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Abstract

One well-motivated proposal to address the limitations of the Standard Model

and General Relativity (GR) is the addition of one or more novel scalar fields.

In this thesis we will study the interaction of scalar field dark matter (DM) with

black holes (BHs), and scalar fields in theories of modified gravity.

The Nobel-Prize-winning detection of gravitational waves (GWs) has opened

up a new area of astrophysics. Scalar fields can form dense clouds around BHs, so

as most GWs are produced from BH binary mergers, one might be able to detect

scalar DM with GW astronomy. We will start by exploring the formation of such

clouds, conducting novel simulations of scalar DM accretion onto a spinning Kerr

BH, characterising the growth, and estimating the potential for GW signals.

A binary BH merger can be divided into the early inspiral, the highly relativis-

tic merger, and the post-merger “ringdown”. First we will examine the ringdown,

deriving a novel analytic perturbative formula to estimate the shift in the GW

quasi-normal mode frequencies due to an accreting cloud. We will show that the

contribution from the accretion rate, previously neglected, can dominate the shift.

For the early inspiral we will simulate the accretion of scalar DM around BHs

on fixed orbits, finding that there is a preferred, quasi-stationary scalar field pro-

file. For the highly relativistic regime we use full Numerical Relativity. We will

examine the impact of different initial scalar distributions, showing that the quasi-

stationary profile is an attractor solution, and that naively superimposing matter

onto a quasi-circular binary can produce unphysical eccentricity.

Lastly, we will explore scalar fields beyond GR. Scalar-tensor theories are a

popular modified-gravity model, yet they often predict “fifth forces” which are

tightly constrained. It has been shown that for scale-invariant gravity the fifth

force is highly suppressed. However, this result was obtained in a particular frame,

and quantum effects make the choice of frame highly non-trivial. We will discuss

how one can apply a covariant formalism to extend the result to all frames, and

show that the usual dichotomy of “Jordan” versus “Einstein” frame can be better

understood as a geometric continuum.
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Chapter 1

Introduction

This thesis is divided into three parts: background material, research and extra

material.

The first part consists of two chapters: chapter 1 describes the general theo-

retical background and some of the broad unsolved questions which motivate this

area of research, while chapter 2 gives an overview of Numerical Relativity (NR),

the method of simulating General Relativity on a computer, and a key tool in

strong gravity research and for the work presented in part II of the thesis. Read-

ers familiar with the field may wish to skip over one or both of these chapters,

however they are intended to provide broader context and define concepts we shall

use later.

The second part contains the core of the thesis, describing original research

work and results concerning scalar fields and strong gravity across four key areas.

First in chapter 3 we will study the the accretion of scalar field dark matter (DM)

clouds around Kerr black holes using novel numerical simulations, exploring how

the growth depends on the parameters of the system, and relating the results to

analytic perturbative models of the growth process. We will also estimate the

monochromatic gravitational wave (GW) signal from such accreting scalar clouds,

and discuss whether they could be detected by current and future GW detectors.

In chapter 4 we will explore how such an accreting cloud of matter could affect

the quasi-normal mode frequencies of the final “ringdown” portion of a binary

black hole (BH) merger, and derive a novel perturbative analytic formula for the

time-dependent frequency shifts. We find that the contribution from accretion,

previously neglected, can in fact dominate over the non-accretion contribution. In

chapter 5 we will first examine scalar field accretion around a black hole binary

in the early inspiral regime of a BH binary merger. We find that the field quickly
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settles into a persistent quasi-stationary spiral profile which grows over time. We

then conduct simulations of the highly relativistic regime using full NR, exploring

the impact of different initial data including both the quasi-stationary scalar profile

and alternative choices. In chapter 6 we will consider scalar fields in scalar-tensor

theories of modified gravity. We will show how one can resolve the ambiguity

between quantum scalar-tensor theories in different frames using a novel geometric

approach, and how this can be applied to the calculation of fifth forces to arbitrary

perturbative order. In particular, we will use this to show that scale-invariant

scalar-tensor theories can evade fifth force constraints in all frames.

Finally, the last part of the thesis contains more detailed derivations omitted

in the main text, and additional material for each of the chapters described in

part II including convergence tests and validation studies.

Throughout we will use Einstein summation convention and the mostly plus

metric signature (−,+,+,+). In this part, and in part II chapter 6, will use

Planck units ℏ = G = c = 1. In chapters 3,4 and 5 we will use geometric units

G = c = 1, as will be made clear.

1.1 Fundamental physics today

Modern fundamental physics can be said to a large extent rely on two extremely

successful theories: the Standard Model of particle physics, which describes the

interactions of elementary particles on small scales, and Einstein’s General Theory

of Relativity, which describes gravity and gravitational dynamics on large scales,

including the evolution of the universe as a whole.

Both theories (as of the time of writing) have passed all experimental tests with

flying colours, including both detailed studies of high energy proton collisions at

the Large Hadron Collider (LHC) [6, 7], and novel astrophysical observations such

as the radio imaging of the shadows of the supermassive black holes M87∗ and

Saggitarius A∗ by the Event Horizon Telescope (EHT) [8, 9].

However, there are good reasons to think that these theories cannot be the

complete picture of fundamental physics. In this thesis we will describe how we

can use black holes and gravitational waves to explore theories of new scalar fields,

which might provide solutions to some of the big unsolved problems in physics

today.
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1.2 General Relativity

1.2.1 Fundamentals

Einstein’s theory of special relativity, first published in 1905 [10], was based on

the two fundamental postulates: that the laws of physics appear identical in all

inertial frames of reference (frames of reference with no acceleration), and that the

speed of light is constant for all observers (in order to ensure Maxwell’s equations

remain invariant). General Relativity goes further with two additional postulates:

• Principle of general covariance: the laws of physics appear the same to

all observers.

• The equivalence principle: all particles in free fall in the same gravita-

tional field experience the same acceleration, regardless of their mass (i.e.

inertial mass equals gravitational mass).

From these simple ideas an entirely new understanding of space, time and the

universe was derived.

A fundamental idea is that gravity is described using geometry, as the curvature

of spacetime. Spacetime itself is as a manifold, specifically a four dimensional,

smooth, connected, Lorentzian manifold. A manifold is a space that can be one-

to-one mapped to RN , where N is the dimension of the space, using coordinates

xµ. A vector vµ(x) at a point x is an element of the local tangent space Tx at

that point. The local geometry of the spacetime is determined by a metric gµν(x)

which defines an inner product between vectors, where the inner product of two

vectors vµ, uµ is gµνv
µuµ.

The inner product also allows us to also define covectors vµ = gµνv
ν which

are elements of the dual “cotangent” space T ∗
x [11, 12]. The inner product of two

infinitesimal displacement vectors dxµ at a point specifies a coordinate invariant

“interval” or “line element”,

ds2 = gµν(x)dx
µdxν . (1.1)

The inverse metric gµν is defined such that gµνgνλ = δµλ , the Kronecker delta.

Hence indices can be raised by contracting with gµν and lowered by contracting

with gµν , where contracting refers to the sum over one upstairs and one downstairs

index. In flat space we recover special relativity and the Minkowski metric gµν =

ηµν := diag(−1, 1, 1, 1) in Cartesian coordinates. At any point in the manifold
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we can define a set of local inertial coordinates such that the spacetime appears

locally flat and the metric appears locally Minkowski in the infinitesimal region

of that point. Vectors can be classified according to their inner product with

themselves: if gµνv
µvν > 0 the vector vµ is spacelike, if gµνv

µvν < 0 the vector is

timelike and if gµνv
µvν = 0 the vector is null. In Minkowski spacetime a vector

in the time direction tµ = δµ0 = (1, 0, 0, 0) is timelike and a vector in a spatial

direction is spacelike.

In order to satisfy the principle of general covariance, we want our physical laws

to be invariant under a (passive) change of coordinates xµ → x′µ. This means it is

useful to work with objects called “tensors”, which transform under a coordinate

change as

T ′a1a2...an
b1b2...bm

=
∂x′a1

∂xc1
∂x′a2

∂xc2
. . .

∂x′an

∂xcn
∂xd1

∂x′b1
∂xd2

∂x′b2
. . .

∂xdm

∂x′bm
T c1c2...cnd1d2...dm

. (1.2)

A tensor with n upstairs indices and m downstairs indices is called a type (n,m)

tensor. The metric gµν is a type (0, 2) tensor, vectors and covectors are type

(1, 0) and (0, 1) respectively, and scalars with no indices are type (0, 0). The

contraction of a vector and a covector uµv
µ or the inner product two vectors and

the metric gµνv
µuµ gives a scalar, and in general contracting two tensors together

gives another tensor.

The spacetime partial derivative ∂µ of a tensor is not necessarily a tensor. In-

stead we define a covariant derivative denoted ∇µ such that the covariant deriva-

tive of a type (n,m) tensor is always a type (n,m + 1) tensor. For a vector it

is

∇µV
ν = ∂µ + ΓµνλV

λ, (1.3)

where Γµνλ is called the connection, usually chosen to be the Levi-Civita connection

which is given in index form by the Christoffel symbols

Γµνλ =
1

2
gµα (∂νgαλ + ∂λgνα − ∂αgνλ) . (1.4)

Note that the connection coefficients are symmetric in the lower two indices Γµνλ =

Γµλν . For a scalar φ we have simply ∇µφ = ∂µφ. One can also show that

∇λgµν = 0. (1.5)

Unlike partial derivatives in flat space, covariant derivatives do not always com-

mute, with [∇µ,∇ν ]V
α := Rα

βµνV
β. The Rα

βµν is called the Riemann curva-

ture tensor. Written in lowered form it is antisymmetric in two pairs of indices
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Rαβµν = −Rβαµν = Rβανµ and symmetric such that Rαβµν = Rµναβ. It can be

written in terms of the connection and its derivatives, and as its name suggests

contains information about the curvature of the spacetime. We can use it to de-

fine the Ricci tensor Rµν := Rα
αµν and the Ricci scalar R := Rα

α. Einstein’s field

equations (1.6) describe how the curvature of spacetime, encoded via the Einstein

tensor Gµν which is a function of gµν and its derivatives, relates to matter, encoded

via the (symmetric) energy-momentum tensor Tµν ,

Gµν = 8πTµν , (1.6)

where the (symmetric) Einstein tensor Gµν := Rµν − 1
2
gµνR. The Einstein equa-

tions can also be written in trace reversed form as

Rµν = 8π
(
Tµν − 1

2
gµνT

)
, (1.7)

where T = gµνTµν . Conservation of energy and momentum is expressed via the

conservation of the energy-momentum tensor, ∇µT
µν = 0.

In local inertial coordinates we recover special relativity, and in special rela-

tivity the 4-momentum of a particle in an inertial frame is pµ = (E,p) where E

is the energy and p the relativistic 3-momentum. The inner product of pµ with

itself using the Minkowski metric is

gµνp
µpν = pµpµ = −E2 + |p|2 = −m2

0, (1.8)

where m0 is the particle rest mass, so for massive particles with m0 > 0 the 4-

momentum is a timelike vector. The 4-momentum is related to the 4-velocity

uµ = dxµ/dτ , where τ is the proper time, by pµ = m0u
µ, so uµuµ = −1 and uµ is

also timelike. For massless particles like photons pµpµ = 0 so pµ is a null vector.

The photons trajectory is parallel to pµ, so we can define pµ = dxµ/dλ where

λ is an affine parameter which parameterises the photon’s trajectory curve. As

scalars are coordinate invariant, these relations uµuµ = −1 for massive particles

and pµpµ = 0 for photons must hold generally, which means that particles travel

along geodesics, which are trajectories that extremise the path length between

two points,
∫
ds =

∫ √
gµνdxµdxν , integrated along the trajectory. Curvature

in the metric therefore affects particle motion, producing what we measure as

gravitational force. As John Wheeler summarised [13]:

“Matter tells space how to curve, space tells matter how to move.”
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In other words, matter moves along geodesic paths determined by the spacetime

curvature, which in turn is sourced by the matter energy-momentum. We can also

derive the Einstein field equations by applying the principle of least action to the

Einstein-Hilbert action

S =
1

16π

∫
d4x
√−gR + SM , (1.9)

where SM includes all the matter terms with

Tµν = −
2√−g

δSM
δgµν

. (1.10)

Although the Einstein field equations look simple, they are really a system of 10

non-linear, second-order, coupled partial differential equations (PDEs), and it is

very challenging to find explicit analytic solutions, except in some simple cases

with lots of symmetry or very weak fields. A useful concept is that of a Killing

vector field or “Killing vector”, a vector Xµ which satisfies the Killing equation

∇µXν +∇νXµ = 0, (1.11)

or equivalently LX⃗gµν = 0 (see appendix A.1). If the metric is independent of a

coordinate σ then δµσ is a Killing vector [14].

Due to general covariance we are free to choose different coordinates to work in.

This freedom can also be described as gauge freedom, and instead of specifying

coordinates explicitly we may instead want to choose coordinates implicitly by

imposing conditions on our tensor fields, a procedure termed gauge fixing.

1.2.2 Black holes

In the same year that Albert Einstein published his theory of General Relativity

Karl Schwarzschild – while serving in the German army during WW1 – derived the

first exact non-trivial solution of the Einstein equations [15]. The Schwarzschild

metric describes the spacetime outside a static spherically symmetric mass, and

is given by

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
, (1.12)

where r, θ, ϕ are spherical polar coordinates and M is the mass. It was soon noted

that this solution has a peculiar behaviour: if the radius of the object is less than

the Schwarzschild radius, Rs = 2M = 2GM/c2 then the metric appears to diverge
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giving an apparent singularity. The Schwarzschild radius is Rs = 2.95(M/M⊙)km

for an object mass M , where M⊙ denotes the mass of the Sun.1 Eventually

it was realised that this corresponds to an “event horizon”, a surface inside of

which nothing, not even light, could escape, and that the collapse of massive stars

could form such objects dubbed “black holes”. To see this we can construct new

coordinates which vary smoothly across r = Rs. For a photon on a radial null

geodesic ds2 = gttdt
2 + grrdr

2 = 0 so

dt

dr
=±

√
−grr
gtt

= ±
(
1− 2M

r

)−1

, (1.13)

t =± r∗ + const., (1.14)

where r∗ := r+2M ln
∣∣ r
2M
− 1
∣∣ is the so-called “tortoise” coordinate (named after

Zeno’s paradox of Achilles and a tortoise) and the ± is for outgoing and ingoing

photons respectively. This motivates a new time coordinate t′ = t+2M ln
∣∣ r
2M
− 1
∣∣

so that t′ = −r for ingoing photons and t′ = r + 4M ln
∣∣ r
2M
− 1
∣∣ for outgoing

photons. The line element in these “ingoing” coordiantes is

ds2 = −
(
1− 2M

r

)
dt′2 +

4M

r
dt′dr +

(
1 +

2M

r

)
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
.

(1.15)

The metric components no longer diverge at r = Rs = 2M , as it is merely a

coordinate singularity, while the divergence at r = 0 persists. Plotting the paths of

the two families of geodesics in t′, r coordinates gives a so-called ingoing Finkelstein

diagram (Fig. 1.1). We see that for r < Rs all null geodesics go towards r = 0, so

no photon trajectory can escape to infinity. Timelike geodesics from a point must

lie within the light cone bounded by the forward-pointing null geodesics from that

point, so massive particles also cannot escape once they cross r = Rs. We may note

that the limiting condition occurs when the outgoing null geodesics uµ are tangent

to the surface r = const. . In general a hypersurface f(x) = const. has normal

covector nµ = ∇µf(x) which is perpendicular to its tangent vectors. Therefore

the normal covector for this hypersurface satisfies nµu
µ = 0, but as uµuµ = 0 one

can show that uµ is both tangent and normal to the hypersurface, that nµ ∝ uµ,

and that therefore nµnµ = 0. This means nµ is a null vector and the hypersurface

is a null hypersurface. In general all event horizons are null hypersurfaces [14].

1For comparison the radius of the Sun is ∼ 6.96× 105km.
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Figure 1.1: Finkelstein diagram. Ingoing null geodesics are shown in red and
outgoing in blue, with light cones shown in black. We see that for r < Rs both
ingoing and “outgoing” geodesics only go inwards as the light cones tip over (figure
adapted from [16]).

In 1963 Roy Kerr discovered the exact solution for a rotating black hole, the

Kerr metric [17], given in Boyer Lindquist (BL) coordinates {t, r, θ, ϕ} by [18]:

ds2 = −
(
1− 2Mr

Σ

)
dt2− 4aMr sin2 θ

Σ
dtdϕ+

Σ

∆
dr2+Σdθ2+

A
Σ

sin2 θdϕ2, (1.16)

or equivalently

ds2 = −Σ∆

A dt2 +
Σ

∆
dr2 + Σdθ2 +

A
Σ

sin2 θ (dϕ− Ωdt)2 , (1.17)

where

A = (r2 + a2)2 −∆a2 sin2 θ , (1.18)

∆ = r2 − 2Mr + a2, (1.19)

Σ = r2 + a2 cos2 θ, (1.20)

Ω =
2aMr

A , (1.21)

and a = J/M is the Kerr spin parameter, with J being the angular momentum and

M the mass of the black hole. We can also define the dimensionless spin parameter

χ = a/M which takes a value between 0 (Schwarzschild) and 1 (extremal spinning).

As the metric is independent of coordinates t, ϕ there are two Killing vectors,

δµt and δµϕ , associated with the conservation of energy and angular momentum
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respectively. To find the event horizons we can look for null hypersurfaces of

constant r, with

gµνnµnν = gµνδrµδ
r
ν = grr = 1/grr =

∆

Σ
= 0. (1.22)

Solving ∆ = 0 gives two solutions r = r± ≡ M ±
√
M2 − a2 denoted the outer

and inner horizon respectively. For a → 0 these reduce to the Schwarzschild

horizon r = 2M , and one can prove that in BL coordinates r = r± are indeed

event horizons. The region between the outer horizon and the surface gtt = 0 is

called the ergosphere. This has several peculiar properties. In the local inertial

coordinates of an observer with 4-velocity uµ a particle has 4-momentum pµ =

(E,p) and uµ = (1, 0, 0, 0), so the energy measured by the observer is E = −uµpµ
in all coordinates as E is scalar. For stationary observers uµ ∝ δµt this energy

is conserved as δµt is a Killing vector. Far from the black hole uµ and pµ are

always timelike or null, meaning E ≥ 0 as we might expect. However, within the

ergosphere gtt > 0 so the 4-velocity of stationary observers becomes spacelike, and

E = −gttutpt can be negative: particles can have negative energy !2 In addition,

consider a photon emitted in the ϕ direction. Initially it has dr = dθ = 0, so

ds2 = gttdt
2 + 2gtϕdtdϕ+ gϕϕdϕ

2 = 0, (1.23)

dϕ

dt
=
−gtϕ
gϕϕ
±
√(

gtϕ
gϕϕ

)2

− gtt
gϕϕ

. (1.24)

Within the ergosphere gϕϕ > 0, gtt > 0 and gtϕ < 0 for a > 0 so the only solutions

have dϕ
dt
> 0. In other words, no matter what the photon is dragged along in the

same direction as the rotation of the black hole, a phenomenon known as frame

dragging. The minimum angular velocity of a particle on the outer event horizon

itself is ΩH = Ω(r = r+) = χ/(2r+) [14].

Despite their exotic nature, a set of uniqueness theorems – dubbed “no-hair”

theorems – state that the properties of black holes can be fully determined by a

small number of parameters: their mass M , angular momentum J , and electric

charge Q, and cannot support non-trivial profiles of other fields [22–25] dubbed

“hair”. The electric charge Q is usually assumed to be negligible for astrophys-

ical black holes, as any initial charge is rapidly neutralised by the ionized host

environment [26, 27].

2Although these negative energy particles cannot escape to infinity, this phenomenon under-
pins the Penrose process and superradiance [19–21].
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These theorems apply under both General Relativity and a broad class of

extensions which are of cosmological interest [28–30]. However, they depend on a

number of restrictive assumptions, and violating one or more of these may allow

black holes to acquire “hair” [25, 29, 31], motivating a great deal of research.

Black holes formed from the collapse of massive stars are typically thought to

range in mass from ∼ 3M⊙ to order 102M⊙ with an empty “mass-gap” between

∼ 50 − 130M⊙ due to the pair instability3 [32, 33]. Supermassive black holes

found at the centres of galaxies and dwarf galaxies are thought to range from

105 − 1010M⊙ [34]. There are currently few observational constraints on so-called

Intermediate-Mass Black Holes with masses 102 − 104M⊙, however they could

potentially be formed though mergers of stellar origin black holes in globular

clusters, among other mechanisms [35]. Finally some people have proposed that

black holes of much smaller masses, so called “primordial black holes” [36, 37],

could have been formed in the early universe.

If the collapsed core of a massive star has mass between 1.4M⊙ to ∼ 2M⊙, the

nuclear forces and neutron degeneracy pressure are sufficient to halt gravitational

collapse and instead of a black hole a neutron star is formed [38, 39]. These can

be thought of as similar to a giant atomic nucleus, with an outer layer of closely

packed atomic nuclei, and inner layers of more neutron-rich nuclear material and

potentially an inner core of ultra-dense quark-gluon plasma. The precise equation

of state, and hence the radius, of neutron stars is uncertain, however the radius

of a typical neutron star has been estimated as ∼ 10–12km [38, 40, 41]. Highly

magnetised rotating neutron stars can emit strong beams of electromagnetic ra-

diation from their poles. If these sweep the Earth as the star rotates they appear

as highly regular repeating pulsed radio sources called “pulsars” [38, 42].

1.2.3 Gravitational waves

Unlike in Newtonian gravity, where changes in the gravitational field are assumed

to propagate instantly, in General Relativity oscillations in the spacetime metric

propagate at the speed of light as gravitational waves. The idea of gravitational

waves had been suggested prior to 1915, based on the analogy between gravity and

electromagnetism, however Einstein was able to (eventually) derive a gravitational

wave equation directly from the weak field limit of the Einstein equations [43]. If

3An instability associated with the production of electron-positron pairs which causes stars
to explode completely in supernovae without forming a black hole remnant.
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gµν = ηµν + hµν , where hµν is a small perturbation about flat Minkowski space,

we can expand the Einstein field equations to first order in hµν and obtain the

sourced wave equation

−2Gµν ≈ □h̄µν = −16πTµν , (1.25)

where □ = ∇α∇α = ∂α∂
α = −∂2t +∇2 is the flat space d’Alembertian, we assume

Tµν is order hµν , h̄µν := hµν − 1
2
ηµνh is the trace reversed perturbation with trace

h = ηµνh
µν , and we use the De Donder or Lorenz gauge with ∂µh̄

µν = 0.

In vacuum, with Tµν = 0, we can make an additional gauge choice to set

hµ0 = h = ∂ih
ij = 0, defining the transverse-traceless gauge. We hence reduce the

original ten degrees of freedom of the symmetric hµν to two remaining physical

degrees of freedom, corresponding to two polarisations of gravitational waves. We

can describe this as

hTTij =

 h+ h× 0
h× −h+ 0
0 0 0


ij

cos(ω(t− z)), (1.26)

for a gravitational wave travelling in the z direction, where h+, h× are the am-

plitudes of the “plus” and “cross” polarisations respectively. The amplitude of a

gravitational wave from an oscillating source can be approximately given by the

lowest order quadrupole radiation which is[
hTTij

]
quad

=
1

r

2G

c4
Q̈ij(t− r/c), (1.27)

where r is the distance to the source, an overdot denotes a time derivative, and

the quadrupole is

Qij :=

∫
dx3ρ

(
xixj − 1

3
|x|2δij

)
, (1.28)

where ρ is the mass density. For a source made up of two orbiting bodies of total

mass M and velocity v this gives

hTTij ∼
1

r

2GM

c2

(v
c

)2
, (1.29)

so the strongest signals will come from sources of large mass, nearby, moving

at relativistic speeds. This includes some of the most cataclysmic events in the

universe, such as core-collapse supernovae and in particular binary black hole and

neutron star mergers.
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As a gravitational wave passes through space it distorts the distance between

free falling bodies, and we can use this effect to detect the signal. The laser

interferometers of LIGO [44] (the Laser Interferometer Gravitational-Wave Ob-

servatory in the USA) and Virgo [45] (in Italy) made the first direct detection of

gravitational waves from a binary black hole merger in 2015 [46], and subsequent

sensitivity upgrades have allowed for the detection of 90 individual gravitational

wave events as of early 2023 [47] (see Fig. 1.3). Another detector, KAGRA [48],

came online in 2020 and more are planned, including the space based LISA [49] and

future third generation detectors such as the Einstein Telescope [50] and Cosmic

Explorer [51].

1.2.4 Black hole binary mergers

All the gravitational wave signals detected to date have been from the mergers

of compact binaries: binary systems of two black holes, two neutron stars or

one of each. As they orbit they progressively lose energy due to the emission of

gravitational waves, causing the orbital separation to decrease and the frequency

to increase, until they eventually merge [52]. The simplest case is for two black

holes with spins aligned along the axis of the orbital angular momentum of the

binary, in which case the orbital motion is confined to a two dimensional plane.

The binary merger and corresponding gravitational wave signal can be divided

into three regimes:

1. The early inspiral. This is the regime where the compact objects are

widely separated and slowly moving with v/c≪ 1 where v is the velocity. As

the strength of the gravitational wave signal depends on (v/c)2 the amplitude

and energy of the gravitational waves emitted is very small, and the binary

separation and frequency change only very slowly. As a consequence this is

the regime where the binary spends most of its lifespan. This regime can

be well described using post-Newtonian (PN) theory (see [53] for a review)

where corrections to the Newtonian gravity solution are systematically added

order-by-order in small parameter ϵ = (v/c)2.

2. The highly relativistic merger. This regime includes the last few orbits

before merger and the actual merger itself, where the compact objects are

moving at relativistic speeds, are very close together, and the gravity is very
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strong. For comparable mass binaries this regime can only be well modelled

using Numerical Relativity.

3. The ringdown. The final stage of most compact object mergers is the for-

mation of a daughter black hole.4 The black hole is formed in an excited state

and “rings” like a bell, radiating energy in the form of gravitational waves

until it settles down into a stable configuration. These decaying oscillations

can be well described using black hole perturbation theory.

Figure 1.2: Stages of a black hole binary merger. The reconstructed best-fit
gravitational wave strain of the first event detected by LIGO, GW150914, together
with a Numerical Relativity model. Also shown are the separation and velocity of
the black holes (figure from [46]).

The parameters describing a black hole binary merger include the total mass

M1 +M2 of the two objects, the mass ratio q =M1/M2, the (dimensionless) spins

4Low mass neutron star mergers can instead form a bigger neutron star [54].
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of the two objects χ⃗1 and χ⃗2, the distance to the detector, the position on the sky,

and the inclination of the binary relative to the detector frame.

Figure 1.3: LIGO/Virgo/KAGRA black holes and neutron stars. This
diagram shows all the compact objects inferred from gravitational wave signals
at LIGO-Virgo-KAGRA along with those constrained by electromagnetic oberva-
tions, arranged by mass. Figure by Aaron Geller, Northwestern University, and
LIGO-Virgo.

1.2.5 Quasi-normal modes

The gravitational waves produced in the final “ringdown” regime are dominated

by a discrete set of damped oscillatory modes dubbed quasi-normal modes (QNM),

whose frequencies are strictly determined by the underlying spacetime, and in the

case of standard General Relativity and an isolated Kerr black hole are uniquely

determined by the black hole mass and spin. As such measuring these frequencies

provides, in principle, an excellent test of the nature of gravity and the structure
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of the spacetime. For detailed reviews of QNM theory see [55–58], however we will

briefly summarise the basics here.

Consider small perturbations around a Schwarzshild black hole gµν = g
(0)
µν +hµν

where g
(0)
µν is the Schwarzschild metric and hµν the perturbation. In spherical coor-

dinates (t, r, θ, ϕ) we look for oscillating solutions hµν = Hµν(r, θ, ϕ)e
−iωt. Because

of the spherical symmetry we can decompose the perturbations into two sets of

tensor spherical harmonics referred to as odd (or axial) and even (or polar) ac-

cording to their transformation under parity. Odd modes with angular numbers

l,m transform as (−1)l+1 under parity transformation (θ, ϕ)→ (π−θ, π+ϕ) while
even modes transform as (−1)l. The odd and even modes are [56, 59–61]:

h
(o)
µν,lm =


0 0 h0(r)B

lm
θ h0(r)B

lm
ϕ

0 0 h1(r)B
lm
θ h1(r)B

lm
ϕ

sym sym 0 0
sym sym 0 0

 e−iωlmt, (1.30)

h
(e)
µν,lm =


H0(r)f H1(r) 0 0
sym H2(r)/f 0 0
0 0 K(r)r2 0
0 0 0 K(r)r2 sin θ

Y lme−iωlmt, (1.31)

where “sym” indicates a symmetric entry, Blm
µ are the odd parity vector spher-

ical harmonics, f = (1 − 2M/r), the Y lm denote spherical harmonics and (o/e)

odd/even modes. Only the l ≥ 2 modes can radiate as gravitational waves. Ex-

panding the Einstein field equations in terms of these perturbations one can show

that the two sets of functions h0(r), h1(r) and H0(r), H1(r), K(r) for each l,m can

be described in terms of master variables Ψ
(o/e)
lm (r) which obey Schrödinger-like

master equations [
∂2r∗ + ω2

lm − V (o/e)
l

]
Ψ

(o/e)
lm = 0, (1.32)

where r∗ is again the tortoise coordinate and

V
(o)
l :=

(
1− 2M

r

)(
l(l + 1)

r2
− 6M

r3

)
, (1.33)

V
(e)
l := 2

(
1− 2M

r

)
λ2r2[(λ+ 1)r + 2M ] + 9M2(λr +M)

r3(λr + 3M)2
, (1.34)

λ := 1
2
(l + 2)(l − 1). (1.35)

The potentials V
(o/e)
l are called the Regge-Wheeler and Zerilli potentials respec-

tively. For an isolated black hole in an asymptotically flat spacetime physical so-

lutions cannot have gravitational waves entering from r =∞ or leaving the black
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hole horizon. So we impose boundary conditions that the perturbation must be

ingoing at the horizon and outgoing at r =∞:

Ψe−iωt →∝
{
e−iω(t+r) r → 2M,

e−iω(t−r) r →∞. (1.36)

This produces an eigenvalue problem for ωlm with a set of discreet complex solu-

tions ωnlm = ωRnlm+iωInlm where n is the overtone number n = 0, 1, 2, . . . . The real

part ωRnlm sets the oscillation frequency and is order ∼ 1/M , while the imaginary

part determines the decay timescale. The initial phase and amplitude of each QNM

in the ringdown signal cannot be determined from perturbation theory alone and

requires comparison to Numerical Relativity simulations or observations, however

in general we expect the n = 0, l = m = 2 mode to dominate.

For a Schwarzschild black hole the frequencies only depend on n and l, and

are identical for even and odd modes (the potentials are said to be isospectral).

Perturbation theory can also be applied to the spinning Kerr black hole, although

the lack of spherical symmetry makes the problem harder. Teukolsky [62] showed

that a similar decomposition can be found for perturbations in Kerr using the

Newman-Penrose formalism [63] resulting in another Schrödinger-like equation

which can be used to obtain QNMs, however the frequencies then have a non-

trivial dependence on the azimuthal number m and black hole spin χ, and the

even and odd modes are no longer isospectral.

1.2.6 Unresolved questions

Despite the tremendous success of both the Standard Model of particle physics

and General Relativity, there remain significant unresolved problems that suggest

these theories do not present a complete picture of fundamental physics. These

include:

• Quantum gravity. General Relativity is a classical theory, but ideally we

would like a quantum version where we can unify gravity with the other

fundamental forces. However, when described as a quantum field theory

General Relativity is nonrenormalizable, and as such cannot be extended to

arbitrarily high energies without an infinite number of parameters [64, 65].

There is also the question of why gravity appears much weaker than the

other fundamental forces (1024 times weaker than the weak nuclear force)

[66].
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• Dark energy. Observations of type Ia supernovae suggest the universe is

undergoing a period of accelerated expansion. Combined with measurements

of the cosmic microwave background, this suggests that about 68% [67] of

the energy budget of the observable universe is made up of a very homoge-

neous vacuum-energy-like component with negative pressure, termed “dark

energy” [68, 69]. The current ΛCDM standard model of cosmology [70] in-

cludes a small but non-zero cosmological constant term accounting for this

dark energy, and quantum field theory does predict such a vacuum energy,

but with scales some 60 orders of magnitude too large without exceptional

fine tuning [71, 72].

• Dark matter. Observations of the rotation curves of galaxies, gravitational

lensing, and studies of large scale structure among other measurements sug-

gest that 80% of the matter (and 27% of the total energy budget) in the

universe is made up of a non-radiating component, dubbed “dark matter”,

which cannot be fully accounted for by Standard Model particles [73].

• Inflation. In order to explain the observed flatness and homogeneity of the

universe many physicists today support the idea of inflation [74], whereby

the universe underwent a period of rapid accelerated growth at very early

times. However, the inflation model requires one or more new “inflaton”

fields, or some other new physics mechanism, to produce the expansion (see

[75] for a review of different inflation models).

1.3 Scalar fields and strong gravity

One popular proposal to address one of more of these questions is the addition

of one or more new fundamental scalar fields. A scalar field is a field which

can be described by a single number at every point in spacetime, and where

the corresponding particles are spin-zero bosons. A simple action for General

Relativity with a scalar field φ can be given by

S =

∫
d4x
√−g

[
1

16π
R− 1

2
∇µφ

∗∇µφ− V (φ) + . . .

]
, (1.37)

where “φ∗” denotes the complex conjugate of φ and the “. . . ” indicate possible

higher-order interactions. The potential V (φ) for a scalar field of mass ms and no
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additional self interactions is

V (φ) = 1
2
m2
sφ

∗φ, (1.38)

which you could also consider as a Taylor expansion around the minimum of a

more general potential. Equation (1.37) is for a complex scalar field, but one can

obtain the equivalent for a real scalar field by simply neglecting the imaginary

part of φ. The mass ms can be thought of either in terms its corresponding rest

mass energy Es = msc
2, usually expressed in electron-Volts (eV), or in terms of

its reduced Compton wavelength

λ̄ =
ℏ
msc

, (1.39)

with λ̄ = 1/ms in Planck units. The discovery of the Higgs boson [76, 77] demon-

strates that fundamental scalar fields exist in nature, and there are several reasons

to consider the possibility of new as-yet undiscovered examples. The QCD axion

is a scalar field which has been proposed as a possible solution to the strong CP

problem in particle physics [78–80]. It has a non-minimal5 coupling to Standard

Model particles6, and for the original axion model its mass is bounded by as-

trophysics and cosmology to around 10−5–10−3eV [81] although different models

have been proposed which evade these constraints [78, 82]. String theory predicts

multiple novel scalar fields with a wide range of possible masses [83–85].

1.3.1 Scalar fields from modified gravity

Another motivation for considering scalar fields is the study of modified gravity.

Despite the great successes of General Relativity much effort has gone into devel-

oping alternatives, motivated by the unresolved questions listed in section 1.2.6.

Many modified gravity theories can be classed as “scalar-tensor” theories [86, 87],

whereby General Relativity is extended with the addition of an additional degree

of freedom in the form of a scalar field, coupled to gravity in a non-trivial way.

Such scalar fields could be fundamental, or they can arise in effective field theories

as the low energy or dimensionally reduced limit of more fundamental fields.

Scalar-tensor theories have been proposed as models for dark energy [88] and

inflation (in which case the scalar field is called the “inflaton”) [89], and in the low

5“Non-minimal” meaning more than the basic gravitational coupling.
6Note that even scalar fields without non-minimal couplings to the Standard Model, which

thus do not solve the strong CP problem, are often termed “axion-like particles” or just “axions”
in the literature.
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coupling limit resemble a theory with a minimally coupled scalar field of some mass

ms as in (1.37). For a scalar field to be a candidate for dark energy the mass needs

to be very small, 10−32eV ≲ ms ≲ 10−18eV [85], where 10−32eV corresponds to the

Hubble scale ms ∼ H0 where H0 is the Hubble constant, the present expansion

rate of the universe.

The most general scalar-tensor theory with a single real scalar field and second-

order equations of motion can be given by the Horndeski action [90]

S =

∫
d4x
√−g

5∑
n=2

Ln + Sm, (1.40)

where Sm is again the standard matter action, with

L2 =G2(φ,X), (1.41)

L3 =−G3(φ,X)□φ, (1.42)

L4 =G4(φ,X)R +G4,X(φ,X)
(
(□φ)2 − φ;α;βφ

;α;β)
)
, (1.43)

L5 =G5(φ,X)Gαβφ
;α;β − 1

6
G5,X(φ,X)

[
(□φ)3 − 3φ;α;βφ;α;β□φ+ 2φ;α;βφ

;α;µφ;β
;µ

]
,

(1.44)

where X := −1
2
∇µφ∇µφ and φ;α;β := ∇α∇βφ [91, 92]. We recover General Rela-

tivity and the Einstein-Hilbert action (1.9) with G4 =
1

16π
, G5 = 0, and the mini-

mally coupled scalar field action (1.37) with G2 = X−V (φ), G3 = 0. Many mod-

ified gravity theories of cosmological and theoretical interest including f(R) grav-

ity, K-essence, Quintessence, Galileons, Brans–Dicke and Einstein–scalar–Gauss-

Bonnet gravity (EsGB) can be shown to be special cases of the Horndeski theory

[93, 94]. It is also possible to generalise Horndeski and go beyond second-order

equations of motion, while still maintaining only a single scalar degree of freedom

and avoiding unwanted instabilities, with the so-called beyond-Horndeski or GLPV

theories [95–97]. These can then be further extended to the class of Degenerate

Higher-Order Scalar-Tensor (DHOST) theories [97]. Expanding the Horndeski ac-

tion to second order in derivatives we can recover a generalised Brans-Dicke theory

of the form

S =

∫
d4x
√−g

[
F (φ)R− 1

2
∇µφ∇µφ− V (φ) + Lm(gµν ,matter)

]
, (1.45)

where it is made explicit that the matter part of the Lagrangian depends on both

the metric and the matter fields. One feature of scalar-tensor theories is that they

can be expressed in different guises or “frames” via field redefinitions. Equation



1.3. Scalar fields and strong gravity 21

(1.45) describes a “Jordan” frame if F (φ) depends on φ. If we perform a Weyl

transformation, a local rescaling of the metric tensor, gµν → Ω2(φ)g̃µν we can

obtain a new action

S =

∫
d4x
√
−g̃
[

1

16π
R̃ + · · ·+ L̃m(Ω(φ)

2g̃µν ,matter)

]
, (1.46)

in rescaled quantities where the gravity sector is now as in GR, but the matter

sector picks up additional couplings to φ. This is termed the “Einstein frame”.

The extent to which the two frames are really physically equivalent, especially in

the quantum theory, has been a matter of much debate and will be discussed in

chapter 6. We will also go beyond scalar-tensor theories with a single additional

degree of freedom, and instead consider an arbitrary number of fields which can

lead to interesting dynamics.

1.3.1.1 Fifth forces

Modified gravity theories are tightly constrained by laboratory experiments, mea-

surements of the motions of satellites and planets in the solar system, measure-

ments of distant pulsars, and cosmological observations, all of which are currently

consistent with General Relativity. The gravitational wave signal from the merger

of two neutron stars in 2017 [98], and a corresponding observation of an optical

counterpart [99], showed that gravitational waves travel at the speed of light to

within one part in 1015, further ruling out a whole array of theories [93, 100, 101].

For scalar-tensor theories, a generic result is that the exchange of the scalar parti-

cle with a non-minimal coupling gives rise to an additional long-range “fifth force”7

[102–104]. The exchange of a new particle of mass ms coupling to matter gives a

Yukawa [105] potential of the form

Vfifth(r) = −α
GM1M2

r
e−msr. (1.47)

The magnitude of α has been constrained by observations and experiment across

a range of length-scales (see Fig. E.1). However, one can construct scalar-tensor

theories which evade these constraints. These include screening mechanisms such

as Chameleon [106, 107], symmetron [107–110], environment-dependent-dilaton

and Damour-Polyakov screening [111, 112] and the Vainshtein mechanism [113,

114], along with scale-invariant theories which we shall discuss further in chapter

6.

7So-called because they act in addition to the standard four fundamental forces of nature.
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1.3.2 Scalar fields as dark matter

One or more novel scalar fields with non-zero mass are a popular candidate for

dark matter. The average galactic dark matter densities as measured from obser-

vations of galactic rotation curves are at best of the order ofM⊙/pc
3 or GeV/cm3,

with the local density in the Solar neighbourhood of the order ∼ 0.01M⊙/pc
3 or

∼ 0.1GeV/cm3 [115–119]. If the mass of the scalar field is ms ≪ 30eV, then

the typical spacing between the bosonic particles is much smaller than the de

Broglie wavelength, such that the collection of dark matter particles is best de-

scribed as a classical scalar field (see [82, 120–124] for reviews). In the spectrum

of different dark matter candidates (Fig. 1.4) such light scalar fields are included

under “ultra-light” dark matter also termed “wave-like” dark matter as it shows

wave-like properties. In contrast the conventional cold dark matter (CDM) used

in the standard model of cosmology typically assumes a particle-like nature with

ms ≳ 30eV. Very light scalar fields, with ms ∼ 10−20 − 10−22eV, termed “fuzzy

dark matter” [124, 125], have been proposed as a possible solution to the “core-

cusp” problem of structure formation [126], as they smooth out structure forma-

tion on small cosmological scales [123, 125, 127–129]. However, other more recent

results suggest that the cores produced by fuzzy dark matter may not fit observa-

tions, and that the core-cusp problem may instead be resolved by the inclusion of

baryonic effects [130–132]. While it has been argued that these observations8 ex-

clude ultra-light DM across almost the entire mass range [133–136], uncertainties

in the astrophysical modelling and data interpretation may call these bounds into

question [121, 137]. Moreover, they do not exclude models with multiple scalar

fields or multiple dark matter components. As a result, scalar-field DM remains

a key candidate of interest.

1.3.3 Scalar fields and black holes

As we expect that the primary interaction of scalar field dark matter will be via

gravity, the ultra-strong gravity regimes around black holes provide an excellent

scope for testing these models [138]. A minimally coupled massive scalar field has

a Klein-Gordon equation of motion[
□−m2

s

]
φ = 0, (1.48)

8Of dwarf spheroidal galaxies, the Lyman-α forest and the subhalo mass function, among
others.
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Figure 1.4: Dark matter candidates: sketch of different candidates over a wide
range of mass scales (figure from [121]). Light scalar field dark matter falls in the
“ultra-light DM” range.

Figure 1.5: Cosmological simulations of structure formation with light
scalar dark matter and particle cold dark matter. Figure taken from Schive
et al. (2014) [128]. The scalar field dark matter (left) reproduces the same cosmic
structure on large scales, while smoothing out structures on smaller scales.

where □ = ∇µ∇µ. If we try and solve this equation in a Kerr black hole spacetime,

and look for an oscillating solution φ ∝ e−iωt, we obtain an equation of the form

[18, 139] [
∂2r∗ + ω2

lm − Vl,m(r;ω, χ)
]
(rφlm) = 0, (1.49)

which is the spin-zero radial Teukolsky equation, and where φ has been decom-

posed into angular modes φ =
∑

lm φlm(r)e
imϕSlm(θ) where e

imϕSlm(θ) are oblate

spheroidal harmonics9. Here dr∗
dr

= r2/∆ where ∆ is as in (1.19). For r ≫ M we

can approximate this as[
∂2r + ω2

lm −m2
s +

2msM

r
− l(l + 1)

r2

]
(rφlm) = 0, (1.50)

9These are the equivalent of spherical harmonics for oblate spheroidal coordinates, for more
details see [140].
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We can recognise this as almost identical to the Schrödinger equation of an elec-

tron in a hydrogen atom, dominated by a 1/r potential, and with a “gravitational

fine structure constant” of αg := msM . This approximation is termed the “grav-

itational atom” [139, 141–143]. Solutions with ω < ms represent bound states,

ω = ms marginally bound and ω > ms unbound. For αg ≪ 1 it can be shown that

the discrete set of bound states have frequencies (and therefore energies) that can

be approximated as

ωnlm ≈ ms

[
1−

(
αg

l + n+ 1

)2
]1/2

+ imsγlr+ (mΩH −ms)α
4l+5
g , (1.51)

where n = 0, 1, 2, 3 . . . , γl is a constant that depends on l
10, r+ =M(1+

√
1− χ2)

is the radius of the outer horizon and ΩH = χ/(2r+) is the horizon angular velocity.

If the complex part of the frequency is negative the mode decays with time, as

scalar dark matter disperses to infinity and falls into the black hole, with a decay

timescale 1/Im{ω}. However, if an instability condition is satisfied

ms < mΩH , (1.52)

then the imaginary component becomes positive and the mode can grow exponen-

tially with time. Including the backreaction in full GR the spin and mass of the

black hole correspondingly decreases. This is the phenomenon of superradiance

whereby a bosonic field can extract energy and angular momentum from a highly

spinning black hole via repeated scattering in the ergosphere (see [21] for a detailed

review). The cloud keeps growing until the angular momentum of the black hole

decreases to the point where the inequality is saturated. Superradiance has been

widely studied as one mechanism to generate scalar dark matter clouds around

spinning back holes from small initial fluctuations. Another, simpler, formation

mechanism is gravitational accretion from a diffuse scalar field dark matter envi-

ronment, which we will explore in chapter 3. Scalar field profiles that decay with

time, such as the “gravitational atom” bound states, are typically not considered

“black hole hair”, as that label is reserved for truly stationary or static solutions.

Nonetheless, these states can be extremely long lived, surviving for cosmological

times, and as such have been dubbed “black hole wigs” [144–147].

10From Detweiler (1980) [139]: γl ≈ 24l+2(2l+1+n)!
(l+1+n)2l+4n!

[
l!

(2l)!(2l+1)!

]2∏l
j=1 [j

2(1−χ2)+msr+(mΩH−ms)
2].
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1.3.4 Scalar fields and black hole binaries.

Although scalar field clouds around isolated black holes could potentially emit

gravitational waves on their own (as discussed in 3.4 and [138]), the observations

of GW signals from binary black hole mergers motivates the possibility of using

these to detect fundamental scalar fields. In principle any matter environment

that contributes to the energy momentum tensor will in turn modify the metric,

resulting in changes to all three regimes of the gravitational wave signal. These

changes could result from any kind of matter, from standard baryonic matter like

plasma-filled accretion disks to dark matter clouds, with the spatial distribution

and physical nature of the matter giving rise to distinctive signatures at each stage

[148–150, 150–163]. Therefore, even a minimally coupled scalar field dark matter

environment could produce a signal. The wave-like nature of light scalar field dark

matter means it behaves very differently from particle-like dark matter around

merging binaries, however accurately modelling the dynamics and gravitational

wave signal from such scalar field binaries has many challenges as we will explore

in chapter 5. The potential impact of a scalar dark matter cloud on the final

ringdown regime is explored in chapter 4.



Chapter 2

Numerical Relativity

This chapter presents an overview of the key ideas in Numerical Relativity, largely

based on the popular reference works of Alcubierre (2008) [12] and Baumgarte and

Shapiro (2010) [164].

As advertised in section 1.2.1 although the Einstein field equations look simple,

they are really a system of 10 non-linear, second-order, coupled PDEs, and it is

very challenging to find explicit analytic solutions, except for a few very simple

cases with high degrees of symmetry or weak fields. This motivates the idea of

solving the equations numerically on a computer, a discipline termed “Numeri-

cal Relativity” (NR). Numerical methods have been used to solve the Einstein

equations for a long time, however key theoretical developments and the increas-

ing power of supercomputing facilities has led to significant advances in the last

couple of decades.

The essential idea is to write the Einstein equations as a initial value, or

Cauchy, problem.1 We need some evolution equations

∂tu = F (u, ∂iu, ∂i∂ju), (2.1)

where u(t, xi) is a set of dynamic evolution variables, i, j denote spatial indices,

and the functions F only depend on at most second-order spatial derivatives due to

the second-order nature of the Einstein equations. Equations without time deriva-

tives G(u, ∂iu, ∂i∂ju) = 0 are constraints that must be satisfied at all times. We

also need some initial data for t = 0, i.e. u(0, xi), which satisfies the constraints,

and some suitable boundary conditions at the spatial boundary of the domain

1A slightly different approach using characteristic hypersurfaces is reviewed by Winicour [165]
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(because with a finite computer we need to work with a finite computational do-

main). Given those ingredients we can in principle numerically integrate (2.1) to

obtain the solution at t > 0.

However, there are several important challenges to overcome. The first is that

in General Relativity, due to the coordinate freedom, there is no universal notion

of “time”: different observers in different reference frames will have different per-

spectives on what constitutes “time” and “space”. Hence we first need to choose

how we split our 4 dimensional spacetime into a 3 + 1 dimensional decomposition

of 3 dimensions of space and 1 of time.

2.1 The 3+1 decomposition

To perform this decomposition we foliate the spacetime into a set of 3-dimensional

spatial hypersurfaces Σ indexed by parameter t which is interpreted as time. The

normal vector to the hypersurfaces is nµ, and the spatial coordinates xi for i =

1, 2, 3 are the coordinates within the hypersurface perpendicular to nµ (see Fig.

2.1). We decompose the metric as

ds2 = gµνdx
µdxν = −α2dt2 + γij(dx

i + βidt)(dxj + βjdt). (2.2)

The lapse function α determines the proper time interval dτ = αdt between hy-

persurfaces separated by time dt, moving along a normal vector. The shift vector

βi determines how much the spatial coordinates shift between successive hyper-

surfaces, relative to the normal vector. Due to coordinate freedom we can choose

different α and βi, and this determines the foliation of the spacetime. We also have

a spatial metric γij which defines a spatial line element dσ2 = γijdx
idxj within

a hypersurface. The coordinates xµ = (t, xi) are called the adaptive basis. The

4-dimensional metric and its inverse can be expressed in terms of these quantities

gµν =

(
−α2 + βkβ

k βi
βj γij

)
, gµν =

(
−1/α2 βi/α2

βj/α2 γij − βiβj/α2

)
, (2.3)

where βi = γijβ
j, γij is the inverse of γij, and in general we assume from now on

that indices of spatial tensors are raised and lowered with γij. One can also show

that the four dimensional volume element
√−g = α

√
γ where γ = det(γij). The

normal vector written in the adaptive basis is

nµ = −α∇µt = (1/α,−βi/α), nµ = (−α, 0, 0, 0), (2.4)
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Figure 2.1: Foliation of spacetime by 3-dimensional spacelike hypersurfaces Σ.

and one can see it is normalised and timelike such that nµnµ = −1. Eulerian

observers are those moving with velocity nµ, so those moving normal to the hyper-

surfaces. The spatial metric γij can also be thought of as the spatial components

of the 4D metric induced on the hypersurfaces

γµν = gµν + nµnν . (2.5)

The projection operator onto a spatial hypersurface is

P µ
ν = δµν + nµnν = γµν , (2.6)

and the time vector parallel to lines connecting points of the same spatial coordi-

nates xi on different hypersurfaces is

tµ = αnµ + βµ, (2.7)

where the 4-dimensional shift is defined as βµ = (0, βi). As GR is a theory about

spacetime curvature, we also need to define curvature in the 3 + 1 decomposition.

There are two types:

• Intrinsic curvature. This is the curvature of the spatial hypersurfaces. It

is given by the three dimensional Riemann tensor (3)Ri
jkl defined as usual

but with the 3D spatial metric γij instead of the 4D gµν metric.
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• Extrinsic curvature. This is related to how the 3D hypersurfaces are

embedded in the 4D spacetime, and how the hypersurface deforms as you

move along a normal. It is defined terms of how much the normal vector

changes as we move along the spatial hypersurface, given by the projection

of the gradient

Kµν = −Pα
µ∇αnµ. (2.8)

One can show it is symmetric, the time components of Kµν are zero, and

although the time components of Kµν are non-zero all the information is

effectively contained in the spatial part Kij.

One can also relate the extrinsic curvature to the Lie derivative (see appendix A.1

for more detail) of the spatial metric along the normal direction

Kµν = −
1

2
Ln⃗γµν . (2.9)

The trace of the extrinsic curvature, often called the mean curvature or expansion,

is

K = gµνKµν = γijKij = −Ln⃗
√
γ = −∇µn

µ, (2.10)

and it corresponds to the fractional change in the 3D volume element of the

Eulerian observers as they move along the normal lines. Negative K corresponds

to expanding space and positive K to collapsing one. We can use the definition

of the time vector tµ and properties of the Lie derivative to obtain

Kij = −
1

2
Ln⃗γµν = −

1

2α

(
Lt⃗ − Lβ⃗

)
γij = −

1

2α
(∂tγij −Diβj −Djβi) , (2.11)

where Dµ is the covariant derivative on the hypersurface given by Dµ = P ν
µ∇ν .

2.2 Einstein’s equations in 3+1

We now need to write the Einstein equations in the 3+1 language. The general

idea is to contract different terms with nµ and P µ
ν to separate out the spatial and

time-related parts.

To begin we project the 4D Riemann tensor Rµνλσ (with the first index lowered

with gµν) onto the spatial hypersurface

P µ
αP

ν
βP

λ
γ P

σ
δ Rµνλσ = (3)Rαβγδ +KαγKβσ −KαδKβγ, (2.12)
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what are termed the Gauss-Codazzi equations. If we swap one of the projection

matrices with a normal vector we get

P µ
αP

ν
βP

λ
γ n

σRµνλσ = DβKαγ −DαKβγ, (2.13)

the Codazzi-Mainardi equations. If we contract the Riemann tensor with two

projection operators using alternate indices we find

P µλP νσRµνλσ =(gµλ + nµnλ)(gνσ + nνnσ)Rµνλσ,

=R + 2nµnνRµν = 2nµnνGµν .
(2.14)

where the nµnνnλnσRµνλσ term vanishes due to symmetry properties of the Rie-

mann tensor. From contracting the Gauss-Codazzi equations (2.12) we get

P µλP νσRµνλσ = (3)R +K2 −KµνK
µν , (2.15)

Then putting these together and using Gµν = 8πTµν we get

H = (3)R +K2 −KijK
ij − 16πρ = 0, (2.16)

where ρ = nµnνTµν is the energy density measured by the Eulereian observers.

Provided we use suitable variables this equation does not involve any time deriva-

tives. Hence it is not related to the evolution, but instead an elliptic equation that

must be satisfied on each spatial hypersurface termed the Hamiltonian constraint.

If we also contract the Codazzi-Mainardi equations (2.13) we obtain

gαγP µ
αP

ν
βP

λ
γ n

σRµνλσ = P ν
βn

σRνσ = P ν
βn

σGνσ = gαγ (DβKαγ −DαKβγ) . (2.17)

Defining the momentum density measured by Eulerian observers as Sµ := −P µνnσTνσ,

and again using the Einstein field equations to eliminate Gµν , we find the second

important result

Mi = Dj

(
γijK −Kij

)
− 8πSi = 0. (2.18)

Again, provided we choose the right variables this equation also is free of time

derivatives, giving a second set of elliptic equations termed the momentum con-

straints. We are not free to simply choose any spatial metric γij and ∂tγij (via

Kij) as initial data. In order to satisfy the Einstein equations we have to satisfy

these constraints.

We have so far used the nµnνGµν and P µαnνGµν projections of the Einstein

equations to get the Hamiltonian and momentum constraints respectively. We

already have a suitable first order evolution equation for γij from (2.11)

∂tγij = −2αKij +Diβj +Djβi. (2.19)
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To get the evolution equation for Kµν we can use the remaining P µαP νβGµν pro-

jections to obtain

∂tKij =β
k∂kKij +Kki∂jβ

k +Kkj∂iβ
k −DiDjα

+ α
(
(3)Rij +KKij − 2KikK

k
j

)
+ 4πα(γij(S − ρ)− 2Sij),

(2.20)

where Sµν := Pα
µ P

β
ν Tαβ is the spatial stress tensor measured by the Eulerian

observers and S = gµνSµν is its trace. We also need suitable evolution equations

for the matter, and we need to determine α and βi, however due to gauge freedom

we can choose these gauge functions to be whatever is most convenient.

This 3+1 decomposition was first formulated by Arnowitt, Deser and Misner in

1962 [166] for use in quantum gravity, and thus is termed the ADM formulation or

ADM decomposition. The standard version presented here is not quite the same as

that in the original 1962 paper, instead it corresponds to a reformulation by York

(1979) [167] where (2.20) has an added multiple of the Hamiltonian constraint H
compared to the version in [166]. As H = 0 for physical spacetime this doesn’t

change the physics, but does change the mathematical properties of the equations.

2.3 Numerical stability and well-posedness

One can obtain many different physically equivalent formulations of the evolution

equations described above by redefining variables and by adding or subtracting

multiples of the constraints H andMi.

The second big challenge in NR is finding a formulation such that the problem

is well-posed. For a problem involving a system of PDEs to be well-posed it must

have a unique solution for any set of valid initial data, and the solution must

depend continuously on the initial data. In other words, a small change in the

initial data should not give an arbitrarily large change in the solution.

This is a necessary condition for numerical stability, as otherwise tiny numerical

errors in the initial data could give arbitrarily large errors in the result. It is

not a sufficient condition for good numerical behaviour, as even a well-posed

problem can give large errors, but at least they won’t be arbitrarily large. Formally,

continuous dependence2 on the initial data means there exist constants K,α such

that for any two sets of valid initial data u1(0, x
i),u2(0, x

i) with unique solutions

2In the sense of Lipschitz continuity [168].
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u1(t, x
i),u2(t, x

i)

∥u1(t, x
i)− u2(t, x

i)∥ ≤ Keαt∥u1(0, x
i)− u(0, xi)∥, (2.21)

at all times t ≥ 03, where ∥·∥ denotes a suitable norm, such as the L2 norm

∥v∥2L2
:=
∫
R3 v†v dxdydz where “ † ” denotes the conjugate transpose. If the

system of PDEs is linear the condition reduces to

∥u(t, xi)∥ ≤ Keαt∥u(0, xi)∥, (2.22)

for any valid initial data u(0, xi) and unique solution u(t, xi). For the initial data

to be “valid” it must both satisfy the equations and its norm must be bounded

[164, 169, 170]4.

A system of PDEs can be shown to have a well-posed initial value problem if

it is strongly hyperbolic. Suppose we can write our evolution equations as

∂tu+M i∂iu = S(u), (2.23)

where the i index spans the spatial dimensions, S(u) is a source term and the M i

are called characteristic matrices. For an arbitrary unit vector si = (s1, s2, s3) we

define the principle symbol matrix P (s⃗) := M isi. If this has real eigenvalues and

a complete set of eigenvectors for any si the system is strongly hyperbolic5, if it

has real eigenvalues but not a complete set of eigenvectors the problem is weakly

hyperbolic. Unfortunately, the ADM formulation can be shown to be strongly

hyperbolic only if the momentum constraint is satisfied at all times, which due to

numerical errors is not generally true, which means that the ADM initial value

problem is typically only weakly hyperbolic and not well-posed.

2.4 Improved formulations and conformal trans-

formations

A major step forward in NR was the development of a strongly hyperbolic formu-

lation of the evolution equations by Baumgarte, Shapiro, Shibata and Nakamura,

termed the “BSSN” formulism [172–174].6

3If this condition holds only up to some finite time T the problem is locally well-posed. If it
is true for all time the problem is globally well-posed.

4Note that well-posedness does not necessarily require that the initial data is smooth and
continuous [164, 171].

5If all the eigenvalues are also all distinct the system is strictly hyperbolic.
6Sometimes also termed “BSSNOK” to acknowledge the contributions of Oohara and Kojima

to the original paper by Nakamura.
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One key idea is to use a conformal transformation. We define the conformal

factor χ = γ−1/3 (not to be confused with the dimensionless black hole spin) such

that the conformally rescaled spatial metric γ̃ij := γijχ has a unit determinant.

This definition ensures that χ goes to zero at a black hole singularity instead of

blowing up as 1/r, and that γ̃ij stays order 1. As r →∞ the conformal factor tends

to 1. The extrinsic curvature is decomposed into its trace K and a conformally

rescaled traceless part Ãij as

Kij =
1

χ

(
Ãij +

1
3
Kγ̃ij

)
. (2.24)

Finally we define the conformal connection functions

Γ̃i := γ̃jkΓ̃ijk = −∂j γ̃ij, (2.25)

and promote them to evolution variables, where Γ̃ijk are the connection coefficients

for the conformal spatial metric. Multiples of the constraints are added to the

evolution equations to achieve strong hyperbolicity and hence stable numerical

evolution. The evolution variables are then {χ,K, Ãij, γ̃ij, Γ̃i}.
Other well-posed formulations have also been derived. Franz Pretorius (2004)

developed a decomposition of the Einstein equations into generalised harmonic

coordinates (GHC) [175], which allowed him to perform the very first NR simu-

lation of a black whole binary through the final orbit, merger, and ringdown in

2005 [176, 177].

However, the formulation used in the work presented in this thesis is the CCZ4

formulation by Alic et al. (2012) [178] based on the Z4 system [179–181]. The key

idea is to introduce a new 4-vector Zµ such that

Rµν +∇(µZν) = 8π
(
Tµν − 1

2
gµνT

)
. (2.26)

Comparing (2.26) with (1.7) we see that if Zµ(t, x
i) = 0 for all t, xi we recover

the Einstein field equations. Therefore instead of imposing the Hamiltonian and

momentum constraints directly it is sufficient to maintain Zµ = 0, and choose

initial data that satisfies Zµ(0, x
i) = 0, ∂tZµ(0, x

i) = 0. Taking the divergence of

(2.26) we obtain a wave equation

□Zµ +RµνZν = 0, (2.27)

so that any deviation from Zµ = 0 propagates at a finite speed, and we add

damping terms

Rµν+∇(µZν)+
κ1
α

[nµZν + nνZµ − (1 + κ2)gµνnσZ
σ] = 8π

(
Tµν − 1

2
gµνT

)
, (2.28)
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so that for κ1 > 0, κ2 > −1 any non-zero Zµ, and thus any constraint violations,

are exponentially damped to zero, unlike in the case of BSSN. We use the default

GRChombo choices of κ1 = 0.1 and κ2 = 0.

The same conformal transformation is used as in BSSN, except two new evo-

lution variables are defined, Θ := nµZµ and Γ̂i where

Γ̂i = Γ̃i + 2γ̃iµZµ, (2.29)

is used as an evolution variable in place of Γ̃i, with an additional damping parame-

ter κ3.
7 The evolution variables are then {χ,K, Ãij, γ̃ij, Γ̂i,Θ}. The full evolution

equations are not particularly enlightening and can be found in [178] and [183],

however they are included in appendix A.2 for completeness.

2.5 Gauge choice

As discussed above we also need to choose a gauge via the gauge functions α, βi.

Although in principle any gauge should give physically equivalent results, in prac-

tice the gauge choice is very important to achieve stable numerical evolution over

long times, and the best choice may depend on the physical system you want to

simulate.

The choice of lapse α is termed “choosing the slicing”, as it determines how

the spacetime is “sliced” into hypersurfaces. One of the most popular choices is

the alpha-driver or Bona-Masso-type slicing

∂tα = −µ1α
µ2(K − 2Θ) + µ3β

i∂iα. (2.30)

For µ1 = 2, µ2 = µ3 = 1 this reduces to what is called “1+log” slicing

∂tα = −2α(K − 2Θ) + βi∂iα. (2.31)

This has a key advantage for dealing with black holes in that for βi = 0 the lapse

decreases exponentially to zero for regions of collapsing spacetime with K > 0.

This means the evolution will “freeze” near collapsing matter, avoiding any singu-

larities. The downside is that normal observers are pulled towards, and eventually

7Note that we use a rescaled κ1 → κ1/α compared to the original formulation [178] to avoid
instabilities of black hole spacetimes with κ3 = 1, a suggestion proposed in [182] and discussed
in [183].
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fall into, the black hole. To fix this we use the so-called gamma-driver shift con-

dition

∂tβ
i =3

4
Bi,

∂tB
i =3

4
α∂tΓ̃

i −Bi.

(2.32)

(2.33)

The so-called moving punctures method [184, 185] is the combination of the 1+log

α slicing and the gamma-driver shift condition. It was a key step to achieving

practical simulations of black hole binary mergers, and is now the standard choice

for spacetimes with black holes. Near the centre of the black hole the hypersurface

in this gauge condition asymptotes to a finite distance from the singularity, forming

a characteristic “trumpet” shape [186] when pictured in four dimensions.

2.6 Matter evolution

In chapters 3 and 5 the matter we consider is a minimally coupled massive scalar

field obeying the Klein-Gordon equation of motion (1.48), which we consider as

scalar field dark matter.

To get suitable evolution equations we decompose the second-order Klein-

Gordon equation to two first-order evolution equations

∂tφ = αΠ+ βi∂iφ,

∂tΠ = αγij∂i∂jφ+ α
(
KΠ− Γk∂kφ−m2

sφ
)

+ ∂iφ∂
iα + βi∂iΠ,

(2.34)

(2.35)

where Π is the conjugate momentum of φ defined via (2.34). For a complex scalar

field we can define it in terms of two real scalar fields φ = φRe + iφIm and their

conjugate momenta Π = ΠRe + iΠIm and evolve the real and imaginary parts

separately according to (2.34)(2.35).

2.7 Initial data

The final big challenge for Numerical Relativity simulations is obtaining constraint

satisfying initial data. As we have seen, the γij and Kij we specify on the initial

hypersurface need to satisfy the Hamiltonian (2.16) and momentum (2.18) con-

straints. If we have matter in our simulation this is a highly non-trivial problem.

There are several different approaches to solving these elliptic equations to

obtain constraint satisfying data (see [187] and references therein). In chapter
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5 we use the novel Conformal-Transverse-Traceless-K (CTTK) method. The full

details of the method can be found in Aurrekoetxea, Clough and Lim (2022) [188],

however we will summarise the key points here. The CTTK method is based on

the CTT (Conformal-Transverse-Traceless) method. We use a redefined conformal

factor

ψ := χ−1/4, (2.36)

such that

γij = ψ4γ̃ij. (2.37)

We also define a new conformally rescaled traceless extrinsic curvature

Āij := ψ2Aij = ψ6Ãij, (2.38)

and we decompose this into a transverse-traceless part ĀTTij and a longitudinal

vector W i,

Āij = ĀTTij + D̃iWj + D̃jWi − 2
3
γ̃ijD̃kW

k, (2.39)

where D̃i denotes the covariant derivative with respect to the conformal spatial

metric. The Hamiltonian (2.16) and momentum (2.18) constraints become

D̃2ψ = 1
8
(3)R̃ψ − ψ−7ĀijĀ

ij + ψ5
(

1
12
K2 − 2πρ

)
, (2.40)

(∆̃LW )i = 2
3
ψ6γ̃ijD̃jK + 8πψ10Si, (2.41)

D̃jĀ
ij
TT = 0. (2.42)

where ∆̃L is the vector Laplacian and (3)R̃ the Ricci scalar of the conformal spatial

metric. To simplify the equations we assume γ̃ij = δij (i.e. assume a conformally

flat space), and ĀijTT = 0 (no initial transverse-traceless modes). This means
(3)R̃ = 0. We can make a further simplification by requiring Wi = Vi + ∂iU , and

∇2U = −1
4
∂jV

j for some scalar function U . The equations then reduce to

∇2U = −1
4
∂jV

j, (2.43)

∇2ψ = −1
8
ĀijĀ

ijψ−7 +
(

1
12
K2 − 2πρ

)
ψ5, (2.44)

∇2Vj = ψ108πSj + ψ6 2
3
∂jK. (2.45)

We can then try to solve these Poisson equations for ψ and Vi and use those to

recover γ̃ij, Āij and therefore Ãij. Our approach is to linearise around some initial

guess ψ0, V
i
0 with ψ = ψ0 + δψ, V i = V i

0 + δV i, then numerically solve for the

corrections δψ, δV i using a non-linear Poisson solver. We then update the guesses
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and iterate until the results converge. In the CTT method a common approach

to uncouple the Hamiltonian equation (2.44) and momentum equation (2.45) is to

set K = const. . However, there is a problem with this approach: if the sign of the

coefficient in the right hand side of the (2.44) equation does not match the sign

of the power of ψ, we are not guaranteed unique solutions. Hence this becomes a

problem for 2πρ > 1
12
K2.

One way around this is to instead work with a rescaled density, ρ̃ = ψ5ρ.

Unfortunately this means we lose control over the matter distribution as we can

only set ρ̃ as our input not ρ, and in the case of a scalar field we cannot then

reconstruct φ and Π. Even if you avoid this latter problem by using a rescaled

φ and Π as inputs, you are still faced with a loss of control over the initial mat-

ter conditions. Therefore, the CTTK method uses an alternative, perhaps more

natural, approach, which is to set

K2 = 24πρ, (2.46)

and solve for K algebraically. This does mean that we need to solve (2.43), (2.44)

and (2.45) as a fully coupled set of equations, however this can be done successfully

(the precise technical details can be found in [188]). The reason this approach can

be thought of as “more natural” is that naively you would expect matter density to

locally curve spacetime and thus influence the extrinsic curvature K. So allowing

K to change with ρ is a more natural choice than fixing K = const. . If we want

to obtain initial data for both scalar fields and black holes, as in chapter 5, then

we can further decompose ψ, Āij as

ψ = ψBH + ψ∗, (2.47)

Āij = ĀijBH + Āij∗ . (2.48)

The black hole terms ψBH, Ā
ij
BH can be obtained from Bowen-York analytic solu-

tions for initial data for boosted black holes [189–191], and the ψ∗, Ā
ij
∗ can then

be solved as small corrections using the method outlined above.

We also need to specify an initial lapse and shift. We choose the popular

“pre-collapsed” lapse [170]

α = ψ−2 = χ1/2, (2.49)

and vanishing shift βi = Bi = 0.
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2.8 Fixed background

In NR simulations we typically work in units of order the Schwarzschild radius Rs

which scales with the black hole’s massM . Average galactic dark matter densities

are of the order ρDM ∼ 0.01M⊙pc
−3 [116, 127]. Expressed in simulation units this

is

ρDMR
2
s ∼ 10−30

(
ρDM

M⊙pc−3

)(
M

106M⊙

)2

, (2.50)

which is far below even the level of numerical noise in our simulation. The Einstein

equations (1.6) show that the effect of the matter on the spacetime metric, the

“backreaction”, is of order Tµν so of order the density. Hence for simulations

examining accretion from a diffuse galactic dark matter background we are justified

in neglecting the backreaction, and evolving the spacetime as if it were in vacuum.

We term this the “fixed background” approach. In chapter 3 we don’t evolve the

metric with Numerical Relativity at all and just keep it as a Kerr black hole, and

only evolve the matter according to (2.34) and (2.35). In the model of the early

inspiral regime in chapter 5 section 5.2 we instead evolve the metric according to

an analytic solution for two isotropic black holes in fixed circular Keplerian orbits.

The main advantage of the fixed background approach is that it is computationally

much cheaper than the full Numerical Relativity evolution. As the Klein-Gordon

equation is linear we can rescale the scalar field so it is order ∼ 1, while keeping

the physical density the same. This allows us to model these low-density regimes

numerically without having to deal with inconveniently small numbers.

In regions where the scalar dark matter density is significantly enhanced (for

instance a cloud formed after long period of accretion and pile up, or a superradiant

cloud) the backreaction may become significant, as we explore in chapter 4 and

chapter 5 section 5.4.

2.9 GRChombo

There are many different Numerical Relativity codes out there, all with different

capabilities and their own advantages and disadvantages (for a summary see [192]).

The code used for the work in this thesis is GRChombo [193, 194], an open source

C++ code based on Chombo [195], a general solver for partial differential equations

using finite difference and finite volume methods and adaptive mesh refinement

(AMR) [196].
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Figure 2.2: Black hole binary with AMR in GRChombo. This 3D plot
shows the conformal factor χ on the z axis, and the grid structure on the x, y
plane, for a GRChombo simulation of a black hole binary merger. Note how the
conformal factor decreases from 1 far from the black holes to 0 at the black hole
centres, and regions of higher resolution are concentrated around the two black
holes (figure adapted from Fig. 7 in [194]).

The technical details of how it works can be found in [193], [194] and [183].

However, the key idea is that the evolution variables are defined on a series of

nested grids. The grid spacing decreases by 2 as you go from an outer grid to

an inner grid, and the integration time step dt also decreases by 2. This increase

in resolution allows you to use high resolution in regions where it is important,

such as near the black hole horizon or regions of high density (see Fig. 2.2), and

low resolution elsewhere, such as regions of low density far from the black hole.

The code can dynamically alter the layout of the grids to adjust the resolution as

needed, and this is what makes it “adaptive mesh refinement”, and particularly

suited to problems with matter or fundamental fields. In the work presented here

we used 4th-order Runge-Kutta integration, however higher-order methods can

also be used.

The code is typically run in parallel on thousands of CPUs, where different

processors are assigned different sections of the grid to evolve, and communicate

via the Message Passing Interface (MPI).
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Chapter 3

The growth of accretion driven
scalar field clouds around Kerr
black holes

As described in section 1.3.2 a low mass “axion-like” scalar field is a well motivated

candidate for dark matter. It could have non-trivial self interactions or non-

minimal couplings, however the simplest case is a real scalar field φ with mass µ

(see note on units) and a potential V (φ) ≈ 1
2
µ2φ2, minimally coupled to Einstein

gravity.

Note on units

In this chapter and the subsequent two chapters we shall typically work not
in terms of ms, the physical scalar field mass, but in terms of µ = msc/ℏ =
λ̄−1, the inverse reduced Compton wavelength, or the dimensionless quantity
αg = rgµ, rg = GM/c2 being the gravitational radius of the black hole. In
Planck units µ = ms, however when dealing with black holes it is more
convenient to use geometric units G = c = 1 with M ∼ 1, in which case
ℏ ̸= 1, µ = ms/ℏ ̸= ms and αg = Mµ. The factors of ℏ only become
important when we express the scalar mass numerically in terms of eV,
hence we shall simply refer to µ as “the scalar mass”, even though it is
really an inverse length scale.

Analytic solutions for the stationary profile of scalar clouds have been obtained

for a massive scalar field obeying the Klein-Gordon equation on fixed black hole

background metric [18, 197, 198] (where the backreaction of the scalar field on

the metric is neglected) based on the confluent Heun function [199]. For r ≫ M

the scalar field obeys an equation which approximates the Schrödinger equation

governing the electron in a hydrogen atom, as discussed in section 1.3.3. Hence
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in this non-relativistic limit the field profiles become energy levels analogous to

those of hydrogen.

A key question is how these clouds could form dynamically. The mechanism of

superradiance (see section 1.3.3) has received much attention, however as discussed

the bosonic mass and the black hole mass and spin must satisfy an instability

condition which may not be realised in nature.

Figure 3.1: Visualisation of the 2D scalar field profile φ/Φ0 around a
spinning BH, after a time t = 800M . The initial scalar profile at t = 0 is set
as a l = m = 1 spherical harmonic. The scalar and BH masses are given by
µ = 0.4 and M = 1 respectively, and the dimensionless BH spin is set to χ = 0.7
(aligned with the scalar spin axis). At this point the maximum amplification of
the scalar field is of order |φ/Φ0| ∼ 10, where Φ0 is the initial amplitude, but this
will continue to grow over time.

By moving beyond the superradiant mechanism and its requirements we can

consider how scalar hair could form under a broader class of conditions. As shown

by Jacobson [31], giving the field a non-trivial time dependence far from the black

hole is one way of violating the assumptions of the no-hair theorems and gives rise

to the growth of a non-trivial profile. In [198, 200] the Jacobson effect was explored

as an alternative, simpler mechanism for growing scalar hair. In flat space the

scalar field can have a global non-trivial time dependence of the form e−iµt [198].

We can therefore impose this as the asymptotic condition for the field, rather

than requiring it to decay to zero as in superradiant bound states. The physical



43

interpretation of this condition is that we have a non-zero asymptotic density –

that is, the clouds arise from simple gravitational accretion from a cosmological

background. Unlike superradiance, it does not rely on a particular value of Mµ,

but wave-like effects will be most pronounced in the regime Mµ ≲ 1, which is

particularly relevant to the case of light bosonic dark matter.1

The numerical simulations in [200] demonstrated the growth of a non-trivial

profile with and without backreaction on the metric, assuming a spherically sym-

metric Schwarzschild BH and DM environment. In this work we go further and

consider the impact of angular momentum on the accretion of the scalar field,

including the interplay of both non-zero asymptotic angular momentum in the

scalar field and a spinning Kerr black hole. We study a range of scalar masses,

characterising deviations from uniform spherically symmetric accretion, and their

impact on the cloud growth. Fig. 3.1 and Fig. 3.2 illustrate one example of the

resulting clouds. Astrophysically, the non-zero asymptotic angular momentum

may arise from rotating galactic DM halos or from the merger of a compact object

binary where each object has its own scalar cloud.

The formalism and setup for our numerical work is described in Sec. 3.1,

with further detail in appendix B. In Sec. 3.2 we develop a perturbative analytic

framework to describe the accretion onto the BH as a function of the various

parameters. We then confirm these predictions and compare them to the full

non linear evolution by performing simulations as described Sec. 3.3. In Sec.

3.4 we highlight the potential for our scalar clouds with angular momentum to

generate continuous monochromatic gravitational wave signals, and quantify their

amplitude. In Sec. 3.5 we summarise our findings and propose directions for

future work.

1The corresponding bosonic mass scales are ∼ 10−11eV for a typical astrophysical BH mass
10M⊙, and ∼ 10−19eV for a supermassive BH of mass 109M⊙ [198].
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(a) Scalar field energy density ρE/ρ0 (b) Scalar field energy density ρE/ρ0
(zoomed in)

(c) Scalar field angular momentum density
magnitude |ρJ |/ρ0

Figure 3.2: Visualisation of the energy density ρE/ρ0 and angular mo-
mentum density ρJ/ρ0 profiles for the same parameters and at the same time
as in Fig. 3.1 with l = m = 1, µ = 0.4,M = 1, χ = 0.7, t = 800, on a logarithmic
scale. The initial density ρ0 = 1

2
Φ2

0µ
2 where Φ0 is the initial amplitude of the

field. Note that for a real scalar field with non-zero angular momentum there is
a non axisymmetric, rotating component to both energy and angular momentum
densities.
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3.1 Framework and numerical setup

In this section we lay out the formalism and methods we will use to study the

cloud growth. For this work we describe the Kerr black hole not in Boyer-Lindquist

coordinates, as in (1.16), but in “Quasi-Isotropic Kerr” (QIK) coordinates of [201–

204]. These are obtained by introducing the quasi-isotropic radial coordinate R,

related to the BL radius r via

r = R
(
1 +

r+
4R

)2
. (3.1)

(Note that we use a Cartesian realisation of these coordinates where R2 = x2 +

y2 + z2 and {x, y, z} are related to {R, θ, ϕ} in the usual Cartesian manner).

In QIK coordinates {t, R, θ, ϕ}, the line element is

ds2 = −α2 dt2 + γij(dx
i + βi dt)(dxj + βj dt), (3.2)

where

α =

√
∆Σ

A , βϕ = −2aMr

A ,

γijdx
idxj =

Σr

R2(r − r−)
dR2 + Σdθ2 +

A
Σ

sin2 θdϕ2, (3.3)

and the other βi components vanish. The advantage of this is that the coordinate

location of the outer horizon is fixed at R = R+ = r+/4, which maintains a finite

value M/4 in the extremal spin limit. One difficulty is that the lapse α goes

to zero at the horizon, so they are not horizon penetrating. We use an analytic

continuation such that inside the horizon the lapse becomes

α = −
√∣∣∣∣∆Σ

A

∣∣∣∣. (3.4)

Further details regarding this choice and a comparison to horizon penetrating

Kerr-Schild coordinates are provided in appendix B.

3.1.1 Scalar field evolution and initial conditions

We will consider a minimally-coupled massive scalar field φ with mass scale µ. As

discussed in section 1.3.3 the equation of motion for the field is the Klein-Gordon

equation [
∇ν∇ν − µ2

]
φ = 0 . (3.5)
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Throughout this chapter we will neglect the backreaction of the scalar field on

the metric, which is a very good approximation for low density fields. As shown

in [200], the inclusion of backreaction does not disrupt the accretion process.

In particular, this is a reasonable approximation for typical DM densities. The

backreaction will be order Gρ where ρ is the scalar field energy density. For a

typical DM density of ρ ∼ 1 GeVcm−3 [115] the source term expressed in geometric

units whereM = 1 isGρ ∼ 10−30(M/106M⊙)
2 which is≪ 1 even for supermassive

BHs.

In the absence of the black hole’s potential well a spatially homogeneous com-

plex massive scalar simply oscillates at frequency µ as φ(t) = Φ0e
−iµt. This corre-

sponds to the case of zero angular momentum in the field, and spatially constant

energy density. Adding in angular variation, in particular a spherical harmonic

profile, corresponds to adding a non-zero angular momentum to the field in some

direction, which may or may not be aligned with the black hole’s spin. This

observation motivates the choice of our initial conditions as

φ(t, θ, ϕ) = Φ0Re{e−iµtY ∗
lm(θ, ϕ)}, (3.6)

where Ylm are spherical harmonics. We consider different values for the dimen-

sionless spin of the BH χ, the dimensionless ratio of the BH radius versus the

scalar wavelength αg = Mµ, the mode numbers l,m which determine the initial

the initial angular momentum of the surrounding scalar field, and the alignment

angle α between the black hole and cloud spin.

The maximum size of the cloud that develops will be strongly influenced by

the surrounding scalar environment. Following [198] one can define a “radius of

influence” of the black hole as the radius at which the virial velocity calculated

from the black hole’s potential is comparable to the typical velocity dispersion of

the surrounding scalar matter,

v2virial =
M

ri
∼ v2disp. (3.7)

The conditions at this radius will determine the characteristics of the cloud that

form around the BH. Note that this is different from the superradiant case, where

the scalar field is typically assumed to decay to zero at large r, with no non-zero

cosmological or galactic scalar field background, and the size of the cloud is fully

determined by the properties of the black hole and the scalar field mass. In that

case the characteristic size is given by [138]

R ∼M/(Mµ)2. (3.8)
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In this work we remain agnostic to the exact conditions, and simply characterise

the cloud according to the possible physical parameters of the asymptotic scalar

distribution. However, here we will briefly illustrate the physical intepretation

of the quantities in the dark matter case. The energy density of the field is

ρE ∼ Φ2
0µ

2. Thus for a typical DM density of ∼ 1GeVcm−3 and a supermassive

BH of mass 106M⊙ we would have Φ0 ∼ 10−15(µM)−1 in geometric units where

M = 1. As discussed in section 2.8 we can neglect the backreaction, and as the

Klein-Gordon equation is linear the value of Φ0 is arbitrary. We use an order 1

value which can be rescaled accordingly for different physical densities. Whilst our

initial configuration is somewhat artificial, corresponding to a homogeneous radial

density profile, it is nevertheless instructive in showing how different parameters

of the field and BH affect the transient growth rate from a zero cloud state, and

allows us to relate the change in the mass and spin of the BH to the non-trivial

asymptotic conditions which characterise the scalar field far from the BH.

3.1.2 Diagnostic quantities

In this section we define a number of quantities that will allow us to quantify

the growth of the scalar cloud and its effects. Further implementation details are

given in appendix B.

As discussed in section 1.2.2 the Kerr metric is independent of t and ϕ and

so admits two Killing vectors ξµ1 = (1, 0, 0, 0) and ξµ2 = (0, 0, 0, 1) in (t, R, θ, ϕ)

coordinates, with associated conserved quantities. The properties of a Killing

vector field and the energy-momentum tensor then imply

∇µ(ξ
νT µν ) =

1√−g∂µ(
√−gξνT µν ) = 0, (3.9)

where g is the determinant of the metric gµν , and therefore we can define two

associated conserved currents as:

Jµt = −T µt , (3.10)

Jµϕ = T µϕ . (3.11)

which obey ∇µJ
µ = 0 and

∂t(
√−gJ t) = −∂i(

√−gJ i). (3.12)
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Integrating both sides of (3.12) over a 3D spatial volume Σ within one spatial slice

and applying the divergence theorem gives

∂t

∫
Σ

√−gJ tdx3 = −
∫
∂Σ

√−gJ idSi, (3.13)

∂t

∫
Σ

ρdV =

∫
∂Σ

dF (3.14)

where the 3D volume element is dV =
√
γ dx3, the density is αJ t and dSi is the

vector surface element and F is the flux across ∂Σ. If Σ is a sphere of constant R

then dSi = ∂iR. We can thus define

ρE = −αT tt , ρJ = αT tϕ (3.15)

where ρE is the mass density and ρJ is the density of angular momentum about

the BH axis. The rate of change in the total scalar field mass or total angular

momentum between the BH horizon and an outer sphere is given by the integral

of the respective flux across the sphere minus that across the horizon,

∂tMcloud =

∫
R=Rmax

dF −
∫
R=R+

dF. (3.16)

In the limit Rmax → ∞ the flux across the outer surface also corresponds to the

change in the Arnowitt-Deser-Misner (ADM) mass or ADM angular momentum of

the enclosed spacetime. They are therefore closely tied to physically measurable

properties of the system, even at (large) finite distances, whereas the details of

the distribution close to the BH are more observer dependent. Further details are

given in appendix B, where this is used to validate the code evolution.

3.1.3 Numerical implementation

As described in chapter 2, we solve the second order Klein-Gordon equation by

decomposing it into two coupled first order equations:

∂tφ = αΠ+ βi∂iφ , (3.17)

∂tΠ = αγij∂i∂jφ+ α
(
KΠ− γijΓkij∂kφ− µ2φ

)
+ ∂iφ∂

iα + βi∂iΠ , (3.18)

where Π is the conjugate momentum density, as defined by Eqn. (2.34) and K is

the trace of the extrinsic curvature Kij =
1
2α

(−∂tγij +Diβj +Djβi).
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We use an adapted version of the open source code GRChombo [193, 194] to

solve (3.17)(3.18) on a fixed metric background in the QIK coordinates described

above. The scalar field is evolved by the method of lines with 4th-order finite

difference stencils, Runge Kutta time integration and a hierarchy of grids with

2:1 resolution. The value of the metric and its derivatives are calculated locally

from the analytic expressions at each point. Details of code validation tests and

convergence are provided in appendix B.

The size of the simulation domain is L = 1024M , and we use seven (2:1)

refinement levels with the coarsest having 1283 grid points, although we use the

bitant symmetry2 of the problem in Cartesian coordinates to reduce the domain

to 64×1282 points. We implement non-zero, time oscillating boundary conditions

for the scalar field by extrapolating the field linearly in the radial direction from

values within the numerical domain.

The form of the metric naturally imposes ingoing boundary conditions at the

horizon, due to the causal structure of the black hole. At spatial infinity we

extrapolate the field value within the grid radially at first order, to simulate the

effects of a roughly constant energy density. This in effect allows both ingoing

and outgoing modes, but can introduce unphysical effects in very long simulations

– these can be easily identified by varying the domain size, but ultimately limit

the time for which the growth can be studied. The time before strong boundary

effects occur is of the order of the light crossing time for our simulation box of

1024M . This is roughly 5ms for a solar mass BH and 60 days for a SMBH of mass

109M⊙.

3.2 Analytic framework

In this section we summarise what is known for stationary solutions, and develop

several approximate analytic tools and a perturbative formalism to understand

the growth of the scalar hair over time in different regimes of the parameter space.

These methods are then confirmed within their regime of validity by the full nu-

merical results in Sec. 3.3.

2I.e. a reflection symmetry across the z = 0 plane.
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3.2.1 Stationary solutions

There is no simple, exact analytic solution for the growth of the scalar cloud from a

general initial state. However exact analytic quasi-stationary oscillatory solutions

have been found which we would expect to describe the final state of the cloud

which forms [18]. These solutions can generically be expressed in BL coordinates

as:

φlm(t, r, θ, ϕ) = Re
{
Φ0e

−iωtRlm(r)e
imϕSlm(θ; ic)

}
, (3.19)

where Φ0 describes an initial amplitude. Here, eimϕSlm(θ; ic) are oblate spheroidal

harmonics, which reduce to spherical harmonics when c = ak = 0, where k =√
ω2 − µ2 is the (complex) momentum at infinity. When ω is real, the solutions

are stationary in time, whereas if ω has an imaginary component the field grows

or decays exponentially with time. The radial functions Rlm satisfy an equation

of the form [
∂2r∗ − V (r)

]√
r2 + a2Rlm(r) = 0, (3.20)

where r∗ is the Kerr tortoise coordinate

r∗ = r +
2M

r+ − r−
[r+ ln(r − r+)− r− ln(r − r−)] . (3.21)

The general solutions are given by:

R±,lm(r) = e∓
1
2
αzz±

1
2
β(z + 1)

1
2
γHeunC(±α,±β, γ, δ, η,−z), (3.22)

where ± denotes modes which are ingoing/outgoing at the horizon. Here, HeunC

is the confluent Heun function [199] with

z =
r − r+
r+ − r−

, α = 2i(r+ − r−)k, β = 2i
(am− 2r+Mω)

r+ − r−
,

γ = 2i
(am− 2r−Mω)

r+ − r−
, δ = −2M(r+ − r−)(ω2 + k2),

η = (ω2 + k2)r2+ + ω2(a2 + 2M2)− (am− 2Mω)2

2(1− a2/M2)
− λlm, (3.23)

where λlm are the eigenvalues of the oblate spheroidal harmonics [18]. In the limit

r → r+ i.e. z → 0, we obtain

R±,lm(r)→ exp(∓ikHr∗), (3.24)
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up to a constant phase factor [21], where kH = ω − am
2Mr+

. For the limit r → ∞
there are also two independent ingoing/outgoing solutions which are independent

of the spin of the black hole. In particular, for k ̸= 0 they are

R∞
±,lm(r) ≈

e∓ik(r−r+)

r
z∓iκe±πκ, (3.25)

where κ =M(ω2 + k2)/k. For ω = µ i.e. k = 0

R∞
±,lm(r) ≈ r−3/4e∓i2µ

√
2Mr. (3.26)

Note that in general each ingoing/outgoing solution at the horizon tends to a

linear combination of the ingoing/outgoing solutions at r →∞ [57].

For non-spinning black holes, these analytical results have been shown to match

well the spatial profile of the scalar cloud after long enough times [200]. For

spinning black holes, we will see that the same holds.

As mentioned in section 1.3.3, a well-known mechanism which enhances a scalar

field around a spinning black hole is superradiance. In this case, the growth of

hair is powered solely by the spindown of the black hole. It does not require the

light boson to be dark matter, and indeed one assumes the field goes to zero far

from the black hole [143]. Hence one rejects as unphysical any solutions (3.19)

which have energy “entering from infinity” or “escaping the black hole horizon”

(as there is no scalar field density at infinity and nothing can escape the horizon),

i.e. one requires that solutions of the form (3.19) to be ingoing at the horizon and

outgoing at spatial infinity, resulting in a discrete spectrum of quasi-normal modes

(QNM) as discussed in section 1.2.5 with regards to gravitational oscillations. The

maximum size of the boson cloud is determined by the instability condition (1.52)

– as the black hole spins down ΩH decreases until (1.52) becomes saturated [143].

Numerical simulations have shown that the maximum mass of cloud for a vector

boson (Proca field) is ∼ 10% the mass of the black hole [205] (see also [206–

209] for semi-analytic studies), and similar magnitudes are expected for the scalar

case. The accretion of compact boson stars onto BHs has also been proposed as a

mechanism to enhance scalar clouds [142, 210].

In contrast, in the case we study, the cloud growth is powered by the reservoir

of asymptotic scalar density, i.e. the surrounding dark matter halo. The field must

still be ingoing at the horizon, but we allow both ingoing and outgoing modes at

infinity.
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Neglecting the backreaction there is no way for non-interacting DM to radiate

and lose energy, so we expect accretion to populate energy states with the same

frequency ω as that of the accreting matter. In free Minkowski space, a uniform

field oscillates with frequency µ and has energy µ, so we expect the scalar matter

to populate marginally bound states with ω ≈ µ. Scalar matter bound within

some gravitational potential in a galaxy will have energy ω ≤ µ, while DM with

some non-zero momentum at infinity will populate ω > µ states.

3.2.2 Effective potential

In order to examine the accretion of the scalar cloud, we seek solutions of Klein-

Gordon equation in the Kerr metric which grow with time instead of just oscil-

lating. It is convenient to recast the KG equation in the form of a simple wave

equation, where one can interpret the solutions as a scattering off of a barrier of

an effective potential.

For simplicity, let us first consider a Schwarzschild background metric. In this

case, the KG equation can be expressed as[
∂2t − ∂2r∗ + Veff(r; l, µ)

]
Ψl(r, t) = 0, (3.27)

with

φlm =
1

r
Ylm(θ, ϕ)Ψl(r, t). (3.28)

Equation (3.27) takes the form of a simple wave equation in one spatial dimension

with effective potential

Veff(r; l, µ) =

(
1− 2M

r

)(
µ2 +

2M

r3
+

Λ

r2

)
(3.29)

where Λ = l(l + 1). Fig. 3.3 shows potential profiles for different values of Mµ

or l. We see that the potential barrier is lower for higher scalar masses, which

allows the scalar matter to simply infall towards the black hole, whereas for lower

masses the barrier is higher and reflects ingoing scalar waves, thus generating

standing waves around the black hole. Physically, this is due to the pressure

support generated by gradients of the scalar in the low mass case. These results

have been studied analytically [198] and numerically [200] for l = m = 0. In [200]

and [198] only spherically symmetric profiles were considered, however here we

extend our analysis to environments where the scalar field has asymptotic angular

momentum. We see that the higher the l,m, and thus the higher the asymptotic
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Figure 3.3: Schwarzschild effective potential (3.29) for M = 1 and different
values of the scalar field mass and angular profile. As is well known, increasing
the scalar angular momentum and lowering the scalar mass both tend to increase
the potential barrier and thus allow stable clouds to form around the BH.
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scalar angular momentum, the higher the potential barrier. Hence we expect that

increasing the angular momentum of the scalar cloud will reduce the accretion

rate onto the BH.

For the Kerr metric in Boyer-Linquist coordinates, the Klein-Gordon equation

can be similarly written as[
∂2t − ∂2r∗ + Veff(r; a, l,m, µ) + L̂1

]
Ψlm(r, θ, t) = 0, (3.30)

where

L̂1 =−
∆

(a2 + r2)2

[
2∂θYlm
Ylm

∂θ +
∂θ
sin θ

(
sin θ∂θ

)
+ a2 sin2 θ(∂2t + µ2)

]
+

4imMar

(a2 + r2)2
(∂t + iµ),

(3.31)

and

φlm =
Ylm(θ, ϕ)Ψlm(r, θ, t)√

a2 + r2
. (3.32)

For growing non-stationary solutions we cannot fully separate variables to simplify

this equation. However, by writing (3.30) in this form we can see that in the

limit a → 0, where Ψlm(r, θ, t) → Ψl(r, t), we find L̂1Ψlm → L̂1Ψl(r, t) = 0 as

∂θΨl(r, t) = 0. Hence the L̂1 operator is capturing the deviation from the simple

wave equation due to the black hole’s spin.

If we simply ignore the complications and mode-mixing induced by L̂1, then

Veff is a quasi-effective potential given by

Veff(r) =
∆

a2 + r2

[
µ2 +

a2

(a2 + r2)2
+

2Mr(r2 − 2a2)

(a2 + r2)3

+
l(l + 1)

(a2 + r2)

]
+
am(4Mµr − am)

(a2 + r2)2
.

(3.33)

which is the same as that given in Arvanitaki and Dubovsky (2011) equation

(21) [84]. We plot this quasi-effective potential in Fig. 3.4, where we see that it

behaves in a similar way to the Schwarzschild effective potential. Again we see

that decreasing the scalar mass or increasing the l,m number, and thus increasing

the angular momentum, increases the potential barrier to infall. However we also

see that changing the cloud and BH angular momentum from aligned (l = m = 1)

to anti-aligned (l = 1,m = −1) eliminates the potential barrier, suggesting it

would lead to faster accretion into the black hole. The intuition provided by these

approximate “potentials” will be validated in our numerical studies.
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Figure 3.4: Kerr quasi-effective potential (3.33) forM = 1 and different values
of the scalar mass, angular profile, and BH spin. Similarly to Fig. 3.3, we see that
decreasing the scalar mass, adding a co-rotating angular momentum to the field
and increasing the BH spin all tend to increase the potential barrier and therefore
decrease accretion onto the BH. Note that for fixed mass and spin, the profiles are
similar at larger distances, even in the co- and counter-rotating cases (green and
blue solid lines).
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3.2.3 Particle limit

We can also make an analytical study of the scalar field behaviour in the particle

limit. A massive particle in a circular orbit around a Kerr black hole in the z = 0

plane has an angular momentum per unit mass given by [211]

h =
r2 + a2 − 2a

√
Mr

(r(r2 − 3Mr + 2a
√
Mr)/M)1/2

. (3.34)

Then for a complex scalar field (using the complex case to make the formula

simpler) of the form φ = e−iµtY ∗
lm(θ, ϕ) we have

ρJ/ρE =
2m [2Ma(aµ−m) + µr(a2 + r2)]

2µ2 [M(a2 − r2) + r(a2 + r2)] +m2(r − 2M)
, (3.35)

in Boyer-Lindquist coordinates in the z = 0 plane assuming l+m is even. Strictly

speaking we should only treat the scalar field with a particle rather than a wave

description when Mµ ≫ 1 so the Compton wavelength is much smaller than the

size of the black hole. However this particle treatment may still provide a useful

heuristic even at small Mµ. Fig. 3.5 shows equations (3.34) and (3.35) plotted for

m = 1, χ = 0.7 and Mµ = 0.2, 0.4, 0.8, 1.6. If the angular momentum exceeds the

expected particle angular momentum per unit mass for a circular orbit we expect

the equivalent particles will move outwards. If the angular momentum is less than

expected for a circular orbit we expect they will fall towards the black hole.

3.2.4 Perturbative solutions for cloud growth

The growth of the scalar cloud can also be studied analytically with a perturbative

approach for large r. We start by rewriting the Klein-Gordon equation as

LKGφ = 0; LKG =
−1√−g∂µ

(
gµν
√−g∂ν

)
+ µ2. (3.36)

and choose units such thatM = 1. For a Kerr metric in Boyer-Linquist coordinates

we can multiply out the denominator and expand in powers of 1/r

L =
∆Σ

r4
LKG =

6∑
n=0

1

rn
Ln, (3.37)
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Figure 3.5: Angular momentum per unit mass for a scalar field and an
massive particle. The solid red line shows the angular momentum per unit mass
in the z = 0 plane for a single massive particle in a circular orbit. The dashed
lines show the angular momentum per unit mass of the scalar field at t = 0 (given
by equation (3.35)) for different initial conditions, all with l = m = 1 but with
different µ. If the dashed line lies above the red solid line (for a circular orbit) we
expect the scalar field particles to move outwards, otherwise they will fall towards
the black hole. Here we see the critical case around µ = 0.4 for which the cloud
should concentrate close to the BH, whereas lower mass cases form clouds further
out and higher mass cases accrete onto the BH.
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where

L0 = −(∂2t + µ2), (3.38)

L1 = 2µ2, (3.39)

L2 = r2∂2r + 2r∂r − L̂2 + a2(1 + cos2 θ)L0, (3.40)

L3 = −2
(
2r2∂2r + 3r∂r − L̂2 − a2µ2 + 2a∂t∂ϕ − a2 sin2 θL0

)
, (3.41)

L4 = 2(a2 + 2)(r2∂2r + r∂r) + a4 cos2 θL0 − a2∂2ϕ − a2L̂2, (3.42)

L5 = −2a2(r∂r + 2r2∂2r ), (3.43)

L6 = a4r2∂2r , (3.44)

and L̂2 is the spherical harmonic operator

L̂2 := − ∂θ
sin θ

(sin θ∂θ)−
∂2ϕ

sin2 θ
. (3.45)

Similarly, we expand the scalar field for large r as:

φ =
∞∑
n=0

1

rn
φn. (3.46)

We choose a (complex) φ0 such that it satisfies our initial conditions and L0φ0 = 0

φ0 = Φ0e
−iµtY ∗

lm(θ, ϕ), (3.47)

where Φ0 is a constant amplitude. Then we iteratively compute φn by matching

powers of 1/r:

φn = L−1
0

(
n−1∑
j=0

Ln−jφj
)
. (3.48)

where the operator L−1
0 acting on a general function A(t) behaves as:

L−1
0 A(t) = e−iµt

∫ t

0

e2iµt1
∫ t1

0

e−iµt2A(t2)dt2dt1. (3.49)

Up to order r−2 we obtain for the complex scalar field

φ(t) ≈ φ0(t, θ, ϕ)

[
1 +

2iτ − e2iτ + 1

2r̃

−
2τ 2 + 2iτ

(
Λ̃− 2− e2iτ

)
+ (Λ̃− 3)

(
1− e2iτ

)
4r̃2

 , (3.50)
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where Λ̃ = l(l + 1)/(Mµ)2, τ = µt and r̃ = r/M , putting back in the factors

of M . Finally, we obtain a solution for a real scalar field φ by taking the real

part of (3.50). Note that there is no dependence on BH spin at order r̃−2. This

approximation is valid for r̃ > τ , and therefore it only describes the initial growth

of the cloud far from the black hole, and does not describe the late stationary

state of the cloud where we expect φ ∝ r−3/4 for Mµ ∼ 1 [198].

Now recall from section 3.1.2 the flux element into a sphere is given by dF =

−√−gJR. In QIK coordinates metric determinant
√−g goes to zero on the hori-

zon. For the stationary solutions JR diverges at the horizon in such a way that
√−gJR is non-zero, however for the growing case JR is initially zero and remains

finite at finite t. This means that for finite time the flux into the horizon is zero.

The energy flux into a sphere of constant R in QIK coordinates in time t is then

given by

∂tMcloud =

∫
R=Rmax

dF =

∫∫
Σ

(
∂r

∂R

)
TRt sin θ dθdϕ,

=

∫∫
Σ grr∂tφ∂rφ sin θ dθdϕ,

=

∫∫
∆∂tφ∂rφ sin θ dθdϕ,

:= 2π

∫
Jr sin θ dθ, (3.51)

where Jtr :=
1
2π

∫
∆∂tφ∂rφdϕ. Hence the change in the total mass of scalar field

inside radius R but outside the horizon is given by

δMcloud = 2π

∫ ∫ t

0

Jrdt
′ sin θdθ. (3.52)

Neglecting the oscillatory terms, we find the energy flux for large r̃ to be
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described by ∫ t

0

Jrdt
′ = Φ2

0|Ylm|2
1

4

{
τ 2 − (1 + Λ̃)τ 2

r̃
+

τ 2

2r̃2

[
7Λ̃− χ2(3 cos 2θ + 7)− 12m̃

]
+

τ 2

2r̃3

[
(4
3
− Λ̃)τ 2 + 2χ2(5 cos 2θ − Λ̃ + 16)+

40m̃− Λ̃2 − 4Λ̃− 20

]
+

τ 2

4r̃4

[
1
9
τ 4+

1
6

(
3χ2(cos 2θ + 3) + 3Λ̃2 + 35Λ̃− 59 + 12m̃

)
+

(6χ2 + 5Λ̃ + 9)(χ2 cos 2θ + 4m̃) + 18χ4+

χ2(9Λ̃ + 19)− 6Λ̃2 + Λ̃− 35)

]
+O(r−5)

}
,

(3.53)

where m̃ = χm/(Mµ).

We can do the same for the angular momentum flux. For Jϕr := − 1
2π

∫
∆∂ϕφ∂rφdϕ

we obtain ∫ t

0

Jϕrdt
′ = |Ylm|2

Mm

4

{
τ 2 − Λ̃τ 2

r̃
+

τ 2

2r̃2

[
4Λ̃− a2(3 cos 2θ + 7)− 12m̃

]
+

τ 2

2r̃3

[
(4
3
− Λ̃)τ 2 + 2a2(3 cos 2θ − Λ̃ + 11)+

24m̃+ 2Λ̃− 20

]
+ . . .

}
.

(3.54)

again neglecting the oscillating terms.

From this result we see that the primary timescale for mass growth is the

oscillation period µ−1 and that the most important factor affecting the growth

rate is the quantity Λ̃ which roughly corresponds to the angular momentum per

unit mass squared. The BH spin only enters at order 1/r2, while the azimuthal

number m appears at lowest order as −6m̃ τ2

r̃2
. This suggests that anti-aligned BH

and cloud spins with m̃ < 0 gives faster growth than aligned spins. We can also

note that the expression for the angular momentum flux is very similar to the

expression for the mass flux, suggesting the angular momentum per unit mass is

approximately constant in the regime of validity for this result (i.e., small t and

large R).
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It is also worth comparing to the expected flux for the stationary solutions in

section 3.2.1. At large r ≫M we find the ingoing solution to be

φ ≈
√
ρRc

µ

(
r

Rc

)−3/4

|Ylm| cos
(
µt−mϕ+ 2µ

√
2Mr

)
, (3.55)

where ρRc is the scalar field density at radius Rc ≫M . Hence

Jstationary
r = 1

2π

∫
∆∂tφ∂rφdϕ ≈ ρRc |Ylm|2R3/2

c

√
2M, (3.56)

which is independent of r as required for a stationary solution. If we match the

asymptotic scalar field density ρ0 = 1
2
Φ2

0µ
2 to ρRc then the perturbative solution

(3.53) is

Jperturbative
r = ρRc|Ylm|2

{
t− (1 + Λ̃)t

r̃
+ . . .

}
. (3.57)

We can then intuit that if we start with homogenous conditions the scalar flux

will grow from zero until it matches the stationary value.

3.3 Numerical results

In this section we summarise our numerical results for different values of the

parameters described in Sec. 3.1. Plots display results in the time parameter τ ,

a dimensionless ratio of the physical time to the scalar field oscillation period,

to enable clearer contact with the perturbative result. The physical time t can

simply be recovered as t = τ/µ (ie, at some τ , the physical time that has passed

t is longer for smaller µ).

Where we show the profiles for the energy density as a function of radius, at

each radius the density is averaged over a sphere of constant r to remove the

angular dependence, and normalise against ρ0 = 1
2
Φ2

0µ
2, the asymptotic energy

density.

3.3.1 Adding spin to the black hole, zero scalar angular
momentum

We can first examine the effect of adding BH spin to the Schwarzschild case ex-

amined in [200] – that is, where there is no angular momentum in the scalar. We

find that, contrary to what one might expect, adding BH spin introduces only a

very mild distortion of the field profile. In Fig. 3.6 we show the radial profile of
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Figure 3.6: Scalar field radial profile for different black hole spins. The φ
l = m = 0 component is plotted as function of radius, from the horizon outwards,
for initial spherically symmetric profile l = m = 0 in BL coordinates. Different
BH spins are shown in different colours (the start points of the lines are different
as the horizon size depends on spin). We see that BH spin leads to very mild
changes in the scalar cloud close to the horizon, but no significant change in the
profile.

Figure 3.7: Scalar field radial profile: evolution over time. We plot the
radial φ l = m = 0 mode for Mµ = 2.0, χ = 0.7 for different times in BL
coordinates. We see oscillations spreading out from the horizon such that the φ
profile gradually converges towards the stationary solution.
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Figure 3.8: Scalar field radial profile from simulation compared to mod-
els. We plot the φ l = m = 0 mode with Mµ = 2.0, χ = 0.7 and τ = 172.5 in
BL coordinates, and the stationary and perturbative solutions. We see that the
stationary analytic solution is a good fit for the region close to the horizon, while
the perturbative solution is a good fit for large r where r ≳ τ .

the l = m = 0 component of a scalar field with µ = 0.4, in the case when the

initial field was in the l = m = 0 mode and thus spherically symmetric. We found

similar results for the l ̸= 0 components, with no observable excitement above the

level of simulation error in the spinning cases.

In Fig. 3.7 we show the radial profile of a scalar field with µ = 2 near the

horizon, for a BH with dimensionless spin χ = 0.7, at several different times in the

evolution. As in [200] we see that from the initially flat profile, the scalar develops

radial oscillations first near the BH, which then develop outwards radially over

time. The field profile oscillates in time and space with frequency/wavelength set

by µ.

Finally, in Fig. 3.8 we show the radial profile of a scalar field with µ = 2.0, for

a BH with dimensionless spin χ = 0.7, and we compare the numerical with the an-

alytical stationary and perturbative solutions discussed in section 3.2.1 and 3.2.4,

respectively. We see that the stationary solution describes well the scalar field near

the horizon, whereas the perturbative analytic expression describes the evolution

far from the horizon, where the oscillatory behaviour has not been reached yet.

The true solution interpolates between the two regimes.
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Figure 3.9: Scalar field radial profile vs black hole spin: l = m = 1. We plot
the l = m = 1 spherical harmonic component as function of radius for an initial
l = m = 1 angular dependence in BL coordinates. Different BH spins are shown
in different colours. BH spin again leads to changes in the scalar cloud close to
the horizon which are more pronounced than in the l = m = 0 case.

3.3.2 Adding angular momentum to the scalar, non-zero
black hole spin

Next, we explore the impact of adding asymptotic angular momentum to the initial

scalar field by choosing non-zero l,m spherical harmonic numbers. A typical 2D

profile was shown in QIK coordinates in Fig. 3.1.

3.3.2.1 Effect of BH spin χ

In Fig. 3.9 we show the radial profile of the scalar field for simulations where the

initial angular dependence was set by the l = m = 1 spherical harmonic. Similarly

to the previous section, we only plot the component of the scalar field mode with

the same l,m, as we find that the other multipoles have negligible amplitude at all

times. As in Fig. 3.6, we haveMµ = 0.4 and different values of BH spin are shown

in different colours. Changing the BH spin again modifies the profile close to the

horizon, and the effect is much larger than for the l = m = 0 case of Fig. 3.9. We

see that adding spin to the BH decreases the maximum energy density, as shown

in Fig 3.10. However, further out there is little difference in the profiles, so as in

the l = m = 0 case we see minimal impact on the flux at a large radius.
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Figure 3.10: Radial energy density profile ρE averaged over a sphere for M =
1, µ = 0.4, l = m = 1 and different χ. Adding spin to the BH decreases the
maximum energy density (note this plot uses a lower value of τ here compared to
3.9 to illustrate the onset of the divergent behaviour).

3.3.2.2 Effect of scalar angular momentum l,m

To quantify the growth rate of the cloud we extract the cumulative conserved

scalar field energy flux through a sphere at a radius RE ≫ M . This equals the

change in total conserved scalar field energy between the BH horizon and the

sphere, and at large R roughly corresponds to the change in the ADM mass of the

spacetime due to the accretion (see appendix B.2). First, we show the cumulative

flux for different l,m modes in Fig. 3.11, along with the analytic perturbative

expression that we derived in Sec. 3.2 above, to fourth order in M/r. We show

results versus τ = µt as discussed above. The other important timescale is the

freefall timescale tff ≈ R3/2/
√
M [200], the time taken for a small particle initially

at rest at r = R to fall into the black hole. Radial oscillations in the profile first

form near the BH, and gradually spread outwards on roughly this timescale, so we

expect the stationary behaviour to be reached when these waves hit the extraction

radius at approximately t ∝ R
3/2
E , which is greater than the time period studied.

We see that the numerical result agrees well with the a perturbative expression

for τ ≪ r/M as we would expect. As τ increases the numerical result deviates

from the analytic expression, with large l,m producing the largest deviation. The

dominant effect is from the first order δMc ∼ τ 2(1− (1 + Λ̃)/r̃) term. Larger l for
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Figure 3.11: Mass flux into the scalar field cloud vs l,m. We plot the
cumulative flux of mass into a sphere with RE = 300M around a Kerr BH for
χ = 0.7, µ = 0.4 and different l,m. We normalise the flux by the quantity E0 –
the energy in a sphere of radius RE with constant energy density 1

2
µ2φ2

0. Dashed
lines describe the perturbative analytic flux to order r−4, and the solid lines the
numerical results. We see that accretion into the sphere is reduced for higher
l,m modes, with the negative flux in the highest case signalling that the cloud is
forming outside RE.

fixed µ corresponds to larger Λ̃ and thus larger cloud asymptotic angular momen-

tum per unit mass, which increases the potential barrier to accretion, decreasing

the growth rate. This is also consistent with what we saw from the effective po-

tential and particle pictures, and physically corresponds to the fact that the cloud

is forming further out from the BH – in the case of l = m = 8 in the figure, this is

even outside the extraction sphere, hence the overall decrease in the mass. Whilst

this means that the cloud is not accreted onto the BH, it generally decreases the

maximum energy density in the spacetime comapred to the accreting cases, due

to it being spread out over a larger volume, as shown in Fig. 3.12.

3.3.2.3 Effect of scalar mass µ

Fig. 3.13 shows the effect of changing the scalar field mass µ for fixed χ = 0.7,

and l = m = 1. We see that for Mµ = 0.4, 2.0 the simulation flux again deviates

from the perturbative expression at roughly τ ∼ 300, however the small mass case

Mµ = 0.1 shows deviation at much smaller τ . If we examine the perturbative
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Figure 3.12: Radial profile of the 0, 0 harmonic mode of the energy density
ρE, i.e. the energy density is averaged over a sphere at each radius. The parameters
are Mµ = 0.4, χ = 0.7 and the initial scalar field is set to different l,m spherical
harmonics at t = 0.

Figure 3.13: Mass flux into the scalar field cloud vs µ. We plot the cumulative
mass flux into a sphere of R = 300M for M = 1, χ = 0.7, α = 0, l = m = 1 and
different µ, normalised by 1

2
V0φ

2
0 = E0/µ

2. This again shows good agreement with
the perturbative result. We see that the very low mass cases show an oscillating
behaviour in the flux as a result of the stationary wave profiles in this regime.
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analytic series (3.53) expressed in terms of τ we see that µ enters chiefly as Λ̃ =

l(l + 1)/(Mµ)2 ∼ (l/µ)2 (it also appears as µ−2 at order O(r̃−5) and above).

Decreasing Mµ with fixed l,m corresponds to increasing Λ̃ and thus the angular

momentum per unit mass, which again leads to a decreased growth rate. In terms

of the perturbative expansion a larger Λ̃ boosts the effect of higher-order terms

and causes the perturbative solution to break down at smaller τ . Physically, the

oscillatory behaviour of the flux is a result of the stationary wave profiles that

develop in this mass regime.

Figure 3.14: Radial profile of the 0, 0 harmonic mode of the energy density
ρE, i.e. the energy density is averaged over a sphere at each radius. The initial
scalar field parameters areM = 1, χ = 0.7, l = m = 1 and different µ. We find the
maximum density occurs for the highest mass cases where we have accretion onto
the BH. The results are shown at time t = 300M which corresponds to τ = 120
for µ = 0.4.

Fig. 3.14 shows that the maximum density occurs for the highest mass cases

where we have accretion onto the BH. For lower µ the cloud is concentrated further

from the BH and the energy is thus more diluted. As in the superradiant case

we see that the scalar mass Mµ ∼ 0.4 is a critical value where we still support a

cloud outside the horizon, rather than having an accretion flow all the way to the

horizon.
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Figure 3.15: Mass flux into the scalar field cloud vs alignment angle α.
We plot the cumulative accretion flux of mass into a sphere of R = 300M around
a Kerr black hole for µ = 0.4, χ = 0.99, l = |m| = 1 and different alignment angles
α (the analytic result is given by equation (3.58)). At this large radius, we see
little difference in the accretion rate towards the BH for different α.

Figure 3.16: Mass flux into the scalar field cloud vs alignment angle α:
smaller radius. We again plot the cumulative mass accretion flux of mass as in
Fig. 3.15 but this time into a small sphere of R = 10M . At this radius we clearly
see the effect of the misalignment in increasing the flux towards the horizon. Note
we cannot apply the perturbative analytic result in equation (3.58) at this small
radius.
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Figure 3.17: Radial profile of the 0, 0 harmonic mode of the energy density
ρE, i.e. energy density is extracted by averaging over a sphere at each radius. The
parameters are Mµ = 0.4, χ = 0.7, l = |m| = 1 and different alignment angle α.
We see that the density near the BH is enhanced for misaligned spins, indicative
of the higher accretion flow.

3.3.2.4 Effect of alignment angle α

Here we vary the alignment angle α3 between the BH and cloud spin, fixing the

rest of the parameters. Fig. 3.18 shows 2D profiles of the energy density in the

z = 0 plane for different α, with fixed χ = 0.99, µ = 0.4, M = 1 and initial l =

m = 1 angular dependence. We can see that changing α does produce significant

differences in the profiles around the BH.

However Fig. 3.15 shows that changing α has only a very small effect on the

total flux at a larger radius. In this figure, the solid lines describe the numerical

results on the time evolution of the total flux, and the dashed lines describe the

analytical estimates. As expected, the analytical solution describes the numerics

well only during early times.

3Not to be confused with lapse α or the α parameter in the confluent Heun function.
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(a) α = 0 (b) α = π/4

(c) α = π/2 (d) α = π

Figure 3.18: Visualisation of the scalar field energy density for different
α. We show log10(ρE/ρ0) in the z = 0 plane for χ = 0.99, µ = 0.4, τ = 320, an
initial l = m = 1 angular profile and different alignment angle α.
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In particular, for l = |m| = 1 the perturbative solution gives

δMcloud − δMcloud

∣∣∣
α=0

= 4πΦ2
0

a2τ 2 sin2(1
2
α)

r̃2

{
3m̃

− 3

5
cos2(1

2
α)

− 10m̃− 2 cos2(1
2
α)

r̃
+O(r̃−2)

} (3.58)

where m̃ = χ/(Mµ) and again neglecting the oscillating terms. Here we see the

change in δMcloud due to α in (3.58) is proportional to a2, and we can thus interpret

it as the spinning black hole exerting “friction” on the scalar field and removing

its angular momentum via frame dragging, making it easier for the scalar field

particles to fall inwards. As the perturbative expression is proportional to 1/r̃2

we would expect this effect to increase at smaller r. Fig. 3.16 shows the mass flux

into a sphere at a smaller radius of R = 10M , and the increase in growth rate on

increasing α is now clearly visible.

We also saw in Fig. 3.4 how changing from m = 1 (aligned i.e. α = 0) to

m = −1 (anti-aligned i.e. α = π) causes the potential barrier to vanish close the

the BH, whilst further out the potentials were similar. Examination of Figs. 3.18

and 3.17 shows that for the α = π case the energy density in the z = 0 plane

is more concentrated close to the BH vs the α = 0 case, which is indicative of

accretion onto the BH.

3.3.2.5 Comparison of angular momentum and mass growth rates

We can perform the same measurements for the conserved total angular momen-

tum and the angular momentum flux. Fig. 3.19 shows the angular momentum

flux for different l,m and the mass flux from Fig. 3.11 multiplied by m/µ. They

agree closely, which confirms what we found from the perturbative solutions in

section 3.2 that at r ≫M the angular momentum per unit mass is approximately

constant at m/µ. This is what we would expect if we model the scalar field as

a collection of non-interacting classical particles which each individually conserve

angular momentum.

Fig. 3.20 shows the ratio of the angular momentum density to mass density

ρJ/ρE (each density averaged over the sphere) vs radius divided by m/µ. Again

we see that at large r this value approaches 1, indicating ρJ/ρE ≈ m/µ, however at

smaller r close to the horizon we see a distortion, which increases with increasing

BH spin. We can interpret this as the BH frame dragging effect.
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Figure 3.19: Angular momentum flux into the scalar cloud vs scalar field
initial l,m. We plot the cumulative angular momentum flux into a sphere of
R = 300M (solid line) and the mass flux multiplied by m/µ (dot dashed line) for
χ = 0.7, µ = 0.4 and different l,m. We see that the solid and dot dashed lines agree
closely, indicating that the angular momentum per unit mass is approximately
constant at m/µ.

Figure 3.20: Angular momentum per unit mass, ρJ/ρE, divided by m/µ vs
the BL radius at τ = 200 for different BH spin. We see that the frame dragging
effect serves to increase the angular momentum close to the more highly spinning
BHs.
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3.4 Gravitational waves

For minimally coupled scalar hair without a direct coupling to Standard Model

matter, the only way of detecting its presence is through its gravitational effects.

Gravitational wave observations may then act as a probe of such scalars, for ex-

ample, via the impact of a high density cloud on compact binary merger signals,

or from the gravitational decay of the cloud itself.

In the latter case, it is known that a rotating non-axisymmetric mass distri-

bution can give rise to a quasi-monochromatic gravitational wave signal at twice

the oscillation frequency [143]. This signal can also be considered as arising from

the annihilation of two scalar bosons to produce gravitons in the background of

the black hole. Gravitational waves can also be produced from transitions be-

tween energy states of the scalar field [143]. Searches for such signals in relation

to superradiant clouds have been proposed and attempted using advanced LIGO

and Virgo [212–218] and explored for future detectors such as LISA [84, 219–222].

Their absence provides observational constraints on the existence of light massive

real scalar fields in particular mass ranges.

Real scalar clouds formed from gravitational accretion that we study here may

give rise to a similar effect due to the axisymmetric mass distribution of the clouds

formed – as illustrated in Fig. 3.2(b). To the best of our knowledge, it has not

previously been suggested that the simple accretion of scalar matter around BHs

could give rise to such signals. In this section we therefore make a rough calculation

of the size of the signal.

We will again consider marginally bound states with ω = µ. We first consider

the scalar-scalar annihlation signal where the scalar field is dominated by a single

l = m mode. The size of the scalar cloud is determined by the dark matter

environment. Following Hui et al. (2019) [198] we take the size of the cloud Rc to

correspond to the radius of influence of the black hole

Rc ∼ ri ∼M/v2 ∼ 107M

(
v0
vϕ

)2

, (3.59)

where vϕ is the typical axial velocity of the scalar field particles at Rc and v0 =

100km s−1 is taken to be a typical velocity scale for dark matter [198].

We make the simplifying assumption of a single mode and assume the mode

number is set by the average axial velocity. The angular momentum per unit mass
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Figure 3.21: Real scalar field cloud emitting radiation. This figure from
Arvanitaki et al. (2010) [84] shows a spinning l = m = 1 mode scalar cloud
around a black hole. The cloud will both emit gravitational waves (shown as
gravitons) due to level transitions and annihilations, and emit scalar bosons (shown
as “axions”) via self interactions and decay to spatial infinity. In Arvanitaki et
al. the cloud is generated by superradiance, but the picture is similar for the
l = m = 1 modes formed via accretion.

for a l = m mode is approximately m/µ so

m/µ ∼ vϕRc,

m ∼ vϕµRc.
(3.60)

Let us consider a value of µ such that m ∼ 1. Let αg =Mµ be the dimensionless

ratio of BH radius to scalar wavelength. Then

αg ∼ mvϕ ∼ 10−3(vϕ/v0), (3.61)

so vϕ ∼ v0 gives αg ∼ 10−3 and Rc/M ∼ 107. The simplest way to estimate the

gravitational wave emission is the quadrupole formula

LGW ≈
1

5

〈
∂3QTT

ij

∂t3
∂3QTT

ij

∂t3

〉
. (3.62)

where QTT
ij is the quadrupole moment in the transverse traceless gauge. However

this relies on the approximation that the size of the source is much smaller than

the gravitational wave wavelength [223]. The ratio of cloud size to wavelength is

Rc/λc ∼ Rcµ ∼ 103(vϕ/v0)
−1 ≫ 1, (3.63)

so for vϕ ∼ v0 the quadrupole approximation is not appropriate. The authors in

[138] use the Teukolsky formalism to go beyond the quadrupole formula and derive
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that for small αg and the bound n = 0, l = m = 1 mode, the GW luminosity is

approximately

LGW ∼M2
sα

12
g µ

2 (3.64)

where MS is the mass of the scalar cloud. We can estimate that

MS ∼ ρRcR
3
c (3.65)

where ρRc is the scalar field energy density at the radius of influence Rc. Then

hGW =
2
√
LGW

d(2µ)
∼ ρRcR

3
cα

6
g

d
∼ ρRcM

3

d
, (3.66)

where d is the distance from the source to the detector. We can reintroduce the

constants to obtain

hGW ∼
(
G

c2

)4
ρRcM

3

d
, (3.67)

∼ 10−53

(
ρRc

M⊙pc−3

)
(M/M⊙)

3

(d/pc)
. (3.68)

As a concrete example consider the supermassive black hole at the centre of the

Milky Way. Various studies have estimated the dark matter density profile of the

Milky Way’s halo from the galaxy rotation curve (see [224] for a review). Estimat-

ing the DM density at the centre of the galaxy is difficult as the mass is dominated

by baryonic stars, and estimates are highly model dependent. Light scalar dark

matter predicts a solitonic “core” of almost uniform density near the centre [117].

Nesti and Salucci (2013) [116] estimate a core density of ρc ∼ 0.04M⊙pc
−3, and a

core radius of ∼ 10kpc which appear to be typical values for cored models. Using

M = 4× 106M⊙ for the mass of the supermassive black hole [116], ρRc = ρc, and

d = 8kpc for the distance to the centre of the Milky Way we obtain

hGW ∼ 10−39. (3.69)

The corresponding scalar mass and GW frequency are

ℏµ ∼ ℏ
(
mv0c

2

GM

)(
vϕ
vϕ

)
(vϕ/v0) (3.70)

∼ 10−20κ−1(vϕ/v0) eV, (3.71)

f ≈ cµ/π ∼ 10−5(vϕ/v0) Hz, (3.72)
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and the size of the cloud is

Rc ∼ (vϕ/v0)
−2 pc. (3.73)

If we take vϕ ∼ v0 then the frequency is outside the range of LIGO [44] and on

the edge of the sensitivity range of LISA [49, 225]. The signal of hGW ∼ 10−39

would also be far below the threshold of the latter even at peak sensitivity [225].

Note that this estimate would be further reduced by the fact that the DM is likely

to be in a superposition of modes rather than a single coherent one. Moreover,

the formula (3.64) was derived for the n = 0 mode, which goes to zero at r =∞,

while we are examining the marginally bound or n = ∞ mode, which is finite

at r = ∞, so we would expect this to be suppressed due to the smaller value of

r̃ = 2rMµ2/(1 + n+ l) and the more spread out profile. We leave a recalculation

of the [138] result for the appropriate n to future work.

Equation (3.60) suggests increasing µ would increase the typical m in which

case other modes may dominate. Arvanitaki et al. (2015) [143] found that the GW

emission rate from single mode scalar-scalar annihilation in bound gravitational

atom states (with ω < µ) goes as

ΓGW ∝
(
vϕ
c/2

)4l

. (3.74)

Hence as c ≫ vϕ ∼ 100km s−1 we expect the emission to decrease for larger l

(assuming the same occupation number of the respective modes). Therefore, for

single mode annihilation we may consider the l = m = 1 case to be the most

optimistic scenario.

We can also consider radiation arising from transitions between the marginally

bound state at ω = µ and lower energy states with ω < µ. These transitions will

produce radiation at lower frequencies – in particular, if the average axial velocity

of the scalar particles at r = Rc is vϕ then we expect radiation at frequency

ω ∼ vϕ/Rc ∼ µv2ϕ/m. Bound states for small αg have energies

ωnl ≈ µ− µ

2

(
αg

n+ l + 1

)2

, (3.75)

where n is a non-negative integer and related to the number of nodes in the radial

direction. Consider for example a transition from a marginally bound n =∞, l =
m = 2 state to the ground state n = l = m = 0. This would produce radiation of

frequency

ωGW ∼
µ

2
m2v2ϕ = 2µv2ϕ. (3.76)
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Due to the lower frequency of the GWs the ratio of cloud size to wavelength is

now

Rc/λ ∼ 10−3(vϕ/v0)≪ 1, (3.77)

so we can use the quadrupole formula to estimate the gravitational radiation,

LGW ∼ ω6
GW

(∫ Rc

r+

ρr4dr

)2

, (3.78)

hGW ∼
2
√
LGW

dωGW
∼ ω2

GW

∫ Rc

r+

ρr4dr (3.79)

∼
(
µv2ϕ
)2 ρRcR

5
c

d
, (3.80)

∼10−40

(
ρRc

M⊙pc−3

)
(M/M⊙)

3

(d/pc)(vϕ/v0)4
. (3.81)

Using the same values for the Milky Way SMBH as above this gives an amplitude

of

hGW ∼ 10−26(vϕ/v0)
−4. (3.82)

with the corresponding scalar mass and GW frequency

ℏµ ∼ ℏ
(
msc

2

GM

)(
vϕ
v0

)
∼ 10−20(vϕ/v0)eV, (3.83)

f ∼ 10−12(vϕ/v0)
3Hz. (3.84)

This frequency would be well outside the range of LIGO and LISA but may be

in reach of Pulsar Timing Arrays [226]. Note again that this estimate is based on

the strong assumption that the DM is all in the single mode, whereas in reality

only some fraction of the total will be.

The GW emission estimates presented here are only rough guides for a single

nearby source. Accurate estimates for the emission of GWs through either anni-

hilation or level transitions would require a more detailed calculation similar to

those in [138] and [227]. In addition as the mode profile is heavily determined by

the scalar environment, ideally one would like to obtain more precise information

about the central distribution of the DM in order to construct a more reliable

estimate of the complete signal.

If dark matter is a scalar with a single mass and a relatively consistent velocity

profile, both signals should be largely monochromatic. One could therefore expect

a superposition of signals with a similar frequency to arise from multiple black

holes in the observable volume. This could potentially lead to an enhancement
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in the total GW signal. Estimates of such a stochastic quasi-monochromatic GW

background have been obtained in the context of searches for superradiant clouds

[143, 212, 219].

3.5 Summary and discussion

Most of the literature concerning the growth of scalar hair around black holes has

focused on the superradiance mechanism. This work instead explores simple gravi-

tational accretion driven growth of scalar fields around black holes. Specifically we

have developed analytic tools to characterise the growth as a function of a range of

parameters of the BH and scalar, and performed simulations of the field evolution

on a fixed Kerr background to validate our results. If dark matter is composed of

light bosons this should represent a common environment for astrophysical BHs.

We observed that when one includes a spin for the BH, as would be expected

in a realistic astrophysical case, the accretion rates and density profiles remain

almost unchanged, with only minor distortion near the horizon. Hence the be-

haviour of accretion onto Kerr BHs remains fundamentally very similar to that

onto Schwarzschild BHs studied in [200], with the profile “spiking” around the

horizon. Over time the field profiles come to resemble the analytic stationary

solutions described by [198].

However, adding angular momentum to the scalar can either suppress or en-

hance (depending on the misalignement) its accretion onto the BH and, in the

case of aligned spins, concentrates the clouds further out from the horizon. This

is interesting for two reasons:

1. The specific profile which forms around the BH is important because it would

directly affect potential probes of the cloud structure – e.g. dephasing in

EMRIs by LISA.

2. The flux onto the BH determines how fast the BH may be spun up or how fast

its mass will grow. This may have implications for the superradiant growth

that would be expected to accompany the accretive growth in several regions

of the parameter space studied.

Regarding the second point, it would be interesting to consider whether this com-

petition between spin up and spin down could stall or enhance the superradiant

build up in some cases, in a similar way to the studies in [228] and [145]
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We have explained the cloud behaviour by reference to a quasi-effective ra-

dial potential and the orbits of equivalent particles, and developed a perturbative

analytic solution for the changing field profile at large radius. This proved very

effective in describing the mass and angular momentum accretion flux in the ap-

propriate time range, and helped us understand the behaviour in the full numerical

simulations.

We have not considered couplings to Standard Model matter in this work, or

self interactions in the scalar field, but our work could be used to inform estimates

of potential signals from such effects [229]. In the absence of such couplings,

the key observational signature of the scalar field cloud would be gravitational

waves. A scalar field dark matter environment may produce an imprint on the

gravitational wave signal from a black hole binary merger, a scenario considered

further in chapters 4 and 5. However clouds composed of a real scalar field with

angular momentum, as studied here, can also should generate monochromatic

gravitational wave signals directly in a similar manner as for superradiant clouds.

We estimated the magnitude of monochromatic signal that might be expected

from a cloud around the supermassive black hole at the centre of the Milky Way.

This indicates that a single source would not produce a signal loud enough to

be detectable by any planned gravitational wave observatories, due to the limi-

tations on the dark matter density and angular momentum. However, we note

that unlike for superradiant clouds, where the cloud properties are fully deter-

mined by the properties of the black hole and the scalar mass, clouds formed from

accretion have a very strong dependence on the local dark matter environment

and the asymptotic conditions. Hence different assumptions about local density

enhancement may produce a significantly larger signal. There is also the potential

to detect a stochastic quasi-monochromatic background from a superposition of

multiple sources, however again the uncertainties about the astrophysical scalar

dark matter distribution on small scales makes estimating this background highly

challenging.



Chapter 4

The quasi-normal modes of
growing dirty black holes

The final stage of black hole formation, either from a binary merger or gravita-

tional collapse, is a perturbed single black hole which “rings” like a bell. The

gravitational waves emitted during this “ringdown” phase are dominated by a dis-

crete set of damped oscillatory modes dubbed quasi-normal modes (QNM), whose

frequencies are strictly determined by the underlying spacetime, and are indexed

by overtone number n and angular numbers l,m (see section 1.2.5). In the case

of standard General Relativity and an isolated Kerr BH, the QNM frequencies

are uniquely determined by the BH mass and spin. The detection of gravitational

waves from binary mergers by the Advanced LIGO/Virgo network (recently aug-

mented by the addition of KAGRA) [44, 45, 230]) provides a means by which to

directly measure these QNM frequencies [231–234] and thus probe the spacetime

around black holes directly. The prospects for this field of “Black Hole Spec-

troscopy” will only improve as future detectors such as LISA and the Einstein

Telescope come online [235–239].

Methods for calculating and studying the QNMs of Kerr BHs in standard GR,

both numerical and analytic, are well established [55–58, 240–242], but only a few

works have extended these techniques to cases of modified gravity or non-trivial

matter environments; so called “dirty” or “hairy” black holes [148, 243–248]. A

change in the black hole metric δgµν , arising from modifications to GR or from the

backreaction of surrounding matter, will result in a corresponding shift in QNM

frequencies δωnlm. Such effects are likely to be small [148], but have yet to be fully

quantified.

One simple and physically motivated situation in which there is non-zero hair
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around a black hole is where the BH accretes matter from the surrounding envi-

ronment. Observational evidence of an electromagnetic counterpart to the gravita-

tional wave event GW190521 suggested that it may be a binary black hole merger

occuring within the accretion disc of an active galactic nucleus [249], meaning

that “dirty” black hole mergers in matter-rich environments are not an entirely

theoretical concept.

While baryonic accretion discs are perhaps the most well motivated example

of matter accretion, in this work we first examine the more straightforward case of

spherically symmetric accretion. We use as an illustrative example the accretion

of a massive complex scalar field onto a Schwarzschild BH, for which stationary

solutions are known. Such an environment could describe a black hole located

inside a bosonic dark matter halo [1, 198, 200, 250, 251] or the end point of boson

star mergers or collapses [142, 210, 252–258], among other scenarios. Whilst such

an accreting black hole is ultimately not a truly stationary state (at some point

one would expect the asymptotic source of matter feeding the accretion to be

“used up”), over any short period of time the configuration is well-described by a

steady state profile, with a fixed rate of flow into the horizon.

Even restricting to the case of spherical symmetry, calculating the QNM pertur-

bations for such a growing, “dirty” BH presents several novel challenges. The first

is that since the matter is continually accreting onto the BH, the BH mass increases

with time, and the metric deviation acquires a time dependence, δgµν = δgµν(t, r).

Most previous works have been limited to static metric shifts δgµν(r). Numerical

results have been obtained for the quasi-normal modes of scalar and electromag-

netic perturbations in a time dependent Vaidya metric [259–262], however as far

as we are aware perturbative analytic results for gravitational quasi-normal modes

on a time dependent background have not been obtained1.

The second challenge is that in the standard coordinate choice – Schwarzschild

coordinates – the accreting matter piles up around the horizon because the time

coordinate there is singular. A different choice is required to avoid the resulting

divergence in the backreaction.

To overcome these challenges we combine and extend techniques from two

previous works. Firstly, Cardoso et al. [263], who demonstrated a procedure

of re-definitions to produce modified QNM equations (i.e. modified Zerilli and

Regge-Wheeler equations) for spherically symmetric and static metric shifts on

1Scalar, electromagnetic and gravitational fields have different spins (spin 0, 1 and 2 respec-
tively) so in general have different quasi-normal mode frequencies.
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a Schwarzschild background, and from this a numerical code for computing the

QNM shifts. Secondly, Dolan & Ottewill [264], who described a perturbative

analytic technique for computing quasinormal modes of known static, spherically

symmetric spacetimes. We combine these approaches to produce a novel way of

computing QNMs, and show how the use of an adapted coordinate system can be

used to tackle the accreting case.

This chapter is organised as follows. In Sec. 4.1 we set up the background

spacetime of an accreting black hole. In Sec. 4.2 we derive the quasinormal

mode equations for the perturbed metric. In Sec. 4.3 we compute an analytic

perturbative expression for the QNM deviations of a growing, dirty, Schwarzschild

BH and in Sec. 4.4 we give explicit results for massive complex scalar field “dirt”.

We summarise our results in Sec. 4.5, discuss their applications, and propose

directions for future work. Appendix C provides further discussion of key steps

in our work and, in particular, in sections C.2 and C.3 we verify our method by

applying it to simpler, well studied examples for which we have numerical results,

to demonstrate that our analytic method gives good agreement.

4.1 The perturbed metric of accreting dark mat-

ter

Consider a situation in which one has a sufficient reservoir of material far from the

BH such that the system can reach an equilibrium where the loss of matter into

the BH is balanced by the infall of matter from infinity, forming a long lived quasi-

stationary cloud. This massive cloud will perturb the metric, and thus change the

frequency of quasi-normal modes.

Full details of the perturbation theory and some further commentary are pro-

vided in appendix C.1. The general idea is that we consider two types of perturba-

tions of the metric. First, a slowly varying perturbation δgµν , order Tµν , which is

the backreaction from the stationary matter, and which gives a matter-perturbed

background

gµν = g(0)µν + δgµν . (4.1)

where g
(0)
µν is the Schwarzschild metric. Then we imagine adding to this modified

background a much smaller perturbation, hµν , which will oscillate at the modified

quasi-normal mode frequencies and radiate to infinity as gravitational waves.
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The first step in our calculation is to obtain the backreaction δgµν . Let φm, for

now, represent general “matter” fields that source Einstein’s equations. The lowest

perturbative order non-trivial matter field solution φm
(0) satisfies the equations of

motion on the Schwarzschild background

∇(0)
µ T µν [φm

(0), g
(0)
ab ] = 0, (4.2)

where we assume that Tµν is small and ∇(0)
µ is the covariant derivative constructed

with g
(0)
ab . The perturbation δgµν , order Tµν in smallness, then satisfies

δGµν [g
(0)
ab , δgab] = 8πTµν [φm

(0), g
(0)
ab ], (4.3)

where δGµν is the first order perturbation in the Einstein Tensor.

For simplicity we will consider a spherically symmetric cloud on a spherically

symmetric Schwarzschild background. Consider the ansatz of a diagonal perturbed

line element of the form

ds2 = −(f + δf)dt2 + (f + δg)−1dr2 + r2dΩ, (4.4)

where f(r) = 1 − 2M/r, dΩ = dθ2 + sin2(θ)dϕ2 and M is the mass of the black

hole. The perturbed Einstein field equations are then

δGt
t =

1

r2
∂r(rδg) = 8πT tt , (4.5)

δGr
r = (δg − δf)/(fr2) + 1

r2
∂r(rδf) = 8πT rr , (4.6)

δGr
t = −∂tδg/r = 8πT rt . (4.7)

Now assume that the black hole is surrounded by a cloud of accreting matter

described by a density ρ := −T tt . As the background Schwarzschild metric is

static, conservation of energy implies that

∂t(4πr
2T tt ) + ∂r(4πr

2T rt ) = 0. (4.8)

(This can also be derived from Eqs. (4.5) & (4.7)). If the density is static ρ = ρ(r)

then ∂r(4πr
2T rt ) = 0 hence T rt = δA/(4πr2) for some radially constant value δA(t)

which relates to the flux into the BH at some point in time t.

If we now choose to reparametrise δg as δg = −2δM(t, r)/r, Eqs. (4.5) & (4.7)

give

∂rδM = 4πr2ρ, (4.9)

∂tδM = δA, (4.10)
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from which we can see that δM is the additional effective mass of the black hole

due to the cloud, and δA is the rate of increase of mass of the BH due to accretion.

Note that whilst in principle the quantities ρ and δA are independent, such that

one could choose to have non-zero density of matter near the horizon, but not have

any flux into the BH, in most physical situations they will be related and of the

same order. This can be seen explicitly in our illustrative example for a complex

scalar field below, and explains our finding that the QNM frequency shift due to

the accretion is of the same order as that due to the static matter distribution.

As alluded to in the introduction, the use of Schwarzschild coordinates presents

problems for realistic examples. Consider our example case of a complex scalar

field φ accreting onto a BH from an asymptotically constant energy density. As

discussed in [198], the stationary solution close to the horizon is

φ→ φ0e
−iωs(t+r∗) r → 2M (4.11)

where here we denote the scalar field frequency as ωs, and so

ρ→ − 2|φ0|2ω2
s

1− 2M/r
r → 2M (4.12)

diverges there. As a result our metric perturbation δg also diverges, which breaks

our assumption that δgµν is small. This is a typical result for matter distributions

with a non-zero flux into the horizon, due to the coordinate singularity of the

Schwarzschild metric at the horizon.

The standard solution is to change to ingoing Eddington-Finkelstein (EF) co-

ordinates, v ≡ t+ r∗, where the tortoise coordinate r∗ is defined as

dr∗ = dr/f(r), (4.13)

r∗ = r + 2M ln
( r

2M
− 1
)
. (4.14)

In the ingoing EF coordinates the Schwarzschild line element is

ds2 = −fdv2 + 2dvdr + r2dΩ . (4.15)

We define a perturbation in the metric δλ(v, r) such that the line element is

ds2 = −Fe2δλ(v,r)dv2 + 2eδλ(v,r)dvdr + r2dΩ, (4.16)

where

F = f − 2δM(v, r)/r, (4.17)
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One can then show [265] that similarly to the Schwarzschild case

∂rδM = − 4πr2T vv = 4πr2ρEF , (4.18)

∂vδM = − 4πr2T rv = δA, (4.19)

where ρEF = −T vv is the energy density measured by coordinate observers in

ingoing EF coordinates, and δA is the rate of increase in mass of the BH as

before. In these coordinates the scalar field φ(v, r)→ φ0e
−iωsv as r → 2M , so

ρEF =
(
f |∂rφ|2 + µ2|φ|2

)
→ µ2|φ0|2, r → 2M (4.20)

is perfectly well behaved at the horizon. We also have

∂rδλ =− 4πrT vr = −4πrTrr = |∂rφ|2,
→0, r → 2M.

(4.21)

so the metric perturbation δλ is also well behaved. For the scalar field we have

explicitly

δA = 8π(2Mωs)
2|φ0|2, (4.22)

In general, at any (v, r) we have

δM(v, r) = δA v +

∫ r

2M

4πr̄2ρEF dr̄, (4.23)

δλ(v, r) =−
∫ r

2M

4πr̄Trr dr̄. (4.24)

For the specific case of the scalar field we find

δM(v, r) = 8π(2Mωs)
2|φ0|2v

+

∫ r

2M

4πr̄2
(
f |∂r̄φ|2 + µ2|φ|2

)
dr̄, (4.25)

δλ(r) =− 2

∫ r

2M

4πr̄|∂r̄φ|2dr̄. (4.26)

From this point on we will assume that, as in the case of the stationary scalar field

solution, δA is a constant and δλ depends only on r.

In this section we have formulated the necessary expressions for the backre-

action onto a Schwarzschild black hole due to stationary accretion in ingoing EF

coordinates. We can now use the resulting modified background metric to con-

struct modified equations for the quasi-normal modes.
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4.2 Quasi-normal mode equations on the per-

turbed background

A general spherically symmetric 4D spacetime can be written as the product of a

2D pseudo-Riemannian manifold (M, g̃ab) and the 2-sphere (S2, ĝAB),

ds2 = g̃ab dx
adxb + r2ĝAB dxAdxB, (4.27)

where indices a, b ∈ {t̃, r}, A,B ∈ {θ, ϕ}, with t̃ = t̃(t, r). It can be shown

[266, 267] that odd linear gravitational perturbations h
(o)
µν about such a metric can

be described by a Regge-Wheeler-like master equation,[
∇̃a∇̃a − V

]
Ψ = S, (4.28)

where Ψ(t, r) is a master variable encoding the perturbation and

V =
(l + 2)(l − 1)

r2
+

2

r2
g̃rr − 1

r
∇̃a∇̃ar, (4.29)

∇̃a∇̃a =
1√−g̃ ∂a

(√
−g̃g̃ab∂b

)
, (4.30)

and S is a matter source term derived from Tµν . To find the quasi-normal mode

frequencies we solve the homogeneous equation with S = 0.2 For the perturbed

ingoing Eddington-Finkelstein metric t̃ = v, g̃rr = F,
√−g̃ = eδλ, and so the

homogeneous equation is[
2e−δλ∂v∂r + e−δλ∂r(e

δλF∂r)− V
]
Ψ = 0, (4.31)

[2∂v∂r + ∂r(F∗∂r)− V∗] Ψ = 0, (4.32)

where F∗ = eδλF and v∗ = eδλV . Then

V∗ =e
δλ (l + 2)(l − 1)

r2
+

2

r2
F∗ −

1

r
F ′
∗, (4.33)

≈(1 + δλ)V− −
6δM

r3
+

2δM ′

r2
− δλ′1

r
f, (4.34)

where the prime ′ denotes ∂r. If we take the effective BH horizon as being at

F∗(r) = 0 then to first order the horizon radius is shifted from 2M to

rH(v) = 2M [1 + δM(v, 2M)/M ],

= 2M [1 + δAv/M ].
(4.35)

2Unfortunately an equivalent generalisation of the even mode Zerilli equation to non-vacuum
backgrounds has not been found, so we will focus on the odd modes.
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We can introduce a function Z(v, r) such that

F∗(v, r) =fH(r)Z(v, r), (4.36)

fH :=1− rH/r, (4.37)

Z ≈1 + δZ, (4.38)

δZ(r) ≈− 2(δM(v, r)− δM(v, 2M))

r − 2M
+ δλ(r), (4.39)

where our choice of definition means that δZ does not depend on v. Note that

v = 0 is defined as when the effective horizon rH = 2M . Following the method of

[263], we define Φ =
√
ZΨ. Then[

∂r(fH∂r) + 2(1− δZ)∂v∂r − δZ ′∂v − Ṽ
]
Φ = 0, (4.40)

where

Ṽ =
V∗
Z

+
1

2
Z− 1

2 (Z ′Z− 1
2fH)

′, (4.41)

Ṽ ≈ V∗ − δZV∗ + 1
2
(fδZ ′)′, (4.42)

≈ VRW +
(l − 2)(l + 1)

r2
(δλ− δZ) + 1

2
(fδZ ′)′ − f

r
δZ ′, (4.43)

to linear order in δ, where VRW is the standard Regge-Wheeler potential (1.33).

We now wish to solve for quasi-normal mode solutions. For time independent

metrics we look for solutions of the form Φ ∼ e−iωtu(r). We can write this in

ingoing Eddington-Finkelstein coordinates as Φ ∼ e−iωvu(r), incorporating the

factor of e+iωr∗ into u(r). However, as the metric now has a small linear time

dependence we need to allow for the frequency and the u function to drift with v,

Φ = exp(−iω(v)v)u(r, v), (4.44)

where

ω(v) = ω0 + δω(v), (4.45)

and ω0 is the unperturbed Schwarzschild QNM frequency, giving[
∂r(fH∂r)− 2i(∂v(vω)− δZω0)∂r

− (Ṽ − δZ ′iω0) + (2(1− δZ)∂r − δZ ′)∂v

]
u(v, r) = 0. (4.46)
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This expression cannot be directly solved using our method, which requires a

differential equation in a single variable. To enable this we introduce a “comoving”

coordinate r̃ (from now on we use units where M = 1), which we define as

r̃ =
r

(1 + δAvσ(r))
, (4.47)

and where we choose function σ such that σ(r) ≈ 1 for r ≪ r0 and σ → 0 for

r →∞. The r0 is some constant radius much larger than the black hole but much

smaller than the distance between us and the black hole (one can think of it as

the size of the accreting cloud). Then we can have for r ≪ r0

r̃ ≈ 2r

rH
, fH ≈ 1− 2

r̃
, (4.48)

while for r ≫ r0 we recover r̃ ≈ r. We now derive the QNM equation in terms of

this single variable r̃. We have

∂v = −
δArσ

(1 + δAvσ)
∂r̃ + ∂v, (4.49)

∂r =
1− δA vrσ′

1+δAvσ

(1 + δAvσ)
∂r̃. (4.50)

where σ′ = ∂rσ(r). Now let

κr :=

(
∂r̃

∂r

)
v

=
1− δA vrσ′

1+δAvσ

(1 + δAvσ)
, (4.51)

κv :=

(
∂r̃

∂v

)
r

= − δArσ

(1 + δAvσ)
. (4.52)

If we now define fA = fH + 2κv
κr
(1− δZ), we have that[

∂r̃(fA∂r̃) + κ−1
r

(
−2i(∂v(vω)− δZ(r)ω0) +

κ′r
κr
fA +

κv
κr
δZ ′
)
∂r̃ −

κ−2
r (Ṽ − δZ ′(r)iω0) +

(
2(1− δZ(r))κ−1

r ∂r̃ − κ−2
r δZ ′(r)

)
∂v

]
u(v, r̃) = 0.

(4.53)

In the regime r ≪ r0 Eq. (4.53) reduces to[
∂r̃(fA∂r̃)− rH i(∂v(vω)− δZ(r)ω0)∂r̃ −

r2H
4
(Ṽ − δZ ′(r)iω0)+(

rH(1− δZ(r))∂r̃ −
r2H
4
δZ ′(r)

)
∂v

]
u(v, r̃) = 0,

(4.54)
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to order δ2 where fA ≈ 1− 2/r̃ − 2δAr̃. We then have

δZ(r) ≈ δZ(r̃) + (r − r̃)δZ(r)′ + . . . , (4.55)

≈ δZ(r̃) + δAvσ(r)rδZ(r)′ + . . . , (4.56)

≈ δZ(r̃) +O(δ2) (4.57)

provided δAvσ(r)r ≪ 1 for r ≪ r0. We can thus approximate δZ(r) ≈ δZ(r̃),

and do the same for other order δ quantities. This means we can approximate

r2H
4
(Ṽ − iω0δZ

′) ≈ (Ṽ (r̃)− iω0δZ
′(r̃)), (4.58)

where primes now denote ∂r̃. If we now look for solutions where u = u(r̃) we have

that

Ω =
rH
2
∂v(vω)− ω0δZ(2), (4.59)

is independent of v. This gives us an equation in a single variable,[
∂r̃(fA∂r̃)− 2i(Ω− [δZ − δZ(2)]ω0)∂r̃ − (Ṽ (r̃)− iω0δZ

′(r̃))
]
u(r̃) = 0. (4.60)

We can further simplify this by letting

u(r̃) = exp

(
−iω0

∫ r̃

[δZ(r̃)− δZ(2)]/fH(r̃) dr̃
)
ũ(r̃). (4.61)

Again neglecting O(δ2) terms this gives us

[∂r̃(fA∂r̃)− 2iΩ∂r̃ − (V−(r̃) + ∆V (r̃))] ũ(r̃) = 0, (4.62)

where ∆V (r̃) contains all the potential terms of order δ.

The aim of this section was to derive a differential equation in a single co-

moving variable, for odd quasi-normal modes about the perturbed Schwarzschild

metric associated with the growing dirty black hole we described in the previous

section. The equation derived, Eq. (4.62), can now be used to compute the

quasi-normal mode frequencies.

4.3 Perturbative method for computing the quasi-

normal modes

While there are a host of numerical methods for calculating quasi-normal mode

spectra, here we adapt the method of [264] to compute analytic, perturbative
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expressions for the corrections to the spectra described by Eq. (4.62) for the fun-

damental n = 0 modes. The advantage of using this method over other numerical

techniques is that we can obtain perturbative analytic expressions that make it

easy to substitute in for many different matter distributions, and to analyse the

eikonal high l limit.

Due to the spherical symmetry the frequencies are independent of the spherical

harmonic number, m. For ũ(r̃), the (modified) radial part of our solution, we take

an anzatz of the form

ũ = exp

(
iΩ

∫ r̃∗

Y (r̃)dr̃∗

)
q(r̃), (4.63)

The principle idea is to expand in powers of L = l + 1
2
so that

Ω = LΩ−1 + Ω+ L−1Ω1 + . . . , (4.64)

q(r̃) = exp
(
S0(r̃) + L−1S1(r̃) + . . .

)
. (4.65)

Substituting (4.63) into (4.62), we find the modified Regge-Wheeler equation takes

the form

fAq
′′ + [f ′

A + 2iΩ(Y − 1)]q′+[
iΩY ′ + Ω22Y − Y 2

fA
− L2

r̃2
− V0 −∆V

]
q = 0,

(4.66)

where V0 =
1
r̃2
(−6/r̃ − 1/4) and

∆V =
L2 − 9/4

r̃2
(δλ− δZ) + 1

2
(fHδZ

′)′ − fH
r̃
δZ ′

+
2ω2

0

fH
[δZ(r)− δZ(2)].

(4.67)

We can now match terms in orders of L. At order L2 we have that

(2Y − Y 2)Ω2
−1 =

fA
r̃2
, (4.68)

1− (Y − 1)2 =
fA

Ω2
−1r̃

2
, (4.69)

Y =1±
(
1− fA

Ω2
−1r̃

2

)1/2

. (4.70)

Let us now focus on the quasi-normal mode boundary conditions. We want

ingoing modes at the horizon and outgoing at r →∞, so

ũ ∼ Φ0, r∗ → −∞, (4.71)

ũ ∼ Φoute
2iΩr∗ , r∗ →∞. (4.72)
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If we take δA = 0 and Ω−1 = 1/
√
27 as in [264] then r̃ = r and(

1− fA
Ω2

−1r̃
2

)1/2

=

(
1− f27

r2

)1/2

= ±
(
1− 3

r

)(
1 +

6

r

)1/2

. (4.73)

We then can obtain the correct boundary conditions by taking

Y = 1 +

(
1− 3

r

)(
1 +

6

r

)1/2

. (4.74)

This is a modified form of the ansatz used in [264] corrected for the fact that we

have included a factor of r∗ into the v.

We can try something similar with δA ̸= 0. For small r (i.e. r ≪ r0) we find

fA ≈ fH − 2δAr̃ = 1− 2

r̃
− 2δAr̃. (4.75)

If Ω−1 = 1/
√
27 + δΩ−1, one can show that

Y = 1 +

(
1− 3(1 + 3δA)

r̃

)(
1 +

6(1 + 12δA)

r̃

)1/2

, (4.76)

δΩ−1 =−
√
3δA, (4.77)

satisfies the order L2 equation to order δ. The repeated root for Y = 1 corresponds

to the null unstable circular orbit, which shifts to r = 3 rH
2M

(1+3δA). We also note

that fA and Y (r̃) have zeros at r̃ = 2+8δA+O(δA2) instead of at r̃ = 2; however

in the expression ∫ r̃∗

Y (r̃)dr̃∗ =

∫ r̃

Y (r̃)/fA(r̃) dr̃ (4.78)

these zeros cancel so that the integral is well behaved. Hence for well behaved

q(r̃) we obtain the correct boundary condition at r → rH .

Now let us examine the limit of large r (i.e. r ≫ r0). We want to confirm we

obtain outgoing waves, i.e.

ũ(r̃) ≈ exp(2iΩr∗) (4.79)

as r →∞. We have Y ≈ 2− fA/(2Ω2
−1r̃

2) + . . . so

ũ→ exp

(
iΩ[2r̃∗ +

1

Ω−1r̃
+ . . . ]

)
q(r̃) (4.80)

and

r̃∗ ≈
∫ (

1− 2(1 + δAv)

r
+ δA(v(σr)′ − 2σr) +O(δA2)

)−1

dr, (4.81)

≈ r + 2 ln(r − 2) + δA (v(2 ln(r)− (σr)′)− 2σr) +O(δA2), (4.82)

≈ r∗ +O(δ). (4.83)
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Thus our anzatz does give us outgoing waves at large r, provided q(r̃) is suitably

well behaved and σ goes to zero with large r suitably fast.

Having established our modified anzatz still satisfies the quasi-normal mode

boundary conditions we can go back to solving for the Ωn, Sn terms, using the

r ≪ r0 limit. At order L1 we have

2iS ′
0(Y − 1) + iY ′ +

2Ω0

Ω2
−1r̃

2
= 0. (4.84)

If we require that Sm be continuous and differentiable at the null unstable orbit,

at r̃c = 3(1 + 3δA), then setting r̃ = r̃c we find

Ω0 = −i
√
3

2
Ω−1Y

′(r̃c) = −
i

2
√
27

+
2i√
3
δA+O(δ2). (4.85)

We can also extract S ′
0 as

S ′
0(r̃) = i

iY ′ + 2Ω0/(Ω−1r̃)
2

2(Y − 1)
. (4.86)

At order L0 we have

fA(S
′
0
2
+ S ′′

0 ) + (f ′
A + iω0δZ)S

′
0 +

2Ω1Ω−1 − Ω2
0

r̃2Ω2
−1

+2iS ′
1Ω−1(Y − 1)− V0 −∆V = 0.

(4.87)

We can again set r̃ = r̃c to find Ω1, and then rearrange to obtain the function S ′
1.

The above procedure can be repeated to obtain higher-order terms. For order

L−n, n ≥ 1 the general expression is

fA(
n∑

m=0

S ′
mS

′
n−m + S ′′

n)

+ (f ′
A + iω0δZ)S

′
n +

1

r̃2Ω2
−1

n+1∑
m=−1

ΩmΩn−m

+ iΩnY
′ + 2i(Y − 1)

n∑
m=−1

ΩmS
′
n−m = 0. (4.88)
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The next few Ωn terms are explicitly given by:

√
27Ω1 =− 281

216
+ 1135

72
δA+ 9

2
∆V (3), (4.89)

√
27Ω2 =i1591

7776
− i1591

432
δA+ i

(
27
8
∆V ′′(3) + 9∆V ′(3) + 15

4
∆V (3)

)
, (4.90)

√
27Ω3 =− 710185

1259712
+ 2922805

419904
δA− 81

64
∆V (4)(3)− 21

2
∆V (3)(3)− 185

8
∆V ′′(3)

− 29
3
∆V ′(3) + 1061

144
∆V (3), (4.91)

√
27Ω4 =i 92347783

362797056
− i69151003

15116544
δA+ i

[
− 81

256
∆V (6)(3)− 171

32
∆V (5)(3)− 1845

64
∆V (4)(3)

− 341
6
∆V (3)(3)− 8087

384
∆V ′′(3) + 449

16
∆V ′(3) + 16331

1728
∆V (3)

]
, (4.92)

√
27Ω5 =− 7827932509

39182082048
− 1376065091

1451188224
δA+ 243

4096
∆V (8)(3) + 27

16
∆V (7)(3) + 8675

512
∆V (6)(3)

+ 71519
960

∆V (5)(3) + 1259827
9216

∆V (4)(3) + 255217
5184

∆V (3)(3)− 8562439
93312

∆V ′′(3)

− 2427761
69984

∆V ′(3) + 7696651
419904

∆V (3), (4.93)

. . .

Note that the terms zeroth order in δ are the same as in [264], showing we obtain

the correct unperturbed frequency.

If we now examine Eq. (4.59), we have that

∂v(vω) = (Ω + ω0δZ(2))/(1 + δAv), (4.94)

which, when integrated and Taylor expanded gives us

δω = δΩ + ω0δZ(2)− ω0
1
2
δAv +O(δ2). (4.95)

We can rewrite this as

δω = δϖ + δA(ϖA − ω0
1
2
v) +O(δ2), (4.96)

where δϖ is the correction with zero accretion (arising from the static matter

distribution around the horizon) and δA(ϖA − ω0
1
2
v) is the accretion term.

So far we have obtained a solution in our adapted EF coordinates of the form

Ψ = Φ/
√
Z,

= exp
(
−i
[
ω0 + δϖ + δA(ϖA −

ω0

2
v/M)

]
v
)
Z− 1

2 (r)u (r̃) ,
(4.97)

where we have restored the factors of M . However, if we were to measure this

scalar we would of course do so as asymptotic observers in t and r coordinates

not v and r̃ coordinates. Suppose we measure the scalar fluctuation at some fixed
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distance r = R ≫ 2M from the black hole. Then v = r∗ + t only changes with t.

Hence we can define a local time t′ = t−R∗, where R∗ = R+2M ln(R/(2M)− 1),

such that at our position we just have v = t′. The origin at t′ = v = 0 is defined

by the point at which the BH mass is defined to be M , that is, when the effective

black hole horizon rH = 2M . Recall that we have also defined our r̃ coordinate

such that r̃ → r for r ≫ r0. As we expect that R≫ r0 we observe

Ψ(t′, R) ∝

exp

(
− i
[
ω0 + δϖ + δA(ϖA −

ω0

2
t′/M)

]
t′
)
Z− 1

2 (R)u(R).
(4.98)

This means that the effective quasi-normal mode frequency is given by

ω = ω0 + δϖ + δA(ϖA −
ω0

2
t′/M) +O(δ2). (4.99)

Note that if we are only interested in the time variation of the scalar at a fixed

R we can be agnostic about the precise form of the function σ(r), only assuming

that it obeys the correct asymptotic boundary conditions.

Previous works have calculated δϖ, assuming the accretion terms are zero.

Yet as we shall see in the example of the massive complex scalar field in the next

section, the contribution from the accretion terms δA(ϖA − ω0

2
t′/M) can in fact

be larger than δϖ. In the general case we would expect them to be at least of the

same order, therefore the latter should not be neglected.

In this section we have arrived at our key result: a general formula for odd

parity quasi-normal mode style solution for growing dirty black holes, which can

be used to study frequencies which are perturbed by the accretion of matter and

how they drift with time. It is useful to check our approach, and in particular

the expansion order required for accuracy, in simpler regimes where quasi-normal

mode frequencies have been calculated using other methods; we do so in App.

C.3. We find that, in the static cases considered, the method is highly accurate

to the 5th order expansion used, and that going to higher orders does not result

in significant corrections. In the following section we apply the result to our

illustrative example of scalar field accretion.

4.4 Complex massive scalar field accretion

Having set up the framework and formalism, we can now apply it to our test case:

a complex massive scalar field. Once again we set M = 1 (see note on units).
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From [198] we can approximate the φ solution for small Mµ < 1 and ωs = µ as3

φ ∼ φ0e
−iµ(v−r), 2 < r ≲ µ−2/2, (4.100)

φ ∝ r−3/4e−iµ(v−r∗) cos
(
2µ
√
2r − 3π/4

)
, µ−2/2 ≲ r. (4.101)

In the regime where r < µ−2/2, from Eqs. (4.23) and (4.24) we have

δA ≈ 32πµ2|φ0|2 = 32πρh, (4.102)

δM ≈ 32πρh

[
v +

1

24

(
2r3 − 3r2 − 4

)]
, (4.103)

δλ ≈ 4πρh
[
4− r2

]
, (4.104)

δZ ≈ 4

3
πρh

[
−7r2 − 2r + 8

]
, (4.105)

which in turn gives

∆V (r̃) = 8πρh

[L2

3

(
2 + r̃−1 + 2r̃−2

)
− 1

6
(7r̃2 + 16r̃)ω2

0

− 61

12
r̃−1 − 5

2
r̃−2 − 1

3

]
,

(4.106)

where we have expressed all quantities in terms of ρh, the scalar field density on

the horizon in ingoing EF coordinates. Substituting in these values of ∆V and δZ

gives the perturbations to the quasi-normal mode frequency as

δϖ = 32πρhM
[
0.0360844L+ 0.0160375i

− 0.0522147L−1 − 0.0222155iL−2 − 0.105189L−3

+ 0.0307956iL−4 − 0.245579L−5 +O(L−6)
]
,

(4.107)

and

δAϖA = 32πρhM
[
− 1.73205L+ 1.1547i

+ 3.03376L−1 − 0.708769iL−2 + 1.33958L−3

− 0.880368iL−4 − 0.182488L−5 +O(L−6)
]
,

(4.108)

where we have now restored the factors of M . We note that the accretion term,

δAϖA, is in fact substantially larger than the non-accretion term, δϖ, showing

3Recall that in this chapter ωs denotes the frequency of the scalar field while ω is the frequency
of the gravitational QNM.
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the importance of properly accounting for the accretion and the time dependence

of the backreaction. Putting both contributions together we obtain

δϖ + δAϖA = 32πρhM
[
− 1.69597L+ 1.13866i

+ 2.98155L−1 − 0.730984iL−2 + 1.23439L−3

− 0.849572iL−4 − 0.428067L−5 +O(L−6)
]
.

(4.109)

For comparison the equivalent expression for ω0 is

ω0 =M−1
[
0.19245L− 0.096225i− 0.250363L−1

+ 0.039376iL−2 − 0.108497L−3

+ 0.048987iL−4 − 0.0384483L−5 +O(L−6)
]
.

(4.110)

While we do not have comparable numerical results for the case of time-dependent

accreting black holes, we have validated our method by comparison to numerical

results for static spacetimes as discussed in appendix C.3.

Suppose we can measure the QNM ringdown signal for N oscillations before it

passes below our sensitivity threshold. Then the shift in frequency with time over

the course of the ringdown will be order

−δAω0

2

∆t′

M
∼ −πN δA

M
= πN32πρhM. (4.111)

Hence if N is order 1, for a detector with a decent signal to noise ratio, then this

shift with time is of a comparable size to the constant frequency change δϖ+δAϖA.

We can now assess how large this shift in QNM frequency actually is. For

the complex scalar field the size of the deviations can be parameterised by the

non-zero dimensionless accretion rate δA which is related to the density on the

horizon as described above

δω

ω0

∼ δϖ + δAϖA − 1
2
δAω0t

′/M

ω0

∼ δA = 32πρhM
2. (4.112)

Plugging in the fundamental constants we find that a fractional BH mass

growth rate of 10−14Gyr−1 corresponds to a δA of (M/M⊙)
210−6. Assuming that

the complex scalar is dark matter, we can also express δA in terms of a typical

asymptotic dark matter density, as follows. For the massive scalar field with ω = µ

the density decays as ∼ r−3/2 at large r so we find

ρh ∼ ρRcπ(µM)3
(
2Rc

M

)3/2

, (4.113)
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where ρRc is the density at some large radius Rc which we take to be the effective

radius of the cloud. If we set Rc by equating the virial velocity to a typical

dispersion velocity of dark matter

Rc/M ∼ (vdisp)
−2 ∼

(
100km s−1

c

)−2

∼ 106, (4.114)

then

δA ∼ 10−31

(
M

M⊙

)2

(µM)3
(

ρRc

M⊙pc−3

)
. (4.115)

Hence we see that for an asymptotic scalar field mass density of ∼ 1M⊙pc
−3 and

Mµ < 1 this is a very small effect. However in more extreme environments with

larger matter densities or steeper density profiles the accretion may provide a more

significant contribution to the frequency shift.

Whilst we have chosen a specific form as an illustrative example, one can easily

choose different profiles for φ, or indeed different Tµν profiles, compute ∆V , and

substitute into the expressions for Ω to get the corresponding QNM frequency

shifts.

4.5 Summary and discussion

While previous authors have attempted to estimate the QNM frequencies for

“dirty” black holes, that is black holes where the metric is perturbed by a sta-

tionary or quasi-stationary cloud of matter, their analyses were limited to simple,

static, spherically symmetric metric perturbations around a Schwarzschild black

hole [148, 243, 244].

However, in most physical cases such a cloud results in a steady flow of matter

falling into the black hole, causing the mass of the black hole and the perturbed

metric to acquire a time dependence. Here we present a perturbative analytic

method to estimate, for the first time, the time dependent quasi-normal mode

frequencies for such a growing dirty black hole in spherical symmetry, assuming

a linear time dependence. This method is based on the perturbative method

of Dolan & Ottewill (2009) [264] and the techniques for dealing with perturbed

Schwarzschild metrics described in Cardoso et al. (2019) [263]. While the formula

we derive can be applied to any kind of matter cloud, we give an illustrative

result for a massive complex scalar field, in the context of wave-like dark matter.

The advantage of using the Dolan & Ottewill method is that we may obtain
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perturbative analytic formulae for the frequency correction δω in terms of a general

Tµν . It is then easy to plug in a specific matter distribution and accretion rate.

For small L the series we obtain may not be formally convergent, however we

expect that as in Dolan & Ottewill (2009) truncating the series at finite order

nonetheless gives very good approximations to the frequency corrections.

For our example we find that the size of the expected frequency shifts δω

can be related by the matter density near the BH horizon. We find that the

frequency correction due to the time dependence of the metric, which other authors

have neglected, is in fact larger than the contribution from the static matter

distribution. While these frequency shifts are tiny for typical astrophysical dark

matter densities, it is possible that they could become relevant in very dense

astrophysical environments.

Further details of the method are contained in appendix C. In particular, in

Sec. C.2 and C.3 we have verified our method by applying it to several well studied

static perturbed Schwarzschild space times, including generic potential deviations

around a Schwarzschild background, a charged Reissner-Nordström black hole and

a Schwarzschild de Sitter black hole, and compared to previous numerical results

where available. We find excellent agreement with previous results, demonstrating

the versatility and utility of this technique even in non time dependent cases, and

the accuracy of the perturbative order for our method.4

In this work we have only treated spherically symmetric background space-

times and hence spherically symmetric “dirt” around Schwarzschild black holes.

To examine astrophysically relevant cases like baryonic accretion discs and Kerr

black holes we would ideally extend this method to spacetimes and matter clouds

with only axial symmetry. A major complication is that for generic axial metrics

the equations of motion are in general non-separable, such that one cannot easily

reduce the system to a one dimensional second order ODE. More recently other

authors explored describing perturbations of an axisymmetric almost-Kerr space-

time with a set of coupled second order ODEs [268], and a similar method may

allow the extension of our work to axisymmetric growing dirty black holes.

4We note, however, that we have restricted ourselves to odd metric perturbations, due to the
difficulty in obtaining a master equation for even perturbations when matter is present.



Chapter 5

Black hole merger simulations in
wave dark matter environments

The detection of gravitational waves from compact binary mergers [44–48, 98,

269] allows us to constrain their astrophysical properties, which has important

implications for populations studies and gives information about their formation

and evolution [52, 270–279]. In principle, GW observations can also provide a

window on the environments of such binaries, since any non-zero stress-energy

tensor will modify the metric in their vicinity, resulting in changes to the character

of the inspiral, merger and ringdown parts of the signal. These changes could

capture the effects of standard baryonic matter like plasma-filled accretion discs,

or dark matter overdensities, with the spatial distribution and physical nature of

the matter giving rise to distinctive signatures at each stage [148–150, 150–163].

In practice, the energy densities required to give significant effects during the

inspiral and ringdown parts of the signal are in most cases high relative to the ex-

pected astrophysical values [148]. In the case of dark matter, the average galactic

densities as measured from observations of galactic rotation curves are at best of

the order of M⊙/pc
3 or GeV/cm3, with the local density in the Solar neighbour-

hood of the order ρDM ∼ 0.01M⊙/pc
3 or ∼ 0.1GeV/cm3 [115–119]. As discussed

in section 2.8, in the units of our NR simulations this is extremely small

ρ := ρDMR
2
s ∼ 10−30

(
ρDM

M⊙pc−3

)(
M

106M⊙

)2

. (5.1)

Clearly some enhancement in the density around a black hole or other compact

object relative to this value is required in order for the effect to be above numerical

error in a simulation (which is a minimum requirement for it to be modelled and

measurable in observational data).
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Several mechanisms that create DM overdensities around isolated BHs do exist,

with one well motivated one being the formation of dark matter spikes [280–285].

These arise from the accretion and adiabatic redistribution of particle dark matter

in the potential well around black holes as originally suggested by Gondolo and Silk

[280]. For wave-like dark matter [82, 83, 120–123, 123–125, 127–129, 131, 145, 286–

294], where light bosonic particles form a condensate with astrophysical scale de

Broglie wavelengths as discussed in section 1.3.2, similar accretion effects occur

for which the resulting profiles have been studied in [1, 18, 139, 141, 142, 197, 198,

200, 210, 295]. The density of the cloud grown via such accretion depends strongly

on the asymptotic dark matter environment, but for higher mass candidates gives

a power-law enhancement close to the black hole that can be significant. At

the other end of the scale, where the wavelength is significantly larger than the

black hole, the gradient pressure of the field (sometimes also called the quantum

pressure) resists the pile up and tends to smooth out the profile, suppressing any

overdensity.

Another possible enhancement mechanism is the superradiant instability, in

which a bosonic field can extract energy and angular momentum from a highly

spinning black hole via repeated scattering in the ergoregion (see [21] for a review).

Simulations with light massive vector fields suggest these superradiant clouds can

grow to be up to ∼ 10% of the mass of the black hole [205], which takes the

coefficient in equation (5.1) to ∼ 10−5 in the best case, and a combination of both

superradiance and accretion may lead to even higher densities [145]. The potential

for such bound states to form around BH binaries has been studied in [296], as

well as around neutron stars [297–300].

A key question is whether overdensities that may form around isolated objects

persist during binary mergers, our main source of GW data. For example, particle

DM spikes have been shown with N-body simulations to disperse for equal mass

mergers, meaning that objects close to merger or with a violent merger history

are likely to have lost their DM environment [274, 301, 302]. For this reason, the

key targets for detecting environments are extreme mass ratio inspirals (EMRIs)

with LISA [221, 303], where the cloud may still be maintained during the inspiral.

Another advantage of EMRIs is that there is a higher relative impact on the

curvature for a given DM density for larger black hole masses, and the dephasing

in the frequency of the signal during the inspiral accumulates over many orbits

that can be potentially be observed in band or across ground based and space
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based detectors [304–311]. Studies of the impact of dark matter spikes [154, 156–

158, 312–314] and superradiant clouds [159, 310, 315–320] on EMRIs show that

they are potentially detectable with LISA observations.

Beyond the inspiral regime of EMRIs, it is also interesting to consider whether

the strong gravitational non-linearities present during a roughly equal mass merger

may give rise to distinctive features in the gravitational wave signal or other elec-

tromagnetic emissions.1 These signatures provide information in a different regime

to the inspiral and thus their combination could confirm a detection or provide

evidence for a particular candidate. Studies of similar mass binaries necessitate

the use of NR simulations, in which the Einstein equations are solved numerically

for the evolution of the binary and its environment, from some initial state prior to

merger until after coalescence and ringdown. Due to the computational expense,

such simulations can at best cover the last few (order 10) orbits before the merger.

Ultimately the goal is to generate waveform templates for binary mergers that in-

clude environmental effects, but a key question that ought to first be answered

is whether, at such a late stage in the merger, such an environment will still be

present at all, and if so, what spatial configuration it will have. In other words,

what is the correct initial data for the matter environment?

In this work we study this question for the case of wave dark matter accreting

onto an equal mass, non spinning BH binary, focussing on the regime where the

wavelength of the scalar is of the same order as the Schwarzschild radii of the

individual black holes (which is also similar to their separation at the start of

an NR simulation). We begin in Sec. 5.2 by using toy simulations of fixed BH

orbits to show that in this case the accretion of dark matter onto the binary is

not disrupted by the orbital motion as it is for higher mass particle candidates.

There is instead a quasi-stationary profile that builds up over time, providing a

well-motivated initial configuration for such matter in NR simulations.

Having identified a well-motivated profile, we then study the impact of using

different initial profiles on the DM evolution in Sec. 5.3. We study the profile of

the matter on the background of a binary merger simulated in full General Rela-

tivity, initially neglecting the backreaction of the matter onto the binary motion.

We compare cases that start with our quasi-stationary profile to more arbitrary

1For example, in cases where high densities are generated during the merger, certain dark
matter models may have electromagnetic counterparts arising from self-annihilations, which
would provide an alternative way of identifying particular candidates, such as the Peccei–Quinn
QCD axion [67, 229, 321, 322].
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configurations such as gaussians, and study the effect of cutting off the accretion

at some finite radius.

Finally, in Sec. 5.4 we use recently developed techniques [188] to construct

constraint satisfying initial data, and turn on backreaction to study the effect of

superimposing the different matter profiles on a circular vacuum inspiral. Some

background information on the set up is given in Sec. 5.1, and throughout this

work we use geometric units where G = c = 1 (see note on units).

Our work builds on a number of earlier related investigations into DM en-

vironments of compact object binaries. The interaction of a black hole binary

and a scalar field environment in the early-inspiral regime, where the separa-

tion is large and almost constant with time, has been explored via effective field

theory [323, 324], weak field approximations [227, 250, 325–331]; perturbative

schemes [219, 220, 316, 318, 332–335], and N-body and mesh numerical sim-

ulations [158, 296, 336–338]. The effect of a non-vacuum environment on the

post-merger “ringdown” regime, particularly the effect on the frequencies of the

characteristic quasi-normal modes has also been explored by a number of authors

[2, 243, 244, 339, 340]. To model the highly relativistic and dynamical merger one

must use full Numerical Relativity. An axion-like scalar field environment was

considered by Yang et al. [341], simulating the effect of a thin shell of matter

on the binary merger. Choudhary et al. [342] go further, starting from the last

orbit before merger and using a Gaussian as an initial profile for the scalar field.

They find a change in the post-merger ringdown signal caused by the increase

in effective mass of the final black hole. Ikeda et. al. [296] studied the bound

states that may form around binaries via superradiance, and find they can be well

described with a perturbative “gravitational molecule” description. Most recently

Zhang et al. [343] simulated binary mergers with a spherical scalar field shell, and

examined the effect on the gravitational recoil of the binary and the scalar and

gravitational radiation. They found that the scalar cloud accelerated the merger,

and increased the recoil kick. Related work has also been done in modified gravity

in the context of scalar-tensor theories [344–349]. We note that in works where the

scalar field grows due to superradiance or a non-minimal coupling to gravity the

state of an isolated BH often depends only on the properties of the BH, and not

the surrounding DM environment, and the scalar field is in some sense “anchored”

to the black hole. However, we emphasise that similar issues to those identified

in this work regarding the ambiguity of the initial state could still arise if the
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individual scalar clouds interact and form a common cloud prior to the point at

which the simulation is started – in most (if not all) cases, no analytic form for a

common binary cloud is known.

5.1 Modelling wave dark matter around black

holes

For sub-eV dark matter the occupation number of the particles in each state is

high, with the de Broglie wavelength much larger than the particle separation

[120]. We can then treat it as a classical field, in particular, a scalar field for

spin-0 bosonic dark matter, which results in wave-like behaviour on astrophysical

scales [128] (see section 1.3.2 and [120, 122, 124] for reviews).

Specifically, the system we consider is Einstein gravity with a minimally cou-

pled massive complex scalar field φ, described by the action

S =

∫
d4x
√−g

(
1

16π
R− 1

2
∇µφ

∗∇µφ− V (φ)

)
, (5.2)

with a simple quadratic potential

V (φ) =
1

2
µ2φ∗φ. (5.3)

The dynamics of the scalar field is thus governed by the Klein-Gordon equation

on a curved background (1.48). In this work, as in chapter 3, we consider a regime

where the scalar field wavelength is comparable in size to the black hole radius

and work in terms of µ, the inverse reduced Compton wavelength which we can

think of as “the scalar mass” (see note on units).

The interaction of such massive scalar fields with isolated black holes has been

extensively studied, showing that long-lived scalar clouds can grow around black

holes either from simple gravitational accretion from the environment [1, 123, 200,

295], or via the mechanism of superradiance for spinning black holes [21]. In the

former case, as discussed in chapter 3, the solution in the asymptotically flat region

far from the black holes is a spatially homogeneous oscillatory solution of the form

φ = φ0e
−iµt, which describes a fluid of roughly constant density and zero pressure

on average – i.e. dark matter. The solution closer to the black hole is described

by the Heun functions [18, 197–199], with characteristic oscillations in the spatial

profile on length scales set by the scalar wavelength.
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In this work we go beyond the single black hole spacetime and consider the

simplest possible black hole binary with total ADM mass M : two equal mass

(MBH ≈ 0.5M) non-spinning black holes with an initial separation of d ≈ 12M

on roughly circular orbits. The exact parameters are given in Table D.1, which

result in an inspiral of about 10 orbits before merger with an initial orbital period

T ∼ 270M .

We study the interaction between the scalar field and the binary black hole

solving the Klein-Gordon equation with different levels of approximation in the

background metric:

1.- Fixed orbit simulations – the metric background is the superposition of two

isotropic BH solutions, moving on circular orbits. We evolve the scalar field

on this background to test whether a dark matter profile accumulates or

disperses over time. See Sec. 5.2.

2.- Fully general relativistic evolution with G = 0 – the background is now

evolved in full General Relativity, but we neglect the backreaction of the

matter onto the metric to focus on the impact of the binary on the matter

evolution. See Sec. 5.3.

3.- Fully general relativistic evolution with G = 1 – finally we turn on backre-

action to study the impact of the DM environment on the binary motion.

See Sec. 5.4.

In each case we take the scalar mass µ = 0.34M−1, corresponding to a scalar

wavelength of around λc ∼ 18M , slightly larger than the black hole separation but

much smaller than the binary period. For black holes in the LVK frequency band,

this corresponds to a mass of ∼ 10−9eV, while for supermassive binaries detectable

with LISA it can go down to ∼ 10−17eV for a binary with ADM mass 109M⊙. This

choice was motivated by a brief study of the angular momentum flux as described

in [350, 351], where it was identified as the value that gave the largest exchange of

angular momentum with the binary.2 Our simulations therefore represent a “best

case” for the impact of the dark matter on the binary.

Our results are presented in the following sections, with details of the code set

up and validation contained in appendix D.

2A more in depth study of the accretion behaviour for different masses is given in [336].
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Figure 5.1: Evolution of the real part of the scalar field (top) and en-
ergy density (bottom) on the fixed orbit binary background after 0, 2, 4 and
6 orbits respectively. The binary generates a scalar cloud that quickly settles
into a quasi-stationary spiralling profile that grows in amplitude over time. In
the centre around each black hole spikes form in the scalar field amplitude, re-
sulting in an enhanced energy density, with an additional accumulation of matter
in the potential well in the middle of the binary. Further out we see regions of
both higher and lower density forming, with the patterns on a length scale re-
lated to the binary separation and scalar wavelength. Movie can be found in
https://youtu.be/XevfJKLO9ec.

5.2 Fixed orbit simulations: finding the quasi-

stationary profile

During the early stages of a binary merger, the black holes are widely separated

and follow approximately Keplerian orbits, with emission of gravitational waves

tending to circularise the orbits over time [352–355]. During this phase, the dark

matter profiles of the two BHs will evolve largely independently, generating non-

trivial density profiles via accretion. A common DM cloud will also tend to circu-

larise the orbits via the effect of dynamical friction [356]. As the binary separation

decreases, at some point the DM clouds will merge and interact 3, eventually form-

ing a common cloud which is “stirred up” by the binary. It will not, therefore,

have a smooth gaussian profile and will carry some angular momentum due to its

3See [296][310][315][316] for studies in the context of superradiance.

https://youtu.be/XevfJKLO9ec


5.2. Fixed orbit simulations 107

interaction with the spacetime curvature. To investigate the resulting configura-

tion, we construct an approximate toy model for the late inspiral where we model

the gravitational field as a superposition of two isotropic black hole metrics (i.e.

Schwarzschild metrics expressed in isotropic coordinates [357])

ds2 = −
(
1 + Φ/2

1− Φ/2

)2

dt2 + (1− Φ/2)4 (dr2 + r2dΩ2), (5.4)

where dΩ2 = dθ2 + sin2 θdϕ2 and

Φ(t, r) = − Gm1

|r − r1(t)|
− Gm2

|r − r2(t)|
(5.5)

is an effective gravitational potential. We impose that the black holes (m1 = m2 =

MBH) follow circular Keplerian orbits of radius d/2 and frequency

ωBBH =

√
2GMBH

d3
, (5.6)

with their centres located at

r1(t) =

(
+
d

2
cos(ωBBH t), +

d

2
sin(ωBBH t), 0

)
, (5.7)

r2(t) =

(
−d
2
cos(ωBBH t), − d

2
sin(ωBBH t), 0

)
. (5.8)

Close to each of the black holes this metric tends to a Schwarzschild metric in

isotropic coordinates, while far from the black holes it tends towards a weak field

limit. This metric is not a solution of the Einstein equations, but is merely designed

to study the way in which a common quasi-stationary profile can form in a period

where the orbits are not yet rapidly decaying as at merger.

We start the simulations with the binary immersed in a homogeneous scalar

field, choosing φ(t = 0) = φ0 and Π(t = 0) = −iµφ0, and study the evolu-

tion of the scalar field over several orbits. The (real) parameter φ0 controls the

asymptotic density of the infinite reservoir, but since we neglect backreaction for

this simulation, we can rescale the results to any physical asymptotic density we

choose.

We find that the scalar field rapidly accretes from its asymptotic value into a

cloud around the two black holes and forms a persistent spiral profile within a few

orbits that co-rotates with the binary, see Fig. 5.1. The scalar field (top panel)

is pushed towards large amplitudes, such that the energy density (bottom panel)

around and between the black holes increases by several orders of magnitude.
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Figure 5.2: Normalised density and scalar field profiles along half of the
fixed orbit binary axis. The black dot illustrates the location of one of the
black holes. We see that after a relatively short amount of time (approximately
two orbits) the field has gone from a homogeneous profile to a quasi stationary
profile peaked around and between the BHs (the zero values within the horizon
are due to the choice of gauge and excision conditions for the evolution). This
results in a region of enhanced density in the potential well between the binary
BHs.

Once the profile forms it grows over time homogeneously, fed by the asymptotic

reservoir of dark matter imposed at the boundaries.

This quasi-stationary profile can be studied in more detail in Fig. 5.2, where

we plot the evolution of the density and scalar field profiles along the axis of the

binary, normalised relative to their central values. Even within the first two orbits,

both quantities have already settled into the persistent profile that grows steadily

in amplitude over time. We observe density spikes around each of the black holes,

an accumulation of scalar matter in the potential well between the black holes,

and smaller amplitude density peaks further away on length-scales that depend

on the binary separation and scalar wavelength. The scalar cloud is significantly

enhanced compared to a superposition of two of the scalar field profiles found

around isolated black holes (like those studied in [1, 18, 197, 198, 200, 291]), due

to the non-linear effect of the combined gravitational potential.

We note that this persistent profile contrasts with higher mass particle-like dark

matter, where dark matter density spikes have been shown to disperse under the
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influence of the binary motion [274, 301, 302]. The enhanced density is important

both for its effect on the gravitational wave signal and also for potential direct

detection for models with standard model couplings [229].

Even with this simple fixed orbit model, the finite size of the numerical domain

prevents us from evolving the system for many orbits. However, the persistent

and consistently growing scalar field profile shown here allows us to predict the

qualitative behaviour of the cloud at late times – it seems that a common spiral

shaped cloud would continue to grow until the dark matter reservoir is eventually

exhausted, at which point the binary would be left with an isolated spiral shaped

cloud that would gradually decay away through a combination of falling into the

black hole and radiating to infinity. Assuming that the reservoir is not exhausted

before merger, the cloud should continue to grow and not disperse.4

5.3 GR evolution with G = 0: the impact of the

binary on the matter evolution

We now study the evolution of the wave dark matter on a fully general relativistic

binary merger, with the Klein-Gordon equation evolved on a dynamical spacetime

described by the Einstein’s field equations

Rµν −
1

2
gµνR = 8πGTµν , (5.9)

where Rµν is the Ricci tensor, and Tµν is the energy momentum tensor of the

scalar field. To first isolate the impact of the binary on the matter evolution, we

turn off the backreaction by setting Newton’s constant G = 0 in Eqn. (5.9). This

ensures that different cloud configurations evolve in the same BBH background,

described by the black holes’ vacuum trajectories.

The BH initial conditions are Bowen-York data [12, 167, 189–191, 202–204, 358]

for the parameters in table D.1 and we solve the Hamiltonian constraint for the

correction to the conformal factor arising from the non-zero boosts.

The main goal is to compare the evolution of several initial scalar field con-

figurations. First, we observe that the profile found in our toy model with fixed

orbits is close to the stationary profile for the fully GR binary solution, as we

see very little transient evolution when we impose it on the binary and begin the

4Analytical and numerical studies have suggested that, for the typical scalar field masses used
here and reasonable assumptions, clouds can survive for cosmological times [144, 145].
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Figure 5.3: Comparison of the initial data profiles. From left: FO, H, FOI
and G. The top row shows the real part of the scalar field, while the bottom shows
the energy density on a log scale. Details on the scaling of these profiles is given
in the main text and in Fig. 5.4.

evolution. This can be contrasted with other possible choices for the initial scalar

field profile, such as a Gaussian, where we find significant initial transients before

the preferred profile is reached.

The scalar profiles we examine can be classified into two types: extended and

isolated clouds. In the former class, the energy density of the cloud reaches the

boundary of our simulated domain, allowing for continued accretion from spatial

infinity. (This is imposed using extrapolating boundary conditions as described in

[183].) Within this class we study:

• Fixed Orbit (FO):

We take as initial data the resulting quasi-stationary scalar field profile after

evolving the binary in the homogeneous dark matter halo for 6 orbits φFO,

see Fig. 5.1. This can be considered the “most correct” initial condition for

a scalar field that is still accreting up to the merger.

• Homogeneous (H):

We take the same homogeneous initial profile described in the previous sec-
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tion by setting φ(t = 0) = φ0 and Π(t = 0) = −iµφ0. In this profile we still

need to grow the quasi-stationary profile, so expect some transient evolution.

In the second class of initial conditions, the scalar cloud has a sufficiently

large radius to cover the BBH, but the energy density goes to zero at the bound-

aries, reproducing an isolated cloud which has exhausted its dark matter reservoir.

(For these cases we use Sommerfeld radiative boundary conditions as described in

[183].) Here we study two cases:

• Fixed Orbit Isolated (FOI):

We apply a f(r) ∼ tanh[r − 60M ] envelope to the FO scalar field profile,

so that φFOI(t = 0) = f(r)φFO(t = 0) and the configuration reproduces an

isolated cloud which has exhausted its dark matter reservoir. Again this

is a “correct” profile around the black holes, but the cut off we introduce

is rather arbitrary, and therefore introduces some transient evolution in the

overall shape of the cloud as it settles into a quasi-stationary, isolated profile.

• Gaussian (G):

We choose a Gaussian profile for φ(t = 0) = φ0 exp[−r2/σ2] and Π(t =

0) = −iµφ(t = 0), where r is the distance to the centre of the binary.

We use σ = 1/0.03M and choose φ0 so that the total mass of the initial

scalar cloud is the same as the isolated fixed orbit cloud described above.

We expect transient evolution in this case before we arrive at the quasi-

stationary profile.

We plot 2D slices of the initial density configurations perpendicular to the binary

orbital axis in Fig. 5.3.

To quantify the differences we extract the value of the scalar field profile along

the line joining the BHs, see the top panel of Fig. 5.4. In the bottom panel of

Fig. 5.4 we track the value of the scalar field at the centre of the binary, which

provides a reasonable indication of the amount of transient evolution. We see

as expected that the scalar field needs some time to settle down to the quasi-

stationary configuration, with the most transient evolution in the case G and the

least in FO. 5 However, even when starting from very different profiles the scalar

5Note that the scalar field in the FO and FOI initial data goes to zero inside the horizon.
However when we evolve it in the full GR evolution in the moving puncture gauge [201, 359] it
quickly relaxes to give a continuous non-zero density spike. This difference is mainly due to the
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Figure 5.4: Evolution of the scalar field |φ| profile for different initial data.
We plot |φ| along the axis of the binary for the different initial data profiles. The
amplitudes of the fixed orbit isolated (FOI) and Gaussian profiles are normalised
so that the integrated mass of the whole cloud is the same. The amplitude of
the homogeneous profile is chosen to match the initial asymptotic value of the
fixed orbit profile and is set to unity in these plots. The black dot illustrates the
location of one of the black holes. The bottom panel plots the evolution of the
scalar field amplitude at the centre of the binary with time. Markers illustrate the
time of the upper panels. A movie showing the evolution of these profiles can be
found in https://youtu.be/wGUUUutuiyU.

field evolves into the same kind of spiral shaped, quasi-stationary, configuration as

described in section 5.2 within a few orbits. The final state post merger is a single

density spike with power law tails, of the kind studied in [1, 18, 197, 198, 200, 291,

295], with solutions that can be approximated by confluent Heun functions [199].

The main difference between the extended (FO, H) and isolated (FOI, G)

clouds is that the former can continue to accrete from infinity, so we see the central

amplitude continuing to grow throughout the merger, increasing the density and

size of the final scalar cloud. The homogeneous data accretes rapidly at the centre,

and in only a few orbits reaches the fixed orbit quasi-stationary configuration. The

different choice of lapse between the fixed orbit metric and the moving punctures gauge used
for the full relativistic evolution. One should thus consider the change in the sub-horizon initial
scalar field profile to be an artefact of the change in gauge choice.

https://youtu.be/wGUUUutuiyU
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difference in amplitude between the final cloud from the homogeneous data and

FO data is expected given that the fixed orbit data has effectively been accreting

for an extra six orbital periods during our fixed-orbit simulation.

For the isolated configurations (FOI and G), the cloud does not continue to

grow as there is no reservoir of DM at the boundary. In the case of FOI, because

there is no asymptotic density to confine it, the cloud settles into a more dis-

tributed (but qualitatively similar) shape – this is a consequence of imposing an

arbitrary cut off in the density at finite radius. The Gaussian case, on the other

hand, shows strong transient behaviour with several large oscillations around the

quasi-stationary profile, on a timescale roughly corresponding to the period of the

binary. After ∼ 2-3 orbits the same configuration is reached – the fact that the

final shapes and amplitudes match is a result of starting with the same cloud mass,

and implies that the two cases have radiated equal amounts, and been accreted

equally by the BHs, during their transient evolution.

These results demonstrate that within only a few orbits the transients in the

cloud will die away and a quasi-stationary configuration will be reached, there-

fore for long simulations it may be sufficient to use the simpler homogeneous or

Gaussian initial data. However, the initial profile can make a significant difference

to the transient evolution of the scalar cloud during this time, and therefore may

have an impact for shorter simulations. We have not yet considered the backreac-

tion of matter onto the metric, but where this is included it is possible that these

transient effects could impact on the black hole trajectories, as well as creating

additional radiation of gravitational waves. We will discuss this further in the

following section.

5.4 GR evolution with G = 1: the impact of the

matter on the binary evolution

The ultimate goal of NR simulations with environments is to quantify the impact

of the matter on the binary evolution, and resulting gravitational wave emission,

so as to learn about the properties of the DM. To do so we must include the back-

reaction of the evolving matter on the metric background. We therefore restore

G = 1 and solve the Hamiltonian and momentum constraints using the novel

CTTK method [188]. In particular, we use the hybrid CTTK approach, where

we choose a spatially varying mean curvature that depends on the energy density
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distribution K2 = 24πGρ, where ρ is the ADM energy density, and solve the con-

straints obtaining corrections for both the conformal factor and traceless conformal

extrinsic curvature, on top of an initial Bowen-York solution for a boosted black

hole binary in vacuum. This means the matter environment introduces corrections

to the effective initial momenta and bare masses of the black holes.

Now that the amplitude of our field has a physical meaning (it is related to

the matter density roughly as ρ ∼ φ2
0), we quantify this by specifying the relative

cloud mass to (vacuum ADM) binary mass ratio.

We superpose our profiles onto the vacuum BH parameters for the masses and

momenta, and evolve the metric plus matter to merger, which we find happens

faster in the presence of the DM clouds. Some dephasing6 of the signal compared

to the vacuum evolution is expected due to the effects of dynamical friction, radia-

tion of the scalar cloud, and backreaction onto the metric, but the impact we see is

unexpectedly large. Examining the black hole trajectories in Fig. 5.5 reveals that,

even for light clouds where Mcloud/M ≈ 0.01%, the black holes are pushed into

eccentric orbits, giving rise to large deviations from the circular trajectories that

we would expect at this late stage of the inspiral and a prompt merger. We find

that this effect is proportional to the energy density near the black holes, being the

largest for both the extended and isolated fixed orbit profiles (FO and FOI) due

to the presence of density spikes near the horizons. For the more artificial initial

conditions H and G where the initial energy density near the black holes is smaller,

the effect is smaller but still non-negligible. The use of the CTTK method (see

section 2.7 and [188] for details) means that in general we obtain larger corrections

to the effective initial black hole momenta, and smaller corrections to the effective

bare masses, compared to the CTT method.7 Nonetheless the unwanted eccentric-

ity is an unavoidable consequence of the non-trivial matter environment, and is

particularly significant where there are high energy and momentum flux densities

near the black hole horizons, as in our preferred quasi-stationary solution.

Because the deviations are significant, we cannot simply extract waveforms

and compare them to the vacuum case to determine how the presence of a scalar

cloud impacts the gravitational wave signal, as we would not be able to conclude

6A difference in the rate of phase evolution resulting in a phase difference that accumulates
over time.

7This is because unlike CTT the CTTK method uses a non-constant K to cancel terms in
the Hamiltonian constraint, reducing the need to tune the bare masses to satisfy it, at the cost
of adding ∂jK terms to the momentum constraint requiring larger corrections to the initial
puncture momenta.
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Figure 5.5: Orbital trajectory of one of the black holes in simulations of a
vacuum binary (black line), and in binaries with total cloud mass of Mcloud/M =
10−3. Different colored lines depict the effect of the different scalar field profiles
with the same black hole parameters.

that such signatures are caused by the presence of the scalar field rather than by

the induced (physical but unwanted) eccentricity. Even if one tunes the initial

momenta and masses of the black hole punctures so that their initial coordinate

velocities and accelerations match the vacuum case, this is not sufficient to remove

the effect. Further work is required to remove this effect. One should follow a sim-

ilar method to those used to obtain low-eccentricity initial data for binary black

holes in vacuum spacetimes [360–363]. In these methods, one measures the trajec-

tory and eccentricity over 2-3 full orbits for an initial choice of input parameters,

then uses a high order post-Newtonian [364] approximation or gradient descent to

estimate the correction to these input parameters (typically the initial momenta

and masses of the black hole punctures) needed to reduce the eccentricity. One

then iterates this procedure until the desired eccentricity is achieved. Our case

is more complicated because the black holes are perturbed by the backreaction

from the matter distribution, which we solve for numerically. However, one could

in principle obtain a similar scheme by incorporating the effect of a matter cloud

into a new post-Newtonian binary model, something which is beyond the scope of

this work.8

8Post-Newtonian dynamics have been explored for binaries in scalar-tensor theories [365–370]
but not, as far as we are aware, for minimally coupled massive scalar field environments.
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5.5 Summary and discussion

One of the key challenges in constructing reliable gravitational wave templates for

BH binary mergers with environments is establishing the correct initial data for

Numerical Relativity simulations, which begin only a relatively short time before

the merger.

Here we conducted numerical simulations of the accretion of wave dark matter

around binary black holes in fixed orbits, choosing a scalar mass that gives a large

interaction with the BH binary (i.e. the regime where the wavelength of the field

is similar to the Schwarzschild radii of the BHs). We found that the scalar field

quickly converges to a persistent non-trivial profile, peaked around each black hole,

which grows in amplitude as the accretion continues.

We then explored how different choices of initial data affected the evolution of

the DM cloud during the binary merger. Our results suggest that the profile found

in the fixed orbit simulations is an attractor solution, as other choices of initial data

converged to the same distribution over the course of several orbits. This means

that for long numerical simulations the precise choice of initial scalar profile may be

unimportant, as the field will quickly converge to the quasi-stationary distribution.

However for numerical simulations which only consist of a small number of orbits,

the transients and the resulting loss of control over the initial data from using

a non stationary profile may affect the final results. We also saw that allowing

continued accretion from a scalar dark matter reservoir over the course of the

merger results in a larger scalar cloud around the final black hole, confirming the

importance of the local DM environment for the system’s evolution.

Lastly, we obtained constraint satisfying initial data for the scalar profiles

obtained from our fixed orbit simulations. To the best of our knowledge, this

is the first time that environments with non-zero angular momentum have been

studied in the initial conditions for DM environments around binaries. We found

that naively using the parameters for a quasi-circular binary merger in vacuum will

not usually produce low eccentricity orbits once matter is added, and because of

this one cannot simply compare the resulting waveforms to establish the signatures

of dark matter environments. For example, one may find that the merger happens

sooner merely because of the increased eccentricity, and not due to effects like

dynamical friction and gravitational radiation.

We conclude that a more comprehensive approach is needed to find initial data

that both satisfies the Einstein constraints and produces realistic low-eccentricity
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inspirals, similar to that developed for vacuum binaries [191, 358, 360–362]. This

should ideally incorporate the quasi-stationary profile as part of the process of

solving for the initial data, as is done in neutron star simulations [371–373], or

match to a post-Newtonian model [364–369] for the matter and black holes in the

late inspiral regime.

Only once the problem of initial conditions is under control can the degenera-

cies between the effects of a non-trivial dark matter environment and changes in

other parameters of the binary be quantified, so that we can examine how to disen-

tangle the two. We may then also extend the parameter space to include unequal

mass and spinning black hole binaries, where kicks may occur [155], as well as

exploring a wider range of scalar field masses, and the impact of self-interactions.

The study of unequal mass ratios may also give us more insight into the effect of

the scalar mass, as the two black holes would share a common environment but

have different MBHµ.



Chapter 6

Fifth forces and frame invariance

Since Einstein formulated his theory of General Relativity over a century ago

[374] there has been much theoretical interest in the possibility that it is merely

an approximation to a more general theory of gravity, a possibility we highlighted

in part I. One of the most popular classes of theories of modified gravity are the

so-called “scalar-tensor” theories [375], where the Einstein-Hilbert action

S =

∫
d4x
√−g

[
M2

Pl

2
R + Lm

]
, (6.1)

is modified by the addition of one or more scalar fields. Here Lm is the matter

part of the Lagrangian1 and the reduced Planck mass is MPl =
√
cℏ/(8πG) =√

1/(8πG) in units where c = ℏ = 1. Instead of a fixed MPl (or alternatively a

fixed Newton’s constant G) we introduce a non-trivial coupling to R, giving an

action of the form

S =

∫
d4x
√−g

[
F (φ)R− 1

2
∂µφ · ∂µφ−W (φ) + Lm

]
, (6.2)

where the effective reduced Planck mass is now a function of the scalar field(s) φ =

{ϕi}. The first and arguably simplest theory of this type is that of Brans-Dicke

from 1961 [102] where F (ϕ) = − α
12
ϕ2, W = 0 for a single scalar field ϕ and constant

α. A modern formulation which encompasses all possible scalar-tensor theories

with second-order equations of motion was first given by Horndeski [90, 375], and

subsequently extended to Beyond Horndeski and then Degenerate Higher-Order

Scalar-Tensor (DHOST) theories [97] which have higher-order equations of motion

but maintain the same number of scalar degrees of freedom.

1In this chapter Lagrangian densities are denoted with curly L, while upright L is used for
the part excluding the

√−g metric factor.
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As mentioned in section 1.3.1, scalar-tensor theories can be expressed in differ-

ent “frames” via Weyl transformations. Equation (6.2) describes a “Jordan” frame

if F (φ) depends on φ, however with gµν → Ω2(φ)g̃µν we can obtain a new ac-

tion in the Einstein frame S =
∫
d4x
√−g̃

[
M2

Pl

2
R̃ + · · ·+ Lm(Ω(φ), g̃µν ,matter)

]
,

where the gravity sector is now as in GR, but the matter sector picks up additional

couplings to φ.

Despite the theoretical attractions (Paul Dirac argued for a dynamical G on

the basis of his large number hypothesis) generic scalar-tensor theories are severely

constrained by solar system and lab observations. This is because the introduction

of an additional field with a non-trivial coupling to gravity or matter can in general

mediate long-range “fifth forces” [102–104]. The exchange of a new particle of mass

ms coupling to matter gives a Yukawa [105] potential

Vfifth(r) = −α
GM1M2

r
e−msr, (6.3)

for coupling α and massesM1,M2. For small enough ms (ms = 0 for Brans-Dicke)

this can be probed via a range of experimental and observational tests which put

extremely tight bounds on α [376–378] (see appendix E). In other words, if a

theory predicts a significant long-range fifth force, like standard Brans-Dicke, it is

probably ruled out.

Various screening mechanisms have been proposed to evade these constraints,

whereby the fifth force is suppressed in the vicinity of matter [379]. These include

chameleon mechanisms [107] where, for a suitable choice of Ω(φ) and Einstein

frame potential, the effective mass of the scalar changes depending on the local

matter density, so near large masses the fifth force becomes short range. There

is also the Vainshtein mechanism and its variations [114, 380], where additional

non-linear terms in the action result in a suppression of the scalar field within

some radius around a matter source.

One particularly interesting type of scalar-tensor theory is one that is scale-

invariant (including “Higgs-dilaton” theories where one of the scalar fields is a

non-minimally coupled SM Higgs boson) [381–402], where the action, including

the matter sector, has a global Weyl symmetry [403] such that there is no a-priori

lengthscale. Instead the symmetry is broken dynamically as the scalar field(s) tend

towards fixed equilibrium values under the influence of an expanding cosmology.

This has been proposed as one element of a solution to the so-called hierarchy

problem [386, 400, 404], and the phenomenological implications of such a theory
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have also generated substantial interest [405–412]. There is a massless Goldstone

boson associated with the spontaneously broken symmetry, termed the “dilaton”,

σ, and as such we might be worried about fifth-force constraints. However, it

has been shown that in the Einstein frame (Garcia-Bellido et al. (2011) [388])

the dilaton only couples via terms which do not produce a long-range 1/r fifth

force potential, avoiding the need for screening mechanisms. Ferreira, Hill & Ross

(2016) [413] go further and show that, in a particular choice of Jordan frame, the

dilaton completely decouples from the matter sector, and therefore contributes no

fifth force at all.

This leads to the question: how can we relate these results in different choices of

frame? Are there frames in which we can recover a long-range fifth force? Indeed,

to what extent are generic scalar-tensor theories of this type really physically

equivalent in different frames? While on a classical level one should not expect a

redefinition of variables to change the physics or physical results, once you include

quantum corrections this becomes no longer obvious (this is sometimes called

the “cosmological frame problem” [414]). Copeland et al. [415] and Burrage et

al. [416] explicitly calculated the fifth forces for a three-scalar-field toy model,

which becomes a Higgs-dilaton theory for a certain choice of parameters, in first

the Einstein frame [415] and a Jordan frame [416], and showed that at lowest

perturbative order the results are the same. There has also been extensive work

examining the general question of frame (in)equivalence from numerous points of

view, mostly focused on cosmological applications [417–439].

In particular, Falls & Herrero-Valea [439–441] and Finn et al. [442, 443] devel-

oped a formalism to characterise exactly how the quantum effective action must

transform non-trivially between frames. Finn et al. [442, 443] adopts the covariant

approach [444–446], pioneered by Vilkovisky and DeWitt [447–449], whereby frame

transformations are described in terms of a coordinate changes on a field-space

manifold, and constructs a fully covariant quantum effective action, extending the

Vilkovisky-DeWitt unique effective action to theories with fermion fields.

Here we show how this formalism, and the covariant geometric approach, can

be applied to the problem of computing fifth forces, and to scale-invariant scalar-

tensor theories in particular. We extend the geometric approach to show how

choices of frame can be characterised in a geometric manner: as choices of sub-

manifold in a higher dimensional general field space. Frame invariance becomes
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manifest, and we see how the choice of frame is better thought of not as a di-

chotomy between “Jordan” and “Einstein”, but as a continuum one can smoothly

traverse. We also see how scale-invariant scalar-tensor gravity evades fifth force

constraints in all possible frames.

The structure of this chapter is as follows: section 6.1 lays out the background

theory; section 6.2 describes the new geometric approach to frame fixing, and

in section 6.3 we apply it to calculations of fifth forces. We focus on the scale-

invariant theory in section 6.4, and briefly discuss one-loop corrections from the

choice of physical spacetime in section 6.5. Finally we conclude with a discussion

of our results and future directions.

6.1 Background

6.1.1 The dilaton and scale-invariant gravity

Under the Weyl transformation gµν = Ω2g̃µν the Jordan frame action (6.2) for

some integer number of scalar fields φ = {ϕi} becomes

S =

∫
d4x
√
−g̃
[
F (φ)Ω2

(
R̃− 6(∇̃ lnΩ)2 − 6□̃ lnΩ

)
− Ω21

2

∑
i

∂µϕi∂
µϕi − Ω4W (φ) + Ω4Lm

]
,

(6.4)

where (∇̃v)2 := (∇̃µv)(∇̃µv). Let

Ω = exp(σ), F̃ (σ, φ̃) = Ω2F (φ), ϕ̃i = Ωϕi,

K̃ =
1

2

∑
i

ϕ̃2 + 6F̃ , W̃ (σ, φ̃) = Ω4W (φ), L̃m = Ω4Lm, (6.5)

Then we obtain

S =

∫
d4x
√
−g̃
[
F̃ (σ, φ̃)

(
R̃− 6(∇̃σ)2 − 6□̃σ

)
− 1

2

∑
i

ϕ̃2
i (∇̃σ)2 + (∇̃µσ)

∑
i

ϕ̃i∇̃µϕ̃i

− 1

2

∑
i

∂µϕ̃i∂
µϕ̃i − W̃ (σ, φ̃) + L̃m

]
.

(6.6)

Integrating by parts gives

S =

∫
d4x
√
−g̃
[
F̃ (σ, φ̃)R̃− K̃(σ, φ̃)(∇̃σ)2

+ ∇̃µσ∇̃µK̃(σ, φ̃)− 1

2

∑
i

∂µϕ̃i∂
µϕ̃i − W̃ (σ, φ̃) + L̃m

]
.

(6.7)
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The Euler-Lagrange equation for the dilaton σ gives

□̃K̃ − 2(K̃ − ∂σK̃)□̃σ − 2∇̃µ(K̃ − ∂σK̃)∇̃µσ =

= −∂σW̃ − R̃∂σF̃ ,
(6.8)

where ∂σ := ∂
∂σ
. We can see from the transformation rules (6.5) that if we choose

F (φ) to be quadratic in ϕi, the potential W (φ) to be quartic in ϕi, and the

Lm to also rescale appropriately2, then the action becomes scale-invariant and

∂σF̃ = ∂σW̃ = 0. The dilaton is then massless, and appears in the action only via

its derivatives.

S =

∫
d4x
√
−g̃
[
F̃ (φ̃)R̃− K̃(φ̃)(∇̃σ)2

+ ∇̃µσ∇̃µK̃(φ̃)− 1

2

∑
i

∂µϕ̃i∂
µϕ̃i − W̃ (φ̃) + L̃m

]
.

(6.9)

If we then choose Ω such that K̃ = const. we obtain the particular Jordan frame

described in [413] and we see that the dilaton completely decouples from the other

scalar fields and the other matter terms in L̃m. The equation of motion for the

dilaton reduces to a simple wave equation □̃σ = 0 satisfied by a homogeneous

solution σ = 0. As a result there are no fifth forces from the dilaton.3 Although

scale invariance requires that there cannot be a cosmological constant in the action,

it can be shown that under the influence of an expanding universe the background

values of the ϕi tend to constants [383, 413], producing an effective reduced Planck

mass

√〈
2F̃
〉
, and an effective cosmological constant

〈
W̃/(2F̃ )

〉
, where ⟨. . . ⟩

denotes setting the fields to their background value.

6.1.2 The covariant formalism

To convert our classical scalar-tensor theory to the language of Quantum Field

Theory (QFT) and the path integral formulism we start by defining the partition

functional

Z[J ] =

∫
[DNΦ]e−S[φ]−JaΦa

, (6.10)

where [DNΦ] is an appropriate measure over the function space for fieldsΦ = {Φi},
and Ja is a source term. We use i, j . . . indices to denote field species and a, b . . .

2Here we consider L̃m that are fully independent of σ; the most general scale-invariant theory
may include derivative couplings to ∂µσ from higher dimension operators [413].

3There is still a coupling between gravity and the dilaton via its contribution to the stress
energy tensor Tµν , and thus sourcing curvature according to standard General Relativity, however
this contribution also vanishes for σ = 0.
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to denote DeWitt indices spanning both field species and position or momentum

[440].

A frame transformation is a field reparameterisation Φi → Φ̃i(Φ). In the co-

variant formalism we describe this as a transformation of coordinates on a “config-

uration space” or “field space” manifold [443]. This has an associated line element

ds2 = CabdΦ
adΦb where a, b. We would like our path integral, action and measure

to be frame/reparameterisation invariant, which leads us to define

[DNΦ] = V −1
gauge

√
det(Cab)Πa

dΦa

√
2π
, (6.11)

where Vgauge =
∫
Πa

dξa√
2π

√
det(σab(Φ)) accounts for the volume of the gauge group

(see [440]), where dξa are the generators of the Lie algebra and σab is another

metric. For the moment we assume all the fields are bosonic, however this formal-

ism has also been extended to include fermionic fields [443] as we discuss later.

To ensure diffeomorphism invariance of the free action, the preferred field space

metric for four dimensions is [442, 443]

Cab =
ḡµν
4

δ2S

δ(∂µΦa)δ(∂µΦb)
= Cij δ̄

(4)(xa − xb), (6.12)

where the delta function enforces locality. We assume σab = σµν δ̄
(4)(xa − xb) is

also ultra-local [440]. The ḡµν is the physical, or preferred, spacetime metric which

satisfies dimensionless line element ds̄2 = ḡµνdx
µdxν . Defining ḡµν is important to

overcome the ambiguity between the physical space time metric and the gravity

quantum field gµν [440, 442, 443]. The two are related by

ḡµν = l−2(Φ)gµν , (6.13)

= e−2σphysgµν , (6.14)

= e2(σ−σphys)g̃µν , (6.15)

where l(Φ) is an effective Planck length [443], and the functional derivatives are de-

fined using the barred metric, and δ̄(4)(x) is defined such that
∫
d4x
√
ḡδ̄(4)(x) = 1.

For an action with kinetic term

S =

∫
d4x

[
−Nij g̃

µν∂µΦ
i∂νΦ

j + . . .
]
, (6.16)

(summation implied) the associated field space metric is

Cij = e2(σ−σphys)Nij. (6.17)
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In theories without gravity we can take σphys = σ and canonically normalise the

kinetic term so that Nij = const., allowing us to neglect the field space metric

entirely as it only contributes a overall constant to the path integral. However, in

theories with gravity the choice of σphys is important, and Cij can have non-trivial

dependence on the fields Φi. In order to obtain perturbative scattering amplitudes

we expand about a flat Minkowski background gµν ≈ ηµν + hµν . With a trivial

field space metric we can use the background field approach to obtain Feynman

rules with vertex coefficients and propagators given by

λab...c =i
〈
∂(a∂b . . . ∂c)S

〉
, (6.18)

∆ab =i ⟨∂a∂bS⟩−1 , (6.19)

where a, b... are once again DeWitt indices in either position or momentum space,

the factors of i come from the Wick rotation and ⟨. . . ⟩ denotes (. . . )|Φ=Φ0 setting

the fields to their background or equilibrium values Φ0. The (a, b...c) denotes

symmeterisation over the indices. To incorporate the field space determinant we

can take either of two approaches. The first is to work out the contribution of the

field space metric to the effective Lagrangian via√
det(Cab) = exp

{
1

2
Tr (ln (Cab))

}
, (6.20)

= exp

{
1

2
δ̄(4)(0)

∫
d4x
√
ḡ Tr (ln (Cij(x)))

}
, (6.21)

then expand in powers of the coupling constants [441], with suitable regularisation

for the delta function divergence [450]. Alternatively one can modify the Feynman

rules by promoting partial derivatives to covarient field space derivatives [442, 443]

λab...c →i
〈
∇(a∇b . . .∇c)S

〉
, (6.22)

∆ab →i ⟨∇a∇bS⟩−1 . (6.23)

As S is a field space scalar, the n-vertex λab...c is a
(
0
n

)
rank field space tensor,

and the propagator ∆ab is
(
2
0

)
tensor. For Feynman diagrams with external legs

we also need to define the external factor

Xa =

〈
∂Φa

∂χ

〉
, (6.24)

where χ is the physical external field connected to that leg, a field space scalar.

This makes Xa a field space vector. The contribution to a matrix element for
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a particular diagram shape will involve putting combinations of these together,

and summing over the field indices. As these are all tensors the resulting object

will be a field space scalar, and hence frame invariant. In subsequent sections we

will demonstrate how this works for computations of fifth forces, and extend the

no-fifth-force result for the scale-invariant theory to all frames.

6.2 Selecting a frame: a geometric approach

We can make an observation from section 6.1.1: choosing a frame for a theory

with N fields {ϕi, gµν} is equivalent to taking the N +1 field action then imposing

a constraint q(φ̃) = q(σ, ϕ̃i) = 0 on the dilaton and rescaled fields. In terms of

the covariant formalism, this means we can consider the field space of the theory

in a particular frame as a N dimensional submanifold of the appropriate generic

N + 1 dimensional manifold, the field space of a more general theory.4

Adapting the technique usually applied for gauge fixing, in terms of the path

integral we can impose this constraint using delta functions

Z[0] =

∫
DNΦ

√
det(Cab)e

−S[φ], (6.25)

=

∫
DN+1Φ̃

√
det(Gab)

∏
x

[|∂iq(φ̃)|xδ(q(φ̃(x)))] e−S[φ̃],

where Gab = Gij δ̄
(4)(xi − xj) is the metric on the N + 1 field space, |∂iq(φ̃)|x

denotes the magnitude of the field space gradient of q at spacetime location x,

we count the dilaton σ as an additional Φ̃ field and we omit the Vgauge factor for

clarity. We may express

GijdΦ̃
idΦ̃j = α2dq2 + 2βidqdΦ

i + CijdΦ
idΦj. (6.26)

where α = |∂iq|−1. For βi = 0 (we are free to choose this), we have

GijdΦ̃
idΦ̃j =

[
α2∂Φ̃iq∂Φ̃jq + C̃ij

]
dΦ̃idΦ̃j. (6.27)

where C̃ij = Ckl
∂Φk

∂Φ̃i

∂Φl

∂Φ̃j . Then det(Gab) = det(C̃ab)
∏

x[α(x)
2], so

Z[0] =

∫
DN+1Φ̃

√
det(C̃ab)

∏
x

[δ(q(φ̃(x)))] e−S[φ̃]. (6.28)

4Strictly speaking the field space manifolds are infinite dimensional, as they have N or N +1
degrees of freedom at each spatial point. However, for clarity we shall just refer to them as “N”
or “N + 1 dimensional”, counting the number of field species.
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We may note that C̃ab is then the metric one would derive from simply considering

the Lagrangian expressed in terms of the N+1 Φ̃i fields. We can express the delta

functions via the limit

Z[0] = lim
ξ→0

∫
DN+1Φ̃

√
det(C̃ab)

∏
x

[
1√
2πξ

e−
1
2ξ
q(φ̃(x))2

]
e−S[φ̃], (6.29)

= lim
ξ→0

[(
1√
2πξ

)V ∫
DN+1Φ̃

√
det(C̃ab) exp

{
−
∫

d4x
√
−g̃
(
L̃− 1

2ξ
q2
)}]

,

(6.30)

where V is an (infinite) measure of the spacetime volume. We then have propagator

∆ab = i ⟨∇a∇bS⟩−1 ,

= i lim
ξ→0

[〈
∇̃a∇̃b

∫
d4x
√
−g̃
(
L̃− 1

2ξ
q2
)〉]−1

.
(6.31)

The DeWitt indices are somewhat unwieldy, as they span an infinite number of

dimensions. As our theory is local, if DeWitt index a corresponds to position x

and field species i, then the derivative of the action with respect to a corresponds

to a derivative of the Lagrangian at x with respect to field i, ∇̃aS = ∇̃iL|x where

∇̃i is the covariant field derivative for metric C̃ij, allowing us to convert between

the two. Assuming a flat background spacetime this gives the finite dimensional

propagator

∆ij = lim
ξ→0

[
∆̃−1
ij −

1

iξ
qiqj

]−1

, (6.32)

where ∆̃ij is the unconstrained propagator in the N +1 field space and qi := ⟨∂iq⟩
the normal covector to the submanifold at Φ̃ = Φ̃0. Now consider rotating rotating

coordinates in field space such that the direction qi lies along one axis, call it axis

n. Then

∆−1
ij =∆̃−1

ij − |q|2
i

ξ
δinδjn, (6.33)

=

[
∆̃−1
pq ∆̃−1

pn

∆̃−1
np ∆̃−1

nn + |q|2iξ−1,

]
. (6.34)

where p, q range across all indices other than n and |q| is the magnitude of qi. Let

ζ−1 = ∆̃−1
nn + |q|2iξ−1 (with no summation implied by repeated n). Then

∆ij =[
(∆̃−1

pq −ζ∆̃−1
nq ∆̃

−1
pn )−1 −ζ(∆̃−1

pq −ζ∆̃−1
nq ∆̃

−1
pn )−1∆̃−1

pn

−ζ∆̃−1
nq (∆̃

−1
pq −ζ∆̃−1

nq ∆̃
−1
pn )−1 ζ+ζ2∆̃−1

nq (∆̃
−1
pq −ζ∆̃−1

nq ∆̃
−1
pn )−1∆̃−1

pn

]ij
. (6.35)
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To lowest order in ζ this is

∆ij =

[
(∆̃−1

pq )
−1 −ζ(∆̃−1

pq )
−1∆̃−1

pn

−ζ∆̃−1
nq (∆̃

−1
pq )

−1 ζ

]ij
. (6.36)

where summation is implied over repeated indices p, q. We can then see that

taking ξ → 0 and therefore ζ → 0 gives

∆ij =

[
(∆̃−1

pq )
−1 0

0 0

]ij
. (6.37)

This means that taking the limit ξ → 0 effectively zeros out the contribution from

variations in the fields in the direction of qi, which makes sense as we can interpret

this as taking the mass of field qiϕ̃i to infinity. We can write this as

∆−1
ij =

(
δki − nkni

) (
δlj − nlnj

)
∆̃−1
kl = P k

i P
l
j∆̃

−1
kl , (6.38)

where P k
i is the projection operator onto the submanifold. This means that we

have

∆−1
ab = −iP c

aP
d
b ⟨∇̃c∇̃dS⟩ = −i⟨∇a∇bS⟩, (6.39)

where P b
a = P j

i δ̄
(4)(xa − xb) is the DeWitt-indexed projection operator, ∇̃a is the

covarient derivative on the N + 1 field manifold, and ∇a the covarient derivative

on the N field manifold, confirming that this new geometric approach is consistent

with the covariant formalism.

6.3 Computing fifth forces with the geometric

approach

Let us now see how this geometric approach affects the computation of fifth forces.

Our generic Lagrangian is of the form

L =
√−g

[
F (φ)R− 1

2
∂µϕi∂

µϕi −W (φ) + Lm + Lgauge

]
. (6.40)

with some integer number of scalar fields. We include a gauge fixing term of the

form
√−gLgauge =

1
2
σµνΞ

µΞν , which we choose to be the scalar-tensor gauge term

used by Copeland et al. [415]

Lgauge =
1

2
F (φ)gµν [Γ

µ −∇µ lnF ] [Γν −∇ν lnF ] , (6.41)
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where Γµ = gνρΓµνρ is the contraction of the spactime connection, σµν = F (φ)gµν

and Ξµ = Γµ −∇µ lnF . In place of V −1
gauge we have the appropriate Fadeev-Popov

determinant VFP = det (δΞµ/δξν) := det (Qµ
ν ) where ξ

µ are the degrees of gauge

freedom [440, 443]. This will in turn contribute a ghost term Lgh = −c̄µQµ
νc
ν [440],

but as this only contributes at loop order we shall neglect it here. For the matter

terms we include a single fermion field ψ, standing in for (eg.) the standard model

electron,

Lm = −ψ̄
[
i
←→
/∇ + y(φ)

]
ψ, (6.42)

where the Higgs-like term ψ̄y(φ)ψ gives the fermion a mass with y(φ) = yiϕi (with

implied summation). The operator
←→
/∇ is defined as

←→
/∇ = 1

2

(−→
/∇ −
←−
/∇
)

where

/∇ = Eaµγa∂µ is the covariant Dirac operator with Eaµ the vierbein such that

gµν = EµaEνbηab [413]. As we now have fermions in our theory, to account for the

fermion anticommuntation we need to promote the field space to a supermanifold

[448, 451], the field space metric to a supermatrix, and replace the det(Cab) in

the path integral with sdet(Cab), a superdeterminant. We also redefine λab...c =

i
〈
∇{a∇b . . .∇c}S

〉
, where {a, b, ...c} denotes supersymmeterisation, where we add

a factor of −1 every time we swap fermion indices. Apart from the need to keep

track of minus signs from fermion permutations this does not change the results

from the previous sections (more details of the supermanifold construction can be

found in [443]).

Let the total number of field species, including the scalar fields, fermions and

graviton, be N . Linearising around a background Minkowski metric gives

L =− F

2

1

2
Pαβ,τρ∂µhαβ∂

νhτρ +
1

2
(∂iF )η

αβ∂µϕi∂
µhαβ

− 1

2

(
δij −

∂iF∂jF

F

)
∂µϕi∂

µϕj

−W (φ)− ψ̄
[
i
←→
/∂ + y(φ)

]
ψ

+
1

2
hαβP

αβ,τρiψ̄γτ
←→
∂ ρψ +

1

2
hψ̄y(ϕ)ψ + . . .

(6.43)

where Pαβ,τρ := 1
2

[
ηατηβρ + ηαρηβτ − ηαβητρ

]
, h := hµµ, here i, j index scalar field

species and ∂i derivatives with respect to the scalar fields, and µ, ν, α, β, τ, ρ are
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all spacetime indices. Introducing the general Weyl transformation we obtain5

L̃ =− F̃

2

1

2
Pαβ,τρ∂µh̃αβ∂

µh̃τρ +
1

2
(∂iF̃ )η

αβ∂µϕ̃i∂
µh̃αβ

+
1

2
(∂σF̃ )η

αβ∂µσ∂
µh̃αβ −

1

2

(
δij −

∂iF̃ ∂jF̃

F̃

)
∂µϕ̃i∂

µϕ̃j

− W̃ (φ̃, σ) + ∂µσ

(
∂iK̃ −

∂σF̃ ∂iF̃

2F̃

)
∂µϕ̃i

−
(
K̃ − ∂σK̃ +

(∂σF̃ )
2

2F̃

)
∂µσ∂

µσ

− ψ̄′
[
i
←→
/∂ − yiϕ̃i

]
ψ′ +

1

2
h̃αβP

αβ,τρiψ̄′γτ
←→
∂ ρψ

′

+
1

2
h̃ψ̄′y(ϕ̃)ψ′ + . . .

(6.44)

with an additional field and degree of freedom, and where the fermion field is

rescaled as ψ′ = e3σ/2ψ. By adding σ we now have N + 1 field species in the

Lagrangian. The equilibrium or background field values define a point in the field

space. Expanding around these expected field values, and this point, we have

L̃ = −M
2
Pl

4

1

2
Pαβ,τρ∂µh̃αβ∂

µh̃τρ +
1

2
(∂iF̃ )∂µΦ̃

i∂µh̃αβ

− 1

2
Nij∂

µΦ̃i∂µΦ̃
j − 1

2
MijΦ̃

iΦ̃j

− ψ̄′
[
i
←→
/∂ −mΨ − yiΦ̃i

]
ψ′ +

1

2
h̃αβP

αβ,τρiψ̄′γτ
←→
∂ ρψ

′

+
1

2
h̃ψ̄′mψψ

′ + . . . ,

(6.45)

where we use Φ̃i to denote deviations from the background values in all the scalar

fields, including the dilaton σ and ϕ̃i. The mass term Mij = ∂i∂jW̃ . We may

further simplify this by including the graviton field(s) in {Φ̃i} as well, giving

L̃ = −1

2
Nij∂

µΦ̃i∂µΦ̃
j − 1

2
MijΦ̃

iΦ̃j

− ψ̄′
[
i
←→
/∂ −mΨ − ϕ̃iyi

]
ψ′ + . . . ,

(6.46)

where

yhαβ
=

1

2

[
iPαβ,τργτ

←→
∂ ρ + ηαβmψ

]
. (6.47)

5The ghost terms also rescale such that σµν → σ̃µν = F̃ (φ̃)g̃µν and Ξµ → Ξ̃µ = Γ̃µ−∇̃µ ln F̃

where Γ̃µ and ∇̃µ are constructed using g̃µν .



6.3. Computing fifth forces with the geometric approach 130

Figure 6.1: t-channel tree diagram for fermion-fermion scattering.

and we take the
←→
∂ ρ operator as only acting on the fermion fields. The lowest

order contribution to fermion-fermion scattering is from tree diagrams of the form

of Fig. 6.1. This contributes a matrix element of the form

iM =Xc(ψ̄, p⃗1, s1)λcdaX
d(ψ, q⃗1, r1)∆

ab . . .

. . . Xe(ψ̄, p⃗2, s2)λefbX
f (ψ, q⃗2, r2),

(6.48)

where here a, b, c, d, e, f are all DeWitt indices. If ⟨σ⟩ = 0, then

Xa(ψ̄, p⃗1, s1) = δaψ̄′(p⃗1,s1)
ū(p⃗1, s1), (6.49)

and

Xc(ψ̄, p⃗1, s1)λcdaX
d(ψ, q⃗1, r1) = . . .

. . . iū(p⃗1, s1)
〈
∂{ψ̄(p⃗1,s1)∂ψ(q⃗1,r1)}∇aS

〉
u(q⃗1, r1),

= iū(p⃗1, s1)
〈
∂{ψ̄(p⃗1,s1)∂ψ(q⃗1,r1)}∂aS

〉
u(q⃗1, r1) := λa.

(6.50)

Note that this is a field space co-vector. The matrix element is then

iM = λa∆
abλb (6.51)

The contribution to the effective potential from this matrix element is given by

Veff(r) = −
1

4πr

1

2m2
ψ

∑
j

resk=kj
(
keikrM(k)

)
, (6.52)

where k⃗ = p⃗1 − q⃗1 is the exchange momentum between the fermions, and kj are

the poles of the enclosed expression in the upper complex half plane. Veff includes

both the standard gravitational potential (from graviton exchange) and any fifth

force terms.
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To evaluate this in a particular frame we need to impose a constraint to go

from the N +1 fields to the physical N fields. The standard approach is to do this

at Lagrangian level. In the Einstein frame F̃ = const., so if we impose this the

explicit coupling between the graviton and the scalar fields dissapears, however

there can be a kinetic coupling between the scalar ϕ̃i fields and the dilaton due to

the (∂iK̃)∂µϕ̃i∂
µσ term. Conversely, if we choose the special Jordan frame where

K̃ = const. then we have a non-trivial kinetic coupling between the graviton and

the scalar fields due to 1
2
(∂iF̃ )η

αβ∂µϕ̃i∂
µh̃αβ + 1

2
(∂σF̃ )η

αβ∂µσ∂
µh̃αβ, but remove

the kinetic dilaton-ϕ̃i couplings. Hence we can think of the frame transformation

as a simple exchange between different bosonic degrees of freedom.

The disadvantage of this approach is that it requires you to redo the entire

calculation for each choice of frame, even at tree level, as you need to work out the

correct dynamical fields, potential, couplings, and propagator. In the geometric

approach from section 6.2 we start by calculating everything in the general N +1

space. Let λ̃i denote the couplings to the external fermion legs in this space for

field species i, then explicitly we have

λ̃ϕ̃i = iyiū(p⃗, s)u(q⃗, r), (6.53)

λ̃σ = 0, (6.54)

λ̃h̃αβ
=

i

4
ū(p⃗, s)

[
−Pαβ,τργτ (p+ q)ρ + 2mψη

αβ
]
u(q⃗, r). (6.55)

The boson propagator with DeWitt indices is given by

∆̃ab = i
〈
∇̃a∇̃bS

〉−1

= i [⟨∂a∂bS⟩+ ⟨Γcab⟩ ⟨∂cS⟩]−1 ,

= i ⟨∂a∂bS⟩−1 ,
(6.56)

as the equilibrium field values satisfy ∂aS = 0, which gives field index propagator

∆̃ij = i
[
−Nij(p− q)2 −Mij

]−1
= i [Nijt−Mij]

−1 . (6.57)

The Mandelstam variable t = −(q1 − p1)
2. Then to obtain the matrix element

in the frame defined by constraint q(Φ̃) = 0 we project the tensors onto the

submanifold, giving

iM = (λ̃jP
j
i ) lim

ξ→0

[
∆̃−1
ij +

i

ξ
qiqj

]−1

(P k
j λ̃k),

= (λ̃jP
j
i )
[
P l
i ∆̃

−1
lmP

m
j

]−1

(P k
j λ̃k),

= (λ̃jP
j
i )
[
P l
i (Nlmt−Mlm)P

m
j

]−1
(P k

j λ̃k).

(6.58)
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All that is needed to evaluate this in different frames is to change the choice of

normal vector qi. It may not seem immediately apparent that taking projections

of N + 1 space tensors on different submanifolds should necessarily produce the

desired invariant result. However, the important point is that only the N field

space is really “physical”. The N +1 field space is constructed in such a way as to

ensure that each submanifold is really just a representation of the N dimensional

field space in a different frame, i.e. different field “coordinates”. Hence provided

that the underlying objects are tensors, which they are, frame invariance is guar-

anteed. Also note that at tree level there are no effects from a non-trivial field

space metric C̃ab. These effects can only manifest at 1-loop order or higher.6

6.4 Scale-invariant theory

We can see how this works in the particular case of a scale-invariant theory. To

make it scale-invariant we make F (φ) quadratic in ϕi and W (φ) quartic in ϕi,

such that

F̃ (φ) :=− 1

12

∑
i

αiϕ̃
2
i , (6.59)

K̃(φ) =
1

2

∑
i

(1− αi)ϕ̃2
i , (6.60)

W̃ (φ) :=
∑
ij

Wijϕ̃
2
i ϕ̃

2
j . (6.61)

For non-trivial values of αi the Einstein frame, F̃ = const., and the particularly

interesting Jordan frame, K̃ = const., describe surfaces, typically ellipsoids, in the

N +1 dimensional field space. The associated constraints are q = F̃ −M2
Pl/2 and

q = K̃ −K0 for the Einstein and special Jordan frame respectively. We can also

recover the starting action with the constraint q = σ, which fixes the dilaton to

be zero. For an especially simple example consider a theory with two scalar fields,

ϕ1, ϕ2 and α1 = −1, α2 = 0, y1 = 0, y2 = 1/
√
6. In the generalised theory we have

three scalar fields plus the graviton ϕ̃i = {σ, ϕ̃1, ϕ̃2, h̃µν} and

⟨∂iF̃ ⟩ ∝ (0, 1, 0, 0), (6.62)

⟨∂iK̃⟩ ∝ (0, 2⟨ϕ̃1⟩, ⟨ϕ̃2⟩, 0), (6.63)

⟨∂iσ⟩ = (1, 0, 0, 0), (6.64)

6Something that should be expected as we know the classical theory must be frame invariant.
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as normal vectors to the submanifold for each of the three cases. The fermion

mass is mψ = ⟨ϕ̃2⟩/
√
6 and effective reduced Planck mass MPl = ⟨ϕ̃1⟩/

√
6, which

can be used to fix the equilibrium field values ⟨ϕ̃i⟩ in terms of the masses. The

requirement that ⟨∂iW̃ ⟩ = 0 in turn fixes Wij and the mass matrix Mij up to an

overall constant.7 Thinking about this theory in terms of the geometric picture

outlined in section 6.2, we can immediately see that there is no simple dichotomy

between the Einstein frame and the Jordan frame. Instead there is a continuum

of frames, characterised by different choices of constraint q and normal vectors

qi. Indeed, if we choose a normal vector qi = (sin θ, cos θ, 0, 0) as we rotate

in generalised field space from θ = 0 to θ = 1 we can smoothly transform from

a completely-Einstein frame to a completely-Jordan frame, encompassing every-

thing in between. Provided one adopts the fully covariant formalism described

above, one can be confident of obtaining the same physical results, including the

lack of fifth forces, for all frames.

6.5 The field space metric and higher-order cor-

rections

At one-loop order and higher we need to consider the effect of the non-trivial

field space metric. One can use the quantum effective action formalism to include

quantum corrections non-perturbatively, and much work has gone into develop-

ing a frame and/or gauge invariant effective action following the model of DeWitt

and Vilkovisky [447, 449, 452–459]. Here however we will examine how corrections

from the non-trivial metric arise perturbatively purely from the level of the Feyn-

man rules and the geometric approach. As described above, because our theory

now includes fermions we need to extend the formalism in section 6.1.2 following

the method in Finn et al. [443], promoting the metric to a supermatrix on a su-

permanifold. To obtain this metric for our theory we first express the Lagrangian

(6.44) as

L = −1
2
NAB(Φ̃)η

µν∂µΦ̃
A∂νΦ̃

B − H̃(Φ̃)µνiψ̄′γµ
←→
∂ νψ

′ + . . . , (6.65)

where Φ̃A includes all the bosonic fields, this time we have not expanded NAB

around the background field values, and H̃µν = (ηµν − 1
2
h̃αβP

αβ,µν + . . . ) to first

7Mij = g
[

m2
ψ mψMPl

mψMPl M2
Pl

]
for i, j covering {ϕ̃1, ϕ̃2}, for some dimensionless constant g.
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order in fields. Let H̃ := 1
4
H̃µ
µ =

(
1 + 1

8
h̃+ . . .

)
then we find

C̃ij = −

NAB − ∂AH̃∂BH̃

2H̃
ψ̄′ψ′ −1

2
∂BH̃ψ̄

′ 1
2
∂BH̃ψ

′

1
2
∂AH̃ψ̄

′ 0 H̃

−1
2
∂AH̃ψ

′ −H̃ 0

 , (6.66)

for fields {Φ̃A, ψ′, ψ̄′} and where we have suppressed the fermion spinor indices

throughout. The inverse metric is given by

C̃ij = −

 (N−1)AB − 1
2H̃

(N−1)AC∂CH̃ψ
′ − 1

2H̃
(N−1)AC∂CH̃ψ̄

′

1
2H̃
∂CH̃(N−1)CBψ′ 0 −H̃−1

1
2H̃
∂CH̃(N−1)CBψ̄ H̃−1 0

 .
(6.67)

The non-zero Christoffel symbols are then

ΓABC =
1

2
(N−1)AD (∂BNDC + ∂CNDB − ∂DNBC) , (6.68)

Γψ
′

BC =

[
∂BH̃∂CH̃

4H̃2
+
∂B∂CH̃ − 1

2
∂DH̃(N−1)DE(∂BNEC + ∂CNEB − ∂ENBC)

2H̃

]
ψ′,

(6.69)

Γψ
′

Bψ′ =
1

2H̃
∂BH̃, (6.70)

plus the appropriate conjugates. However, we need to include the correction from

the choice of physical spacetime metric as discussed in section 6.1.2 giving

C̃ij[correct] = e2(σ−σphys)C̃ij[from g̃ frame]. (6.71)

Let ∆σ := σ − σphys. If our physical or preferred frame (where g̃µν = ḡµν) is the

Einstein frame, then ∆σ = ln
(
2F̃ /M2

Pl

)
, if it is the K̃ = K0 = const Jordan

frame we need ∆σ = ln
(
K̃/K0

)
, and if it is the original σ = 0 Jordan frame we

have ∆σ = σ. Note that in all cases ∂i∆σ ∝ qi. A non-zero ∆σ gives corrections

to the field space Christoffel symbols of

δΓabc =
1

2

(
δac∂b∆σ + δab∂c∆σ − C̃bcC̃ad∂d∆σ

)
, (6.72)

and thus corrections to the vertex factors λ̃ab...c.
8 Can changing ∆σ, and thus the

physical spacetime metric, recover a fifth force for the scale-invariant theory? At

8If DeWitt index a corresponds to field species i and position x then ∂a∆σ = ∂i∆σ|x.
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one-loop order we consider three-point and four-point vertices. For a three-point

vertex connected to three bosonic internal fields we have

λ̃abc =i
〈
∇{a∇b∇c}S

〉
= i
〈
∇{a∇b∂c}S

〉
=i
〈
∂{a∂b∂c}S −

(
Γdbc∂a∂dS + Γdab∂c∂dS + Γdac∂b∂dS

)〉
,

(6.73)

so the contribution from ∆σ is

δλ̃abc(∆σ) =

− i
1

2

〈
δdc∂b∆σ + δdb∂c∆σ − C̃bcC̃ed∂e∆σ

〉
⟨∂a∂dS⟩

+ permutations.

(6.74)

Let us choose to do the calculation in the preferred frame (remember we are free

to choose the frame as the covariant formalism guarantees us frame invariance).

Recall that when we apply the frame fixing the propagator will remove any con-

tributions in the direction of qi, so as the terms ∂b∆σ and ∂c∆σ only couple to

that field direction those terms don’t contribute, leaving

δλ̃abc =i
1

2

〈
C̃bcC̃

de∂e∆σ
〉
⟨∂a∂dS⟩

+ permutations,
(6.75)

which simplifies to

δλ̃abc = −i
1

2

〈
NbcMad(N

−1)de∂e∆σ
〉
+ perms. (6.76)

To get a long-range fifth force potential at loop order we need a a, b, c to correspond

to massless fields (the dilaton and the graviton). However, if a, b, c are massless,

then Mad = 0 so δλ̃abc = 0 regardless of ∆σ.

The other three-point vertex we need to consider is one connected to one

external fermion leg, one internal fermion field, and one internal massless boson,

given by

λ̃aψ′ = i
〈
∇{a∇ψ′}(X

b∂bS)
〉

= i
〈
∂{a∂ψ′}(X

b∂bS)
〉
− i
〈
Γc{aψ′}X

b(∂c∂bS)
〉
,

(6.77)

where Xa is again the field space vector defining the external, physical, field (note

that this means the vertex factor is only a rank-2 field space tensor). Then from

the same argument as before we get the contribution from ∆σ as

δλ̃aψ′ = −i1
2

〈
C̃{aψ′}C̃

cd∂d∆σ
〉 〈
Xb(∂c∂bS)

〉
. (6.78)
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For an additional fifth force we need the internal a field to be the dilaton, but

H̃ is independent of σ so C̃{σψ′} = δλ̃aψ′ = 0 regardless of ∆σ. While we do

not consider the four-point vertex diagrams here, one can in principle calculate

corrections from ∆σ for those in a similar manner. The ghost fields do contribute

at one-loop order, however by construction the ghost part of the field space metric

is trivial, and thus the ghost vertices do not pick up corrections from ∆σ (reflecting

the fact they are artificial fields).

These results suggest that even changing ∆σ, which corresponds to changing

the physical spacetime ḡµν (or if you prefer Planck length l(Φ)), not merely the

choice of frame, still does not break the suppression of dilaton fifth forces for

scale-invariant gravity, at least to one-loop order.

6.6 Summary and discussion

In this work we have shown how one can apply the covariant, geometric formalism

to show how scale-invariant scalar-tensor theories evade fifth force constraints in

all frames, even including quantum corrections. By considering the choice of frame

in a fully geometric manner – as a selection of a submanifold, or normal direction,

in the field space of a generalised theory – we can see that not only is the usual

dichotomy of “Jordan frame” versus “Einstein frame” really a continuum of frame

slices, but that the results of fifth force calculations for any scalar-tensor theory

can be made manifestly frame invariant, up to all perturbative orders. Indeed to a

large extent we should consider fixing the frame to be directly analogous to fixing

the gauge: the frame choice is merely a redundancy of our mathematics.9

We have neglected vector gauge fields from the matter Lagrangian, however

these can be straightforwardly included. A covector field Aµ is Weyl invariant

and transforms simply as Aµ → Ãµ, and the canonical gauge kinetic term L ⊃
−√−g 1

4
gµρgνσFµνFρσ is likewise Weyl invariant. Hence adding vector bosons to

the scale-invariant theory does not break the scale-invariance, and we conclude

that they too decouple from the dilaton [413]. The addition of vector bosons also

does not change our conclusions about general frame invariance: they can simply

9One could counter by pointing out that, unlike for the gauge, there is always a “preferred”
or “metric” frame, the one where quantum field gµν = ḡµν the metric of physical spacetime.
However, absent a full theory of quantum gravity, the extent to which the two should be equal
is an open question.



6.6. Summary and discussion 137

be included as additional degrees of freedom in our field space, much like the

graviton or scalar fields (with appropriate gauge fixing terms).

While here we have assumed a flat background spacetime, this approach can

be extended to include background spacetimes which are only conformally flat,

such as flat FRW. Instead of working on the curved spacetime background, we

can change to a frame with a flat background via conformal factor Ω = a(η).

The background curvature in one frame can instead be interpreted as a non-zero

background value of the dilaton, ⟨σ⟩ = ln(a(η)) in another. Scalar-tensor theories

of this form are of cosmological interest as models of inflation [381, 382, 390,

398, 460, 461, 461], hence it would be worth investigating to see how a similar

maximally geometric approach might aid calculations in inflationary background

and give confidence when transforming between frames.

Although we considered the full quantum field theory we have neglected dis-

cussion of regularisation and renormalisation, focusing on the results at tree level

and lowest perturbative order most relevant for fifth force constraints. Any di-

mensionful renormalisation scale µ must transform appropriately between frames

[440]. For the scale-invariant theory one can avoid introducing introducing exter-

nal length scales by making µ a function of the scalar fields, µ(φ), such that it

acquires a stable value in the same manner as the effective Planck mass10, and

µ(φ) then transforms between frames analogous to F (φ) [413, 462–467]. This “in-

ternal” or scale-invariant renormalisation also avoids the scale or trace anomalies

that can arise from renormalisation with an external mass scale [413, 439].

Usually one would need to specify a frame before renormalising, however it

would be interesting to investigate if instead one could first implement a pertur-

bative renormalisation to arbitrary order in the general N + 1 field theory, as

described above, then merely project onto your desired sub-manifold to extract

results for a particular frame, and whether one would then naturally obtain the

necessary frame dependence for the renormalisation mass scale and other param-

eters. It would also be interesting to examine how this framework might be ex-

tended to frame-independent quantum formulations of scalar-tensor theories with

higher-order derivative terms, such as Horndeski or DHOST theory [95–97].

10As the background scalar fields φ tend to constants under the influence of an expanding
cosmology, so does µ(φ).



Chapter 7

Conclusions

Novel fundamental scalar fields are well motivated as possible solutions to a range

of unsolved problems in modern physics. In this thesis we have conducted theo-

retical analytic and numerical studies of novel fundamental fields in the context

of black holes and General Relativity, across a range of regimes.

In the first part we described the background material. Chapter 1 reviewed the

basics of General Relativity, scalar fields and black holes, and why we should care

about them. Then in chapter 2 we described the essential concepts of Numerical

Relativity, and the GRChombo code used for this thesis.

In part II we described the original research that makes up the bulk of thesis. In

chapters 3, 4 and 5 we focused on minimally coupled light scalar field dark matter

and its interaction with black holes and black hole binaries. In 6 we considered a

quite different topic: non-minimally coupled scalar fields in the context of scalar-

tensor modified gravity. The key findings are summarised below.

7.1 Black holes and scalar clouds: accretion

We have very strong evidence that dark matter exists and makes up a large per-

centage of the universe, it has to consist of something, and light “axion-like” scalar

fields are one of the best motivated candidates. One notable feature of this light

“wave-like” dark matter is that it can form long-lived clouds around black holes

and black hole binaries. This raises the possibility of testing its existence with

gravitational wave observations.

In chapter 3 we examined the accretion of scalar field dark matter around

black holes, what may be a more ubiquitous process than the more commonly

studied superradiance mechanism. Comparing our numerical simulations with the
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zero-spin Schwarzschild case in [200], we saw that adding realistic spin values does

not significantly change the accretion rates or the density profile, as the effect of

the black hole spin is concentrated near the black hole horizon. We observed a

smooth transition from the homogeneous background to known analytic stationary

solutions [198], with the region of influence of the black hole moving outwards over

time. Adding asymptotic angular momentum to the scalar can either suppress or

enhance (depending on the misalignement) its accretion rate, and in the case of

aligned spins concentrates the clouds further out from the horizon. The cloud

behaviour was explained by reference to a quasi-effective radial potential and the

orbits of equivalent particles, and we developed a perturbative analytic solution

to describe the changing field profile at large radius and small times.

Finally we estimated the monochromatic gravitational wave signal that might

be be produced by accreting cloud around the supermassive black hole at the

centre of the galaxy. Our results suggest such a signal would not be detectable by

any planned gravitational wave observatories. However, unlike with clouds derived

from superradiance, the size of the accretion driven cloud is heavily dependent on

ones assumptions about the local dark matter environment close to the black

hole, and thus different assumptions, or a superposition of sources, could lead to

an observable signal.

7.2 Black holes and scalar clouds: quasi-normal

modes

We also explored the interaction of accreting scalar field dark matter clouds with

black hole binaries. In chapter 4 we examined the final “ringdown” of the daughter

black hole, and for the first time derived a general perturbative formula for how

an accreting matter cloud would perturb the characteristic quasi normal mode

(QNM) frequencies due to the backreaction onto the metric. We obtained an

expression for the perturbed frequency of the frequency shift of the form

ω = ω0 + δϖ + δA(ϖA −
ω0

2
t′/M) +O(δ2), (7.1)

where ω0 is the QNM frequency in vacuum, δA is the accretion rate and δϖ, δAϖA

are small corrections. Our results can be applied to an arbitrary spherically sym-

metric matter cloud, but when applied to the particular case of accreting scalar

field dark matter we found that the accretion dependent term δAϖA, previously
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neglected, is actually around ∼ 50 times larger than the non-accretion term δϖ.

We also verified our method on several well studied vacuum spacetimes, finding

excellent agreement with alternative numerical approaches.

Extending our method to more realistic cases with axisymmetric accretion disks

is challenging, as the equations become non-separable. Nonetheless this remains

an area of ongoing research, and of great interest to the field of precision black

hole spectroscopy.

7.3 Black holes and scalar clouds: binary merg-

ers

Having examined the impact of scalar field dark matter clouds on the “ringdown”

regime of the gravitational wave signal, in chapter 5 we sought to investigate the

first two regimes of a black hole binary merger: the early inspiral and highly

relativistic merger regimes.

To determine the realistic initial data for the scalar field, we first sought to

investigate the early inspiral regime. We conducted numerical simulations of the

accretion of wave dark matter from a homogeneous environment around binary

black holes in fixed Keplerian orbits, choosing a scalar mass that gives the largest

interaction with the BH binary. We found that the scalar field quickly converges

to a persistent non-trivial profile, which grows in amplitude as the accretion con-

tinues.

We then explored how different choices of initial data affected the evolution of

the dark matter cloud during the highly relativistic merger regime. Our results

suggest that the profile found in the fixed orbit simulations is an attractor solution,

as other choices of initial data converged to the same distribution over the course

of several orbits. This means that for long numerical simulations the precise choice

of initial scalar field data may be unimportant, as the field will quickly converge to

the quasi-stationary distribution. However for numerical simulations which only

consist of a small number of orbits, the transients and the resulting loss of control

over the initial data may strongly affect the final results.

Lastly, we obtained and tested constraint-satisfying initial data for the scalar

profiles obtained from our fixed orbit simulations. To the best of our knowledge,

this is the first time that realistic environments with non zero angular momen-

tum have been applied to black hole binary mergers. We found that naively
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Figure 7.1: Scalar dark matter cloud around a black hole binary. Illus-
trative plot of the energy density of a scalar dark matter cloud accreting around
a black hole binary. This simulation used a slightly larger scalar mass than used
in chapter 5, with Mµ ∼ 2.0, which results in a spiral profile with more tightly
spaced (and therefore more dramatic) oscillations.

using the parameters for a quasi-circular binary merger in vacuum will not usu-

ally produce low eccentricity orbits once matter is added, and hence one cannot

simply compare the resulting gravitational waveforms. Instead a more compre-

hensive approach is needed to find initial data that both satisfies the Einstein

constraints and produces realistic low-eccentricity inspirals, similar to that devel-

oped for vacuum binaries [191, 358, 360–362], but incorporating the dynamics of

the scalar field quasi-stationary profile in a quasi-equilibrium or post-Newtonian

model [364–369, 371–373]. Further study of the precise effects of the backreaction

from the matter on the black hole bare masses and momenta may also provide a

guide to help tune the parameters to achieve the desired quasi-circular orbits.

7.4 Beyond GR: fifth forces and frame invari-

ance

Novel fundamental scalar fields are also of interest in the context of modified

gravity, proposed to address a range of unsolved problems in cosmology and fun-

damental theoretical physics. A major limitation on such scalar-tensor theories are

the observational constraints on fifth forces. It has been shown that, in particular

frames, for scale-invariant scalar-tensor theories fifth forces constraints are evaded
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or dramatically suppressed [388, 413]. However it has also been shown that when

considered as a full quantum theory, scalar-tensor gravity in different frames may

not be equivalent, even producing different observable results [414, 439–441].

In chapter 6 the covariant formulism of Vilkovisky, DeWitt [447–449] and oth-

ers [440, 442–446] was used to obtain a new geometric approach to frame choice for

scalar-tensor theories, which in turn was used to show how scale-invariant scalar-

tensor theories evade fifth force constraints in all frames, even including quantum

corrections. By considering the choice of frame in a fully geometric manner – as a

selection of a submanifold, or normal direction, in the field space of a generalised

theory – we can see that not only is the usual dichotomy of “Jordan frame” versus

“Einstein frame” really a continuum of frame slices, but that the results of fifth

force calculations for any scalar-tensor theory can be made manifestly frame in-

variant, up to all perturbative orders. Indeed to a large extent we should consider

fixing the frame to be directly analogous to fixing the gauge: the frame choice is

merely a redundancy of our mathematics.

There remains much work to be done, as here we neglect a detailed discussion of

regularisation and renormalisation, the UV-limit for quantum gravity, vector bo-

son fields and the full particle standard model, a dynamic cosmological background

spacetime, and higher-order scalar-tensor theories of modified gravity. Nonethe-

less, this remains a significant step towards understanding and applying frame-

choice in scalar modified gravity theories in a rigorous or semi-rigorous manner,

with application to cosmology and astrophysics.

In a future paper we will also examine the possibility of detecting scalar ra-

diation from binary black hole mergers in scalar-tensor gravity. We will examine

how such signals might be generated from binary mergers, either inside a scalar

field dark matter environment or generated from couplings to higher-order curva-

ture terms, how they propagate through space to us, and how we might detect

them observationally, and attempt to predict how tightly we could constrain the

parameters of the scalar-tensor theory given current and planned observatories.

To conclude, the original research presented in this thesis represents a signifi-

cant advancement in the theoretical study of novel scalar fields, black holes, and

strong gravity.
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Appendix A

Numerical Relativity

A.1 The Lie derivative

The Lie derivative Lv⃗ of a tensor is a measure of how much it changes as you

move in the direction parallel to vµ. Consider moving from xµ to x′µ = xµ + ϵvµ,

where ϵ is infinitesimal. In flat Euclidean space we can define the rate of change

for tensor T a...b... as

∂v⃗T
a...
b... = lim

ϵ→0

T a...b... (x
′µ)− T a...b... (x

µ)

ϵ
. (A.1)

In a curved manifold we also need to take account of the fact that tensors change

under coordinate transformations, and express T a...b... (x
µ) in terms of the primed

coordinates, so we are comparing like with like. The transformation rule is given

in (1.2). Then the Lie derivative is

Lv⃗T a...b... = lim
ϵ→0

T a...b... (x
′µ)− T ′a...

b... (x
µ)

ϵ
, (A.2)

where the primed T ′a...
b... (x

µ) denotes the tensor at point xµ, but expressed in the

primed x′µ coordinates via a passive coordinate transformation. From the defini-

tion in (A.2) one can derive the formula for the Lie derivative of a general type

(n,m) tensor T a1...anb1...bm
in index notation as

Lv⃗T a1...anb1...bm
= vλ∇λT

a1...an
b1...bm

+ T λ...anb1...bm
∇λv

a1 + . . . + T a1...λb1...bm
∇λv

an

− T a1...anλ...bm
∇b1v

λ − . . . − T a1...anb1...λ
∇bmv

λ,

(A.3)

where we can use the covariant derivative ∇µ in place of the partial derivative

∂µ as long as we are using the Levi-Civita connection defined in (1.4). The Lie

derivative is linear, so that LX⃗+Y⃗ T
a...
b... = LX⃗T a...b... + LY⃗ T a...b... .
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A.2 The CCZ4 evolution equations

In the CCZ4 formalism used in the full NR simulations with GRChombo
in chapter 5 the spatial metric is decomposed as

γij =
1

χ
γ̃ij, det(γ̃ij) = 1, χ = det(γij)

−1/3. (A.4)

The extrinsic curvature is decomposed into its trace K = γijKij and con-
formal traceless part Ãij with γ̃

ijÃij = 0,

Kij =
1

χ

(
Ãij +

1

3
Kγ̃ij

)
, (A.5)

and we define the conformal connection functions Γ̃i = γ̃jkΓ̃ijk where Γ̃
i
jk are

the connection coefficients associated with the conformal spatial metric γ̃ij.
We decompose the Zµ vector into Θ = −nµZµ and define

Γ̂i = Γ̃i + 2γ̃iµZµ. (A.6)

The complete evolution variables, including the gauge functions and the
matter, are {φ,Π, α, βi, Bi, χ, γ̃ij, K, Ãij,Θ, Γ̂

i}. Using the moving punc-
tures gauge the complete evolution equations are [178, 183]

∂tφ = αΠ+ βi∂iφ, (A.7)

∂tΠ = αγij∂i∂jφ+ α

(
KΠ− Γk∂kφ−

dV (φ)

dφ

)
+ ∂iφ∂

iα + βi∂iΠ, (A.8)

∂tα =− 2α(K − 2Θ) + βi∂iα, (A.9)

∂tβ
i = 3

4
Bi, (A.10)

∂tB
i = 3

4
α∂tΓ̃

i −Bi, (A.11)

∂tχ = βk∂kχ+ 2
3
χ(αK − ∂kβk), (A.12)

∂tγ̃ij = βk∂kγ̃ij + 2γ̃k(i∂j)β
k − 2αÃij − 2

3
γ̃ij∂kβ

k, (A.13)

∂tK =−DiDiα + βk∂kK + α
(
(3)R + 2DiZ

i + 2
3
K2 − 2ΘK

)
− 3κ1(1 + κ2)Θ + 4πα(S − 3ρ), (A.14)

∂tÃij = βk∂kÃij + χ
[
−DiDjα + α((3)Rij + 2D(iZj) − 8πSij

]TF

+ αÃij(K − 2Θ)− 2αÃilÃ
l
j + 2Ãk(i∂j)β

k

− 2
3
Ãij∂kβ

k + βk∂kÃij, (A.15)
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∂tΘ = 1
2
α
(
(3)R + 2DiZ

i − ÃijÃij + 2
3
K2 − 2ΘK

)
− Zi∂iα + βk∂kΘ

− κ1(2 + κ2)Θ− 8παρ, (A.16)

∂tΓ̂
i = 2α

(
Γ̃ijkÃ

jk − 3
2
Ãij∂j lnχ− 2

3
γ̃ij∂jK

)
− 2Ãij∂jα + γ̃kl∂k∂lβ

i

+ 2γ̃ki
(
α∂kΘ−Θ∂kα− 2

3
αKZk

)
+ 1

3
γ̃ik∂k∂lβ

l + 2
3
Γ̃i∂kβ

k

− Γ̃k∂kβ
i + 2κ3

(
2
3
γ̃ijZj∂kβ

k − γ̃jkZj∂kβi
)
+ βk∂kΓ̂

i

− 2κ1γ̃
ijZj − 16παγ̃ijSj, (A.17)

where Di is the covariant derivative for the spatial metric γij and [·]TF

denotes the trace-free part of the enclosed expression. Note the additional
damping parameter, κ3, in (A.17) which by default we set to 1. As discussed
in section 2.4 we set the other damping terms to κ1 = 0.1 and κ2 = 0. The
decomposed parts of the energy-momentum tensor are

ρ = nµnνTµν , Si = −P µ
i n

νTµν , Sij = P µ
i P

ν
j Tµν , S = γijSij. (A.18)

As discussed in chapter 3, when dealing with the fixed background simu-
lations we can neglect equations (A.9) to (A.17) and only evolve (A.7) &
(A.8), which correspond to two equations for a real scalar field and four
equations for a complex scalar field.



Appendix B

The growth of accretion driven
scalar hair around Kerr black
holes

B.1 Code validation and coordinate choice

As discussed in the main text, we evolve the field on a fixed background Kerr

metric in Quasi-Isotropic Kerr (QIK) coordinates.

The metric is validated by checking that the numerically calculated Hamilto-

nian and Momentum constraints converge to zero with increasing resolution, as do

the time derivatives of the metric components, i.e. ∂tγij = ∂tKij = 0 (calculated

using the ADM expressions). This ensures that the metric which is implemented

is indeed stationary in the chosen gauge, consistent with it being fixed over the

field evolution. The outer horizon at R = r+ is spherical and therefore it retains a

finite limit even in the limit χ→ 1. However, as noted above, the use of QIK co-

ordinates necessitates the use of an analytic continuation of the lapse in which its

value becomes negative within the horizon. To see why this is useful in comparison

to the positive continuation, note that the solution within the horizon describes a

mirror universe, rather than a BH interior, so this choice corresponds to running

time “backwards” in this region. As a consequence any matter will fall towards

the grid centre, i.e. towards asymptotic spatial infinity in the mirror universe.

One does not then in principle need to excise within the horizon, but in practise

we do stil excise some part of the interior to prevent any spikes developing.

The advantage of these coordinates is their simple relation to the BL coordi-

nates in which we perform our perturbative analysis. The downside is that since

they correspond to the asymptotic observers, the lapse goes to zero and time
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freezes around the horizon. Thus ingoing waves tend to “bunch up” there. Given

sufficient resolution outside the outer horizon, the ingoing nature of the metric

prevents the errors this introduces from propagating into the region far from the

BH, and unresolved waves are effectively damped away by grid precision close to

the horizon. Provided we are not interested in extracting quantities very close to

the horizon, these coordinates work in practise.

An alternative set of coordinates are Kerr-Schild coordinates [468]. This form

has the advantage of being horizon penetrating, in other words without a coordi-

nate singularity at the horizon. The metric can be split into

gµν = ηµν + 2H(xµ)lµlν , (B.1)

where ηµν is the Minkowski metric, H = Mr/Σ, and lµ is an ingoing null vector

given by

lµ =

(
−1, 1, 0,− 2a

a2 + r2

)
, (B.2)

written out in coordinates {t, r, θ, ϕ}. These relate to the Boyer-Lindquist coordi-

nates via

tKS = tBL +
2M

r+ − r−

(
r+ ln

∣∣∣∣ rr+ − 1

∣∣∣∣− r− ln

∣∣∣∣ rr− − 1

∣∣∣∣) , (B.3)

ϕKS = ϕBL +
a

r+ − r−
ln

∣∣∣∣r − r+r − r−

∣∣∣∣+ 2 tan−1
(a
r

)
. (B.4)

Taking a = 0 one can show these coordinates reduce to ingoing Eddington-

Finkelstein (EF) coordinates rather than Schwarzchild, with ingoing EF null co-

ordinate v = r + tKS. This makes it more difficult to interpret results expressed

in Kerr-Schild coordinates from the perspective of a distant observer as tKS is no

longer their measured time at finite r. Taking a = 0 and setting u = t + r one

can show that the radial coordinate r corresponds to that of ingoing Eddington-

Finkelstein rather than Schwarzschild coordinates. This makes it more difficult

to interpret results expressed in Kerr-Schild coordinates from the perspective of a

distant observer as tKS is no longer their measured time at finite r. For simplicity

of presentation we have presented results in QIK coordinates only, but we have

checked that we obtain physically consistent results in both gauges, and that our

diagnostics can be reconciled in both cases, see for example Fig. B.1.



B.2. Conserved fluxes 149

B.2 Conserved fluxes

In Numerical Relativity it is conventional to decompose the energy-momentum

tensor into purely spatial quantities as

Tµν = ρnµnν + Sµnν + nµSν + Sµν , (B.5)

(see chapter 2). The ρ and Si are the energy and momentum densities respectively

measured by the Eulerian observers, that is, observers moving normal to the spatial

hypersurfaces in the 3+1 ADM decomposition. These are not the same as the time-

like observers for which the conserved quantities are defined. We can obtain the

expressions for the conserved quantities in terms of the standard ADM quantities

as follows:

ρE = −αT tt = αρ− βiSi, (B.6)

ρJ = Sϕ, (B.7)

J it = α γij
(
αSj − βkSjk

)
− βiρE, (B.8)

J iϕ = αγijSjϕ − βiρJ . (B.9)

Another common quantity of interest is the ADM mass of the spacetime [12]

defined as

MADM =
1

16π
lim
r→∞

∫
∂Σ

(∂ih
ij − ∂ihjj)dSi, (B.10)

where we assume that the boundary surface is in the weak field limit

gµν = ηµν + hµν , (B.11)

where hµν is small. In our case if we include the backreaction we find

hµν = hBHµν + hφµν , (B.12)

where hBHµν is from the BH background metric and hφµν from the scalar field back-

reaction. As (B.10) is linear in hµν these give seperable contributions to MADM.

Perturbing the Einstein equations to first order gives

8πT it =
1
2
(∂t[∂jh

ij − ∂ihjj] + ∂2t h
it + ∂i∂µh

µ
t − ∂µ∂µhit) +O(h2),

= 1
2
∂t[∂jh

ij − ∂ihjj] +O(h2),
(B.13)

using the synchronous gauge hµt = 0. Given that the BH background is fixed in

time, we then recover

∂tMADM = lim
r→∞

∫
∂Σ

√−gT itdSi +O(h2), (B.14)
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Figure B.1: Code check: mass flux conservation. The cumulative mass flux
into a sphere radius R = 500M , into the horizon of the BH, the net flux and
the change in cloud mass measured from integrating the density ρE, for Mµ =
0.05, χ = l = m = 0 in Kerr-Schild coordinates. We see good agreement between
the change in cloud mass and the net mass flux.

where we can reintroduce
√−g as in the weak field limit

√−g = 1+O(h). Hence
if we choose a large enough radius sphere the flux across the surface, and thus the

change in the mass within the sphere (3.16), approximates to the change in the

ADM mass which would be measured.

We have verified that the integral of the scalar field mass flux over a sphere

does correspond to the change in scalar field mass inside the sphere in both QIK

coordinates (Fig. B.2) and the alternative Kerr-Schild coordinates (Fig. B.1).

B.3 Convergence tests

In this section we illustrate our tests of the numerical convergence of our code.

As we use fourth order finite difference stencils to evolve the field, we expect our

errors to decrease with N , the number of grid cells, as N−4. The first quantity

we test is the scalar field mass flux into a sphere of R = 300M , a quantity we

explored in Sec. 3.3. We compute the flux for the most challenging case studied

of high scalar mass αg = Mµ = 2.0, high spin χ = 0.99 and large scalar angular

momentum l = m = 8. The results for N = 32, 64, 128, 256 are shown in Fig. B.4.

By eye we see good agreement for N ≥ 128 which corresponds to the resolution

used (N = 128). To test the convergence we also plot the difference between the
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Figure B.2: Convergence test: mass flux conservation. We plot the differ-
ence between the change in mass inside a sphere radius R = 300M measured from
integrating the density ρE, and the cumulative mass flux into the sphere. This
difference should be zero for an infinite resolution simulation. We show values for
Mµ = 2.0, χ = 0.99, l = m = 8 and different N again plotted on a log scale. We
see that again doubling N decreases the error by a factor of ∼ 2−4 each time,
indicating 4th order convergence.

flux f on doubling the resolution from N to 2N (Fig. B.3). We would expect this

difference to decrease by ∼ 2−4 on doubling N , and indeed this is approximately

what we observe.

Finally, we examine the difference between the change in total mass inside a

sphere radius R = 300 and the cumulative flux into the sphere. As we established

in Sec. 3.1.2 this difference should be zero. Fig. B.2 shows the difference in QIK

coordinates for increasing N. We can see that the difference is both small for our

typical choice of N = 128 and it decreases by approximately 2−4 on doubling N

as we expected.
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Figure B.3: Convergence test: relative error in mass flux. We now plot the
change in the mass flux through R = 300M on doubling N for Mµ = 2.0, χ =
0.99, l = m = 8 plotted on a log scale. We see the difference in flux decreases by
a factor of ∼ 2−4 each time, indicating we do indeed have 4th order convergence.

Figure B.4: Mass flux: improvement with resolution. We plot the mass
flux through R = 300M for different N and in the most challenging case studied
Mµ = 2.0, χ = 0.99, l = m = 8. We see good agreement by eye for N ≥ 128
which corresponds to the values used. The black dashed line is the perturbative
analytic solution which we expect to diverge from the true numerical solution at
later times, but provides a guide to the expected result at early times.



Appendix C

The quasi-normal modes of
growing dirty black holes

C.1 Perturbation theory

To find QNM for perturbed BH spacetimes we need two metric perturbations

gµν = g(0)µν + ϵg(1)µν + ζg(2)µν , (C.1)

where ϵ and ζ are both small, but ζ ≪ ϵ. The larger perturbation ϵg
(1)
µν is static

or slowly varying and captures the change to the metric from additional fields,

modifications to GR, or the backreaction from clouds of matter. This perturbation

is denoted δgµν earlier in previous sections. The smaller perturbation ζg
(2)
µν is

the one which will oscillate at the quasi-normal mode frequencies. The g
(0)
µν is a

vaccuum background BH metric.

We have two sets of equations for the metric gab and the matter fields φm: the

Einstein field equations

Gµν [gab] = 8πTµν [φm, gab], (C.2)

and the equation of motion

∇µ[gab]T
µν [φm, gab] = 0. (C.3)

Here we will assume GR and assume g
(1)
µν comes from the matter backreaction, and

assume Tµν to be order ϵ with Tµν = ϵT̃µν . We will also expand φm as

φm = φm
(0) + ϵφm

(1) + ζφm
(2) + . . . (C.4)
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First let us expand in powers of ζ. At order ζ0 we have

Gµν [g
(0)
ab + ϵg

(1)
ab ] = ϵ8πT̃µν [φm

(0) + ϵφm
(1), g

(0)
ab + ϵg

(1)
ab ], (C.5)

and

ϵ∇µ[g
(0)
ab + ϵg

(1)
ab ]T

µν [φm
(0) + ϵφm

(1), g
(0)
ab + ϵg

(1)
ab ] = 0. (C.6)

We can then expand in powers of ϵ. At order ϵ0 we have Gµν [g
(0)
ab ] = 0 as g

(0)
ab is a

vacuum solution. At order ϵ we have

δGµν

δgab
[g(0)pq ]g

(1)
ab = 8πT̃µν [φm

(0), g
(0)
ab ], (C.7)

and

∇(0)
µ T µν [φm

(0), g
(0)
ab ] = 0, (C.8)

which can be solved for the zeroth order field solution φm
(0) and the backreaction

g
(1)
µν . At order ζ1 we obtain

δGµν

δgab
[g(0)pq + ϵg(1)pq ]g

(2)
ab =

ϵ8π
δT̃µν
δφm

[φm
(0) + ϵφm

(1), g(0)pq + ϵg(1)pq ]φm
(2)

+ ϵ8π
δT̃µν
δgab

[φm
(0) + ϵφm

(1), g(0)pq + ϵg(1)pq ]g
(2)
ab + . . . ,

= ϵ8π

(
δT̃µν
δφm

[φm
(0), g(0)pq ]φm

(2) +
δT̃µν
δgab

[φm
(0), g(0)pq ]g

(2)
ab

)
+O(ϵ2). (C.9)

Then let φm
(2) = φ̃

(2)
m + χ(2) such that

δT̃µν
δφm

[φm
(0), g(0)pq ]χ

(2) +
δT̃µν
δgab

[φm
(0), g(0)pq ]g

(2)
ab = 0. (C.10)

Then

δGµν

δgab
[g(0)pq + ϵg(1)pq ]g

(2)
ab =

δT̃µν
δφm

[φm
(0), g(0)pq ]φ̃

(2)
m , (C.11)

ϵ∇µ[g
(0)
pq ]

(
δT µν

δφm
[φm

(0), g
(0)
ab ]φ̃

(2)
m

)
= 0, (C.12)

to order ϵ. We see that (C.11) and (C.12) can be written as

Labµνg(2)ab = Sµνφ̃
(2)
m , (C.13)

Eφ̃(2)
m = 0, (C.14)
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where E ,Labµν , Sµν are differential operators. Eq. (C.14) provides an equation of

motion for φ̃
(2)
m , which then provides a source term Sµνφ̃

(2)
m to the equation of

motion for the metric perturbation g
(2)
µν . The perturbed quasi-normal modes are

solutions of the homogeneous, unsourced equation

Labµνg(2)ab = 0. (C.15)

When decomposed into odd tensor harmonics, Eq. (C.13) gives Eq. (4.28) where

the source term S is explicitly (see for example [61])

Slm = −r2 l(l + 1)

(l − 1)(l + 2)
ϵab∇̃a

∫
∆TAb (X

A
lm)

∗dΩ, (C.16)

XA
lm = −ϵAB∇̂BY

lm(θ, ϕ), (C.17)

∆Tµν =
δTµν
δφm

φ̃(2)
m , (C.18)

where ϵab is the Levi-Civita symbol, ∇̂A is the covariant derivative on the 2-

sphere, “ ∗ ” denotes complex conjugation and Y lm(θ, ϕ) are the complex spherical

harmonics.

C.2 Method in Schwarzschild coordinates

If the metric perturbation is time independent and sufficiently well behaved near

the horizon we do not need to introduce ingoing EF coordinates and can instead

repeat the derivation in the more familiar Schwarzschild coordinates, which we

shall do now.

Let us again consider a perturbed Schwarzschild background metric of the form

ds2 = −(f + δf)dt2 + (f + δg)−1dr2 + r2dΩ, (C.19)

where we require δf(r), δg(r) ≪ 1 in Schwarzschild coordinates. For odd modes

in general, and for even modes in vacuum, this gives a modified QNM master

equation of the form[
F∗∂r(F∗∂r) + (ω2 − F V∗)

]
Ψ = 0, (C.20)

F := f + δf, (C.21)

F∗(r) :=
√

(f + δf)(f + δg) ≈ 1− 2M

r
+
δf(r) + δg(r)

2
, (C.22)

V∗(r) = V±(r) + δV (r), (C.23)
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where here we use V± to denote the Zerilli/Regge-Wheeler potentials for even/odd

modes and we have let Ψ(t, r) = e−iωtΨ(r). In Eq. (C.20) we allow the δV to be

an arbitrary function of r, containing both the terms arising from metric pertur-

bations δf, δg, as we saw in the previous section, as well as from (for example)

modified gravity effects. The only requirement we will impose is that δV is small

compared to the zeroth order potential V±. If δg ̸= 0 the location of the BH

horizon will be shifted to

rH = 2M [1− δg(2M)] . (C.24)

We can then rewrite F∗(r) as

F∗(r) =fH(r)Z(r), (C.25)

fH(r) :=
(
1− rH

r

)
, (C.26)

Z(r) =1 + δZ(r), (C.27)

δZ(r) =
r δf(r)+δg(r)

2
− 2Mδg(2M)

r − 2M
, (C.28)

again working to first order in all perturbed quantities. Note that for δZ to be

well behaved at r = 2M we need δf(2M) = δg(2M). In the case with no modified

gravity and with g(2M) = f(2M) = 0 we can directly compare to the expressions

from section 4.2 and find

δλ = (δf − δg)/(2f), (C.29)

and

δV =
f

r

(
2δZ

r
− δZ ′

)
− 2δλ

r2

(
1− 3M

r

)
. (C.30)

If we again define Φ :=
√
ZΨ Eq. (C.20) can be rewritten as

fH
∂

∂r

[
fH
∂Φ

∂r

]
+

[
ω2

Z2
− fHV

]
Φ = 0, (C.31)

where to first order in δ

V = V± + δV + (δf − 2δZ)V± + 1
2
(fHδZ

′)′, (C.32)

and we seperate the ω term as

ω/Z2 = ω2[1− 2δZ(rH)]− 2ω2
0[δZ(r)− δZ(rH)],

= Ω2 − 2ω2
0[δZ(r)− δZ(2M)],

(C.33)
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to first order in small quantities. We can also rewrite the potentials V± in terms

of rH :

V+ = Ṽ+ + δṼ+ (C.34a)

V− = Ṽ− + δṼ− (C.34b)

where

Ṽ+ =
(ℓ+ 2)(ℓ− 1)

3r2
+
rH
r3

+
2(ℓ+ 2)2(ℓ− 1)2(ℓ2 + ℓ+ 1)

3(3rH + (ℓ+ 2)(ℓ− 1)r)2
(C.35a)

δṼ+ = δg(2M)

(
2M

r3
− 8M(ℓ+ 2)2(ℓ− 1)2(ℓ2 + ℓ+ 1)

3(6M + (ℓ+ 2)(ℓ− 1)r)3

)
(C.35b)

Ṽ− =
ℓ(ℓ+ 1)

r2
+
rH
r3

(1− s2) (C.35c)

δṼ− = δg(2M)
2M

r3
(1− s2). (C.35d)

Finally we obtain

fH
∂

∂r

[
fH
∂Φ

∂r

]
+
[
Ω2 − fH

(
Ṽ± +∆V

)]
Φ = 0 (C.36)

where ∆V again collects all the order δ terms, both from the original potential

perturbation δV as well as from modified geometry terms. Explicitly,

∆V = δV + δṼ± + Ṽ± (δf/fH − 2δZ)

+ 1
2
(fHδZ

′)′ +
2ω2

0

fH
[δZ(r)− δZ(2M)] .

(C.37)

Unlike in the time dependent case ω and Ω are related by a simple constant

rescaling

Ω = ω (1− δZ(2M)) . (C.38)

We can relate δZ(2M) to δf, δg through use of l’Hôpital’s rule:

δZ(2M) = δg(2M) +M [δf ′(2M) + δg′(2M)] . (C.39)

If we then again apply the method of [264] we find solutions of the form

ω = ω0 + ω0δZ(2M) + δΩ(∆v), (C.40)

from which we one can verify that the perturbative expressions for δΩ(∆V ) match

those we derived in the main text with δA set to zero. The full expressions for

general spin s are given in appendix D of [2].
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Table C.1: Comparison between the analytic results presented here and the nu-
meric results of Cardoso et al for the ℓ = 2 odd parity gravitational QNM deviation
∆ω to order L−8.

p 2M∆ω (analytic) 2M∆ω (numeric) % error ∆ωR % error ∆ωI
0 0.243747+0.0913876i 0.247252+0.0926431i -1.41747 -1.3552
1 0.158967+0.0180090i 0.159855+0.0182085i -0.555267 -1.09556
2 0.0966513-0.00277561i 0.0966322-0.0024155i 0.019719 14.9086
3 0.0585225-0.00410688i 0.0584908-0.00371786i 0.0542632 10.4635
4 0.0366465-0.000745599i 0.0366794-0.000438698i -0.0896896 69.9573
5 0.0240123+0.00249465i 0.0240379+0.00273079i -0.106785 -8.64721

Table C.2: Comparison between the analytic results presented here and the nu-
meric results of Cardoso et al for the ℓ = 2 even parity gravitational QNM devia-
tion ∆ω to order L−8.

p 2M∆ω (analytic) 2M∆ω (numeric) % error ∆ωR % error ∆ωI
0 0.224732+0.0916972 i 0.22325+0.09312 i 0.663953 -1.52787
1 0.153719+0.0195864 i 0.154195+0.019927ii -0.308834 -1.70931
2 0.0974921-0.00328011 i 0.0978817-0.0034275 i -0.398015 -4.30028
3 0.0614226-0.00618217 i 0.0616142-0.0064403 i -0.310969 -4.00799
4 0.0399055-0.00334236 i 0.0400156-0.0036191 i -0.275227 -7.64665
5 0.0271051+0.0000307656 i 0.0271849-0.0002403 i -0.293483 -112.803

C.3 Testing the method

We do not have numerical results for the QNM perturbations of a growing dirty

black hole to compare to the analytic results derived in the previous section. How-

ever we can apply the same techniques to several other examples in Schwarzschild

coordinates for which results have been previously obtained - specifically, power

law potentials, exponential potentials, Reissner-Nordstrom and de Sitter. In par-

ticular, we confirm that the 5th order perturbative expansion of the frequency shift

should be sufficiently accurate, and that higher corrections will not significantly

change the result.

C.3.1 Power law potentials

First we will try potential deviations δV about a pure Schwarzschild background,

such that δf = δg = 0. To compare with the numerical results of Cardoso et al.

(2019) [263], we will first assume the following form for the potential deviations
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Table C.3: Comparison between the analytic results presented here and the nu-
meric results of Cardoso et al. (2019) [263] for an exponential potential deviation
for the even parity gravitational modes to order L−8.

ℓ 2M∆ω (analytic) 2M∆ω (numeric) % error ∆ωR % error ∆ωI
2 0.439353+0.108479 i 0.438579+0.110111 i 0.176484 -1.48256
3 0.274923+0.0447816 i 0.274902+0.0448262 i 0.00780032 -0.0996234
4 0.202828+0.0250234 i 0.202826+0.0250268 i 0.000874023 -0.013268
5 0.161632+0.0161213 i 0.161632+0.0161217 i 0.000123541 -0.002308

(for both Regge-Wheeler and Zerilli type equations):

δV =
α

(2M)2

(
2M

r

)p
, p ≥ 0. (C.41)

and α is a dimensionless constant. In Cardoso et al., p is assumed to be an integer

and numeric results for QNM deviations are provided for values of p from 0 to 50.

In this section we will first compare the analytic results at integer values to the

Cardoso et al. values before allowing p to vary continuously.

Tables C.1 and C.2 show a comparison for the first few values of p for the

odd and even parity ℓ = 2 gravitational QNMs respectively to order L−8. We see

that very good agreement between the two methods is found in the real part of

the frequency deviation ∆ωR, with slightly worse agreement in the imaginary part

∆ωI . Note that some of the percentage errors can be misleading when the values

of the deviations are extremely close to 0, for example in the case of the p = 5

deviation for the ℓ = 2 even parity QNM.

We’ve seen that for potential deviations of the form given in Eq. (C.41) the

analytic QNM deviations presented here compare well with those calculated nu-

merically as long as the index p doesn’t exceed around 15, though this ‘guide’ is

dependent on the angular harmonic index ℓ (good agreement is found for larger

p with high ℓ) and on whether the perturbations are of scalar, vector, or gravita-

tional type.

Fig. C.1 shows a plot of the numeric results of Cardoso et al. with the an-

alytic QNM deviations presented here, for both the ℓ = 2 odd and even parity

gravitational QNMs. In this case we are allowing p to be continuous for the an-

alytic results. Good agreement is shown between the two methods up to around

p = 10, at which point the imaginary component of the analytic ∆ω starts to

visibly deviate from the numeric results. We find that above around p = 15 large
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Figure C.1: Power law potential quasi-normal modes. We compare the
analytic results presented here and the numeric results of Cardoso et al. (2019)
[263] for the ℓ = 2 odd (left panel) and even (right panel) parity ∆ω to order L−8

(red) and order L−5 (green).

deviations from the numeric results are seen in both the ∆ωR and ∆ωI , with the

analytic curve showing oscillatory behaviour. We do not have an explanation for

this shortcoming at the moment, so clearly the analytic results are best restricted

for use up to p ≈ 15. Similar behaviour is seen for vector and scalar perturbations,

with better agreement between the analytic and numeric results found for larger

values of ℓ.

C.3.2 Exponential potential

We will now study more unconventional potential deviations and again compare

the analytic QNM deviation results with those calculated numerically. First, we

consider the addition of an exponential function to the potential:

δV =
1

(2M)2
exp

(
2M

r

)
. (C.42)

If we use the Taylor series representation of the exponential function we can write

Eq. (C.42) as a sum of integer powers of 2M/r, thus allowing us to use the results

of Cardoso et al. as a comparison for the analytic results. Table C.3 gives the
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deviations calculated with both methods for the ℓ = 2−5 even parity gravitational

modes, with extremely good agreement found between the two methods.

C.3.3 Reissner-Nordström background

Following Dolan & Ottewill (2009) [264] we can write the unperturbed master

equation for the charged Reissner-Nordström black hole as

fq
∂

∂r

[
fq
∂Ψ

∂r

]
+
[
ω2 − fqV±

]
Ψ = 0, (C.43)

where q = Q/M the charge-to-mass ratio, fq(r) = 1− 2M/r + q2M2/r2, and the

odd mode potential is

V− =
L2 − 1/4

r2
− Mκs

r3
+
q2M2ηs
r4

, (C.44)

where

ηs, κs =


2, −2 s = 0

4, 3−
√
9 + 4q2(L2 − 9/4) s = 1

4, 3 +
√

9 + 4q2(L2 − 9/4) s = 2.

(C.45)

The Reissner-Nordström metric is

ds2 = −fqdt2 + f−1
q dr2 + r2dΩ. (C.46)

Consider the weakly charged case where q ≪ 1. In that limit we can assign

δf(r) = δg(r) = q2M2/r2, (C.47)

δV (r) = q2
[
M(3

2
− 2

3
L2)

r3
+

4M2

r4

]
. (C.48)

This gives for the n = 0, l = 2 odd mode (again to order L−8)

ωQNM = ω0 +
(0.0252499− 0.00267011i)q2

M
+O(q3), (C.49)

which compares favourably to the numerical result from Cardoso et al. of

ωQNM = ω0 +
(0.0258177− 0.002824i)q2

M
+O(q3), (C.50)

with a relative difference of 2.2%, 5.4% between the two for the real and imaginary

parts respectively.
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C.3.4 De Sitter background

In Schwarzschild de Sitter (SdS) spacetime the line element takes the form

ds2 = −fδΛdt2 + f−1
δΛ dr2 + r2dΩ (C.51)

where fδΛ(r) = 1− 2M/r − δΛr2/3. The master equation is

fδΛ
∂

∂r

[
fδΛ

∂Ψ

∂r

]
+
[
ω2 − fδΛV±

]
Ψ = 0, (C.52)

where V± again denote the standard Zerilli/Regge-Wheeler potentials. Let δΛ̃ =

δΛM2. If we take δΛ̃≪ 1 we can proceed as before

δf(r) = δg(r) = −δΛr2/3, δV (r) = 0. (C.53)

For the n = 0, l = 2 odd mode to order L−8 we find

ωQNM = ω0 + (−1.67328 + 0.332735i)δΛ̃/M +O(δΛ̃2
). (C.54)

The equivalent calculation for non-linear δΛ dependence to order L−6 (see Tatter-

sall (2018) [469])) gives

ωQNM =ω0 + (−1.67328 + 0.332735i)δΛ̃/M+

(−3.90506 + 1.15466i)δΛ̃
2
/M+

(−16.9027 + 5.13741i)δΛ̃
3
/M +O(δΛ̃4

),

(C.55)

so for small δΛ̃ we have excellent agreement with the non-linear calculation with

a fraction of the effort. Note that this is mathematically equivalent to the case

of non-accreting uniform density dark matter as described in [148] equation (67)

with δΛ = 8πρDM .



Appendix D

Black hole merger simulations in
wave dark matter environments

D.1 Numerical implementation and convergence

tests

For the simple fixed orbit model described in section 5.2 we only solve equations

(2.34) and (2.35) in such a background. We excise (set the evolution variables

to zero) within a small region around each black hole centre, inside the horizon,

to avoid numerical errors, and evaluate the values of the metric components and

their derivatives analytically at each point on the grid. For the highly relativistic

merger, in addition to solving Eqns. (2.34) and (2.35), we solve the full Einstein

equations numerically. For this we use the CCZ4 formalism [178], as described in

chapter 2 and appendix A.2, with the moving puncture gauge [184, 185, 359, 470,

471]. The parameters for the initial state of the black hole binary are given in

table D.1.

d/M 12.21358
MBH/M 0.48847892320123
|px|/M 5.10846× 10−4

|py|/M 8.41746× 10−2

|pz|/M 0
T/M 271.34

Table D.1: Black hole binary initial parameters.2 The black holes are
initially aligned along the x axis in the z = 0 plane, with initial momenta
p⃗1 = (−|px|,+|py|, 0) for the BH with initial position r⃗1 = (d/2, 0, 0) and
p⃗2 = (+|px|,−|py|, 0) for the one at r⃗2 = (−d/2, 0, 0).
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Figure D.1: Convergence test: constraint satisfying initial data. We show
convergence in the absolute value of the error in the Hamiltonian and momentum
constraints for the the fixed orbit initial data (the most sharply peaked, and
therefore most difficult, choice of initial scalar field data) at time t = 0. The error
is consistent with the 2nd order finite difference stencils used in the CTTK solver
[188].

In both cases we use the open-source Numerical Relativity code GRChombo

[193, 194] with adaptive mesh refinement [183], described in section 2.9.

We use a simulation box length L = 512M and 8 levels of mesh refinement

(See Figs. D.1 and D.2 for convergence tests). Taking advantage of the symme-

try in the xy plane we impose reflecting boundary conditions at z = 0, while for

the other boundaries we impose either first order extrapolating boundary condi-

tions (matching the first derivative on the exterior ghost cells to that inside the

simulation grid) or Sommerfeld boundary conditions.
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Figure D.2: Convergence test: black hole puncture trajectory. Here we
show the radial position of one of the black hole punctures for a BBH with G = 1
and a scalar cloud of Mcloud/M = 10−5 for different resolutions. The black dashed
line represents the expected values for dx = 1/112 if the simulation had 4th order
convergence, which match the measured pink solid line and hence infer that the
decrease in the error is consistent with 4th order stencils used in the evolution
code.



Appendix E

Fifth force constraints

Figure E.1: Fifth force constraints. Summary of the 2σ constraints from
current experimental and observational data on Yukawa-like fifth forces across
a range of length scales and the corresponding mass scales. Different experiments
test different scales: here we include lab experiments [472–475], geophysical tests
[476, 477], results using the LAGEOS I & II satellites [476, 478], Lunar Laser
Ranging (LLR) with the Moon [479, 480], planetary constraints [481–484], and
Shapiro time delay with the Cassini mission [377, 485]. The latter constraint ex-
tends to massless fields ms = 0.
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[122] L. A. Ureña López, “Brief Review on Scalar Field Dark Matter Models,”
Front. Astron. Space Sci. 6 (2019) 47.

[123] L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, “Ultralight scalars as
cosmological dark matter,” Phys. Rev. D 95 no. 4, (2017) 043541,
arXiv:1610.08297 [astro-ph.CO].

[124] J. C. Niemeyer, “Small-scale structure of fuzzy and axion-like dark
matter,” Prog. Part. Nucl. Phys. 113 (2020) 103787, arXiv:1912.07064
[astro-ph.CO].

[125] W. Hu, R. Barkana, and A. Gruzinov, “Cold and fuzzy dark matter,”
Phys. Rev. Lett. 85 (2000) 1158–1161, arXiv:astro-ph/0003365.

[126] W. J. G. de Blok, “The Core-Cusp Problem,” Adv. Astron. 2010 (2010)
789293, arXiv:0910.3538 [astro-ph.CO].

[127] P. Sikivie, “The emerging case for axion dark matter,” Phys. Lett. B 695
(2011) 22–25, arXiv:1003.2426 [astro-ph.GA].

[128] H.-Y. Schive, T. Chiueh, and T. Broadhurst, “Cosmic Structure as the
Quantum Interference of a Coherent Dark Wave,” Nature Phys. 10 (2014)
496–499, arXiv:1406.6586 [astro-ph.GA].

[129] L. Hui, A. Joyce, M. J. Landry, and X. Li, “Vortices and waves in light
dark matter,” JCAP 01 (2021) 011, arXiv:2004.01188 [astro-ph.CO].

[130] A. Burkert, “Fuzzy Dark Matter and Dark Matter Halo Cores,” Astrophys.
J. 904 no. 2, (2020) 161, arXiv:2006.11111 [astro-ph.GA].

[131] H. Deng, M. P. Hertzberg, M. H. Namjoo, and A. Masoumi, “Can Light
Dark Matter Solve the Core-Cusp Problem?,” Phys. Rev. D 98 no. 2,
(2018) 023513, arXiv:1804.05921 [astro-ph.CO].

[132] N. Bar, D. Blas, K. Blum, and S. Sibiryakov, “Galactic rotation curves
versus ultralight dark matter: Implications of the soliton-host halo
relation,” Phys. Rev. D 98 no. 8, (2018) 083027, arXiv:1805.00122
[astro-ph.CO].
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