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Abstract

Based on sampling data, we propose a rigorous standardization method to

measure and compare beta diversity across datasets. Here beta diversity, which

quantifies the extent of among-assemblage differentiation, relies on Whittaker’s
original multiplicative decomposition scheme, but we use Hill numbers for any

diversity order q ≥ 0. Richness-based beta diversity (q = 0) quantifies the extent

of species identity shift, whereas abundance-based (q > 0) beta diversity also

quantifies the extent of difference among assemblages in species abundance. We

adopt and define the assumptions of a statistical sampling model as the founda-

tion for our approach, treating sampling data as a representative sample taken

from an assemblage. The approach makes a clear distinction between the theo-

retical assemblage level (unknown properties/parameters of the assemblage) and

the sampling data level (empirical/observed statistics computed from data). At

the assemblage level, beta diversity for N assemblages reflects the interacting

effect of the species abundance distribution and spatial/temporal aggregation
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of individuals in the assemblage. Under independent sampling, observed beta

(= gamma/alpha) diversity depends not only on among-assemblage differentia-

tion but also on sampling effort/completeness, which in turn induces depen-

dence of beta on alpha and gamma diversity. How to remove the dependence of

richness-based beta diversity on its gamma component (species pool) has been

intensely debated. Our approach is to standardize gamma and alpha based on

sample coverage (an objective measure of sample completeness). For a single

assemblage, the iNEXT method was developed, through interpolation (rarefac-

tion) and extrapolation with Hill numbers, to standardize samples by sampling

effort/completeness. Here we adapt the iNEXT standardization to alpha and

gamma diversity, that is, alpha and gamma diversity are both assessed at the

same level of sample coverage, to formulate standardized, coverage-based beta

diversity. This extension of iNEXT to beta diversity required the development of

novel concepts and theories, including a formal proof and simulation-based

demonstration that the resulting standardized beta diversity removes the depen-

dence of beta diversity on both gamma and alpha values, and thus reflects the

pure among-assemblage differentiation. The proposed standardization is illus-

trated with spatial, temporal, and spatiotemporal datasets, while the freeware

iNEXT.beta3D facilitates all computations and graphics.

KEYWORD S
alpha diversity, assemblage differentiation, beta diversity, extrapolation, gamma diversity,
Hill numbers, rarefaction, replication invariance, replication principle, sample coverage

INTRODUCTION

Diversity varies in space and time. Spatial and temporal var-
iation in species composition is one of the most fundamen-
tal features of the natural world. In his pioneering papers,
Whittaker (1960, 1972) proposed to decompose multiplica-
tively the total diversity in a region (gamma) into its
within-assemblage component (alpha diversity) and
among-assemblage component (beta diversity). Beta diver-
sity measures the extent of among-assemblage differentia-
tion. Previous work has focused on spatial and temporal
comparisons of the diversity of individual assemblages
(e.g., Chao et al., 2021; Chase et al., 2020; Dornelas et al.,
2014). As indicated in a recent workshop on “Biodiversity
and Climate Change” (IPBES-IPCC, 2021), there is an
urgent need to understand, monitor, and rigorously quantify
species compositional shifts and reorganization of biodiver-
sity, beyond simple comparisons of diversity. In addition,
changes in beta diversity have emerged as a signature of the
Anthropocene; tracking and monitoring compositional
changes in ecosystems should thus be a conservation prior-
ity (Chase et al., 2018; Dornelas et al., 2014; Eriksson &
Hillebrand, 2019; Hillebrand et al., 2018; Magurran et al.,
2019; Mori et al., 2018; Wang & Loreau, 2016).

Measuring beta diversity among assemblages is more
complicated than quantifying diversity in a single

assemblage. Yet, little consensus has been reached on how
to characterize and compare beta diversity based on sam-
pling data (Ellison, 2010; Engel et al., 2021; Gotelli et al.,
2022; Hillebrand et al., 2018; Jost, 2010; McGlinn et al.,
2019, 2021; Xing & He, 2021, among others). In this paper,
we propose a rigorous standardization method to measure
and compare beta diversity across datasets. Below we
briefly introduce the background of the iNEXT standardi-
zation for a single assemblage and the general framework
for formulating beta diversity among N assemblages; some
previous relevant approaches are outlined, followed by the
introduction of our proposed methodology. Figure 1 shows
a schematic flow diagram of pertinent research questions,
methodology/software, and graphical output.

The iNEXT standardization for a single
assemblage

In the past decade, a consensus has emerged around using
Hill numbers (Hill, 1973), often referred to as the “effective
number of species,” for quantifying species diversity in an
assemblage (Ellison, 2010 and papers that followed, as well
as Moreno & Rodríguez, 2010, plus subsequent commentar-
ies). In Hill’s influential 1973 paper, he integrated species
richness and species relative abundance to characterize a
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class of species diversity measures that became known as
Hill numbers. This class of measures is parameterized by a
diversity order q, which determines the measures’ sensitivity
to species relative abundance. Hill numbers of orders q = 0,
1, and 2 unify three well established indices of biodiversity:
species richness (q = 0), Shannon diversity (q = 1, the expo-
nential of Shannon entropy) and Simpson diversity (q = 2,
the inverse of the one-complement of the Gini–Simpson
index). Hill numbers can be formulated based on the species
abundance distribution (SAD) for abundance data or the
species incidence distribution (SID) for replicated incidence

data (frequency of occurrence among sampling units). The
mathematical formulas for Hill numbers for both
individual-based abundance data and replicated incidence
data are briefly reviewed later.

In biodiversity analyses based on incomplete sampling
data, it is important to adopt a statistical sampling-
model-based approach that treats data as a representative
sample from an assemblage. The approach makes a clear
distinction between the theoretical assemblage level (theo-
retical properties/parameters for the assemblage) and the
sampling data level (empirical/observed statistics computed

Comparing diversity of 

individual assemblages
(Chao et al., 2014; Colwell et al., 2012)

iNEXT

(Hsieh et al., 2016)

Methodology

and Software

Research 

question

Comparing beta diversity

among assemblages

(this study)

iNEXT.beta3D

(this study)

Size-based

R/E

Coverage-based

R/E

Size-based 

R/E (γ, α)

Coverage-based 

R/E (γ, α, β)

R/E

output

Figure 2bFigure 2a

F I GURE 1 A schematic figure showing research questions, methodology/software, and rarefaction/extrapolation (R/E) output. Here, we

illustrate a research question, analyzed by iNEXT, to compare species/taxonomic diversity (Hill numbers) of two rainforest fragments in Brazil

(Marim and Rebio2 fragments). In this paper we use iNEXT.beta3D to compare beta diversity between the Edge and Interior habitats within

each of the two fragments. For a size-based R/E curve, all samples are standardized to a fixed sample size (number of individuals), whereas for a

coverage-based R/E curve, all samples are standardized to a fixed level of sample coverage (an objective measure of sample completeness). The

output at the bottom only shows the R/E curves for q = 0; the corresponding R/E curves for q = 1 and q = 2 can also be computed; see

Figure 2 for complete curves. See the text for the definitions of gamma, alpha, and beta (γ, α, and β) diversity for multiple assemblages.

ECOLOGICAL MONOGRAPHS 3 of 32

 15577015, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecm

.1588 by U
niversity O

f St A
ndrew

s U
niversity, W

iley O
nline L

ibrary on [29/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



from data). For example, the number of species observed in
a survey represents a statistic at the data level, and the
number of species in the assemblage from which the data
were taken represents the corresponding unknown parame-
ter at the assemblage level; see Hurlbert (1971), Smith and
Grassle (1977), Colwell and Coddington (1994), Lande
(1996) and Colwell et al. (2012) for examples of
distinguishing the two levels. This distinction enables
researchers to transparently see the estimation target at the
assemblage level, while pinpointing model assumptions at
the data level. A useful ecological index should have an
interpretable meaning at the assemblage level and good sta-
tistical properties at the data level. Statistical sampling
models link the two levels and can be applied to make
inferences about the assemblage based on sampling data
(Colwell et al., 2012).

When individuals are distributed in space, an assem-
blage is characterized by the SAD and how all the individ-
uals are distributed over space (spatial aggregation or
clustering). At the assemblage level, species diversity (Hill
numbers) is formulated to reflect the SAD information. At
the data level, the observed species diversity depends not
only on the two unknown assemblage-level properties
(SAD and aggregation), but also on sampling effort/com-
pleteness. It is generally difficult to disentangle the SAD
effect from any diversity measure at the data level, mainly
because spatial aggregation is a complicating factor (Fortin
et al., 2012). A statistical strategy involves (1) conducting an
independent sampling to obviate the need to control for
spatial aggregation (see below for reasons), and then
(2) applying rarefaction and extrapolation to standardize or
control for sampling effort/completeness. Classic rarefac-
tion with species richness (Gotelli & Colwell, 2011) and the
iNEXT standardization via interpolation/rarefaction and
extrapolation with Hill numbers (Chao et al., 2014; Colwell
et al., 2012; Hsieh et al., 2016) represent two methodologies
based on this strategy. In the iNEXT standardization, all
samples are standardized to a fixed sample size or a fixed
level of sample coverage (or simply “coverage,” an objective
measure of sample completeness); more details on sample
coverage are provided in the later review of the iNEXT
standardization.

A basic assumption for classic rarefaction and the
iNEXT standardization is that individuals (or other sam-
pling units) are independently selected from the assemblage,
that is, the outcome of any particular sampled individual
does not affect or reveal any information about the outcome
of the other sampled individuals; the sample is thus referred
to as an independent sample. Such independent sampling
can be done by randomly sampling mobile organisms, or by
sampling sedentary organisms (e.g., plants) in small quad-
rats or along narrow transects. With independent samples,
statistical sampling theory implies that observed diversity,

and both the size-based and coverage-based standardized
diversity from the iNEXT method, are not influenced by the
degree of spatial aggregation or interspecific association in
the assemblage. That is, individuals in the entire assemblage
could be highly aggregated without affecting standardized
diversity at the data level, thus obviating the need to control
for aggregation effects in sample standardization.
Consequently, the difference in the standardized diversity
estimate reflects the pure difference due to SADs. We use
simulation results (in Appendix S1) to numerically demon-
strate the above statistical sampling theory and theoretically
prove its validity under a negative binomial distribution, a
widely used model for spatial aggregation.

Note that another assumption often made for classic
rarefaction is that individuals should be randomly placed
in the assemblage (i.e., the assumption of random disper-
sion pattern or random placement of individuals). Under
independent sampling, this unrealistic assemblage-level
assumption of random dispersion is unnecessary and
superfluous (Smith & Grassle, 1977; Tipper, 1979).
Random dispersion is an assemblage-level property that is
unknown and uncontrolled by samplers, whereas the sam-
pling method and design are controlled by samplers.

One may argue that collecting truly independent sam-
ples at the data level is infeasible in most ecological surveys.
Nevertheless, the iNEXT method is quite robust to depar-
tures from fully independent sampling. We provide in
Appendix S1 some simulation results to numerically dem-
onstrate that the iNEXT method is valid when sampled
individuals are dependent to some extent. When the depen-
dence among individuals in data is strong and thus cannot
be ignored (e.g., counting individuals of plant species in rel-
atively large quadrats or plots), the recommended iNEXT
approach is to convert abundance to incidence data, in
appropriate sampling units; incidence data in sampling
units are generally only weakly dependent on, and there-
fore much less sensitive to aggregation than the
corresponding abundance data. Incidence data in the
resulting sampling units can be deemed as nearly indepen-
dent, and thus the use of the incidence-based iNEXT stan-
dardization is justified. Such a sampling strategy was first
proposed by Shinozaki (1963), and theoretically proved by
Smith et al. (1985) and by Chao et al. (2014, their appendix
A). Colwell et al. (2004, 2012) and Chao and Colwell (2017)
demonstrated that replicated incidence data support statisti-
cal approaches to biological inference that are as powerful
as the corresponding abundance-data-based approaches.

Beta diversity for N assemblages

Our goal in this paper is to assess beta diversity for quanti-
fying biodiversity change and species compositional
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differentiation over a geographical area, across time, or
along an environmental gradient. A wide range of beta
diversity concepts has been proposed at the assemblage
level; this list seems endless (e.g., see Anderson et al.,
2011; Chao & Chiu, 2016; Tuomisto, 2010). In this paper,
we apply Whittaker’s original richness-based multiplica-
tive decomposition scheme, but use Hill numbers for any
diversity order q ≥ 0. Under this general framework, beta
diversity or species compositional differentiation refers to
the change/turnover of species identity/abundance among
assemblages. Richness-based beta diversity (q = 0) quan-
tifies the extent of species identity shift, whereas
abundance-based (q > 0) beta diversity also quantifies the
extent of change in the species pattern of commonness
and rarity. To extend the iNEXT standardization to beta
diversity, we briefly review in later sections the theoretical
formulas for gamma, alpha, and beta diversity as well as
three essential properties required for beta diversity.

To simplify the presentation and discussion, unless
otherwise stated, we will mainly focus on spatial beta
diversity among N assemblages in a region. However, all
arguments and derivations can be directly applied to tem-
poral beta diversity. We adopt a statistical-sampling-
based model and assume that individuals (or other sam-
pling units) are selected independently from the pooled
assemblage. We refer to the SAD in the pooled assem-
blage as the regional SAD. At the assemblage level, beta
diversity is characterized by the species-by-assemblage
abundance matrix, or equivalently, the regional SAD and
spatial aggregation of individuals over the N assemblages.
Thus, beta diversity reflects the interacting effect of the
regional SAD and spatial aggregation.

Under independent sampling, observed beta diversity
(as the ratio of observed gamma and alpha diversity)
depends on among-assemblage differentiation and sam-
pling effort/completeness, which in turn induces depen-
dence of beta on alpha and gamma diversity (Chase
et al., 2011; Kraft et al., 2011). How to remove the depen-
dence of richness-based beta diversity on its gamma com-
ponent (species pool) has been intensely debated; see the
next subsection. To compare beta diversity meaningfully
across datasets, our approach described later is to stan-
dardize sample coverage to control for sample complete-
ness and prove that the resulting standardized beta
diversity can remove alpha and gamma dependence.
Then the resulting standardized beta diversity can purely
reflect the among-assemblage differentiation.

Some previous approaches

Chase et al. (2011) proposed the use of null models to
control for the alpha dependence of beta diversity.
Kraft et al. (2011) applied a different individual-based

null-model approach to control for the species pool
(gamma diversity of order q = 0) dependence of beta
diversity and proposed the use of a statistic called
beta deviation to compare species compositional differ-
ences among sites along latitudinal and elevational gradi-
ents. Although the null-model approach has been applied
by ecologists (e.g., Mori et al., 2015; Myers et al., 2013;
Xing & He, 2019), its validity and usefulness for measur-
ing species compositional change have been questioned
(Bennett & Gilbert, 2016; Qian et al., 2013; Ulrich et al.,
2017, 2018). The issue of which methods can be used to
remove the dependence on alpha and gamma has
sparked intense debate and stimulated new developments
in the ecological literature (Chase et al., 2011, 2018;
Engel et al., 2021; Hillebrand et al., 2018; McGlinn et al.,
2019; Xing & He, 2021 among others).

A research issue closely related to beta diversity is the
assessment of the SAD effect and spatial-aggregation effect
based on rarefaction curves. McGlinn et al. (2019, 2021)
compared three rarefaction curves (spatial sample-based,
nonspatial sample-based, and individual-based) to assess
the effects attributed to: (1) the SAD, (2) the total abun-
dance, and (3) spatial aggregation. All three rarefaction
curves are computed from a single spatially explicit
dataset. Engel et al. (2021) applied a coverage-based rare-
faction method with beta diversity to measure the degree
of spatial aggregation. However, the arguments of Ulrich
et al. (2017) imply that it is impossible to disentangle SAD
and spatial-aggregation effects using the species-by-
assemblage matrix from a single dataset. Some of the pre-
vious approaches will be briefly compared in the
Discussion section, along with our perspectives on how to
disentangle the spatial-aggregation effect.

Very few previous approaches are based on statistical
sampling models; the targets of estimation and the data are
thus not distinguished. In addition, these previous works
mainly focus on species richness-based beta diversity,
which only quantifies the extent of a species identity shift.
For beta diversity based on the framework of Hill numbers
of any order q ≥ 0, a statistical sampling-model-based stan-
dardization method that fulfills some essential require-
ments (including independence of beta diversity on alpha
and gamma) is still lacking. The seemingly endless debates
and divergent opinions mentioned above suggest that a
consensus on how to compare beta diversity across datasets
has not yet been achieved.

The proposed iNEXT.beta3D approach

Here, we generalize the iNEXT method to iNEXT.beta3D
standardization via rarefaction and extrapolation with
Hill-number-based beta diversity. We first adapt the
iNEXT standardization to alpha and gamma diversities.

ECOLOGICAL MONOGRAPHS 5 of 32
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Then we propose the use of coverage-based standardiza-
tion for beta diversity by assessing alpha and gamma
diversity at the same standardized level of sample cover-
age, to formulate standardized, coverage-based beta
diversity. After standardizing sample coverage to control
for sampling effects, the resulting beta diversity provides
a statistical removal of the dependence of beta diversity
on both gamma and alpha values, and thus purely
reflects among-assemblage differentiation.

This extension from iNEXT to beta diversity requires
novel concepts and theories. The novel aspects, in addition
to the use of a sampling model, include the following:
(1) Extending species-richness-based beta diversity to
Hill-number-based beta diversity and thus allowing the
extent of change in species abundance to be assessed.
(2) Using a recently developed alpha diversity so that a
mathematically tractable rarefaction and extrapolation
of beta diversity can be developed; traditional abundance-
sensitive alpha diversity does not work. (3) Proving the
coverage-based standardized beta diversity satisfies all
essential properties of a differentiation measure including
the independence of beta diversity on alpha and gamma
diversity. The iNEXT.beta3D provides a rigorous and mean-
ingful approach to comparing beta diversity across datasets.

The paper is organized as follows. We first present our
model assumptions and theoretical methodologies. Readers
interested in applications may skip this material and move
to the application sections, where the proposed standardiza-
tion is illustrated with spatial, temporal and spatiotemporal
datasets. In the applications, we also specifically use a
dataset to illustrate how to analyze data characterized by
intraspecific aggregation. The freeware iNEXT.beta3D
(an expansion of iNEXT; Chao, 2023) has been developed
to facilitate all computations and graphics for the proposed
methodologies (see Data availability statement).

A SINGLE ASSEMBLAGE: THE
iNEXT STANDARDIZATION

In this section, we briefly review Hill numbers and
their replication principle property at the assemblage
level, followed by the iNEXT standardization and the
replication principle at the data level; see Part (a) of
Table 1 for a summary.

Theoretical formulas/properties at the
assemblage level

Assume that there are S species in an assemblage,
indexed by i = 1, 2, …, S. Let zi represent the true raw or
absolute abundance (number of individuals) of species i,

or other metrics such as biomass or spatial coverage of
corals. The total abundance in the assemblage, or assem-

blage size, is expressed as z+ ¼PS
i¼1zi. The SAD is char-

acterized by the species abundance vector z1,z2,…,zSð Þ.
The relative abundance of species i in the assemblage is

defined by pi= zi/z+ so that
PS

i¼1pi ¼ 1: The Hill number
of order q is defined as the following function in terms of
species richness and relative abundances (Hill, 1973):

qD¼
XS
i¼1

zi
z+

� �q
 !1= 1− qð Þ

¼
XS
i¼1

pqi

 !1= 1− qð Þ
, q≥ 0, q≠ 1, ð1Þ

which is interpreted as the effective number of species.
Hill numbers encompass all information in the SAD.

The parameter q determines the sensitivity of the
measure to the relative abundance of species. When
q = 0, 0D is simply species richness, which counts species
equally without regard to their relative abundances.
When q = 1, Equation (1) is undefined, but its limit as
q approaches 1 is the exponential of Shannon entropy.
The measure 1D (Shannon diversity) can be interpreted
as the effective number of common/abundant species.
The measure for q = 1 counts individuals equally and
weighs each species in proportion to its abundance. The
Hill number q = 2 reduces to the reciprocal of Simpson
concentration index, and disproportionately favors indi-
viduals of abundant species; the measure 2D (Simpson
diversity) is thus interpreted as the effective number of
very abundant species.

Hill numbers fulfill an important property called the
replication principle, or equivalently, the doubling prop-
erty (Hill, 1973). Assume that Assemblage II consists of
K “copies” of Assemblage I. Each copy has the same
number of species and the same species abundances as
Assemblage I, but with completely different species,
unique to each copy. The replication principle states that
the diversity of Assemblage II will be K times the diver-
sity of Assemblage I. Shannon entropy (in units of infor-
mation) and the Gini–Simpson index (i.e., the probability
that two randomly selected individuals belong to
different species) have been widely used in various
disciplines. However, neither of these two classic
abundance-sensitive indices satisfies the replication
principle, a deficiency that causes inconsistent or coun-
terintuitive interpretations (Jost, 2007). When the two
indices are converted to Hill numbers, all transformed
diversities are in units of “species” equivalents and satisfy
the replication principle, resolving the interpretational
problems related to the original forms of these indices.
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MacArthur was the first to convert the two complexity
measures (Shannon entropy and the Gini–Simpson
index) to the concept of an effective number of species,
that is, the number of equally abundant species that
would be needed to yield the same value of the diversity
measure (MacArthur, 1965).

The formula in Equation (1) is based on species abun-
dance data, for which the sample unit is an individual. In
many applications, the sampling unit is often a trap, net,
quadrat, plot, or timed survey, and only species’ inci-
dence or occurrence (detection and nondetection) in each
sampling unit is recorded. Analyses based on incidence
data are less sensitive to the effects of clustering or aggre-
gation of individuals, compared with those based on
abundance data (Colwell et al., 2004, 2012). For
incidence-based occurrence data among multiple sam-
pling units, Chao et al. (2014) defined the corresponding
species diversity of order q as the Hill number based on
species relative detection probabilities for any occurrence
record. That is, the probability pi in Equation (1) is
replaced by the relative detection probability of species
i in any sampling unit (i.e., the probability that any
detected occurrence/incidence is classified as species i).
Hill numbers for incidence data quantify the effective
number of equally frequent species. For q = 0, this

measure reduces to species richness, and the measures of
q = 1 and q = 2 can be respectively interpreted as the
effective number of frequent and highly frequent species
in the assemblage. All properties and inferences for abun-
dance data can be readily extended to incidence data
(Chao & Colwell, 2017).

The iNEXT standardization and model
assumptions

Under the assemblage-level framework presented in the
preceding subsection, assume a reference sample of
n individuals is selected from the assemblage. Let
X1,X2,…,XSð Þ denote the corresponding sample abun-
dance or frequency vector in the reference sample; only
species with Xi>0 are observed. Under independent sam-
pling, the sample abundance vector follows a multino-
mial distribution with cell total n and cell probabilities
p1,p2,…,pSð Þ, n¼X + ¼PS

i¼1Xi. This model links the
assemblage and the reference data, so that the expected
diversity in rarefied and extrapolated can be evaluated.

As indicated in the Introduction section and
verified by the simulations in Appendix S1, observed
and standardized species diversity for an independent

TAB L E 1 A summary table of parameters at the assemblage level (first column), sample statistics at the data level (second column),

and the iNEXT standardization (third column); S denotes the number of species, N denotes the number of assemblages, and

R/E = rarefaction/extrapolation.

Assemblage level Sampling data level iNEXT standardization

a. A single assemblage

The species abundance
distribution (SAD) with true
abundance
vector: z1,z2,…,zSð Þ

Reference sample: observed species
abundance vector X1,X2,…,XSð Þ;
sample size n¼X + ¼PS

i¼1Xi

Sample-size-based R/E curve: plot standardized
diversity with respect to sample size.

Coverage-based R/E curve: plot standardized
diversity with respect to sample coverage

b. N assemblages

True S × N
(species × assemblage)
abundance matrix: [zik]

Reference sample matrix: observed
abundance matrix [Xik]; sample size
n = X++

Gamma diversity based on the pooled assemblage

The regional SAD with
true abundance
vector z1+ ,z2+ ,…,zS+ð Þ

Gamma reference sample: observed
abundance vector X1+ ,X2+ ,…,XS+ð Þ;
sample size n=X++

Gamma diversity R/E curve: applying the iNEXT
formulas (in Table 2) to the gamma reference
sample in the pooled assemblage

Alpha diversity based on the joint assemblage

The joint SAD with
tree abundance
vector
z11,…,zS1,z12,…,zS2,…,zSNð Þ

Alpha reference sample: observed
abundance vector
X11,…,XS1,X12,…,XS2,…,XSNð Þ;
sample size n=X++

Alpha diversity R/E curve: applying the iNEXT
formulas (in Table 2) to the alpha reference
sample in the joint assemblage

Beta diversity = gamma/alpha

See Equation (5) See Equation (6) Beta diversity R/E curve: ratio of gamma and alpha;
both gamma and alpha are assessed at the same
standardized coverage
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reference sample depends on the SAD and sampling
effort/completeness, but not on spatial aggregation.
Therefore, the issue of controlling for spatial aggregation
is obviated, and only sampling effort/completeness
needs to be standardized or controlled for. To compare
diversity across more than one assemblage, the iNEXT
method was developed (Chao et al., 2014), through inter-
polation (rarefaction) and extrapolation with Hill num-
bers, to standardize samples by sample size or sample
coverage, which is defined as the fraction of the individ-
uals in the assemblage (including individuals of
undetected species) belonging to species detected in the
sample. The concept of sample coverage was originally

developed by Alan Turing in his cryptographic work dur-
ing WWII (Good, 1953) and has been applied to many
disciplines.

For a hypothetical sample of size m ≥ 1, let qD(m) be
the expected diversity (Hill numbers) that would
be observed in the sample, and C(m) be the expected sam-
ple coverage. For q = 0, 1, 2, and a general order q, the
theoretical formulas for qD(m) and C(m) for any size
m ≥ 1 are given in the first column of Table 2. See Chao
et al. (2014) for details. In the iNEXT standardization
based on the reference sample, the estimators of qD(m)
and C(m), denoted as

qbD mð Þ and bC mð Þ respectively, are
provided for rarefied samples (with m<n) and

TAB L E 2 The iNEXT standardization and estimation based on a reference sample with species abundance vector X1,X2,…,XSð Þ, taken
from an assemblage with species abundance distribution characterized by species abundance vector z1,z2,…,zSð Þ and relative abundance

vector p1,p2,…,pSð Þ, where pi ¼ zi=z+ ¼ zi=
PS

k¼1zk .

Theoretical diversity formulasa
Interpolation estimator
(for sample of size m < n)

Extrapolation estimatorb

(for sample size n + m* > n)

q = 0

0D mð Þ¼Pm
k¼1

E f k mð Þ½ � ¼ S−
PS
i¼1

1− pið Þm
0bD mð Þ¼Pm

k¼1

bf k mð Þ¼ 0Dobs −
P
Xi >0

n−Xi

m

� �
n

m

� �
0bD n+m�ð Þ¼ 0Dobs +

0bD ∞ð Þ− 0Dobs

h i
× 1− 1−

0bβ� �m�� �

¼ 0Dobs +bf 0 1− 1−
f 1

nbf 0 + f 1

 !m�24 35
q = 1

1D mð Þ¼ exp
Pm
k¼1

− k
m log k

m

� 	
×E f k mð Þ½ �

� �
1bD mð Þ¼ exp

Pm
k¼1

− k
m log k

m

� 	
×bf k mð Þ

� �
1bD n+m�ð Þ¼ 1Dobs +

1bD ∞ð Þ− 1Dobs

h i
× 1− 1−

1bβ� �m�� �
q = 2

2D mð Þ¼ Pm
k¼1

k
m

� 	2
×E f k mð Þ½ �

� �− 1
2bD mð Þ¼ Pm

k¼1

k
m

� 	2
×bf k mð Þ

� �− 1
2bD n+m�ð Þ¼ 1

n+m� +
PS
i¼1

n+m� − 1ð Þ
n+m�

Xi Xi − 1ð Þ
n n− 1ð Þ

� �− 1

General order q

qD mð Þ¼ Pm
k¼1

k
m

� 	q
×E f k mð Þ½ �

� � 1
1− q qbD mð Þ¼ Pm

k¼1

k
m

� 	q
×bf k mð Þ

� � 1
1− q

qbD n+m�ð Þ¼ qDobs +
qbD ∞ð Þ− qDobs

h i
× 1− 1−

qbβ� �m�� �
Sample coverage

C mð Þ¼ 1−
PS
i¼1

pi 1− pið Þm bC mð Þ¼ 1−
PS
i¼1

Xi
n

n−Xi

m

� �
n− 1

m

� � bC n+m�ð Þ¼ 1− f 1
n

n− 1ð Þf 1
n− 1ð Þf 1 + f 2

h im� +1

Note: The table gives the theoretical formulas and analytical estimators for rarefaction and extrapolation of Hill numbers of orders q = 0, 1, 2, and any general
order q ≥ 0, given a reference sample of size n with observed Hill numbers qDobs and observed sample coverage Cobs. The last row gives the theoretical
formulas and analytical estimators of sample coverage for rarefied and extrapolated samples. The extrapolation formulas are guided by Chao and Jost’s (2015)
asymptotic diversity estimator

qbD ∞ð Þ. Here the original extrapolation formula for q= 1 in Chao et al. (2014) is replaced by an improved one based on a unified
formula.
af k mð Þ = the number of species represented by exactly k individuals in a hypothetical sample of size m taken from the assemblage. The corresponding count
for the reference sample is denoted as f k ¼ f k nð Þ. bf 0 ¼ 0bD ∞ð Þ− 0Dobs denotes the estimated undetected species richness. See Chao et al. (2014) for the formulas
of E f k mð Þ½ � and its estimator bf k mð Þ.
bSee Chao et al. (2014) for the formula of

qbβ .
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extrapolated samples (with m= n+m* > n); see the sec-
ond and third columns of Table 2 for q= 0, 1, 2. For rare-
fied samples, diversity estimators are nearly unbiased; for
extrapolated samples, the performance of diversity esti-
mators depends on the order q, as detailed below. The
asymptotic diversity estimators for Hill numbers of orders
q= 0, 1, and 2 based on Chao and Jost (2015) are also
provided in the iNEXT standardization. These asymptotic
diversity estimates are used to guide the extrapolation
formulas.

Based on the formulas in Table 2, the two types of rare-
faction and extrapolation sampling curves produced
through the iNEXT standardization are summarized below.

The traditional (sample-)size-based rarefaction/
extrapolation curve

This type of curve depicts the estimated Hill numbers as a
function of sample size. The size-based sampling curve for
Hill numbers includes the rarefaction part (which plots
qbD mð Þ as a function of m, where m<n) and the extrapo-
lation part (which plots

qbD(n+m*) as a function of n
+m* >n). These two parts join smoothly at the point of the
reference sample, and the confidence intervals (CIs) based
on the bootstrap method also join smoothly. For the mea-
sure q= 0, the size can be extrapolated, at most, to double
the reference sample size (Chao et al., 2014). For the mea-
sures with q= 1 and q=2, if data are not sparse, the extrap-
olation can be reliably (for q= 1) or unbiasedly (for q= 2)
extended to infinity to attain the estimated asymptote.

This size-based sampling curve can be used to visually
determine whether data are sufficient to provide reliable
asymptotic diversity estimates (Chao et al., 2020). In many
applications, the curve becomes stable and levels off for
Shannon diversity (q = 1) and Simpson diversity (q = 2).
In these two cases, the bias of our asymptotic estimator is
limited or negligible and thus the true diversity can be
inferred from the sampling data. In contrast, the curve for
species richness (q = 0) is typically still increasing at
double the reference sample size, signifying that the
asymptotic estimator represents only a lower bound.

The coverage-based rarefaction/
extrapolation curve

This type of curve depicts the estimated Hill numbers as
a function of sample coverage. When data do not contain
sufficient information to infer the diversity of an entire
assemblage, that is, when asymptotic estimators are sub-
ject to bias, we can nonetheless infer and compare diver-
sity for a standardized fraction of the assemblage’s

individuals. The coverage-based sampling curve includes
rarefaction (which plots

qbD mð Þ with respect to bC mð Þ)
and extrapolation (which plots

qbD n+m�ð Þ with respect
to bC n+m�ð Þ), joining smoothly at the reference sample
point. The CIs based on the bootstrap method also join
smoothly.

For the rarefaction and extrapolation curves with
q = 1 and q = 2, if data are not sparse, the extrapolation
can often be extended to the coverage of 100% to attain the
estimated asymptote. However, the curve for species rich-
ness can be extended only up to a maximum value
(i.e., the coverage value of an extrapolated sample with
twice the reference sample size).

Replication principle for coverage-based
standardization

The replication principle for Hill numbers is an impor-
tant property not only for diversity measures at the
assemblage level but also for diversity estimators com-
puted from sampling data. However, biodiversity sam-
pling or survey data are subject to sampling
uncertainty/errors. It is thus infeasible to directly exam-
ine the properties that a measure possesses based on
sampling data; one must prove that the expected diver-
sity measure fulfills the replication principle via statisti-
cal models (Chao & Jost, 2012).

A major difference between the size-based and
coverage-based standardizations is that only the expected
coverage-based standardized diversity estimator fulfills
the replication principle. This property for species rich-
ness was proved by Chao & Jost (2012, their appendix A)
and later proved for Hill numbers (Chao et al., 2014, their
appendix D). Consider that Assemblage II consists of
K “copies” of Assemblage I at the assemblage level, as
described earlier. The replication principle implies the
diversity of Assemblage II for any order q is K times more
diverse than Assemblage I at the assemblage level. At the
data level, we assume a random sample of m individuals
is taken from Assemblage I. Under the multinomial
model, the sample size needed in Assemblage II to attain
the same expected sample coverage is larger by a factor of
approximately K (i.e., Km). In other words, K-times sam-
ple size is required for a K-times-diverse assemblage.
Then for any order q ≥ 0, the expected diversity in
Assemblage II for the sample with a common standard-
ized level of coverage is approximately K times the
expected diversity of Assemblage I (Chao et al., 2014;
Chao & Jost, 2012), establishing the replication principle
for the coverage-based method.

Chao and Jost (2012) used numerical examples to dem-
onstrate that the traditional species richness estimates for
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samples with a standardized size do not satisfy the essen-
tial replication principle. A consequence is that the magni-
tude of the difference in species richness among
assemblages is much compressed (Chao & Jost, 2012, their
table 1). In contrast, a species richness estimator based on
rarefaction for standardized sample coverage satisfies the
replication principle. Similar conclusion is also valid for
abundance-sensitive (q > 0) Hill numbers (Chao et al.,
2014). For this reason, Chao et al. (2020) and Chazdon
et al. (2022) recommend the use of coverage-based rarefac-
tion and extrapolation to meaningfully compare diversity
across multiple assemblages, and the use of size-based
curves to determine whether the asymptotic estimates are
unbiased or subject to negative bias.

ASSEMBLAGE LEVEL: THEORY FOR
N ASSEMBLAGES

In this section, we briefly review the concepts and formulas
for diversity decomposition (gamma, alpha, and beta) needed
to present our proposed methodology in the next section.

Gamma and alpha diversity

Assume that in the species pool of N assemblages, there
are S species, indexed by 1, 2, …, S. Let [zik] ≥ 0 be an
S × N (species-by-assemblage) raw abundance matrix,
where zik represents species raw or absolute abundance
(i.e., the true number of individuals or other
abundance proxies) of the i-th species in the k-th assem-
blage, i = 1, 2, …, S, k = 1, 2, …, N. The total abundance
in the matrix is denoted by z++ ¼PN

k¼1

PS
i¼1zik.

Gamma diversity is defined as the diversity of the
pooled assemblage in which the abundance of any spe-
cies is obtained by directly pooling its abundances over
the N assemblages. That is, the pooled assemblage com-
prises S species and the regional SAD is characterized by
the abundances z1+ ,z2+ ,…,zS+ð Þ, where zi+ ¼PN

k¼1zik
denotes the total abundance of species i in the entire
pooled assemblage; see Part (b) of Table 1 for a summary
of the framework. Gamma diversity at the assemblage
level is computed from the regional SAD in the pooled
assemblage:

qDγ ¼
XS
i¼1

zi+
z++

� �q
 !1= 1− qð Þ

¼
XS
i¼1

pqi+

 !1= 1− qð Þ
, q≠ 1,

ð2Þ

which is interpreted as the effective number of species in
the pooled assemblage.

While the formulation of gamma diversity is
unequivocal, there have been at least three different for-
mulations of alpha diversity proposed for N assemblages
based on Hill numbers. In conventional formulations,
alpha diversity is expressed as a weighted mean of the
diversities of individual assemblages. For example,
Routledge (1979) and Jost (2007) derived different types
of assemblage weights under different criteria. Here we
adopt the formulation of Chiu et al. (2014) for the rea-
sons given below: (1) When q = 0, Chiu et al.’s (2014)
alpha diversity leads to a beta formula that is identical
to Whittaker’s original richness-based definition.
(2) The Chiu et al. (2014) formula avoids the problem
that other measures of alpha diversity sometimes yield a
beta value less one (i.e., gamma < alpha) or greater than
N. (3) Chao and Chiu (2016) showed that only through
this alpha formulation can a bridge be built between
the two major approaches to beta diversity, that is, the
variance framework (Legendre & De C�aceres, 2013)
and the diversity decomposition approach (presented
below). (4) Most importantly, only with Chiu et al.’s
formula can a simple and mathematically tractable rare-
faction and extrapolation with alpha diversity for all
q ≥ 0 be formulated; conventional alpha diversity does
not work.

In Chiu et al.’s (2014) alpha diversity, each individual
is associated with two classifications, namely species
identity and assemblage affiliation. The S × N cells of the
raw abundance matrix are treated as if each cell were a
“species” in the framework of Hill numbers. Each cell
represents a species–assemblage combination. We define
a joint assemblage that consists of all species–assemblage
combinations (as if they were “species”). Although all
combinations are arranged in a two-dimensional
species × assemblage matrix, for alpha diversity, they are
treated as if they form a single assemblage, the joint
assemblage. For simplicity, we refer to the joint abun-
dance distribution of species–assemblage combinations
as the joint SAD in the joint assemblage, although
“species” refer to cells/combinations. In other words, the
joint SAD is characterized by the “species” abundances
z11,z21,…,zS1,z12,z22,…,zS2,…,zSNð Þ. Some zik may be 0;
these nonexisting combinations do not have any effect on
diversity computations. The relative “species” abundance
in the joint assemblage is defined as pik= zik/z++. A
numerical example is given in Appendix S2 to illustrate a
joint assemblage along with the corresponding pooled
assemblage.

Joint diversity, a term first proposed by Gregorius
(2010), is defined as the effective number of
species–assemblage combinations, that is, the Hill
numbers for the joint assemblage based on the
joint SAD:
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qDjoint ¼
XS
i¼1

XN
k¼1

zik
z++

� �q
( ) 1

1− q

¼
XS
i¼1

XN
k¼1

pqik

( ) 1
1− q

, q≠ 1: ð3Þ

See Appendix S2 for an illustrative numerical example.
Chiu et al. (2014) proposed the following alpha formula
in terms of mean joint diversity:

qDα ¼
qDjoint

N
¼ 1
N

XS
i¼1

XN
k¼1

zik
z++

� �q
( ) 1

1− q

, q≠ 1: ð4Þ

Chiu et al.’s alpha diversity quantifies the effective
number of species–assemblage combinations per
assemblage; see Gregorius (2020) for further justifica-
tion of this alpha formula. Based on the gamma
(Equation 2) and alpha formulas (Equation 4), beta
diversity is defined as the ratio of gamma to alpha
diversities:

qDβ ¼
qDγ
qDα

, q≥ 0: ð5Þ

Thus, beta diversity is computed from two SADs (i.e., the
regional SAD for gamma and the joint SAD for alpha). It
follows from Equations (2) and (4) that beta diversity is
not influenced by the total abundance because only the
species relative abundances of each SAD are involved.
Beta diversity is interpreted as the effective number of
assemblages based on the raw abundance matrix [zik]. A
simple numerical example is given in Appendix S2 to
demonstrate how to compute gamma, alpha, and beta
diversity.

Three properties for beta diversity at the
assemblage level

Researchers from different perspectives have proposed
many criteria for a beta diversity and a differentiation
measure (e.g., Barwell et al., 2015; Jost et al., 2011;
Koleff et al., 2003; Legendre & De C�aceres, 2013;
Wilson & Shmida, 1984). Chao and Chiu (2016)
showed that beta diversity defined in Equation (5) sat-
isfies all the essential properties listed in Legendre &
De C�aceres (2013; their properties P1–P9). Among
those properties, we focus only on the following three
criteria that are needed to assure the independence of
beta diversity on alpha and gamma at the assemblage
level.

1. The fixed minimum criterion: If all N assemblages
are identical in terms of species identity and raw
abundance, beta diversity attains a fixed minimum
value of one. That is, effectively, there is only one
assemblage.

2. The fixed maximum criterion: When no species are
shared among N assemblages (i.e., complete species
turnover), beta diversity should attain a fixed maxi-
mum value of N. That is, effectively, N assemblages
are needed to find out all species.

3. The replication invariance principle: When all
species are replicated (by adding species new to each
assemblage) K ≥ 2 times, both gamma and alpha
are increased, but beta diversity should remain
unchanged. That is, based on an original species-
by-assemblage (S × N) abundance matrix, an
expanded matrix (KS × N) merging K copies of the
original matrix should have the same beta diversity as
the original one. A numerical example is given in
Appendix S2 to explain the replication invariance
principle. When K ≥ 2 copies of an original
species-by-assemblage abundance matrix are merged,
the replication principle for Hill numbers implies
that both gamma and alpha diversity of the merged
matrix are K times the corresponding gamma and alpha
of the original matrix. Thus, beta diversity (Equation 5)
for all q ≥ 0 satisfies the species replication invariance
principle at the assemblage level; see the next
section for the corresponding data-level properties.

Because beta diversity takes values in the range of
[1, N] for all q ≥ 0, it can be monotonically transformed
into four classes of dissimilarity measures in the range
[0, 1]. The four classes of measures that encompass the
classic Jaccard and Sørensen dissimilarity measures
(q = 0) and the abundance-sensitive Horn and
Morisita–Horn dissimilarity measures as special cases;
see Chao, Chiu, Wu, et al. (2019, the middle column of
their table 1) for a summary. However, the commonly
used Bray–Curtis dissimilarity (Bray & Curtis, 1957) is
not included. It is generally difficult to develop rarefac-
tion/extrapolation and robust estimation for the
Bray–Curtis dissimilarity. Thus, the use of empirical
Bray–Curtis dissimilarity for analyzing incomplete sam-
pling data is not statistically justified and may be subject
to substantial bias.

DATA LEVEL: THE iNEXT.beta3D
STANDARDIZATION

Under the framework described at the assemblage
level, assume an independent sample of n individuals
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is selected from a region consisting of N assemblages.
A sample species-by-assemblage raw abundance
matrix [Xik] (the reference sample matrix) was recorded,
where Xik denotes the observed raw abundance/
frequency of the i-th species in the k-th assemblage,
i = 1, 2, …, S, k = 1, 2, …, N. Only those species
with row total abundance ≥1 (i.e., species that were
each observed in at least one assemblage) are detected
in the sample; those species with row total
abundance = 0 in the sample remain undetected and
therefore do not affect diversity computation. Let Xi+

(total abundance of the i-th species in the sample)
and X++ (total sample abundance) be defined in the
same manner here as in the assemblage level. Replacing
the true species abundances by the observed data
in gamma, alpha, and beta formulas (Equations 2, 4
and 5), we obtain the corresponding observed or
empirical versions; see Part (b) of Table 1 for the nota-
tional distinction between the assemblage and the data
levels.

As indicated in the Introduction, at the data level,
observed beta diversity (as the ratio of observed gamma
and alpha diversity) under independent sampling
depends on among-assemblage differentiation and sam-
pling effort/completeness, as well as alpha and gamma
diversity. To compare beta diversity across datasets, sam-
ple coverage should be controlled for by proper standard-
ization. Below we first adapt the iNEXT method to
gamma and alpha diversity, and to beta diversity. Then
we prove that standardized beta diversity is independent
of alpha and gamma diversity.

The iNEXT standardization for gamma and
alpha diversity

Rarefaction and extrapolation for gamma diversity

Since gamma diversity is defined as the Hill numbers
of the pooled assemblage, we can simply apply the
iNEXT estimation to the observed data from the
pooled assemblage. That is, consider the regional SAD
characterized by the abundance vector z1+ ,z2+ ,…,zS+ð Þ
in the pooled assemblage, and apply the iNEXT standard-
ization based on the observed abundance data
X1+ ,X2+ ,…,XS+ð ; referred to as the gamma reference
sample, with size n=X++). Then the size-based and
coverage-based rarefaction and extrapolation curves, along
with the estimated asymptote for gamma diversity, can
be derived. As with the single-assemblage case, the
standardized gamma diversity purely reflects the regional
SAD information, regardless of the degree of spatial
aggregation.

Rarefaction and extrapolation for alpha
diversity

Our alpha diversity (in Equation 4) is a mean joint
diversity, where joint diversity is defined as the
Hill numbers of the joint assemblage. Consider the
joint SAD characterized by the abundance vector
z11,z21,…,zS1,z12,z22,…,zS2,…,zSNð Þ in the joint assem-
blage. Then apply the iNEXT standardization to this
single joint assemblage based on the data
X11,X21,…,XS1,X12,X22,…,XS2,…,XSNð ; referred to as the
alpha reference sample, with size n=X++). Then the
size-based and coverage-based rarefaction and extrapola-
tion curves, along with the estimated asymptote for alpha
diversity, can be derived. The standardized alpha diversity
purely reflects the joint SAD information, regardless of the
degree of spatial aggregation. If we adopted the conven-
tional definition of alpha diversity (i.e., the weighted mean
of diversities of individual assemblages), then multiple
assemblages would be involved in the standardization,
which would result in the corresponding rarefaction and
extrapolation of alpha diversity becoming mathematically
intractable. Our approach is elegantly simplified because
only one single joint assemblage is involved, so that the
iNEXT standardization can be readily applied.

The iNEXT.beta3D standardization for beta
diversity

For any specified coverage value C, both alpha and
gamma diversity are first assessed at the same given level
of sample coverage, as described in the preceding two
subsections. The resulting gamma and alpha diversity
estimates are denoted as

qbDγ Cð Þ and qbDα Cð Þ, respectively.
Let this common coverage value correspond to sample
size mγ(C) in the pooled assemblage and sample size
mα(C) in the joint assemblage. These two sample sizes
vary with coverage value C, but for notational simplicity,
we suppress the use of C in the notation of mγ(C) and
mα(C) and simply use mγ≡mγ(C) and mα≡mα(C) assum-
ing that C is the same for both sample sizes. The two
sizes generally differ for a given common coverage. We
define the standardized beta diversity at the coverage
level of C>0 as:

qbDβ Cð Þ¼
qbDγ Cð Þ
qbDα Cð Þ

¼
qbDγ mγ
� 	

qbDα mαð Þ
: ð6Þ

A bootstrap method is used to approximate the uncer-
tainties of both rarefied and extrapolated beta diversity
estimates and to construct the associated CIs. For any
fixed coverage value, the standardized beta diversity is
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not affected by the total abundance in the assemblage.
One may wonder whether we can formulate the
corresponding size-based standardization. We show that
standardization to a common size fails to satisfy essential
requirements for a differentiation measure; see
Discussion for details.

Our proposed coverage-based rarefaction and extrapo-
lation curve of beta diversity depicts

qbDβ Cð Þ as a function
of sample coverage C> 0. As with the iNEXT standardi-
zation, for gamma and alpha diversity of orders q= 1 and
q= 2, the coverage-based extrapolation generally can be
reliably extended to asymptotes (i.e., coverage= 1) if data
are not too sparse. Therefore, we can compare beta diver-
sity obtained from Hill numbers of q= 1 and q= 2 across
datasets at any standardized level of coverage up to 100%.

For richness-based (q = 0) gamma and alpha diver-
sity, the extrapolation can often be extended only up to
the coverage value for samples extrapolated to twice the
reference sample size. We denote the sample coverage of
the alpha and gamma observed (reference) sample as
Cobs,α and Cobs,γ, respectively; the sample size for both
gamma and alpha reference samples is n = X++. Also, we
denote the two coverage values for twice the reference
sample size as C2n,α and C2n,γ. The four coverage values
typically satisfy either Cobs,α < C2n,α < Cobs,γ < C2n,γ or
Cobs,α < Cobs,γ < C2n,α < C2n,γ. The performance of our
standardized beta diversity for q = 0 depends on the stan-
dardized coverage value C:

1. When C ≤ Cobs,α, both
qbDγ Cð Þ and qbDα Cð Þ are obtained

from rarefied samples. In this range, the standardized
beta diversity

qbDβ Cð Þ of q= 0 is nearly unbiased.
2. When Cobs,α < C ≤ C2n,α,

qbDα Cð Þ is obtained from an
extrapolated sample up to a size less than double the
reference sample size, and

qbDγ Cð Þ is obtained from
either a rarefied sample or an extrapolated sample up
to a size less than double the reference sample size. In
either case, the standardized beta diversity of q= 0 is
generally reliable.

3. When C2n,α < C, extrapolation to sizes greater than
double the reference sample size is required to obtain
qbDα Cð Þ. The corresponding standardized beta diver-
sity of q= 0 thus may be subject to some bias.

We suggest that the sampling curve for beta diversity of
q = 0 be extended up to the sample coverage value of
C2n,α to avoid substantial bias (i.e., the extrapolation limit
for beta diversity is the same as alpha diversity). In other
words, C2n,α represents the maximum coverage value that
we can reliably infer for beta diversity with q = 0 for a
given dataset. We provide the rarefaction and extrapola-
tion formulas for gamma and alpha diversity for q = 0,
1, and 2 in Appendix S2. All the formulas for q = 0,

1, and 2 are parallel to those given in Table 2. As with
the assemblage level, the coverage-based rarefaction and
extrapolation curves of beta diversity at the data level can
be transformed into four classes of dissimilarity measures
in [0, 1].

Properties of the proposed coverage-based
standardized beta diversity

At the assemblage level, we highlighted three essential
properties for our beta diversity measure. This
section demonstrates that, at the data level (based on the
observed species × abundance matrix [Xik]), our expected
standardized beta diversity for any fixed value of sample
coverage value also satisfies the three properties.

The fixed minimum criterion is approximately ful-
filled at the data level: When N assemblages are identical
at the assemblage level, the joint assemblage represents
N copies of the pooled assemblage. Therefore, at the data
level, the sample size needed in the joint assemblage to
attain the same expected sample coverage is approxi-
mately N times that in the pooled assemblage, that is, we
have mα = Nmγ in Equation (6). The expected joint diver-
sity (i.e., N times alpha diversity) is then approximately
N times the expected gamma diversity, implying the
expected standardized beta diversity approaches the min-
imum value of one for any coverage value.

The fixed maximum criterion is satisfied at the
data level: When no species are shared among
N assemblages at the assemblage level, the pooled
assemblage is identical to the joint assemblage. The
sample size needed in the pooled assemblage and in the
joint assemblage should be the same to attain the same
sample coverage. That is, we have mγ = mα for any
given coverage value. Consequently, the expected
gamma diversity is identical to the expected joint diver-
sity, yielding a maximum value of N for the expected
standardized beta diversity for any coverage value. In
this case, any standardized beta based on the observed
data also correctly yields the true maximum beta diver-
sity value of N. Thus, under the special case of no
shared species, the fixed maximum criterion is satisfied
not only for the expected standardized beta diversity,
but also for the empirical beta values.

The principle of species replication invariance is
approximately valid at the data level. As described at the
assemblage level, we assume that K copies of an original
species-by-assemblage (S × N) matrix are merged to
obtain an expanded (KS × N) matrix. All copies have
identical abundance matrices (and thus identical beta
values), but no species are shared among copies. Note
that, at the assemblage level, the pooled assemblage in
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the expanded matrix consists of K copies of the pooled
assemblage of the original table, and the joint assemblage
in the expanded table consists of K copies of the original
joint assemblage. Assume that, in the original matrix,
sample sizes mγ (for gamma diversity) and mα (for alpha
diversity) are required to attain a common value of
expected sample coverage. Building on the iNEXT the-
ory, the sample sizes needed in the expanded matrix
for gamma and alpha to attain the same expected sam-
ple coverage are approximately Kmγ and Kmα. Based
on the replication principle for gamma and alpha
diversity, the expected gamma (and alpha) diversity of
any order q ≥ 0 in the expanded matrix is approxi-
mately K times that of gamma (and alpha) in the origi-
nal matrix. Consequently, the expected beta diversity
with a common level of standardized coverage is
approximately invariant when all species are repli-
cated K times.

The above three properties for any coverage value
demonstrate that our standardization, based on the same
level of coverage at the data level, provides a statistical
solution that removes the dependence of beta diversity
on both gamma and alpha values. We further conducted
some simulations to support our theory; see Appendix S3
for our simulation results.

APPLICATIONS TO SPATIAL DATA

In this section, we illustrate the proposed iNEXT.beta3D
standardization with the tree species data collected by
Magnago and colleagues between 2011 and 2012 from
rainforest fragments in Espírito Santo State, Brazil
(Magnago et al., 2014). The fragmentation of tropical
rainforests is one of the major drivers of the loss of global
biodiversity. Thus, it is important to understand how spe-
cies composition changes between fragment edges and
interiors. We selected 16 transects (eight Edge transects
and the corresponding eight Interior transects) from
fragments with area >100 ha. A summary of the observed
data in the selected 16 transects is shown in Appendix S4:
Table S1.

Each transect comprised ten 10 × 10 m plots at 20-m
intervals. Each Edge transect was placed about 5 m
inside the fragment and parallel to the forest edge, and
the corresponding Interior transect was located at
least 300 m from the nearest edge. Within each
transect, every living tree with a diameter at breast height
(DBH) >4.8 cm and 1.3 m height was recorded and
identified to species. The goal here is to assess how beta
diversity between the Edge habitat and the Interior
habitat varies with fragment area/size. Because trees are
surveyed in relatively small plots, the spatial dependence

between two individual trees is weak; the use of the
iNEXT.beta3D standardization is justified.

The iNEXT.beta3D standardization for two
fragments (Figure 2)

We first selected two fragments to illustrate the proposed
iNEXT.beta3D standardization procedure within each
fragment. We specifically selected a small fragment
(Marim, 104.71 ha) and a large fragment (Rebio2,
20417.38 ha). One reason for selecting these two frag-
ments was because they have the same number of species
(124 species each) in the pooled Edge and Interior data,
that is, the observed richness-based (q = 0) gamma is
identical in the two fragments.

In the Marim fragment, there were 88 species
(n = 168 individuals) in the Edge transect, and 84 species
(n = 155) in the Interior transect. In the Rebio2 frag-
ment, there were 75 species (n = 173 individuals) in the
Edge transect, and 77 species (n = 175) in the Interior
transect. Thus, the larger fragment has a lower average
number of species (i.e., lower alpha richness) and thus a
higher observed richness-based beta diversity than the
smaller fragment.

As indicated in the Introduction, observed beta cannot
be used for comparing the beta diversity of the two frag-
ments because, within each fragment, the gamma and
alpha reference samples have different coverage values;
see the legend of Figure 2. In addition, the coverage
values for the two gamma (and also alpha) reference
samples differ between the two fragments. To make
meaningful comparisons of beta diversity for the two
fragments, sample coverage for both gamma and alpha
should be standardized not only within the individual
fragments but also between the fragments. The complete
iNEXT.beta3D standardization comprises the following
two procedures:

1. Assessment of the sample-size-based rarefaction and
extrapolation curves for gamma and alpha diversity
up to double the reference sample size (Figure 2a).

Figure 2a shows the size-based rarefaction and extrapola-
tion curves for gamma and alpha diversity for each frag-
ment up to double the reference sample size. These
curves can be used to determine whether data contain
sufficient information to infer true gamma and alpha
diversity. For q = 0, neither the gamma nor the
alpha sampling curve for either plot levels off, implying
that there were many undetected rare species and sam-
pling data do not contain sufficient information to accu-
rately infer true gamma and alpha richness; fair
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(b) Coverage-based rarefaction and extrapolation for gamma, alpha, and beta diversity

F I GURE 2 Legend on next page.
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comparisons of richness-based beta diversity thus can
only be made by standardizing the sample coverage up to
a limited coverage value, as described later.

For Shannon-diversity-based beta (q = 1) and
Simpson-diversity-based beta (q = 2), both the alpha
and gamma sampling curves in Figure 2a tend to stabi-
lize, implying that bias in our asymptotic gamma (and
alpha) estimator is limited for q = 1 and 2. The resulting
asymptotic beta diversity (for complete coverage) is com-
pared in the next procedure, for coverage-based standard-
ization. Note that in Figure 2a the plot for size-based beta
diversity (in which both gamma and alpha are assessed at
the same sample size) is not shown, because the
size-based approaches for beta diversity lack theoretical
justification and do not lead to legitimate differentiation
measures; see Discussion for reasoning.

2. Assessment of coverage-based rarefaction and
extrapolation curves for alpha, gamma, and beta
diversity up to complete coverage (i.e., coverage = 1)
for q = 1 and 2, and up to a limited coverage value for
q = 0 (Figure 2b).

Figure 2b shows the coverage-based rarefaction and
extrapolation curves for gamma, alpha, and beta diver-
sity. For gamma and alpha diversities of q = 1 and q = 2,
extrapolation can be extended to complete coverage.
Thus, the corresponding beta diversity can be computed
for any level of coverage up to 100%.

For q = 0, as shown in Figure 2a, data are not suffi-
cient for extrapolation to extend to asymptotes. In this
case, the extrapolation for gamma and alpha can be
extended only to the coverage value corresponding to
double each reference sample size. We suggest that the
rarefaction and extrapolation curve for beta diversity be
extended to the same limit as alpha diversity, which is
C2n,α = 88.16% in the Marim fragment and 87.74% in the
Rebio2 fragment. Therefore, extrapolation for beta

diversity of q = 0 can be extended up to the lower cover-
age value of the two extrapolated samples, that is, only
up to about 88%.

For any specified coverage value up to 88% (for
q = 0) and to 100% (for q = 1 and 2), Figure 2b reveals
that the two fragments have approximately the same
standardized gamma diversity, whereas the standard-
ized alpha diversity in the Marim fragment is signifi-
cantly higher than that in the Rebio2 fragment, leading
to a higher standardized beta diversity in the Rebio2
fragment. For q = 1 and 2, the difference in standard-
ized beta diversity is statistically significant because the
CIs for the two fragments do not overlap for any cover-
age value. These two fragments provide an example of
the ranking of two fragments being different in alpha
and beta diversity (i.e., the smaller fragment has higher
alpha diversity, but the larger fragment has higher beta
diversity).

We use the observed richness to intuitively explain
why the larger fragment exhibits higher beta diversity
between the Edge and Interior habitats. In the Marim
fragment, there were 48 species shared by the Edge and
Interior transects, but only 28 species shared in the
Rebio2 fragment (Appendix S4: Table S1), despite
the fragment totals being equal. The number of species in
the Edge and Interior transects in the Marim fragment
are, respectively, higher than in the corresponding Edge
and Interior transects in the Rebio2 fragment. However,
over half of the species in each transect in the Marim
fragment were shared, while more than 60% of the spe-
cies in each transect in the Rebio2 fragment were unique
species. That is, a higher proportion of the unique species
in the Edge transect in the Marim fragment were lost and
replaced by shared species than in the Rebio2 fragment.
Our analysis demonstrates that a similar conclusion is
valid not only for the observed beta diversity but also for
any standardized beta diversity, regardless of focus on
rare species (q = 0), abundant species (q = 1) or very

F I GURE 2 iNEXT.beta3D standardization for beta diversity between the Edge and Interior habitats for two fragments. (a)

Sample-size-based rarefaction (solid curves) and extrapolation (dashed curves) with gamma diversity and alpha diversity, and

(b) coverage-based rarefaction (solid curves) and extrapolation (dashed curves) with gamma, alpha, and beta diversity based on the tree

species of the Marim fragment (orange curves) and the Rebio2 fragment (blue curves) for diversity orders q = 0 (left panels), q = 1 (middle

panels), and q = 2 (right panels). Here, size-based beta diversity is not a legitimate differentiation measure and thus is omitted; see

Discussion. The two gamma reference samples are denoted by solid circles and alpha reference samples by hollow circles. The two

extrapolated gamma and alpha samples with double the reference sample size (2n) are denoted, respectively, as solid triangles and hollow

triangles. In (a), sample size in each plot is extrapolated up to 2n. In (b), the coverage values in the Marim fragment for observed alpha,

extrapolated alpha with size 2n, observed gamma, and extrapolated gamma with size 2n are, respectively: Cobs,α = 70.67%, C2n,α = 88.16%,

Cobs,γ = 85.82%, and C2n,γ = 96.77%; in the Rebio2 fragment, the corresponding four coverage values are: Cobs,α = 75.34%, C2n,α = 87.74%,

Cobs,γ = 81.93%, and C2n,γ = 90.13%. In (b), for q = 1 and q = 2, the extrapolation for alpha, beta, and gamma can be extended to their

asymptotes (i.e., coverage value of 100%). For q = 0, the extrapolation for gamma and alpha can be extended to the coverage value

corresponding to size 2n; the extrapolation limit for beta diversity is the same as alpha diversity. All 95% CIs (shaded areas) were obtained by

a bootstrap method based on 200 replications. Comparisons of beta diversity between the two habitats should be based on a standardized

value of sample coverage.
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abundant (q = 2) species. Detailed biological explana-
tions and interpretations are given in the next subsection.

Beta diversity increases with fragment size

We performed the same iNEXT.beta3D standardization
procedures as those presented in the preceding
section for the other six fragments. For each of the other
six fragments, we obtained coverage-based rarefaction
and extrapolation curves for alpha, gamma, and beta
diversity, as we did for the Marim and Rebio2 fragments
as shown in Figure 2b. Since it is not feasible to simulta-
neously compare eight curves, we extracted standardized
beta diversity for six levels of standardized coverage
values (60%, 70%, 80%, 90%, 95%, 100%); here standard-
ized diversity corresponding to a coverage value of 100%
represents the asymptotic estimate, which may be subject
to some bias for q = 0. Figure 3 shows the beta diversity
of the order q = 0, 1 and 2 for the six selected coverage
values (rows 2 to 7), along with the observed patterns
(row 1).

The plots and fits based on the iNEXT.beta3D stan-
dardization in Figure 3 revealed that the standardized
beta diversity between the Edge and Interior habitats
increases with fragment size for any standardized cover-
age level up to 100%, regardless of species rareness or
dominance. Nearly all the fits based on standardized beta
values are significant. A similar increasing (but not sig-
nificant) pattern is also valid for the observed beta diver-
sity. In contrast, the corresponding gamma and alpha
diversity tend to decline slowly and nonsignificantly with
fragment size (Appendix S4: Figure S1). The rate of
decline is steeper for alpha diversity, leading to an
increasing trend for beta diversity.

Edge effects transform forest microclimate conditions,
reducing the air humidity while increasing the air tem-
perature and light intensity (Magnago et al., 2015, 2017).
These effects usually have an edge penetration of
~100 m, but can reach more than 300 m for some vari-
ables, such as wind increase (Laurance et al., 2002, 2006).
Because the distance from forest edges to their interiors
in smaller fragments is relatively shorter, the environ-
mental conditions in the Edge and Interior habitats
become more similar (Magnago et al., 2017). This homog-
enization in microclimate is one major cause of lower
beta diversity in smaller fragments.

In addition, as also revealed in the preceding subsection,
fragment edges lost (between Edge and Interior) some
unique species that were generally replaced by shared spe-
cies, and this loss/replacement rate is higher in smaller frag-
ments. Due to changes in the forest microclimate, edge
habitats and small fragments are rapidly colonized by

pioneer tree species (high light demand species; Laurance
et al., 2006); these species are considered generalists and
capable of easily colonizing and dispersing throughout agri-
cultural matrices (Magnago et al., 2014). Thus, in fragment
edges and small fragments, the loss/replacement of unique
tree species by shared tree species was probably caused by
the severe conditions created by edge habitats. These edge
conditions could select from a small pool of species that are
more adapted to intense light conditions, higher tempera-
tures, and less humidity. Therefore, our results were as
expected in accordance with niche theory, as applied to
fragmentation studies (Püttker et al., 2015). That is, reduced
environmental differentiation promoted by fragmentation
(see results of microclimate homogenization for the
fragments studied by Magnago et al., 2017) could reduce
the beta diversity between Edge and Interior in small
fragments, where colonized trees are selected from a small
species pool.

APPLICATIONS TO TEMPORAL DATA

We first illustrate the iNEXT.beta3D procedures with
beetle abundance data for two time periods, followed by
an application to tree abundance data for long-term time
series.

Temporal beta diversity for two time
periods

To illustrate iNEXT.beta3D procedures for temporal
data, we use saproxylic beetle data collected from 2008
to 2011 in a large experiment on the effects of salvage
logging on biodiversity (Thorn et al., 2014, 2016). The
underlying data are available in the BioTIME database
(Dornelas et al., 2018). Saproxylic beetles refer to those
that depend on the fungal decay of wood during some
part of their life cycle (Alexander, 2008). The experi-
ment was conducted in the Bavarian Forest National
Park in southeastern Germany, a forested area subjected
to different kinds of natural disturbances (Thorn et al.,
2017). In January 2007, a mature Norway spruce forest
of ~1000 ha was felled by the windstorm Kyrill. From
those 1000 ha, an area of roughly 200 ha remained
unlogged whereas storm-felled trees in the remaining
800 ha were removed by experimental salvage logging.
Afterward, 44 permanent plots (22 in logged and 22 in
unlogged areas) were established. Saproxylic beetles
were trapped using 44 flight-interception traps, one at
the centroid of each plot. Traps were emptied monthly
and abundance data were pooled over plots within each
area and year. All beetles were identified to the species
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F I GURE 3 Beta diversity between the Edge and Interior habitats as a function of fragment size based on data from eight fragments.

Row 1 shows observed beta diversity, and rows 2 to 7 show the standardized beta diversity under six coverage levels: 60%, 70%, 80%, 90%,

95%, and 100% (asymptotic) for order q = 0 (column 1), q = 1 (column 2) and q = 2 (column 3). The fitted curves were made using a linear

trend; a solid red line fit indicates significance (p < 5%) and a dotted line indicates nonsignificance.
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level; see Thorn et al. (2014) for sampling details. We
assume that the data collected in each of the 44 plots are
representative of the entire assemblage in that plot.

During the first stages of wood decay following natural
disturbances, the abundances of a few bark beetles, the
so-called “pest species,” such as the European spruce bark
beetle, Ips typographus and associated species, increase
within a short time period (Wermelinger, 2002). This peak
is particularly significant in unlogged, naturally disturbed
plots because of the larger amount of deadwood (Thorn
et al., 2014). Thus, the large temporal variation in pest spe-
cies abundance was observed during the first 2 years (2008
to 2009). To obtain more stable diversity patterns, we
pooled the data from 2008 and 2009 (referred to as the first
time period) and the data from 2010 and 2011 (referred to
as the second time period); see Appendix S5: Table S1 for
some summary statistics. Our goal was to assess beta
diversity between the two time periods separately for
logged and unlogged areas. Summary statistics and some
detailed numerical values for observed, asymptotic, and
standardized gamma, alpha, and beta diversity of q = 0,
1, and 2 are provided in Appendix S5: Table S2. Since all
the iNEXT.beta3D procedures for temporal data with two
time periods are parallel to those for spatial beta diversity
with two localities, we omit the description of most proce-
dures; see Appendix S5 for details.

Figure 4a shows the size-based rarefaction and
extrapolation for the gamma and alpha diversity for
q = 0, 1, and 2 in each area. The reference sample size,
that is, the total number of individuals observed over
the two time periods, is much higher in the unlogged
area compared with the logged area, due to the larger
amount of deadwood. However, contrary to most stud-
ies, this larger sample size led to lower observed
gamma (and alpha) diversity. Consequently, for any
standardized sample size, gamma (and alpha) diversity
of the unlogged area is lower than the logged area,
regardless of the diversity order (Figure 4a). Here, the
size-based beta diversity is not a legitimate differentia-
tion measure and thus the corresponding plot is not
shown.

As in most studies, gamma and alpha rarefaction
and extrapolation sampling curves for q = 0 for each
area do not level off, whereas the curves for q = 1 and
q = 2 stabilize. This pattern implies that we can com-
pare alpha, beta, and gamma diversity of q = 1 and 2 for
any standardized coverage up to their asymptotes; for
q = 0, their respective asymptotic values cannot be
accurately estimated, and comparison can only be made
for any standardized coverage up to a maximum, as
shown below.

Figure 4b shows the coverage-based gamma, alpha,
and beta rarefaction and extrapolation curves separately

for logged and unlogged areas. For gamma (and alpha),
the observed sample coverage value and the
corresponding coverage value for the extrapolated sample
with twice the reference sample size are all very close to
100% (see Appendix S5: Table S1). Because the increase
in coverage for the extrapolation is small, the estimated
diversity hardly changes beyond the reference samples,
so the extrapolation portions in Figure 4b are nearly
invisible for all diversity orders.

If we focus on abundant (q = 1) and very abundant
(q = 2) species for gamma and alpha, the nonoverlapping
CIs in Figure 4b reveal that the logged area has signifi-
cantly higher alpha and gamma diversity, but the
unlogged area has significantly higher beta diversity.
These orderings are valid for any standardized sample
coverage up to 100% (complete coverage). For
richness-based (q = 0) measures, a similar conclusion
is valid but only up to a coverage value of about 95%
(row 3, column 1 in Figure 4b), due to insufficient
information about extremely rare species.

Within the logged area, Figure 4b also reveals that
beta diversity stays at a constant level with order q, and
all beta values differ from one only to a limited extent.
This result signifies that beta diversity over time in the
logged area is low and roughly the same for rare, com-
mon, and very abundant species. However, beta diversity
within the unlogged area is increasing with increasing
order q, that is, beta diversity is relatively high for very
abundant species, moderate for common/abundant spe-
cies, and relatively low for rare species. In other words,
the change in species abundance in the unlogged area
was the main driver for compositional change between
the two time periods.

For our beetle data, the logged area generally has
higher alpha and gamma diversity than the unlogged
area for any standardized sample coverage, but the
ordering is reversed for beta diversity. This pattern may
be caused by a comparably low amount of deadwood in
logged areas, such as fine woody debris, logging resid-
uals etc., which are quickly decomposing. Available
deadwood additionally develops into moist and shady
microclimates; these changes support higher gamma
and alpha diversity but limit beta diversity over time. In
unlogged areas, in contrast, a large amount of deadwood
(in the form of trunks, large stumps, and branches)
remains much longer. This longer persistence of dead-
wood tends to facilitate species turnover over time, espe-
cially for more abundant species. Despite the substantial
difference in the amount of deadwood between the
logged and unlogged areas, our iNEXT.beta3D method
provides robust and statistically justified standardization
comparisons of temporal beta diversity for the two
areas.
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(a) Sample-size-based rarefaction and extrapolation for gamma and alpha diversity 
(2008−2009 vs. 2010−2011)
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F I GURE 4 Legend on next page.
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Temporal beta diversity for long-term time
series data

We apply the iNEXT.beta3D standardization procedure
to assess beta diversity over time for the yearly tree spe-
cies data collected from six 1-ha (50 m × 200 m)
second-growth rainforests in Costa Rica. The six forests,
with their abbreviated names and ages in 2005 (the
selected reference time; see below) are: Finca el Bejuco
(FEB, 10 years), Juan Enriquez (JE, 10 years), Lindero
Sur (LSUR, 20 years), Tirimbina (TIR, 23 years),
Lindero el Peje (LEP, 28 years), and Cuatro Rios (CR,
33 years). The species abundance data for all stems
≥5 cm in DBH were recorded annually from 1997 to 2017
for four older second-growth forests (CR, LEP, TIR, and
LSUR), and from 2005 to 2017 for the two youngest ones
(FEB and JE); see Chazdon et al. (2022) for sampling
details and summary statistics. All data are available
through Dryad (Chazdon, 2021).

Since all abundance data were recorded within each
1-ha forest plot, individual trees of some species may
exhibit intraspecific aggregation and thus may not be
modeled as independent sampling units. In this case, it is
statistically preferable to first convert species abundance
records in each forest to occurrence or incidence
(detection/nondetection) data. We thus further divided
each 1-ha forest into 100 subplots (each with 0.01 ha)
and recorded only species’ incidence records in each sub-
plot, computing the incidence frequency for a species as
the number of subplots in which that species was
detected. By treating the incidence frequency of each spe-
cies among subplots as a “proxy” for its abundance, the
iNEXT.beta3D standardization can be adapted to deal
with spatially aggregated data and to avoid the effect of
intraspecific aggregation. See Discussion for more details.

Because data for all six forests are available from
2005 to 2017, we chose 2005 as a base year, and tempo-
ral beta diversity was computed between 2005 and any

subsequent year within each forest. Based on species
incidence frequency data, our goal was to assess the tra-
jectories of species compositional change (relative to
the base year), as a function of forest age, during the
process of forest succession from 2005 to 2017. That is,
within each forest, we computed gamma, alpha and
temporal beta diversity for 12 pairs of years (2005
vs. 2006, 2005 vs. 2007, …, 2005 vs. 2017).

The same iNEXT.beta3D standardization proce-
dures (but based on incidence data) as those presented
for two time periods were applied to each of the 12 pairs
of years. Coverage-based rarefaction and extrapolation
curves for alpha, gamma and beta diversity, such as
those in Figure 4b, were first obtained. As it is not
possible to summarize the results based on simulta-
neously comparing 12 rarefaction and extrapolation
curves, we extract and present the standardized
gamma, alpha, and beta diversity for four levels of stan-
dardized coverage values: 80%, 90%, 95%, and 100%
(asymptotic diversity). Figure 5 shows the trajectories
of temporal beta diversity for these four coverage
values (rows 2 to 5) with respect to forest age, along
with the observed beta diversity (row 1). The trajecto-
ries for alpha and gamma diversity appear in
Appendix S5: Figure S1. In Appendix S5, we also report
the corresponding trajectories for beta diversity based
on abundance data (Appendix S5: Figure S2); all pat-
terns are generally consistent with those summarized
below for incidence data.

First, note that, within each forest, no matter what
the estimation methods (observed, standardized, or
asymptotic diversity) and diversity order q, beta diversity
generally increases with time. That is, in comparison
with the base year, the extent of species compositional
differentiation increases as time elapses. We next exam-
ine how temporal beta diversity and its slope behave, as a
function of forest age separately for the following two
cases:

F I GURE 4 iNEXT.beta3D standardization for two time periods. (a) Sample-size-based rarefaction (solid curves) and extrapolation

(dashed curves) for gamma diversity and alpha diversity, and (b) coverage-based rarefaction (solid curves) and extrapolation (dashed curves)

with gamma, alpha, and beta diversity, based on the saproxylic species abundance data collected in two time periods (2008–2009
vs. 2010–2011), separately for the logged area (orange curves) and unlogged area (blue curves) for diversity orders q = 0 (left panels), q = 1

(middle panels), and q = 2 (right panels). Here, size-based beta diversity is not a legitimate differentiation measure and thus is omitted; see

Discussion. The two gamma reference samples are denoted by solid circles and alpha reference samples by hollow circles. The two

extrapolated gamma and alpha samples, with double the reference sample size (2n), are denoted respectively by solid triangles and hollow

triangles. In (a), sample size in each plot is extrapolated up to 2n, but the extrapolation part for the unlogged area is not shown, for clarity.

In (b), in both areas, the coverage values for alpha, extrapolated alpha with size 2n, gamma, and extrapolated gamma with size 2n are all

very close to 1 (all >99.5%). The increment in coverage from size n to 2n is so low that extrapolation in each panel is almost invisible. In (b),

for q = 1 and q = 2, the extrapolation for alpha, beta, and gamma can be extended to the asymptote (i.e., coverage value of 100%). For q = 0,

the extrapolation for gamma and alpha can be extended to the coverage value corresponding to double each reference sample size; the

extrapolation limit for beta diversity is the same as alpha diversity. All 95% CIs (shaded areas) were obtained by a bootstrap method based on

200 replications. Some CIs are very narrow, so that they are hardly seen.
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F I GURE 5 Trajectories of temporal beta diversity over time for tree species incidence data among 100 subplots in six second-growth

rainforests. All temporal beta diversity within each forest was computed based on the data in 2005 (as the reference base time) and the data of

any subsequent year. Row 1 shows the observed beta diversity, and rows 2 to 5 show the standardized beta diversity under four coverage levels

(80%, 90%, 95%, and 100%) for beta diversity of order q = 0 (left panels), q = 1 (middle panels) and q = 2 (right panels). For standardized

coverage levels of 80%, 90%, and 95%, standardized beta diversity was computed from interpolated samples for both gamma and alpha, to depict

the trajectories graphically. Asymptotic beta diversity was computed based on “long-range extrapolated” (i.e., extrapolated size is greater than

double the reference sample size) samples for both gamma and alpha; thus, only asymptotic beta diversity for q = 1 and q = 2 are reliable. The

asymptotic beta diversity for q = 0 may be subject to long-range extrapolation bias. All 95% CIs (shaded areas) were obtained by a bootstrap

method based on 200 replications. The corresponding plots based on abundance data are shown in Appendix S5: Figure S3.

22 of 32 CHAO ET AL.

 15577015, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecm

.1588 by U
niversity O

f St A
ndrew

s U
niversity, W

iley O
nline L

ibrary on [29/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1. Diversity order q = 1 and q = 2. If we focus on fre-
quent species (q = 1, middle panels in Figure 5) or
very frequent species (q = 2, right panels in Figure 5),
a clear pattern is revealed: regardless of estimation
method, temporal beta diversity (between the base
year and any fixed subsequent year) declines very
slowly as forest age is increased; the two youngest for-
ests of the same age (JEB and JE) exhibit slightly
higher beta diversity than the other four forests. A
similar slow declining pattern with forest age is also
revealed when comparing the rate of compositional
change (i.e., the slope of beta diversity). The two
youngest forests have slightly higher shift rates than
the other four forests.

2. Diversity order q = 0. Except for asymptotic beta
diversity (which is subject to some bias and fluctua-
tion due to long-range extrapolation), observed and
standardized beta diversity curves roughly follow sim-
ilar patterns as described above for q = 1 and q = 2.

In the two youngest sites (FEB and JE), the canopy was
nearly closed by 2005 (there were still some open areas
in JE). But it is still at a young stage with continued
recruitment of early successional trees into the canopy
and establishment of shade-tolerant trees in small
tree-size classes. This early successional stage is the time
of maximum dynamics in tree species composition. Thus,
as expected, the trajectories of gamma and alpha diversity
increase over time in the two youngest forests
(Appendix S5: Figure S1), regardless of diversity order
q and standardized coverage value. The rate of increase
in gamma diversity is much higher than for alpha diver-
sity, due to rapid species turnover, yielding relatively
high standardized beta diversity and high shift rate (high
slope of changing beta diversity) for the two youngest
forests.

As time progresses (>20 years) and the canopy closes,
the understory becomes more shaded in older forests,
some shade-intolerant species are eliminated, and colo-
nizing shade-tolerant species thrive and establish slowly.
The conditions are poor for the establishment of
shade-intolerant species and many of the abundant spe-
cies show high rates of mortality as stands are thinning
(decreasing in total stem abundance but increasing in the
basal area). Except for the TIR forest, standardized
gamma and alpha diversity in the other three, older
forests (LEP, LSUR, and CR) decline slowly with time
(see Appendix S5: Figure S1) for any standardized
coverage value. In these older forests, early successional
species are dropping out and the rate of establishment of
new, shade-tolerant species is slow. Although beta
diversity is still increasing in the four older forests, both
the magnitude of beta diversity and the slope of change

in beta are lower than the corresponding values in the
two youngest sites. Our iNEXT.beta3D standardization
provides insights into the trajectories of temporal beta
diversity over time during forest succession that are
driven by both species replacement and changes in
species incidence frequency. Appendix S5: Figure S2
exhibits the corresponding trajectories based on abun-
dance data; the patterns based on abundance data are
generally consistent with those based on incidence data,
showing, in this case, that the effect of spatial aggregation
was not too strong.

APPLICATIONS TO
SPATIOTEMPORAL DATA

We applied the iNEXT.beta3D standardization procedure
to assess both temporal and spatial beta diversity change
for fish species data based on annual surveys of the west
coast of Scotland. Data were downloaded from the ICES
(International Council for the Exploration of the Seas)
portal, that is, DATRAS (2021) Fish Survey Data
“Scottish West Coast International Bottom Trawl Survey”
(SWC-IBTS) for commercial fish species in the first quar-
ter of each year from 1985 to 2010. All data are available
at https://datras.ices.dk; see Magurran et al. (2015) for
sampling details and some pertinent analyses.

Each sample in the data represents a discrete trawl
occurring at a specific geographical point within an ICES
rectangle; each rectangle represents a 300 latitude by 1�

longitude grid cell. Species abundances were measured
by catch per unit effort (CPUE, i.e., the number of indi-
viduals per species caught during a 1-h trawl). All rectan-
gles in the original data roughly cover the area between
53� N to 60� N, with a total of 124 species captured
between 1985 and 2010. We mainly focused on data cov-
ering rectangles above 55� N latitude (a total of 120 spe-
cies) because trawls were conducted below 55� N only
from 1997 to 2006.

To obtain stable spatial gamma, alpha, and beta diver-
sity patterns, we pooled four latitudinal bands (55.5�, 56�,
56.5�, and 57� N) to form the South area, and pooled
another four latitudinal bands (58�, 58.5�, 59�, and
59.5� N) to form the North area. The data in the middle
(with latitudinal band 57.5� N) were excluded to focus on
the contrast between the northern and southern spatial
patterns. There were no species unique to this middle lat-
itudinal band, that is, all observed species in this band
were caught in the South and/or in the North area.
Within a particular year, data from all rectangles in each
area were pooled. To avoid using a very low number of
standardized samples in assessing temporal gamma,
alpha, and beta diversity, we also pooled annual data
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into 2-year periods, that is, we considered a total of
13 time periods/intervals: 1985–1986, 1987–1988, …,
2009–2010. Thus, the following analyses are based on
spatiotemporal data for two areas (North and South) and
13 time periods.

The number of trawls/samples varies by rectangle
and thus by area and time period. Within each area, the
number of samples along with observed species rich-
ness in 13 time periods are shown in Appendix S6:
Table S1. The minimum number of samples is
28, among all time periods in the two areas. Thus, the
sampling effort was standardized by randomly selecting
28 samples in each time period within any given area;
the iNEXT.beta3D standardization was applied to the
pooled species abundance data (in terms of CPUE)
based on these randomly selected samples. Temporal
gamma, alpha, and beta diversity were computed
between the first time period (1985–1986, base time
period) and each subsequent period. Spatial gamma,
alpha, and beta diversity were computed between the
South and North areas within each time period. The
random selection procedure of 28 samples was repeated
200 times. The following plots are all based on the aver-
age values of 200 replications.

For each randomly selected set of 28 samples, the
estimated sample coverage for gamma and alpha refer-
ence samples in each time period and each fixed area
was generally very high (>99%), for both temporal and
spatial data. For q = 1 (focusing on abundant species)
and q = 2 (focusing on very abundant species), the data
contain sufficient information to infer asymptotic diver-
sity values. However, there were some time periods for
which data do not contain sufficient information to
infer asymptotic gamma or alpha for total species rich-
ness (q = 0, focusing on rare species), because a tiny
fraction of an assemblage’s individuals may represent a
very large number of vanishingly rare species. Thus, for
species richness, coverage-based rarefaction and extrap-
olation are needed for both spatial and temporal data.
We computed temporal and spatial gamma, alpha, and
beta using four estimation methods: (1) observed diver-
sity, (2) standardization to a coverage value of 99%,
(3) standardization to a coverage value of 99.9%, and
(4) asymptotic estimation, that is, extrapolation to com-
plete coverage.

Figure 6a shows the plots of temporal (left three
panels) and spatial (right three panels) beta diversity for
q = 0, 1, and 2 under the four estimation methods.
Regardless of data type (spatial or temporal) and diversity
order, beta diversity values revealed generally consistent
patterns among the four estimation methods, except for
the asymptotic richness-based (q = 0) temporal beta
diversity. The exception arises because the estimated

asymptotic richness-based beta diversity may be subject
to some bias, due to insufficient data for rare species. To
help interpret the results, Figure 6b shows temporal (left
three panels) and spatial (right three panels) gamma,
alpha, and beta diversity of orders q = 0, 1, and 2 for a
standardized coverage value of 99.9%. The corresponding
plots of gamma and alpha diversity for the other three
estimation methods exhibit similar patterns; see
Appendix S6 for details.

Temporal beta diversity

Figure 6a clearly demonstrates for both areas that tempo-
ral beta diversity increases relative to the initial period
(i.e., similarity decreases) from 1985 to 2010; most of the
linear fitted trends are statistically significant. Note that
within each area, both temporal gamma and alpha diver-
sity generally tend to decline (Figure 6b; Appendix S6:
Figure S1) over time, but the rate of decline is steeper for
alpha diversity, leading to an increasing trend for beta. For
both areas, temporal beta diversity for abundant and very
abundant species (q = 1 and 2) is much higher than for
rare species (q = 0). In addition, the rate of species compo-
sitional change (i.e., the slope of beta diversity) for abun-
dant and very abundant species (q = 1 and 2) is also
higher than for rare species (q = 0). These stronger effects
for q = 1 and 2 imply that temporal beta diversity and its
rate of change were principally attributable to abundant
and very abundant species, that is, linked to a shift in the
SAD, rather than to a change in species richness. Whether
temperature, salinity and/or other environmental variables
can be used to explain the significant changes in temporal
beta diversity rate merits further investigation.

When comparing the temporal beta diversity of the
two areas, for abundant and very abundant species
(q = 1 and 2), we find that the South area generally had
higher beta diversity and higher rates of compositional
shift rate than the North area; for rare species (q = 0)
both areas had comparable beta diversity values and shift
rates.

Spatial beta diversity

Within each fixed time period, Figure 6a shows that spa-
tial beta diversity between the North and the South did
not exhibit a significant change over time for each fixed
diversity order q. Figure 6b implies that spatial gamma
and alpha diversity both tended to decline over time at
almost the same rate for a fixed value of q, leading to a
nearly constant level for spatial beta diversity over time
(i.e., shift rate in beta over time is virtually 0 for all q = 0,
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F I GURE 6 Legend on next page.
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1, and 2), with the level increasing with order q.
Consequently, the change of abundance among species
can nonetheless explain spatial beta diversity, but not its
rate of change.

CONCLUSIONS

Under the framework of Hill numbers, we have general-
ized the iNEXT standardization (in Table 2) for a single
assemblage to alpha, beta, and gamma diversity of order
q ≥ 0 for multiple assemblages. In our approach, the
iNEXT standardization for gamma diversity is applied to
the gamma reference sample in the pooled assemblage,
whereas the corresponding standardization for alpha
diversity is applied to the alpha reference sample in the
joint assemblage; see Table 1 for a summary and
Appendix S2 for an illustrative example. Our proposed
standardized beta diversity (Equation 6), for any given
level of sample coverage, is expressed as the ratio
between gamma and alpha diversity, where both alpha
and gamma diversity are standardized to the same level
of sample coverage. Sample coverage is an objective mea-
sure of sample completeness and can be very accurately
estimated from gamma and alpha reference samples. We
have proved that coverage-based standardized beta diver-
sity estimates fulfill the three essential properties that jus-
tify the independence of our standardized beta diversity
from gamma and alpha diversity. The rarefaction and
extrapolation formulas for alpha, beta, and gamma diver-
sities (q = 0, 1, and 2) appear in Appendix S2.

A novel contribution of our proposed iNEXT.beta3D
strategy based on sampling data lies in its statistical
sampling-model-based approach, which makes a clear
distinction between the theoretical assemblage level and
the sampling data level. For spatial data collected from a
region consisting of N assemblages, we summarize some
key points and pertinent model assumptions:

1. At the assemblage level, beta diversity (i.e., the extent
of among-assemblage differences) represents the

interacting effect of the regional SAD and spatial
aggregation.

2. As with classic rarefaction, one basic assumption for
the iNEXT.beta3D standardization using rarefaction
and extrapolation for Hill numbers is that an indepen-
dent sample of n individuals (or other sampling units)
is selected from the region. Simulation results
(in Appendix S1) demonstrate that our data-level stan-
dardization is not affected by assemblage-level spatial
aggregation and is quite robust to departures from fully
independent sampling.

3. At the data level, observed beta diversity depends not
only on among-assemblage differentiation but also on
sample effort/completeness, which in turn induces
dependence on alpha and gamma diversity.

4. Under independent sampling, our iNEXT.beta3D
approach standardizes sample coverage, which
removes the dependence of beta on alpha and
gamma diversity. Our coverage-based standardized
beta diversity purely reflects the among-assemblage
differentiation.

5. When independent sampling is not feasible, such as the
large-area-based forest data in our applications, we sug-
gest using appropriate sampling units to convert abun-
dance data to incidence data, which are generally only
weakly dependent on, and therefore much less sensitive
to aggregation than the corresponding abundance data.
Thus, the rarefaction and extrapolation method can be
applied to replicated incidence data.

DISCUSSION

In this section, for sampling data we discuss why compar-
isons across datasets should not use observed beta diver-
sity and size-based, standardized beta diversity. We also
compare our iNEXT.beta3D method with three previous
approaches, highlighting the ways in which it helps solve
existing challenges, and suggest a method for assessing
the spatial-aggregation effect, which is a known compli-
cating factor in biodiversity assessment.

F I GURE 6 Temporal and spatial gamma, alpha and beta diversity for fish species based on SWC-IBTS data from 1985 to 2010.

(a) Temporal beta (left three panels) and spatial beta (right three panels) diversity for orders q = 0, 1, and 2, based on four estimation

methods, that is, observed, standardized (at two coverage values, 99% and 99.9%) and asymptotic beta values. (b) Temporal (left three panels)

and spatial (right three panels) gamma, alpha, and beta diversity for orders q = 0, 1, and 2 specifically for a standardized coverage value

99.9%. Temporal gamma, alpha, and beta diversity were computed between the first time period (1985–1986, base time period) and any

subsequent period, separately for the South area (red dots) and the North area (blue dots). Spatial gamma, alpha, and beta diversity (green

dots) were computed between the South and North areas within each time period. Sampling effort was standardized at 28 samples across the

two areas and 13 time periods. The random selection procedure of 28 samples was repeated 200 times, and all plots are based on the average

values of the 200 replications. A linear trend was fitted to data points in each panel; statistical significance (p < 0.05) for a fitted linear trend

is denoted by a solid line and nonsignificance is denoted by a dashed line. The corresponding plots of gamma and alpha diversity for the

other three estimation methods are provided in Appendix S6: Figure S1.

26 of 32 CHAO ET AL.

 15577015, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecm

.1588 by U
niversity O

f St A
ndrew

s U
niversity, W

iley O
nline L

ibrary on [29/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



The bias of the observed richness-based
beta diversity

Here “bias” means a systematic tendency that leads to
differences between an estimator/statistic and the true
parameter. It is well known that the observed number of
species in sampling data exhibits negative bias. The bias
could be serious for data from a hyperdiverse assemblage
(e.g., Coddington et al., 2009). The observed
richness-based (q = 0) beta diversity and dissimilarity
measures, including the classic Jaccard and Sørensen dis-
similarity measures, generally exhibit positive bias (Chao
et al., 2005), but negative bias or no bias could also arise,
under certain circumstances:

1. When no species are shared among assemblages,
observed richness-based beta diversity always cor-
rectly yields the maximum value of N; in this case,
observed beta diversity is unbiased and standardized
beta diversity for any level of coverage also correctly
attains the maximum value of N.

2. In the special case in which N assemblages are identi-
cal, Lande (1996) was the first to notice that positive
bias exists for richness-based dissimilarity even for
very large sample sizes. In this case, our standardized
beta diversity for any level of coverage approaches the
correct value of 1.

3. Negative bias could arise when N assemblages only
share very abundant species, while the rare ones tend
to be locally endemic. At the data level, two samples
might yield the same few common species, but fail to
reveal rare species that would differentiate the assem-
blages in larger samples (Colwell & Coddington, 1994).

Why is sample-size-based, standardized
beta diversity not a legitimate
differentiation measure?

To standardize gamma and alpha to the same level of
coverage in our iNEXT.beta3D procedure, the sample
sizes needed in the joint assemblage and the pooled
assemblage, that is, mα and mγ in Equation (6), generally
differ, except for the case in which no species are shared
among assemblages. The two sample sizes should satisfy
the following two constraints: (1) When the data of
N assemblages have no shared species, we should have
mγ = mα for any given coverage value. (2) When
N assemblages are identical, we should have mα = Nmγ.
Any fixed relationship (as defined below) for the two
sample sizes will make the corresponding standardiza-
tion violate either the fixed maximum requirement or the
fixed minimum requirement.

Consider the two common ways to standardize sam-
ple sizes:

1. The sample size in each of the N assemblages and in
the pooled assemblage are all standardized to a fixed
sample size, that is, mα = Nmγ in Equation (6). Such a
size-based standardized beta diversity fails to satisfy
the fixed maximum criterion unless data are complete
(i.e., coverage approaches 100%).

2. The sample size in each of the N assemblages is stan-
dardized to a fixed size, but the size in the pooled
assemblage is taken to be N times the fixed number,
that is, mα = mγ in Equation (6). Such a size-based
standardized beta diversity fails to satisfy the fixed
minimum criterion unless data are complete.

We thus can conclude that neither of the two
size-based standardizations leads to a legitimate differen-
tiation measure.

Extension to phylogenetic and functional
beta diversity

In this paper, we have focused mainly on taxonomic beta
diversity, which is based on species abundances in multiple
assemblages. Thus, our procedures do not take species phy-
logenetic relations and species trait differences into account.
A rapidly growing literature addresses phylogenetic diver-
sity and functional diversity measures. Chao et al. (2021)
extended the iNEXT methodology to the iNEXT.3D stan-
dardization, which integrates the three dimensions of biodi-
versity (taxonomic, phylogenetic, and functional diversity)
in a unified framework. Under the decomposition frame-
work of Hill numbers, Chiu et al. (2014) generalized taxo-
nomic beta diversity to a phylogenetic version, and Chao,
Chiu, Villéger, et al. (2019) further generalized beta to a
functional version. Recently, we have extended the iNEXT.
beta3D methodology to phylogenetic and functional ver-
sions so that a unified framework is established for the
three dimensions of beta diversity.

Comparisons with some previous
approaches

The individual-based, null-model approach to
beta diversity

Kraft et al. (2011) developed an individual-based random-
ization procedure, under a null model, to remove species
pool dependence on beta diversity. They proposed the
use of a statistic called beta deviation which is formulated
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as the difference between the observed “beta” and the
average of expected “beta” values, divided by the stan-
dard deviation of expected values. Here “beta” is defined
as βP ¼ 1− S=S (proportional species turnover), where
S denotes the species richness in the pooled assemblage
(i.e., richness-based gamma) and S denotes the simple
average of the species richness of individual assemblages
(i.e., richness-based alpha). The expected “beta” values
are calculated by randomly distributing all individuals in
the observed pool to all assemblages, while preserving
the SAD in the observed pool and the number of individ-
uals in the data from each assemblage.

As Kraft et al. indicated, beta deviation provides a
useful statistic for testing the null hypothesis (random
spatial distribution from the observed pool of individ-
uals), that is, whether the observed beta diversity can be
obtained by random sampling from the observed pool of
individuals. From a statistical perspective, the inference
one can extract from this test is: if the magnitude of beta
deviation exceeds some critical value, one can reject the
above randomness assumption. Otherwise, data are not
sufficient to support nonrandomness. The critical values
for a significance level of 5% in most applications can be
taken to be −2 and 2 (i.e., approximate lower and upper
critical values based on a standard normal distribution).
A rejection implies that the observed beta cannot be
obtained from a random sampling of the observed pool of
individuals. However, the observed pool deviates
from the true pool for incomplete sampling data
(Tuomisto & Ruokolainen, 2012; Xing & He, 2021). As
with all statistical tests, the magnitude of the randomiza-
tion test based on beta deviation depends on sampling
effort (Bennett & Gilbert, 2016; Qian et al., 2013; Ulrich
et al., 2017, 2018), as well as species pool size (Chao et al.,
2023). Thus, caution is called for when using the magni-
tude of beta deviation to quantify the effect of nonrandom
spatial distribution and among-assemblage differentiation.
Xing and He (2021) proposed a modified version with a
scaled sampling effort, but under the restrictive assump-
tion that the regional SAD follows a log-series distribution.

Engel et al.’s (2021) sample-coverage-based
standardization approach

Engel et al. (2021) focused on species-richness-based
(q = 0) beta diversity and applied a coverage-based rare-
faction and extrapolation method for standardization.
However, their standardization is different from the
iNEXT.beta3D approach. Although they standardize sam-
ple coverage across datasets (each dataset consisting of
N assemblages), size-based standardization is used to
obtain gamma and alpha species richness within each

dataset, that is, the sample size in each of the
N assemblages and in the pooled assemblage are all stan-
dardized to a fixed sample size. As discussed earlier
regarding the problem with a size-based approach, unless
the sample coverage tends to one, the fixed maximum cri-
terion will not be satisfied. Our coverage-based approach
solves this problem because, when there are no shared
species among N assemblages (i.e., complete turnover),
standardized beta always yields the maximum value of N,
for any value of sample coverage.

In addition, in the Engel et al. (2021) standardization,
datasets are compared at a single targeted level of sample
coverage, while in our procedures, datasets can be com-
pared for a range of coverage values. When there are
many datasets, targeted coverage levels in Engel et al.’s
method can be low. We use a numerical example to illus-
trate the differences. Engel et al. (2021, their figure 5)
applied their method to analyze Gentry’s worldwide plots
data on woody plant abundance records (Gentry, 1988;
Phillips & Miller, 2002) with each plot consisting of
10 small subplots. In their analysis, standardized beta
diversity among 10 subplots was compared only at a sin-
gle target coverage level of 10% across all plots; they
found no evidence for any latitudinal patterns. However,
under such a low coverage value, a large amount of data
in each plot was discarded and only a few species were
involved in the comparison across all plots.
Consequently, the data do not have enough power to
detect any systematic changes. Based on the iNEXT.
beta3D method, with extrapolation to twice the reference
sample size in each plot, we can infer richness-based beta
diversity for a range of coverage values up to the maxi-
mum. Using Gentry’s data in 197 plots, we can compare
82 plots up to a coverage value of 80%, 115 plots up to
70%, 141 plots up to 60%, and 172 plots up to 50%. Data
then have sufficient power to reveal significant latitudi-
nal beta diversity patterns; see Chao et al. (2023) for anal-
ysis details.

The McGlinn et al. (2019, 2021) decomposition
approach

Based on abundance data collected from georeferenced
quadrats (plots or patches), McGlinn et al. (2021)
decomposed individual-based and sample-based species
rarefaction curves into three components attributed to:
(1) the SAD, (2) the total abundance, and (3) spatial
aggregation. The effect of each component is assessed by
comparing three types of rarefaction curves (spatial
sample-based, nonspatial sample-based, and individual-
based). All three types of rarefaction curves considered
by McGlinn et al. (2021) are computed from a single
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spatially explicit dataset. Their assessment of the three
components relies on the premise that individual-based
rarefaction curves purely reflect variation in the SAD,
regardless of the extent of spatial aggregation. From our
simulations reported in Appendix S1, this premise is jus-
tified if spatial aggregation is not strong. However, when
spatial aggregation is strong, individuals sampled in any
sampling unit are no longer independent, violating the
basic assumption for rarefaction theory. Consequently,
individual-based rarefaction curves may not purely
reflect the SAD effect. In this case, to correctly reflect
the SAD effect, we recommend additional sampling,
which will allow the pure effect of the SAD and the
extent of spatial aggregation to be inferred, as suggested
below.

Assessing spatial-aggregation effect if
additional sampling is feasible

We suggest assessing the aggregation effect by comparing
two statistically-valid species rarefaction and extrapolation
curves. Assume that T quadrats/plots (each quadrat/plot is
regarded as a sampling unit) are independently selected,
and species abundance data are collected from each quad-
rat. We construct two rarefaction/extrapolation curves:

1. A sample (incidence)-based species rarefaction/
extrapolation curve obtained by converting abundance
data in each quadrat to incidence data. Since the sam-
pling units are independently selected, the sample-based
rarefaction/extrapolation curve legitimately conveys all
information in the SID to purely reflect the SID effect.

2. An individual (abundance)-based species rarefaction/
extrapolation curve obtained based on an additional
sampling in which an approximately independent
sample of n individuals is selected from the assem-
blage, where the sample size n is the same as the total
abundance recorded from T quadrats. This
individual-based rarefaction curve conveys all infor-
mation in the SAD and purely reflects the SAD effect.

When there is no spatial aggregation, the two rarefaction/
extrapolation curves will exactly match; for weak
aggregation, the two curves deviate very little; for strong
aggregation, the two curves deviate to a large extent.
Therefore, the difference between the two curves can be
used to assess the degree of spatial aggregation. In
Appendix S7, some preliminary simulation results are
reported to illustrate our suggested approach. However,
the difference between the two rarefaction curves depends
on sample completeness and quadrat size; more research
is needed.
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