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Abstract. The Heart Rate (HR) is a vital sign that is used to assess the physical 

and mental state of an individual. There is a growing interest in incorporating HR 

measurement into Driver Monitoring Systems (DMS), providing physiological 

measurements to help address long-existing road safety issues by minimising hu-

man error. In real-world driving scenarios, the HR must be measured using non-

contact approaches that avoid distracting or restricting the driver. The most com-

mon approaches to non-contact HR measurement use either computer vision 

(CV) or mm-wave radar, both showing acceptable performances in controlled 

studies. However, the relative merits of different sensor modalities for real-world 

scenarios remain unclear, and the potential benefits of a combined approach are 

unquantified. To address these questions, this paper first proposes and imple-

ments non-contact HR measurement architectures for both CV and mm-wave ra-

dar systems and characterises their HR estimation performance, using electrocar-

diography (ECG) to provide ground truth measurements. The effects of distance 

to sensors and of illumination variations on HR estimation are also studied, show-

ing the relative errors for both modalities to be less than 0.5% for the distances 

found in practical DMS. These results also highlight the distinctive characteris-

tics of each modality and the benefits of a multi-modality approach for DMS. 

Keywords: Non-contact Heart Rate Monitoring, Remote Photoplethysmogra-

phy, mm-wave Radar, Driver Monitoring Systems. 

1 Introduction 

Improving road safety remains a major challenge in the automotive sector, with more 

than one million deaths globally on the road each year and recent studies showing that 

human factors contributing in more than 90% of road accidents [1]. Two approaches to 

improving road safety are vehicle automation and driver monitoring using Driver Mon-

itoring Systems (DMS). As the widespread adoption of fully autonomous vehicles is 

still many years away, driver behavior will continue to have an important safety role 
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and pressures from both regulatory bodies and industries continue to drive the devel-

opment of DMS. 

As one of the vital signs, the Heart Rate (HR) is critical to the diagnosis of physio-

logical and psychological states and is ubiquitous in medicine. Furthermore, recent 

studies demonstrating the correlation between HR and fatigue have reinforced the im-

portance of vital signs in DMS [2]. In clinical settings, HR is continuously measured 

by either electrocardiography (ECG) or photoplethysmography (PPG), both of which 

are contact methods. However, due to the restrictions and distractions introduced by 

body-attached sensors, non-contact HR monitoring has gained popularity in applica-

tions such as DMS, with many studies using camera-based Computer Vision (CV) or 

radar-based methods [3]. 

CV approaches to HR measurement operate in a similar manner to PPG, in which 

changes in blood flow and blood oxygenation alter the optical absorption and reflection 

properties of the tissue. From Beer’s law, the percentage of light reflected from the skin 

is inversely proportional to changes in blood volume [4]. This is due to different ab-

sorption rates of oxyhemoglobin and deoxyhemoglobin, with the percentage of total 

hemoglobin varying throughout the cardiac cycle [5]. Alternatively, radar systems mon-

itor chest wall movement with modern mm-wave Doppler radars having the ability to 

detect mm or even sub-mm motion, enabling the measurement of the small movements 

of the chest wall caused by cardiac function. Although the effectiveness of both CV and 

radar non-contact HR estimation has been validated in controlled environments, how 

the specific characteristics of each modality are influenced by environmental factors 

such as lighting and movement remains relatively unexplored. 

To address this knowledge gap, this paper investigates the characteristics and perfor-

mance of CV and radar-based non-contact HR monitoring systems. The findings of this 

work could directly inform the development of DMS and be extended to related fields 

such as healthcare, aerospace, and navigation. Specifically, the major contributions of 

this work are as given below: 

1. A non-contact HR measurement system for each modality is proposed and imple-

mented using commercially available automotive-grade devices. Performance is val-

idated using a reference ECG device, which is widely used in clinical settings and 

provides an accurate and reliable reference. The proposed hardware and algorithms 

for each modality demonstrate good accuracy with relatively low complexity, 

achieving relative errors of 0.3% and 0.15% for CV and radar-based approaches, 

respectively. 

2. Through a comparative study, the accuracy and robustness of each modality are eval-

uated in different environments with varying distance and illumination, emphasising 

the need for a multi-modality approach when designing real-world DMS.  

 

The remainder of this paper is organised as follows. A literature review in Section 2 

summarises recent work in the field. Section 3 explains the reference non-contact ar-

chitectures proposed for this study and Section 4 details the experimental setting and 

results discussion, followed by discussion and conclusions in Section 5. 
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2 Non-contact Heart Rate Monitoring 

2.1 CV-based HR Monitoring 

Since the concept of remote (non-contact) PPG (rPPG) was first demonstrated [6], it 

has been applied across a range of applications, most commonly using the green chan-

nel of an RGB video as this contains the strongest PPG signal due to the corresponding 

peak in the absorption spectrum of hemoglobin [6]. A conventional CV-based rPPG 

pipeline typically consists of the following main steps: Region of Interest (ROI) selec-

tion, signal extraction, signal processing, and HR estimation.  

In the ROI selection phase, face detection algorithms such as HAAR [7], HOG [8], 

or deep neural networks are first used to achieve face detection, and then the ROI is 

selected for raw signal extraction. Several areas of the face, including the forehead and 

cheeks have been used as the ROI [8-11]. Using 68 facial landmarks was shown to 

enable the selection of ROI at the locations of large skin areas where the Signal-to-

Noise Ratio (SNR) is higher [12]. However, any inaccuracies found in facial landmarks 

may also introduce noise. Alternatively, simply finding a rectangular bounding box of 

the face, or part of it, may introduce interference from hair, nose, mouth, and back-

ground but enhance the stability of ROI [7, 13]. 

The signal extraction phase can directly select the green channel [6] or develop a 

new color space from a linear combination of RGB channels, helping to address the 

limitations of RGB color space towards motion [14]. A study of the effectiveness of 

linear combinations of GB, GR, and GBGR found that GBGR achieved the best per-

formance [11]. Instead of exploiting the color space, direct averaging can be applied to 

each channel and the exploitation task left to the subsequent signal processing stage [7, 

13]. A recent work used the near-infrared light spectrum, where the raw signal was 

shown to significantly suppress the negative effect of ambient light variation at the cost 

of a low SNR [10]. In the signal processing phase, denoising and signal decomposition 

are the two most commonly used techniques One of the most significant denoising 

methods is the smoothness prior approach [15] which, due to its effectiveness and sim-

plicity, remains in current use [16-17]. 

Advances in Artificial Neural Networks (ANN) have led to the development of neu-

ral-network-based denoising approaches in recent years. Examples include employing 

an inverse attention mechanism to increase the SNR when the signal of interest is weak 

[18] or utilizing Action Units to tackle the noise introduced by facial expressions [19]. 

However, the use of ANN raises concerns about the storage and computational power 

required for the real-time processing scenarios found in DMS.  

The most frequently used signal decomposition technique is Blind Source Separation 

(BSS), including Independent Component Analysis (ICA) [7, 11, 13, 16] and Principal 

Component Analysis (PCA), used in [10] to extract the signal of interest. BSS assumes 

that all components are statistically independent and follow a non-Gaussian distribu-

tion. It also introduces two uncertainties: the order of and the magnitude of the recov-

ered components. The order can be solved by power spectrum analysis or empirical 

methods, for example it has been argued that the signal of interest is usually the second 

component [11]. Finally, HR estimation is performed by extracting the frequency of the 
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highest power from the power spectrum or applying peak detection algorithms to the 

pre-processed signal. It is worth noting that the accuracy of the power spectrum analysis 

method is limited by the frequency resolution, determined by the time window length. 

Like many other disciplines, deep learning provides a new avenue for research in 

this field. Qiu et al. proposed the CosTHR architecture, using color space transfor-

mation layers to learn the optimal color space and an attention convolutional neural 

network (CNN) to achieve estimation [20]. Other researchers combined Multi-scale 

Retinex (MSR) theory with the RGB space and fed the outcome into a CNN for HR 

estimation [9]. The MSR theory is inspired by the observation that the human vision 

system is robust to different illumination conditions, thus being used to counter the 

illumination variation issue of rPPG. Given the inaccuracy of handcrafted features, end-

to-end networks were also explored to extract HR directly from the spatiotemporal 

maps constructed from videos [21-22]. 

 

2.2 Radar-based HR Monitoring 

Since the recent widespread adoption of mm-wave radars in Advanced driver-assis-

tance systems (ADAS), the feasibility of using radar in interior sensing has been stud-

ied, especially for HR monitoring. Automotive mm-wave radars operate in the 24 – 60 

GHz range, thus providing the required Doppler resolution to detect the micro-motions 

caused by heartbeats. However, there are several sources of unwanted artefacts includ-

ing movements from respiratory function (and harmonics of the same), motion arte-

facts, background reflection, multi-path interference and noise. To overcome these, typ-

ical radar-based HR measurement algorithms employ various filtering techniques and 

power spectrum analysis. One recent study first employed a 24 GHz Continuous-Wave 

(CW) Doppler Radar to extract the raw in-phase and quadrature (I/Q) signals and then 

used spectrum analysis to provide an approximate HR [23]. Finally, a set of more ac-

curate estimations from several narrowband bandpass filters were compared with the 

previous rough estimation to determine the valid output.  

The performance of radar-based sensing is highly dependent on power spectrum 

analysis – the highest peak may be the HR component but could also be the second 

respiration harmonic or other interference. To reduce noise, a signal elimination method 

can be used, for example subtracting the low- and high-frequency noise using two cas-

caded bandpass filters and feeding the output into a peak detection algorithm [24], 

though the performance is constrained by the accuracy of the lower and upper bounds 

of filters which are based on observations. The performances of peak spectrum super 

resolution techniques, such as the Multiple Signal Classification (MUSIC), and particle 

filter methods have been compared on both a driving simulator and on-vehicle testing, 

showing the complex and noisy nature of the driving scenario [25].  

Recent radar-based HR monitoring has used a Frequency-modulated Continuous-

wave (FMCW) radar to compensate for body motion by introducing the range-azimuth 

map [26]. This algorithm can estimate and remove large body motion artefacts and 

background reflection at the cost of more complex signal processing. However, the ar-

tefacts caused by micro-body motion such as random body movements and other irreg-

ular motions remain a problem because of the restricted range resolution. 
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Fig. 1. Processing pipeline of the proposed CV-based HR monitoring architecture. 

3 CV and Radar-Based DMS Testbench Architectures 

To summarize the review in Section 2, CV-based approaches are mainly influenced by 

illumination variations and large body motions while radar-based approaches are robust 

to illumination change but prone to other interference. This observation provides the 

motivation for further investigation of the failure modes of each sensing modality and 

the extent to which each may degrade the system performance. To achieve this aim, the 

CV and radar-based non-contact HR monitoring architectures described below are used 

to simulate a DMS, enabling the characteristics and robustness of each modality to be 

investigated. A detailed description of the architectures and the underlying motivations 

are provided below. 

 

3.1 Proposed CV-based HR Monitoring Architecture 

The proposed CV-based HR monitoring algorithm is based on an RGBD camera [27], 

which is widely adopted by vehicle manufacturers for interior sensing. The processing 

pipeline shown in Fig. 1 aims to achieve a trade-off between performance and effi-

ciency and consists of 5 main stages: (1) image segmentation; (2) ROI identification 

and tracking; (3) raw signal reconstruction; (4) signal processing; and (5) HR estima-

tion from the interbeat intervals (IBI).  

The system’s input is an RGBD video sequence containing RGB channels and 

aligned depth information for each pixel and the time index for each frame. To remove 

the background and exclude passengers each frame is segmented using a simple depth 

range with a default threshold of 1m, based on the typical distance between the dash-

board and the driver, see image in top center of Fig.1. As an alternative to the depth 
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threshold, image segmentation techniques such as the histogram of depth could be used 

to provide improved robustness with the cost of greatly increased processing. 

Next, a combination of face detection and skin detection algorithms is applied to 

achieve ROI identification and tracking. The single-shot-detector (SSD) algorithm is 

significantly faster than most of the widely used deep-learning-based face detectors 

while outperforming most feature-based methods such as HAAR and HOG, and there-

fore to locate and track the facial region an SSD is implemented using the DeepFace 

library [28]. The initial ROI is defined as 80% of the height and width of the given 

bounding box of the face and, to maintain a stable bounding box, the face coordinates 

are updated only when the non-overlapping facial area from the previous and the cur-

rent frames exceeds 3%. However, as the extracted ROI can include hair, nose, mouth, 

and other interferences in addition to the skin region, a skin detection algorithm based 

on a YCbCr color space transformation [29] is employed to refine the ROI and enhance 

the overall SNR. Following [29], The threshold values for the skin detection are: 

 85 ≤  𝐶𝑏 ≤  135 ∧  135 ≤  𝐶𝑟 ≤  180, (1) 

giving a binary mask shown in center right of Fig. 1. 

The raw signals are obtained by direct averaging of the values in each RGB channel 

within the ROI: 

                             𝐼 (𝐶)𝐶∈{𝑅,𝐺,𝐵} =  
1

𝑛
∑ 𝑖(𝐶)𝐶∈{𝑅,𝐺,𝐵}

𝑛
𝑖=𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑅𝑂𝐼 , (2) 

where 𝐼 (𝐶) and 𝑖(𝐶) are raw signals and ROI pixel values in each channel, respec-

tively. It has been observed that the ratio of these three signals can mitigate the fluctu-

ations in the raw signals caused by light variation and movement, based on the assump-

tion that all channels are equally influenced [11]. Hence, the raw signals used here are 

reconstructed by 𝐺𝐵 = 𝐼(𝐺) 𝐼(𝐵)⁄ , 𝐺𝑅 = 𝐼(𝐺) 𝐼(𝑅)⁄  and 𝐺𝐵𝐺𝑅 = 𝐺𝐵 + 𝐺𝑅. 
In the signal processing stage, a smoothness prior detrending method is employed, 

which mimics a time-varying FIR high-pass filter [15]. The value of the regularization 

parameter 𝜆 is 50, and the corresponding bandpass frequency is 0.75 Hz when the sam-

pling rate is 30 Hz. After a K-normalization, the three signals are fed into a fast ICA 

algorithm to recover the HR signal. A power spectrum analysis is performed to select 

the component within the 0.7 – 3 Hz frequency band which contains the highest peak. 

Finally, a 6th-order 0.7 – 3 Hz Butterworth bandpass filter and a five-point moving av-

erage filter are applied to suppress noise. It is worth noting that the 0.7 – 3 Hz frequency 

band corresponds to the normal HR range of 40 – 180 beats per minute (bpm). 

The HR is then extracted using a prominence-distance-based peak detection algo-

rithm to determine the peak position of each heartbeat, allowing comparison with the 

ground truth.  

 

3.2 Proposed Radar-based HR Monitoring Architecture 

The radar-based algorithm is developed using the BGT60LTR11AIP from Infineon 

[30], which is a 60GHz low-power automotive CW Doppler radar. The challenge for a 

radar-based system is that the amplitude of chest wall motion caused  by  heartbeats  is  
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Fig. 2.  System flow diagram of the proposed radar-based HR monitoring architecture. 

 

small when compared to the overall motion of the driver. Moreover, the motion de-

tected is the superposition of cardiac activity and respiration and therefore a set of fil-

tering techniques must be employed to recover the signal of interest before any peaks 

can be recognized. The proposed processing architecture is shown in Fig. 2. 

For a CW Doppler radar, the transmitter emits a frequency-modulated signal and the 

received signal is a motion-modulated signal. By mixing the transmitted and received 

signals, two baseband signals I and Q are generated, which are the raw signals used. 

After DC removal, the signals are fed into a 4th-order 25 – 40 Hz Butterworth bandpass 

filter to extract the periodic chest wall motion. The 25 – 40 Hz frequency band has been 

shown to contain the Doppler frequency range of the heartbeat motion in both synchro-

nized radar signals and ECG ground truth. After complex signal demodulation, 

 𝐼𝑄(𝑡)  =  𝐼(𝑡)  +  𝑗𝑄(𝑡), (3) 

the magnitude of 𝐼𝑄(𝑡) is given by the absolute value of the complex number. Although 

the periodic signal can be visually recognized at this point, interference from other mo-

tion sources hinders the use of an automatic peak detection to extract the HR. Hence, a 

subsequent 2nd-order Butterworth bandpass filter is applied to further suppress interfer-

ence. The IQ-filtered signal in Fig. 2 shows an interesting phenomenon in which the 

major peak is always followed by a smaller peak, which is most likely the dicrotic 

notch, reinforcing the previous observation that smaller regular motions can also be 

detected. However, these small spikes can sometimes interfere with peak detection, re-

sulting in higher estimations, and to address this problem two further filters are applied. 

A 10th-order Savitzky-Golay smoothing filter with window size 1/3 of the sampling rate 

is used to merge the main peak and the dicrotic notch and a moving average filter with 

a window size 1/4 of the sampling rate is applied to reduce random noise. Finally, the 

HR estimation is achieved by a prominence-distance-based peak detection algorithm. 
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4 Experiment Design and Results Analysis 

4.1 Performance Validation 

A comparative study was designed under different testing environments to expose the 

performance and characteristics of each modality. Experiments were conducted in a 

laboratory setting using the CV and radar-based architectures described in Section 3 

and two subjects with different characteristics (age, weight, and appearance). The 

RGBD video was captured using an Intel RealSense D435 depth camera [27] at 30 fps 

and resolution cropped to 640×480. The camera was mounted on a tripod 30 cm from 

the subject’s face and, following a short initial transient period, 30 s of video was rec-

orded.  To obtain the ground truth HR, time-synchronized ECG data was collected us-

ing a MIKROE ECG 2 Click [31]. To collect the radar data, a BGT60LTR11AIP [30] 

sensor was mounted on a 3D-printed plastic mount located 30 cm away from the sub-

ject’s chest and 30 s of data was recorded using a sampling frequency of 2000 Hz, with 

synchronized ECG again collected.  

For each modality, the interbeat intervals (IBI) were found as the time differences 

between successive peaks and then averaged over the total number of IBIs 𝑛 to estimate 

the HR using:  

HR =  60 / (
1

𝑛
∑ 𝐼𝐵𝐼𝑛

𝑛
𝑖=1 ).                                             (4) 

After investigating the variation of IBI distributions, and hence HR, for each modality, 

an experimental investigation is used to quantify the sensitivity of the different modal-

ities to distance, illumination and motion. 

 

4.2 Variation of IBI Distribution with Sensor Modality 

Due to the different underlying principles of the ECG and non-contact HR monitoring 

methods, there are variations in the IBI distributions obtained from each sensor type. 

For example, the ECG measures electrical activity so the timing of the peak with the 

highest amplitude (the R-peak) does not exactly coincide with the resulting cardiac 

muscle contraction, and the peaks in radar signals are related to mechanical changes 

occurring sometime after the muscle contraction. For the CV-based rPPG method, the 

detected peaks lag the ECG due to the time taken for the blood volume to change. To 

illustrate the impact of sensor modality on IBI distribution and hence the corresponding 

HR estimation, Figs. 3 and 4 compare the IBI distributions from the non-contact meth-

ods with the ECG ground truth. 

The Bland-Altman plots in Fig. 3 show the relationship between the paired non-

contact HR estimations and ECG ground truth, with their 95% confidence intervals. It 

can be seen that no consistent bias exists for either non-contact method. The results 

from Figs. 3 and 4 show that both the IBIs and the corresponding HR estimations ex-

tracted from the CV-based rPPG method are distributed over a wider range than those 

extracted from the radar method. These results clearly illustrate that the peak of the 

blood volume change depends on many other factors, including the blood pressure, 

respiration, etc. However, the overall accuracy of the two methods is comparable, such  
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Fig. 3. Bland-Altman plots of the HR distributions of each method.  

 

 Fig. 4.  Histograms of the IBI distributions of each method.  

that when the IBI from the rPPG method is averaged over the 30 s period it has a min-

imal impact on the final estimation. Hence, the CV-based rPPG method is equally suit-

able for measurements over a long period while the radar method retains its accuracy 

over short-time measurements. 

 

4.3 Impact of Distance on CV and Radar-Based HR Detection 

Non-contact sensors are inevitably influenced by the physical distance between the sen-

sor and the subject, often in the form of a lower SNR. Table 1 presents HR estimates 

for both modalities at distances of 30, 50 and 80 cm, showing that the radar-based 

method exhibits higher accuracy compared to the CV-based method at short and me-

dium distances. However, the performance of radar diminishes with distance and is 

almost comparable to the CV-based approach at 80 cm, indicating the radar might be 

more sensitive to distance than the camera, possibly due to the power loss.  

Although the relative error of both methods increases exponentially with distance, 

implying the existence of thresholds where the algorithms may fail completely, the dis-

tance between sensors and the driver in DMS is normally < 80 cm and so they operate 

in the distance range where the proposed architectures for both modalities are effective. 

The relative errors for this scenario are all below 0.7%. 

 

4.4 Impact of Illumination on CV-based HR Detection 

Illumination is widely recognized as one of the major barriers to CV-based HR moni-

toring. This contrasts with radar-based  monitoring,  which  is  invariant  to  illumination 
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Table 1. Performance of non-contact Heart Rate (HR) estimation modalities with distance. 

Sensor 

type 

 

Distance 

(cm) 

Subject 

number 

Ground 

truth 

(bpm) 

HR 

estimation 

(bpm) 

Absolute 

Error  

(AE) 

Relative 

Error 

(RE) 

CV-

based 

30 1 68.62 68.93 0.31 0.45% 

2 63.37 63.28 0.09 0.14% 

Mean 0.20 0.30% 

50 1 73.29 72.73 0.56 0.76% 

2 63.10 62.71 0.39 0.62% 

Mean 0.95 0.69% 

80 1 68.65 68.54 0.11 0.16% 

2 69.93 73.59 3.66 5.23% 

Mean 1.89 2.70% 

Radar-

based 

30 1 78.96 78.95 0.01 0.01% 

2 75.41 75.20 0.21 0.28% 

Mean 0.11 0.15% 

50 1 72.26 72.06 0.20 0.28% 

2 72.05 71.49 0.56 0.78% 

Mean 0.38 0.53% 

80 1 72.54 69.84 2.70 3.72% 

2 88.32 86.90 1.42 1.61% 

Mean 2.06 2.67% 

Table 2. Performance of CV-based Heart Rate (HR) detection under varying lighting conditions. 

Illumination Subject 

number 

Ground 

Truth 

HR 

estimation 

Absolute  

Error (AE) 

Relative 

Error (RE) 

Low 1 65.91 65.34 0.57 0.86% 

2 64.46 66.00 1.54 2.39% 

Mean 1.06 1.62% 

Flickering 

light 

1 67.09 66.78 0.31 0.46% 

2 66.53 69.54 3.01 4.52% 

  Mean 1.66 2.49% 

 

changes. To investigate the impact of illumination on the CV-based method, the per-

formance of the CV-based architecture was studied under two adverse lighting condi-

tions: low ambient light, where only limited natural sunlight was available, and flick-

ering light conditions where a flash lamp was alternatively on and off for 2 s at a time. 

Table 2 summarizes the results, where the distance between sensors and subjects was 

50 cm. The results show that, using its raw signal reconstruction technique, the pro-

posed CV-based algorithm is relatively invariant to the adverse illumination conditions 

and still demonstrates good results. Overall, the low and flickering light conditions only 

increased the relative error by 0.93% and 1.8%, respectively. 

 

4.5 Impact of Motion on CV and Radar-Based HR Detection 

Motion is another significant factor that may degrade the performance of both the CV 

and radar methods, though in slightly different ways. Typical driving behavior involves  
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Table 3. Performance of each Heart Rate (HR) detection method under different motion types. 

Sensor 

type 

Subject 

number 

Ground 

truth 

HR estimation Absolute 

Error (AE) 

Relative 

Error (RE) 

Camera 

(motion) 

1 71.98 71.60 0.38 0.53% 

2 65.33 62.19 3.14 4.81% 

Mean 1.76 2.67% 

Radar 

(motion) 

1 77.07 80.24 3.17 4.11% 

2 80.43 71.07 9.36 11.64% 

Mean 6.27 7.88% 

 

motion of the head and body and to fully understand the impact of motion experiments 

were conducted with different simulated motion types. 

Previous studies have found the CV-based method to be affected by head motion 

and invariant to body motion, while the radar-based method demonstrates the opposite. 

Therefore, experiments were conducted using translational movements of the head for 

the CV-based approach and back-and-forth body vibrations for the radar-based ap-

proach. Subjects were asked to repeat the motion every 5 seconds and the distance to 

the sensors was kept at 50 cm.  

The results presented in Table 3 show that the CV-based method is more robust to 

head motion than the radar-based method is to body movement, which is in line with 

expectations given the former measures color variation while the latter detects motion 

directly. 

5 Discussion and Conclusions 

In this paper, two non-contact HR monitoring architectures are proposed using CV and 

radar approaches and implemented using low-cost commercially available products 

suitable for automotive use. The CV-based system first employs depth information to 

achieve human background segmentation, followed by a combination of face detection 

and skin detection algorithms to locate and track the ROI. A raw signal reconstruction 

technique based on ratios of color channels is employed to reduce the fluctuations 

caused by illumination variations. A detrending method using smoothness prior is ap-

plied to enhance the SNR. Finally, the HR signal is recovered by ICA, bandpass filter, 

power spectrum analysis, and a moving average filter. Despite employing several tech-

niques to mitigate the problems caused by illumination changes, this system still has a 

limited capability to handle extreme cases found in real-world deployment, such as 

drastic changes in brightness, contrast, and shadows. Addressing this robustness is an 

area of further work. 

The radar-based system uses a bandpass filter to extract the chest wall motion from 

the motion-modulated RF signals, followed by a signal reconstruction process to merge 

the I and Q channels. Three further filters (bandpass, smoothing and moving average) 

are then combined to extract the HR signal. Again, real-world factors such as vehicle 

vibration and drivers’ body motions would need to be considered for practical use. 

Through the comparison with the ground truth obtained from a reference ECG de-

vice, the HR results for both methods were found to demonstrate a high accuracy. A 
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comparative study was performed to investigate the characteristics and failure modes 

of each method, showing the sensor modality has a significant impact on its perfor-

mance in different environments and therefore should be carefully selected according 

to the application scenario.  

In the context of DMS, the two modalities each demonstrates different strengths and 

weaknesses to the illumination changes, vibrations and motion found in real-world driv-

ing scenarios. Based on the hypotheses that both modalities will not fail simultaneously 

and that a temporary loss of data in extremely adverse conditions is acceptable, the 

development of a multi-modality sensor fusion system has significant potential for fu-

ture non-contact HR monitoring research and may offer substantial benefits for contin-

uous robust operation as part of a DMS. Further research into the development of a 

reference-free signal quality index and motion compensation techniques for both sen-

sors are promising areas for future studies. 
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