataset, and highlights the advantage of open source dataset 

 sharing approaches such as GEO. Hypoxia-regulated genes (coding and long noncoding) 

 were identified by transcriptomic profiling of MCF-7 cells under hypoxia (1% O2, 24 hrs) 

 versus normoxia (21% O2, 24 hrs) using RNASeq (Illumina NextSeq 500). There were three 

 plates of MCF-7 cells in hypoxia and three in normoxia. 

 The six hypoxia scores (median, mean, PCA1, GSVA, PLAGE and ssGSEA) for the 

 Buffa signature were calculated for the six samples in GSE153291 and, these are 

 summarised for hypoxic and normoxic samples in  Table  3.4  . As expected, the mean and 

 median scores using the Buffa signature in the hypoxic samples were markedly different to 

 the normoxic samples. This can be compared with the scores derived from comparing a 

 random gene set in hypoxia and normoxia  used as a control, where there was no consistent 

 difference (  Table 3.5  ). The same pattern was seen  with ssGSEA. 

 Clear differences were also seen in PC1 scores, where the hypoxic samples gave 

 negative values whereas for normoxic they were all positive, and using PLAGE, where the 
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 sign difference was reversed. In contrast, GSVA scores gave a mixed picture with one of the 

 hypoxic samples (GSM4639881) giving a similar score to the normoxic samples, hinting that 

 the GSVA score might not be the best discriminator here. This is formally tested later. 

 On assessing the performance of the Buffa signature itself, some reassuring features 

 in the summary-scoring metrics and correlations when comparing against a random gene set 

 of the same length were found (  Fig. 3.4 and Fig. 3.5  ).  Firstly, the correlation matrices (  Fig. 

 3.4a  and  3.5a  ) from the Buffa signature show strong  positive correlations between mean, 

 median, ssGSEA and GSVA scores, which is expected if the signature is representative of a 

 common feature, such as tumour hypoxia. This is not observed in the random gene set. A 

 radar plot (  Fig. 3.4b  and  3.5b  ) is useful to assess  overall signature quality, combining a 

 number of key metrics of quality and interpretability fully explained in Dharwan et al  81  . A 

 good summary measure, as described by Dhawan et al., can be derived from the area of the 

 radar plot  81  ; the greater area inside the red line,  the better performing the signature within 

 the given dataset. The area inside the red line for the radar plot derived using the Buffa 

 signature (  Fig. 3.4b  ) is clearly much larger than  that using the random signature (  Fig. 3.5b  ). 

 The scatterplots in Panel C describe the correlation of all tested scores (mean, 

 median, PCA1, ssGSEA, GSVA, and PLAGE) with dots representing the individual samples. 

 Using the Buffa signature, the samples cluster to different ends of the plots, whereas the 

 random gene set the separation is much less marked, indicating mixing of hypoxic and 

 normoxic samples (  Fig. 3.4c  and  3.5c  ). The PCA1 score  derived using the Buffa signature 

 appears to be describing much more of the variance of the dataset than using the random 

 gene signature (  Fig. 3.4d  and  3.5d  ), suggesting that  the genes within the Buffa signature are 

 more relevant to determining the feature in question (hypoxic state of cell lines). 

 After evaluating their performance using sigQC  81  ,  the study transitioned to a novel 

 approach aimed at assessing the reliability of these scores in differentiating between hypoxic 

 and normoxic cells within this dataset. This approach compares the significance of hypoxia 

 gene signatures versus random gene set stimulations (for further detail see Chapter 2.5). 
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 Sample  Mean  Median  PCA1  GSVA  ssGSEA  PLAGE 

 GSM4639881  229.299  9.549  -1989.220  -0.123  7.388  0.428 

 GSM4639882  236.586  10.040  -2437.146  0.044  7.422  0.427 

 GSM4639883  269.736  11.202  -2952.792  0.477  7.520  0.361 

 GSM4639878  88.722  6.890  2560.898  -0.434  6.542  -0.357 

 GSM4639879  90.358  7.245  2437.901  -0.625  6.520  -0.381 

 GSM4639880  98.164  7.819  2380.358  -0.010  6.593  -0.479 

 Table 3.4:  Scores derived using the Buffa hypoxia  signature in hypoxic and normoxic 

 MCF7 cells (GSE153291) 

 Hypoxia scores using six scoring methods and the Buffa hypoxia signature. Red rows 

 denote hypoxic samples whereas blue rows denote normoxic samples. 

 Sample  Mean  Median  PCA1  GSVA  ssGSEA  PLAGE 

 GSM4639881  2.555  0.155  -19.139  0.045  0.589  0.514 

 GSM4639882  2.494  0.191  -9.64  0.066  0.519  0.443 

 GSM4639883  2.06  0.336  20.891  0.174  0.942  0.238 

 GSM4639878  3.202  0.167  -14.089  -0.146  0.182  -0.375 

 GSM4639879  3.174  0.246  -4.539  0.121  0.861  -0.453 

 GSM4639880  2.573  0.292  26.517  -0.140  -0.057  -0.367 

 Table 3.5:  Scores given from a  random gene set same  length as Buffa hypoxia 

 signature in hypoxic and normoxic MCF7 cells (GSE153291) 

 Hypoxia scores using six scoring methods and a random gene set the same length as the 

 Buffa hypoxia signature. Red rows denote hypoxic samples whereas blue rows denote 

 normoxic samples. 
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 Figure 3.4:  The performance of the Buffa hypoxia signature  in GSE153291 

 Panel a) depicts the correlation of the scores in the individual samples with the other scores. 

 The samples on the diagonal show bright red as there is a perfect correlation (e.g. GSVA vs. 

 GSVA, correlation coefficient of 1). Panel b) shows the performance of the signature based 

 on several measures described fully in sigQC. Notably, the proportion of expressed genes in 

 the signature is very high and there is a high level of non-NA values in the signature genes. 

 The absolute correlation coefficient of mean:median of signature genes, PCA1:median and 

 PCA1:mean are high and the intra-signature correlation is high suggesting it is compact and 

 functioning well. Panel c) shows the intercorrelation of all tested scores (mean, median, 
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 PCA1, ssGSEA, GSVA, and PLAGE). The solid red lines represent the distribution of the 

 samples in the dataset and are related with the y-axis named density; the solid grey line 

 represents the horizontal axis beneath density plots. The coloured dots represent the 

 individual samples. Panel d) highlights that PCA1 (first bar) accounts for well over 80% of 

 the variance within the dataset. 
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 Figure 3.5:  The performance of a single random set  of genes of same length as the 

 Buffa Hypoxia signature (51 genes) in GSE153291 

 Panel a) depicts the correlation of the scores in the individual samples with the other scores. 

 The samples on the diagonal show bright red as there is a perfect correlation (e.g. GSVA vs. 

 GSVA, correlation coefficient of 1). Panel b) shows the performance of the signature based 

 on several measures described fully in sigQC. The non-NA proportion is high but other 

 important measures such as proportion of expressed gene and intra-signature correlation 

 are both low. Panel c) shows the intercorrelation of all tested scores (mean, median, PCA1, 

 ssGSEA, GSVA, and PLAGE). The solid red lines represent the distribution of the samples in 
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 the dataset and are related with the y-axis named density; the solid grey line represents the 

 horizontal axis beneath density plots. The coloured dots represent the individual samples. 

 Panel d) highlights that PCA1 (first bar) accounts for ~70% of the variance within the 

 dataset. 
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 The new approach investigates the performance of the different scores using the 

 Buffa signature compared to RGS of the same length. This is done by calculating the 

 Euclidean distance between hypoxic and normoxic sample scores in both hypoxia signatures 

 and RGS, and comparing their distribution (see Chapter 2.5). By analysing the distance of 

 the Buffa signature vs simulations of 500 random gene sets it is possible to get an idea of its 

 performance. However, only mean, median, GVSA and ssGSEA can be used in this 

 approach, as discussed in Chapter 2.5.  Fig. 3.6  shows  the performance of the Buffa 

 signature scores in differentiating between the first pair of normoxic (GSM4639878) and 

 hypoxic (GSM4639881) samples. Here the median and scores for the Buffa signature lie 

 some distance from the peak of the frequency distribution, indicating that they clearly 

 perform differently to the random gene sets. In contrast, using the GSVA and ssGSEA, the 

 Buffa signature score is found within the body of the distribution indicating that the GSVA 

 and ssGSEA scores perform similarly to random gene sets. 

 Fig 3.7  shows the performance of the Buffa signature  scores in correctly identifying 

 hypoxic vs normoxic samples within GSE153191 (p value calculation and explanation 

 described in Chapter 2.5). The median score gives the most significant difference in the 

 discrimination compared to RGS (all p values <0.005). In contrast, the ssGSEA score for the 

 Buffa hypoxic signature did not perform significantly differently than scores from the RGS in 

 correctly classifying hypoxic samples, and GSVA outperformed the RGS in only three of the 

 nine pairwise combinations. These results suggest that the median and mean Buffa 

 signature hypoxia scores are “best” performing in this dataset, whereas ssGSEA is not a 

 good classifier of hypoxic state. This example highlights the importance of which summary 

 score is chosen for hypoxia signatures. It also raises the related question of whether all 

 hypoxia signatures should be summarised using the same score, or whether the ‘best’ score 

 may vary between signatures or systems (e.g. perhaps ssGSEA is a more appropriate score 

 and performs better using a different hypoxia signature on this dataset, or on a dataset from 

 different cell line). This is investigated further below. 
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 Figure 3.6:  Distribution of the distances calculated  using the Buffa hypoxia signature 

 in comparison to 500 RGS of the same length in GSE153291 for a pairwise 

 combination of one hypoxic and one normoxic sample (GSM4639881 vs. 

 GSM4639879) 

 The y-axis represents the number of gene sets falling into a given quantile of the distribution 

 whereas the x-axis represents the Euclidean distance calculated between the two samples 

 (GSM4639881 vs. GSM4639878). Blue bars only contain RGS distances, red bars denote 

 the quantile where the original hypoxia signature distance belongs to. If the red bar is not in 

 the tail of the distribution, the distance between the pair of samples derived from the original 

 signature performs similarly to RGS. Alternatively if the red bar is in the tail of the distribution 

 (e.g. last quantile on the right side of the distribution, as in the two upper plots), the original 

 signature is outperforming all RGS, maximising the distance observed between the pair. 
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 Figure 3.7:  The performance of different scores summarising  the Buffa Hypoxia 

 signature in comparison to 500 random gene sets of the same length in GSE153291 

 Each square represents a pairwise comparison of scores between a hypoxic and normoxic 

 sample, using the Buffa hypoxic signature.  The intensity of colour indicates the significance 

 level (p statistic) of the difference in scores (i.e. the ability of the signature to distinguish 

 between hypoxic and normoxic samples).  Comparison of medians allows distinction with a p 

 value of  <0.005.  In contrast, ssGSEA score would not allow the two states to be 

 distinguished in the systems used here (p>0.005). 

 102 



 3.5 Hypoxia signature performance in GSE153291 

 Following the assessment of the Buffa 2010 signature in the GSE153291 dataset 

 using the four summary scores (above), the study moved to a systematic evaluation of all 53 

 published signatures using the four summary scores  within GSE153291. These 212 

 combinations of signatures and scores were evaluated in two main ways: a) assessing 

 performance in relation to RGS of the same length and b) assessing accuracy at correctly 

 determining hypoxic samples. Both components are discussed in detail in Chapter 2 and 

 comparison with RGS is outlined through an example in Chapter 3.4. In brief, classification 

 accuracy was calculated by assessing performance of each signature against RGS. The 

 number of pairwise combinations performing significantly differently to random gene sets (p 

 < 0.005) was calculated and then accuracy was defined by dividing by the total number of 

 pairwise combinations in the analysis. For instance, if the Buffa signature using the median 

 score significantly differed to random gene set simulations (p < 0.005) in 15 of the 16 

 pairwise combinations, classification accuracy would be 93.75% (  ).  15 ÷  16    ×     100 

 Fig. 3.7  demonstrates the performance of all signatures  within GSE153291. In this 

 dataset, depending on which scoring method was used, there were large differences in 

 signature performance (  Fig. 3.8  and  Table 3.6  ). One  marked difference in performance 

 comes depending on which score is used for the comparison - as indicated above for the 

 Buffa signature. Using the Boidot continuous hypoxia signature, the median score also 

 correctly classifies the samples significantly better than the RGS (100%  accuracy) whereas 

 the ssGSEA score does not differ significantly from the RGS across all pairwise 

 combinations (0% accuracy). In general, the median score performed the best at identifying 

 hypoxia over the greatest number of signatures (  Fig.  3.8  , top panel), followed by GSVA, 

 Mean and ssGSEA. 

 Comparing the validity of individual signatures, a number had high accuracy 

 (discriminatory ability) in a number of different scores. Indeed, 25 signatures, including many 
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 derived from cell lines other than breast tumours (e.g Halle, which originated from cervical 

 cancer cell lines), reached 100% accuracy in identifying hypoxic samples using the median 

 scores (  Table 3.6  ). That several signatures give 100%  accuracy in this dataset is expected 

 (since they all purport to identify hypoxia) and reassuring given the relatively small number of 

 hypoxic and normoxic samples (three replicates of each and nine pairwise combinations of 

 samples). However, this analysis also highlights the importance of choosing the correct 

 scoring system, with other scores having much lower accuracy (e.g. ssGSEA,  Table 3.6  ). 

 Twelve signatures (Fardin, Ghorbel, Ning, Seigneuric common, Seigneuric early0, 

 Shi, Shou, Suh, Sun, Trong, Zhang and Zou) did not perform significantly differently to the 

 random gene sets using any of the four summary scores across all pairwise combinations, 

 suggesting these signatures are not a good indicator of hypoxic status in GSE153291  .  Ten of 

 these twelve signatures were not derived from breast cell lines, which might explain their 

 poor performance. The Seigneuric signatures were, however, deduced from studies on 

 mammary epithelial cells. In this case, the signatures were taken from cells during early 

 exposure to hypoxia (1, 3 and 6 hours), not 24 hours as in this dataset, which may point to 

 some time dependence of the transcriptome. Nonetheless, the wide applicability of several 

 signatures suggest a fair degree of conformity. 

 The main point to highlight here is the difference in performance between signatures 

 and scores. The results established the optimum summary score for comparison (median) 

 and the best performing signatures in this breast cancer cell line dataset. Will the median 

 always be the best summary score to use using all freely available data in GEO? Will the 

 signature(s) that are most indicative of hypoxia in GE153291 remain so in other cell 

 lines/cancer types? The following chapters aim to answer these important questions, starting 

 with individual tissue types and building towards the best signature across all conditions. 
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 Figure 3.8:  Comparison of the four hypoxia summary  scores across the 53 

 published hypoxia signatures in GSE153291. 

 Comparison of the scoring methods of the 53 hypoxia signatures across one experiment 

 (GSE153291) comparing gene expression in MCF-7 cells in normoxia (21% O2, 24 hrs) and 

 hypoxia (1% O2, 24 hrs). The darker the shade of blue the more accurate the signatures and 

 specific scores are at differentiating between hypoxic and non-hypoxic samples in 

 GSE153291 comparing random gene sets of the same length. Grey means the score and 

 signature did not significantly outperform random gene sets (p-value > 0.005).  Median (top 
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 panel), shows the best classification across the greatest number of experiments 

 compared to mean, GSVA and ssGSEA. 
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 Table 3.6:  Percentage accuracy of determining hypoxic  samples from normoxic 

 samples in GSE153291 for the 53 signatures across four hypoxia scores. 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue) within each score (column). Red cells highlight the highest accuracy in 

 the whole table. The star symbol (*) denotes signatures made of both upregulated and 
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 downregulated genes. The obelisk symbol (†) indicates signatures that have been derived 

 including clinical samples. 
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 Chapter 4: Evaluation of hypoxia gene 
 expression signature scores across the Gene 

 Expression Omnibus 
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 Since HIF-1α dictates a key part of the cellular and transcriptional response to 

 hypoxia in all tissues, it is possible that hypoxia signatures derived from individual tissues 

 might apply across different tissue types. This provides a rationale as to why many studies 

 have opted to just use a single hypoxia signature (and summary score) irrespective of tissue. 

 As shown above, some hypoxia signatures do apply across several tissue types. 

 However, hypoxia signatures have been developed from different tissue types, using 

 different technologies and approaches (e.g. clinical samples vs cell lines), it is possible that 

 different signatures may indicate hypoxic status differently in various tissue types. Cancers in 

 different tissues do display different receptor statuses (e.g. oestrogen receptor status in 

 breast cancer), mutational profiles, and have different prognoses in the clinic, so one might 

 expect different responses to the hypoxic state. It may also be the case that signatures 

 claimed to identify hypoxia do not actually do so reliably, perhaps being derived from a too 

 small sample size or due to some other experimental artefacts. For example, as shown 

 above, seven out of the published 53 hypoxia signatures do not identify hypoxia in cultured 

 mammary cells. Accordingly, the generality and efficacy of published hypoxia signatures in 

 identifying hypoxia was investigated, not only by testing the signatures identified in one 

 tissue type (e.g. simply looking at prostate cancer derived signatures in prostate cancer) but 

 by looking universally in an unbiased fashion, e.g. testing whether signatures derived from 

 prostate cancer were effective in indicating hypoxia across all cancer cell lines tested 

 irrespective of their tissue of origin. Moreover, the analysis is not biassed towards a specific 

 summary score in the prior application of the signatures, as all four scores are investigated 

 throughout the study. As it is not correct to assume just because the median score of the 

 Buffa signature gave 100% accuracy in the GSE153291 dataset does not necessarily ensure 

 it will perform as effectively in other breast cancer cell line experiments and/or in different 

 cancer types, perhaps it might be inferior to another score, like the mean. Thus, each tissue 

 type (where sufficient samples exist, >30 pairwise combinations) will be discussed singularly, 
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 before identifying the signatures and summary scores that perform best across all tissue and 

 cancer types tested, in the search for an effective universal hypoxia signature. 
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 4.1 Performance of hypoxia signatures in breast cancer cell 
 lines 

 After showing marked differences in performance of the four summary scores of the 

 53 hypoxia signatures in one MCF-7 experiment (GSE153291), I was intrigued to see if 

 similar results would be observed in other breast cancer cell line experiments. To investigate 

 this, experiments involving the comparison of gene expression profiles from hypoxic and 

 normoxic cells were first identified in the Gene Expression Omnibus (as described in 

 Methods). From these, breast cancer cell lines were selected. This yielded the 34 cell lines 

 shown in  Table 4.1  : comprising 19 triple negative  (ER-, PR-, HER2-) lines, three ER-, PR-, 

 HER2+ lines, one ER+, PR-, HER2- line, one ER-, PR+/-, HER2- line, four ER+, PR+, 

 HER2- lines, one ER+, PR+, HER2+ line and five transformed “non-cancerous” mammary 

 tissue cell lines. Although triple negative cell lines were the most frequently identified, ER+, 

 PR+, HER2- had the highest number of pairwise combinations that could be investigated, 

 256 [mainly MCF-7] compared to 89 triple negative samples [mainly MDA-MB-231]). 

 I assessed the performance of the 53 published signatures at defining hypoxia in 

 these 34 cell lines in 27 different datasets (  GSE3188,  GSE63562, GSE18494, GSE111653, 

 GSE104193, GSE89891, GSE41491, GSE29641, GSE108833, GSE99766, GSE111246, 

 GSE39042, GSE29406, GSE61799, GSE15530, GSE33438, GSE107692, GSE71401, 

 GSE124524, GSE47533, GSE123856, GSE42416, GSE111259, GSE147516, GSE153291, 

 GSE85353, GSE149132  ) to identify the most effective  signature at identifying hypoxia 

 across breast cancer cell lines. Here, ssGSEA was the worst performing score over all 

 datasets tested (  Fig. 4.1  ), with the best performing  signatures in this score achieving only 

 1.97% accuracy (Chi,  Table 4.2  ). The median score  was the best performing across the 

 signatures (  Fig. 4.1  , top panel), and applying this  to Sorensen, the analysis was able to 

 differentiate between hypoxic and normoxic samples with 97.75% accuracy (  Table 4.2  ). 

 Interestingly, Sorensen was derived from non-breast cell lines (cervical and head & neck). 
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 The best performing signatures derived from breast cancer cell lines had median scores that 

 had similar accuracy: Lendhal (not solely breast [see  Table 3.1  ], 96.90%), Elvidge (MCF-7, 

 96.34%) and Aprelikova (MCF-7, 95.21%). This suggests that hypoxia signatures are worth 

 investigating as markers of hypoxia independent of cell line of origin. For instance, one might 

 not expect  a priori  to find the best performing signature  in breast cancer cell lines to have 

 been identified from cervical and head & neck cell lines. 

 The worst performing signatures across all scores were Sun (from lung cancer 

 samples) and Shou (from melanoma samples). This is shown by the vertical grey bars in all 

 panels of  Fig. 4.1  and also in  Table 4.2  with the  maximum accuracy achieved by these 

 signatures being <2%. 
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 Cell line  Receptor Status 
 Number of 
 Hypoxic 
 samples 

 Number of 
 Normoxic 
 samples 

 Pairs 

 MCF-7  ER+, PR+, HER2-  79  48  243 

 MDA-MB-231  ER-, PR-, HER2-  20  14  56 

 T-47D  ER+, PR+, HER2-  5  5  11 

 UFH-001  ER-, PR-, HER2-  3  3  9 

 HCC1806  ER-, PR-, HER2-  3  3  5 

 ZR-75-1  ER-, PR+/-, HER2-  5  2  5 

 MDA231-LM2  ER-, PR-, HER2-  2  2  4 

 BT20  ER-, PR-, HER2-  1  1  1 

 BT474  ER+, PR+, HER2+  1  1  1 

 BT549  ER-, PR-, HER2-  1  1  1 

 CAMA1  ER+, PR+, HER2-  1  1  1 

 DU4475  ER-, PR-, HER2-  1  1  1 

 HCC1428  ER+, PR+, HER2-  1  1  1 

 HCC1569  ER-, PR-, HER2+  1  1  1 

 HCC1937  ER-, PR-, HER2-  1  1  1 

 HCC38  ER-, PR-, HER2-  1  1  1 

 HS578T  ER-, PR-, HER2-  1  1  1 

 MDA-MB-157  ER-, PR-, HER2-  1  1  1 

 MDA-MB-175  ER+, PR-, HER2-  1  1  1 

 MDA-MB-231- 
 PSOC  ER-, PR-, HER2-  1  1  1 

 MDA-MB-436  ER-, PR-, HER2-  1  1  1 

 MDA-MB-468  ER-, PR-, HER2-  1  1  1 

 SKBR3  ER-, PR-, HER2+  1  1  1 

 SUM1315  ER-, PR-, HER2-  1  1  1 
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 SUM149  ER-, PR-, HER2-  1  1  1 

 SUM159  ER-, PR-, HER2-  1  1  1 

 SUM185  ER-, PR-, HER2-  1  1  1 

 SUM225CWN  ER-, PR-, HER2+  1  1  1 

 SUM229  ER-, PR-, HER2-  1  1  1 

 Total  139  99  355 

 Table 4.1:  Breast cancer cell lines in hypoxia experiments  in GEO 

 Details of the hypoxia versus normoxia experiments in GEO. There is a preponderance of 

 MCF-7 pairwise combinations that can be made in the analysis (243) and thus ER+, PR+, 

 HER2- cells (256). There are 19 triple negative cell lines in the analysis with 89 pairwise 

 combinations. The ZR-75-1 cell line has intermediate PR status but is predominantly PR+. 

 To reflect this, the Receptor Status column reports PR+/-. 

 115 



 116 



 117 



 118 



 Figure 4.1:  Comparison of the four hypoxia summary  scores across the 53 

 published hypoxia signatures in breast cancer 

 Comparison of the scoring methods of the 53 hypoxia signatures across all breast cancer 

 hypoxia experiments identified. Signatures are shown on the x axis, the star symbol (*) 

 denotes signatures made of both upregulated and downregulated genes. The obelisk symbol 

 (†) indicates signatures that have been derived including clinical samples. The darker the 

 shade of blue the more accurate the signatures and specific scores are at differentiating 

 between hypoxic and non-hypoxic samples comparing random gene sets of the same length 

 (p<0.005). Grey means the score and signature did not significantly outperform random 
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 gene sets (p>=0.005). The legend above the pictorial figure shows several features for the 

 samples analysed (legend titles are reported at the start of the x-axis). Median (top panel), 

 shows the best classification across the greatest number of experiments compared to mean, 

 GSVA and ssGSEA. 
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 Table 4.2:  Percentage accuracy of determining hypoxic samples from normoxic 

 samples in breast cancer for the 53 signatures across four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Red cells highlight the best performing signature(s) and score 

 modality/modalities; here Sorensen using the median score performs best (97.75% 

 accuracy). The star symbol (*) denotes signatures made of both upregulated and 

 downregulated genes. The obelisk symbol (†) indicates signatures that have been derived 

 including clinical samples. 
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 4.2 Performance of hypoxia signatures in lung cancer cell lines 

 Lung cancer cell lines/tissue with gene expression data in hypoxia and normoxia 

 were identified from the Gene Expression Omnibus (as in Methods). This yielded a dataset 

 of  ex vivo  samples (non-small cell lung cancer) and  three datasets from cell lines, A549, 

 H460 and PC-9 (  Table 4.3  ). Clinical samples originating  from the GSE30979 dataset made 

 up the majority of analysis with 100 pairwise combinations possible. In this study 

 (GSE30979), Leithner et al. collected non-small cell lung cancer (NSCLC) fragments from 

 patients prior to surgery and grew them  ex vivo  in  ambient oxygen or 1% oxygen  125  . Gene 

 expression was measured using Affymetrix GeneChip 1.0 ST microarrays. The cell line that 

 made up most of the rest of the comparisons was A549, a lung adenocarcinoma explant cell 

 line, which added 14 pairwise combinations to the analysis. 

 I assessed the performance of the 53 signatures at defining the hypoxic state 

 correctly in these three cell lines and clinical samples (GSE30979).  Mean and GVSA scores 

 here appeared the most useful (  Fig. 4.3  ), while in  contrast to the observations in breast 

 cancer lines (Chapter 4.1) the median score was less accurate (  Fig. 4.3  &  Table 4.4  ). The 

 best performing signatures for distinguishing hypoxic from normoxic cells were Starmans 

 and Mense with mean scores giving 86.21% accuracy (highlighted red in  Table 4.4  ). The 

 Starmans signature was derived from one prostate, one colon and one breast cancer cell 

 line whereas Mense was derived from fetal astrocytes (  Table 3.1  ). Interestingly, neither were 

 derived from lung cancer cell lines or tissue. 

 In these datasets, ssGSEA was the worst performing score. The worst performing 

 signature across all scores was the signature developed by Sun, with 0% accuracy on the 

 four scores (  Table 4.4  ). Interestingly, this signature  was indeed developed on lung tissue, 

 using early-stage lung cancer samples  117  . These workers  used ssGSEA scores and 

 transcriptome profiling data of stage I–II lung cancer adenocarcinoma patients to develop 

 their signature, but did not directly measure hypoxia. 
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 Cell line/samples  Number of Hypoxic 
 samples 

 Number of 
 Normoxic 
 samples 

 Pairs 

 NSCLC  ex vivo 
 clinical samples 

 10  10  100 

 A549  6  6  14 

 H460  1  1  1 

 PC-9  1  1  1 

 Total  18  18  116 

 Table 4.3:  Lung cancer cell lines in hypoxia experiments  in GEO 

 Details of the hypoxia versus normoxia experiments in GEO using lung cancer cell lines. 14 

 pairs are achieved in the A549 line as three hypoxia and three normoxia samples are taken 

 from one dataset (GSE117036 = 9 pairs), two hypoxia and two normoxia samples are taken 

 from another (GSE117041 = 4 pairs) and one hypoxia and one normoxia samples are taken 

 from another (GSE42416 = 1 pair). 
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 Figure 4.2:  Comparison of the four hypoxia summary  scores across the 53 

 published hypoxia signatures in lung cancer cell lines 

 Comparison of the scoring methods of the 53 hypoxia signatures across all lung cancer 

 hypoxia experiments identified. Conventions as in  Fig. 4.1  . 

 128 



 Table 4.4:  Percentage accuracy of determining hypoxic  samples from normoxic 

 samples in lung cancer cell lines for the 53 signatures across four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in  Table 4.2  . 
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 4.3 Performance of hypoxia signatures in colorectal cancer cell 
 lines 

 Colorectal cancer cell lines with gene expression data in hypoxia and normoxia were 

 identified from the Gene Expression Omnibus (as in Methods). This yielded seven cell lines: 

 HCT116, HT29, DKO3, COLO-205, HCT-15, LoVo and WiDr. By far the most common cell 

 line used was HCT116, a human colorectal carcinoma cell line that harbours a mutation in 

 codon 13 of the ras proto-oncogene (  Table 4.5  ). 

 I assessed the performance of the 53 signatures at defining hypoxia in these seven 

 cell lines in 11 different experiments (GSE38061, GSE4186, GSE41666, GSE41491, 

 GSE29641, GSE81513, GSE58049, GSE90599, GSE35973, GSE42416, GSE109318). 

 The best performing overall score in these colorectal cancer cell lines was the median (  Fig. 

 4.3  , top panel), whilst again, ssGSEA appeared the  worst performing score (  Fig. 4.3  , bottom 

 panel). The best performing signatures were Chen (82.50% using median) and Sung 

 (82.50%, using GSVA) and other accuracies are detailed in Table 4.6. These two signatures 

 have been developed from lung adenocarcinoma (A549, HCC827) and head and neck 

 cancer cell lines (CNE-2, C666-1, HONE-1, HK1) respectively. Unexpectedly, none of the 

 signatures derived from experiments including colorectal cell lines (Benita, Lendhal, 

 Starmans and Zou) have shown the highest accuracy in the classification of hypoxic 

 samples, however, the median score for Benita was able to reach 75%. 

 The worst performing signature across all the scores was again Shou, which was 

 unable to correctly classify any pairwise combination in the analysis (0% accuracy). 

 However it is worth noting that almost 30% of the hypoxic samples of the pairwise 

 combinations in the analysis have been exposed to low oxygen tensions (0-1 % O2) for a 

 relatively short time between 1 and 6 hours. These tend not to be correctly classified as 

 hypoxic even using the highest performing signatures and scores (  Fig. 4.3  ). This suggests 

 that the early hypoxic response in colorectal cancer lines is different compared to >6 hours 
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 and perhaps this is the reason why signatures struggle to correctly differentiate between 

 normoxic and hypoxic samples. However, this does not appear to be the case in breast 

 cancer (Chapter 3) but I will continue to monitor this potential pattern in other cancer types. 
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 Cell line  Number of Hypoxic 
 samples 

 Number of 
 Normoxic 
 samples 

 Pairs 

 HCT116  19  16  57 

 HT29  15  3  15 

 DKO3  2  2  4 

 COLO-205  1  1  1 

 HCT-15  1  1  1 

 LoVo  1  1  1 

 WiDr  1  1  1 

 Total  40  25  80 

 Table 4.5:  Colorectal cancer cell lines in hypoxia  experiments in GEO 

 Details of the hypoxia versus normoxia experiments in GEO using colorectal cancer cell 

 lines. 
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 Figure 4.3:  Comparison of the four hypoxia summary  scores across the 53 

 published hypoxia signatures in colorectal cancer 

 Comparison of the scoring methods of the 53 hypoxia signatures across all colorectal cancer 

 hypoxia experiments identified. Conventions as in  Fig. 4.1  . 
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 Table 4.6:  Percentage accuracy of determining hypoxic  samples from normoxic 

 samples in colorectal cancer for the 53 signatures across four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in  Table 4.2  . 
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 4.4 Performance of hypoxia signatures in liver cancer cell lines 

 Liver cancer cell lines with gene expression data in hypoxia and normoxia were 

 identified from the Gene Expression Omnibus (as in Methods). This identified six liver cancer 

 cell lines: HepG2, Huh-7, Hep3B, PLC-PRF-5, SK-HEP-1 and SMMC-7721. The commonest 

 lines used are HepG2 and Huh-7 (  Table 4.7  ). The cell  line with the largest number of 

 combinations of pairs was HepG2 (46) which originates from a 15-year-old caucasian boy. 

 I assessed the performance of the 53 signatures at defining hypoxia in these six liver 

 cancer cell lines in 9 different experiments (GSE120886, GSE18494, GSE55212, 

 GSE59729, GSE41666, GSE42416, GSE1056, GSE120611, GSE57613). 

 In distinguishing hypoxic cell lines, the median, mean and GSVA scores all 

 performed well. Using the median score, the highest performing signatures (Aprelikova, 

 Beyer, Lendhal, Mense, Sorensen, Sung, Tardon and Ye) achieved 95% accuracy 

 (highlighted red in  Table 4.8  ), while Toustrup also  reached 95% accuracy on the mean score. 

 Looking at the highest performing signatures, these were developed from a range of tissues 

 (  Table 3.1  ) and the Lendhal signature was the only  one that included any liver cancer cell 

 line in its derivation (Hep3B). The signature that was developed solely from the liver cancer 

 cell line HepG2, Van Malenstein, reached only 63.75% accuracy in identifying hypoxia 

 samples (using median,  Fig. 4.4  , top panel). This  again underlines the benefit of unbiased 

 testing of all signatures, independently of tissue origin, across all tissue types. 

 Again, the ssGSEA score performs poorly (  Fig. 4.4  ,  final panel), with the highest 

 percentage accuracy using any signature reaching only 2.5% (  Table 4.8  ). The worst 

 performing signatures were Shou, Sun and Zhang (vertical grey columns in almost all 

 heatmaps in  Fig. 4.4  ), with Shou being the best performing  of these, achieving only 6.25% 

 accuracy using GVSA (  Table 4.8  ). 

 138 



 Cell line/samples  Number of Hypoxic 
 samples 

 Number of 
 Normoxic 
 samples 

 Pairs 

 HepG2  16  10  46 

 Huh-7  12  4  21 

 Hep3B  4  4  10 

 PLC-PRF-5  1  1  1 

 SK-HEP-1  1  1  1 

 SMMC-7721  1  1  1 

 Total  18  18  116 

 Table 4.7:  Liver cancer cell lines in hypoxia experiments  in GEO 

 Details of the hypoxia versus normoxia experiments in GEO using liver cancer cell lines. 
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 Figure 4.4:  Comparison of the four hypoxia summary  scores across the 53 

 published hypoxia signatures in liver cancer cell lines 

 Comparison of the scoring methods of the 53 hypoxia signatures across all liver cancer 

 hypoxia experiments identified. Conventions as in  Fig. 4.1  . 
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 Table 4.8:  Percentage accuracy of determining hypoxic  samples from normoxic 

 samples in liver cancer cell lines for the 53 signatures across four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in  Table 4.2  . 
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 4.5 Performance of hypoxia signatures in cervical cancer cell 
 lines 

 Cervical cancer cell lines with gene expression data in hypoxia and normoxia were 

 identified from the Gene Expression Omnibus (see methods). Eight cell lines fell into this 

 category: HeLa, SiHa, CaSki, C-33, C-41, HT-3, ME-180 and SW756 (  Table 4.9  ). HeLa and 

 SiHa made up the majority of the pairs that could be analysed (70/77). Both HeLa and SiHa 

 cells have been reported to contain human papilloma virus sequences (according to the 

 American Type Culture Collection), Hela containing HPV-18 and SiHa HPV-16. 

 I assessed the performance of the 53 signatures for identifying hypoxia in these eight 

 cell lines in 8 different experiments (GSE72723, GSE36562, GSE55211, GSE3051, 

 GSE42416, GSE147384, GSE141941, GSE33521). Median, mean and GSVA scores 

 appeared the most effective overall, while ssGSEA performed worst (  Fig. 4.5  ).  The best 

 performing signature was Aprelikova which, using the GSVA score, achieved 97.40% 

 accuracy in identifying hypoxic samples (  Table 4.10  ).  The Aprelikova signature was 

 developed from the MCF-7 breast cancer cell line at 0.5% oxygen at an 8h time point. 

 However, it is notable that a large number of the published signatures accurately classified 

 hypoxic samples in cervical cancer lines in over 90% of cases using a variety of scores 

 (  Table 4.10  ). In contrast, the worst performing signatures  across all scores were Shou and 

 Zhang with 0% accuracy across all scores. Seven signatures included cervical cancer lines 

 in their development (Denko, Beyer, Benita, Lendhal, Toustrup, Halle, Fjbeldo); five of these 

 reached 93.51% accuracy using mean or median (  Table  4.10  ). 

 In this cancer specific analysis, measurements at 5% oxygen were also included. 

 These are displayed in the heatmap as the only samples in the 2 < O2% >= 6 group. 

 Although at the benchside 5% oxygen is generally not considered hypoxia, the goal was to 

 investigate if hypoxia signatures could differentiate between this condition and ambient 
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 oxygen. Indeed, one can see that some hypoxia signatures, e.g. Aprelikova, can still 

 differentiate between cells in this category. 
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 Cell line/samples  Number of Hypoxic 
 samples 

 Number of 
 Normoxic 
 samples 

 Pairs 

 HeLa  13  14  42 

 SiHa  8  8  28 

 CaSki  2  2  2 

 C-33  1  1  1 

 C-41  1  1  1 

 HT-3  1  1  1 

 ME-180  1  1  1 

 SW756  1  1  1 

 Total  28  29  77 

 Table 4.9:  Cervical cancer cell lines in hypoxia experiments  in GEO 

 Details of the hypoxia versus normoxia experiments in GEO using cervical cancer cell lines. 
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 Figure 4.5:  Comparison of the four hypoxia summary  scores across the 53 

 published hypoxia signatures in cervical cancer cell lines 

 Comparison of the scoring methods of the 53 hypoxia signatures across all cervical cancer 

 hypoxia experiments identified. Conventions as in  Fig. 4.1  . 
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 Table 4.10:  Percentage accuracy of determining hypoxic  samples from normoxic 

 samples in cervical cancer cell lines for the 53 signatures across four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in T  able 4.2  . 
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 4.6 Performance of hypoxia signatures in melanoma cancer cell 

 lines 

 Melanoma cell lines with gene expression data in hypoxia and normoxia were 

 identified from the Gene Expression Omnibus (as in Methods). Four such cell lines were 

 identified: 501mel, IGR39, SK-MEL-28 and WM793B. The most common cell lines used in 

 experiments were 501mel and IGR39 (27 pairs each,  Table 4.11  ). I assessed the 

 performance of the 53 signatures at defining hypoxia in these four cell lines in three different 

 datasets (GSE53012, GSE85353, GSE95280). Overall, the median score performed the 

 best (  Fig. 4.6  , top panel) and the highest performing  signatures were the MCF-7 derived 

 Aprelikova signature and Ye, which also was derived from 16 breast cancer cell lines (  Table 

 3.1  ). Both could accurately differentiate hypoxic  from normoxic samples with 95.83% 

 accuracy (  Table 4.12  ). Overall, ssGSEA was the worst  performing score. 

 The only hypoxia signature actually derived from melanoma samples was that of 

 Shou, who derived their 7-gene signature from the clinical samples found in The Cancer 

 Genome Atlas (TCGA), coded as skin cutaneous melanoma (SKCM)  115  . However, this was a 

 very poorly performing signature in identifying hypoxic melanoma cell line samples across all 

 scores in this analysis, perhaps due to the existence of downregulated genes in the 

 signature (  Fig. 4.6  and  Table 4.12  ). The highest accuracy  achieved by Shou was 1.39% 

 using ssGSEA. This poor performance is surprising and could reflect a difference between 

 the clinical and benchside environments, or highlight the risk of developing a signature with a 

 relatively low number of genes. However, gene number does not seem to be the deciding 

 factor since Fardin 2009, with only eight genes, was able to correctly classify hypoxic 

 samples with 79.17% accuracy using the median score. 
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 Cell line/samples  Number of Hypoxic 
 samples 

 Number of 
 Normoxic 
 samples 

 Pairs 

 501mel  9  3  27 

 IGR39  9  3  27 

 SK-MEL-28  3  3  9 

 WM793B  3  3  9 

 Total  24  12  72 

 Table 4.11:  Melanoma cell lines in hypoxia experiments  in GEO 

 Details of the hypoxia versus normoxia experiments in GEO using melanoma cell lines. 
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 Figure 4.6:  Comparison of the four hypoxia summary  scores across the 53 

 published hypoxia signatures in melanoma cell lines 

 Comparison of the scoring methods of the 53 hypoxia signatures across all melanoma 

 hypoxia experiments identified. Conventions as in  Fig. 4.1  . 
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 Table 4.12:  Percentage accuracy of determining hypoxic  samples from normoxic 

 samples in melanoma cell lines for the 53 signatures across four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in  Table 4.2  . 
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 4.7 Performance of hypoxia signatures in ovarian cancer cell 
 lines 

 Ovarian cancer cell lines with gene expression data in hypoxia and normoxia were 

 identified from the Gene Expression Omnibus (as in Methods). This yielded three cell lines: 

 A2780, SKOV3ip.1 and SK-OV-3. The cell line most commonly used in experiments was 

 A2780, an adenocarcinoma line isolated from a treatment-naive individual from Manchester, 

 UK (  Table 4.13  ). The performance of the 53 signatures  at defining hypoxia was then 

 investigated across the three cell lines (data from GEO series GSE53012, GSE66894, 

 GSE52695). None of the published hypoxia signatures had been developed using ovarian 

 cell lines or tissue. 

 The median score was the overall best performing score (  Fig. 4.7  ,  top panel), with 

 seven signatures all reaching 100% accuracy (Chen, Chi, Lendhal, Sung, Tardon, Yang 

 Sarcoma and Ye,  Table 4.14  ). This high level of accuracy  was unexpected considering the 

 origins of these signatures was away from ovarian cancer cell lines (  Table 3.1  ). Six other 

 signatures had >90% accuracy using the median score (  Table 4.14  ). In addition, four 

 signatures had >90% accuracy using GVSA (Aprelikova, Beyer, Elvidge and Sung). The 

 worst performing signatures across all scores were Seigneuric common, Seigneuric early2, 

 Shou, Zhang and Zou, with 0% accuracy using any of the four summary scores (  Table 4.14  ). 

 Again, ssGSEA appeared the worst performing overall score. 
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 Cell line/samples  Number of Hypoxic 
 samples 

 Number of 
 Normoxic 
 samples 

 Pairs 

 A2780  6  6  36 

 SKOV3ip.1  3  3  9 

 SK-OV-3  3  3  9 

 Total  12  12  54 

 Table 4.13:  Ovarian cell lines in hypoxia experiments  in GEO 

 Details of the hypoxia versus normoxia experiments in GEO using ovarian cell lines. 
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 Figure 4.7:  Comparison of the four hypoxia summary  scores across the 53 

 published hypoxia signatures in ovarian cancer cell lines 

 Comparison of the scoring methods of the 53 hypoxia signatures across all ovarian cancer 

 hypoxia experiments identified. Conventions as in  Fig. 4.1  . 
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 Table 4.14:  Percentage accuracy of determining hypoxic  samples from normoxic 

 samples in ovarian cancer cell lines for the 53 signatures across four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in  Table 4.2  . 
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 4.8 Performance of hypoxia signatures in cancer cell lines 

 originating from the central nervous system 

 Cancer cell lines originating from the central nervous system (CNS) with gene 

 expression data in hypoxia and normoxia were identified from the Gene Expression 

 Omnibus (as in Methods). This yielded eight cell lines: U87 (glioma), LN229 (glioma), 

 NCH421k (glioma), NCH601 (glioma), NCH644 (glioma), NCH660h (glioma), U373 

 (astrocytoma) and DAOY (medulloblastoma). The most common cell line used was U87 and 

 the analysis was biased towards glioma because of the hypoxia experimental data available 

 in the public domain (  Table 4.15  ). 

 I assessed the performance of the 53 signatures at defining hypoxia in these eight 

 CNS cell lines from six different datasets (GSE18494, GSE118683, GSE45301, GSE113353, 

 GSE42416, GSE27523). The mean outperforms the median across the 53 signatures (  Fig. 

 4.8  ). Impressively, several signatures reached 98.04%  hypoxia identification accuracy: eight 

 using the mean score (Benita, Beyer, Chi, Denko, Fjeldbo, Mense, Sung, Tardon and Yang 

 Sarcoma) and one using the median (Sung) (  Table 4.16  ).  The Sung 90-gene signature, 

 determined from nasopharynx carcinoma cell lines at 0.1% oxygen at a 16 hour time point, 

 achieved 98.04% accuracy with both mean and median scores. The accuracy does not 

 reach 100% in these signatures as the only pair derived from U373 cells (glioblastoma) is 

 incorrectly classified (  Fig. 4.8  , third panel). 

 The worst performing signature was the three gene signature from Zhang. Zhang 

 was derived from liver cancer cell lines (HepG2 and Huh-7) and had 0% accuracy in 

 identifying hypoxia across all scores (  Table 4.16  ).  As commonly observed above, ssGSEA 

 was the worst at discrimination. 
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 Cell line/samples  Number of Hypoxic 
 samples 

 Number of 
 Normoxic 
 samples 

 Pairs 

 U87  12  6  36 

 LN229  3  3  9 

 NCH421k  1  1  1 

 NCH601  1  1  1 

 NCH644  1  1  1 

 NCH660h  1  1  1 

 U373  1  1  1 

 DAOY  1  1  1 

 Total  21  15  51 

 Table 4.15:  Cancer cell lines originating from the  central nervous system used in 

 hypoxia experiments in GEO 

 Details of the hypoxia versus normoxia experiments in GEO using cancer cell lines 

 originating from the central nervous system. 
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 Figure 4.8:  Comparison of the four hypoxia summary  scores across the 53 

 published hypoxia signatures in cancer cell lines originating from the central nervous 

 system 

 Comparison of the scoring methods of the 53 hypoxia signatures across all hypoxia 

 experiments identified which included cancer cell lines originating from the central nervous 

 system. Conventions as in  Fig. 4.1  . 
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 Table 4.16:  Percentage accuracy of determining hypoxic  samples from normoxic 

 samples in cancer cell lines originating from the central nervous system cancer for 

 the 53 signatures across four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in  Table 4.2  . 
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 4.9 Performance of hypoxia signatures in prostate cancer cell 
 lines 

 Differential gene expression profiles in hypoxic prostate cancer cell lines were 

 identified from the Gene Expression Omnibus (as in Methods). These included the following 

 four cell lines: (i) PC-3 (prostate carcinoma, derived from bone metastasis) (ii) DU145 

 (prostate carcinoma, derived from brain metastases) (iii) LNCaP (prostate carcinoma, 

 derived from the left supraclavicular lymph node metastasis) (iv) 22Rv1 (prostate carcinoma, 

 derived from a xenograft that was serially propagated in mice after castration-induced 

 regression). DU145, PC-3, LNCaPI comprise approximately a third each of the pairwise 

 combinations in the analysis, with 22Rv1 adding only one pair (  Table 4.17  ). The performance 

 of the 53 signatures in defining hypoxia in these four cell lines was then assessed. 

 Three scores (median, mean and GSVA) overall performed well in identifying 

 hypoxia, although, as previously observed, ssGSEA performed poorly irrespective of 

 signature tested (  Fig. 4.9  ). The highest accuracy  was achieved using both median and mean 

 scores in any one of six signatures (97.67% accuracy with Chen, Toustrup, Yang Sarcoma 

 and Ye on median; Lin, Eustace on mean, highlighted red in  Table 4.18  ). Interestingly, none 

 of these six signatures were developed from prostate cancer cell lines. The two signatures 

 derived solely from prostate cancer cell lines (Ragnum and Yang Prostate) only reached a 

 maximum of 53.49% accuracy (Yang Prostate: Mean). The worst performing signatures had 

 0% accuracy on all summary scores (Seigneuric common, Sun and Zhang). 
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 Cell line  Number of 
 Hypoxic samples 

 Number of Normoxic 
 samples  Pairs 

 DU145  14  2  14 

 PC-3  16  6  14 

 LNCaP  6  6  14 

 22Rv1  1  1  1 

 Total  27  16  43 

 Table 4.17:  Prostate cancer cell lines in hypoxia  experiments in GEO 

 Details of the hypoxia versus normoxia experiments in GEO using prostate cancer cancer 

 cell lines. 
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 Figure 4.9:  Comparison of the four hypoxia summary  scores across the 53 

 published hypoxia signatures in prostate cancer 

 Comparison of the scoring methods of the 53 hypoxia signatures across all prostate cancer 

 hypoxia experiments identified. Conventions as in  Fig. 4.1  . 
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 Table 4.18:  Percentage accuracy of determining hypoxic  samples from normoxic 

 samples in prostate cancer for the 53 signatures across four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in  Table 4.2  . 
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 4.10 Performance of hypoxia signatures in pancreatic cancer 
 cell lines 

 Pancreatic cancer cell lines with gene expression data in hypoxia and normoxia were 

 identified from the Gene Expression Omnibus (as in Methods). This revealed 12 cell lines. 

 Three cell lines, AsPC-1 (ductal adenocarcinoma), FG (adenosquamous carcinoma) and 

 L3.6pl (adenosquamous carcinoma), contributed nine pairwise combinations to the analysis, 

 whereas the other nine lines contributed only one pair each (  Table 4.19  ). The performance of 

 the 53 signatures at defining hypoxia in these 3 cell lines was assessed (GSE9350, 

 GSE139673, GSE67549). 

 Three scores (median, mean and GSVA) performed well overall (  Fig. 4.10  and  Table 

 4.20  ) and a number of signatures had 100% hypoxia  identification accuracy using these 

 scores: median - 13 signatures, mean - 3 signatures and GSVA - 10 signatures (  Table 4.20  ). 

 The worst performing signatures were Seigneuric common, Shou, Sun and Zhang with 0% 

 accuracy on all scores. As commonly observed above, the ssGSEA score was the worst 

 performing score. 
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 Cell line/samples  Number of Hypoxic 
 samples 

 Number of 
 Normoxic 
 samples 

 Pairs 

 AsPC-1  3  3  9 

 FG  3  3  9 

 L3.6pl  3  3  9 

 A10.7  1  1  1 

 A125  1  1  1 

 A13D  1  1  1 

 A2.4  1  1  1 

 A32.4  1  1  1 

 A38.41  1  1  1 

 A38.44  1  1  1 

 A38.5  1  1  1 

 A6L  1  1  1 

 Total  18  18  36 

 Table 4.19:  Cancer cell lines originating from the  central nervous system used in 

 hypoxia experiments in GEO 

 Details of the hypoxia versus normoxia experiments in GEO using cancer cell lines 

 originating from the central nervous system. 
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 Figure 4.10:  Comparison of the four hypoxia summary  scores across the 53 

 published hypoxia signatures in pancreatic cancer 

 Comparison of the scoring methods of the 53 hypoxia signatures across all pancreatic 

 cancer hypoxia experiments identified. Conventions as in  Fig. 4.1  . 
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 Table 4.20:  Percentage accuracy of determining hypoxic  samples from normoxic 

 samples in pancreatic cancer for the 53 signatures across four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in  Table 4.2  . 
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 4.11 Performance of hypoxia signatures in immortalised 
 non-cancer cell lines 

 Immortalised non-cancer derived cell lines form a key part of biological research in 

 areas including hypoxia. Although not cancer per se, these cells should not be viewed as 

 “normal,” as they have been modified to divide indefinitely and can express unique gene 

 expression patterns not found in any cell type  in  vivo  . Also, after periods of continuous 

 growth, cell characteristics can change and care must be taken to periodically evaluate their 

 characteristics to ensure they still are representative of the original parent cell. The aim  of 

 this analysis is to assess the performance of hypoxia signatures within these cells, 

 particularly as clinical biopsies which are often used to assess hypoxic status using gene 

 expression signatures can also contain non-cancer tissue. 

 Non-cancer cell lines with gene expression data in hypoxia and normoxia were 

 identified from the Gene Expression Omnibus (as in Methods). This yielded 10 cell lines 

 originating from mammary epithelial cells, oesophageal epithelial cells, gastric 

 myofibroblasts, dendritic cells and astrocytes (  Table  4.21  ). Samples originating from the 

 mammary epithelial cells made up 25 of the 77 pairwise combinations, there were 16 

 immortalised esophageal epithelial cell lines and the rest of the samples were evenly split 

 between the other cell types. 

 I then assessed the performance of the 53 signatures at defining hypoxia in these 10 

 cell lines. Overall, GVSA and median both perform well (  Fig. 4.11  ). The best performing 

 signatures in the immortalised non-cancer cells were the MCF-7 derived Aprekoliva and 

 multi-cell line derived Beyer signatures using GVSA (98.70% accuracy,  Table 4.22  ). Also, 

 Elvidge (MCF-7 derived) and Mense (derived from peripheral blood monocytes from normal 

 individuals) using GSVA achieved 97.40% accuracy at identifying hypoxic samples. Again, 

 the worst performing signature across all scores was Shou, achieving a maximum of only 

 2.94% accuracy. As with the other analyses, ssGSEA was the worst performing score (  Fig. 

 4.11  ). 
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 It is desirable that hypoxia signatures that perform well in the cancer samples of one 

 tissue type also perform well on the non-cancer lines of the sample tissue/organ type. 

 Reassuringly, this does seem to be the case and lays a solid foundation for exploring 

 normal and cancer biopsies from the TCGA (Chapter 6). The most direct comparison here 

 compares breast cancer cell lines with immortalised mammary cells where the median score 

 for Sorensen (the best signatures in breast cancer lines) performed close to 100% accuracy 

 in defining hypoxia in the non-cancer lines (  Appendix  2, Supplementary Table S2  ). 
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 Cell line/samples  Number of Hypoxic 
 samples 

 Number of 
 Normoxic samples  Pairs 

 MCF10A 
 (immortalised mammary 

 epithelial cells) 
 7  7  21 

 EPC2 
 (immortalised oesophageal 

 epithelial cells) 
 4  4  16 

 Immortalised gastric 
 myofibroblasts  3  3  9 

 Immortalised astrocytes 
 (fetal brain)  3  3  9 

 Immortalised dendritic cells  3  3  9 

 HKC8 
 (immortalised human renal 

 proximal cell line) 
 3  3  9 

 HBL100 
 (immortalised mammary 

 epithelial cells) 
 1  1  1 

 HME2 
 (immortalised mammary 

 epithelial cells) 
 1  1  1 

 MCF12A 
 (immortalised mammary 

 epithelial cells) 
 1  1  1 

 hTERT-HME 
 (immortalised mammary 

 epithelial cells) 
 1  1  1 

 Total  27  27  77 

 Table 4.21:  Immortalised non-cancer cell lines used  in hypoxia experiments in GEO 

 Details of the hypoxia versus normoxia experiments in GEO using immortalised non-cancer 

 cell lines. 
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 Figure 4.11:  Comparison of the four hypoxia summary  scores across the 53 

 published hypoxia signatures in immortalised non-cancer cell lines 

 Comparison of the scoring methods of the 53 hypoxia signatures across immortalised 

 non-cancer cell lines. Conventions as in  Fig. 4.1  . 
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 Table 4.22:  Percentage accuracy of determining hypoxic  samples from normoxic 

 samples immortalised non-cancer cell lines for the 53 signatures across four hypoxia 

 scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in  Table 4.2  . 
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 4.12 Overall performance of hypoxia signatures 

 I then investigated the performance of all four summary scores and 53 published 

 signatures across the 90 cancer cell line/tissue experiments identified from the Gene 

 Expression Omnibus. This pan-cancer analysis includes nine cancer types and  ~1000 

 p  airwise comparisons of hypoxic and normoxic samples.  Three extra tumour types (Burkitt’s 

 lymphoma, Ewing’s sarcoma and fibrosarcoma) and a cancer-associated gastric 

 myofibroblast experiment were also included in this global approach (which each had a low 

 number of total samples, so were not discussed in individual sections).  Fig. 4.12  shows a 

 summary of this comprehensive analysis. 

 However, it is noteworthy that VHL loss-of-function mutations are known to activate 

 HIF-1a in the absence of hypoxia, thus making non-hypoxic cells take an HIF-1a activated 

 “hypoxic phenotype”. Such mutations are common in renal cancer. Therefore, for the sake of 

 identifying hypoxia itself rather than VHL mutations, all cell lines/tissues without VHL 

 mutations in the analysis presented here were analysed. The performance of signatures 

 within VHL mutated cell lines are discussed in detail in Chapter 5.3. Finally, the pan-cancer 

 approach was revisited with different considerations in an even more comprehensive 

 analysis in Chapter 5.8. 

 The best performing signature/score combination was the Aprelikova signature using 

 GVSA score. This signature achieved an accuracy across non-VHL mutated cancer types of 

 88.01% (highlighted red in  Table 4.24  ). When adding  in immortalised non-cancer cell lines 

 and a cancer-associated cell experiment (an extra 74 paired samples), Aprelikova using the 

 GVSA score remained the best performing with an accuracy of 88.76% (  Appendix 2, 

 Supplementary Table S2  ). Impressively, the Aprelikova  signature using the GVSA score 

 achieved >80% accuracy on 11 of the 14 cancer classes tested and of these 9 reached 

 >90% accuracy (breast, prostate, cervical, ovarian, pancreas, Burkitt Lymphoma, Ewing’s 

 sarcoma, CNS and bone,  Table 4.25  ). 
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 Generally, poor performance in lung cancer was a common theme across the 

 signatures and scores (  Table 4.25  and  Fig. 4.12  ).  The Aprelikova signature using the GVSA 

 score does relatively well compared to the rest of the signatures, with 68.10% accuracy. 

 However, improved accuracy can be achieved in identifying hypoxia in lung cell lines/tissue 

 using Starmans or Mense and the mean score (86.21%, see Chapter 4.2). The 16-gene Sun 

 signature and 7-gene Shou signature were generally ineffective at identifying hypoxia, 

 demonstrating the importance of the choice of hypoxia gene expression signature used in 

 the laboratory (or in the clinic) in identifying the state of hypoxia. 

 To summarise, this work highlights that Aprelikova signature using the GSVA score 

 gives the best indication of hypoxia amongst a variety of cell types. However, in lung cancer 

 particularly, specific signatures might be preferable (e.g. Starmans using the mean score). 

 Or perhaps the lung cancer results from mainly  ex  vivo  samples suggest one might see 

 different behaviour in human tumours compared to cell lines. It is worth noting, all tissue 

 specific analyses yielded higher accuracy than the global approach (e.g. the Lendhal 

 signature using the median score yielded 100% accuracy across 54 paired samples in 

 ovarian lines whereas Aprelikova using GSVA reached 94.44%). 

 However, it should be noted that the majority of this work comes from cancer cell 

 lines, not clinical samples, so how transferable these results are to the clinic remains to be 

 elucidated. For this reason, the study will move on to assess the performance of hypoxia 

 signatures looking at matched normal-cancer pair samples in clinical datasets using the 

 TCGA (Chapter 6). A similar methodology to that exploited in the evaluation of the hypoxic 

 state of cancer cell lines will be applied. However, the next section investigates how hypoxia 

 signatures perform when genetic perturbations are introduced. It will also explore the 

 accuracy of hypoxia gene expression signatures under various experimental constraints that 

 aim to mimic other tumour microenvironmental conditions. 
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 Cell line/samples  Number of Hypoxic 
 samples 

 Number of 
 Normoxic 
 samples 

 Pairs 

 MCF-7  79  48  243 

 NSCLC  10  10  100 

 HCT116  19  16  57 

 MDA-MB-231  20  14  56 

 HepG2  16  10  46 

 HeLa  13  14  42 

 A2780  6  6  36 

 U87  12  6  36 

 501mel  9  3  27 

 IGR39  9  3  27 

 SiHa  8  8  28 

 Huh-7  12  4  21 

 HT29  15  3  15 

 A549  6  6  14 

 DU145  14  2  14 

 LNCaP  6  6  14 

 PC-3  6  6  14 

 T-47D  5  5  11 

 Hep3B  4  4  10 

 Others  106  97  165 

 Total  370  271  976 

 Table 4.23:  Cell lines used in hypoxia experiments  in GEO and included in the 

 pan-cancer hypoxia signature analysis 

 Details of the hypoxia versus normoxia experiments in GEO using all cancer and 

 cancer-associated cell lines. 

 198 



 199 



 200 



 201 



 Figure 4.12:  Comparison of the four hypoxia summary  scores across the 53 

 published hypoxia signatures in hypoxia experiments on cancer cell lines/tissue 

 identified in the Gene Expression Omnibus (GEO) 

 Comparison of the scoring methods of the 53 hypoxia signatures in hypoxia experiments on 

 cancer cell lines/tissue. Conventions as in  Fig. 4.1  . 
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 Table 4.24:  Percentage accuracy of determining hypoxic  samples from normoxic 

 samples in experiments involving cancer cell lines/samples for the 53 signatures 

 across four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in  Table 4.2  . 
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 a)  Median 
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 b)  Mean 
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 c)  GSVA 
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 d)  ssGSEA 
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 Table 4.25:  Percentage accuracy of determining hypoxic samples from normoxic 

 samples in experiments involving cancer cell lines/samples for the 53 signatures 

 across four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue) for all the cancer cell lines and the four scores: Median  a)  , Mean  b)  , 

 GSVA  c)  and ssGSEA  d)  . Conventions as in  Table  4.2  . 
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 Chapter 5: Performance of hypoxia gene 
 expression signature scores in cells with 

 common driver mutations under hypoxia and 
 in microenvironmental conditions 

 209 



 5.1 Key mutations in cancer and hypoxia 

 Germline (mutations present since birth) and somatic (acquired mutations) form a 

 key part in carcinogenesis. Common germline mutations that ultimately result in cancer 

 include proteins such as BRCA1 and BRCA2. The prevalence of BRCA1 and BRCA2 

 mutations in the western population has been estimated as approximately 1 in 400 

 individuals  126,127  although different ethnic groups  have been shown to have higher 

 frequencies, e.g. within individuals of Ashkenazi Jewish descent estimates of around 1 in 

 40-50 individuals  128–130  . Both BRCA1 and BRCA2 are  involved in DNA damage repair and 

 are important tumour suppressor genes. Individuals harbouring BRCA1/2 mutations are at 

 an increased risk of breast, ovarian, prostate and pancreatic tumours. Remarkably, carriers 

 of mutations in BRCA2 have lifetime risk of developing pancreatic cancer between 1 in 10 to 

 1 in 20  131,132  . 

 Although less common in the population, highly penetrant germline mutations of 

 tumour suppressor genes and proto-oncogenes can also lead to cancer. One example is a 

 mutation in the tumour suppressor gene retinoblastoma (RB1) that is a key regulator of the 

 G1/S checkpoint in the cell cycle  133  . The protein  transcribed from RB1, pRB, is active in 

 quiescent cells (in G1 of the cell cycle) and cell cycle arrest. Indeed, hyperphosphorylation of 

 pRB is needed at the G1/S transition to relieve inhibition of the transcription factor E2F to 

 allow cell cycle progression  134  . Individuals carrying  germline mutations in one copy of their 

 RB1 gene are at markedly increased risk of developing malignant tumours of the retinal cells 

 (retinoblastomas). 

 Germline mutations can influence tumour suppressor proteins depending on their 

 chromosomal location. For instance, mutations in the protein coding region of the “guardian 

 of the genome” TP53 can lead to the very penetrant Li-Fraumeni syndrome which is 

 associated with an increased risk of a number of cancers including soft tissue sarcoma, 
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 osteosarcoma, adrenocortical carcinoma and cancers of the breast, brain and bone marrow. 

 Individuals with Li-Fraumeni syndrome have ~50% chance of developing cancer by 40 years 

 of age and ~90% chance by 60 years of age  135  . However,  other more common mutations in 

 the 3’-UTR of TP53 have been found at 1% of the European population. These have been 

 shown to reduce protein and mRNA of TP53 and are associated with an increased risk of 

 non-melanomatous skin cancers (basal cell carcinomas) and malignancies of the brain 

 (gliomas) in a number of different cohorts  136,137  .  Perhaps being evolutionarily selected for as 

 carriers have increased fat-free mass and height compared to those without it  137  . Also 

 carriers also might have potentially preferentially altered oxidative phosphorylation, in line 

 with observations seen in Li-Fraumeni syndrome  138  . 

 Genome-wide approaches to associate germline variants with cancer incidence and 

 profiling tumours have both yielded successes in identifying important cancer drivers and 

 therapeutic targets. Whereas genome-wide association studies (GWASs) harness genomic 

 sequencing and results on millions of SNPs and relate these to outcomes using general 

 linear models. Importantly, GWAS undercovers loci that influence cancer risk in the general 

 population, not just in rare diseases. The explosion of genomic data, the reduction in 

 sequencing costs and associated growth in GWAS studies has led to a huge number of 

 SNPs being associated with differential cancer risk. Associations to more common 

 malignancies, such as lung and breast cancer have been more well studied  139,140  compared 

 to rarer cancers. One interesting discovery is the SNP rs1051730[A] being strongly 

 associated with lung cancer. rs1051730[A] is found within the subunit of the nicotinic 

 acetylcholine receptor (neuronal acetylcholine receptor subunit alpha-3, CHRNA3) and was 

 found to be strongly associated with lung cancer, nicotine dependence and smoking quantity. 

 This SNP provided the first genetic link between tobacco addiction and lung cancer  141  . 

 Somatic mutations can occur in any of the cells of the body except the germ cells and 

 so are not passed onto offspring. They tend to occur following DNA damage secondary to 

 events such as exposure to ionising radiation, exposure to mutagenic chemicals 

 211 



 (endogenous or exogenous), DNA replication errors and even infection by certain viruses. 

 Such events cause DNA alterations including base substitutions, insertions and deletions 

 (indels), chromosomal rearrangements and copy-number changes. Somatic mutations by 

 some have been thought to underlie the majority of cancer cases in humans, although this 

 has been widely debated  142  . Indeed, so called somatic  “driver mutations” confer growth 

 advantages and so are positively selected for in tumorigenesis. However,  ‘passenger’ 

 mutations also exist that do not confer potential survival advantages for the cancer cell and 

 have been described as biologically neutral  143  and  unpicking which mutations are “driver” 

 and which are “passenger” has been a major challenge in cancer biology. 

 Tumour mutational profiling also is helpful in determining somatic mutations. Key 

 projects focussing on somatic mutations in tumours include the International Cancer 

 Genome Consortium project (ICGC), the Cancer Genome Atlas (TCGA) and the Catalogue 

 Of Somatic Mutations In Cancer (COSMIC). In brief, the International Cancer Genome 

 Consortium project spans 50 cancer types, including 25,000 cancer samples; the TCGA 

 includes profiling of 20,000 primary cancer and matched normal samples in 33 cancer types 

 and COSMIC combines these datasets and others to outline the mutational profile of over 1 

 million tumours  144  . Such efforts have allowed the  estimation of frequency of mutations within 

 different cancer types and helped formulate hypotheses surrounding repurposing drugs 

 across cancer types. 

 Indeed, the most mutated gene in the human genome is the aforementioned 

 TP53  145,146  . The main physiological role of the p53  tumour suppressor protein is to prevent 

 the replications of cells whose DNA is damaged via different molecular mechanisms (  Fig. 

 5.1  ). It has been termed a ‘cellular gatekeeper’  147,148  ,  maintaining the integrity of the genome 

 in somatic cells. The concentration of the TP53 transcription factor is controlled and kept low 

 by ubiquitination by MDM2 (Mouse Double Minute 2, human homolog), and subsequent 

 proteolysis  149  . The p53 protein can sense when a DNA  damage occurs either by its 

 C-terminal domain or ATM (ATM phosphorylates and switches off MDM2  150  ). 
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 Figure 5.1:  Key TP53 cellular functions 

 MDM2 ubiquitination reduces p53 cellular levels by proteolysis. If levels of TP53 rise, e.g. 

 secondary to DNA damage, growth will be suppressed (e.g via mTOR) and apoptosis will be 

 encouraged (e.g via induction of NOXA and PUMA). Figure created with BioRender, 

 personal communication from Dr. B. Harris. 
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 Another key mutation which is found in ~40% of renal cancers is that of the protein 

 linked to the hypoxia response, VHL (function discussed in Chapter 1 and types of mutation 

 detailed in  Fig. 5.2  ). Looking at other key parts  of the hypoxia response you also can see 

 mutations. For instance, HIF-1α is found to be mutated in ~5% of endometrial cancers and 

 the gene encoding PHD1, otherwise known as EGLN2, is found to be mutated in ~2%  144  . 

 Also some mutations are thought to be enriched in hypoxic tumours. 

 In a recent paper, Bhandari et al found that driver mutations in TP53, MYC and PTEN 

 are enriched in hypoxic tumours and stated that hypoxia plays a “critical role in shaping the 

 genomic and evolutionary landscapes of cancer”  151  .  They also interestingly report that 

 hypoxic tumours which also have a PTEN mutation tend to have a polyclonal architecture 

 and which confer a more aggressive phenotype. In this analysis the authors use median 

 Buffa hypoxia signature to define hypoxic samples in the TCGA and a subset of cancers 

 from the International Cancer Genome Consortium project (the Pan-Cancer Analysis of 

 Whole Genomes dataset) but there was no detailed discussion surrounding the 

 controversies surrounding summarising hypoxia signatures or comprehensive comparison of 

 signatures (three were tested) leaving key questions unanswered which hopefully this work 

 will help address. Also the hypoxia signature itself might perform differently in different 

 mutational profiles and thus change ultimate conclusions, e.g. under certain mutational 

 profiles the gene expression of some elements of the signature might be altered by elements 

 other than hypoxia. Thus, as a next step to assess the utility of hypoxia signatures and their 

 scores this study moves onto assessing the performance in experiments using cell lines with 

 knockouts of key genes found in cancer and indeed within the response hypoxia pathway. 
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 Figure 5.2:  Graphical view of mutations across VHL  in renal cancer from Cosmic 

 database 

 Mutations are displayed at the amino acid level across the full length of the gene. This 

 default peptide view shows a histogram of single base substitutions, colour coded by residue 

 according to the colour scheme used in Ensembl. Under this is shown the amino acid 
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 sequence and the Pfam protein structures, followed by complex mutations and insertions 

 and deletions. The figure and its description are adapted from the Cosmic database. 
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 5.2 The performance of hypoxia signatures in TP53 KO 
 experiments 

 Two cancer cell lines (PC-3 and HCT116) were identified that had gene expression 

 data in hypoxia and normoxia with no TP53 protein expression from the Gene Expression 

 Omnibus (as in Methods). The performance of the 53 signatures at defining hypoxia in these 

 two cell lines using gene expression data was assessed from two datasets  a)  GSE80657 

 (stop codon in TP53 mRNA resulting in no protein expression in PC-3, a prostate cancer cell 

 line) - nine pairwise combinations,  b)  GSE42416 (recombinant  adeno-associated virus TP53 

 knockout in HCT116, a colon cancer cell line) - one pairwise combination (  Table 5.1  ). While 

 acknowledging that this may not reflect most in vivo situations of carcinogenesis—where, 

 barring germline mutations (e.g. in Li-Fraumeni syndrome/carriers of the rs78378222[C] 

 SNP  137  ), most normal cells maintain normal levels  of TP53. 

 Mean and median performed well. Most signatures reached 90-100% accuracy 

 using one of these three scores but Sengeiuric common, Shou, Sun and Zhang achieved 0% 

 accuracy on all scores (  Table 5.2  ). With TP53 mutations  being the most common recorded in 

 cancer cells, it is reassuring that these hypoxia signatures seem to work even in the 

 presence of no TP53 expression and perhaps reflects that fact that some signatures may 

 have been derived from cells with known/unknown aberrations of TP53. The best performing 

 score from Chapter 4.12, Aprelikova using GSVA, showed 100% accuracy in the TP53 KO 

 experiments. ssGSEA was the worst performing score (  Fig. 5.3  , last panel). 
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 Cell 
 line/samples 

 Number of 
 Hypoxic 

 samples (KO) 

 Number of 
 hypoxic 

 samples (P53 
 truncated 

 protein, no 
 expression) 

 Number of 
 Normoxic 

 samples (no 
 P53 

 expression) 

 Pairs 

 PC-3  0  3  3  9 

 HCT116  1  0  1  1 

 Total  1  3  4  10 

 Table 5.1:  P53 truncated protein cancer cell lines  used in hypoxia experiments in 

 GEO 

 Details of the hypoxia P53 truncated protein versus normoxia experiments in GEO using 

 renal cancer cell lines. 
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 Figure 5.3:  Comparison of the four hypoxia summary  scores across the 53 

 published hypoxia signatures in cancer cell lines with no TP53 expression 

 TP53 mutations are particularly common in cancer and this shows that even in the scenario 

 of complete protein depletion many signatures are still effective. The first bar on the left 

 indicates the cancer type of the samples. The other three bars report the genetic 

 perturbation, percentage of oxygen and time (in hours) under hypoxia for the hypoxic 
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 sample. For simplicity I will refer to the hypoxic and normoxic samples as S1 and S2 

 respectively. 
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 Table 5.2:  Percentage accuracy of determining hypoxic  samples from normoxic 

 samples in cancer cell lines with no TP53 expression for the 53 signatures across 

 four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in  Table 4.2  . 
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 5.3 The performance of hypoxia signatures in VHL mutated 
 cells and when VHL is reintroduced 

 VHL mutations are commonly found in renal cancer cell lines and indeed these were 

 the only cell lines identified with VHL mutations subjected to hypoxia. The renal cancer cell 

 lines which had gene expression data in hypoxia and normoxia were identified from the 

 Gene Expression Omnibus (detailed in Chapter 2.4). This yielded three cell lines: A498, 

 RCC4 and 786-O. All three cell lines harbour a VHL mutation  152  , although the existence of 

 the VHL mutation in 786-O has been debated  153  . A498  was the most common cell line used 

 (  Table 5.3  ). With a VHL mutation present, one may  expect HIF-1α activation irrespective of 

 hypoxic status; thus this may affect hypoxia signature accuracy (e.g. HIF-1α regulated genes 

 may well be upregulated in both normoxia and hypoxic environments). 

 I then assessed the performance of the 53 signatures at defining hypoxia using five 

 datasets from GEO (GSE107848, GSE117775, GSE42416, GSE85353, GSE65168). 

 Overall, signatures performed worse across the renal cancer cell lines compared to their 

 performance in other tissue types (  Fig. 5.4  and  Table  5.4  , compared to all sections in 

 Chapter 4). This is likely because the majority of the signatures contain HIF-1α regulated 

 genes. Such genes are upregulated in the context of VHL loss-of-function mutations as 

 HIF-1α which is stabilised in the absence of VHL. The best performing signature and score 

 was the nasopharyngeal cell line-derived signature, Sung (90 gene symbols) using the 

 GVSA score which could accurately differentiate between hypoxic and normoxic samples in 

 81.25% of cases (  Table 5.4  ). Lendhal is the only signature  that incorporated a VHL mutated 

 cell line into its genesis (RCC4). Surprisingly, Lendhal only managed 56.25% accuracy using 

 the GVSA score and other scores achieved less than 35% accuracy. 

 Also, the performance of the signatures within the 786-O renal cancer cell line when 

 VHL is reintroduced was explored, although pairwise combinations of hypoxic and normoxic 

 samples were small (4 pairwise combinations from GEO Series GSE65168,  Fig. 5.5  )  154  . 31 
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 of the 53 signatures reached 100% accuracy in mean and nine did so using the median 

 score. The best performing signature across all cancer types, Aprelikova using the GSVA 

 score, only correctly classified 50% of samples using the GSVA but did reach 100% in using 

 the mean (  Table 5.5  ). This perhaps suggests even in  the presence of a functional VHL, renal 

 cancer cell response to hypoxia might be different, so perhaps highlight the need for a renal 

 specific hypoxia signature. 
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 Cell line/samples  Number of Hypoxic 
 samples 

 Number of 
 Normoxic 
 samples 

 Pairs 

 A498  5  5  17 

 RCC4  3  3  9 

 786-O  4  3  6 

 Total  12  11  32 

 Table 5.3:  Renal cancer cell lines used in hypoxia  experiments in GEO 

 Details of the hypoxia versus normoxia experiments in GEO using renal cancer cell lines. 
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 Figure 5.4:  Comparison of the four hypoxia summary  scores across the 53 

 published hypoxia signatures in renal cancer 

 Comparison of the scoring methods of the 53 hypoxia signatures across all renal cancer 

 hypoxia experiments identified. Conventions as in  Fig. 4.1  . 
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 Table 5.4:  Percentage accuracy of determining hypoxic  samples from normoxic 

 samples in renal cancer for the 53 signatures across four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in  Table 4.2  . 
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 Figure 5.5:  Comparison of the four hypoxia summary scores across the 53 

 published hypoxia signatures in a VHL-negative renal cancer cell line (786-O) and 

 where VHL was subsequently reintroduced . 

 Comparison of the scoring methods of the 53 hypoxia signatures across GSE65168. 

 Conventions as in  Fig. 4.1  . 
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 Table 5.5:  Comparison of the four hypoxia summary  scores across the 53 published 

 hypoxia signatures in a VHL-negative renal cancer cell line (786-O) and where VHL 

 was subsequently reintroduced . 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in  Table 4.2  . 
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 5.4 Cell lines with HIF perturbation under hypoxia 

 Investigating the efficacy of hypoxia signatures in the condition of hypoxia-inducible 

 factor knockout is a worthwhile endeavour to test dependence of hypoxia signatures on 

 hypoxia inducible factors (e.g. HIF-1a). This is useful as some tumours may harbour 

 gain/loss of function mutations in hypoxia-inducible factors. Several experiments involving 

 perturbation of the HIF system were identified including  a)  HIF-1a knockdown in hypoxia vs 

 normoxia (wt),  b)  HIF-1b knockout in hypoxia vs normoxia  (wt),  c)  HIF-2a knockdown in 

 hypoxia vs normoxia (wt) and  d)  HIF-1a + HIF-2a knockdown  or knockout vs normoxia (wt) 

 which were identified from GEO. These encompassed a range of cell lines: HIF-1a 

 knockdown in hypoxia vs normoxia (501mel, LN229, MCF-7 and DAOY), HIF-1b knockout in 

 hypoxia vs normoxia (MCF-7), HIF-2a knockdown in hypoxia vs normoxia (LN229, DAOY) 

 and HIF-1a + HIF-2a knockdown or knockout in hypoxia vs normoxia (MCF-7, 

 MDA-MB-231). 

 In the HIF-1a knockdown in hypoxia vs normoxia (37 pairwise combinations, 21 of 

 which being the melanoma cell line 501mel,  Table 5.6  )  it is possible to observe a drop in 

 accuracy in the majority of signatures. However, some signatures still perform well (  Fig 5.6  ), 

 for instance Ye using the median score despite the different cell lines, oxygen tensions and 

 HIF-1a knockdown still has an impressive 91.89% accuracy (  Table 5.7  ). Ye was developed 

 from 31 breast cancer cell lines under 1% oxygen for 24 hours and the 42-gene signature 

 was not developed under the conditions of HIF-1a knockdown. Aprelikova, using a GSVA 

 score, achieved ~88% accuracy in identifying hypoxia in all types in hypoxia vs normoxia 

 (Chapter 4.12) performed with an accuracy of just 32.43% in HIF-1a knockdown. 

 In the HIF-1b knockout vs normoxia experiment (MCF-7 cells, 72 pairs,  Table 5.8  ) the 

 median score performs well in the majority of signatures (  Fig. 5.7  ). Indeed, 31 signatures 

 achieved 100% accuracy and the signatures that performed best in breast cancer (median 

 scores in Benita, Sorensen and Yang Sarcoma) and the overall best signature (Aprelikova 
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 GSVA) all classify with 100% accuracy (  Table 5.9  ). Interestingly, all other scores performed 

 quite poorly overall with some notable exceptions, for instance Lin had 100% accuracy 

 across two scores - median and mean. 

 In HIF-2a knockdown in hypoxia vs normoxia in one glioblastoma cell line and one 

 medulloblastoma cell line (LN229 and DAOY,  Table 5.10  )  made little difference to signature 

 performance (  Fig. 5.8  ). The best performing signatures  in central nervous system derived 

 cell lines: Benita, Beyer, Chi, Denko, Fjeldbo, Mense, Sung, Tardon and Yang Sarcoma 

 (mean) and Sung (median) all identified hypoxic samples in the HIF-2a knockdown in 

 hypoxia vs normoxia with 100% accuracy, aside from Mense that reached 90% using the 

 mean score. Also Aprelikova GSVA reached 100% (  Table  5.11  ). These results suggest 

 HIF-2a knockdown makes minimal difference to effective hypoxia signature performance. 

 Therefore, one may expect any effect seen in HIF-1a + HIF-2a knockdown/knockout 

 experiments in hypoxia vs normoxia down to the knockdown of HIF-1a. 

 I went on to investigate the performance of the 53 hypoxia signatures in two datasets 

 from breast cancer cell lines (MCF-7, GSE3188, MDA-MB-231, GSE108833) with HIF-1a + 

 HIF-2a knockdown or knockouted (  Table 5.12  ). In GSE108833,  HIF-1a + HIF-2a was 

 knockouted in MDA-MB-231 cells using the CRISPR/Cas9 technique  155  (ER-, PR-, HER2- 

 cell line, four pairwise combinations) and in GSE3188, HIF-1a + HIF-2a was knockdown in 

 MCF-7 cells using short interfering RNA-based suppression  59  (ER+, PR+, HER2-, six 

 pairwise combinations). ssGSEA and GVSA perform poorly and median appears the most 

 effective overall score (  Fig. 5.9  ). Six signatures  spread across median and mean reached 

 100% accuracy (median: Mense, Starmans and Yang Prostate, mean: Denko, Peters, 

 Starmans, and Wang 2015). Ye, the most effective signature in solely HIF-1a knockdown 

 reached only 60% in median and mean. The best performing signatures in breast cancer, 

 Benita, Sorensen and Yang Sarcoma using the median score, decrease in performance 

 under this condition, with 60% accuracy using the median score achieved. The overall best 

 signature across cell lines (Aprelikova GSVA) identified in Chapter 4.12, only reaches 10% 
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 (  Table 5.13  ). Looking at the median and mean scores, most signatures appear to work in the 

 knockdown experiments but not in the knockout experiments. This may suggest only a small 

 amount of HIF-1a/HIF-2a is needed to be effective and/or perhaps the knockdown was not 

 particularly effective, although the western blots in the paper appear to suggest it worked 

 well. 
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 Cell 
 line/samples 

 Number of 
 Hypoxic HIF1a 

 KD samples 

 Number of 
 Normoxic 
 samples 

 Pairs 

 501mel  7  3  21 

 LN229  3  3  9 

 MCF-7  3  2  6 

 DAOY  1  1  1 

 Total  14  9  37 

 Table 5.6:  HIF1a knocked down cell lines used in hypoxia  experiments in GEO 

 Details of the hypoxia HIF1a KD versus normoxia experiments in GEO 
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 Figure 5.6:  Comparison of the four hypoxia summary  scores across the 53 

 published hypoxia signatures in HIF1a knocked down cancer cell lines exposed to 

 hypoxia 

 Comparison of the scoring methods of the 53 hypoxia signatures across four HIF1a knocked 

 down cell lines exposed to hypoxia. Conventions as in  Fig. 4.1  . 
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 Table 5.7:  Percentage accuracy of determining hypoxic  samples from normoxic 

 samples in HIF1a knocked down cell lines across four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in  Table 4.2  . 
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 Cell line/samples 
 Number of Hypoxic 
 samples with HIF1b 

 KO 

 Number of 
 Normoxic 
 samples 

 Pairs 

 MCF-7  6  12  72 

 Table 5.8:  HIF1b knocked out cell lines used in hypoxia  experiments in GEO 

 Details of the hypoxia HIF1b knocked out versus normoxia experiments in GEO 
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 Figure 5.7:  Comparison of the four hypoxia summary  scores across the 53 

 published hypoxia signatures in HIF1b knocked out cancer cell lines exposed to 

 hypoxia 

 Comparison of the scoring methods of the 53 hypoxia signatures on HIF1b knocked out cell 

 lines exposed to hypoxia. Conventions as in  Fig. 4.1  . 
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 Table 5.9:  Percentage accuracy of determining hypoxic  samples from normoxic 

 samples in HIF1b knocked out cell lines across four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in  Table 4.2  . 
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 Cell line/samples  Number of 
 Normoxic samples 

 Number of 
 Hypoxic HIF2a KD 

 samples 
 Pairs 

 LN229  3  3  9 

 DAOY  1  1  1 

 Total  4  4  10 

 Table 5.10:  HIF2a knocked down cell lines used in  hypoxia experiments in GEO 

 Details of the hypoxia HIF2a knocked down versus normoxia experiments in GEO 
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 Figure 5.8:  Comparison of the four hypoxia summary  scores across the 53 

 published hypoxia signatures in HIF2a knocked down cancer cell lines exposed to 

 hypoxia 

 Comparison of the scoring methods of the 53 hypoxia signatures on HIF2a knocked out cell 

 lines exposed to hypoxia. Conventions as in  Fig. 4.1  . 
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 Table 5.11:  Percentage accuracy of determining hypoxic  samples from normoxic 

 samples in HIF2a knocked down cell lines across four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in  Table 4.2  . 
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 Cell 
 line/samples 

 Number of 
 Hypoxic 

 samples with 
 HIF1a and 
 HIF2a KO 

 Number of 
 Hypoxic 

 samples with 
 HIF1a and 
 HIF2a KD 

 Number of 
 Normoxic 
 samples 

 Pairs 

 MCF-7  0  3  2  6 

 MDA-MB-231  2  0  2  4 

 Total  2  3  4  10 

 Table 5.12:  HIF1a and HIF2a KO/KD cell lines used  in hypoxia experiments in GEO 

 Details of the hypoxia HIF1a and HIF2a KO/KD versus normoxia experiments in GEO 
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 Figure 5.9:  Comparison of the four hypoxia summary  scores across the 53 

 published hypoxia signatures in HIF1a and HIF2a KO/KD cancer cell lines exposed 

 to hypoxia 

 Comparison of the scoring methods of the 53 hypoxia signatures on HIF1a and HIF2a 

 KO/KD cell lines exposed to hypoxia. Conventions as in  Fig. 4.1  . 
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 Table 5.13:  Percentage accuracy of determining hypoxic  samples from normoxic 

 samples in HIF1a and HIF2a knocked down cell lines across four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in  Table 4.2  . 
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 5.5 Assessing the effectiveness of mimicked hypoxia 

 Three cancer cell lines (MCF-7, MB231RN-LM and PANC-1) which had gene 

 expression data in mimicked hypoxia and normoxia were identified from the Gene 

 Expression Omnibus (as per methods). Mimicked hypoxia was achieved using either 

 Cobalt(II) chloride (CoCL  2  , a chemical inducer of  HIF-1a  156  used in GSE45362 & GSE82104) 

 or Dimethyloxalylglycine, N-(Methoxyoxoacetyl)-glycine methyl ester (DMOG, a competitive 

 prolylhydroxylase inhibitor which increases HIF-1a activation  157  used in GSE1388 and 

 GSE85353). 

 I then assessed the performance of the 53 signatures at defining hypoxia in these 

 three cell lines. Again, ssGSEA appeared the worst performing score. Median score 

 appeared the most effective (  Fig. 5.10  , top panel).  Sixteen signatures achieved 100% 

 accuracy in identifying mimicked hypoxia using the median: Aprelikova, Benita, Boidot 

 Continous, Chen, Chi, Elvidge, Halle, Lin, Mense, Sorensen, Starmans, Sung, Tardon, 

 Toustrup, Yang Sarcoma and Ye (  Fig. 5.10  ). Indeed,  the best performing breast and 

 pancreatic cancer signatures Benita, Sorensen and Yang sarcoma showed 100% accuracy 

 identifying mimicked hypoxia using the median score. This suggests these signatures 

 depend on HIF-1a activation and can be used to identify cells under mimicked hypoxia and 

 perhaps that the mimicked hypoxic state reflects, at least partially, the gene expression 

 profiles seen in cells in a hypoxic chamber (at least in these two cancer types). Several 

 signatures (eight) using GVSA also reached 100% accuracy: Aprelikova, Benita, Beyer, Chi, 

 Elvidge, Sorensen, Sung and Ye. The worst performing signatures were familiar: Shou and 

 Seigneuric common achieved 0% accuracy on all scores (  Table 5.15  ). 

 I also had the opportunity to investigate which hypoxia signatures, if any, may 

 differentiate between mimicked and true hypoxia in breast cancer cells (MCF-7, five 

 normoxic samples, five hypoxia samples and 13 pairwise combinations). Interestingly, 

 Benita, Ghazoui, Lendhal and Ye using the mean score had the ability to differentiate true 
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 hypoxia and mimicked hypoxia with 100% accuracy  (Table 5.16  ). This suggests although 

 there are similarities, there are some significant differences in gene expression between 

 hypoxic and mimicked hypoxic samples. The aforementioned gene expression signatures 

 can be used to distinguish between the two conditions. 
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 Cell line/samples 
 Number of 

 Mimicked hypoxic 
 samples 

 Number of 
 Normoxic 
 samples 

 Pairs 

 MCF-7  11  11  49 

 PANC-1  3  3  9 

 MB231RN-LM  2  2  4 

 Total  16  16  62 

 Table 5.14:  Cell lines used in mimicked in hypoxia  experiments in GEO 

 Details of cell lines in mimicked hypoxia versus normoxia experiments in GEO. 
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 Figure 5.10:  Comparison of the four hypoxia summary  scores across the 53 

 published hypoxia signatures in cancer cell lines exposed to mimicked hypoxia 

 Comparison of the scoring methods of the 53 hypoxia signatures across three cell lines 

 exposed to mimicked hypoxia. Conventions as in  Fig.  4.1  . 
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 Table 5.15:  Percentage accuracy of determining normoxic  samples from mimicked 

 hypoxia for the 53 signatures across four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in  Table 4.2  . 
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 Table 5.16:  Percentage accuracy of differentiating  between true hypoxia and 

 mimicked hypoxia using the 53 signatures across four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in  Table 4.2  . 
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 5.6 The effect of low glucose media on hypoxia signature 

 performance 

 One breast cancer cell line was identified that had gene expression data in hypoxia 

 and low glucose media compared to normoxia (lung metastatic subline of MDA-231 [LM], 

 four hypoxic samples in low glucose media and two normoxic with normal glucose controls 

 for a total of eight pairs). In this experiment, cells were exposed to hypoxia (1% O2) with low 

 (1 mg/ml) glucose for 6 or 48 hours  158  (GSE107300). 

 I assessed the performance of the 53 signatures at defining hypoxia in this condition. 

 ssGSEA performed poorly. Median score was the most effective (  Fig. 5.11  , top panel) with 

 21 signatures achieving 100% accuracy (  Table 5.17  ).  The best performing breast cancer 

 signatures using the median, Benita, Sorensen and Yang sarcoma, again all hit 100% 

 accuracy suggesting they are not affected by reducing the glucose concentration to 1 mg/ml 

 environments. Eight signatures also had 100% accuracy using mean, including five which 

 also had 100% accuracy using the median (Benita, Boidot continuous, Starmans, Tardon 

 and Yang Sarcoma). Aprelikova GSVA had 75% accuracy for hypoxia in the low glucose 

 condition. 
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 Figure 5.11:  Comparison of the four hypoxia summary  scores across the 53 

 published hypoxia signatures in cancer cell lines which are in low glucose media 

 Comparison of the scoring methods of the 53 hypoxia signatures across all cell lines grown 

 in low glucose media (1 mg/ml). Conventions as in  Fig. 4.1  . 
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 Table 5.17:  Percentage accuracy of determining hypoxic  samples from normoxic 

 samples in low glucose media for the 53 signatures across four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in  Table 4.2  . 
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 5.7 The performance of hypoxia signatures in cycling hypoxia 

 The erratic blood supply in tumours due to aberrant vessel growth has been 

 hypothesised to lead to intermittent periods of hypoxia. Therefore, researchers have tried to 

 match this approach in the laboratory by exposing cells to normal and low oxygen tensions 

 in a cyclic fashion. This approach has been shown to give different gene expression profiles 

 as opposed to exposure to just hypoxia alone  103  . Twenty-one  cancer cell lines (  Table 5.18  ) 

 from a range of tissues (prostate, ovarian, melanoma, breast [4 lines], lung, colon [6 lines], 

 cervical, brain, liver [4 lines], kidney, fibrosarcoma) that had gene expression data in cycling 

 hypoxia and paired samples in continuous normoxia were identified from the Gene 

 Expression Omnibus (as per methods). Cycling hypoxia protocols (see legend,  Fig. 5.12  ) 

 varied but data were combined to assess signature and summary score performance. 

 In the main, signatures performed worse in cycling hypoxia. ssGSEA was the worst 

 performing score. Interestingly, using the GSVA score, the signature that reached the highest 

 accuracy of 36.73% was Boidot Cyclic Hypoxia that was developed using cell line data 

 based on experiments of cycling hypoxia (  Table 5.19  ).  But overall, the results suggest that 

 these signatures are not reliable in the context of cycling hypoxia in the laboratory. 
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 Cell line/samples  Number of 
 Normoxic samples 

 Number of 
 samples under 
 cycling hypoxia 

 Pairs 

 PC-3  4  4  10 

 WM793B  3  3  9 

 SK-OV-3  3  3  9 

 HCT116  2  2  4 

 MDA-MB-231  1  1  1 

 SiHa  1  1  1 

 WiDr  1  1  1 

 U373  1  1  1 

 T-47D  1  1  1 

 SK-HEP-1  1  1  1 

 PLC-PRF-5  1  1  1 

 A498  1  1  1 

 A549  1  1  1 

 LoVo  1  1  1 

 HepG2  1  1  1 

 Hep3B  1  1  1 

 HT29  1  1  1 

 HT1080  1  1  1 

 HCT-15  1  1  1 

 COLO-205  1  1  1 

 MCF-7  1  1  1 

 Total  29  29  49 

 Table 5.18:  Cell lines used in normoxia vs. cycling  hypoxia experiments in GEO 

 Details of cell lines in normoxia vs cycling hypoxia experiments in GEO. 
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 Figure 5.12:  Comparison of the four hypoxia summary  scores across the 53 

 published hypoxia signatures in cancer cell lines which have been exposed to cycles 

 of hypoxia and compared to normoxia 

 Comparison of the scoring methods of the 53 hypoxia signatures exposed to cycles of 

 hypoxia. Conventions as in  Fig. 4.1  . 
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 Table 5.19:  Percentage accuracy of determining hypoxic  samples from normoxic 

 samples in cells exposed to cycling hypoxia versus normoxia for the 53 signatures 

 across four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in  Table 4.2  . 
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 5.8 The best performing signature score across all cell lines 
 and experimental conditions 

 To conclude this chapter, an assessment will be conducted on the performance of 

 hypoxia gene expression signatures on an unprecedented scale. This will involve examining 

 the conditions discussed in this chapter, as well as the different cancer types explored in 

 Chapter 4.12. To recap, the analysis in 4.12, saw the Aprelikova signature using the GVSA 

 score being the best performing score across the cancer types, with only poor performance 

 on lung cancer (which was mainly  ex vivo  samples).  Cell lines with VHL mutations in this 

 analysis were not included as  one would expect this might influence signature performance, 

 as demonstrated in Chapter 5.3. However, the analysis was able to identify signatures with 

 good performance in this condition. When VHL was introduced to one of these cell lines, 

 some hypoxia signatures did seem to work, although the sample size was extremely limited. 

 With this evidence, it is prudent to suggest tissue specific signatures for renal cancer cell 

 lines as well as highlighting the preference of establishing VHL mutation status before 

 applying a hypoxia signature. 

 In terms of potential microenvironmental conditions recreated at the benchside, low 

 glucose did not hugely affect performance. However, one experiment in cycling hypoxia did 

 yield poor performance of all signatures using the scores that had worked well/moderately 

 well in other areas (median, mean and GVSA). In mimicked hypoxia, sees some signatures 

 highlighted previously as performing well, but also uncovers gene expression differences 

 between these two states. Therefore in the global analysis, since the goal is to find a 

 signature that would be universal, the immortalised normal cell lines were also included. 

 However, the following were excluded: 

 1)  Lung and renal cancer samples, as they appear to respond to hypoxia 

 differently compared to the other cancer types 

 2)  Mimicked hypoxia, as this does not occur in the clinic 
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 3)  Cycling hypoxia experiments, as they show conflicting results depending on 

 the experimental conditions used and it is unknown how representative they 

 are of  in vivo  tumours 

 This approach yields an impressive 92.84% accuracy in identifying hypoxic samples 

 using the Sorensen signature and median score (  Fig.  5.13  ,  Table 5.20  ) across 1090 pairwise 

 combinations from 98 different cell lines (  Appendix  2,  Supplementary Table S3  ). The 

 samples in which the signature does not perform well are detailed in  Fig. 5.14  . Notably, the 

 signature fails on some HIF-1a knockdown experiments, mainly in the glioblastoma cell line 

 (LN229, nine pairs) but also in a number of other experiments which other signatures also 

 struggle to define as hypoxia using the median score. Finally, in lung using Starmans or 

 Mense with mean score is recommended (although bear in mind  ex vivo  samples here made 

 up most of the cohort) and in renal cell lines, Sung using the GVSA score to investigate 

 hypoxic status seems prudent. 

 The origin of the best performing signature, Sorensen, comes from five different cell 

 lines, four head and neck (FaDuDD, UTSCC5, UTSCC14 and UTSCC15) and one cervical 

 (SiHa)  70  . The aim of the study was to identify a robust  hypoxia profile unaffected by pH 

 across cell lines, as the authors had previously shown that hypoxic gene expression was 

 suppressed by low extracellular pH  159,160  . Therefore,  in this work, these five lines were 

 exposed to different oxygen concentrations (0%, 0.1%, 1.5% or 21% oxygen) and different 

 pHs (7.5 or 6.3) and gene expression analysed with the microarray platform, Affymetrix 

 Human Genome U133 Plus 2.0. To identify hypoxia inducible pH independent genes 

 expression had to be at least 2-fold upregulated in 0.1% oxygen at both normal and low pH, 

 and there had to be at least a 2-fold difference between 5% O2 pH 7.5 and 0.1% O2 pH 6.3. 

 Furthermore, expression at 5% O2 pH 6.3 should not exceed 50% of the difference between 

 5% O2 pH 7.5 and 0.1% O2 pH 7.5.  Common genes meeting  these criteria were identified 

 from each cell line but there was no commonality when the five cell lines were considered, 

 however SiHa was excluded, and this yielded a common set of 37 microarray probesets, 
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 representing 27 different genes  70  . This approach suggests that perhaps controlling for pH is 

 important for deriving hypoxia signatures, a factor not overly focussed on in most analyses. 

 After determining the most effective universal signature through this extensive 

 analysis of all publicly available hypoxic and matched normoxic cell line and ex vivo 

 samples, the study is well-positioned to address the next challenge: exploring the utility of 

 hypoxia signatures in a large dataset of primary cancer and normal tissue samples across 

 multiple tissue types, using The Cancer Genome Atlas (TCGA). 
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 Figure 5.13:  Comparison of the four hypoxia summary scores across the 53 

 published hypoxia signatures in cancer across all cell lines and experiments 

 Comparison of the scoring methods of the 53 hypoxia signatures across all cell lines and 

 experimental conditions including immortalised non-cancer cell lines. Conventions as in  Fig. 

 4.1  . 
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 Table 5.20:  Percentage accuracy of determining hypoxic  samples from normoxic 

 samples in all cell lines and experimental conditions 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in  Table 4.2  . 
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 Figure 5.14:  Representation of all the pairs in the  study that were non-significant 

 using median score and Sorensen hypoxia signature. 

 The heatmap represents where using the median score with Sorensen signature was 

 ineffective. This was particularly the case in colorectal cancer (20 pairs). Conventions as in 

 Fig. 4.1  . 
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 Chapter 6: Hypoxia signatures in clinical data 

 288 



 6.1 Exploring clinical data 

 As is common in science, transfer from the benchside to the clinic is a complex road. 

 Many hurdles exist, not least the phenotypic and genetic differences seen between cancer 

 cell line experiments in the laboratory and the complexity of the three dimensional tumour 

 microenvironment in rodents, let alone humans. Many promising diagnostic and therapeutic 

 advances have not traversed from bench to clinic because model systems are imperfect 

 representations of humans as organisms. Indeed, to minimise and even avoid differences 

 between model systems and humans, some of the signatures identified by the literature 

 review have their roots in clinical samples rather than cellular models, e.g. Buffa. 

 With the obvious phenotypic differences between cellular models and human 

 tumours, it is logical to check, and perhaps not wise to assume, that effective hypoxia 

 signatures and scores that work well in cell lines also are the most appropriate in human 

 tumours. However, this is not a simple task. Firstly, there are debates surrounding the most 

 effective type of hypoxia measurements with the advances in modern technology, as 

 perhaps the “gold standard” oxygen electrode has been surpassed and there are no large 

 cohort studies across tumour types to establish the most effective method. Thus the 

 common way to say if a hypoxia signature is effective is by looking at prognosis in clinical 

 cohorts, i.e. if effective those patients with a higher score have a worse prognosis. Although 

 useful, this does not prove the signatures are truly measuring hypoxia. At present there are 

 no large datasets that have gene expression data, prognostic information as well as hypoxia 

 measurements. This is an obviously important area for further grant applications and 

 ongoing work. 

 The current study therefore is limited to the validation of hypoxia signature to 

 datasets that have prognostic information only. However, for this task I chose one of the 

 largest dataset globally: The Cancer Genome Atlas (TCGA). This not only includes profiling 
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 of 20,000 primary cancers, it also includes matched normal adjacent tissue from the same 

 patients, which is often omitted from most studies. Previous work looking at hypoxia 

 signatures has focussed on primary tumour samples only. However, there are hints from the 

 cell line work in this thesis that this might not be the most appropriate approach. So the goal 

 is to minimise these potential errors by looking at the differences with a respective reference 

 cohort of normal samples. This difference would have been missed if hypoxic samples are 

 looked at in isolation. A similar phenomenon may well be true in clinical samples without 

 comparison to a reference, e.g. a normal matched tissue sample. However, other studies of 

 hypoxia signatures have looked at cancer samples alone, without comparison to presumably 

 normoxic matched normal tissue samples. 

 This, combined with the results presented in Chapter 4 and 5, laid the foundation to 

 construct a list of criteria of a likely effective signature/score combination in clinical samples, 

 bearing in mind the limitation of the ability to correlate with other measures of oxygen 

 tension. These are as follows: 

 If a hypoxia signature and score is working effectively in clinical samples you may expect it 

 might: 

 ●  Step 1  : have scores higher than in the normal tissue  (as discussed above) 

 ●  Step 2  : outperform RGS of the same length in simulations  when comparing normal 

 tissues and tumour tissues 

 ●  Step 3  : show prognostic efficacy 

 Therefore, this list of three criteria will be taken to explore the all aforementioned 

 signatures and scores to identify the likely most effective hypoxia signatures in clinical 

 samples. It will be particularly interesting to see if the top performing signatures from the 

 controlled experiments using cell lines also appear effective in the TGCA. 
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 6.2 TCGA data cleaning 

 The make up of the TCGA dataset is discussed in detail in Methods. However, it is important 

 to note that my analysis is focussed on: 

 1)  solid tumours 

 a)  Hypoxia is unlikely in blood cancers by their very nature, particularly 

 leukaemia 

 2)  without VHL mutations 

 a)  Many hypoxia signatures rely on HIF-1a targets, which are upregulated in the 

 absence of hypoxia when VHL is mutated. Therefore, one may expect 

 hypoxia signatures to not perform as well if VHL is mutated, as seen in the 

 cell line work. Therefore the following analysis excluded the tumour type in 

 which this is common, renal cancer (similar to the cell line analysis). 

 3)  with more than 30 samples 

 a)  This allowed enough power for survival and comparative analyses. 

 Fig. 6.1  details which tumour types were considered  in the subsequent analyses. 

 291 



 Figure 6.1:  TCGA cancer types considered in the hypoxia  signature evaluation 

 List of the 10 cancer types that met the criteria for analysis from the TGCA (a) including the 

 count for both NAT and tumour tissues (b). The total number of NAT and tumour samples 

 available in the study is reported in (c). 
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 6.3 Evaluation Step 1: Do hypoxia signatures scores tend to be 

 higher in tumours? 

 Below in  Fig. 6.2  one can see boxplots for the Buffa  signature using the four scores 

 (represented on the y-axis) in 10 cancer types (orange box) and NAT (blue box). One can 

 see that using the mean, median, GSVA and ssGSEA there is a significant difference (using 

 the Mann-Whitney-Wilcoxon test) in scores seen between the NAT and the tumours across 

 all the cancer types. 

 This analysis was then expanded to all 53 signatures comparing NAT/tumour tissues 

 across the 10 cancer types, considering the four scoring types (  Table 6.1a-d  ). Using the 

 mean, median, GSVA and ssGSEA scores, three signatures (Buffa, Ghazoui and Ragnum) 

 showed significant differences in tumour vs NAT in the expected direction across the 10 

 tumour types (tumour higher hypoxia scores than NAT) using a threshold of p<0.005 

 (Bonferroni corrected, calculated as 0.05 divided by the number of cancer types). Therefore, 

 when looking for a generalisable hypoxia signature across the 10 cancer types, Buffa, 

 Ghazoui and Ragnum using all four scores (mean, median, GSVA and ssGSEA) appear the 

 front runners. 
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 Figure 6.2:  Comparison of Buffa signature hypoxia scores across ten TCGA cancer 

 types 

 Each box plot represents the distribution of the four hypoxia scores derived using Buffa 

 signatures across the 10 cancer types under examination in this study. Orange and blue 

 boxes represent hypoxia scores of tumour and NAT samples respectively. The p-values were 

 calculated using the Mann-Whitney-Wilcoxon test (as per  Methods  , Chapter 2.6.1). TCGA 

 cancer abbreviations found on the x-axis, as described in  Fig. 6.1(a)  . P-value annotation 

 legend: ns:  p  >5.00e-02,  *  : 1.00e-02 <  p  <= 5.00e-02,  **  : 1.00e-03 <  p  <= 1.00e-02,  ***  : 

 1.00e-04 <  p  <= 1.00e-03,  ****  :  p  <= 1.00e-04 
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 a)  Median 
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 b)  Mean 
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 c)  GSVA 
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 d)  ssGSEA 
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 Table 6.1:  Summary of the p-values calculated using the Mann-Whitney-Wilcoxon 

 test across ten cancer types 

 Comparison of the p-values calculated using the Mann-Whitney-Wilcoxon test for each 

 cancer type in this study. Values highlighted in orange have  p < 0.005.  Values highlighted in 

 red represent the signature with the lowest p-value on each cancer type. Panel A = median, 

 panel B = mean, panel C = GSVA and panel D = ssGSEA. 
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 6.4 Evaluation Step 2: Do hypoxia signatures scores tend to 
 outperform random gene signatures of the same length in 
 simulations when comparing matched normal tissues and 
 tumour tissues? 

 As in the cell lines, one may expect if a signature is actually defining a feature, such 

 as hypoxia, that the tumour samples may have significantly different scores between tumour 

 and normal tissues when compared to random gene sets (RGS) of the same length. An 

 example of this point can be illustrated using the Buffa signature in breast cancer (BRCA) 

 from the TCGA. 

 In  Fig. 6.3  , Buffa signature outperforms seven RGS  in both median and mean scores as 

 opposed to GSVA and ssGSEA when comparing their p-values (threshold p<0.005). Finally, 

 a Signature Performance Index (SPI) was defined by looking at the percentage of times 

 each signature and score in tumour vs normal differed in performance from a RGS of the 

 same length, across all tissue types. Using the mean score, the top performers were 

 Ragnum and Buffa by our SPI. These two signatures were different from RGS in 99.66% and 

 99.22% of the time respectively. Ragnum, Buffa and Ghazoui as the top signatures using 

 GSVA (99.98%, 94.48% and 92.78%) and ssGSEA (88.80%, 75.98% and 73.38%). Zhang 

 signature also reached 87.84% using ssGSEA, however, it failed the Evaluation Step 1. 

 Finally, Ragnum (99.18%), Winter (88.40%) and Buffa (88.26%) are the top performers on 

 this criterion using the median score. This work suggests Ragnum (mean, median & GSVA) 

 or Buffa (mean & GSVA) and Ghazoui (GSVA) might be the most promising signatures for 

 clinical use. To give extra confidence to using these signatures, sigQC metrics (as discussed 

 in Methods and Chapter 3.3) appeared consistent with high performing signatures 

 (  Supplementary figures S1-3  detail performance in  BRCA cohort as an example,  Appendix 

 3  ). 
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 Figure 6.3:  Buffa signature and seven RGS scores for the BRCA dataset 

 Each box plot represents the distribution of the four hypoxia scores (y axis) derived using 

 Buffa signatures on the BRCA dataset. Each pair of orange and blue boxes represent 

 hypoxia scores from tumour and NAT respectively for the original signatures and seven other 

 RGS. The p-values were calculated using the Mann-Whitney-Wilcoxon test (as per  Methods  , 

 Chapter 2.6.2). P-value annotation legend: ns:  p  >5.00e-02,  *  : 1.00e-02 <  p  <= 5.00e-02,  **  : 

 1.00e-03 <  p  <= 1.00e-02,  ***  : 1.00e-04 <  p  <= 1.00e-03,  ****  :  p  <= 1.00e-04. 
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 a) Mean 
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 b) Median 
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 c) GSVA 
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 d) ssGSEA 
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 Table 6.2:  The percentage of the time the p-value of the original signature is lower 

 than the p-values of any of the 500 RGS across 10 cancer types from the TCGA for 

 all 53 published hypoxia signatures 

 Comparison of the SPI calculated as the number of times the p-value using the 

 Mann-Whitney-Wilcoxon test on the original signatures is significant and lower than any 

 other of the 500 p-values derived from the RGS. The percentage is shown in different 

 shades of blue from lowest (light blue) to highest (dark blue). Red cells highlight the best 

 performing signature(s) for each cancer type. The last column represents the mean 

 percentage across all cancer types and is shown in different shades of green from lowest 

 (light green) to highest (dark green). Panel A = mean, panel B = median, panel C = GSVA 

 and panel D = ssGSEA. 
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 6.5 Evaluation Step 3: Do hypoxia signature scores from 
 tumours confer prognostic information? 

 Hypoxia is associated with poor prognosis as it causes phenotypic changes in cells 

 as well as hampering core therapies such as radiotherapy. The work above identified three 

 signatures and associated scores that tend to be higher in tumours compared to normal 

 tissue and tend to outperform RGS (Ragnum, Buffa and Ghazoui). Therefore, the next step 

 is to investigate the survival of individuals using these three signatures and the scores in 

 which they performed well in the previous two steps (Ragnum: mean, median & GSVA, 

 Buffa: mean & GSVA and Ghazoui: GSVA). Here the goal is to compare the “traditional” 

 method, comparing survival for those who have hypoxia scores above and below the median 

 in cancer samples, to new methods making use of the NAT scores, namely: 

 1)  Those samples above and below the  maximum  NAT sample  hypoxia score (max 

 normal) 

 2)  Those samples above and below the  mean  NAT sample  hypoxia score (mean 

 normal) 

 3)  Those samples above and below the  median  NAT sample  hypoxia score (median 

 normal) 

 Perhaps when trialling hypoxic modifiers to maximise potential therapeutic benefit, one of the 

 above three methods might be more appropriate. If hypoxia modifiers are allocated based on 

 raw hypoxia score, and the incorrect score is chosen without reference to normal tissue or 

 NAT samples, you may end up in a position where high hypoxia scores in the tumour tissue 

 are still less than in the normal tissue. This may lead to mis-stratification of patients and 

 assumed failure of hypoxia modifying therapies. Therefore, as with comparing a normoxic 

 reference in the cell line work, it is possible a comparison to NAT using the right signatures 

 and scores might be an exciting avenue to investigate. 

 I investigated survival adopting two commonly used methods, Kaplan-Meier (KM) 

 survival curves compared with the log-rank test and Cox survival on the three promising 
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 signatures identified. It is worth noting that when using KM, whichever of the grouping 

 approaches is chosen from the list previously outlined can change the hypoxia score group 

 of samples (low or high), illustrated in  Fig. 6.4  .  Here, taking Buffa as an example, one can 

 see that selecting the median value of the hypoxia score on all the tumour samples alone 

 places the threshold for the two groups  higher  than  using the mean NAT sample score as a 

 threshold (  Fig. 6.4  ). 

 I repeated the KM survival curves for Ragnum, Buffa and Ghazoui using the mean 

 and GSVA scores and the four different approaches (traditional, max NAT, mean NAT and 

 median NAT). Looking at the 10 tissue types, Ragnum, Buffa and Ghazoui using the mean 

 score showed significant differences in survival over five years using the aforementioned 

 four different approaches. The most significant p was Buffa signature using mean split on the 

 median tumour score as a threshold for the two groups (p = 3.69E-67,  Fig. 6.5  , other results 

 found in  Appendix 4, Supplementary Fig. S4-S13  ), and  notably the median tumour threshold 

 was lower than the max NAT hypoxia score (  Fig. 6.6  ).  However, looking at the mean NAT 

 and median NAT cut offs, although not as significant, average survival at 5 years appeared 

 higher than in the “lower hypoxia group” than using the traditional method (blue line): >85% 

 Buffa (  Fig. 6.7, 6.8  ), >90% with Ragnum (  Appendix  4, Supplementary Fig. S9 c-d  )  and 

 >85% Ghazoui (  Appendix 4, Supplementary Fig. S10 c-d  )  compared to ~78% with Buffa 

 (  Fig. 6.5  ), Ragnum (  Appendix 4, Supplementary Fig.  S9 a  ), or Ghazoui (  Appendix 4, 

 Supplementary Fig. S10 a  ) using the traditional method.  This perhaps suggests the 

 traditional method may place individuals who have some degree of hypoxia within their 

 tumours in the “lower hypoxia group”. The most significant result with GSVA was achieved 

 by Ghazoui using the median tumour score as a threshold for the two groups (p=3.18E-13, 

 Appendix 4, Supplementary Fig. S13 a  ). Ragnum using  the median score also showed the 

 lowest p (p=1.55E-33) using the median tumour score as a threshold for the two groups. 

 Since survival can be affected by various covariates which are not considered in the 

 KM model, I moved to investigate prognostic significance using Cox-proportional hazards 
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 modelling, using age, stage and histological types as covariates, sex as strata and the 

 relevant scores as continuous variables. Here, Buffa signature using the mean score 

 appeared the best (  Fig. 6.9  ), yielding an hazard ratio  greater than age, stage or histological 

 type (1.82 [1.66-2.01], p = 4.62E-35 vs age: 1.38 [1.27-1.52], p = 1.07E-12, stage: 1.011 

 [1.008-1.014], p = 9.9E-12, histological subtype 1.003 [0.997-1.009], p= 0.294). It is worth 

 noting that the Buffa signature was not derived from the TCGA data. Other results can be 

 found in  Appendix 5, Supplementary Fig. S14-S18  . 
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 Figure 6.4:  The distribution of Buffa hypoxia scores  using the mean in 10 cancer 

 types in the TCGA cohort 

 Each data point represents a sample in the TCGA cohort. All NAT samples are shown with a 

 blue cross and all tumour samples are shown with an orange circle. The four coloured 

 horizontal lines show the position of the thresholds: red non-broken line (median value of the 

 tumour samples), yellow broken line (max NAT population), green broken line (mean NAT 

 population) and black broken line (median NAT population). Different thresholds can result in 

 different sample classification. 
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 Figure 6.5:  Survival of patients in the TCGA dataset  according to Buffa signature 

 (mean score, traditional threshold) 

 KM survival curve of patients in the TCGA cohort. The median value of the hypoxia scores 

 on tumour samples was used to denote the high/low hypoxia groups (the “traditional 

 approach”). Hypoxia scores were calculated using the Buffa signature and the mean score. 

 The timeline (x-axis) is expressed in days. Patients with low hypoxia scoring samples are 

 presented in blue, whereas those with high hypoxia scores are shown in orange. The 

 log-rank test showed a p-value = 3.69E-67. 
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 Figure 6.6:  Survival of patients in the TCGA dataset  according to Buffa signature 

 (mean score, maximum NAT threshold) 

 KM survival curve of patients in the TCGA cohort. The maximum value of NAT hypoxia 

 scores was used to denote the high/low hypoxia groups. Hypoxia scores were calculated 

 using the Buffa signature and the mean score.  Conventions as in  Fig. 6.5  . The log-rank test 

 showed a p-value = 8.68E-37. 
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 Figure 6.7:  Survival of patients in the TCGA dataset  according to Buffa signature 

 (mean score, mean NAT threshold) 

 KM survival curve of patients in the TCGA cohort. The mean value of NAT hypoxia scores 

 was used to denote the high/low hypoxia groups. Hypoxia scores were calculated using the 

 Buffa signature and the mean score. Conventions as in  Fig. 6.5  . The log-rank test showed a 

 p-value = 2.21E-27. 
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 Figure 6.8:  Survival of patients in the TCGA dataset  according to Buffa signature 

 (mean score, median NAT threshold) 

 KM survival curve of patients in the TCGA cohort. The median value of NAT hypoxia scores 

 was used to denote the high/low hypoxia groups. Hypoxia scores were calculated using the 

 Buffa signature and the mean score. Conventions as in  Fig. 6.5  . The log-rank test showed a 

 p-value = 7.52E-16. 
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 a) 

 b) 

 Figure 6.9:  Survival analysis using a cox-proportional  hazards model on the TCGA 

 dataset using the Buffa signature (mean score) 

 Results for common covariates and the Buffa signature mean score from a cox-proportional 

 hazards model on 10 tumour types in the TCGA. (a) shows Hazard Ratios (HR) whilst (b) is 

 a summary table detailing coefficients, standard error, z and p-values. 
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 6.6 Final recommendation for clinical samples 

 Through this comprehensive three stage evaluation in the search for the most 

 promising hypoxia signature for clinical use, the Buffa signature using the mean score 

 appears most appropriate. While this study represents the most comprehensive work in this 

 field to date, it is recognised that it does not include in vivo human comparisons to oxygen 

 levels using oxygen electrodes or other methods. However, this data-driven approach in the 

 landmark TCGA cohort of over 1000 cancer samples highlights the Buffa signature using the 

 mean score as a) being on average higher in tumour samples than in normal tissue samples, 

 b) differing in performance compared to random gene signatures in 99.22% of the time c) 

 serving as a strong prognostic marker (using a number of different thresholds) across 10 

 important tumour types. Therefore, until large prospective studies involving various hypoxia 

 markers are conducted, it is recommended to use the Buffa signature with the mean score 

 for determining the hypoxic status of clinical samples. 
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 Chapter 7: Final thoughts 
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 This work is the largest and most comprehensive analysis and validation of hypoxia 

 signatures to date. The study includes  a)  a systematic  review of all published hypoxia 

 signatures,  b)  an unbiased analysis of hypoxia signature  performance in all open access 

 hypoxia cell line data spanning 90 different cell line/tissue experiments and, finally  c)  a 

 data-driven approach to find the most promising signature for use in clinical samples using 

 the landmark cancer genomics study, The Cancer Genome Atlas (TCGA). This study also 

 applied a novel approach for signature evaluation using random gene sets (RGS) which 

 addresses a major query surrounding a use of signatures in this field. This work not only 

 summarises current hypoxia signatures in the literature but also highlights which signatures 

 and scores should be considered at the benchside and for validation in the clinic, and 

 importantly highlights signatures which should be used with extreme caution. 

 After uncovering 53 published hypoxia signatures using a systematic approach, 

 marked differences were discovered in their performance depending on the signature, score 

 and even cell line used. Overall, consistently ssGSEA appeared the worse summary score 

 whereas median, mean and GVSA in general appeared more effective. The likely reason for 

 scoring methods working better in certain conditions is likely the method used to derive the 

 scores (discussed in Chapter 3.3). 

 Looking at the individual scores, they have different characteristics. One of them is 

 their reliance on assuming underlying distributions. The median, mean and ssGSEA scores 

 do not assume anything about the distribution of the data. However, the first step in 

 calculating the GSVA score consists of fitting the data into a model, in which the intensity of 

 a gene is determined following a Gaussian or Poisson distribution. 

 Another obvious point of difference is how the scores are calculated. How to 

 calculate the median and mean scores are well known and relatively simple, whereas GSVA 

 and ssGSEA are more complex. The GSVA score tends to perform very well in hypoxia 

 signatures that include a lot of coexpressed genes. The GSVA score is based on the 

 concept that a gene set’s enrichment in a sample will depend on the position of such genes 
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 in the ranked list of all the genes available in the dataset. Thus, if most of the genes in the 

 signature are all ranked in higher positions compared to the other genes in the dataset, then 

 the GSVA score will be high. On the other hand, ssGSEA is a gene set enrichment score 

 that represents the activity level of the biological process in which the genes belonging to the 

 signature are coordinately up-regulated or down-regulated. As a consequence, this score 

 becomes very helpful when researchers need to determine the cell state in terms of the 

 activity levels of biological pathways rather than through the expression levels of individual 

 genes. This strong reliance on particular biological pathways and co-ordinated expression 

 might be the reason why ssGSEA performed consistently worse than any other score in the 

 study. 

 The mean and median too have pros and cons: both mean and median perform well 

 on normal distributions, however, the mean score is more sensitive to outliers (not 

 necessarily a negative attribute in the evaluation of hypoxia scores). On the other hand, 

 median score does not take into account all the precise values in a distribution and is highly 

 affected by sampling fluctuations. Notably, both scores would be identical in a completely 

 normal distribution, but their values would differ according to the skewness of distributions. 

 On top of this, there are several variables that come into play during the evaluation of 

 gene expression scores, which can be related to the score itself and/or the experimental 

 data. This work attempted to overcome these problems by increasing the statistical power of 

 the analysis. An unbiased approach was implemented, looking at all published signatures, a 

 variety of scores and carrying out the largest analysis to date, across a variety of cell line 

 datasets from different sources and sequencing technologies as well as the large and 

 well-curated TCGA dataset. 

 The most effective signature and score combination on any cell line tested was 

 Sorensen using the median score. Across 1090 pairwise combinations, Sorensen hypoxia 

 signature using the median score yields an impressive 92.84% accuracy in identifying 

 hypoxic samples in experiments (i.e cells in hypoxic chambers vs normoxic conditions) in 
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 non-VHL mutated lines. However, individual tissue analyses of signatures (subsections of 

 Chapter 4) did yield slightly higher percentage accuracies in determining hypoxic samples, 

 e.g. Lendhal using the median score was most effective in breast cancer cell lines (Chapter 

 4.1, 96.90% accuracy). Further, as signatures have a strong HIF-1a reliance, VHL-mutated 

 cell lines were analysed separately, highlighting Sung using the GSVA score as the most 

 effective (Chapter 5.3, 81.25% accuracy). Interestingly, all signatures tended to perform 

 badly in recognising hypoxia on  ex vivo  lung cancer  samples from the GSE30979 dataset 

 (Chapter 4.2), suggesting, perhaps, there might be a difference in signature performance  in 

 vivo  . And, indeed, this difference turned out to be  likely the case. 

 Looking at clinical samples, one major limitation of this study, and others in the 

 literature, was the lack of hypoxia measurements. However, this work proposes a novel 

 three stage approach to identify the most promising signature and score for use in clinical 

 samples. Buffa signature using the mean score appeared the most promising, being 

 consistently on average higher in tumour samples than in normal tissue samples, differing in 

 performance compared to random gene signatures in 99.22% of the time and serving as a 

 strong prognostic marker (using a number of different thresholds) across 10 important 

 tumour types. Large prospective studies are urgently needed with multiple measures of 

 hypoxia, however these three criteria give us some confidence that using Buffa signature 

 and mean score in already existing genomic datasets and looking to validate it in future 

 studies would be wise. Also, I highlight the potential value of building a bank of normal tissue 

 samples, which should be normoxic, which could be used as a reference when deploying 

 hypoxia signatures in clinical studies and allow patients perhaps to be stratified more 

 appropriately. 

 Before this work, the choice of hypoxia signatures and scoring systems used in 

 studies was done almost as a matter of personal choice (exemplar publication  5  ), or at best 

 on minimal analytic grounds (exemplar publication  151  ).  This large analysis provides an 

 important reference to laboratory and clinician scientists who seek validation of hypoxic 
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 status and/or are considering prospective trials. This approach has shown the potential 

 advantage of including normal samples in assessing hypoxic status in tumour clinical 

 samples. The strategy of using matched normal samples in the same population might be 

 transformative in assessing tumour microenvironmental conditions, such as hypoxia, 

 however it must be noted extra biopsies are not always available/possible and are not 

 without risk, thus conferring a limitation of this approach. Large cohort studies of informed 

 patients are needed. 

 Following on from this work, I hope my postdoctoral studies will build on some 

 excellent validation work that has already started in Oxford, currently only focussed on a 

 small sample of lung cancer patients  32  . In this study,  a number of hypoxia markers were 

 measured including gene expression, immunohistochemistry and [18F]-fluoromisonidazole 

 PET-CT as part of a clinical trial of 15 patients which helps gain clinical validation of hypoxia 

 signatures  in vivo  . I hope with the help of my supervisor  I will be able to secure funding to 

 co-lead a collaborative initiative to collect a large number of tumour and matched normal 

 tissue samples with a variety of hypoxic markers across a range of cancer types. This will 

 ultimately help address the key question of whether hypoxia signatures reflect the true state 

 of hypoxia  in vivo  and which hypoxic measurement method,  or even combination of 

 approaches, might be the most appropriate for clinical use. 
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 Appendix 1 

 Koong 2000 
 ●  HGNC  : BIK, EDN2, FGF3, GADD45A, IGFBP3, LRP1, MIF,  MMP13, SERPINE1, 

 VEGFA 
 ●  ENSG ID  : ENSG00000276701, ENSG00000100290, ENSG00000186895, 

 ENSG00000106366, ENSG00000127129, ENSG00000240972, ENSG00000116717, 
 ENSG00000123384, ENSG00000112715, ENSG00000146674, ENSG00000137745 

 Denko 2003  : 
 ●  HGNC  : ACADSB, ALDOA, ALDOC, ARHGAP5, ARSL, BCL2L2,  TGFBI, BPI, 

 C9orf153, CALD1, NDRG1, CCNG2, CDKN1A, CLK1, CNOT8, BHLHE40, EFNA1, 
 EIF4A3, ELL2, ENO3, ELF3, FABP5, FN1, GLRX, GPI, GPRC5A, HBP1, HERC3, 
 HERPUD1, HILPDA, HK1, HLA-DQB1, HSPA5, IGFBP3, INSIG1, IRF6, ITGA5, 
 LDHA, LONP1, LOX, MCC, MPI, MT1L, MUC1, MXI1, PDK3, PIM2, PLIN2, PLOD2, 
 PNN, POLM, PPARD, PTGS1, QSOX1, RBPJ, RIOK3, RNASEL, SGSM2, SIAH2, 
 SIRPA, SLC16A3, SLC2A3, SLC6A6, SLC6A8, SYT7, TNFAIP3, TPBG, TPD52, 
 TPI1, UCA1, TXNIP, VEGFA 

 ●  ENSG ID  : ENSG00000282019, ENSG00000206237, ENSG00000231939, 
 ENSG00000231286, ENSG00000283085, ENSG00000225824, ENSG00000206302, 
 ENSG00000283847, ENSG00000233209, ENSG00000101782, ENSG00000288299, 
 ENSG00000101425, ENSG00000102096, ENSG00000141258, ENSG00000100852, 
 ENSG00000108515, ENSG00000059804, ENSG00000196365, ENSG00000179344, 
 ENSG00000011347, ENSG00000198053, ENSG00000095303, ENSG00000178802, 
 ENSG00000161638, ENSG00000147872, ENSG00000173221, ENSG00000196177, 
 ENSG00000164687, ENSG00000130821, ENSG00000105220, ENSG00000067992, 
 ENSG00000134333, ENSG00000120708, ENSG00000260549, ENSG00000181788, 
 ENSG00000186480, ENSG00000118503, ENSG00000138641, ENSG00000171444, 
 ENSG00000105856, ENSG00000138764, ENSG00000152952, ENSG00000124762, 
 ENSG00000146242, ENSG00000118985, ENSG00000122786, ENSG00000129473, 
 ENSG00000157399, ENSG00000214049, ENSG00000149925, ENSG00000104419, 
 ENSG00000044574, ENSG00000119950, ENSG00000156515, ENSG00000135245, 
 ENSG00000100941, ENSG00000116260, ENSG00000051108, ENSG00000141543, 
 ENSG00000112715, ENSG00000111669, ENSG00000265972, ENSG00000122678, 
 ENSG00000117595, ENSG00000163435, ENSG00000187753, ENSG00000134107, 
 ENSG00000076554, ENSG00000135828, ENSG00000113083, ENSG00000168214, 
 ENSG00000146674, ENSG00000155508, ENSG00000112033, ENSG00000109107, 
 ENSG00000169242, ENSG00000185499, ENSG00000141526, ENSG00000013588, 
 ENSG00000131389, ENSG00000115414, ENSG00000013441 

 Jogi 2004 
 ●  HGNC  : ACHE, ADM, AGPAT2, ALDOA, ALDOB, ALDOC, AOC3,  AQP1, BCAT1, 

 BCL6, BMP5, BNIP3L, C1orf21, CA12, CA9, CARTPT, CD9, CDH13, COL5A1, 
 COX4I2, CPO, VCAN, SLC44A2, CXCR4, CYB5A, DDC, DLK1, EIF5, ENO1, 
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 EPB41L4B, F7, VPS13C, RFK, UFSP2, DEPTOR, FOXF1, FUT1, GAL, GBE1, 
 GNAL, GNAS, NEDD9, UBE2K, HK2, ID2, IGF2, IGFBP3, ITGAM, JAK1, PPIP5K2, 
 UFL1, SIK2, SYNPO, ARRDC3, VPS13C, LMO1, LOXL2, GDE1, MT1H, MT2A, 
 MXI1, NDRG1, NDUFB7, SMIM3, NMB, NRN1, NRP1, NUTF2, OLFM1, P4HA1, 
 P4HA2, PAM, ARHGAP29, PDK1, PFKFB4, PFKL, PFKP, PGK1, PLOD1, CYTH3, 
 SIRPA, PTPRN, RAB40C, RGS5, SCD, SLC12A3, SLC2A1, SLC2A3, SLC30A1, 
 SNAPC1, ATL1, STC1, STRBP, TH, TNFRSF10B, RAD51D, MED16, TRIM29, 
 KDM3A, VEGFA, WSB1, WT1, ZNF177 

 ●  ENSG ID  : ENSG00000282092, ENSG00000197562, ENSG00000057593, 
 ENSG00000167244, ENSG00000175221, ENSG00000166407, ENSG00000141959, 
 ENSG00000099250, ENSG00000059804, ENSG00000008256, ENSG00000184937, 
 ENSG00000109046, ENSG00000159167, ENSG00000060982, ENSG00000074800, 
 ENSG00000111859, ENSG00000134013, ENSG00000104765, ENSG00000141404, 
 ENSG00000099194, ENSG00000198053, ENSG00000132437, ENSG00000120889, 
 ENSG00000131055, ENSG00000115738, ENSG00000135002, ENSG00000166347, 
 ENSG00000114480, ENSG00000074410, ENSG00000038427, ENSG00000006007, 
 ENSG00000102898, ENSG00000069482, ENSG00000131471, ENSG00000130635, 
 ENSG00000140945, ENSG00000078140, ENSG00000170145, ENSG00000137699, 
 ENSG00000112175, ENSG00000113369, ENSG00000103241, ENSG00000107159, 
 ENSG00000162434, ENSG00000100664, ENSG00000155792, ENSG00000136872, 
 ENSG00000159399, ENSG00000087460, ENSG00000125148, ENSG00000185559, 
 ENSG00000197696, ENSG00000137962, ENSG00000165209, ENSG00000169692, 
 ENSG00000205358, ENSG00000130558, ENSG00000180176, ENSG00000102144, 
 ENSG00000169896, ENSG00000149925, ENSG00000129003, ENSG00000109775, 
 ENSG00000171992, ENSG00000104419, ENSG00000121966, ENSG00000148926, 
 ENSG00000067057, ENSG00000188629, ENSG00000113916, ENSG00000124785, 
 ENSG00000232995, ENSG00000119950, ENSG00000070915, ENSG00000112715, 
 ENSG00000144410, ENSG00000095203, ENSG00000198513, ENSG00000099795, 
 ENSG00000143248, ENSG00000145725, ENSG00000122884, ENSG00000087085, 
 ENSG00000129353, ENSG00000023608, ENSG00000240583, ENSG00000010278, 
 ENSG00000146674, ENSG00000072682, ENSG00000115548, ENSG00000174951, 
 ENSG00000256235, ENSG00000109107, ENSG00000164326, ENSG00000152256, 
 ENSG00000145730, ENSG00000054356, ENSG00000114268, ENSG00000014123, 
 ENSG00000083444, ENSG00000185379, ENSG00000117394, ENSG00000116667, 
 ENSG00000170385 

 Ning 2004 
 ●  HGNC  : ACTB, ACTR3, AIFM2, ANGPTL4, ATP5PO, BCAR3,  BNIP3L, C1QTNF5, 

 CASP1, CAV1, CBX3, CCT6A, CLASP1, CLTC, CSNK2B, DAPK3, CTTNBP2NL, 
 MAGT1, DPP3, EEF1A1, EEF1G, EEF2, EFEMP1, ELOVL1, EMP3, ENO1, EWSR1, 
 ACSL4, RUSF1, ORAI1, TOR4A, TTC19, EXOSC4, GAPDH, GMPPA, GNB2, GPI, 
 LPAR5, CDV3, HDLBP, HNRNPH3, HSPH1, HSPA1A, HSPA5, HSPD1, HSPE1, 
 IFI16, SEL1L3, SEC31A, RNF213, LAPTM4A, LOXL2, LXN, CAPRIN1, ZNF276, 
 MMP2, MPG, MRPL34, NACA, BEX3, YBX1, PABPC1, PAK3, PARVB, SUB1, 
 PDCD2, PLOD1, PLOD2, PML, PPP1CB, PTMS, RAC1, RRAGA, ARID4A, RBMX, 
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 RNPEPL1, RPL23, RPL27A, RPS17, RPS27, RPS29, SELENOW, SERPINE1, 
 SH3BGRL3, SPTB, TARDBP, TGFB1, TIMP2, TPI1, TPM3, TPT1, TRRAP, EFTUD2, 
 UMPS, UQCR11, UQCRH, VEGFC, WASF2, YY1 

 ●  ENSG ID  : ENSG00000278229, ENSG00000237724, ENSG00000235941, 
 ENSG00000282019, ENSG00000234475, ENSG00000230700, ENSG00000232960, 
 ENSG00000206406, ENSG00000215328, ENSG00000120694, ENSG00000224774, 
 ENSG00000224398, ENSG00000241837, ENSG00000228875, ENSG00000133112, 
 ENSG00000167657, ENSG00000135387, ENSG00000127540, ENSG00000167658, 
 ENSG00000166681, ENSG00000146731, ENSG00000188677, ENSG00000074800, 
 ENSG00000011295, ENSG00000134013, ENSG00000104765, ENSG00000254772, 
 ENSG00000100811, ENSG00000091490, ENSG00000158195, ENSG00000125691, 
 ENSG00000087245, ENSG00000106366, ENSG00000182944, ENSG00000140464, 
 ENSG00000113387, ENSG00000213639, ENSG00000173660, ENSG00000115380, 
 ENSG00000147274, ENSG00000105220, ENSG00000213741, ENSG00000141367, 
 ENSG00000158805, ENSG00000182774, ENSG00000223953, ENSG00000138674, 
 ENSG00000068697, ENSG00000142227, ENSG00000137936, ENSG00000077264, 
 ENSG00000198113, ENSG00000079257, ENSG00000143079, ENSG00000071994, 
 ENSG00000032219, ENSG00000115091, ENSG00000152952, ENSG00000196367, 
 ENSG00000068366, ENSG00000103152, ENSG00000178980, ENSG00000150630, 
 ENSG00000276045, ENSG00000140688, ENSG00000102158, ENSG00000155876, 
 ENSG00000042286, ENSG00000075624, ENSG00000035862, ENSG00000143549, 
 ENSG00000044574, ENSG00000178896, ENSG00000070756, ENSG00000105974, 
 ENSG00000173821, ENSG00000122565, ENSG00000167772, ENSG00000156508, 
 ENSG00000204389, ENSG00000204435, ENSG00000111669, ENSG00000070182, 
 ENSG00000096746, ENSG00000184574, ENSG00000159335, ENSG00000172354, 
 ENSG00000136238, ENSG00000091527, ENSG00000105329, ENSG00000254986, 
 ENSG00000130312, ENSG00000108883, ENSG00000196531, ENSG00000111640, 
 ENSG00000142327, ENSG00000137752, ENSG00000083444, ENSG00000114491, 
 ENSG00000177954, ENSG00000074054, ENSG00000115541, ENSG00000166441, 
 ENSG00000144381, ENSG00000142669, ENSG00000065978, ENSG00000163565, 
 ENSG00000066322, ENSG00000120948, ENSG00000144591, ENSG00000115677 

 Manalo 2005 
 ●  HGNC  : ACVR1B, ADM, ADORA2A, AK3, ANGPTL4, NUAK1, AXL,  BCL6, 

 BHLHE40, CASK, CCNG2, CDH2, CDK19, CDKN1C, PLEKHO1, ACKR3, 
 COL18A1, COL1A2, COL4A1, COL4A2, COL5A1, COL9A1, CREB3L2, CUBN, 
 CX3CL1, CXCR4, DUSP6, EDN1, EGLN1, EGLN3, ENPP1, EPOR, ERO1A, 
 FNDC3B, FKBP9, GABRP, GADD45B, GDF10, GRK5, HES1, HIF3A, HIVEP2, 
 IGFBP3, INHBA, INHBE, INSR, ITM2A, ITPR2, KDM3A, LEPR, LIMS1, LOX, LOXL2, 
 SMAD6, MAFF, MEF2A, MXI1, NDRG1, NFATC4, NOTCH4, NPAS2, NPR1, OPN3, 
 P4HA2, PAM, PDGFB, PDZD2, PELI2, PGF, PLCG2, PLOD1, PLOD2, PPARG, 
 PTGIS, PTGS1, PTPRB, PTPRF, PTPRR, PPP1R13L, RASSF2, RGS3, RHOBTB1, 
 RLN1, RPS6KA2, RRAS, SHOX2, SIRT3, SOX4, NABP2, STC1, STC2, TCF7L1, 
 ZEB1, TLE1, TNFRSF10B, TNFRSF14, TRIO, TXNIP, VEGFA, VEGFC, VLDLR, 
 WASF2, ZBTB1, ZHX2, ZNF292 
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 ●  ENSG ID  : ENSG00000273936, ENSG00000273707, ENSG00000238196, 
 ENSG00000223355, ENSG00000232339, ENSG00000235396, ENSG00000234876, 
 ENSG00000206312, ENSG00000185022, ENSG00000134871, ENSG00000187498, 
 ENSG00000107611, ENSG00000182871, ENSG00000100311, ENSG00000124212, 
 ENSG00000147853, ENSG00000107018, ENSG00000170558, ENSG00000266524, 
 ENSG00000285485, ENSG00000128271, ENSG00000078401, ENSG00000171105, 
 ENSG00000124766, ENSG00000078596, ENSG00000129521, ENSG00000159167, 
 ENSG00000197930, ENSG00000139946, ENSG00000134013, ENSG00000038382, 
 ENSG00000120889, ENSG00000072422, ENSG00000164692, ENSG00000196781, 
 ENSG00000095303, ENSG00000137834, ENSG00000158195, ENSG00000101265, 
 ENSG00000133401, ENSG00000188994, ENSG00000138835, ENSG00000197943, 
 ENSG00000130635, ENSG00000153233, ENSG00000198873, ENSG00000139318, 
 ENSG00000119630, ENSG00000006210, ENSG00000155111, ENSG00000182158, 
 ENSG00000071242, ENSG00000152284, ENSG00000010818, ENSG00000142949, 
 ENSG00000068305, ENSG00000075420, ENSG00000147044, ENSG00000100968, 
 ENSG00000178764, ENSG00000138764, ENSG00000152952, ENSG00000123104, 
 ENSG00000169756, ENSG00000170485, ENSG00000150630, ENSG00000023902, 
 ENSG00000094755, ENSG00000104419, ENSG00000114315, ENSG00000121966, 
 ENSG00000169418, ENSG00000148926, ENSG00000139269, ENSG00000113916, 
 ENSG00000167601, ENSG00000119950, ENSG00000147852, ENSG00000112715, 
 ENSG00000167772, ENSG00000187266, ENSG00000126458, ENSG00000265972, 
 ENSG00000099860, ENSG00000122641, ENSG00000148516, ENSG00000134107, 
 ENSG00000144476, ENSG00000135766, ENSG00000126804, ENSG00000135503, 
 ENSG00000124440, ENSG00000113083, ENSG00000204301, ENSG00000146674, 
 ENSG00000122642, ENSG00000072682, ENSG00000142082, ENSG00000115548, 
 ENSG00000127329, ENSG00000113739, ENSG00000197594, ENSG00000112280, 
 ENSG00000104881, ENSG00000145730, ENSG00000116678, ENSG00000139579, 
 ENSG00000083444, ENSG00000074590, ENSG00000168779, ENSG00000132170, 
 ENSG00000129757, ENSG00000157873, ENSG00000054277 

 Wang 2005 
 ●  HGNC  : ALDOC, MANF, BHLHE40, BNIP3, BNIP3L, CACNA1A,  CITED2, CXCR4, 

 DECR2, DUSP1, FAM162A, FMO5, FOS, GADD45B, GBE1, GCHFR, HILPDA, 
 H1-2, H2AC6, H2AC17, H2BC21, H2AW, HK2, HMGCL, HOXA13, HSPA5, ITGA2B, 
 LDHA, LOX, MAFF, MARS1, OMA1, MXI1, MYOM2, NDRG1, NEFL, NPPB, NRN1, 
 P4HA1, NAMPT, PCDH10, PFKFB4, PGF, PGK1, PKIA, PKIB, PLOD2, PPFIA4, 
 PTPRZ1, RAB20, RASSF1, DDIT4, SAT1, TRIM21, VEGFA 

 ●  ENSG ID  : ENSG00000274296, ENSG00000274137, ENSG00000185022, 
 ENSG00000284841, ENSG00000288299, ENSG00000132109, ENSG00000139832, 
 ENSG00000170345, ENSG00000104765, ENSG00000117305, ENSG00000114480, 
 ENSG00000137880, ENSG00000171033, ENSG00000176171, ENSG00000119630, 
 ENSG00000145050, ENSG00000134333, ENSG00000162600, ENSG00000135549, 
 ENSG00000114023, ENSG00000159399, ENSG00000106278, ENSG00000138650, 
 ENSG00000120129, ENSG00000164442, ENSG00000152952, ENSG00000102144, 
 ENSG00000277586, ENSG00000130066, ENSG00000104419, ENSG00000121966, 
 ENSG00000131781, ENSG00000166986, ENSG00000044574, ENSG00000124785, 
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 ENSG00000187837, ENSG00000119950, ENSG00000135245, ENSG00000168209, 
 ENSG00000112715, ENSG00000099860, ENSG00000134107, ENSG00000143847, 
 ENSG00000122884, ENSG00000036448, ENSG00000105835, ENSG00000278677, 
 ENSG00000113083, ENSG00000242612, ENSG00000141837, ENSG00000180573, 
 ENSG00000106031, ENSG00000109107, ENSG00000114268, ENSG00000120937, 
 ENSG00000068028, ENSG00000005961, ENSG00000181218, ENSG00000184678 

 Detwiller 2005 
 ●  HGNC  : ADM, ANGPT2, ANXA1, ANXA5, BNIP3L, CD99, COL5A1,  ENO1, HIF1A, 

 IGF2, IGFBP3, ITGA5, LDHB, LOX, MIR483, PGF, PGK1, PLOD2, SERPINE1, 
 SERPINE2, SLC2A3, TGFB3, TGFBI, THBS1, TXN, VEGFC, VIM 

 ●  ENSG ID  : ENSG00000026025, ENSG00000167244, ENSG00000059804, 
 ENSG00000074800, ENSG00000137801, ENSG00000104765, ENSG00000136810, 
 ENSG00000135046, ENSG00000106366, ENSG00000161638, ENSG00000130635, 
 ENSG00000119630, ENSG00000120708, ENSG00000119699, ENSG00000207805, 
 ENSG00000152952, ENSG00000102144, ENSG00000150630, ENSG00000002586, 
 ENSG00000148926, ENSG00000164111, ENSG00000111716, ENSG00000100644, 
 ENSG00000091879, ENSG00000113083, ENSG00000146674, ENSG00000135919 

 Chi 2006 
 ●  HGNC  : PLIN2, ADM, ALKBH1, ANGPTL4, ARL6IP1, ARRDC3,  BHLHE40, BNIP3L, 

 BRCA2, DEPP1, C14orf132, VTA1, CA9, CAV1, CCL28, CCNG2, CEP250, CKB, 
 CLEC2B, CNTNAP1, CRABP2, CSRP2, CTSF, CXCR4, DDIT4, DPYSL2, DPYSL4, 
 DST, DUSP10, UBE2O, FAM162A, EGLN3, ENPP3, ERO1A, EXOSC4, FAM13A, 
 HAUS6, ANKZF1, GAL3ST1, GNRH1, GPI, GYS1, HEMGN, HIPK1, HK2, 
 HLA-DRB5, IGFBP3, INSIG2, ITPR1, JAG2, KDM3A, UFL1, ARFGEF3, ZNF777, 
 LNPK, LDHA, LDHC, LOX, LPIN2, MEG3, SLC25A42, MKNK2, MPP2, MSH2, 
 NAB2, NARF, NAV2, NDRG1, NF1, OCIAD1, OLR1, P4HA1, P4HA2, PDK1, 
 PFKFB3, PFKP, PGK1, PIAS2, PIK3R4, PLEKHA2, PLOD1, PLOD2, PLXNB3, 
 PMP22, POU5F1, PPFIA4, PPL, PPP5C, PRODH, RAB20, GPRC5A, RNASE4, 
 RTTN, SEMA4B, SERPINE1, SLC16A3, SLC1A6, SLC2A1, SLC2A3, SLC6A3, 
 SLC6A8, SOX4, STC1, STC2, STRBP, SULT4A1, THOP1, WIPF1, WSB1, ZEB2, 
 ZNF292 

 ●  ENSG ID  : ENSG00000282019, ENSG00000276996, ENSG00000206454, 
 ENSG00000233911, ENSG00000237582, ENSG00000229094, ENSG00000230336, 
 ENSG00000235068, ENSG00000170525, ENSG00000288299, ENSG00000078043, 
 ENSG00000130540, ENSG00000139832, ENSG00000147874, ENSG00000059804, 
 ENSG00000139618, ENSG00000109046, ENSG00000173391, ENSG00000124766, 
 ENSG00000129521, ENSG00000159167, ENSG00000166796, ENSG00000126001, 
 ENSG00000101577, ENSG00000092964, ENSG00000196712, ENSG00000197930, 
 ENSG00000142319, ENSG00000136929, ENSG00000198502, ENSG00000104765, 
 ENSG00000176225, ENSG00000165507, ENSG00000170540, ENSG00000147437, 
 ENSG00000184916, ENSG00000106366, ENSG00000147872, ENSG00000188994, 
 ENSG00000095002, ENSG00000128242, ENSG00000198753, ENSG00000009844, 
 ENSG00000130821, ENSG00000151640, ENSG00000100601, ENSG00000105220, 
 ENSG00000100033, ENSG00000011485, ENSG00000134333, ENSG00000258818, 
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 ENSG00000113369, ENSG00000166165, ENSG00000107159, ENSG00000114023, 
 ENSG00000159399, ENSG00000151882, ENSG00000175183, ENSG00000214548, 
 ENSG00000196453, ENSG00000138640, ENSG00000112379, ENSG00000104812, 
 ENSG00000165209, ENSG00000181035, ENSG00000163349, ENSG00000138764, 
 ENSG00000154269, ENSG00000152952, ENSG00000102144, ENSG00000125629, 
 ENSG00000227051, ENSG00000104419, ENSG00000204531, ENSG00000121966, 
 ENSG00000148926, ENSG00000067057, ENSG00000178896, ENSG00000144320, 
 ENSG00000169499, ENSG00000168209, ENSG00000105974, ENSG00000167772, 
 ENSG00000166833, ENSG00000143507, ENSG00000166886, ENSG00000134107, 
 ENSG00000143847, ENSG00000196455, ENSG00000122884, ENSG00000172009, 
 ENSG00000109180, ENSG00000174080, ENSG00000175931, ENSG00000113083, 
 ENSG00000185033, ENSG00000141562, ENSG00000109099, ENSG00000146674, 
 ENSG00000118898, ENSG00000072682, ENSG00000115548, ENSG00000113739, 
 ENSG00000099875, ENSG00000152256, ENSG00000163516, ENSG00000105143, 
 ENSG00000151914, ENSG00000169554, ENSG00000014123, ENSG00000083444, 
 ENSG00000110852, ENSG00000141526, ENSG00000108852, ENSG00000108797, 
 ENSG00000013588, ENSG00000117394, ENSG00000150995, ENSG00000115935, 
 ENSG00000143320 

 Mense 2006 
 ●  HGNC  : ABCB6, PLIN2, ADM, ALDOC, ANG, ANGPTL4, ATF3,  BHLHE40, 

 BHLHE41, BNIP3, BNIP3L, CCNI, CDK19, CEBPB, CEBPD, CLK3, DIDO1, 
 SERGEF, EEF1AKMT3, DPCD, KLHL24, FAM162A, EGLN1, ELL2, CTTN, ENO2, 
 ERO1A, FAM13A, LARP6, WDR54, FOXD1, FUT11, GADD45A, GBE1, GNA13, 
 GOSR2, GPI, HCFC1R1, HILPDA, HK2, INSIG1, INSIG2, KDM3A, KDM4B, KDM4C, 
 KLF4, KLF7, LOX, LRP2BP, MAFF, MED6, KIAA2013, LCORL, TC2N, MXI1, 
 NADSYN1, NDRG1, NFIL3, NOL3, OSMR, P4HA1, P4HA2, NAMPT, PDK1, PEX13, 
 PFKFB3, PFKFB4, PGK1, PLOD2, PPFIA4, PPP1R15A, PPP1R3C, PRPSAP1, 
 JMJD6, RBPJ, RIOK3, RNASE4, RORA, SCD, CLPB, SLC2A14, SOD2, SPAG4, 
 STARD4, STC2, STK4, THAP8, TIPARP, TSLP, UFM1, VEGFA, WDR5B, WSB1, 
 ZBTB25 

 ●  ENSG ID  : ENSG00000276776, ENSG00000282019, ENSG00000120686, 
 ENSG00000185022, ENSG00000101782, ENSG00000172216, ENSG00000170525, 
 ENSG00000288401, ENSG00000101109, ENSG00000129158, ENSG00000109046, 
 ENSG00000127663, ENSG00000119938, ENSG00000197930, ENSG00000165030, 
 ENSG00000104765, ENSG00000099194, ENSG00000166171, ENSG00000114480, 
 ENSG00000136826, ENSG00000147872, ENSG00000145623, ENSG00000101191, 
 ENSG00000176171, ENSG00000145777, ENSG00000162928, ENSG00000164211, 
 ENSG00000105220, ENSG00000221869, ENSG00000061656, ENSG00000196981, 
 ENSG00000258818, ENSG00000155111, ENSG00000214274, ENSG00000108433, 
 ENSG00000116717, ENSG00000114023, ENSG00000159399, ENSG00000166173, 
 ENSG00000069667, ENSG00000186480, ENSG00000138640, ENSG00000103145, 
 ENSG00000107077, ENSG00000152952, ENSG00000118985, ENSG00000102144, 
 ENSG00000163659, ENSG00000112096, ENSG00000114796, ENSG00000125629, 
 ENSG00000087074, ENSG00000123095, ENSG00000196968, ENSG00000104419, 
 ENSG00000089775, ENSG00000165929, ENSG00000148926, ENSG00000123427, 
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 ENSG00000120063, ENSG00000119950, ENSG00000178177, ENSG00000133997, 
 ENSG00000135245, ENSG00000112715, ENSG00000167772, ENSG00000118816, 
 ENSG00000140939, ENSG00000111674, ENSG00000118263, ENSG00000134107, 
 ENSG00000143847, ENSG00000122884, ENSG00000135766, ENSG00000162772, 
 ENSG00000105835, ENSG00000161542, ENSG00000251493, ENSG00000113083, 
 ENSG00000168214, ENSG00000179335, ENSG00000109771, ENSG00000072682, 
 ENSG00000085733, ENSG00000005448, ENSG00000070495, ENSG00000115548, 
 ENSG00000161277, ENSG00000109107, ENSG00000113739, ENSG00000173262, 
 ENSG00000152256, ENSG00000115657, ENSG00000114268, ENSG00000116685, 
 ENSG00000172890, ENSG00000162129 

 Elvidge 2006 
 ●  HGNC  : PLIN2, ADM, ADORA2B, AK3, AK4, AKAP12, ALDOC,  ANGPTL4, SH2B2, 

 ARTN, ASPH, ATF3, B3GNT4, BBX, BCOR, BHLHE40, BNIP3, BNIP3L, DST, 
 AHNAK2, RBCK1, NREP, CA9, CAV1, CCNG2, CD59, CSGALNACT1, CITED2, 
 KLF6, CSRP2, CXCR4, CYB5A, CYP1A1, CYP1B1, CCN1, PXDN, DAAM1, DDIT4, 
 DDR1, DHRS3, ZNF395, DPYSL2, DPYSL4, KLHL24, DSC2, DTNA, FAM162A, 
 EFNA1, EFNA3, EGFR, EGR1, ELF3, ADGRE2, ENO2, ERO1A, FAM13A, 
 TMEM45A, YEATS2, ANKZF1, ZNF654, SRD5A3, FLNB, FOS, FYN, GADD45B, 
 GBE1, GDAP1L1, GDF15, STBD1, GJA1, GLRX, GPR87, GYS1, HCFC1R1, HEY1, 
 HILPDA, HK2, HLA-DRB3, HOXA7, FAM216A, IGFBP3, IGFBP5, CADM1, ILVBL, 
 INHA, INSIG2, ISG20, ITGB4, ITPR1, KDM3A, KDM4B, JUN, OBSL1, ATG14, 
 CEMIP, KLF7, KRT15, KRT7, LOX, LOXL1, LOXL2, MAGED4, MET, ORAI3, 
 NDRG1, NFIL3, NOL3, NR3C1, OPN3, P4HA1, P4HA2, PAM, PTTG1IP, PDGFB, 
 PDGFRL, PDK1, PFKFB3, PFKP, PGK1, PGM1, EGLN1, EGLN3, PHLDA1, PIM1, 
 PLAC8, PLAUR, POLR2J2, PPFIA4, PRKCA, ZMYND8, PRRX1, PTPRO, QSOX1, 
 GPRC5A, RBPJ, RLF, RNASE4, RRAGD, S100A2, S100A4, S100A6, SAMD4A, 
 SAT1, ATXN1, SCARB1, SCNN1B, SERPINE1, SH3GL3, SLC2A1, SLCO4A1, 
 SORL1, SOX9, SPAG4, SPOCK1, SRCAP, SRPX, STC1, STC2, TBC1D3, TGFBI, 
 TIPARP, TMEFF1, TNFAIP8, TRA2A, TXNIP, UPK1A, VEGFA, VEGFC, VLDLR, 
 CCN5, WSB1, YPEL1, ZNF292 

 ●  ENSG ID  : ENSG00000230463, ENSG00000223680, ENSG00000229767, 
 ENSG00000196101, ENSG00000234078, ENSG00000215522, ENSG00000231679, 
 ENSG00000137332, ENSG00000230456, ENSG00000101955, ENSG00000067082, 
 ENSG00000101040, ENSG00000170525, ENSG00000100311, ENSG00000147853, 
 ENSG00000183255, ENSG00000104213, ENSG00000147408, ENSG00000109046, 
 ENSG00000127663, ENSG00000164548, ENSG00000151490, ENSG00000129521, 
 ENSG00000170345, ENSG00000159167, ENSG00000092964, ENSG00000168447, 
 ENSG00000127507, ENSG00000197930, ENSG00000162496, ENSG00000105135, 
 ENSG00000085063, ENSG00000134013, ENSG00000186918, ENSG00000165030, 
 ENSG00000104765, ENSG00000080603, ENSG00000124194, ENSG00000130508, 
 ENSG00000137193, ENSG00000166347, ENSG00000134769, ENSG00000114480, 
 ENSG00000185567, ENSG00000106366, ENSG00000198363, ENSG00000100027, 
 ENSG00000134755, ENSG00000138061, ENSG00000241697, ENSG00000147872, 
 ENSG00000171346, ENSG00000188994, ENSG00000164683, ENSG00000173221, 
 ENSG00000152661, ENSG00000101187, ENSG00000011422, ENSG00000140465, 

 335 



 ENSG00000176171, ENSG00000117000, ENSG00000151640, ENSG00000114439, 
 ENSG00000125826, ENSG00000025039, ENSG00000129038, ENSG00000020577, 
 ENSG00000105668, ENSG00000061656, ENSG00000064205, ENSG00000137642, 
 ENSG00000258818, ENSG00000162433, ENSG00000134986, ENSG00000107159, 
 ENSG00000120708, ENSG00000103888, ENSG00000114023, ENSG00000159399, 
 ENSG00000154229, ENSG00000131016, ENSG00000175938, ENSG00000175183, 
 ENSG00000138640, ENSG00000140600, ENSG00000104812, ENSG00000079739, 
 ENSG00000138764, ENSG00000183337, ENSG00000103145, ENSG00000145779, 
 ENSG00000164442, ENSG00000010810, ENSG00000100592, ENSG00000102144, 
 ENSG00000113580, ENSG00000163659, ENSG00000150630, ENSG00000114796, 
 ENSG00000125629, ENSG00000130066, ENSG00000135480, ENSG00000104419, 
 ENSG00000121966, ENSG00000115461, ENSG00000148926, ENSG00000067057, 
 ENSG00000154545, ENSG00000152377, ENSG00000163872, ENSG00000176383, 
 ENSG00000130513, ENSG00000135245, ENSG00000228049, ENSG00000116260, 
 ENSG00000126775, ENSG00000168209, ENSG00000105974, ENSG00000105976, 
 ENSG00000147852, ENSG00000112715, ENSG00000167772, ENSG00000140939, 
 ENSG00000111674, ENSG00000181458, ENSG00000265972, ENSG00000099860, 
 ENSG00000125398, ENSG00000118263, ENSG00000163435, ENSG00000116132, 
 ENSG00000134107, ENSG00000143847, ENSG00000172183, ENSG00000122884, 
 ENSG00000135766, ENSG00000162772, ENSG00000160999, ENSG00000145287, 
 ENSG00000182985, ENSG00000113083, ENSG00000168214, ENSG00000128039, 
 ENSG00000146674, ENSG00000072682, ENSG00000132470, ENSG00000146648, 
 ENSG00000122592, ENSG00000118804, ENSG00000120738, ENSG00000115548, 
 ENSG00000109107, ENSG00000113739, ENSG00000143590, ENSG00000169242, 
 ENSG00000175105, ENSG00000152256, ENSG00000073060, ENSG00000145730, 
 ENSG00000124788, ENSG00000204580, ENSG00000163516, ENSG00000204856, 
 ENSG00000151914, ENSG00000139289, ENSG00000142871, ENSG00000013588, 
 ENSG00000136068, ENSG00000117394, ENSG00000150995, ENSG00000124006, 
 ENSG00000123999, ENSG00000138271, ENSG00000117407, ENSG00000177606, 
 ENSG00000170425, ENSG00000274611, ENSG00000054277, ENSG00000197956, 
 ENSG00000196154, ENSG00000196754 

 Peters 2006 
 ●  HGNC  : ADSS2, AK1, AKR1C3, AIFM2, ANGPTL4, ATG4A, APLP2,  APP, ARHGDIB, 

 ARID4A, MANF, ASXL1, ATP2A2, ATP5MC1, BACE2, BCL7B, BHLHE40, BNIP3L, 
 BPI, MYG1, TIGAR, HSPB11, GCFC2, CNRIP1, CALR, CAMLG, CANX, CCT6A, 
 CDH5, CERK, CFHR1, RCC1, CLTA, CORIN, CTDSP2, CCN2, CTHRC1, CXCR4, 
 PCBD2, DCTN2, DDIT4, DDX3X, DDX47, DEGS1, DNAJB1, UBE2O, EFEMP1, 
 EIF4A2, EWSR1, EXTL3, IFI27L2, FEN1, FKBP4, FLI1, PRPF38B, PRPF38A, 
 PIH1D1, QSER1, GAPDH, GGH, GMPPB, GSTP1, GTF3C1, HBG2, HLA-A, HM13, 
 HMG20B, HMGA1, HMMR, HSPA5, HSPA8, HSPE1, HSPH1, IARS1, IGFBP7, 
 ITGA10, JUN, TUBA1B, ERGIC1, PPP4R3B, KRT10, LDB1, LOXL2, LSM6, LTBR, 
 MALAT1, MEF2B, MKI67, MORF4L1, MRPL32, MVP, NAP1L1, NDFIP1, NDST3, 
 NFKBIE, NOP10, NQO1, NSFL1C, OAZ1, OPTN, PAFAH2, PCYOX1, PDCD4, 
 PITPNA, PLOD2, POLR2F, PPIF, PPOX, PRDX1, PRDX6, PRKAR1A, PROCR, 
 PSMB2, WDR83OS, PTGIS, PXN, RAB11A, RAB5A, RAC1, IPO5, RCL1, RHOD, 
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 RPL13A, RPL14, RPL3, RPL39, RPL8, RPLP0, RPS11, RPS3, RPS8, RTN4, 
 SAP18, SIGLEC8, SNRNP70, SPAG4, SPTAN1, SRPX, SSR3, STAT3, AURKA, 
 STX10, SUMO3, TCF19, ALYREF, TOR3A, TPD52L2, TPI1, TPT1, TRAP1, 
 TUBA1C, TUBB2A, TWIST2, TXNDC5, PDIA6, UQCRH, WDR43, WWTR1 

 ●  ENSG ID  : ENSG00000224472, ENSG00000206455, ENSG00000227715, 
 ENSG00000206505, ENSG00000224941, ENSG00000223980, ENSG00000229215, 
 ENSG00000224320, ENSG00000276879, ENSG00000233890, ENSG00000224379, 
 ENSG00000231834, ENSG00000150459, ENSG00000235657, ENSG00000120694, 
 ENSG00000142192, ENSG00000234674, ENSG00000065150, ENSG00000283777, 
 ENSG00000171456, ENSG00000196139, ENSG00000101955, ENSG00000100316, 
 ENSG00000123240, ENSG00000184900, ENSG00000288335, ENSG00000100422, 
 ENSG00000101425, ENSG00000182240, ENSG00000124212, ENSG00000133112, 
 ENSG00000120158, ENSG00000004478, ENSG00000239264, ENSG00000101844, 
 ENSG00000104904, ENSG00000206503, ENSG00000188846, ENSG00000146731, 
 ENSG00000106635, ENSG00000101294, ENSG00000134013, ENSG00000104765, 
 ENSG00000144566, ENSG00000119632, ENSG00000137309, ENSG00000101000, 
 ENSG00000013364, ENSG00000251562, ENSG00000101150, ENSG00000150593, 
 ENSG00000213999, ENSG00000158006, ENSG00000100142, ENSG00000175215, 
 ENSG00000077235, ENSG00000182944, ENSG00000145244, ENSG00000173156, 
 ENSG00000148773, ENSG00000126067, ENSG00000146232, ENSG00000173660, 
 ENSG00000115380, ENSG00000115310, ENSG00000116005, ENSG00000087586, 
 ENSG00000145050, ENSG00000275052, ENSG00000061656, ENSG00000215301, 
 ENSG00000088833, ENSG00000181019, ENSG00000109971, ENSG00000126602, 
 ENSG00000134748, ENSG00000164932, ENSG00000164100, ENSG00000005436, 
 ENSG00000149273, ENSG00000185787, ENSG00000132570, ENSG00000198918, 
 ENSG00000196565, ENSG00000131507, ENSG00000032219, ENSG00000089157, 
 ENSG00000151702, ENSG00000152952, ENSG00000103769, ENSG00000106992, 
 ENSG00000113719, ENSG00000111348, ENSG00000164167, ENSG00000137310, 
 ENSG00000121966, ENSG00000119865, ENSG00000042286, ENSG00000182117, 
 ENSG00000198728, ENSG00000143127, ENSG00000122705, ENSG00000159199, 
 ENSG00000044574, ENSG00000105366, ENSG00000168496, ENSG00000072571, 
 ENSG00000197694, ENSG00000137563, ENSG00000168209, ENSG00000163453, 
 ENSG00000106591, ENSG00000167772, ENSG00000108179, ENSG00000123416, 
 ENSG00000233608, ENSG00000104872, ENSG00000142534, ENSG00000111669, 
 ENSG00000187109, ENSG00000060749, ENSG00000104852, ENSG00000078237, 
 ENSG00000174238, ENSG00000012232, ENSG00000117592, ENSG00000179776, 
 ENSG00000132002, ENSG00000186283, ENSG00000136238, ENSG00000142541, 
 ENSG00000105583, ENSG00000134107, ENSG00000161016, ENSG00000196305, 
 ENSG00000114850, ENSG00000018408, ENSG00000163811, ENSG00000173540, 
 ENSG00000175931, ENSG00000156976, ENSG00000164615, ENSG00000111321, 
 ENSG00000137267, ENSG00000139637, ENSG00000035687, ENSG00000104915, 
 ENSG00000111640, ENSG00000179218, ENSG00000127022, ENSG00000175203, 
 ENSG00000118523, ENSG00000084234, ENSG00000143870, ENSG00000064961, 
 ENSG00000134186, ENSG00000167553, ENSG00000168610, ENSG00000084207, 
 ENSG00000186395, ENSG00000143224, ENSG00000089159, ENSG00000183684, 
 ENSG00000142937, ENSG00000213782, ENSG00000174437, ENSG00000108946, 
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 ENSG00000115541, ENSG00000143753, ENSG00000177606, ENSG00000117450, 
 ENSG00000081870, ENSG00000244414, ENSG00000180198 

 Aprelikova 2006 
 ●  HGNC  : SYDE1, ABCB6, PLIN2, ADM, ADORA2B, NCKIPSD,  AK2, AK3, ALDOC, 

 ANGPTL4, RIPK4, KLK3, ASPH, B3GNT4, BBX, BCKDK, MALL, BHLHE40, BLCAP, 
 BNIP3, BNIP3L, FOXN3, MRGBP, PDXK, NREP, CA4, CABIN1, CAV1, CCNG2, 
 CFDP1, FOXN3, CHSY1, CITED2, CKB, CLK1, CLK3, CNNM1, CNOT8, CRKL, 
 TLCD3A, RTL8C, PXDN, DAAM1, DARS1, DDX41, DHX40, C15orf39, ZNF395, 
 EEF1AKMT3, RNF208, DNAJB2, DNM2, CDK2AP2, DPYSL4, DSCAM, DSP, 
 DUSP3, FAM162A, EFNA1, EFNA3, EGLN1, EGLN3, EHD2, EI24, EIF4EBP1, 
 ELF3, CTTN, ENDOG, ENO2, ERO1A, F8A1, FAM13A, FER1L4, TMEM45A, 
 YEATS2, ANKZF1, TSR1, NAT10, COA1, ZNF654, RSBN1, MAP6D1, EFHD1, 
 OXSM, ATG9A, FOSL2, FOS, FOSL2, FOXD1, FZD1, FZD7, GADD45B, KDM4C, 
 GBE1, STBD1, TNFAIP8, GGA2, GLG1, GLRX, GPI, SPSB2, GRPEL1, GYS1, 
 HEY1, HILPDA, H4C8, HK1, HK2, HLA-B, HLA-C, HLA-DRB3, HLA-E, HLA-G, 
 HMG20B, HOXA4, FAM216A, IGFBP3, ILVBL, INHBB, INSIG2, JAG2, KDM3A, 
 JUND, VGLL4, OBSL1, KDM4B, LDHA, LDLR, LGALS8, LOXL1, LOXL2, AGPAT5, 
 MAPK7, MAPT, PRR7, ORAI3, ZBTB17, MLH3, MPI, MT1X, MXI1, N4BP3, NARF, 
 NDRG1, NDUFB8, NFE2L1, NOL3, NR2F2, P4HA1, P4HA2, PAM, PAQR6, NAMPT, 
 ZNF395, PDK1, PDLIM2, ECI2, PES1, PEX3, PFKFB3, PFKFB4, PFKP, PGK1, 
 PGM1, PGRMC2, PIGA, PITPNC1, PKD1, PKM, GDF15, PLAC8, PLOD1, PLOD2, 
 KDM5B, PPME1, PRRX1, PNRC1, PPFIA4, PPP1R3C, PPP2R5B, ZMYND8, 
 LONP1, CAVIN1, PYGL, QSOX1, RAB20, RAB3A, RNH1, GPRC5A, RASSF1, 
 RBPJ, RDH11, RHBDL2, RLF, RRAGA, RRAGD, DDIT4, SAMD4A, SAP30, SAV1, 
 SCARB1, SCD, NPTN, SLCO4A1, SLC35E1, SMYD2, SNAPC1, SOX12, SOX9, 
 SPAG4, STC1, STC2, TBC1D3, THBS4, TNFAIP3, TNIP1, TRAM2, MED24, TRIB2, 
 RNF216, TRIM52, VEGFA, VEGFB, VLDLR, WASF2, CCN5, WSB1, ZFP36L1, 
 RNF113A, ZNF292 

 ●  ENSG ID  : ENSG00000276230, ENSG00000276051, ENSG00000281670, 
 ENSG00000233095, ENSG00000206450, ENSG00000230463, ENSG00000276155, 
 ENSG00000277956, ENSG00000206493, ENSG00000282019, ENSG00000235680, 
 ENSG00000206435, ENSG00000223532, ENSG00000228964, ENSG00000225201, 
 ENSG00000233841, ENSG00000196101, ENSG00000236632, ENSG00000230413, 
 ENSG00000230254, ENSG00000224608, ENSG00000235346, ENSG00000231679, 
 ENSG00000229252, ENSG00000232126, ENSG00000237022, ENSG00000206452, 
 ENSG00000233904, ENSG00000237216, ENSG00000228299, ENSG00000225691, 
 ENSG00000206506, ENSG00000284980, ENSG00000160209, ENSG00000101040, 
 ENSG00000170525, ENSG00000288401, ENSG00000288299, ENSG00000171587, 
 ENSG00000183421, ENSG00000147853, ENSG00000008710, ENSG00000139832, 
 ENSG00000166619, ENSG00000196365, ENSG00000144560, ENSG00000120913, 
 ENSG00000109046, ENSG00000127663, ENSG00000129521, ENSG00000170345, 
 ENSG00000159167, ENSG00000119938, ENSG00000088340, ENSG00000135372, 
 ENSG00000105137, ENSG00000197930, ENSG00000187840, ENSG00000105135, 
 ENSG00000134013, ENSG00000109519, ENSG00000186918, ENSG00000104765, 
 ENSG00000065308, ENSG00000099194, ENSG00000184916, ENSG00000127526, 
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 ENSG00000130508, ENSG00000158195, ENSG00000114480, ENSG00000198363, 
 ENSG00000099991, ENSG00000156642, ENSG00000178802, ENSG00000147872, 
 ENSG00000188994, ENSG00000008838, ENSG00000165195, ENSG00000164683, 
 ENSG00000173221, ENSG00000075426, ENSG00000100029, ENSG00000108861, 
 ENSG00000158315, ENSG00000101187, ENSG00000101189, ENSG00000176171, 
 ENSG00000117000, ENSG00000119946, ENSG00000151640, ENSG00000114439, 
 ENSG00000151748, ENSG00000100504, ENSG00000167173, ENSG00000119684, 
 ENSG00000105220, ENSG00000025039, ENSG00000129038, ENSG00000099942, 
 ENSG00000020577, ENSG00000034693, ENSG00000061656, ENSG00000134333, 
 ENSG00000064205, ENSG00000153774, ENSG00000177732, ENSG00000166165, 
 ENSG00000134986, ENSG00000113296, ENSG00000149547, ENSG00000114023, 
 ENSG00000108406, ENSG00000159399, ENSG00000154217, ENSG00000175938, 
 ENSG00000103507, ENSG00000164040, ENSG00000187193, ENSG00000212864, 
 ENSG00000146278, ENSG00000138640, ENSG00000082641, ENSG00000145911, 
 ENSG00000068971, ENSG00000118503, ENSG00000104812, ENSG00000079739, 
 ENSG00000125352, ENSG00000090863, ENSG00000138764, ENSG00000185551, 
 ENSG00000145779, ENSG00000164442, ENSG00000107077, ENSG00000152952, 
 ENSG00000100592, ENSG00000134590, ENSG00000288722, ENSG00000024422, 
 ENSG00000102144, ENSG00000142515, ENSG00000130164, ENSG00000072042, 
 ENSG00000125629, ENSG00000103365, ENSG00000104419, ENSG00000053254, 
 ENSG00000155876, ENSG00000148926, ENSG00000067057, ENSG00000167434, 
 ENSG00000163872, ENSG00000123427, ENSG00000176383, ENSG00000011275, 
 ENSG00000115866, ENSG00000163083, ENSG00000105649, ENSG00000130522, 
 ENSG00000130513, ENSG00000164105, ENSG00000119950, ENSG00000156515, 
 ENSG00000135245, ENSG00000131188, ENSG00000183258, ENSG00000116260, 
 ENSG00000168209, ENSG00000157240, ENSG00000105974, ENSG00000147852, 
 ENSG00000112715, ENSG00000167772, ENSG00000167136, ENSG00000140939, 
 ENSG00000180834, ENSG00000111674, ENSG00000181458, ENSG00000166136, 
 ENSG00000185650, ENSG00000204592, ENSG00000151093, ENSG00000204525, 
 ENSG00000099860, ENSG00000125398, ENSG00000143499, ENSG00000131873, 
 ENSG00000117139, ENSG00000163435, ENSG00000116132, ENSG00000214517, 
 ENSG00000134107, ENSG00000143847, ENSG00000122884, ENSG00000135766, 
 ENSG00000067225, ENSG00000145901, ENSG00000023608, ENSG00000105835, 
 ENSG00000155189, ENSG00000234745, ENSG00000251493, ENSG00000145287, 
 ENSG00000141562, ENSG00000168214, ENSG00000173511, ENSG00000146674, 
 ENSG00000155508, ENSG00000166484, ENSG00000179335, ENSG00000072682, 
 ENSG00000085733, ENSG00000197576, ENSG00000118804, ENSG00000115548, 
 ENSG00000204632, ENSG00000198721, ENSG00000109107, ENSG00000106603, 
 ENSG00000113739, ENSG00000143590, ENSG00000169242, ENSG00000175105, 
 ENSG00000167721, ENSG00000152256, ENSG00000111671, ENSG00000064961, 
 ENSG00000073060, ENSG00000145730, ENSG00000183718, ENSG00000079805, 
 ENSG00000096696, ENSG00000158406, ENSG00000115657, ENSG00000198925, 
 ENSG00000163516, ENSG00000204856, ENSG00000177469, ENSG00000114268, 
 ENSG00000167797, ENSG00000213672, ENSG00000083444, ENSG00000144063, 
 ENSG00000186868, ENSG00000023191, ENSG00000167695, ENSG00000013588, 
 ENSG00000068028, ENSG00000124006, ENSG00000160781, ENSG00000115468, 
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 ENSG00000116977, ENSG00000170425, ENSG00000274611, ENSG00000004455, 
 ENSG00000155760, ENSG00000013441, ENSG00000135924, ENSG00000071575, 
 ENSG00000081019, ENSG00000116809 

 Bosco 2006 
 ●  HGNC  : ACVR1B, ADAM8, ADM, ADORA2B, AGPAT5, AK3, AK4,  ALDOA, ALDOC, 

 APOBR, APOC4, ATF2, ATF5, BACH1, BCAT1, BCKDHA, BHLHE40, BLZF1, 
 BNIP3, BNIP3L, CD93, CA12, CALCRL, CCL2, CCL20, CCNG2, CCR5, CD28, 
 CD55, CD55, CD59, CD69, CD79A, CD86, CELSR3, CKLF, CD300C, CNR1, 
 COL7A1, COLEC12, CSF1, CSF3, CTSC, CTSD, CX3CR1, CXCL2, CXCL3, 
 CXCL5, CXCR4, DLG1, DSC3, DSP, EGLN1, EGR1, EGR3, ENO1, ENO2, ERO1A, 
 F3, FA2H, FABP4, FCAR, FCGR2A, FCGR2B, FCGR3A, FGF1, FLNB, FLT1, FN1, 
 FOSB, FOSL2, GAPDH, GBE1, GPI, HAS1, HILPDA, HK2, HRH4, HSF2, ICAM5, 
 ID1, ID2, IL1A, IL36G, IL1RAP, IL1RN, IL23A, IL4, IL6, IL6ST, INHBA, IRAK3, IRF4, 
 KDM3A, JUN, KIR3DL2, KLF10, KLRF1, KRTAP4-7, LAMB3, LDHA, LGALS8, 
 MARCO, MCL1, MET, MIF, MMP1, MMP16, MMP19, MSR1, MXI1, NDRG1, NFYA, 
 NPM1, NR2C1, NR4A2, OSBP, OSBPL10, P4HA1, P4HA2, PAM, PANX1, PARVB, 
 PCDHGC3, PDK1, PFKFB4, PFKP, PGAM1, PGK1, PIK3CB, PIK3R1, PIP5K1A, 
 PKD2, PLCL2, PTGIS, PTGS2, RAB7A, ACKR3, RGS1, RUNX1, RUNX2, SCARF1, 
 SEMA4C, SEMA4D, SEMA4F, SLC2A1, SLC2A3, SMTN, SNAPC1, SNTA1, SP4, 
 SPP1, TAF9B, TCF7L2, MLX, TFPI, TFPI2, TGFBR1, TRIM24, TNF, TNFRSF10B, 
 TNFRSF11B, TNFRSF21, TNFRSF9, TNFSF14, TNFSF15, TNS1, TPI1, TREM1, 
 VEGFA, VLDLR, WNT5A, WSB1 

 ●  ENSG ID  : ENSG00000273735, ENSG00000276858, ENSG00000276424, 
 ENSG00000273738, ENSG00000276985, ENSG00000277982, ENSG00000275511, 
 ENSG00000274722, ENSG00000278850, ENSG00000276004, ENSG00000278474, 
 ENSG00000278710, ENSG00000278442, ENSG00000278758, ENSG00000275626, 
 ENSG00000275083, ENSG00000275136, ENSG00000275262, ENSG00000275970, 
 ENSG00000275269, ENSG00000278726, ENSG00000275416, ENSG00000276882, 
 ENSG00000275629, ENSG00000276357, ENSG00000278809, ENSG00000278656, 
 ENSG00000278403, ENSG00000278361, ENSG00000277709, ENSG00000275838, 
 ENSG00000228978, ENSG00000278415, ENSG00000278707, ENSG00000276739, 
 ENSG00000276701, ENSG00000276336, ENSG00000273911, ENSG00000275564, 
 ENSG00000274580, ENSG00000282019, ENSG00000204490, ENSG00000275566, 
 ENSG00000223952, ENSG00000277181, ENSG00000228849, ENSG00000228321, 
 ENSG00000158270, ENSG00000230108, ENSG00000102755, ENSG00000284017, 
 ENSG00000125810, ENSG00000206439, ENSG00000284466, ENSG00000284046, 
 ENSG00000283750, ENSG00000156273, ENSG00000284192, ENSG00000134489, 
 ENSG00000283951, ENSG00000284384, ENSG00000284381, ENSG00000284213, 
 ENSG00000284245, ENSG00000284004, ENSG00000284980, ENSG00000283975, 
 ENSG00000159216, ENSG00000284295, ENSG00000284063, ENSG00000283953, 
 ENSG00000288299, ENSG00000284528, ENSG00000284061, ENSG00000124212, 
 ENSG00000147853, ENSG00000154822, ENSG00000137265, ENSG00000059804, 
 ENSG00000105866, ENSG00000150045, ENSG00000109046, ENSG00000110848, 
 ENSG00000101400, ENSG00000179388, ENSG00000060982, ENSG00000110048, 
 ENSG00000038945, ENSG00000134762, ENSG00000188677, ENSG00000197930, 
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 ENSG00000074800, ENSG00000085063, ENSG00000104765, ENSG00000124813, 
 ENSG00000120889, ENSG00000125968, ENSG00000171314, ENSG00000108691, 
 ENSG00000115738, ENSG00000148737, ENSG00000105825, ENSG00000183963, 
 ENSG00000114480, ENSG00000074410, ENSG00000124731, ENSG00000110218, 
 ENSG00000106799, ENSG00000170323, ENSG00000103089, ENSG00000075426, 
 ENSG00000156103, ENSG00000240972, ENSG00000163735, ENSG00000176171, 
 ENSG00000134352, ENSG00000049249, ENSG00000105369, ENSG00000105220, 
 ENSG00000025156, ENSG00000240403, ENSG00000186431, ENSG00000134333, 
 ENSG00000163734, ENSG00000164761, ENSG00000162433, ENSG00000146072, 
 ENSG00000159399, ENSG00000114013, ENSG00000125740, ENSG00000184730, 
 ENSG00000145675, ENSG00000122779, ENSG00000117525, ENSG00000138764, 
 ENSG00000135622, ENSG00000136688, ENSG00000125735, ENSG00000113578, 
 ENSG00000143398, ENSG00000102144, ENSG00000187325, ENSG00000181634, 
 ENSG00000196083, ENSG00000149925, ENSG00000104419, ENSG00000121966, 
 ENSG00000148926, ENSG00000067057, ENSG00000051382, ENSG00000113520, 
 ENSG00000105376, ENSG00000248098, ENSG00000105509, ENSG00000232810, 
 ENSG00000184371, ENSG00000119950, ENSG00000135245, ENSG00000117475, 
 ENSG00000105976, ENSG00000147852, ENSG00000169136, ENSG00000112715, 
 ENSG00000168329, ENSG00000115966, ENSG00000187764, ENSG00000111674, 
 ENSG00000111669, ENSG00000075785, ENSG00000151651, ENSG00000064989, 
 ENSG00000123342, ENSG00000074660, ENSG00000122641, ENSG00000217555, 
 ENSG00000003436, ENSG00000155090, ENSG00000134107, ENSG00000144476, 
 ENSG00000108342, ENSG00000115008, ENSG00000109861, ENSG00000122884, 
 ENSG00000136244, ENSG00000135766, ENSG00000117984, ENSG00000023608, 
 ENSG00000155189, ENSG00000196878, ENSG00000178562, ENSG00000135503, 
 ENSG00000181163, ENSG00000114251, ENSG00000090104, ENSG00000196611, 
 ENSG00000111640, ENSG00000153234, ENSG00000072682, ENSG00000118762, 
 ENSG00000081041, ENSG00000075711, ENSG00000120738, ENSG00000115548, 
 ENSG00000109107, ENSG00000118432, ENSG00000152256, ENSG00000267467, 
 ENSG00000240184, ENSG00000145730, ENSG00000096696, ENSG00000118785, 
 ENSG00000001167, ENSG00000196352, ENSG00000115009, ENSG00000114268, 
 ENSG00000110944, ENSG00000008300, ENSG00000114270, ENSG00000144645, 
 ENSG00000108788, ENSG00000090376, ENSG00000120798, ENSG00000160791, 
 ENSG00000136068, ENSG00000117394, ENSG00000072694, ENSG00000143226, 
 ENSG00000116977, ENSG00000203747, ENSG00000143384, ENSG00000115414, 
 ENSG00000177606, ENSG00000170425, ENSG00000167850, ENSG00000240871, 
 ENSG00000168758, ENSG00000073756, ENSG00000136689, ENSG00000019169, 
 ENSG00000079308 

 Shi 2007 
 ●  HGNC  : B4GALT5, CLCN7, CXCL13, DEDD, DTX2, FBLN2, FGFR4,  FMC1, IFIH1, 

 KCNJ5, LMAN1, PBLD, MLC1, MMP2, NCOR2, NDUFS2, PLCH2, POLE2, ACOT8, 
 RAB3A, ROCK2, SCN5A, GPBP1L1, SRP54, STK25, TMEM9, UBA7, VEGFA, 
 GDI1, ZNF33A, ZPBP 

 ●  ENSG ID  : ENSG00000276429, ENSG00000282379, ENSG00000074695, 
 ENSG00000103249, ENSG00000158470, ENSG00000042813, ENSG00000149527, 
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 ENSG00000100479, ENSG00000189180, ENSG00000163520, ENSG00000182179, 
 ENSG00000108187, ENSG00000203879, ENSG00000101473, ENSG00000087245, 
 ENSG00000100427, ENSG00000164898, ENSG00000196498, ENSG00000120457, 
 ENSG00000100883, ENSG00000160867, ENSG00000105649, ENSG00000112715, 
 ENSG00000115694, ENSG00000134318, ENSG00000091073, ENSG00000183873, 
 ENSG00000156234, ENSG00000158796, ENSG00000158864, ENSG00000115267, 
 ENSG00000159592, ENSG00000116857 

 Sung 2007 
 ●  HGNC  : ADM, AK3, ALDOC, ARRDC3, BHLHE40, BNIP3, BNIP3L,  BTG1, DEPP1, 

 OLMALINC, CA9, CCNG2, CDKN1C, CLEC2B, CLK1, CLK3, CNOT8, DDIT4, 
 DHRS3, TSC22D3, DUSP1, FAM162A, EDN2, EFNA1, EFNA3, EGLN3, ELF3, 
 ENO2, ERO1A, FAM13A, TMEM45A, WDR54, FOS, FOSL2, FOXD1, FOXO3, 
 FUT11, GADD45B, GOLGA8A, HES1, HEY1, HILPDA, HK2, IER3, IGFBP3, INSIG1, 
 INSIG2, ITGA5, KDM3A, KDM4B, LOX, LOXL2, LRP2BP, MAFF, MAFK, ERRFI1, 
 MOB3A, MUC1, MXI1, NDRG1, NFIL3, NOL3, P4HA2, PAG1, NAMPT, PDK1, 
 PFKFB3, PFKFB4, PGK1, PLOD2, RAB20, RAB40C, GPRC5A, RARA, SEMA4B, 
 SERPINE1, SERTAD2, SLC2A1, SLC2A14, SLC2A3, SLC6A8, STC1, STC2, 
 TBC1D3, TIPARP, TPBG, TRRAP, WSB1, ZNF292, ZNF395 

 ●  ENSG ID  : ENSG00000273707, ENSG00000235030, ENSG00000237155, 
 ENSG00000230128, ENSG00000227231, ENSG00000283085, ENSG00000206478, 
 ENSG00000185022, ENSG00000170525, ENSG00000197562, ENSG00000147853, 
 ENSG00000139832, ENSG00000059804, ENSG00000172081, ENSG00000198517, 
 ENSG00000109046, ENSG00000127663, ENSG00000129521, ENSG00000170345, 
 ENSG00000159167, ENSG00000116285, ENSG00000197930, ENSG00000162496, 
 ENSG00000134013, ENSG00000186918, ENSG00000165030, ENSG00000104765, 
 ENSG00000165507, ENSG00000131759, ENSG00000106366, ENSG00000076641, 
 ENSG00000161638, ENSG00000188994, ENSG00000127129, ENSG00000164683, 
 ENSG00000133639, ENSG00000075426, ENSG00000179833, ENSG00000176171, 
 ENSG00000130821, ENSG00000235823, ENSG00000113369, ENSG00000107159, 
 ENSG00000114023, ENSG00000159399, ENSG00000118689, ENSG00000186480, 
 ENSG00000138640, ENSG00000138764, ENSG00000120129, ENSG00000152952, 
 ENSG00000196367, ENSG00000146242, ENSG00000102144, ENSG00000163659, 
 ENSG00000125629, ENSG00000157514, ENSG00000196968, ENSG00000104419, 
 ENSG00000114315, ENSG00000148926, ENSG00000119950, ENSG00000135245, 
 ENSG00000168209, ENSG00000140939, ENSG00000111674, ENSG00000181458, 
 ENSG00000099860, ENSG00000163435, ENSG00000134107, ENSG00000105835, 
 ENSG00000251493, ENSG00000113083, ENSG00000185033, ENSG00000146674, 
 ENSG00000137331, ENSG00000155508, ENSG00000179335, ENSG00000109771, 
 ENSG00000072682, ENSG00000175265, ENSG00000005448, ENSG00000115548, 
 ENSG00000109107, ENSG00000113739, ENSG00000173262, ENSG00000143590, 
 ENSG00000169242, ENSG00000185499, ENSG00000152256, ENSG00000114268, 
 ENSG00000110852, ENSG00000013588, ENSG00000117394, ENSG00000129757, 
 ENSG00000274611, ENSG00000013441 
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 Winter 2007 
 ●  HGNC  : NTMT1, ADORA2B, AKR7A2P1, AK3, ALDOA, ANGPTL4,  ANKRD9, ANLN, 

 B4GALT2, BCAR1, BMS1, BNIP3, SLIRP, HAUS2, MRGBP, CA12, CA9, CDCA4, 
 COL4A5, CORO1C, TNS4, TANC2, DPM2, EIF2S1, GAPDH, GMFB, GSS, HES2, 
 HILPDA, HOMER1, CNIH4, CXCL8, IGF2BP2, KCTD11, TRMT5, KRT17, PEDS1, 
 LDHA, LDLR, LRP2BP, GPN3, C16orf74, ECE2, METTL22, MIF, MNAT1, MRPL14, 
 MRPS17, MTX1, NDRG1, NME1, NUDT15, P4HA1, PAWR, PDZD11, PFKFB4, 
 PGAM1, PGF, PGK1, PLAU, PLEKHG3, PPARD, PPM1J, PPP4R1, PSMA7, 
 PSMB7, PSMD2, PTGFRN, PVR, PYGL, RAN, RNF24, RNPS1, RUVBL2, S100A10, 
 S100A3, ZEB2, SLC16A1, SLC2A1, SLC6A10P, SLC6A8, SLCO1B3, TMTC3, 
 SNX24, SPTB, TEAD4, TFAP2C, TIMM23, TMEM30B, TPBG, TPD52L2, TPI1, 
 TUBB2A, VAPB, VEGFA, VEZT, XPO5 

 ●  ENSG ID  : ENSG00000276701, ENSG00000281917, ENSG00000280751, 
 ENSG00000283085, ENSG00000285460, ENSG00000288299, ENSG00000240849, 
 ENSG00000288399, ENSG00000136159, ENSG00000147853, ENSG00000101182, 
 ENSG00000124164, ENSG00000182107, ENSG00000205937, ENSG00000100983, 
 ENSG00000087510, ENSG00000020426, ENSG00000126814, ENSG00000011426, 
 ENSG00000197905, ENSG00000165733, ENSG00000154845, ENSG00000101150, 
 ENSG00000067365, ENSG00000214617, ENSG00000156381, ENSG00000171314, 
 ENSG00000239789, ENSG00000170779, ENSG00000137814, ENSG00000074410, 
 ENSG00000128422, ENSG00000188153, ENSG00000136930, ENSG00000131746, 
 ENSG00000177425, ENSG00000073008, ENSG00000240972, ENSG00000101189, 
 ENSG00000176171, ENSG00000050820, ENSG00000130821, ENSG00000119705, 
 ENSG00000100504, ENSG00000119630, ENSG00000197045, ENSG00000134333, 
 ENSG00000101236, ENSG00000122861, ENSG00000169429, ENSG00000154102, 
 ENSG00000107159, ENSG00000152413, ENSG00000028203, ENSG00000120509, 
 ENSG00000170921, ENSG00000064652, ENSG00000139324, ENSG00000148335, 
 ENSG00000146242, ENSG00000134247, ENSG00000136908, ENSG00000134001, 
 ENSG00000102144, ENSG00000130164, ENSG00000132341, ENSG00000155367, 
 ENSG00000149925, ENSG00000104419, ENSG00000265354, ENSG00000111700, 
 ENSG00000135245, ENSG00000180992, ENSG00000124571, ENSG00000112715, 
 ENSG00000167772, ENSG00000073792, ENSG00000111669, ENSG00000126822, 
 ENSG00000070182, ENSG00000175166, ENSG00000183207, ENSG00000122884, 
 ENSG00000110880, ENSG00000069812, ENSG00000137267, ENSG00000112033, 
 ENSG00000111640, ENSG00000109771, ENSG00000145194, ENSG00000239672, 
 ENSG00000111231, ENSG00000169554, ENSG00000114268, ENSG00000117394, 
 ENSG00000213859, ENSG00000143771, ENSG00000170425, ENSG00000155380, 
 ENSG00000229020, ENSG00000117411, ENSG00000173171, ENSG00000197747, 
 ENSG00000188015 

 Seigneuric 2007 (common) 
 ●  HGNC  : ACACA, AMH, BACH1, CCT2, GRM3, HMMR, IFI6, KDM4A,  NIT1, PAPPA, 

 PEX14, SLC5A12, TIMP2, TTLL5 
 ●  ENSG ID  : ENSG00000275176, ENSG00000156273, ENSG00000104899, 

 ENSG00000142655, ENSG00000148942, ENSG00000278540, ENSG00000182752, 
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 ENSG00000166226, ENSG00000066135, ENSG00000119685, ENSG00000035862, 
 ENSG00000072571, ENSG00000198822, ENSG00000158793, ENSG00000126709 

 Seigneuric 2007 (early0) 
 ●  HGNC  : ACACA, ACOX1, ACSS1, AIF1, AMH, ATF3, DMAC2L,  ATXN7L1, BACH1, 

 BET1L, BTBD7, NAA25, PIANP, CCL26, CCNH, CCT2, ACAP2, COL6A3, CPEB4, 
 DUSP3, EIF4EBP2, CIBAR1, GAS6, GATAD2B, GFOD2, GRK6, GRM3, H2AC16, 
 HMMR, IFI6, IGF1R, IGFBP1, IGSF11, IL22RA2, KDM4A, RALGAPB, LY86, MAML2, 
 NCAPH2, NIT1, NSD1, OSTM1, PAPPA, PARG, PCF11, PCSK1, PEX14, PHF10, 
 PIK3R4, PRKAG2, HACD3, RAB4B, RBM4, RBPMS, RHOBTB3, RNASE4, 
 SLC5A12, SOX12, SSH2, ST3GAL1, TERT, TIMP2, TLE3, TRNT1, TTLL5, TTLL10, 
 ZNF117, ZNF664 

 ●  ENSG ID  : ENSG00000261992, ENSG00000235588, ENSG00000275176, 
 ENSG00000206428, ENSG00000277222, ENSG00000234836, ENSG00000235985, 
 ENSG00000237727, ENSG00000156273, ENSG00000170471, ENSG00000183087, 
 ENSG00000154930, ENSG00000112799, ENSG00000104899, ENSG00000142655, 
 ENSG00000152926, ENSG00000164362, ENSG00000011114, ENSG00000148942, 
 ENSG00000162571, ENSG00000278540, ENSG00000184384, ENSG00000074696, 
 ENSG00000134480, ENSG00000165494, ENSG00000108861, ENSG00000188343, 
 ENSG00000141098, ENSG00000182752, ENSG00000175426, ENSG00000025770, 
 ENSG00000164485, ENSG00000144847, ENSG00000177732, ENSG00000157110, 
 ENSG00000258818, ENSG00000166226, ENSG00000167578, ENSG00000066135, 
 ENSG00000081087, ENSG00000106617, ENSG00000164292, ENSG00000008513, 
 ENSG00000140443, ENSG00000130024, ENSG00000179195, ENSG00000140332, 
 ENSG00000119685, ENSG00000114331, ENSG00000143614, ENSG00000113742, 
 ENSG00000035862, ENSG00000072571, ENSG00000204472, ENSG00000125375, 
 ENSG00000198055, ENSG00000141298, ENSG00000227345, ENSG00000148730, 
 ENSG00000196455, ENSG00000006606, ENSG00000165671, ENSG00000162772, 
 ENSG00000276903, ENSG00000146776, ENSG00000146678, ENSG00000161533, 
 ENSG00000177951, ENSG00000198822, ENSG00000139200, ENSG00000072756, 
 ENSG00000173933, ENSG00000111300, ENSG00000158793, ENSG00000126709, 
 ENSG00000163359 

 Seigneuric 2007 (early2) 
 ●  HGNC  : ACACA, ALKBH1, AMH, ATXN1, BACH1, C1GALT1C1,  TCAIM, CCT2, 

 CDR2, DTL, DDIAS, GRM3, HMMR, KAT5, ICMT, IFI6, ING1, ITGB4, KDM4A, 
 MAGEA6, MALAT1, MUC1, NIT1, PAPPA, PEX14, SCD, SGK1, SLC5A12, SPAG5, 
 TIMP2, DCAF8 

 ●  ENSG ID  : ENSG00000275176, ENSG00000156273, ENSG00000288368, 
 ENSG00000153487, ENSG00000104899, ENSG00000142655, ENSG00000197172, 
 ENSG00000179152, ENSG00000148942, ENSG00000099194, ENSG00000251562, 
 ENSG00000278540, ENSG00000140743, ENSG00000116237, ENSG00000182752, 
 ENSG00000100601, ENSG00000166226, ENSG00000066135, ENSG00000171155, 
 ENSG00000035862, ENSG00000072571, ENSG00000132716, ENSG00000143476, 
 ENSG00000172977, ENSG00000132470, ENSG00000165490, ENSG00000198822, 
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 ENSG00000076382, ENSG00000185499, ENSG00000124788, ENSG00000118515, 
 ENSG00000158793, ENSG00000126709 

 Beyer 2008 
 ●  HGNC  : ABCB6, ADM, ALDOC, ANG, ANGPTL4, ANKZF1, AP1G1,  AQP3, BCKDK, 

 BHLHE40, BNIP3, BNIP3L, BTG1, DEPP1, THEMIS2, C1R, FAM162A, C4orf19, 
 CA11, CA12, CA9, CD24, CDA, CDK19, CEBPD, CIDEB, CKB, COL11A1, CRABP2, 
 CSRP2, CXCR4, ACKR3, DAPK1, DDIT4, DUSP1, EFEMP2, EFNA1, ELL2, ENO2, 
 ENPEP, EPOR, ERO1A, FAM13A, FGB, FGF14, FSTL3, GAD1, GAL3ST1, GBE1, 
 GBP2, GLUL, GOLGA8G, GPI, GYS1, HCFC1R1, HILPDA, H2AC6, H2BC5, 
 H2AC18, H2AC19, HLA-DQB1, HNRNPD, HOXC10, IFITM1, IFITM2, INSIG2, 
 ITPR1, JAM2, KDM3A, KDM4B, JUNB, KCNK3, ERV3-2, KLF9, LBP, LGALS8, LOX, 
 LOXL2, LTBP3, MALL, MOAP1, MPI, MT1M, MT1X, MUC1, MXI1, NDRG1, NOL3, 
 NPEPPS, NRN1, OBSL1, OPN3, P4HA1, P4HA2, CDHR1, CDK18, PDK1, PDK3, 
 PDZK1IP1, PER1, PEX11A, PFKL, PFKP, PGK1, PLAGL1, PLOD1, PLOD2, PMP22, 
 PNMA2, POU5F1P3, POU5F1P4, PPFIA4, PPP1R13L, PPP1R3C, PTEN, RAB20, 
 RAD54B, RALGDS, RLF, RNASE4, RNASET2, RORA, RRAD, SELENOP, 
 SERPINA3, SERPINA5, SERPINE1, SERPING1, SH3BP2, SIPA1L1, SLC16A3, 
 SLC25A36, SLC2A1, SLC2A14, SLC2A3, SLC2A5, SLCO2B1, SMPDL3A, SPAG4, 
 SSBP2, SSPN, STBD1, STC1, TBC1D8, TGFA, TIPARP, TMCC1, TMEM45A, 
 TMEM47, TNS1, TSC22D3, VEGFA, VKORC1, VLDLR, YEATS2, ZFP36, ZNF292, 
 ZNF395 

 ●  ENSG ID  : ENSG00000273651, ENSG00000277090, ENSG00000282019, 
 ENSG00000278268, ENSG00000206237, ENSG00000231939, ENSG00000231286, 
 ENSG00000154721, ENSG00000284792, ENSG00000225824, ENSG00000206302, 
 ENSG00000233209, ENSG00000147027, ENSG00000070404, ENSG00000288512, 
 ENSG00000102466, ENSG00000141959, ENSG00000139832, ENSG00000285199, 
 ENSG00000059804, ENSG00000127663, ENSG00000235602, ENSG00000129988, 
 ENSG00000159167, ENSG00000142583, ENSG00000119938, ENSG00000183629, 
 ENSG00000197930, ENSG00000134013, ENSG00000186918, ENSG00000179344, 
 ENSG00000104765, ENSG00000165507, ENSG00000087266, ENSG00000196730, 
 ENSG00000240694, ENSG00000148600, ENSG00000154274, ENSG00000180818, 
 ENSG00000114480, ENSG00000074410, ENSG00000171303, ENSG00000106366, 
 ENSG00000178802, ENSG00000188994, ENSG00000272398, ENSG00000133639, 
 ENSG00000128242, ENSG00000165272, ENSG00000176171, ENSG00000117000, 
 ENSG00000137491, ENSG00000165943, ENSG00000138668, ENSG00000250722, 
 ENSG00000188488, ENSG00000105220, ENSG00000196136, ENSG00000067992, 
 ENSG00000221869, ENSG00000061656, ENSG00000197275, ENSG00000145687, 
 ENSG00000258818, ENSG00000155111, ENSG00000172594, ENSG00000214274, 
 ENSG00000166165, ENSG00000107159, ENSG00000114023, ENSG00000167397, 
 ENSG00000103507, ENSG00000175183, ENSG00000069667, ENSG00000205364, 
 ENSG00000187193, ENSG00000118495, ENSG00000138640, ENSG00000104812, 
 ENSG00000163235, ENSG00000136305, ENSG00000114120, ENSG00000120129, 
 ENSG00000103145, ENSG00000128016, ENSG00000152952, ENSG00000060718, 
 ENSG00000118985, ENSG00000102144, ENSG00000163659, ENSG00000125629, 
 ENSG00000157514, ENSG00000104419, ENSG00000121966, ENSG00000148926, 
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 ENSG00000160271, ENSG00000067057, ENSG00000172638, ENSG00000163872, 
 ENSG00000124785, ENSG00000158373, ENSG00000119950, ENSG00000135245, 
 ENSG00000159403, ENSG00000168209, ENSG00000147852, ENSG00000112715, 
 ENSG00000167772, ENSG00000140939, ENSG00000063180, ENSG00000187266, 
 ENSG00000166821, ENSG00000171862, ENSG00000111674, ENSG00000181458, 
 ENSG00000119138, ENSG00000134107, ENSG00000171223, ENSG00000171564, 
 ENSG00000144476, ENSG00000143847, ENSG00000179094, ENSG00000122884, 
 ENSG00000123096, ENSG00000197555, ENSG00000149131, ENSG00000128683, 
 ENSG00000168056, ENSG00000138792, ENSG00000113083, ENSG00000109099, 
 ENSG00000166747, ENSG00000072682, ENSG00000180573, ENSG00000185885, 
 ENSG00000166592, ENSG00000118804, ENSG00000115548, ENSG00000026297, 
 ENSG00000158825, ENSG00000109107, ENSG00000173262, ENSG00000169242, 
 ENSG00000185499, ENSG00000185201, ENSG00000152256, ENSG00000104881, 
 ENSG00000162366, ENSG00000115657, ENSG00000135821, ENSG00000163516, 
 ENSG00000141279, ENSG00000083444, ENSG00000144063, ENSG00000141526, 
 ENSG00000130775, ENSG00000117394, ENSG00000237872, ENSG00000150995, 
 ENSG00000124006, ENSG00000116977, ENSG00000172765, ENSG00000204634, 
 ENSG00000162645, ENSG00000143320, ENSG00000203812, ENSG00000272196, 
 ENSG00000079308, ENSG00000117266, ENSG00000054277 

 Hu 2009 
 ●  HGNC  : ADM, ANGPTL4, FLVCR2, DDIT4, FABP5, GAL, NDRG1,  ZNF384, PLOD1, 

 RRAGD, SLC16A3, UCHL1, VEGFA 
 ●  ENSG ID  : ENSG00000154277, ENSG00000069482, ENSG00000164687, 

 ENSG00000025039, ENSG00000119686, ENSG00000104419, ENSG00000148926, 
 ENSG00000168209, ENSG00000112715, ENSG00000167772, ENSG00000083444, 
 ENSG00000141526, ENSG00000126746 

 Benita 2009 
 ●  HGNC  : RRAGD, SPAG4, P4HA2, RSBN1, PLOD1, GADD45B,  CRKL, PGK1, 

 NDRG1, GYS1, NAMPT, TGFBR1, KDM4C, DHX40, GOSR2, WSB1, ALDOC, 
 GAPDH, LOX, NR3C1, STC2, KDM3A, MXI1, CXCR4, P4HA1, INSIG2, KDM4B, 
 RARA, PER2, SEC61G, LDHA, PIM1, ASCC1, PHLDA1, NARF, KLF10, SLC16A1, 
 ATF3, RAB8B, DDIT4, RBPJ, EFNA1, PGAM1, EIF1, BNIP3, CLK3, TMEM45A, 
 ANKRD37, ERO1A, ASPH, PJA2, VDAC1, PPME1, MIF 

 ●  ENSG ID  : ENSG00000105835, ENSG00000173812, ENSG00000104419, 
 ENSG00000179335, ENSG00000099942, ENSG00000169242, ENSG00000139289, 
 ENSG00000109107, ENSG00000127663, ENSG00000107077, ENSG00000132432, 
 ENSG00000111640, ENSG00000109046, ENSG00000141562, ENSG00000113580, 
 ENSG00000104812, ENSG00000197930, ENSG00000168214, ENSG00000186352, 
 ENSG00000288299, ENSG00000134333, ENSG00000113083, ENSG00000276701, 
 ENSG00000240972, ENSG00000198363, ENSG00000119950, ENSG00000099860, 
 ENSG00000162772, ENSG00000122884, ENSG00000138303, ENSG00000125629, 
 ENSG00000214517, ENSG00000166128, ENSG00000171314, ENSG00000102144, 
 ENSG00000137193, ENSG00000083444, ENSG00000168209, ENSG00000081019, 
 ENSG00000181458, ENSG00000115548, ENSG00000025039, ENSG00000131759, 
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 ENSG00000281917, ENSG00000155380, ENSG00000176171, ENSG00000061656, 
 ENSG00000106799, ENSG00000155090, ENSG00000213585, ENSG00000121966, 
 ENSG00000108406, ENSG00000113739, ENSG00000132326, ENSG00000072682, 
 ENSG00000108433, ENSG00000198961 

 Fardin 2009 
 ●  HGNC  : AK4, ALDOC, BNIP3, DDIT4, FAM162A, PDK1, VEGFA,  WDR5B 
 ●  ENSG ID  : ENSG00000176171, ENSG00000196981, ENSG00000162433, 

 ENSG00000114023, ENSG00000168209, ENSG00000112715, ENSG00000109107, 
 ENSG00000152256 

 Lendhal 2009 
 ●  HGNC  : ADM, ALDOC, ATF7IP, BNIP3, BNIP3L, DDIT4, ENO2,  ERO1A, KDM3A, 

 GLRX, HILPDA, HK2, HMMR, INSIG2, MXI1, MYCBP, NDRG1, P4HA1, PDK1, 
 PPFIA4, SLC7A1, VEGFA, ZNF654 

 ●  ENSG ID  : ENSG00000139514, ENSG00000197930, ENSG00000104765, 
 ENSG00000173221, ENSG00000176171, ENSG00000214114, ENSG00000159399, 
 ENSG00000125629, ENSG00000104419, ENSG00000148926, ENSG00000072571, 
 ENSG00000119950, ENSG00000135245, ENSG00000168209, ENSG00000112715, 
 ENSG00000111674, ENSG00000143847, ENSG00000122884, ENSG00000115548, 
 ENSG00000109107, ENSG00000175105, ENSG00000152256, ENSG00000171681 

 Buffa 2010 
 ●  HGNC  : ACOT7, ADM, AK4, ALDOA, ANKRD37, ANLN, BNIP3,  MRGBP, CA9, 

 CDKN3, CHCHD2, CORO1C, CTSV, DDIT4, ENO1, ESRP1, GAPDH, GPI, HILPDA, 
 HK2, KIF20A, KIF4A, LDHA, LRRC42, MAD2L2, MAP7D1, MCTS1, MIF, MRPL13, 
 MRPL15, MRPS17, NDRG1, ZNF384, P4HA1, PFKP, PGAM1, PGK1, PSMA7, 
 PSRC1, SEC61G, SHCBP1, SLC16A1, SLC25A32, SLC2A1, TPI1, TUBA1B, 
 TUBA1C, TUBB6, UTP11, VEGFA, YKT6 

 ●  ENSG ID  : ENSG00000276701, ENSG00000282019, ENSG00000281917, 
 ENSG00000288299, ENSG00000288295, ENSG00000090889, ENSG00000101182, 
 ENSG00000011426, ENSG00000176014, ENSG00000074800, ENSG00000132432, 
 ENSG00000171314, ENSG00000239789, ENSG00000171241, ENSG00000240972, 
 ENSG00000183520, ENSG00000101189, ENSG00000176171, ENSG00000105220, 
 ENSG00000100526, ENSG00000134333, ENSG00000106153, ENSG00000116212, 
 ENSG00000104413, ENSG00000162433, ENSG00000164933, ENSG00000107159, 
 ENSG00000172172, ENSG00000137547, ENSG00000159399, ENSG00000232119, 
 ENSG00000116670, ENSG00000134222, ENSG00000112984, ENSG00000102144, 
 ENSG00000149925, ENSG00000104419, ENSG00000186352, ENSG00000148926, 
 ENSG00000067057, ENSG00000136943, ENSG00000135245, ENSG00000168209, 
 ENSG00000112715, ENSG00000123416, ENSG00000111669, ENSG00000106636, 
 ENSG00000122884, ENSG00000110880, ENSG00000111640, ENSG00000167553, 
 ENSG00000117394, ENSG00000126746, ENSG00000097021, ENSG00000155380, 
 ENSG00000116871 
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 Ghorbel 2010 
 ●  HGNC  : ABRA, ACTL6A, ACTR3, ADK, ALS2, ANK1, ANXA7,  AP1S2, APOBEC3G, 

 ATE1, ATP2C1, B3GALNT1, BCL10, BLZF1, BPNT1, BTF3, IDI2-AS1, TIMM21, 
 NADK2, TCIM, CALM3, CALR, CBWD1, CD8A, CDKN2C, CEP170, CHORDC1, 
 CNN3, COMMD10, COMMD8, COX11, CPE, CPNE4, CYP51A1, RBM48, DPYD, 
 S1PR1, EFCAB2, EFEMP1, MICU2, MICU3, EGFR, EGR1, EIF1AXP1, EIF1AX, 
 EIF4E, EPOR, TCAF1, MIGA1, FAM76B, FCF1, FGD4, FGF7, FGL2, FLCN, 
 TRAPPC13, OGFOD3, GAPDHP73, GATM, GJB4, GNG10, GOLT1B, GULP1, 
 HNRNPH1, HSDL2, IGFBP7, IL33, ITM2A, JAG1, JRKL, TTC37, UFL1, KLHL20, 
 KPNA2, LACTB2, LCE1E, LRRC25, LUM, LYPLA1, LYRM7, LYZ, MAD2L1, 
 MANSC1, MEFV, MRPL50, MTHFD2L, MYOZ2, NAP1L1, NDUFA5, NFATC2IP, 
 NIPSNAP3A, NLRP1, OMA1, OTUD6B, PAIP1, PAK2, PEX7, PHACTR2, BLOC1S6, 
 POLR2K, POMP, PPM1B, PPP1CB, PSMC2, PTP4A1, RAB12, RABGGTB, RAP2C, 
 RBM3, RPL15, RPL23AP7, RPL37A, RPL38, SAT1, SCOC, CAVIN2, SELENOP, 
 SEPTIN7, SERPINB9, SGMS1, SH3BGRL, SKAP2, SLC12A2, SLC2A13, SLMAP, 
 SP3, SPP1, STAT5B, STK17B, STOML1, STRN3, STXBP3, SUCLG2, SUMO1, 
 ELOC, THAP5, THBS1, TM2D1, TMEM123, TMTC3, TNFSF10, TNRC6B, TPMT, 
 TSPAN12, TUBE1, UBB, UBE2D1, USP28, SLC22A25, WNT6, WSB2, XPNPEP3, 
 YIPF4, PTGR2, ZEB2, ZFX, ZNF552, ZNF654 

 ●  ENSG ID  : ENSG00000276725, ENSG00000281818, ENSG00000165487, 
 ENSG00000132963, ENSG00000284254, ENSG00000100354, ENSG00000101384, 
 ENSG00000173674, ENSG00000285023, ENSG00000102317, ENSG00000196236, 
 ENSG00000072401, ENSG00000131171, ENSG00000091592, ENSG00000155970, 
 ENSG00000078596, ENSG00000111261, ENSG00000239713, ENSG00000137364, 
 ENSG00000005020, ENSG00000137801, ENSG00000151229, ENSG00000127993, 
 ENSG00000170315, ENSG00000075336, ENSG00000169019, ENSG00000206418, 
 ENSG00000113597, ENSG00000177683, ENSG00000213639, ENSG00000119471, 
 ENSG00000138279, ENSG00000155100, ENSG00000115380, ENSG00000090382, 
 ENSG00000152558, ENSG00000250722, ENSG00000067221, ENSG00000198420, 
 ENSG00000163681, ENSG00000147669, ENSG00000176907, ENSG00000226540, 
 ENSG00000123080, ENSG00000162600, ENSG00000182287, ENSG00000123728, 
 ENSG00000120992, ENSG00000112419, ENSG00000180488, ENSG00000048028, 
 ENSG00000136897, ENSG00000106025, ENSG00000110172, ENSG00000005889, 
 ENSG00000138032, ENSG00000164109, ENSG00000172239, ENSG00000169255, 
 ENSG00000139324, ENSG00000189433, ENSG00000162604, ENSG00000176953, 
 ENSG00000121858, ENSG00000117519, ENSG00000172809, ENSG00000166260, 
 ENSG00000147592, ENSG00000188641, ENSG00000170989, ENSG00000064651, 
 ENSG00000074935, ENSG00000145781, ENSG00000119820, ENSG00000115091, 
 ENSG00000160014, ENSG00000240356, ENSG00000001630, ENSG00000170542, 
 ENSG00000178935, ENSG00000029534, ENSG00000081320, ENSG00000136783, 
 ENSG00000130066, ENSG00000154582, ENSG00000107669, ENSG00000109472, 
 ENSG00000077458, ENSG00000171766, ENSG00000104164, ENSG00000103313, 
 ENSG00000175489, ENSG00000172785, ENSG00000172399, ENSG00000156110, 
 ENSG00000119616, ENSG00000112357, ENSG00000117475, ENSG00000163453, 
 ENSG00000232656, ENSG00000139329, ENSG00000174748, ENSG00000187266, 
 ENSG00000198964, ENSG00000197756, ENSG00000161057, ENSG00000187109, 
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 ENSG00000198677, ENSG00000203666, ENSG00000196792, ENSG00000127951, 
 ENSG00000186687, ENSG00000174429, ENSG00000128609, ENSG00000140043, 
 ENSG00000242616, ENSG00000115596, ENSG00000154803, ENSG00000136518, 
 ENSG00000140285, ENSG00000137033, ENSG00000017260, ENSG00000143702, 
 ENSG00000172340, ENSG00000176871, ENSG00000162813, ENSG00000116030, 
 ENSG00000144366, ENSG00000145741, ENSG00000181396, ENSG00000152620, 
 ENSG00000180370, ENSG00000153130, ENSG00000151247, ENSG00000169045, 
 ENSG00000179218, ENSG00000146648, ENSG00000076321, ENSG00000120738, 
 ENSG00000163738, ENSG00000122545, ENSG00000183340, ENSG00000175105, 
 ENSG00000182481, ENSG00000116266, ENSG00000118785, ENSG00000169554, 
 ENSG00000173757, ENSG00000112245, ENSG00000014123, ENSG00000196600, 
 ENSG00000111711, ENSG00000153563, ENSG00000139132, ENSG00000142867, 
 ENSG00000196353, ENSG00000003393, ENSG00000168497, ENSG00000137955, 
 ENSG00000172845, ENSG00000186226, ENSG000002366985 

 Sorensen 2010 
 ●  HGNC  : ADM, AK4, ALDOA, ANKRD37, ARRDC3, BNIP3, BNIP3L,  FAM210A, 

 FAM162A, CCNG2, CSRP2, EGLN1, EGLN3, ERO1A, FOSL2, GPI, IGFBP3, 
 KDM3A, KCTD11, P4HA1, P4HA2, PDK1, PFKFB3, SLC2A1, SLC6A8, ZNF395 

 ●  ENSG ID  : ENSG00000282019, ENSG00000170525, ENSG00000288399, 
 ENSG00000129521, ENSG00000177150, ENSG00000197930, ENSG00000186918, 
 ENSG00000104765, ENSG00000075426, ENSG00000176171, ENSG00000130821, 
 ENSG00000105220, ENSG00000113369, ENSG00000162433, ENSG00000114023, 
 ENSG00000175183, ENSG00000138764, ENSG00000149925, ENSG00000186352, 
 ENSG00000148926, ENSG00000122884, ENSG00000135766, ENSG00000146674, 
 ENSG00000072682, ENSG00000115548, ENSG00000152256, ENSG00000117394, 
 ENSG00000213859 

 Van Malenstein 2010 
 ●  HGNC  : CCNG2, EGLN3, ERO1A, WDR45B 
 ●  ENSG ID  : ENSG00000129521, ENSG00000197930, ENSG00000138764, 

 ENSG00000141580 

 Fardin 2010 
 ●  HGNC  : AK4, ALDOC, ATP5MC1, ATP5ME, ATP5PF, ATP5MG,  ATP6AP1L, 

 ATP6V0B, ATP6V0E1, ATP6V1B1, ATP6V1D, BNIP3, BNIP3L, DDIT4, DDX11, 
 FAM162A, EGLN3, PPP4R3B, NDUFAF1, NDUFB2, NDUFB3, NDUFB6, NDUFB8, 
 NDUFS1, NDUFS6, NDUFS7, NDUFS8, NDUFV3, PDK1, PGK1, PPP4R3B, 
 UQCR10, UQCRC2, VEGFA, WDR5B 

 ●  ENSG ID  : ENSG00000283447, ENSG00000160194, ENSG00000154723, 
 ENSG00000129521, ENSG00000104765, ENSG00000169020, ENSG00000110717, 
 ENSG00000013573, ENSG00000184076, ENSG00000176171, ENSG00000116039, 
 ENSG00000275052, ENSG00000196981, ENSG00000162433, ENSG00000114023, 
 ENSG00000140740, ENSG00000113732, ENSG00000102144, ENSG00000100554, 
 ENSG00000090266, ENSG00000115286, ENSG00000159199, ENSG00000165264, 
 ENSG00000168209, ENSG00000112715, ENSG00000166136, ENSG00000023228, 
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 ENSG00000145494, ENSG00000137806, ENSG00000167283, ENSG00000109107, 
 ENSG00000205464, ENSG00000152256, ENSG00000117410, ENSG00000119013 

 Ghazoui 2011 
 ●  HGNC  : AK4, ANKRD37, ATP1B3, ATP5MC3, BNIP3, CMC2,  CCDC167, CHCHD2, 

 EMC8, CTSV, DDIT4, PSMG1, EIF2S2, EIF4EBP1, ENO1, ENY2, GAPDH, GARS1, 
 GMPS, GOLT1B, GPI, HCCS, CXCL8, IMPA2, BPNT2, KIF18A, KIF20A, LDHA, 
 LRRC59, LSM4, MMP1, MRPL13, MRPL15, MRPS17, MTCH2, MTFR1, MTHFD2, 
 NDRG1, NFIL3, ZNF384, NUP93, P4HA1, PDIA6, PFKP, PGAM1, PGK1, PLOD1, 
 PRDX4, PSMA5, PSMB5, PSMD8, RALA, RANBP1, ESRP1, TMEM158, 
 RNASEH2A, SEC61G, SF3B5, SHMT2, SLC16A3, SLC2A1, SLC7A5, SRD5A1, 
 ELOC, TMEM70, UBE2S, VEGFA, YEATS2 

 ●  ENSG ID  : ENSG00000282019, ENSG00000141401, ENSG00000004961, 
 ENSG00000285121, ENSG00000288299, ENSG00000183527, ENSG00000125977, 
 ENSG00000074800, ENSG00000187840, ENSG00000165030, ENSG00000099901, 
 ENSG00000182199, ENSG00000132432, ENSG00000171314, ENSG00000239789, 
 ENSG00000102900, ENSG00000104331, ENSG00000100804, ENSG00000176171, 
 ENSG00000175606, ENSG00000249992, ENSG00000105220, ENSG00000103257, 
 ENSG00000134333, ENSG00000169429, ENSG00000106153, ENSG00000103121, 
 ENSG00000121621, ENSG00000104413, ENSG00000162433, ENSG00000172172, 
 ENSG00000131148, ENSG00000137547, ENSG00000169976, ENSG00000069849, 
 ENSG00000163655, ENSG00000066855, ENSG00000112984, ENSG00000143106, 
 ENSG00000123131, ENSG00000102144, ENSG00000106105, ENSG00000006451, 
 ENSG00000104419, ENSG00000186352, ENSG00000108106, ENSG00000154582, 
 ENSG00000067057, ENSG00000163872, ENSG00000136943, ENSG00000130520, 
 ENSG00000120533, ENSG00000168209, ENSG00000112715, ENSG00000145545, 
 ENSG00000198937, ENSG00000104889, ENSG00000122884, ENSG00000109919, 
 ENSG00000196611, ENSG00000111640, ENSG00000099341, ENSG00000143870, 
 ENSG00000111711, ENSG00000083444, ENSG00000141526, ENSG00000117394, 
 ENSG00000126746, ENSG00000108829, ENSG00000065911, ENSG00000154518 

 Toustrup 2011 
 ●  HGNC  : ADM, ALDOA, ANKRD37, BNIP3, BNIP3L, FAM162A,  EGLN3, KCTD11, 

 LOX, NDRG1, P4HA1, P4HA2, PDK1, PFKFB3, SLC2A1 
 ●  ENSG ID  : ENSG00000170525, ENSG00000288399, ENSG00000129521, 

 ENSG00000104765, ENSG00000176171, ENSG00000114023, ENSG00000149925, 
 ENSG00000104419, ENSG00000186352, ENSG00000148926, ENSG00000122884, 
 ENSG00000113083, ENSG00000072682, ENSG00000152256, ENSG00000117394, 
 ENSG00000213859 

 Starmans 2012 
 ●  HGNC  : AARS1, ABCA5, ABCB6, ABHD4, ABI1, ACAD11, ACADVL,  ACBD3, 

 ACVR1, ADAM17, ADM, ADORA2B, AFTPH, GPAT3, AGR2, AHR, AKAP12, 
 AKAP8L, ALDOA, ALDOC, ALG2, ANG, ANGPTL4, ANKRD10, ANKRD12, 
 ANKRD37, ANKZF1, ANO6, ANXA5, ARCN1, ARF4, ARFGAP3, ARG2, 
 ARHGAP29, ARHGEF2, ARL1, ARL13B, ARL5B, ARMCX3, ARRDC3, ARRDC4, 
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 ASB3, ASNS, ASS1, ATF2, ATF3, ATF6, ATG13, ATG14, ATG5, ATG9A, ATXN1, 
 AVL9, AVPI1, AZI2, B4GALT4, BBX, BCKDHA, BCKDK, BCL10, BCL6, BET1, 
 BET1L, BHLHE40, BIK, BIRC3, BNIP1, BNIP3L, BRAP, BRD2, BTG1, BTN2A1, 
 INTS13, TMEM263, FAM216A, TIGAR, C12orf57, GPATCH2L, C14orf28, RUSF1, 
 ADPRM, MIR22HG, FAM210A, MYDGF, ODR4, SDE2, RSRP1, SUCO, OSER1, 
 C2orf49, C4orf3, SMIM14, CREBRF, SNHG32, BMT2, HILPDA, FAM220A, 
 LURAP1L, FAM219A, MSANTD3, CA9, CALR, CALU, CAMLG, CANX, CARS1, 
 CAST, CBLB, CFAP36, CCDC107, CCDC28A, CEP95, CCDC47, MIX23, CCDC6, 
 CCNB1IP1, CCNG2, CCNYL1, NOCT, CD55, CDC37L1, CDC6, CDC73, CDK2AP2, 
 CDK7, CDKN1A, CDKN1B, CDR2, CDRT4, CDV3, CEBPG, CEP120, CEP350, 
 CEP57, CFDP1, CHAC1, CHD2, CHIC2, CIR1, CLCN3, CLDN12, CLDND1, CLGN, 
 CLIC4, CLK1, CLK2, CLK3, CLK4, CNOT8, COG6, COPA, COPB1, COPB2, 
 COPG1, COQ10B, CPEB4, CREB3, CREB3L2, CRELD1, CRELD2, CRKL, CRY1, 
 CSNK2A2, CSRNP1, CSRP2, CTH, CTNNAL1, CUL4B, CXCR4, BCLAF3, EOLA2, 
 CYP20A1, CYP26A1, DAGLB, DCUN1D2, DDIT3, DDIT4, DDT, DDX41, DDX50, 
 DDX59, DEDD2, DENND5A, DERL1, DERL2, DHRS3, DHRS7, DHX40, DMTF1, 
 DNAJB11, DNAJB2, DNAJB9, DNAJC1, DNAJC10, DNAJC25, DNAJC3, DNTTIP1, 
 DPCD, DUSP1, DUSP10, DUSP11, DUSP5, DYM, DYRK4, EAF1, EAF2, EDEM1, 
 EDEM2, EDEM3, EDN2, EFNA1, EFL1, EGLN1, EGLN3, EIF1, EIF2AK3, AGO3, 
 ELL2, EMD, ENO2, EPAS1, EPRS1, ERLEC1, ERO1A, ERO1B, ERP44, ERRFI1, 
 ESCO1, ESRP1, ETS2, F3, FADS3, FAM107B, FAM114A1, EEF1AKMT3, FAM13A, 
 FAM162A, FBXO25, FBXO32, FBXO42, FBXO8, FEM1B, FEM1C, FHL2, FICD, 
 FKBP11, FKBP14, FNDC3B, FNIP1, FNTA, FOSL1, FOSL2, FOXD1, FOXO3, 
 FUT11, FYN, GABARAPL1, GADD45A, GADD45B, GALK2, GALNT18, GARS1, 
 GATA6, GBE1, GCH1, GCLC, GDF15, GEM, GFPT1, GLRX, GMPPA, GMPPB, 
 GOLGA4, GOLGA5, GOLGA8A, GOLGB1, GOLPH3L, GOLT1A, GOLT1B, GORAB, 
 GOSR2, GOT1, GPI, GPT2, GRB10, GRB7, GTF2B, GTPBP2, GUK1, GYS1, 
 HBEGF, HBP1, HELZ, HERPUD1, HEY1, HIVEP2, HK2, HLA-A, HLA-B, HLA-C, 
 HLA-E, HMGCL, HMGCR, HOOK1, HPS5, HSP90B1, HSPA13, HSPA5, HYOU1, 
 IBTK, ICA1, IFRD1, IFT20, IGFBP3, IKZF5, IL1RAP, IL20RB, ING1, ING2, INSIG1, 
 INSIG2, IRF6, IRF7, IRS2, ISCA1, ISG20, KDM7A, JMY, JUN, KCTD11, KDELR2, 
 KDELR3, KDM3A, KDM4B, KDM4C, KDM5B, GARRE1, ARFGEF3, KANSL1, LNPK, 
 KIFAP3, KLF10, KLF4, KLF6, KLHL21, KLHL24, KLHL28, KRT15, KTN1, LAMB3, 
 LAMP3, LARP1B, LARP6, LCOR, LDLR, LETMD1, LGALS8, LHFPL2, LIF, LIMCH1, 
 LIN37, LINS1, LNX2, LONP1, LONRF1, LPIN2, LRRC49, LSR, LYSMD3, LZTFL1, 
 MAFF, MAFK, MAGT1, MALAT1, MANBA, MANF, MAP1LC3B, MAP2K1, MBD6, 
 MBNL2, MDM4, MED8, MEF2A, NIM1K, MIA3, MIS12, MKNK2, MKRN1, KMT2E, 
 MNT, MOCOS, MON1B, MORC3, MOSPD1, MOSPD2, MPI, MT1F, MT1X, MT2A, 
 MTFR1, MTHFD2, MTMR11, MXD1, MXI1, MYLIP, MYO1B, NAMPT, NARF, 
 NBEAL1, NBR1, NCK1, NCKIPSD, EPB41L4A-AS1, ZFAS1, NDEL1, NDRG1, 
 NEAT1, NEU1, NFAT5, NFE2L1, NFIL3, NFKBIE, NFKBIZ, NFXL1, NGLY1, NKAP, 
 NOL3, NPC1, NR1D2, NR4A2, NRAS, NRBF2, NUCB2, NUP58, OASL, ORAI3, 
 OS9, OSBP, OSTC, OTUD1, OXSR1, P4HA1, P4HA2, P4HB, PABPC1L, PATL1, 
 PCK2, PCMTD1, PDIA3, PDIA4, PDIA5, PDIA6, PDK1, PDP1, PEA15, PEAR1, 
 PELO, PFDN2, PFKFB3, PFKFB4, PFKP, PGK1, PGM1, PGM3, PHGDH, PIGA, 
 PIM1, PIM3, PJA2, PLAC8, PLAUR, PLIN2, KIZ, PLOD1, PLOD2, PMAIP1, 
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 PNPLA8, PNRC1, POLR3D, PLPP5, PPIB, PPIL4, PPM1D, PPME1, PPP1R15A, 
 PPP1R2, PPP1R3B, PPP2R2A, PPP2R5B, PPP4R2, PPTC7, PREB, PREPL, 
 PRKCZ, PRPF39, PRRC1, PRSS16, PSAP, PSAT1, PTP4A1, PTPN6, PTPRH, 
 QSOX1, RAB11FIP5, RAB20, RAB24, RAB2B, RAB33B, RAB5A, RAB9A, RABAC1, 
 SLC50A1, RASEF, RB1CC1, RBKS, RBM18, RBM7, RBPJ, RETSAT, RHOQ, RINT1, 
 RIOK3, RIT1, RLF, RNASE4, RND3, RNF111, RNF113A, RNF181, RNF183, 
 RNF19A, RNF19B, RNF24, RNF41, RNMT, RP9, RPS6KC1, RRAGC, RRAS, 
 RSBN1, RSRC2, RWDD2A, RYBP, SARS1, SAT1, SAV1, MSMO1, SC5D, SCAPER, 
 SCFD1, SDC4, SDF2L1, SDR16C5, SEC11C, SEC22A, SEC23A, SEC23B, 
 SEC24A, SEC24D, SEC31A, SEC61A1, SEC61G, SEC63, SEL1L, SELENOK, 
 SELENOS, SEMA4B, SERINC1, SERP1, SERTAD1, SERTAD2, SESN2, SREK1, 
 SGPP2, SH3GL3, SH3GLB1, SHCBP1, SHMT2, SIAH1, SIAH2, SIL1, SIRT1, 
 SLC17A5, SLC25A36, SLC25A37, SLC2A1, SLC30A1, SLC31A1, SLC33A1, 
 SLC35B1, SLC35E1, SLC37A3, SLC39A7, SLC3A2, SLC41A2, SLC7A11, SLC9A7, 
 SLCO4A1, SMAP1, SNAPC1, SNAPC3, SNHG1, SNHG12, SNHG8, SNIP1, SNX16, 
 SNX9, SOX9, SPAG1, SPAG4, SPCS3, SPRY1, SPTY2D1, SRP19, SRP54, SRP68, 
 SRP72, SRPRB, SSR1, SSR3, STAT3, STBD1, STK17B, STK19, STT3A, STX5, 
 STYK1, SURF4, SYTL1, SYVN1, TAF1A, TAF1D, TARS1, TAX1BP1, TBC1D15, 
 TBC1D23, TBC1D8B, TBK1, TES, TGIF1, THAP1, THAP5, THAP8, THAP9, THOC6, 
 TIFA, TIPARP, TMC4, TMCO3, TMED2, TMED7, TMED9, TMEM125, TMEM158, 
 LDAF1, TMEM167B, TMEM170A, TMEM182, TMEM214, TMEM38B, TMEM39A, 
 TMEM41B, TMEM45A, TMEM45B, TMEM50B, MACO1, TMEM65, TMF1, TMOD3, 
 TNFAIP3, TNFAIP8, TNFRSF10B, TNIP1, TOM1L1, TPBG, TPD52, TRAM1, TRIB3, 
 TRIM39, TRIT1, TRPT1, TSC22D2, TSC22D3, TSPYL2, TSTD2, TTC33, TTLL7, 
 TUBE1, TUFT1, TULP3, TXNDC15, TXNDC16, TXNIP, U2AF1L4, UAP1, UBE2J1, 
 UBXN4, UBXN6, UCHL3, UFM1, UFSP2, UGGT1, UGP2, UHRF2, ULBP2, ULK1, 
 UNC5B, UPP1, UPRT, USO1, USP37, USP53, VAMP4, VEGFA, VLDLR, VPS37A, 
 WARS1, WASF2, WBP2, WDR41, WDR45, WDR45B, WDR47, WDR54, WFS1, 
 WIPI1, CCN5, WSB1, XBP1, XPNPEP1, YEATS2, YIPF4, YIPF5, YIPF6, YPEL2, 
 YPEL5, ZBTB41, ZBTB8A, ZFAND1, ZFAND2A, ZFP36, ZFYVE1, ZMYM5, ZNF133, 
 ZNF212, ZNF222, ZNF292, ZBTB21, ZNF383, ZNF395, ZNF451, ZNF654, KRBOX4, 
 ZNF697, ZNF805, ZRSR2 

 ●  ENSG ID  : ENSG00000279389, ENSG00000263160, ENSG00000276561, 
 ENSG00000261893, ENSG00000274873, ENSG00000277667, ENSG00000277996, 
 ENSG00000184494, ENSG00000274905, ENSG00000206450, ENSG00000236250, 
 ENSG00000276260, ENSG00000282800, ENSG00000275003, ENSG00000224994, 
 ENSG00000234343, ENSG00000278363, ENSG00000277789, ENSG00000275867, 
 ENSG00000278191, ENSG00000228691, ENSG00000229300, ENSG00000227715, 
 ENSG00000206495, ENSG00000226437, ENSG00000277273, ENSG00000206493, 
 ENSG00000206505, ENSG00000278458, ENSG00000235307, ENSG00000282019, 
 ENSG00000234704, ENSG00000282735, ENSG00000232839, ENSG00000274384, 
 ENSG00000229802, ENSG00000223980, ENSG00000230678, ENSG00000229215, 
 ENSG00000224320, ENSG00000229929, ENSG00000273722, ENSG00000206435, 
 ENSG00000223532, ENSG00000234728, ENSG00000228964, ENSG00000230308, 
 ENSG00000225201, ENSG00000233841, ENSG00000206288, ENSG00000236632, 
 ENSG00000231834, ENSG00000227402, ENSG00000206380, ENSG00000226033, 
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 ENSG00000230254, ENSG00000236227, ENSG00000280682, ENSG00000139517, 
 ENSG00000227315, ENSG00000206342, ENSG00000226257, ENSG00000235657, 
 ENSG00000280951, ENSG00000224608, ENSG00000234507, ENSG00000229252, 
 ENSG00000283068, ENSG00000232126, ENSG00000226710, ENSG00000283085, 
 ENSG00000237022, ENSG00000120686, ENSG00000142188, ENSG00000206452, 
 ENSG00000233904, ENSG00000159256, ENSG00000223957, ENSG00000234947, 
 ENSG00000234846, ENSG00000226614, ENSG00000283777, ENSG00000283847, 
 ENSG00000281766, ENSG00000215077, ENSG00000101745, ENSG00000100219, 
 ENSG00000228299, ENSG00000227129, ENSG00000225691, ENSG00000224399, 
 ENSG00000139496, ENSG00000185022, ENSG00000285069, ENSG00000128342, 
 ENSG00000133103, ENSG00000157557, ENSG00000101310, ENSG00000102580, 
 ENSG00000132950, ENSG00000130150, ENSG00000101782, ENSG00000185950, 
 ENSG00000285343, ENSG00000141458, ENSG00000173276, ENSG00000285360, 
 ENSG00000166562, ENSG00000067082, ENSG00000150401, ENSG00000088448, 
 ENSG00000150403, ENSG00000170525, ENSG00000288445, ENSG00000165997, 
 ENSG00000198355, ENSG00000178381, ENSG00000155304, ENSG00000065923, 
 ENSG00000088298, ENSG00000285241, ENSG00000242247, ENSG00000101104, 
 ENSG00000100290, ENSG00000075643, ENSG00000288399, ENSG00000003147, 
 ENSG00000094841, ENSG00000072849, ENSG00000110328, ENSG00000118939, 
 ENSG00000177426, ENSG00000100196, ENSG00000141682, ENSG00000136770, 
 ENSG00000106993, ENSG00000110756, ENSG00000184205, ENSG00000141627, 
 ENSG00000087301, ENSG00000139832, ENSG00000153487, ENSG00000139793, 
 ENSG00000106546, ENSG00000167842, ENSG00000173281, ENSG00000102401, 
 ENSG00000106541, ENSG00000196365, ENSG00000198517, ENSG00000154359, 
 ENSG00000147854, ENSG00000112763, ENSG00000147121, ENSG00000100612, 
 ENSG00000153714, ENSG00000179476, ENSG00000139112, ENSG00000109046, 
 ENSG00000204599, ENSG00000165861, ENSG00000127663, ENSG00000124783, 
 ENSG00000206503, ENSG00000173681, ENSG00000129521, ENSG00000067606, 
 ENSG00000141448, ENSG00000155975, ENSG00000107731, ENSG00000116285, 
 ENSG00000124145, ENSG00000060140, ENSG00000112812, ENSG00000141446, 
 ENSG00000108091, ENSG00000074842, ENSG00000177150, ENSG00000101654, 
 ENSG00000135069, ENSG00000110048, ENSG00000165105, ENSG00000101577, 
 ENSG00000144655, ENSG00000007944, ENSG00000148572, ENSG00000132823, 
 ENSG00000010219, ENSG00000106070, ENSG00000184164, ENSG00000147454, 
 ENSG00000197930, ENSG00000197021, ENSG00000162496, ENSG00000144674, 
 ENSG00000166889, ENSG00000185246, ENSG00000186918, ENSG00000163512, 
 ENSG00000119523, ENSG00000165030, ENSG00000168300, ENSG00000101928, 
 ENSG00000095209, ENSG00000164970, ENSG00000104765, ENSG00000133138, 
 ENSG00000183696, ENSG00000144566, ENSG00000037637, ENSG00000221914, 
 ENSG00000064102, ENSG00000164975, ENSG00000128965, ENSG00000078246, 
 ENSG00000120053, ENSG00000105829, ENSG00000119986, ENSG00000251562, 
 ENSG00000172939, ENSG00000023318, ENSG00000166171, ENSG00000141738, 
 ENSG00000196470, ENSG00000071537, ENSG00000120889, ENSG00000136925, 
 ENSG00000182199, ENSG00000088970, ENSG00000132432, ENSG00000127526, 
 ENSG00000095596, ENSG00000094804, ENSG00000066455, ENSG00000169504, 
 ENSG00000140743, ENSG00000151694, ENSG00000140105, ENSG00000166123, 
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 ENSG00000131931, ENSG00000137193, ENSG00000013375, ENSG00000158195, 
 ENSG00000112200, ENSG00000245532, ENSG00000117305, ENSG00000197712, 
 ENSG00000153879, ENSG00000171241, ENSG00000166012, ENSG00000114480, 
 ENSG00000130766, ENSG00000128228, ENSG00000005700, ENSG00000142765, 
 ENSG00000070669, ENSG00000095574, ENSG00000126777, ENSG00000162413, 
 ENSG00000013392, ENSG00000025796, ENSG00000178802, ENSG00000135249, 
 ENSG00000169018, ENSG00000023445, ENSG00000136826, ENSG00000135070, 
 ENSG00000147872, ENSG00000177683, ENSG00000171346, ENSG00000188994, 
 ENSG00000043514, ENSG00000005483, ENSG00000127129, ENSG00000064042, 
 ENSG00000165195, ENSG00000100439, ENSG00000152409, ENSG00000102908, 
 ENSG00000116954, ENSG00000164683, ENSG00000173221, ENSG00000135269, 
 ENSG00000104497, ENSG00000135241, ENSG00000146232, ENSG00000133639, 
 ENSG00000112305, ENSG00000075426, ENSG00000144747, ENSG00000001084, 
 ENSG00000164949, ENSG00000159885, ENSG00000108039, ENSG00000036054, 
 ENSG00000179833, ENSG00000164951, ENSG00000101457, ENSG00000239704, 
 ENSG00000119844, ENSG00000198833, ENSG00000114423, ENSG00000163683, 
 ENSG00000101187, ENSG00000011422, ENSG00000104231, ENSG00000117000, 
 ENSG00000144802, ENSG00000164253, ENSG00000114439, ENSG00000103111, 
 ENSG00000140941, ENSG00000128590, ENSG00000151748, ENSG00000168152, 
 ENSG00000249992, ENSG00000095139, ENSG00000105220, ENSG00000176142, 
 ENSG00000224032, ENSG00000173812, ENSG00000099942, ENSG00000156958, 
 ENSG00000145050, ENSG00000068912, ENSG00000061656, ENSG00000198961, 
 ENSG00000177410, ENSG00000163877, ENSG00000133606, ENSG00000188554, 
 ENSG00000101236, ENSG00000174738, ENSG00000080822, ENSG00000064205, 
 ENSG00000138678, ENSG00000109220, ENSG00000179454, ENSG00000153774, 
 ENSG00000099977, ENSG00000100814, ENSG00000153914, ENSG00000164096, 
 ENSG00000164603, ENSG00000169249, ENSG00000121578, ENSG00000170260, 
 ENSG00000269893, ENSG00000115239, ENSG00000258818, ENSG00000116016, 
 ENSG00000104413, ENSG00000108588, ENSG00000113369, ENSG00000135631, 
 ENSG00000214274, ENSG00000182158, ENSG00000160124, ENSG00000159884, 
 ENSG00000163605, ENSG00000107159, ENSG00000204524, ENSG00000217128, 
 ENSG00000107175, ENSG00000105404, ENSG00000156804, ENSG00000134910, 
 ENSG00000138674, ENSG00000177453, ENSG00000140386, ENSG00000109929, 
 ENSG00000131652, ENSG00000105778, ENSG00000065485, ENSG00000174564, 
 ENSG00000151135, ENSG00000108433, ENSG00000137941, ENSG00000101255, 
 ENSG00000116717, ENSG00000114023, ENSG00000057663, ENSG00000168894, 
 ENSG00000108406, ENSG00000159399, ENSG00000023287, ENSG00000010818, 
 ENSG00000140598, ENSG00000145390, ENSG00000131016, ENSG00000125846, 
 ENSG00000138709, ENSG00000034677, ENSG00000198856, ENSG00000058262, 
 ENSG00000150961, ENSG00000157800, ENSG00000131979, ENSG00000141198, 
 ENSG00000175938, ENSG00000119801, ENSG00000118689, ENSG00000119777, 
 ENSG00000103507, ENSG00000145780, ENSG00000166173, ENSG00000175183, 
 ENSG00000151012, ENSG00000135974, ENSG00000134970, ENSG00000125148, 
 ENSG00000008405, ENSG00000198417, ENSG00000187193, ENSG00000158092, 
 ENSG00000179178, ENSG00000097033, ENSG00000181788, ENSG00000140450, 
 ENSG00000186480, ENSG00000134709, ENSG00000100889, ENSG00000198265, 
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 ENSG00000068305, ENSG00000006459, ENSG00000158290, ENSG00000067167, 
 ENSG00000152684, ENSG00000146278, ENSG00000138640, ENSG00000082641, 
 ENSG00000075420, ENSG00000112379, ENSG00000145685, ENSG00000119899, 
 ENSG00000137962, ENSG00000119326, ENSG00000131013, ENSG00000068971, 
 ENSG00000140600, ENSG00000118503, ENSG00000104812, ENSG00000079739, 
 ENSG00000125352, ENSG00000101882, ENSG00000170836, ENSG00000173575, 
 ENSG00000111897, ENSG00000080031, ENSG00000145817, ENSG00000113638, 
 ENSG00000164463, ENSG00000136986, ENSG00000117525, ENSG00000105856, 
 ENSG00000066855, ENSG00000114120, ENSG00000138764, ENSG00000074935, 
 ENSG00000120742, ENSG00000181704, ENSG00000129472, ENSG00000120129, 
 ENSG00000145779, ENSG00000066697, ENSG00000119820, ENSG00000164117, 
 ENSG00000123595, ENSG00000170417, ENSG00000196998, ENSG00000042445, 
 ENSG00000010810, ENSG00000138073, ENSG00000107077, ENSG00000138594, 
 ENSG00000128016, ENSG00000152952, ENSG00000174780, ENSG00000109572, 
 ENSG00000124762, ENSG00000173230, ENSG00000167004, ENSG00000120805, 
 ENSG00000146242, ENSG00000090861, ENSG00000118985, ENSG00000031698, 
 ENSG00000147535, ENSG00000166822, ENSG00000168556, ENSG00000115641, 
 ENSG00000006652, ENSG00000119446, ENSG00000078081, ENSG00000089916, 
 ENSG00000102144, ENSG00000169359, ENSG00000138166, ENSG00000104450, 
 ENSG00000130164, ENSG00000102119, ENSG00000163659, ENSG00000081181, 
 ENSG00000197019, ENSG00000196233, ENSG00000100883, ENSG00000114796, 
 ENSG00000081320, ENSG00000106105, ENSG00000169032, ENSG00000140688, 
 ENSG00000129128, ENSG00000196083, ENSG00000089234, ENSG00000092108, 
 ENSG00000149925, ENSG00000125629, ENSG00000102158, ENSG00000109775, 
 ENSG00000130066, ENSG00000157514, ENSG00000120725, ENSG00000087074, 
 ENSG00000052802, ENSG00000196968, ENSG00000104419, ENSG00000121966, 
 ENSG00000186352, ENSG00000148926, ENSG00000168522, ENSG00000067057, 
 ENSG00000113742, ENSG00000170448, ENSG00000166987, ENSG00000135164, 
 ENSG00000148248, ENSG00000135506, ENSG00000166037, ENSG00000113916, 
 ENSG00000163872, ENSG00000175592, ENSG00000123427, ENSG00000184203, 
 ENSG00000044574, ENSG00000184840, ENSG00000169228, ENSG00000136754, 
 ENSG00000144320, ENSG00000024862, ENSG00000248098, ENSG00000221968, 
 ENSG00000168374, ENSG00000137947, ENSG00000147364, ENSG00000014914, 
 ENSG00000145088, ENSG00000121542, ENSG00000130513, ENSG00000106080, 
 ENSG00000119950, ENSG00000151014, ENSG00000172007, ENSG00000100934, 
 ENSG00000135245, ENSG00000154265, ENSG00000183258, ENSG00000164056, 
 ENSG00000166398, ENSG00000116260, ENSG00000126775, ENSG00000157224, 
 ENSG00000204256, ENSG00000168209, ENSG00000110619, ENSG00000164111, 
 ENSG00000051108, ENSG00000161265, ENSG00000075945, ENSG00000267796, 
 ENSG00000147852, ENSG00000107625, ENSG00000122218, ENSG00000172432, 
 ENSG00000112715, ENSG00000197746, ENSG00000167772, ENSG00000140939, 
 ENSG00000134285, ENSG00000162298, ENSG00000115966, ENSG00000157450, 
 ENSG00000137821, ENSG00000118197, ENSG00000070540, ENSG00000163082, 
 ENSG00000204387, ENSG00000126070, ENSG00000117533, ENSG00000111674, 
 ENSG00000111678, ENSG00000111679, ENSG00000181458, ENSG00000126458, 
 ENSG00000204386, ENSG00000151092, ENSG00000204592, ENSG00000143507, 
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 ENSG00000143367, ENSG00000167671, ENSG00000129083, ENSG00000204525, 
 ENSG00000265972, ENSG00000168495, ENSG00000078237, ENSG00000165312, 
 ENSG00000135837, ENSG00000065809, ENSG00000117595, ENSG00000099860, 
 ENSG00000070770, ENSG00000186594, ENSG00000125398, ENSG00000131871, 
 ENSG00000185507, ENSG00000121073, ENSG00000170786, ENSG00000117139, 
 ENSG00000059769, ENSG00000164983, ENSG00000130707, ENSG00000130340, 
 ENSG00000255717, ENSG00000178397, ENSG00000164535, ENSG00000136240, 
 ENSG00000113070, ENSG00000153037, ENSG00000086598, ENSG00000176018, 
 ENSG00000128595, ENSG00000214517, ENSG00000168944, ENSG00000155090, 
 ENSG00000134107, ENSG00000134109, ENSG00000136731, ENSG00000162236, 
 ENSG00000198855, ENSG00000149743, ENSG00000140471, ENSG00000136868, 
 ENSG00000165188, ENSG00000138768, ENSG00000114850, ENSG00000172183, 
 ENSG00000166794, ENSG00000157181, ENSG00000113734, ENSG00000096717, 
 ENSG00000091527, ENSG00000122884, ENSG00000135766, ENSG00000145901, 
 ENSG00000076554, ENSG00000094975, ENSG00000162772, ENSG00000023608, 
 ENSG00000105835, ENSG00000170222, ENSG00000113407, ENSG00000153113, 
 ENSG00000160570, ENSG00000111011, ENSG00000173540, ENSG00000117143, 
 ENSG00000196878, ENSG00000171174, ENSG00000145365, ENSG00000234745, 
 ENSG00000251493, ENSG00000113615, ENSG00000164615, ENSG00000113621, 
 ENSG00000076053, ENSG00000145287, ENSG00000185033, ENSG00000136643, 
 ENSG00000086619, ENSG00000141562, ENSG00000168214, ENSG00000128641, 
 ENSG00000146674, ENSG00000164610, ENSG00000153132, ENSG00000136628, 
 ENSG00000184432, ENSG00000155508, ENSG00000179335, ENSG00000153234, 
 ENSG00000072682, ENSG00000240303, ENSG00000119729, ENSG00000175265, 
 ENSG00000113161, ENSG00000116406, ENSG00000132471, ENSG00000113240, 
 ENSG00000109323, ENSG00000155660, ENSG00000167881, ENSG00000119004, 
 ENSG00000163602, ENSG00000177951, ENSG00000070444, ENSG00000179218, 
 ENSG00000127022, ENSG00000005448, ENSG00000166579, ENSG00000118804, 
 ENSG00000011243, ENSG00000115548, ENSG00000106052, ENSG00000164244, 
 ENSG00000134058, ENSG00000109083, ENSG00000161277, ENSG00000134371, 
 ENSG00000116761, ENSG00000109107, ENSG00000151715, ENSG00000167608, 
 ENSG00000177888, ENSG00000169242, ENSG00000169241, ENSG00000138078, 
 ENSG00000099875, ENSG00000105699, ENSG00000175105, ENSG00000184014, 
 ENSG00000112473, ENSG00000166471, ENSG00000152256, ENSG00000143870, 
 ENSG00000144867, ENSG00000176444, ENSG00000183735, ENSG00000131015, 
 ENSG00000258890, ENSG00000050426, ENSG00000177169, ENSG00000215717, 
 ENSG00000168003, ENSG00000143622, ENSG00000124788, ENSG00000116584, 
 ENSG00000109501, ENSG00000166598, ENSG00000196352, ENSG00000135114, 
 ENSG00000115657, ENSG00000177119, ENSG00000169379, ENSG00000198925, 
 ENSG00000163516, ENSG00000204856, ENSG00000196850, ENSG00000149428, 
 ENSG00000162734, ENSG00000144597, ENSG00000168610, ENSG00000188283, 
 ENSG00000090520, ENSG00000204344, ENSG00000181852, ENSG00000114268, 
 ENSG00000112245, ENSG00000167797, ENSG00000213672, ENSG00000111711, 
 ENSG00000144048, ENSG00000070081, ENSG00000083444, ENSG00000121749, 
 ENSG00000163249, ENSG00000163818, ENSG00000185624, ENSG00000163703, 
 ENSG00000143498, ENSG00000154305, ENSG00000163001, ENSG00000169764, 
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 ENSG00000113811, ENSG00000120370, ENSG00000143067, ENSG00000092621, 
 ENSG00000120071, ENSG00000179119, ENSG00000142867, ENSG00000117394, 
 ENSG00000111276, ENSG00000115520, ENSG00000175197, ENSG00000213859, 
 ENSG00000136052, ENSG00000141580, ENSG00000196428, ENSG00000138433, 
 ENSG00000175224, ENSG00000181789, ENSG00000116977, ENSG00000065911, 
 ENSG00000135913, ENSG00000143751, ENSG00000182827, ENSG00000072778, 
 ENSG00000143457, ENSG00000177606, ENSG00000170425, ENSG00000143256, 
 ENSG00000175155, ENSG00000077232, ENSG00000143774, ENSG00000085433, 
 ENSG00000116514, ENSG00000198380, ENSG00000170385, ENSG00000118217, 
 ENSG00000115963, ENSG00000159479, ENSG00000013441, ENSG00000059728, 
 ENSG00000115170, ENSG00000135924, ENSG00000144224, ENSG00000117616, 
 ENSG00000204178, ENSG00000172071, ENSG00000144591, ENSG00000081019, 
 ENSG00000144426, ENSG00000197989, ENSG00000174567, ENSG00000198625, 
 ENSG00000160062, ENSG00000213281, ENSG00000187800 

 Halle 2012 
 ●  HGNC  : ALDOA, AK2, AK4, B3GNT4, SCARB1, CLK3, MRGBP,  ECE2, ERO1A, 

 GAPDH, HMOX1, ISG15, PFKFB4, P4HA2, PYGL, RPL36A, UPK1A, DDIT3, 
 KCTD11, PVR, RHOC, STC2, ATP5MJ, C19orf53, C4orf3, FGF11, SH3GL3, SNTA1, 
 SPAG7, S100A2, TRAPPC1 

 ●  ENSG ID  : ENSG00000283903, ENSG00000288399, ENSG00000091640, 
 ENSG00000101400, ENSG00000197930, ENSG00000100292, ENSG00000073008, 
 ENSG00000101189, ENSG00000241343, ENSG00000100504, ENSG00000105668, 
 ENSG00000156411, ENSG00000164096, ENSG00000162433, ENSG00000140600, 
 ENSG00000149925, ENSG00000176383, ENSG00000161958, ENSG00000170043, 
 ENSG00000111640, ENSG00000179335, ENSG00000072682, ENSG00000145194, 
 ENSG00000104979, ENSG00000113739, ENSG00000073060, ENSG00000114268, 
 ENSG00000155366, ENSG00000175197, ENSG00000213859, ENSG00000004455, 
 ENSG00000187608, ENSG00000196754 

 Eustace 2013 
 ●  HGNC  : ALDOA, ANGPTL4, ANLN, BNC1, MRGBP, CA9, CDKN3,  COL4A6, 

 DCBLD1, ENO1, FAM83B, FOSL1, GNAI1, HILPDA, KCTD11, KRT17, LDHA, 
 P4HA1, PGAM1, PGK1, SDC1, SLC16A1, SLC2A1, TPI1, VEGFA 

 ●  ENSG ID  : ENSG00000276701, ENSG00000100290, ENSG00000186895, 
 ENSG00000106366, ENSG00000127129, ENSG00000240972, ENSG00000116717, 
 ENSG00000123384, ENSG00000112715, ENSG00000146674, ENSG00000137745 

 Boidot 2014 (Continuous Hypoxia) 
 ●  HGNC  : TMEM258, KDM3A, RPS28, SEC61G, ANKZF1, ALDOA,  P4HA1, C4orf3, 

 H4C1, DDT, INSIG2, RPLP2, PFKFB4, BNIP3L, P4HA2, ISCA1, KPNB1, DDIT4, 
 RBX1, H1-2, PYCR3, ANP32D, ANKRD37, PNRC1, GPATCH4, PPFIA4, ANP32C, 
 NDUFAF2, RPS2, CLK3, RPS13, ANP32A, VEGFA, ACAP1, PHPT1, PGK1, 
 PRMT3, MXI1, MAP1LC3B, KCTD11, RRP15, PTPRCAP, H4C2, H4C3, CMSS1, 
 RNASEH1, WSB1, AIDA, H2AC4, SSNA1, UTP20, TIMM23, NDRG1, PFKFB3, 
 FAM162A, MRPL19, MRPL3, RPPH1, PSME3, HCFC1R1, H2AC6, PSMD7, 
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 EBNA1BP2, HINT1, PGAM1, PSMC3, DDIT3, FUT11, TNFSF8, CEP83, KLHDC10, 
 CCNG2, RPL39, HTR5A, PNPT1, UBTF, KRTAP10-12, PPP2R5B, SNORA68, GPI, 
 TAGAP, TMEM88, AK4, MAD1L1, H3C2, DIPK2A, CHD1, NDUFA1, PDK1, WBP1, 
 POU5F1P3, MAP1LC3B2, ATF4 

 ●  ENSG ID  : ENSG00000275003, ENSG00000276657, ENSG00000282019, 
 ENSG00000170525, ENSG00000288169, ENSG00000288399, ENSG00000140988, 
 ENSG00000100387, ENSG00000189169, ENSG00000110700, ENSG00000109046, 
 ENSG00000235602, ENSG00000185238, ENSG00000104765, ENSG00000132432, 
 ENSG00000171314, ENSG00000171865, ENSG00000135070, ENSG00000140350, 
 ENSG00000184220, ENSG00000131467, ENSG00000140941, ENSG00000105220, 
 ENSG00000128272, ENSG00000128607, ENSG00000138035, ENSG00000099977, 
 ENSG00000277209, ENSG00000164096, ENSG00000103035, ENSG00000162433, 
 ENSG00000258102, ENSG00000115364, ENSG00000114023, ENSG00000114686, 
 ENSG00000176101, ENSG00000146278, ENSG00000068971, ENSG00000198918, 
 ENSG00000125356, ENSG00000138764, ENSG00000054148, ENSG00000177600, 
 ENSG00000103145, ENSG00000207166, ENSG00000120800, ENSG00000173588, 
 ENSG00000102144, ENSG00000149925, ENSG00000125629, ENSG00000196968, 
 ENSG00000104419, ENSG00000265354, ENSG00000186352, ENSG00000248546, 
 ENSG00000157219, ENSG00000134825, ENSG00000278637, ENSG00000286522, 
 ENSG00000278463, ENSG00000187837, ENSG00000119950, ENSG00000168209, 
 ENSG00000112715, ENSG00000233927, ENSG00000181744, ENSG00000106952, 
 ENSG00000169567, ENSG00000104524, ENSG00000213402, ENSG00000067533, 
 ENSG00000143847, ENSG00000167874, ENSG00000122884, ENSG00000153922, 
 ENSG00000002822, ENSG00000164182, ENSG00000072818, ENSG00000164691, 
 ENSG00000179335, ENSG00000072682, ENSG00000180573, ENSG00000239779, 
 ENSG00000115548, ENSG00000197061, ENSG00000152256, ENSG00000108424, 
 ENSG00000278705, ENSG00000165916, ENSG00000163516, ENSG00000114268, 
 ENSG00000108312, ENSG00000186063, ENSG00000139223, ENSG00000175197, 
 ENSG00000213859, ENSG00000117395, ENSG00000160818 

 Boidot 2014 (Cyclic Hypoxia) 
 ●  HGNC  :BIRC5, ZGPAT, LSM5, PFDN2, FCN1, NACA, PTPRCAP,  TMED1, IGBP1, 

 EIF4B, H1-2, SLIRP, HTR1B, GSTA3, SAC3D1, NTHL1, MPPED1, NEUROD2, 
 KCNJ12, LHX5, TMEM160, HMX1, TMEM258, MARCO, TSG101, UTF1, LLPH, 
 H2AC6, CBLN1, NDUFA13, TLX2, AURKAIP1, ANTKMT, ZSWIM1, TPSD1, 
 UBE2D2, EDF1, MRPL17, CEND1, SSNA1, RPS28, SRPK3, NELFB, SDHC, 
 MED31, FAM30A, SNF8, POU3F4, GORASP1, C2orf42, RBX1, MKNK1, SNRPD3, 
 ABHD17A, H3-4, RPL19, RPS13, ZFTA, MRPS7, GNG5, PRCC, CHMP1B, LMO2, 
 TCF15, COPZ1, MAD1L1, H4C1, H4C3, RPPH1, MALAT1, NKX6-3, POM121L8P, 
 CIAO2A, TMIGD2, MRPL36, TMEM61, KTI12, RBFOX3, RAX2, LRRC45, LGALS7, 
 SPDYE7P, LCN12, TRIM65, MFSD14A, C2CD4B, TIMMDC1, COMTD1, GSX1, 
 CELF4 

 ●  ENSG ID  : ENSG00000277059, ENSG00000255112, ENSG00000101489, 
 ENSG00000229266, ENSG00000283082, ENSG00000285435, ENSG00000288204, 
 ENSG00000169840, ENSG00000186732, ENSG00000100387, ENSG00000100028, 
 ENSG00000196767, ENSG00000110700, ENSG00000065057, ENSG00000108590, 
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 ENSG00000184185, ENSG00000089289, ENSG00000167664, ENSG00000171421, 
 ENSG00000175756, ENSG00000165644, ENSG00000186010, ENSG00000251562, 
 ENSG00000168061, ENSG00000215612, ENSG00000171532, ENSG00000106355, 
 ENSG00000085265, ENSG00000184343, ENSG00000168612, ENSG00000119705, 
 ENSG00000143001, ENSG00000113845, ENSG00000165066, ENSG00000277209, 
 ENSG00000198841, ENSG00000197114, ENSG00000205502, ENSG00000174021, 
 ENSG00000130748, ENSG00000125878, ENSG00000135363, ENSG00000131508, 
 ENSG00000159210, ENSG00000184925, ENSG00000176101, ENSG00000188986, 
 ENSG00000184524, ENSG00000107223, ENSG00000174156, ENSG00000135312, 
 ENSG00000173976, ENSG00000103254, ENSG00000134825, ENSG00000278637, 
 ENSG00000187837, ENSG00000166797, ENSG00000169683, ENSG00000233927, 
 ENSG00000095917, ENSG00000171794, ENSG00000129968, ENSG00000102924, 
 ENSG00000213402, ENSG00000063046, ENSG00000226777, ENSG00000099203, 
 ENSG00000002822, ENSG00000196531, ENSG00000111481, ENSG00000141569, 
 ENSG00000180573, ENSG00000115297, ENSG00000158042, ENSG00000197061, 
 ENSG00000179994, ENSG00000125445, ENSG00000108298, ENSG00000205076, 
 ENSG00000089116, ENSG00000089685, ENSG00000114745, ENSG00000139233, 
 ENSG00000074319, ENSG00000079277, ENSG00000168148, ENSG00000143256, 
 ENSG00000143252, ENSG00000167281, ENSG00000019169, ENSG00000143294, 
 ENSG00000156875, ENSG00000115998 

 Ragnum 2015 
 ●  HGNC  : ASF1B, ASPM, BIRC5, BUB3, CENPE, CENPU, CMTM3,  DONSON, DTL, 

 FOXM1, G6PD, HJURP, MCM2, MEP1A, MTMR2, TRIP13, ZWINT, TDG, UNG, 
 XRCC6, ADM, DDIT4, DSP, FER1L4, HILPDA, P4HA1, PGAM4, PKM, RIMKLA, 
 RNASE4, SCD, SPAG4 

 ●  ENSG ID  : ENSG00000159147, ENSG00000288210, ENSG00000122952, 
 ENSG00000088340, ENSG00000196419, ENSG00000071539, ENSG00000099194, 
 ENSG00000160211, ENSG00000177181, ENSG00000154473, ENSG00000061656, 
 ENSG00000138778, ENSG00000258818, ENSG00000073111, ENSG00000226784, 
 ENSG00000148926, ENSG00000111206, ENSG00000087053, ENSG00000135245, 
 ENSG00000168209, ENSG00000140931, ENSG00000112818, ENSG00000143476, 
 ENSG00000151725, ENSG00000105011, ENSG00000122884, ENSG00000067225, 
 ENSG00000076248, ENSG00000123485, ENSG00000096696, ENSG00000139372, 
 ENSG00000089685, ENSG00000066279 

 Fjeldbo 2016 
 ●  HGNC  : DDIT3, ERO1A, KCTD11, P4HA2, STC2, UPK1A 
 ●  ENSG ID  : ENSG00000288399, ENSG00000197930, ENSG00000105668, 

 ENSG00000072682, ENSG00000113739, ENSG00000175197, ENSG00000213859 

 Suh 2017 
 ●  HGNC  : TMPRSS11D, GJB6, IL20RB, LOX, APOL1, FBXO45,  S100A7, NCOA7, 

 TM4SF1, CDCP1, NAMPT, TFRC, SOD2, PFKFB3, SRPK1, RUNX3, SYNGR2, 
 ORAI2, POU2AF1, LIFR, TPM4 
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 ●  ENSG ID  : ENSG00000170525, ENSG00000121742, ENSG00000100342, 
 ENSG00000167460, ENSG00000096063, ENSG00000110777, ENSG00000111912, 
 ENSG00000153802, ENSG00000163814, ENSG00000174564, ENSG00000169908, 
 ENSG00000113594, ENSG00000112096, ENSG00000143556, ENSG00000174013, 
 ENSG00000105835, ENSG00000113083, ENSG00000160991, ENSG00000072274, 
 ENSG00000108639, ENSG00000020633 

 Yang 2017 
 ●  HGNC  : CAV1, COL5A1, ITGA5, P4HA2, SLC16A1, TGFBI,  DPYSL2, SRPX, 

 TRAM2, SYDE1, LRP1, PDLIM2, SAV1, AHNAK2, CAD, CYP1B1, DAAM1, DSC2, 
 SLC2A3, FUT11, GLG1, GULP1, LDLR, THBS4 

 ●  ENSG ID  : ENSG00000281917, ENSG00000101955, ENSG00000059804, 
 ENSG00000120913, ENSG00000092964, ENSG00000105137, ENSG00000065308, 
 ENSG00000185567, ENSG00000134755, ENSG00000138061, ENSG00000161638, 
 ENSG00000130635, ENSG00000084774, ENSG00000151748, ENSG00000120708, 
 ENSG00000113296, ENSG00000090863, ENSG00000123384, ENSG00000100592, 
 ENSG00000130164, ENSG00000196968, ENSG00000105974, ENSG00000144366, 
 ENSG00000072682, ENSG00000155380 

 Ye 2018 
 ●  HGNC  : AK4, ALDOA, ALDOC, ANGPTL4, ANKRD37, BHLHE40,  BNIP3, BNIP3L, 

 C4orf3, C4orf47, CA9, CASP14, DARS1-AS1, DDIT4, DNAH11, EGLN1, EGLN3, 
 FGF11, FUT11, GBE1, HK2, KDM3A, LDHA, LOX, MIR210HG, NDRG1, P4HA1, 
 PDK1, PFKFB4, PGK1, PPFIA4, SDAD1P1, SLC2A1, SPAG4, STC1, TCAF2, 
 TMEM45A, VEGFA, VLDLR 

 ●  ENSG ID  : ENSG00000282810, ENSG00000283903, ENSG00000288299, 
 ENSG00000105877, ENSG00000129521, ENSG00000159167, ENSG00000228451, 
 ENSG00000104765, ENSG00000105141, ENSG00000114480, ENSG00000176171, 
 ENSG00000061656, ENSG00000134333, ENSG00000164096, ENSG00000162433, 
 ENSG00000107159, ENSG00000159399, ENSG00000102144, ENSG00000149925, 
 ENSG00000196968, ENSG00000104419, ENSG00000186352, ENSG00000168209, 
 ENSG00000147852, ENSG00000112715, ENSG00000167772, ENSG00000181458, 
 ENSG00000231890, ENSG00000247095, ENSG00000134107, ENSG00000143847, 
 ENSG00000161958, ENSG00000122884, ENSG00000135766, ENSG00000113083, 
 ENSG00000115548, ENSG00000170379, ENSG00000109107, ENSG00000152256, 
 ENSG00000205129, ENSG00000114268, ENSG00000117394 

 Yang 2018 (Prostate) 
 ●  HGNC  : ADAMTS4, ATF3, BHLHE40, BTG2, CSRNP1, CCN1,  EGR1, EGR2, EGR3, 

 FOSB, FOSL2, GEM, JUNB, KLF10, KLF6, LIF, MCL1, NR4A3, PPP1R15A, RHOB, 
 SELE, SIK1, SLC2A14, SLC2A3, SOCS3, THBS1, TIPARP, ZFP36 

 ●  ENSG ID  : ENSG00000128342, ENSG00000067082, ENSG00000142178, 
 ENSG00000059804, ENSG00000179388, ENSG00000144655, ENSG00000137801, 
 ENSG00000119508, ENSG00000075426, ENSG00000164949, ENSG00000125740, 
 ENSG00000128016, ENSG00000163659, ENSG00000087074, ENSG00000007908, 
 ENSG00000159388, ENSG00000155090, ENSG00000122877, ENSG00000134107, 
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 ENSG00000171223, ENSG00000162772, ENSG00000120738, ENSG00000173262, 
 ENSG00000184557, ENSG00000158859, ENSG00000142871, ENSG00000143878, 
 ENSG00000143384 

 Yang 2018 (Sarcoma) 
 ●  HGNC  : ENO2, SLC2A1, BNIP3, PDK1, NDRG1, PFKFB4, FAM162A,  VEGFA, 

 ZNF395, DDIT4, ANKRD37, MXI1, SLC2A3, PPFIA4, GBE1, ALDOC, CDK18, ANG, 
 PRSS53, INSIG2, VLDLR, P4HA1, BNIP3L, BHLHE40 

 ●  ENSG ID  : ENSG00000059804, ENSG00000186918, ENSG00000104765, 
 ENSG00000114480, ENSG00000176171, ENSG00000214274, ENSG00000114023, 
 ENSG00000151006, ENSG00000125629, ENSG00000104419, ENSG00000186352, 
 ENSG00000119950, ENSG00000168209, ENSG00000147852, ENSG00000112715, 
 ENSG00000111674, ENSG00000134107, ENSG00000143847, ENSG00000122884, 
 ENSG00000109107, ENSG00000152256, ENSG00000114268, ENSG00000117394, 
 ENSG00000117266 

 Trong 2018 
 ●  HGNC  : LYVE1, FAM162A, WNT6, OTP, PLOD1 
 ●  ENSG ID  : ENSG00000114023, ENSG00000115596, ENSG00000133800, 

 ENSG00000171540, ENSG00000083444 

 Chen 2019 
 ●  HGNC  : ALDOA, ALDOC, ANGPTL4, DDIT4, DRD4, ENO2, GPI,  GREB1L, LOXL2, 

 PDK1, PFKP, PGK1, PLOD2, SLC2A1, SPOCK1, STOX1, SUV39H2 
 ●  ENSG ID  : ENSG00000276825, ENSG00000282019, ENSG00000152455, 

 ENSG00000141449, ENSG00000134013, ENSG00000105220, ENSG00000152952, 
 ENSG00000102144, ENSG00000149925, ENSG00000067057, ENSG00000152377, 
 ENSG00000168209, ENSG00000165730, ENSG00000167772, ENSG00000111674, 
 ENSG00000069696, ENSG00000109107, ENSG00000152256, ENSG00000117394 

 Zou 2019 
 ●  HGNC  : MDM2, VEGFA, ORAI3, MVD, TRAF3, CYB5R3, ZBTB44,  CASP6, FBP1, 

 CCNG1, FAM117B, PRELID2, RRP1B, GAS6 
 ●  ENSG ID  : ENSG00000160208, ENSG00000183087, ENSG00000100243, 

 ENSG00000131323, ENSG00000167508, ENSG00000196323, ENSG00000175938, 
 ENSG00000113328, ENSG00000138439, ENSG00000112715, ENSG00000165140, 
 ENSG00000138794, ENSG00000186314, ENSG00000135679 

 Zhang 2020 
 ●  HGNC  : PDSS1, CDCA8, SLC7A11 
 ●  ENSG ID  : ENSG00000148459, ENSG00000134690, ENSG00000151012 

 Wang 2020 
 ●  HGNC  : PFKL, P4HA2, GRHPR, SDC3, PPP1R15A, SIAH2, NDRG1,  BTG1, TPD52, 

 MAFF, ISG20, LALBA, ERRFI1, VHL 
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 ●  ENSG ID  : ENSG00000185022, ENSG00000141959, ENSG00000137106, 
 ENSG00000116285, ENSG00000162512, ENSG00000133639, ENSG00000181788, 
 ENSG00000087074, ENSG00000104419, ENSG00000134086, ENSG00000172183, 
 ENSG00000076554, ENSG00000072682, ENSG00000167531 

 Shou 2020 
 ●  HGNC  : ABCA12, PTK6, FERMT1, GSDMC, KRT2, CSTA, SPRR2F 
 ●  ENSG ID  : ENSG00000285114, ENSG00000101213, ENSG00000101311, 

 ENSG00000172867, ENSG00000121552, ENSG00000244094, ENSG00000147697, 
 ENSG00000144452 

 Lin 2000 
 ●  HGNC  : VEGFA, HK2, JUN, LDHA, GAPDH 
 ●  ENSG ID  : ENSG00000288299, ENSG00000134333, ENSG00000159399, 

 ENSG00000112715, ENSG00000111640, ENSG00000177606 

 Mo 2020 
 ●  HGNC  : XPNPEP1, ANGPTL4, SLC2A1, PFKP 
 ●  ENSG ID  : ENSG00000108039, ENSG00000067057, ENSG00000167772, 

 ENSG00000117394 

 Tardon 2020 
 ●  HGNC  : ADM, ALDOC, ANKRD37, ARRDC3, BHLHE40, CA9, DDIT4,  EGLN3, 

 HAS2, HILPDA, HK2, PGK1, NDRG1, PDK1, SLC2A1, SLC2A3, STC1, TMEM45A, 
 VEGFA 

 ●  ENSG ID  : ENSG00000129521, ENSG00000159167, ENSG00000059804, 
 ENSG00000113369, ENSG00000159399, ENSG00000170961, ENSG00000102144, 
 ENSG00000104419, ENSG00000148926, ENSG00000168209, ENSG00000135245, 
 ENSG00000152256, ENSG00000181458, ENSG00000107159, ENSG00000134107, 
 ENSG00000112715, ENSG00000109107, ENSG00000186352, ENSG00000117394 
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 Appendix 2 

 Supplementary Table S1:  Percentage accuracy of determining  hypoxic samples 

 from normoxic samples in breast non-cancer cell lines for the 53 signatures across 

 four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in Table 4.2 
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 Supplementary Table S2:  Percentage accuracy of determining  hypoxic samples 

 from normoxic samples in cancer cell lines, immortalised non-cancer cell lines and a 

 cancer-associated cell experiment for the 53 signatures across four hypoxia scores 

 The percentage accuracy is shown in different shades of blue from lowest (light blue) to 

 highest (dark blue). Conventions as in Table 4.2. 
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 Cell line  Hypoxic samples  Normoxic samples  Pairs 

 MCF-7  91  54  327 

 MDA-MB-231  22  14  60 

 HCT116  20  17  58 

 501mel  16  3  48 

 HepG2  16  10  46 

 HeLa  13  14  42 

 A2780  6  6  36 

 U87  12  6  36 

 SiHa  8  8  28 

 IGR39  9  3  27 

 LN229  9  3  27 

 PC-3  9  9  23 

 Huh-7  12  4  21 

 MCF10A  7  7  21 

 EPC2  4  4  16 

 HT29  15  3  15 

 DU145  14  2  14 

 LNCaP  6  6  14 

 T-47D  5  5  11 

 Hep3B  4  4  10 

 Astrocytes-fetal-brain  3  3  9 

 L3.6pl  3  3  9 

 HKC8  3  3  9 

 AsPC-1  3  3  9 

 SK-MEL-28  3  3  9 

 SKOV3ip.1  3  3  9 

 DCs  3  3  9 

 UFH-001  3  3  9 

 WM793B  3  3  9 

 SK-OV-3  3  3  9 

 Normal gastric 
 myofibroblasts  3  3  9 
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 FG  3  3  9 

 LM  4  2  8 

 Cancer-associated 
 myofibroblasts gastric 

 tumour 
 2  3  6 

 ZR-75-1  5  2  5 

 HCC1806  3  3  5 

 P493-6  2  2  4 

 LM2  2  2  4 

 DKO3  2  2  4 

 TC-252  2  2  4 

 DAOY  3  1  3 

 CaSki  2  2  2 

 MKN28  2  1  2 

 MDA-MB-468  1  1  1 

 MCF12A  1  1  1 

 HS578T  1  1  1 

 HME2  1  1  1 

 HCC38  1  1  1 

 MDA-MB-157  1  1  1 

 HCC1937  1  1  1 

 MDA-MB-175  1  1  1 

 MDA-MB-231-PSOC  1  1  1 

 MDA-MB-436  1  1  1 

 SK-HEP-1  1  1  1 

 SUM149  1  1  1 

 SKBR3  1  1  1 

 SUM1315  1  1  1 

 HCC1428  1  1  1 

 SUM159  1  1  1 

 SUM185  1  1  1 

 SUM225CWN  1  1  1 

 SUM229  1  1  1 

 hTERT-HME  1  1  1 
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 SMMC-7721  1  1  1 

 NCH660h  1  1  1 

 NCH644  1  1  1 

 NCH601  1  1  1 

 NCH421k  1  1  1 

 HCC1569  1  1  1 

 BT549  1  1  1 

 HBL100  1  1  1 

 DU4475  1  1  1 

 WiDr  1  1  1 

 22Rv1  1  1  1 

 PLC-PRF-5  1  1  1 

 LoVo  1  1  1 

 HT1080  1  1  1 

 HCT-15  1  1  1 

 COLO-205  1  1  1 

 A10.7  1  1  1 

 A125  1  1  1 

 A13D  1  1  1 

 A2.4  1  1  1 

 A32.4  1  1  1 

 A38.44  1  1  1 

 A38.5  1  1  1 

 A6L  1  1  1 

 C-33  1  1  1 

 C-41  1  1  1 

 HT-3  1  1  1 

 ME-180  1  1  1 

 SW756  1  1  1 

 JJN3  1  1  1 

 BT20  1  1  1 

 BT474  1  1  1 

 U373  1  1  1 
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 CAMA1  1  1  1 

 A38.41  1  1  1 

 Supplementary Table S3:  Cell lines used in hypoxia  experiments in GEO and 

 included in the pan-cancer hypoxia signature analysis and across all experimental 

 conditions 

 Details of the hypoxia versus normoxia experiments in GEO using all cancer, 

 cancer-associated and non-cancer cell lines across all the experiments. The table reports a 

 total number of 1090 pairs. 
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 Appendix 3 

 Supplementary Figure S1:  Radar plot representing the  performance of Ragnum 

 signature in breast cancer samples from the TCGA 

 The radar plot shows the performance of the Ragnum signature based on several measures 

 described fully in sigQC. Notably, the proportion of expressed genes in the signature is very 

 high and there are not any NA values in the signature genes. More information on sigQC 

 metrics can be found in Chapter 3. 
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 Supplementary Figure S2:  Radar plot representing the  performance of Buffa 

 signature in breast cancer samples from the TCGA 

 The radar plot shows the performance of the Buffa signature based on several measures 

 described fully in sigQC. Notably, the proportion of expressed genes in the signature is very 

 high and there are not any NA values in the signature genes. More information on sigQC 

 metrics can be found in Chapter 3. 
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 Supplementary Figure S3:  Radar plot representing the  performance of Ghazoui 

 signature in breast cancer samples from the TCGA 

 The radar plot shows the performance of the Ghazoui signature based on several measures 

 described fully in sigQC. Notably, the proportion of expressed genes in the signature is very 

 high and there are not any NA values in the signature genes. More information on sigQC 

 metrics can be found in Chapter 3. 

 371 



 Appendix 4 

 Supplementary Figure S4:  Line plot representing the  distribution of hypoxia scores 

 for each samples in the TCGA cohort (10 cancer types) including NAT using mean 

 score with Ragnum signature 

 Each data point represents a sample in the TCGA cohort. All NAT samples are shown with a 

 blue cross and all tumour samples are shown with an orange circle. Conventions as in  Fig. 

 6.4  . 
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 Supplementary Figure S5:  Line plot representing the  distribution of hypoxia scores 

 for each samples in the TCGA cohort (10 cancer types) including NAT using mean 

 score with Ghazoui signature 

 Each data point represents a sample in the TCGA cohort. All NAT samples are shown with a 

 blue cross and all tumour samples are shown with an orange circle. Conventions as in Fig. 

 6.4. 
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 Supplementary Figure S6:  Line plot representing the  distribution of hypoxia scores 

 for each samples in the TCGA cohort (10 cancer types) including NAT using GSVA 

 score with Ragnum signature 

 Each data point represents a sample in the TCGA cohort. All NAT samples are shown with a 

 blue cross and all tumour samples are shown with an orange circle. Conventions as in  Fig. 

 6.4  . 
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 Supplementary Figure S7:  Line plot representing the  distribution of hypoxia scores 

 for each samples in the TCGA cohort (10 cancer types) including NAT using GSVA 

 score with Buffa signature 

 Each data point represents a sample in the TCGA cohort. All NAT samples are shown with a 

 blue cross and all tumour samples are shown with an orange circle. Conventions as in Fig. 

 6.4. 
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 Supplementary Figure S8:  Line plot representing the  distribution of hypoxia scores 

 for each samples in the TCGA cohort (10 cancer types) including NAT using GSVA 

 score with Ghazoui signature 

 Each data point represents a sample in the TCGA cohort. All NAT samples are shown with a 

 blue cross and all tumour samples are shown with an orange circle. Conventions as in  Fig. 

 6.4  . 
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 a) 

 b) 
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 c) 

 d) 

 Supplementary Figure S9:  Kaplan-Meier survival curve  compared with the log-rank 

 test obtained using the three methods to split samples in high and low mean hypoxia 

 score using the Ragnum signature. 

 KM survival curve for all tumour and NAT samples in the TCGA cohort using the (a) 

 traditional method, (b) maximum on NAT, (c) mean on NAT and (d) median on NAT with 

 Ragnum signature and the Mean hypoxia score. Conventions as per  Fig. 6.5  . 
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 a) 

 b) 
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 c) 

 d) 

 Supplementary Figure S10:  Kaplan-Meier survival curve  compared with the 

 log-rank test obtained using the three methods to split samples in high and low mean 

 hypoxia score using the Ghazoui signature. 

 KM survival curve for all tumour and NAT samples in the TCGA cohort using the (a) 

 traditional method, (b) maximum on NAT, (c) mean on NAT and (d) median on NAT with 

 Ghazoui signature and the mean hypoxia score. Conventions as per  Fig. 6.5  . 
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 a) 

 b) 
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 c) 

 d) 

 Supplementary Figure S11:  Kaplan-Meier survival curve  compared with the 

 log-rank test obtained using the three methods to split samples in high and low 

 GSVA hypoxia score using the Ragnum signature. 

 KM survival curve for all tumour and NAT samples in the TCGA cohort using the (a) 

 traditional method, (b) maximum on NAT, (c) mean on NAT and (d) median on NAT with 

 Ragnum signature and the GSVA hypoxia score. Conventions as per  Fig. 6.5  . 
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 a) 

 b) 
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 c) 

 d) 

 Supplementary Figure S12:  Kaplan-Meier survival curve  compared with the 

 log-rank test obtained using the three methods to split samples in high and low 

 GSVA hypoxia score using the Buffa signature. 

 KM survival curve for all tumour and NAT samples in the TCGA cohort using the (a) 

 traditional method, (b) maximum on NAT, (c) mean on NAT and (d) median on NAT with 

 Buffa signature and the GSVA hypoxia score. Conventions as per  Fig. 6.5  . 
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 a) 

 b) 
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 c) 

 d) 

 Supplementary Figure S13:  Kaplan-Meier survival curve  compared with the 

 log-rank test obtained using the three methods to split samples in high and low 

 GSVA hypoxia score using the Ghazoui signature. 

 KM survival curve for all tumour and NAT samples in the TCGA cohort using the (a) 

 traditional method, (b) maximum on NAT, (c) mean on NAT and (d) median on NAT with 

 Ghazoui signature and the GSVA hypoxia score. Conventions as per  Fig. 6.5  . 
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 Appendix 5 

 a) 

 b) 

 Supplementary Figure S14:  Cox-proportional hazards  model on the TCGA tumour 

 samples included in the study across ten cancer types using the mean hypoxia score 

 on Ragnum signature 

 HR values for the Pan-cancer Cox-proportional hazards model (a) using the mean score with 

 Ragnum signature. The summary table reporting coefficients, standard error, z and p-values 

 are shown in (b). 
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 a) 

 b) 

 Supplementary Figure S15:  Cox-proportional hazards  model on the TCGA tumour 

 samples included in the study across ten cancer types using the GSVA hypoxia 

 score on Ragnum signature 

 HR values for the Pan-cancer Cox-proportional hazards model (a) using the GSVA score 

 with Ragnum signature. The summary table reporting coefficients, standard error, z and 

 p-values are shown in (b). 
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 a) 

 b) 

 Supplementary Figure S16:  Cox-proportional hazards  model on the TCGA tumour 

 samples included in the study across ten cancer types using the GSVA hypoxia 

 score on Buffa signature 

 HR values for the Pan-cancer Cox-proportional hazards model (a) using the GSVA score 

 with Buffa signature. The summary table reporting coefficients, standard error, z and 

 p-values are shown in (b). 
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 a) 

 b) 

 Supplementary Figure S17:  Cox-proportional hazards  model on the TCGA tumour 

 samples included in the study across ten cancer types using the Mean hypoxia score 

 on Ghazoui signature 

 HR values for the Pan-cancer Cox-proportional hazards model (a) using the Mean score with 

 Ghazoui signature. The summary table reporting coefficients, standard error, z and p-values 

 are shown in (b). 
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 a) 

 b) 

 Supplementary Figure S18:  Cox-proportional hazards  model on the TCGA tumour 

 samples included in the study across ten cancer types using the GSVA hypoxia 

 score on Ghazoui signature 

 HR values for the Pan-cancer Cox-proportional hazards model (a) using the GSVA score 

 with Ghazoui signature. The summary table reporting coefficients, standard error, z and 

 p-values are shown in (b). 
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 Appendix 6 
 Supplementary material including Python, R and Bash scripts used to produce the results 

 and the figures available in this work can be found at the following link upon request: 

 https://github.com/Matteodigg/Thesis_repo_MDG 

 392 
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