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Abstract

Turbine wake and local blockage effects are known to alter wind farm power produc-

tion in two different ways: (1) by changing the wind speed locally in front of each tur-

bine and (2) by changing the overall flow resistance in the farm and thus the so-called

farm blockage effect. To better predict these effects with low computational costs,

we develop data-driven emulators of the ‘local’ or ‘internal’ turbine thrust coefficient

C ∗
T as a function of turbine layout. We train the model using a multi-fidelity Gaussian

process (GP) regression with a combination of low (engineering wake model) and

high-fidelity (large eddy simulations) simulations of farms with different layouts and

wind directions. A large set of low-fidelity data speeds up the learning process and

the high-fidelity data ensures a high accuracy. The trained multi-fidelity GP model is

shown to give more accurate predictions of C ∗
T compared to a standard (single-

fidelity) GP regression applied only to a limited set of high-fidelity data. We also use

the multi-fidelity GP model of C ∗
T with the two-scale momentum theory (Nishino &

Dunstan 2020, J. Fluid Mech. 894, A2) to demonstrate that the model can be used to

give fast and accurate predictions of large wind farm performance under various

mesoscale atmospheric conditions. This new approach could be beneficial for improv-

ing annual energy production (AEP) calculations and farm optimization in the future.

K E YWORD S

blockage effects, Gaussian process, large eddy simulation, machine learning, turbine layout,
wake effects

1 | INTRODUCTION

The installed capacity of wind energy is projected to increase rapidly in the next decades. A major challenge in the optimization of wind farm

design is the accurate prediction of wind farm performance.1 Existing wind farm models struggle to make accurate predictions of wind farm power

production. This is partly because the ‘global blockage effect’ reduces the velocity upstream of large farms and hence the energy yield.2 It remains

unclear how global blockage should be modelled and this is the subject of a large-scale field campaign.3

Wind farms are typically modelled using engineering ‘wake’ models. These models predict the velocity deficit in the wakes behind turbines.4,5

To account for interactions between multiple turbines, the wake velocity deficits are superposed.6,7 Simple wake models can give predictions of

wind farm performance with very low computational cost (10�3 CPU hours per simulation1). However, wake models do not account for the
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response of the atmospheric boundary layer (ABL) to the wind farm, which is likely to be important for large wind farms.8 It has been found that

wake models compare poorly to large eddy simulations (LES) of large wind farms.9

Wind farms are also modelled in numerical weather prediction (NWP) models using farm parameterization schemes. In these parameteriza-

tions, farms are often modelled as a momentum sink and a source of turbulent kinetic energy.10 Wake interactions cannot be adequately

predicted using these schemes. A new scheme was proposed,11 which uses a correction factor to model turbine interactions. More recently, data-

driven approaches have been proposed12 to model these effects in wind farm parameterizations.

Data-driven modelling of wind farm flows is a promising new approach.13 Data from high-fidelity simulations with complex flow physics can

be used to make predictions with low computational cost. Recent studies have applied machine learning techniques to data from a single turbine

or from an existing wind farm. The data for these studies are from measurements,14–17 LES18 or Reynolds-Averaged Navier-Stokes (RANS)

simulations.19–21 A limitation of these approaches is that they are not generalizable to different turbine layouts unless they rely on wake superpo-

sition techniques to model farm flows. Another approach is modelling the effect of turbine layout using geometric parameters17 or using the lay-

out as a graph input to a neural network.22,23 However, these alternative approaches may struggle to fully capture the complex two-way

interaction with the ABL as it seems impractical to prepare a data set that covers the entire range of scales involved in wind farm flows.1

The problem of modelling wind farm flows can be split into ‘internal’ turbine-scale and ‘external’ farm-scale problems.24 The ‘internal’ prob-
lem is to determine a ‘local’ or ‘internal’ turbine thrust coefficient, C ∗

T , which represents the flow resistance inside a wind farm, that is, how the

turbine thrust changes with wind speed within the farm. Nishino25 proposed an analytical model for an upper limit of C ∗
T by using an analogy to

the classic Betz analysis. This analytical model is a function of turbine-scale induction factor but is independent of turbine layout and wind direc-

tion. Previous studies8,24,25 showed that C ∗
T is usually lower than the limit predicted by Nishino's model and can vary significantly with turbine lay-

out due to wake and turbine blockage effects.

The aim of this study is to develop statistical emulators of C ∗
T as a function of turbine layout and wind direction. The novelty of this approach

is that we are modelling the effect of turbine wake interactions on C ∗
T rather than turbine power. Both turbine-scale flows (e.g., wake effects) and

farm-scale flows (e.g., farm blockage and mesoscale atmospheric response) affect turbine power within a farm. Therefore, to create an emulator

of turbine power, either (1) a very large set of expensive data such as finite-size wind farm LES is needed, which covers a range of large-scale

atmospheric conditions or (2) the model would not be generalizable to different mesoscale atmospheric responses. An emulator of C ∗
T is however

applicable to different atmospheric responses modelled separately, following the concept of the two-scale momentum theory.8,24

In Section 2, we give the definitions of key wind farm parameters in the two-scale momentum theory.24 Section 3 summarizes the methodol-

ogy of the LES and wake model simulations, followed by the machine learning approaches to develop the emulators in Section 4. In Section 5, we

present the results from the trained emulators. These results are discussed in Section 6 and concluding remarks are given in Section 7.

2 | TWO-SCALE MOMENTUM THEORY

By considering the conservation of momentum for a control volume with and without a large wind farm over the land or sea surface, the following

non-dimensional farm momentum (NDFM) equation can be derived24:

C ∗
T

λ

Cf0
β2þβγ ¼M ð1Þ

where β is the farm wind-speed reduction factor defined as β�UF=UF0 (with UF defined as the average wind speed in the nominal wind farm-layer

of height HF , and UF0 is the farm-layer-averaged speed without the wind farm present); λ is the array density defined as λ� nA=SF (where n is the

number of turbines in the farm, A is the rotor swept area and SF is the farm footprint area); C ∗
T is the internal turbine thrust coefficient defined as

C ∗
T �Pn

i¼1Ti=
1
2ρU

2
FnA (where Ti is thrust of turbine i in the farm and ρ is the air density); Cf0 is the natural friction coefficient of the surface

defined as Cf0 �hτw0i=1
2ρU

2
F0 (where τw0 is the bottom shear stress without the farm present); γ is the bottom friction exponent defined as γ�

logβðhτwi=τw0Þ (where hτwi is the bottom shear stress averaged across the farm); M is the momentum availability factor defined as

M¼ Momentum supplied by the atmosphere to the farm site with turbines
Momentum supplied by the atmosphere to the farm site without turbines

: ð2Þ

noting that this includes pressure gradient forcing, Coriolis force, net injection of streamwise momentum through top and side boundaries and

time-dependent changes in streamwise velocity.24 The height of the farm-layer, HF , is used to define the reference velocities UF and UF0.

Equation (1) is valid so long as the same of HF is used for both the internal and external problem. HF is typically between 2Hhub and 3Hhub
8 (where

Hhub is the turbine hub-height) and in this study we use a fixed definition of HF ¼2:5Hhub.
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Patel26 used an NWP model to demonstrate that, for most cases, M varied almost linearly with β (for a realistic range of β between 0.8 and

1). Therefore, M can be approximated by

M¼1þζð1�βÞ ð3Þ

where ζ is the ‘momentum response’ factor or ‘wind extractability’ factor. Patel26 found ζ to be time-dependent and vary between 5 and 25 for a

typical offshore site (note that ζ¼0 corresponds to the case where momentum available to the farm site is assumed to be fixed, i.e., M¼1).

Nishino25 proposed an analytical model for C ∗
T given by

C ∗
T ¼4αð1�αÞ¼ 16C0

T

ð4þC0
TÞ2

ð4Þ

where α is the turbine-scale wind speed reduction factor defined as α�UT=UF (UT is the streamwise velocity averaged over the rotor swept area)

and C0
T � T=1

2ρU
2
TA is a turbine resistance coefficient describing the turbine operating conditions.

For a given farm configuration at a farm site (i.e., for given set of C ∗
T , λ, Cf0, γ and ζ), the farm wind-speed reduction factor β can be calculated

using Equation (1). The (farm-averaged) power coefficient Cp is defined as Cp �
Pn

i¼1Pi=
1
2ρU

3
F0nA (Pi is power of turbine i in the farm). Using the

calculated value of β, Cp can be calculated by using the expression,

Cp ¼ β3C ∗
p ð5Þ

where C ∗
p is the (farm-averaged) ‘local’ or ‘internal’ turbine power coefficient defined as C ∗

p �Pn
i¼1Pi=

1
2ρU

3
FnA.

3 | WIND FARM SIMULATIONS

In this study, we model wind farms as arrays of actuator discs (or aerodynamically ideal turbines operating below the rated wind speed). This is

because, in real wind farms, the effects of turbine wake interactions on the farm performance are most significant when they operate below the

rated wind speed. The ‘internal’ thrust coefficient C ∗
T is an important wind farm parameter, which includes the effect of turbine interactions

(including both wake and local blockage effects). In this study, we will be modelling the effect of turbine layout on C ∗
T for aligned turbine layouts

with various wind directions and a fixed turbine resistance of C0
T ¼1:33. We chose C0

T ¼1:33 because it leads to a turbine induction factor of 1/4,

which is close to a typical value for modern large wind turbines. As such we will be considering

C ∗
T ¼ fðSx,Sy ,θÞ ð6Þ

where Sx is the turbine spacing in the x direction, Sy is the turbine spacing in the y direction and θ is the wind direction relative to the x direction

(see Figure 1A). However, the true function C ∗
T cannot be easily evaluated so we will instead investigate C ∗

T using computer codes. One computer

code we will use is LES (see Section 3.1) to estimate C ∗
T

F IGURE 1 Design of numerical experiments: (A) input parameters and (B) maximin design of LES.
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C ∗
T,LES ¼ fLESðSx,Sy ,θÞ: ð7Þ

We assume that the function fLES is close to the true function f because of the accuracy of LES to model wind farm flows. We will also use a

wake model (see Section 3.2) to provide cheap approximations of C ∗
T according to

C ∗
T,wake ¼ fwakeðSx,Sy ,θÞ: ð8Þ

Engineering problems are often investigated using complex computer models. Evaluating the output of such computer models for a given

input can be very computationally expensive. Therefore, a common objective is to create a cheap statistical model of the expensive computer

model; this is commonly known as emulation of computer models.27,28 In this study, we aim to develop a statistical emulator, which can cheaply

emulate fLES.

The emulators will only be valid for aligned layouts of wind turbines and for a given turbine resistance (here we use C0
T ¼1:33). We consider

the input parameters for a realistic range of turbine spacings1: Sx � ½5D,10D�, Sy � ½5D,10D� and θ� ½0o,45o� where D is the diameter of the turbine

rotor swept area. In this study, D is set as 100 m and the turbine hub height is also 100 m. We only need to consider wind directions of

θ� ½0o,45o� because of symmetry in the aligned turbine layouts. If θ is negative then the turbine layout given by ðSx,Sy ,θÞ is exactly the same as

ðSx,Sy ,�θÞ. When θ >45 ∘ , then ðSx,Sy ,θÞ and ðSy ,Sx,90o�θÞ give identical layouts.

In this study, we build several emulators to predict fLES. The models are trained using data from low-fidelity (wake model) and high fidelity

(LES) wind farm simulations. One evaluation of C ∗
T,wake takes approximately 130 s on a single CPU and C ∗

T,LES requires around 400 CPU hours on

a supercomputer. We use a space filling maximin design29,30 to select training points in the parameter space. The maximin algorithm selects

points, which maximizes the minimum distance to other points and to the boundaries. This provides a good coverage of the domain, which

ensures that the emulators can give good predictions across the whole of the domain.31 Figure 1B shows the LES training points in the

parameter space.

3.1 | Large eddy simulations

This study uses the data from 50 high-fidelity (LES) simulations of wind farms published in a previous study.8 Here, we give a brief summary of

the LES methodology. The LES models a neutrally stratified atmospheric boundary layer over a periodic array of actuator discs, which face the

wind direction θ and exert uniform thrust. The resolution is 24.5 m in the horizontal directions (4 points across the rotor diameter) and 7.87 m in

the vertical. This is a coarse horizontal resolution; however, using a correction factor for the turbine thrust32 makes the C ∗
T,LES values insensitive to

horizontal resolution.8 For all simulations, the vertical domain size was fixed at 1 km and the horizontal extent varied with turbine layout but was

at least 3.14 km. The horizontal boundary conditions were periodic (essentially an infinitely-large wind farm). The bottom boundary used a no-slip

condition with the value of eddy viscosity specified following the Monin-Obukhov similarity theory for a surface roughness length of

z0 ¼1�10�4m. The top boundary had a slip condition with zero vertical velocity. The flow was driven by a pressure gradient forcing, which was

constant and in the direction θ throughout the domain. Figure 2 shows the instantaneous and time-averaged hub height velocities from one wind

farm LES. See the original paper8 for further details of the LES.

F IGURE 2 LES (A) instantaneous and (B) time-averaged flow fields over a periodic turbine array (Sx=D¼7:59, Sy=D¼5:47 and θ¼37:6 ∘ ).
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3.2 | Wake model simulations

Wake models are a cheap low-fidelity approach to modelling wind farm aerodynamics compared to expensive high-fidelity LES simulations.1 We

use the wake model proposed by Niayafar and Porté-Agel33 to evaluate C ∗
T,wake as a cheap approximation of C ∗

T . We use the Python package

PyWake34 to implement the wake model. The turbine thrust coefficient CT is needed as an input for the wake model. We use the value of C ∗
T

predicted by Equation (4) as the value of CT . For the turbine operating conditions used in this study (C0
T ¼1:33), the wake model has CT equal to

0.75 for all turbines. To model actuator discs, we consider a hypothetical turbine, which has a constant CT for all wind speeds. We calculate

C ∗
T,wake for a single turbine at the back of a large farm (marked X in Figure 3). The farm simulated using the wake model is 10 km long in the

streamwise direction and 4 km long in the cross-streamwise direction. The farm size was chosen so that C ∗
T no longer varied with increasing farm

size. The wake growth parameter is calculated using k ∗ ¼0:38Iþ0:004 where I is the local streamwise turbulence intensity. The local streamwise

turbulence intensity is estimated using the model proposed by Crespo and Hernández.35 The background turbulence intensity (TI) is set as a typi-

cal value of 10%.

The velocity incident to the turbine is calculated by averaging the velocity across the disc area. We use a 4�3 cartesian grid with Gaussian

quadrature coordinates and weights on the disc to average the velocity. The disc-averaged velocity, UT is then calculated by multiplying the aver-

aged incident velocity by ð1�aÞ where a is the turbine induction factor set by the value of C0
T (using the expression a¼C0

T=ð4þC0
TÞ). To calculate

the farm-average velocity, UF , we average the velocity across a volume around the single turbine. The volume has dimensions of Sy in the y direc-

tion, Sx in the x direction and 250 m in the z direction (the height of the nominal farm layer used in the previous LES study8). To calculate the aver-

age velocity, we discretize the volume into 200 points in the horizontal directions and 20 points in the vertical. This was sufficient for the

calculation of C ∗
T,wake to not vary with further discretization. Figure 3 shows an example of the farm layout for the wake model simulations.

4 | MACHINE LEARNING METHODOLOGY

4.1 | Gaussian process regression

We will use Gaussian process (GP) regression36 to build statistical emulators of fLES. A Gaussian process is a stochastic process g�GPðm,kÞ
described by a mean function mðvÞ¼E½gðvÞ� and a covariance function kðv,v0Þ ¼E½ðgðvÞ�mðvÞÞðgðv0Þ�mðv0Þ�. In our case, v¼ðSx,Sy ,θÞ. We will

use such a stochastic process as a model of fLES, the true mapping from v to C ∗
T,LES. Each realization from this process will therefore be a function,

which could plausibly represent this mapping. The mean function represents the expected output value at an input v¼ðSx,Sy ,θÞ. The covariance

function gives the covariance between output values at v and v0. Examples of covariance functions include squared exponential, rational quadratic

and periodic functions.36 Different covariance functions will give differently shaped GPs. For example, the squared exponential covariance func-

tion will give very smooth GPs whereas the periodic function will give GPs with a periodic structure. Other types of structure, for example, sym-

metry, can also be encoded in the covariance function. Therefore, the expected shape (e.g., smoothness) of the expected relationship and any

properties (e.g., discontinuities or symmetries) need to be considered when choosing a covariance function for GP regression.

Let V¼ðv1,…,vnÞT be a collection of design points then mV ¼ðmðv1Þ,…,mðvnÞÞT is the mean vector and kVV ¼ðkðvi,vjÞÞ is the covariance

matrix. We will start by positing a GP model with mean m and covariance k (called the ‘prior GP’), then condition this GP on LES observations; the

F IGURE 3 Example of wind farm layout for wake model simulations.
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outcome is a new GP (called the ‘posterior GP’). This gives the posterior distribution gjV,C ∗
T,LES �GPðmσ2 ,kσ2 Þ. mσ2 is the posterior mean function

given by mσ2 ðvÞ¼mðvÞþkvVðkVV þσ2In�nÞ�1ðC ∗
T,LES�mV ) where kvV ¼ðkðv,v1Þ,…,kðv,vnÞÞ and In�n is the identity matrix of size n. The posterior

mean function mσ2 is used to make predictions at v¼ðSx,Sy ,θÞ. The posterior covariance function kσ2 quantifies the uncertainty in our prediction

at v¼ðSx,Sy ,θÞ. The posterior covariance function is given by kσ2 ðv,v0Þ ¼ kðv,v0Þ�kvVðkVV þσ2In�nÞ�1
kVv0 .

Often in GP regression a zero prior mean is used. However, using an informative prior mean can improve the accuracy of the trained model.

By using a prior mean, many of the trends in fLES can be incorporated into our model prior to making expensive evaluations of C ∗
T,LES. Therefore,

after training our model will likely better describe the true relationship between Sx,Sy ,θ and fLES. In this study, we will use both C ∗
T,wake and the ana-

lytical model of C ∗
T as the prior mean for the standard GP regression. For the wake model prior mean, we also vary the specified ambient TI input

parameter.

We expect fLES to be a smooth function of input variables Sx, Sy and θ, and to vary more rapidly with θ than Sx or Sy . Therefore, we will use an

anisotropic squared-exponential covariance function,

kðv,v0Þ ¼ σ2f exp �ðSx�S0xÞ2
2l21

 !
exp �ðSy�S0yÞ2

2l22

 !
exp �ðθ�θ0Þ2

2l23

 !
ð9Þ

where σ2f >0 is the signal variance hyperparameter and li >0 is the lengthscale hyperparameter for each dimension. This is also called an ARD

(automatic relevance detection) kernel. If we consider v¼ v0 then we can see that σ2f determines the variance of gðvÞ. Therefore, σ2f determines

the prior uncertainty the model has about the value of gðvÞ. As the lengthscale hyperparameter li gets smaller then kðv,v0Þ decreases (for v≠ v0).

Equally if li increases then kðv,v0Þ will also increase. A GP with a small li will therefore vary more rapidly across the parameter space in the ith

dimension.

Due to numerical issues associated with the matrix inversion/linear system solve operations in the formulae for the posterior GP, it is com-

mon to add a nugget σ2 > 0 to the kernel matrix. The hyperparameters σ2f and li are selected automatically during the fitting process by maximizing

the log marginal likelihood.36 This approach selects the model that maximizes the fit to the data.

Figure 4 shows the impact of the hyperparameters in an example GP regression setting (using the squared exponential covariance function).

The mean function and 95% credible interval (�1:96 times the standard deviation) prior to fitting are shown in Figure 4A with 3 GPs drawn from

F IGURE 4 Demonstration of basic GP regression: Panel (A) shows the prior mean and covariance function prior to fitting with 3 GPs drawn
from the distribution shown in color; panel (B) shows the effect of decreasing the lengthscale hyperparameter; panel (C) shows the effect of
variance hyperparameter; and panel (D) shows the posterior mean and covariance functions.
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the distribution (colored lines). The effect of decreasing the lengthscale hyperparameter li is shown in Figure 4B. The prior mean and 95% credible

interval are unchanged however the example GPs drawn vary more rapidly because of the shorter lengthscale. Figure 4C shows the same setup

as Figure 4A but with a smaller value of σ2f . The example GPs still vary slowly but the magnitude of the variations is now smaller. Figure 4D shows

the GPs conditioned on observations with hyperparameters selected by maximizing the log marginal likelihood.

4.2 | Non-linear multi-fidelity Gaussian process regression

In many applications there are several computational models available. These models can have varying accuracies and computational costs. The

models that are more computationally expensive typically give more accurate predictions. The GP regression framework can be extended to com-

bine information from low and high-fidelity models.37 This type of modelling uses the low-fidelity observations to speed up the learning process

and the high-fidelity observations to ensure accuracy. In our scenario, we will combine evaluations of from a low-fidelity (C ∗
T,wake) and a high-

fidelity (C ∗
T,LES) model. Note that for the multi-fidelity models in this study we set the ambient TI to 10% for the wake model and use a zero prior

mean. We will keep the number of high-fidelity training points fixed at 50 and we will vary the number of low-fidelity training points used.

We combine information from our high and low-fidelity models using a nonlinear information fusion algorithm.38 The framework is based on

the autoregressive multi-fidelity scheme given by:

ghighðvÞ¼ ρðglowðvÞÞþδðvÞ ð10Þ

where glowðvÞ is a model with a GP denoted fwake and ghighðvÞ is a model with a GP denoted fLES. ρ is a model with a GP that maps the low-fidelity

output to the high-fidelity output and δðvÞ is a model with a GP, which is a bias term. The non-linear multi-fidelity framework can learn non-linear

space-dependent correlations between models of different accuracies. To reduce the computational cost and complexity of implementation, the

autoregressive scheme given by Equation (10) is simplified. Firstly, the GP prior glowðvÞ is replaced by the GP posterior glow, ∗ ðvÞ and secondly the

GPs ρ and δ are assumed to be independent. Equation (10) can then be summarized as

ghighðvÞ¼ hhighðv,glow, ∗ ðvÞÞ ð11Þ

where hhigh is a model with a GP that has both v and glow, ∗ ðvÞ as inputs. More details of hhigh and the implementation of the multi-fidelity frame-

work are given in Perdikaris et al.38

Figure 5 shows an example of how a multi-fidelity GP can outperform a standard GP regression. We implement the non-linear multi-fidelity

framework using the ‘emukit’ package.39 We first maximize the log marginal likelihood whilst keeping the Gaussian noise variance fixed at a low

value of 1�10�6. The fitting process is then repeated whilst allowing the Gaussian noise variance to be optimized too. This is to prevent a high

noise local optima from being selected.

F IGURE 5 Demonstration of (A) basic GP regression and (B) multi-fidelity GP regression. In this example, fðxÞ¼1þ sinð6xÞ for the high-
fidelity data and fðxÞ¼�0:5þ0:5sinð6xÞ for the low-fidelity data.
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5 | RESULTS

In this study, we build various statistical emulators of fLES using different techniques and compare the performance. A summary of the techniques

is shown in the list below:

1. Standard Gaussian process regression (see Section 4.1)

a. GP-analytical-prior: Gaussian process using analytical model (Equation 4) prior mean

b. GP-wake-TI10-prior: Gaussian process using wake model (Section 3.2) with ambient TI=10% prior mean

c. GP-wake-TI1-prior: Gaussian process using wake model with ambient TI=1% prior mean

d. GP-wake-TI5-prior: Gaussian process using wake model with ambient TI=5% prior mean

e. GP-wake-TI15-prior: Gaussian process using wake model with ambient TI=15% prior mean

2. Non-linear multi-fidelity Gaussian process regression (see Section 4.2)

a. MF-GP-nlow500: multi-fidelity Gaussian process using 500 low-fidelity training points

b. MF-GP-nlow250: multi-fidelity Gaussian process using 250 low-fidelity training points

c. MF-GP-nlow1000: multi-fidelity Gaussian process using 1000 low-fidelity training points

The code and data used to produce the results in this section is available open-access at the following GitHub repository: https://github.

com/AndrewKirby2/ctstar_statistical_model.

5.1 | Performance of standard GP regression

We first assessed the accuracy of the standard GP models (Section 4.1) by performing leave-one-out cross-validation (LOOCV). This is a method

of estimating the accuracy of a statistical model when making predictions on data not used to train the model. We trained our model on 49 of the

50 training points and then calculated the prediction accuracy for the single high-fidelity data point, which is excluded from the training set. This

is then repeated for all data points in turn, and we took the average accuracy as an estimate of the model test accuracy. The standard GP models

were implemented using the ‘GPy’ package.40

The standard GP gave accurate predictions of fLES with average errors of less than 2%. Table 1 shows the accuracy of the standard GP models

compared to the analytical and wake models. We calculated the errors by using the expression jmσ2 �C ∗
T,LESj=0:75 where mσ2 is the posterior mean

function of the emulator. The reference value for C ∗
T of 0.75 was chosen because this is the prediction from the analytical model. Both GP models

give similar maximum errors of approximately 6%. Using the wake model as a prior mean gave a lower mean absolute error of 1.26%. The GP

models reduced the average prediction error and significantly reduced the maximum error compared to the wake model and analytical model of

C ∗
T .

The model GP-wake-TI10-prior has a high degree of confidence when making predictions in regions of the parameter space. Figure 6 shows

the square root of the posterior covariance function kσ2 , which quantities the uncertainty of the emulator. The uncertainty is uniform throughout

the parameter space with regions of slightly higher uncertainty at θ¼0 ∘ and 45 ∘ .

We also assessed the sensitivity of the model accuracy to the ambient TI used in the wake model prior mean. Figure 7 shows the impact of

ambient TI on the wake model prior mean and the fitted GP model. Increasing the ambient TI increased the value of C ∗
T,wake. This is because of the

enhanced wake recovery behind wind turbines. Increasing the ambient TI in the wake model results in C ∗
T,wake overpredicting C ∗

T,LES. The MAE from

the LOOCV procedure for each fitted GP is shown in the bottom right corner.

The fitted GPs became more accurate when the wake model ambient TI was increased. Increasing the ambient TI for the wake model causes

the wakes to recover faster. The wakes become shorter in the streamwise direction and wider in the spanwise direction. As such, C ∗
T,wake becomes

less sensitive to the turbine layout. When an ambient TI of 1% and 5% is used for the wake model, C ∗
T,wake is more sensitive to turbine layout than

C ∗
T,LES (Figure 7A,B). When the ambient TI is increased to 10% and above, the relationship between C ∗

T,wake and C ∗
T,LES becomes simpler

(Figure 7C,D). This seems to explain why the fitted GPs become more accurate.

TABLE 1 Accuracy of models for C ∗
T prediction.

Model MAE (%) Maximum error (%)

GP-analytical-prior 1.87 6.09

GP-wake-TI10-prior 1.26 6.11

Analytical model 5.26 22.0

Wake model (TI=10%) 4.60 9.28
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5.2 | Performance of non-linear multi-fidelity GP regression

We then assessed the accuracy of the multi-fidelity GP models (Section 4.2). All models used the 50 high-fidelity (C ∗
T,LES) training points and a vary-

ing number of low-fidelity (C ∗
T,wake) training points (using an ambient TI of 10% for C ∗

T,wake). The results from LOOCV are shown in Table 2. For the

LOOCV, we train our model on 49 out of the 50 high-fidelity data points and all low-fidelity data points. Then we average the error in predicting

F IGURE 6 Posterior variance function of GP-wake-TI10-prior model.

F IGURE 7 Sensitivity of fitted GP models to the ambient TI chosen for wake model prior means.
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the high-fidelity data point left of the training set and repeat this in turn for data points. Increasing the number of low-fidelity training points from

250 to 500 reduced the mean and maximum error. However, increasing this to 1000 low-fidelity training points did not increase accuracy and

increased the fitting and prediction time. This is because the number of high-fidelity training points is fixed. There is a threshold where the model

of the relationship between fLES and fwake, denoted ρ, limits the final accuracy of the emulator of fLES.

The posterior mean mσ2 of glowðvÞ is an emulator of fwake and ghighðvÞ is an emulator of fLES. Figure 8 gives the predictions from the posterior

mean of ghighðvÞ (for MF-GP-nlow500). The lowest mσ2 values were for a wind direction of θ¼0 ∘ . mσ2 increased rapidly with θ reaching a maxi-

mum of slightly over 0.75 at θ¼10 ∘ . For large values of θ (above θ¼25 ∘ ), there were local minima in mσ2 , which appear in Figure 8 as diagonal

strips of low mσ2 values. The main diagonal strip occurs along the line of Sy ¼ Sx tanðθÞ. There are two smaller strips either side of with positions

given by Sy ¼2tanðθÞ and Sy ¼0:5tanðθÞ (this is discussed further in Section 6).

The uncertainty the model MF-GP-nlow500 has in predicting fLES is shown in Figure 9. The model uncertainty is uniform throughout the

parameter space with slightly higher values at θ¼0 ∘ and 45 ∘ . Compared to the posterior variance of GP-wake-TI10-prior (shown in Figure 6) the

uncertainty is lower. By incorporating information from C ∗
T,wake, the multi-fidelity GP model has more confidence about predicting fLES.

The prediction errors from the LOOCV (for MF-GP-nlow500) are shown in Figure 10. The box plot of prediction errors in Figure 10A shows

that this model had no significant bias whereas both the wake and analytical models systemically overestimated C ∗
T,LES. Figure 10B–D shows that

for the statistical model there appears to be no part of the parameter space that had larger errors.

The multi-fidelity approach used in this study builds a statistical model of both the low-fidelity (fwake) and high-fidelity (fLES) model. We can

use the posterior means of glowðvÞ and ghighðvÞ to see the differences between the wake model and LES. The posterior mean for both models are

shown in Figure 11. For the wake model, the change in mσ2 with θ is greater than for the LES (especially between θ¼0 ∘ and 10 ∘ ). For larger

values of θ, there is a larger difference in mσ2 between waked and unwaked layouts for the low-fidelity model compared to the high-fidelity one.

This suggests than the wake model is more sensitive to changes in wind directions than the LES.

TABLE 2 Performance of the multi-fidelity Gaussian process models.

Model MAE (%) Maximum error (%) Training time (s) Prediction time (s)

MF-GP-nlow250 1.46 7.12 6.15 0.00157

MF-GP-nlow500 0.828 3.75 9.73 0.00167

MF-GP-nlow1000 0.866 3.55 26.8 0.00236

F IGURE 8 Posterior mean function for ghighðvÞ of MF-GP-nlow500.
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5.3 | Prediction of wind farm performance

We use the predicted values of C ∗
T,LES from the emulators to predict the power output of wind farms under various mesoscale atmospheric condi-

tions, following the concept of the two-scale momentum theory. We predict the (farm-averaged) turbine power coefficient Cp using C ∗
T,LES predic-

tions from MF-GP-nlow500. We call this prediction of farm performance Cp,model. Firstly, we use the C ∗
T,LES prediction from the LOOCV procedure

as C ∗
T in Equation (1) to calculate β for a given value of wind extractability ζ. We substitute this value of β into the expression Cp ¼ β3C ∗

T

3
2CT0 �

1
2

F IGURE 9 Posterior variance function for ghighðvÞ of MF-GP-nlow500.

F IGURE 10 Comparison of LOOCV prediction errors (%) for different models (A) and LOOCV prediction error (%) of MF-GP-nlow500
against input parameters (B) Sx=D, (C) Sy=D, and (D) θðoÞ. Note that for the box plot in (A) the orange line is the median LOOCV error and the box
is the interquartile range of LOOCV error.
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(which is only valid for actuator discs) to calculate Cp,model. We compare the value of Cp,model with the turbine power coefficient recorded in the

LES, Cp,LES. The effect of the coarse LES resolution on turbine thrust (and hence also ABL response and Cp) has already been corrected.8 The LES

was performed with periodic horizontal boundary conditions and a fixed momentum supply, that is, ζ¼0. However, the Cp,LES has also been

adjusted for a given ζ by scaling the velocity fields assuming Reynolds number independence.8

Similarly, the analytical model of C ∗
T can be used to give a theoretical prediction of wind farm performance called Cp,Nishino,

8 which is given by

Cp,Nishino ¼ 64C0
T

ð4þC0
TÞ3

�ζþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2þ4 16C0

T

ð4þC0
T Þ2

λ
Cf0

þ1

� �
ð1þζÞ

s

2 16C0
T

ð4þC0
T Þ2

λ
Cf0

þ1

� �
2
66664

3
77775

3

: ð12Þ

We will compare the accuracy of both Cp,model and Cp,Nishino in predicting Cp,LES.

Both Cp,model and Cp,LES are shown in Figure 12 for a realistic range of wind extractability factors, along with the results from Cp,Nishino

(Equation 12). Cp,Nishino provides an approximate upper limit of farm-averaged Cp as it predicts very well the effects of array density and large-scale

atmospheric response. The statistical model accurately predicts the effect of turbine layout on farm performance, which becomes more important

with larger ζ values. As ζ increases, there is a larger difference between Cp,LES and Cp,Nishino. Also, Cp,model becomes slightly less accurate when ζ

increases.

Table 3 shows the average prediction errors of Cp,model and Cp,Nishino. We quantified the mean absolute error using two different reference

powers. Using Cp,LES as the reference power, Cp,Nishino had an error of around 5% and the error increases with ζ. The mean absolute error of

Cp,model was typically less than 1.5% and this decreased slightly as ζ increases (due to the reference power Cp,LES increasing). We also use the

power of an isolated ideal turbine, Cp,Betz, as a reference power. Cp,Betz is calculated using the actuator disc theory with the expression Cp,Betz ¼
64C0

T=ð4þC0
TÞ3 (note that in this study C0

T ¼1:33, and hence, Cp,Betz ¼0:563). In this case, the mean absolute error increased with ζ for both

Cp,model and Cp,Nishino. However, the average prediction error of Cp,model remained below 0.65%.

6 | DISCUSSION

Data-driven modelling of the internal turbine thrust coefficient C ∗
T is a novel approach to modelling turbine wake interactions. Data-driven models

of wind farm performance typically focus on predicting the power output, which, however, depends on flow physics across a wide range of scales.

F IGURE 11 Posterior mean function of MF-GP-nlow500 for different values of θ for (A) to (E) ghighðvÞ and (F) to (J) glowðvÞ.
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Current data-driven approaches are either not generalizable to different atmospheric responses, or would require a very large set of expensive

training data, such as finite-size wind farm LES data. Data-driven models of C ∗
T captures the effects of turbine wake interactions, whilst also being

applicable to different atmospheric responses (following the concept of the two-scale momentum theory).

The statistical emulator of C ∗
T developed in this study was able to predict the farm power Cp of Kirby et. al.8 with an average error of less than

0.65%. The high accuracy and very low computational cost of this approach shows the potential of this approach for modelling turbine wake inter-

actions. It has several advantages over traditional approaches using the superposition of wake models. Information from turbulence-resolving LES

is included, which ensures a high accuracy. It will also be more advantageous as wind farms become larger because wake models struggle to

F IGURE 12 Comparison of Cp predictions with LES results for a realistic range of ζ values.

TABLE 3 Comparison of models for Cp prediction.

1
50

P50
i¼1jCp,i�Cp,LESj=Cp,LES

1
50

P50
i¼1jCp,i�Cp,LESj=Cp,Betz

ζ Cp,Nishino Cp,model ζ Cp,Nishino Cp,model

0 2.82% 2.15% 0 0.142% 0.108%

5 4.38% 1.48% 5 0.954% 0.338%

10 5.16% 1.35% 10 1.67% 0.459%

15 5.66% 1.30% 15 2.24% 0.542%

20 6.02% 1.26% 20 2.72% 0.601%

25 6.30% 1.24% 25 3.11% 0.648%
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capture the complex multi-scale flows physics, which are important for large farms. The statistical model of C ∗
T may therefore allow fast and accu-

rate predictions of wind farm performance.

All emulators developed in this study gave substantially better predictions of C ∗
T,LES compared to the analytical and wake models. Both the

mean and maximum prediction errors were reduced by the emulators. The standard GP regression approach had a mean prediction error of

1.26% and maximum error of approximately 6%. The accuracy depends on the size of the LES data set and could be further decreased with a

larger training set. The multi-fidelity GP approach gave more accurate predictions of C ∗
T,LES compared to the standard GP regression. This is

because non-linear information fusion algorithm has incorporated information from many low-fidelity data points to improve the emulator of the

high-fidelity (LES) model. This approach has the advantage that, unlike the standard GP regression approach, it is not necessary to evaluate the

prior mean before making a prediction. Therefore, to predict C ∗
T it is only necessary to evaluate the posterior mean of the high-fidelity emulator

for a specific turbine layout.

The shape of the posterior mean in Figure 8 gives insights into the physics of turbine wake interactions. This is because C ∗
T,LES is low when a

layout has a high degree of turbine wake interactions. For the turbine operating conditions used, C ∗
T,LES is close to 0.75 when a layout has a small

degree of wake interactions. Figure 8A shows C ∗
T,LES when the wind direction is perfectly aligned with the rows of turbines (θ¼0). This gives wind

farms with a high degree of wake interactions that results in low C ∗
T,LES values. For θ¼0 ∘ , increasing Sx=D increases C ∗

T because there is a larger

streamwise distance between turbines for the wakes to recover. When the cross-streamwise spacing (Sy=D) is increased the degree of wake inter-

actions increases, that is, C ∗
T,LES decreases. This is because there is a lower array density, which results in a lower turbulence intensity within the

farm and hence slower wake recovery. Yang41 found that increasing the cross-streamwise spacing in infinitely-large wind farms increased the

power of individual turbines and concluded that this was due to reduced wake interactions. However, the increase in turbine power found by

Yang41 may be also explained by a faster farm-averaged wind speed caused by a reduced array density rather than reduced wake interactions.

When the wind direction θ increases, C ∗
T,LES increases to a maximum of just over 0.75 at θ¼10 ∘ (Figure 8C). This result agrees qualitatively

with another study42 in which it was found that the maximum farm power was produced by an intermediate wind direction. When θ increases

above 20 ∘ regions of low C ∗
T,LES appear diagonally (see Figure 8F–J). The regions of low C ∗

T,LES are centered on the surfaces given by

Sy ¼2Sx tanðθÞ, Sy ¼ Sx tanðθÞ and Sy ¼0:5Sx tanðθÞ. These regions correspond to turbines being aligned along different axes throughout the farm

(see Figure 13). There are longer streamwise distance between turbines for these arrangements (compared to θ¼0 ∘ ) and so the C ∗
T,LES values are

higher than for θ¼0 ∘ .

The accuracy of the statistical emulators could be further improved in future studies. Both the standard and multi-fidelity GP models can be

improved by adding more evaluations of C ∗
T,LES. From Table 2, the accuracy of the multi-fidelity GP models did not improve once we used more

than 500 C ∗
T,wake evaluations. This shows that the error in predicting C ∗

T,LES for MF-GP-nlow500 is not due to the model of fwake. Instead, the error

arises from the learnt relationship between fwake and fLES.

The statistical emulators developed are not applicable to all wind farms because of the limited nature of our data set. A limitation of the

developed model is that it is only applicable to farms with perfectly aligned layouts. It should also be noted that our model was trained on data

from simulations of a neutrally stratified boundary layer. Therefore, a larger LES data set with an extended parameter space would be required to

account for the effect of atmospheric stability on wake interactions and the resulting C ∗
T . Another limitation of our model is that it assumes all tur-

bines have the same resistance coefficient C0
T . It is likely that this condition can be strictly satisfied only in the fully developed region of a large

farm where the wind speed does not change in the streamwise or cross-streamwise directions.

Although we considered only actuator discs in this study for demonstration, the proposed approach using a data-driven model of CT ∗ can be

applied to power prediction of real turbines as well in future studies. In this study, we calculate Cp,model using the expression Cp,model ¼ β3C ∗
T

3
2C0

T
�1

2.

This assumes that the relationship between C ∗
p and C0

T is given by C ∗
p ¼C ∗

T

3
2C0

T
�1

2, which is only valid for actuator discs. For real turbines, the rela-

tionship between C ∗
p and C0

T can be calculated using BEM theory43 according to the turbine design and operating conditions (noting that the tur-

bine induction factor can still be estimated as a¼C0
T=ð4þC0

TÞ). Cp,model can then be calculated using Equation (5) with β found using Equation (1).

F IGURE 13 Alignment of turbines for different combinations of Sx, Sy and θ.
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However, for a data-driven model of C ∗
T to be applicable to real turbines, it will be necessary to model the impact of a variable C0

T rather than

assuming a fixed C0
T value as in this study.

7 | CONCLUSIONS

In this study, we proposed a new data-driven approach to modelling turbine wake interactions and resulting flow resistance in large wind farms.

We developed statistical emulators of the farm-internal turbine thrust coefficient C ∗
T,LES as a function of turbine layout and wind direction. C ∗

T rep-

resents the flow resistance within a wind farm and reflects the characteristics of the turbine-scale flows including wake and turbine blockage

effects. We developed several emulators using both standard GP regression and multi-fidelity GP regression. The standard GP was trained using

data from 50 infinitely-large wind farm LES (and using a low-fidelity wake model as a prior mean). The multi-fidelity GP was trained using data

from both LES and wake model simulations. We estimated the test accuracy of the model by performing leave-one-out cross-validation and

assessed the error in predicting C ∗
T,LES. All emulators had a mean test error of less than 2% for predicting C ∗

T,LES. The multi-fidelity GP gave the best

performance with a mean prediction error of 0.849% and maximum prediction error of 3.78% with no bias for under or over-prediction. This is

low compared to the mean error of the wake model (4.60%) and analytical C ∗
T model (5.26%), which both had a bias for overpredicting C ∗

T,LES.

We used an emulator of C ∗
T,LES to make predictions of wind farm performance under various mesoscale atmospheric conditions (characterized

by the wind extractability factor ζ) using the two-scale momentum theory.24 Our predictions of farm power production had an average error of

less than 1.5% under realistic wind extractability scenarios compared to the LES. When the error in power prediction is expressed relative to the

power of an isolated ideal turbine the average prediction error is less than 0.7%. We also used a previously proposed analytical model of C ∗
T
25 to

predict farm power output with an average error of less than 3.5% (with the power of an isolated turbine as the reference power). The analytical

model correctly predicts the trends in farm performance with array density under different scenarios of large-scale atmospheric response,

although it tends to overpredict the power where turbine wake interactions are important. Using statistical emulators of C ∗
T is a new approach to

modelling turbine wake interactions and flow resistance within large wind farms. The approach can be extended in future studies by increasing

the size of the training data set, for example, to account for the effects of C0
T and atmospheric stability conditions on C ∗

T . The very low computa-

tional cost and high accuracy of the model could be beneficial for future wind farm optimization.
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APPENDIX A: ESTIMATED HYPERPARAMETERS

In this section, we present the estimated hyperparameters for each model in Section 5. The hyperparameters for the standard GP models are

shown in Table A1. Unlike the LOOCV procedure in Section 5, the models are fitted to all 50 LES data points C ∗
T,LES. The hyperparameter values in

Table A1 will therefore be slightly different but very similar to the models in Section 5. Equation (9) shows the meaning of each of the hyper-

parameters. For GP-analytical-prior, l3 is the smallest lengthscale. This suggests that C ∗
T,LES is more sensitive to wind direction than turbine

spacing.

The kernel for the multi-fidelity GP models is shown in Equation (A1). The kernel is the product and sum of different anisotropic squared-

exponential covariance functions. Table A2 gives the estimated hyperparameters for the multi-fidelity GP models. For Table A2, all 50 LES data

points have been used for the fitting process.

khighðv,v0;θÞ¼ khigh,ρðv,v0;θhigh,ρÞ �khigh,fðglow, ∗ ðvÞ,glow, ∗ ðv0Þ;θhigh,fÞþkhigh,δðv,v0;θhigh,δÞ ðA1Þ

TABLE A1 Estimated hyperparameters for standard GP regression models.

Hyperparameter GP-analytical-prior GP-wake-TI1-prior GP-wake-TI5-prior GP-wake-TI10-prior GP-wake-TI15-prior

σ2f 5:25�10�3 1:22�10�3 1:27�10�3 9:09�10�4 1:19�10�3

l1 5.27 2.51 1:74�103 1:03�104 5.06

l2 4.90 1:26�103 1:94�103 3.57 5.91

l3 6:16�10�1 2:02�10�1 4:55�10�1 2.03 6:25�10�1

σ2 1:47�10�4 4:06�10�4 3:83�10�4 1:28�10�4 4:10�10�5

TABLE A2 Estimated hyperparameters for multi-fidelity GP regression models.

Hyperparameter MF-GP-nlow250 MF-GP-nlow500 MF-GP-nlow100

klow σ2f 2:09�10�1 9:51�10�2 9:70�10�2

l1 3.31 1.42 1.40

l2 2.51 1.18 1.10

l3 7:31�10�1 5:12�10�1 5:07�10�1

khigh,ρ σ2f 2:22�10�5 7:91�10�6 2:34�10�5

l1 3.77 3:92�104 1:23�101

l2 6.29 6.94 9.52

l3 9.25 10.0 6.66

khigh,f σ2f 2:82�102 2:00�103 4:89�102

l 1:15�10�1 1:96�10�1 1:89�10�1

khigh,δ σ2f 5:16�10�1 5:42�10�1 5:00�10�1

l1 1:18�104 8:76�104 2:33�104

l2 1:45�104 1:17�105 2:58�104

l3 1:01�104 5:11�105 4:93�103

σ2low 1:09�10�4 2:75�10�6 1:84�10�6

σ2high 5:59�10�4 5:46�10�5 4:42�10�5
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