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Abstract

Motivated by recent claims on the potential value of integration in warehouse management, this study

evaluates the benefits arising from integrating the planning of order picking and packing processes in

e-commerce warehouses. A set of research questions are proposed for exploring various benefits under

different operational conditions and an experimental study is designed to answer them. In order to

have a concrete model to represent the integrated planning method, a mixed-integer nonlinear program-

ming model is developed, and then compared against a non-integrated variation. The experimental

study makes the comparisons by analysing the collected empirical data from a real-life warehouse.

Our findings indicate that integrated picking and packing planning can yield improved performance

in different aspects under different configurations of objectives, order quantities, order categories or

workforce allocation.
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1. Introduction

Order picking and packing are two key processes warehouses use to fulfil customer orders. Order

picking deals with the collection of required goods from their storage locations, followed by packing

where goods are packed into different types of containers (boxes, parcels, bags etc.). Improving order

picking has been a popular topic for warehouse researchers and practitioners for many years. This

is because order picking not only accounts for about 55% of warehouse operating costs, but it can

also be a critical operation for warehouse performance overall (Bartholdi III & Hackman, 2019). In

an e-commerce setting in particular, the responsiveness of order picking can have a direct impact on

customer satisfaction as it affects the lead time between order placement and order receipt (Giannikas

et al., 2017). In order to cope with the challenges of e-commerce, order-fulfilment warehouses have

emerged in the past few years (Boysen et al., 2018) to meet the speed and flexibility requirements of
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online shopping (Yang et al., 2021). Other than picking items associated with a customer order, these

warehouses offer packing and delivery services which are necessary for the successful fulfilment of an

order. As a result, both order picking and packing play a critical role in defining the flow time an order

spends in a warehouse, from the point it is placed by a customer to the point it is ready for dispatch

(Klapp et al., 2018).

Synchronising the sequences and times associated with picking and packing has the potential to

achieve efficiency gains for warehouses. In this paper, we study the integration of order picking and

packing planning aiming at the improvement of warehouse performance and the reduction of idle time.

The contribution of this study is twofold:

1. The evaluation of the benefits of integrated order picking and packing planning in warehousing

under different conditions. We achieve this by designing an empirically-driven study based on

the data collected from a real-life e-commerce warehouse. In doing so, we contribute to recent

arguments in literature (Bottani et al., 2019; Boysen et al., 2020; McFarlane et al., 2016; Sprock

et al., 2019; Van Gils et al., 2018a,b) calling for further investigation of process integration in

warehousing by virtue of strong interdependence between different stages.

2. The development of a novel mathematical model for the integration of order picking and packing

planning. The model simultaneously determines three planning problems in picking and packing:

order batching, batch assignment and sequencing. In the scope of this study, the model is estab-

lished to perform fair comparisons between integrated and non-integrated methods. Moreover,

it can also be used to develop integrated order picking and packing planning functionalities in

warehouse management systems (Lee et al., 2018; Leung et al., 2018).

The remainder of the paper is organised as follows. Section 2 reviews the relevant literature and

proposes four research questions on how an integrated method may benefit warehouse performance.

Section 3 develops a novel integrated picking and packing mathematical model required for exploring

the study’s research questions. Section 4 designs an experimental study, the results of which are

presented in Section 5. Section 6 presents research and managerial implications of this study and

future research directions.

2. Literature review and research questions formulation

In this section, we review integrated planning problems of processes in order fulfilment broadly,

and more specifically of picking and packing processes in warehouses. We then propose four research

questions on the benefits of integration that guide the remaining of our study.

2.1. Integrated planning of processes in order fulfilment

Order fulfilment consists of consecutive processes of receiving, picking, packing and delivering orders

to customers (Croxton, 2003). In e-commerce settings, order fulfilment plays a critical role as it can

directly affect the overall customer experience (Hübner et al., 2016). Order picking and packing are

normally implemented physically inside warehouses, while order receiving takes place primarily via the
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internet and delivery concerns the transportation of items to customers. Among the four processes,

picking planning has received a lot of attention as it concerns the most labour-intensive process in most

warehouses and it affects successive packing and delivery operations largely (Bartholdi III & Hackman,

2019; Croxton, 2003; De Koster et al., 2007). There have been several studies on picking planning

examining the impact interdependent activities such as storage, zoning, picking and sorting have on

warehouse performance (De Koster et al., 2007). Nevertheless, the integration of these activities has

received less attention and it is only recently that researchers have started examining this issue in more

detail (Van Gils et al., 2018a,b, 2019b).

More specifically, the main outcome of the picking planning is the creation of picklists. Typically, a

picklist includes information about the relevant customer orders, stock keeping units (SKUs) requiring

picking, the storage locations to be visited and the allocated picker. Taking as an example packing, a

process that follows picking in e-commerce warehouses, the picklists used to plan the picking process

often have a direct impact on the packing process, too. That is to say, more generally, that the way

orders are grouped together to plan the picking process in an effective way is going to also affect the

performance of other associated process process and —as a result— the overall warehouse performance.

Planning for different warehouse processes in an integrated, rather than in an isolated way appears

to be a logical approach to improve warehouse performance and academics have recently started in-

vestigating ways to integrate different processes. We summarise existing relevant literature in Table

1. It is worth noting here that we are not reviewing approaches for the integration of sub-processes

often used to plan for picking (i.e. batching, routing, sequencing), but approaches used to integrate

different warehouse processes. The most interesting observation from the synthesis of this table is that,

even though there are studies where processes are planned jointly, the objectives of several of them

are inclined towards one of the processes. In other words, many existing approaches are dedicated to

improving or optimising the performance of a certain process instead of aiming to improve the overall

performance across multiple processes. Moreover, a lot of attention has been given to the integration

of storage and picking, which stimulates us to focus on the integrated planning of other processes in

order fulfilment.

2.2. Integrated planning of order picking and packing

In many warehouses, and certainly in those offering services for online retailing and other aspects

of e-commerce, order preparation considers not only picking the required items but also packing them

in parcels/boxes that will be delivered to the customer. As a result, measuring the performance of the

warehouse in terms of order handling and processing requires considering both picking and packing

processes and the time an order spends in them (Leung et al., 2018; Liu et al., 2017). Improving

any single process in an isolated manner is not necessary to lead to better overall performance, as

one process is likely to affect the other significantly. In this direction, there has been some literature

considering picking and packing planning problems in an integrated way, albeit available studies are

limited and most of them remain conceptual.

An integrated scheduling of order picking and delivery was developed in Zhang et al. (2016) for

connected processes of picking, packing and delivery, but assumed the same picker who undertook

3



Table 1: Integrated planning of order picking, packing and delivery processes in order fulfilment

References Integrated processes Results from integration

Gallien & Weber
(2010)

picking, sorting & packing Waveless picking policy yields larger throughput, sorter
utilisation, and packer utilisation comparing with wave picking.

Battini et al.
(2015)

storage & picking Best storage assignment can be found with the aim of ensuring
minimum picking travel distance.

Claeys et al.
(2016)

storage & picking Order flow time in picking helps set targets for storage retrieval
rate.

Zhang et al.
(2016)

picking, packing & delivery Maximal number of orders can be delivered within a minimal
service time.

Onal et al.
(2017)

storage & picking Explosive storage policy reduces picking time by 16%.

Boysen et al.
(2018)

sorting & packing Minimum spread of orders (number of conveyor segments from
an order’s first occurrence to last) in release sequence of bins.

Van Gils et al.
(2018a)

any two among storage,
zoning & picking

Warehouse achieves significant benefit in overall picking
performance (reduced picking time).

Zhang et al.
(2018)

picking & delivery The sum of makespan and total delivery cost is minimised.

Bahrami et al.
(2019)

storage & picking Total picking travel distance and order lead time are shorten.

Bottani et al.
(2019)

any two among storage,
zoning & picking

Consideration of interdependencies between key design factors
ensures perfect design of whole picking system.

Calzavara et al.
(2019)

storage & picking It enables warehouse to assess cost and ergonomic (energy
expenditure and worker posture) objectives in picking.

Tappia et al.
(2019)

storage & picking Total order throughput time and order waiting time can be
estimated for single-line (non-splittable) orders.

Van Gils et al.
(2019b)

any two among storage,
zoning & picking

Joint effect of these policy decisions significantly influences
picker travel time and waiting time due to picker blocking.

Zhang et al.
(2019)

picking & delivery Global optimal order fulfilment performance is achieved with
minimum makespan and delivery cost as objective.

Jiang et al.
(2020)

storage & picking Scattered storage assignment strategy minimises walking
distance in picking.

Kübler et al.
(2020)

storage & picking Total travel distance of item relocation and order picking is
significantly reduced.

Wang et al.
(2020)

storage & picking Orders are picked with minimum total travel distance.

picking jobs for a batch also continued to pack it. The packing time was also simplified as a constant

added to the picking time and handled as a component of the picking time. Often, however, the

implementations of order picking and packing in warehouses are successive but separate processes

performed by two employee teams, respectively. Although packing was inclusive in the planning, it

was not profiled effectively in essence. The influential and actually occurred interaction and waiting

between picking and packing processes were omitted in this study, as well as in Liu et al. (2017) and
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Moons et al. (2018) which took account of vehicle routing in delivery along with picking and packing.

This makes the benefits of using the integrated philosophy to manage multiple processes, especially

picking and packing in warehouses for order fulfilment not well verified.

In addition, several studies conceived that the idle time during packing under the pick-and-sort

policy could be reduced particularly by improvement in sorting, which is a step between picking and

packing. Gallien & Weber (2010) developed a queueing model to maximise throughput and predict

warehouse flow dynamics (sorter and packer utilisation) under waveless and wave picking policies. The

packing performance data were simply collected after the optimisation of picking for the purpose of

reporting and analysis. The packing process has not actually been improved. In order to consolidate

orders quickly at packing stations, from the sorting perspective, Boysen et al. (2018) minimised the

spread of orders in bin (containing partial orders picked) release sequence from automated storage

and retrieval system (ASRS) in automated conveyor-based sorting system, while Boysen et al. (2019b)

minimised the completion times of orders assembled in put wall. However, both studies did not calculate

the performance of packing to justify the reason for improving sorting, and they were based on the

prerequisite that picking has finished under some batching policy.

Even though existing studies have attempted to either plan picking and packing together, or regard

the improvement in packing as a by-product of improvement in picking, the treatment of packing has

been rather limited —making it difficult to quantify the benefits in combining the planning of these

two operations. Hence, this gap motivates us to examine the advantages of optimising picking and

packing processes collectively.

2.3. Research questions

Considering that the in-house operations of order fulfilment cover the whole period from order

picking until the order is ready for dispatch, we propose that managing order picking and packing in

an integrated way might lead to improved warehouse performance in comparison to managing each

operation separately. This section introduces four research questions used to evaluate the benefits of

the integration of picking and packing planning under different operational conditions. Specifically, we

explore, under different situations, how performance criteria are affected by integration, the extent of

any benefits, and the mechanism that creates the benefits.

In short, taking an integrated picking and packing approach enables us to not only focus on improv-

ing the performance of each standalone process but to also reduce the waiting time between them. As

it is often the case in practice, warehouse orders can spend a significant amount of time waiting either

for picking resources (i.e. pickers, picking carts etc.) or for packing resources (i.e. packers, packing

stations etc.) to be available. Similarly, pickers and packers may remain idle while waiting for orders

to arrive for processing. Managing picking and packing in an integrated way is expected to also take

into account idle time which plays an important role in overall warehouse performance.

Several measures for warehouse picking performance have been used in academia and practice. In

this study, we use two of such metrics that have been widely-used in recent studies. Firstly, the order

processing time, which concerns the time needed for an order to be prepared and ready for dispatch

(Giannikas et al., 2017; Hong & Kim, 2017; Li et al., 2017; Matusiak et al., 2017; Van Gils et al.,
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2018a, 2019a; Žulj et al., 2018b). Secondly, the makespan, that captures the time required by the

warehouse to process a certain number of orders until they are ready for dispatch (Ardjmand et al.,

2018; Zhang et al., 2017, 2018). Our first research question, hence, is posed to investigate the different

key performance indicators under which integrating picking and packing can be beneficial and that can

therefore be used to improve the performance of a warehouse in different ways. This is due to the fact

that an integrated approach takes into account the whole lifecycle of an order in a warehouse rather

than focusing on a specific part of it.

RQ 1. How can an integrated approach to planning picking and packing improve warehouse perfor-

mance comparing with a non-integrated way, when the minimisation of order processing time, makespan

or a combination of both is targeted?

Due to demand fluctuations or different sized warehouses, warehouses are likely to experience

different amounts of orders that need to be processed by a warehouse. As a result, it is worth testing

the performance of any method under varied amounts of orders (Li et al., 2017; Marchet et al., 2015;

Van Gils et al., 2018a). Our second research question explores the performance benefits from integration

when different order quantities need to be processed.

RQ 2. How can an integrated approach to planning picking and packing improve warehouse perfor-

mance comparing with a non-integrated way, under varying order quantities?

A common characteristic of e-commerce warehouses is that they often receive orders of different

categories (Boysen et al., 2019a). Generally, an e-commerce order can be classified into one of four

categories depending on the number of SKUs it contains and the quantity requested by each SKU.

These are 1-SKU-1-item, 1-SKU-multiple-items, multiple-SKUs-1-item, and multiple-SKUs-multiple-

items. These categories are important for warehousing operations as they affect the number of storage

locations that need to be visited (typically a factor of the number of SKUs) and the retrieval, sorting

and packing time (typically a factor of the number of items). As a result, the structure of the order

pool, which contains all orders to be processed in a planning period, is expected to have a significant

impact on picking efficiency in practice. However, the literature lacks studies that incorporate different

order pool structures while testing the effectiveness of order picking and packing planning methods

(Boysen et al., 2020; Kembro et al., 2018). This is addressed by our third research question which

explores the performance benefits from integrated planning under different order pool structures. An

integrated way is expected to better manage the differences occurring between the time an order is

required to be picked and the time it is required to be packed, both of which vary depending on the

number of SKUs and items this order contains.

RQ 3. How can an integrated approach to planning picking and packing improve warehouse perfor-

mance comparing with a non-integrated way, for different order pool structures?

The performance of a warehouse operation is often highly dependable on the workforce assigned

to it. In practice, the labour resources available for picking and packing in warehouse are finite. The
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number of personnel allocated to each operation is often a decision that warehouse managers need to

carefully make as it can influence performance (Difrancesco et al., 2021; Grosse et al., 2017; Vanheusden

et al., 2020; Xie et al., 2021). Even though the maximum number that can be assigned to each operation

might be limited by the number of pick carts and packing stations, warehouse managers often move

personnel from one operation to the other depending on the requirements on a certain day. The number

of personnel in each operation can, as a result, affect the benefits of integration. Our fourth research

question investigates the performance benefits from the integration under different levels of workforce

assigned to picking and packing. We expect an integrated method to adapt itself to take into account

the fact that part of the process can be slower than the other part and improve them in a combined

way.

RQ 4. How can an integrated approach to planning picking and packing improve warehouse perfor-

mance comparing with a non-integrated way, when available workforce is allocated to each process in

different loads?

In order to examine these research questions, we designed an experimental study based on empirical

data of a warehouse company. We first developed a mathematical model that enables us to fairly

compare picking and packing integration with non-integration of these planning.

3. A mathematical model for integrated picking and packing

In the absence of integrated picking and packing methods that we can directly employ to explore

our research questions, a novel integrated picking and packing mathematical model, is developed in

this section.

3.1. Problem description

The order picking and packing planning problem concerned here aims to optimise the performance

of picking and packing processes taking an integrated perspective. As discussed previously, this problem

aims to optimise not just the pick and pack processes per se but also to reduce the time an order is

waiting to be processed. The problem combines the following three questions (Henn, 2015; Scholz

et al., 2017; Zhang et al., 2017):

1. How should orders be grouped into picklists (i.e. the order batching problem)?

2. How and in what sequence should the picklists be assigned to pickers (i.e. batch assignment and

sequencing problem for picking)?

3. How and in what sequence should the picklists be assigned to packers after picking completed

(i.e. batch assignment and sequencing problem for packing)?

For the needs of this study, the problem considers the following warehousing characteristics, in-

spired by relevant literature and by the operations of our case company. The warehouse runs a

low-level picker-to-part, sort-while-pick order picking system. The picking area includes a multiple

block layout of wide pick aisles and cross aisles and a depot, with each SKU assumed to be stored
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in a single location (Kulak et al., 2012; Mirzaei et al., 2021; Wang et al., 2020). The contents of an

order cannot be split in multiple picklists and all orders are known at the beginning of the picking

process. To enable sort-while-pick, a picker uses a picking trolley of a certain capacity with totes

representing different orders. Empty trolleys and totes are always available. Pickers and packers

are assumed to have similar skills. Finally, pickers follow an S-shape routing policy and packers are

fixed at a packing station. The S-shape routing policy has been widely used in practice for years

due to its simplicity and performance (Elbert et al., 2017; Scholz et al., 2017) and it is prevalent today

(Hong & Kim, 2017; Žulj et al., 2018a).

3.2. Model formulation

We propose a mixed-integer nonlinear programming (MINLP) model to formulate the integrated

picking and packing problem.

3.2.1. Notations

The indices, parameters, decision variables and variables in the MINLP model are introduced in

Tables 2-4, respectively.

Table 2: Indices

Indices

A set of picking locations for storing SKUs

I set of customer orders

J set of picklists

K set of queuing positions of a picker to which picklists can be assigned

L set of queuing positions of a packer to which picklists can be assigned

P set of pickers

R set of packers

U set of SKUs in the warehouse

3.2.2. Objective functions

Following RQ 1, we propose three different objective functions for the MINLP model. These are

based on the processing timeline of an order in a warehouse as it is depicted in Fig. 1. Firstly, we

propose an objective function for the minimisation of both total order processing time and makespan

as defined in Eq. (1),

min

∑
j∈J

tdprocessj + max
r∈R

{
tcomplete pack
rL̄

− tenter pick
} . (1)

The 1st term measures the total order processing time; it sums up the processing time of all picklists

including the waiting time when handing an order over from picking to packing. The 2nd term measures

the overall makespan as the time horizon from picking entry time to last packing completion time of all
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Table 3: Parameters

Parameters

lgthaisle length of aisles in picking zones

lgthvert average vertical length travelled in picking zones

M sufficiently large number

m sufficiently small number

osiu order attribute, i.e. number of items with SKU u ∈ U in order i ∈ I

Qpick capacity per picklist (number of orders)

QSKU capacity per picklist (number of SKUs)

Qwait upper limit of packing waiting time duration

qitemi number of items in order i ∈ I

slua whether SKU u ∈ U is stored in picking location a ∈ A (slua = 1) or not (slua = 0)

tenter pick picking entry time (i.e. picklists generated time)

tdpack pack time duration per item

tdpick pick time duration per item

tdsearch search time duration per SKU

tdsetup setup time duration per picklist

tdsort sort time duration per item

tdtravel travel time duration per meter

picking timelinepicking timeline

picking entry time 
(picklists 

generated)

setup
(picking 

start time)

waiting time duration

travel search pick sort

execution time duration

picking completion time

or (picklists wait 
for packing) 

packing entry time packing start time

waiting time duration

packing 
completion time

execution time duration
either (packers 

are idle)

each picklist processing time duration

9

Objective: Min (sum & last of picklist 
processing time)

packing timelinepacking timeline

Fig. 1: The processing timeline in the objective.
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Table 4: Decision variables

Decision variables

blja number of SKUs (in picklist j ∈ J) stored in location a ∈ A

bsju number of items with SKU u ∈ U in picklist j ∈ J

dj travel distance covered in picklist j ∈ J

qodj whether picklist j ∈ J contains any orders (qodj = 1) or not (qodj = 0)

qSKU
j number of SKUs in picklist j ∈ J

qja whether picklist j ∈ J has any SKUs stored in location a ∈ A (qja = 1) or not
(qja = 0)

qju whether picklist j ∈ J contains SKU u ∈ U (qju = 1) or not (qju = 0)

qplp whether picker p ∈ P has picklists (qplp = 1) or not (qplp = 0)

qplpk whether queueing position k ∈ K of picker p ∈ P contains picklist (qplpk = 1) or

not (qplpk = 0)

qplr whether packer r ∈ L has picklists (qplr = 1) or not (qplr = 0)

qplrl whether queueing position l ∈ L of packer r ∈ R contains picklist (qplrl = 1) or

not (qplrl = 0)

tcomplete pack
j packing completion time of picklist j ∈ J

tcomplete pick
pk picking completion time of the picklist that is assigned to queueing position

k ∈ K of picker p ∈ P

tcomplete pack
rl packing completion time of the picklist that is assigned to queueing position

l ∈ L of packer r ∈ R

tenter pack
rl packing entry time of the picklist that is assigned to queueing position l ∈ L

of packing station r ∈ R

tdmakespan makespan, i.e. horizon from picking entry time to last packing completion
time of all picklists

tdexecute pack
j packing execution time duration of picklist j ∈ J (consisting of pack time

duration)

tdexecute pick
j picking execution time duration of picklist j ∈ J (consisting of setup, travel,

search, pick and sort time duration)

tdprocessj picking and packing processing time duration of picklist j ∈ J (from picking
entry to packing completion)

tdprocess pick
j picking processing time duration of picklist j ∈ J (from picking entry to

picking completion)

tdexecute pick
pk picking execution time duration of the picklist that is assigned to queueing

position k ∈ K of picker p ∈ P

tdexecute pack
rl packing execution time duration of the picklist that is assigned to queueing

position l ∈ L of packer r ∈ R

xij whether order i ∈ I is assigned to picklist j ∈ J (xij = 1) or not (xij = 0)

yjpk whether picklist j ∈ J is assigned to queueing position k ∈ K of picker p ∈ P
(yjpk = 1) or not (yjpk = 0)

zjrl whether picklist j ∈ J is assigned to queueing position l ∈ L of packer r ∈ R
(zjrl = 1) or not (zjrl = 0)
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picklists. The choice to combine these terms is in order to take into account two popular performance

indicators that look at the lifecycle of the warehouse orders separately (order processing time) but also

collectively (time to prepare all orders).

In order to test the integrated approach under different performance indicators, we also use each of

these terms separately to form different objective functions (Eq. (2) for makespan minimisation, and

Eq. (3) for total order processing time minimisation),

min max
r∈R

{
tcomplete pack
rL̄

− tenter pick
}
, (2)

min
∑
j∈J

tdprocessj . (3)

3.2.3. Constraints

We propose 35 sets of constraints in the MINLP model, to restrict the following conditions mainly

covering assignment, capacity and time calculation:

Eq. (4): Each order is assigned to only one picklist.

Eq. (5): Each picklist is assigned to only one queueing position of a picker.

Eq. (6): Each picklist is assigned to only one queueing position of a packer.

Eq. (7): No more than one picklist can be assigned to any queueing position of a picker.

Eq. (8): No more than one picklist can be assigned to any queueing position of a packer.

Eq. (9): Each picklist can contain a limited number of orders.

Eq. (10): Indicate the number of items with each SKU in each picklist.

Eq. (11): Check whether a picklist contains a certain SKU.

Eq. (12): Indicate the number of SKUs in each picklist.

Eq. (13): Each picklist can contain a limited number of SKUs.

Eq. (14): Check whether each picklist contains any orders.

Eq. (15): Check whether each picklist assignment to pickers associates with a non-empty picklist.

Eq. (16): Check whether each picklist assignment to packers associates with a non-empty picklist.

Eq. (17): Check whether each queueing position of pickers contains picklist.

Eq. (18): Check whether each queueing position of packers contains picklist.

Eq. (19): For any picker, no empty queueing positions are before any position with picklist.

Eq. (20): Check whether each picker has any picklists.

Eq. (21): For any packer, no empty queueing positions are before any position with picklist.

Eq. (22): Check whether each packer has any picklists.

Eq. (23): Indicate the number of SKUs (in each picklist) stored in each picking location.

Eq. (24): Check whether a picklist has any SKUs stored in a certain location.

Eq. (25): Indicate the approximated travel distance for in each picklist (as a factor of the number of

aisles that need to be visited and the length of the picking zone)
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Eq. (26): Indicate the picking execution time duration of each picklist which consists of setup, travel,

search, pick and sort time duration.

Eq. (27): Assign the picking execution time duration of each picklist to the correspondingly assigned

queueing position of pickers.

Eq. (28): Indicate the picking completion time in the 1st queueing position of each picker.

Eq. (29): Indicate the picking completion time in rest queueing positions of each picker.

Eq. (30): Assign the picking completion time in each queueing position of pickers to the packing entry

time in the correspondingly assigned queueing position of packers.

Eq. (31): The packing entry time in any queueing position after should be later than that in any position

before.

Eq. (32): Indicate the packing execution time duration of each picklist which consists of pack time

duration.

Eq. (33): Assign the packing execution time duration of each picklist to the correspondingly assigned

queueing position of packers.

Eq. (34): Indicate the packing completion time in the 1st queueing position of each packer.

Eq. (35): Indicate the packing completion time in rest queueing positions of each packer.

Eq. (36): Each picklist has an upper limit of packing waiting time at each queueing position of packers.

Eq. (37): Assign the packing completion time in each queueing positions of packers to the correspond-

ingly assigned picklist.

Eq. (38): Indicate the picking and packing processing time duration of each picklist (from picking entry

to packing completion).

3.2.4. A mixed-integer nonlinear programming model

Combining any one of the objective functions Eqs. (1)-(3) with the 35 constraints as introduced,

an MINLP ModelI for our integrated order picking and packing method is constructed as follows:

min

(∑
j∈J

tdprocessj + max
r∈R

{
tcomplete pack

rL̄
− tenter pick

})
or (1)

min max
r∈R

{
tcomplete pack

rL̄
− tenter pick

}
or (2)

min
∑
j∈J

tdprocessj (3)

s.t.∑
j∈J

xij = 1, ∀i ∈ I (4)∑
p∈P

∑
k∈K

yjpk ≤ 1, ∀j ∈ J (5)∑
r∈R

∑
l∈L

zjrl ≤ 1, ∀j ∈ J (6)∑
j∈J

yjpk ≤ 1, ∀p ∈ P, k ∈ K (7)∑
j∈J

zjrl ≤ 1, ∀r ∈ R, l ∈ L (8)∑
i∈I

xij ≤ Qpick, ∀j ∈ J (9)∑
i∈I

xij · osiu = bsju, ∀j ∈ J, u ∈ U (10)
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m · qju ≤ bsju ≤M · qju, ∀j ∈ J, u ∈ U (11)∑
u∈U

qju = qSKU
j , ∀j ∈ J (12)

qSKU
j ≤ QSKU , ∀j ∈ J (13)

m · qodj ≤
∑

i∈I
xij ≤M · qodj , ∀j ∈ J (14)

m ·
∑

p∈P

∑
k∈K

yjpk ≤ qodj ≤M ·
∑

p∈P

∑
k∈K

yjpk, ∀j ∈ J (15)

m ·
∑

r∈R

∑
l∈L

zjrl ≤ qodj ≤M ·
∑

r∈R

∑
l∈L

zjrl, ∀j ∈ J (16)

m · qplpk ≤
∑

j∈J
yjpk ≤M · qplpk, ∀p ∈ P, k ∈ K (17)

m · qplrl ≤
∑

j∈J
zjrl ≤M · qplrl , ∀r ∈ R, l ∈ L (18)

qplp,k−1 ≥ qplpk, ∀p ∈ P, k ∈ K\{1} (19)

m · qplp ≤
∑

k∈K
qplpk ≤M · qplp , ∀p ∈ P (20)

qplr,l−1 ≥ qplrl , ∀r ∈ R, l ∈ L\{1} (21)

m · qplr ≤
∑

l∈L
qplrl ≤M · qplr , ∀r ∈ R (22)∑

u∈U
qju · slua = blja, ∀j ∈ J, a ∈ A (23)

m · qja ≤ blja ≤M · qja, ∀j ∈ J, a ∈ A (24)

2 · lgthvert · qodj + 2 · lgthaisle ·
∑

a∈A
qja = dj , ∀j ∈ J (25)

tdsetup · qodj + tdtravel · dj + tdsearch · qSKU
j + (tdpick + tdsort)

∑
i∈I

qitemi · xij = tdexecute pick
j , ∀j ∈ J (26)

tdexecute pick
j −M(1− yjpk) ≤ tdexecute pick

pk ∀j ∈ J, p ∈ P, k ∈ K (27)

tenter pick + tdexecute pick
p1 = tcomplete pick

p1 , ∀p ∈ P (28)

tcomplete pick
p,k−1 + tdexecute pick

pk = tcomplete pick
pk , ∀p ∈ P, k ∈ K\{1} (29)

tcomplete pick
pk −M(2− yjpk − zjrl) ≤ tenter pack

rl , ∀j ∈ J, p ∈ P, k ∈ K, r ∈ R, l ∈ L (30)

tenter pack
r,l−1 ≤ tenter pack

rl , ∀r ∈ R, l ∈ L\{1} (31)

tdpack ·
∑

i∈I
qitemi · xij = tdexecute pack

j , ∀j ∈ J (32)

tdexecute pack
j −M(1− zjrl) ≤ tdexecute pack

rl ∀j ∈ J, r ∈ R, l ∈ L (33)

tenter pack
r1 + tdexecute pack

r1 = tcomplete pack
r1 , ∀r ∈ R (34)

max
{
tcomplete pack
r,l−1 , tenter pack

rl

}
+ tdexecute pack

rl = tcomplete pack
rl , ∀r ∈ R, l ∈ L\{1} (35)∣∣∣tcomplete pack

r,l−1 − tenter pack
rl

∣∣∣ ≤ Qwait ∀r ∈ R, l ∈ L\{1} (36)

tcomplete pack
rl −M(1− zjrl) ≤ tcomplete pack

j , ∀j ∈ J, r ∈ R, l ∈ L (37)

tcomplete pack
j − tenter pick = tdprocessj , ∀j ∈ J (38)

xij , yjpk, zjrl ∈ {0, 1}, ∀i ∈ I, j ∈ J, p ∈ P, k ∈ K, r ∈ R, l ∈ L (39)

tdprocessj , dj , td
execute pick
j , tdexecute pick

pk , tdexecute pack
j , tdexecute pack

rl , tcomplete pick
pk , tenter pack

rl , tcomplete pack
rl ,

tcomplete pack
j ≥ 0, bsju, q

SKU
j , blja ∈ N0, qju, q

od
j , qplpk, q

pl
rl , q

pl
p , qplr , qja ∈ {0, 1}, ∀i ∈ I, j ∈ J, p ∈ P, k ∈ K, r ∈ R, l ∈ L.

(40)

In order to solve the model more easily, it is converted to an equivalent mixed-integer linear pro-

gramming (MILP). The details of the linearised MILP ModelL can be found in Appendix A.
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4. Methodology

The methodology for exploring the research questions based on utilising mathematical programming

to solve order picking and packing planning problems is introduced in this section, in terms of the

case context, operations performance criteria we evaluate, and experimental design for each research

question.

4.1. Case company

We study an e-commerce B2C manual warehouse in China as the case company, whose operations

align closely with the problem presented in Section 3.1. The warehouse acts as an order fulfilment

centre for an online retailer. The layout of the order picking area under consideration is 49 × 38.8m-

size, consisting of four picking zones with 9 main aisles and 2 cross aisles, storing 1010 SKUs in total,

and a depot located in the north. Picking always starts from the depot and follows S-shape routes

before picked items are brought back to the depot. Once picking is completed, picked orders are

passed to the earliest available packer for packing. In particular, the company operates a manual,

sort-while-pick operation using picking trolleys and small baskets/totes to pick customer orders. There

are normally 8 workers assigned to picking and 4 to packing. Empirical data were collected by the

company that cover both orders received and operational characteristics for picking and packing, such

as setup, travel, search, pick, sort and pack time. Table 5 summarises this operational information

and the parameters they are assigned to in our experiments. With regards to orders received by the

warehouse, actual orders received on a randomly selected day were collected. These were then used

as an input in our experiments, with each set of experiments using a different order set (as described

in Section 4.3). Each order contains information about the ordered SKUs and the number of items

for each SKU. On day under consideration, the warehouse received in total 8276 orders covering 1010

SKUs, among which 25.7% orders were 1-SKU-1-item category, 51.8% were 1-SKU-multiple-items,

11.2% were multiple-SKUs-1-item, and 11.3% were multiple-SKUs-multiple-items. These orders follow

a typical ABC inventory classification with 5% of the SKUs responsible for 65% of the total volume,

15% of SKUs for 20% of volume, and 80% of SKUs for 15% of volume.

4.2. Performance comparison

In this section, we describe how we evaluate the performance of integration. First, we describe

the performance metrics used to measure performance. Then, we describe the non-integration method

that we use to compare the performance of integration with.

Among its key performance indicators, the company uses two categories of metrics to measure for

the performance of its warehousing operations: time-related metrics and labour-related metrics. In

the former category, the company is measuring the total and average order processing time1 along

with the makespan for the preparation of a certain number of orders. In the latter category, the

1Average order processing time is comparable regardless of order quantity. For consistency, mainly average order
processing time instead of total order processing time in objective is evaluated in experiments to analyse results.
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Table 5: Operational parameter values provided by the case company

Operational parameters Values

lgthaisle 17.32m

lgthvert 19.73m

Qpick 16 orders per picklist

QSKU 24 SKUs per picklist

Qwait 900s

tdpack 15.90s per item

tdpick 3.97s per item

tdsearch 11.47s per SKU

tdsetup 90s per picklist

tdsort 1.04s per item

tdtravel 0.67s per meter

company is interested in the total labour efficiency2 which can be further broken down into picker and

packer efficiency. The total order processing time and makespan are formulated in Eqs. (2)–(3) as

objectives. The metrics of average order processing time, total labour efficiency, picker efficiency and

packer efficiency are derived in Eqs. (41)–(44).

Average order processing time, td
process

:

td
process

=
∑
j∈J

tdprocessj /card(I). (41)

Total labour efficiency, EFF :

EFF =
card(I)

max
r∈R

{
tcomplete pack
rL̄

− tenter pick
}
· (card(P ) + card(R))

. (42)

Picker efficiency, effpick:

effpick =
card(I)

max
p∈P

{
tcomplete pick
pK̄

− tenter pick
}
· card(P )

. (43)

Packer efficiency, effpack:

effpack =
card(I)

max
r∈R

{
tcomplete pack
rL̄

− tenter pack
r1

}
· card(R)

. (44)

In setting up the experiments required to answer RQs 1-4, we use linearised ModelL as the integrated

2The total labour efficiency is defined as the number of orders processed per hour per person.
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method for picking and packing. For the sake of a fair and valid evaluation of the benefits of the

integrated method, we introduce a non-integrated picking and packing method. In this non-integrated

method, picking is managed using the same principles used for picking in ModelI. A picking-only

ModelNI is proposed in this regard as follows. For packing, a simple first-in, first-out (FIFO) policy

assigns the picked picklists to the earliest available packer.

min

(∑
j∈J

tdprocess pick
j + max

p∈P

{
tcomplete pick

pK̄
− tenter pick

})
or (45)

min max
p∈P

{
tcomplete pick

pK̄
− tenter pick

}
or (46)

min
∑
j∈J

tdprocess pick
j (47)

s.t.

(4), (5), (7), (9)− (15), (17), (19), (20), (23)− (29)

tcomplete pick
pk −M(1− yjpk) ≤ tcomplete pick

j , ∀j ∈ J, p ∈ P, k ∈ K (48)

tcomplete pick
j − tenter pick = tdprocess pick

j , ∀j ∈ J (49)

xij , yjpk ∈ {0, 1}, ∀i ∈ I, j ∈ J, p ∈ P, k ∈ K (50)

tdprocess pick
j , dj , td

execute pick
j , tdexecute pick

pk , tcomplete pick
pk , tcomplete pick

j ≥ 0, bsju, q
SKU
j , blja ∈ N0,

qju, q
od
j , qplpk, q

pl
p , qja ∈ {0, 1}, ∀i ∈ I, j ∈ J, p ∈ P, k ∈ K. (51)

4.3. Experimental design

In this section, a set of experiments are designed to answer the research questions of this study. In

all experiments the integrated picking and packing method (as it is described in ModelL) is compared

against the non-integrated method (as it is described in ModelNI and FIFO packing). The objective

function is always the one described in Eq. (1) apart from when exploring RQ 1 where other objective

functions are also tested.

In particular, for RQ 1 experiments, we use 300 customer orders which are used to generate a

maximum of 24 picklists. Among the selected 300 consecutive orders (covering 135 SKUs), 24% orders

were 1-SKU-1-item category, 49.3% were 1-SKU-multiple-items, 11.7% were multiple-SKUs-1-item, and

15% were multiple-SKUs-multiple-items. We conducted experiments with different objectives functions

as they appear in Table 6, with each row representing a different experiment.

Table 6: RQ 1: Objective functions used in mathematical models

Objective functions Formulations

total order processing time + makespan Eq. (1)

makespan Eq. (2)

total order processing time Eq. (3)

For RQ 2, we compare the two methods under different order quantities ranging from 100 to 600 in
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100-steps as described in Table 7). Among the selected 600 consecutive orders (covering 333 SKUs),

25.5% orders were 1-SKU-1-item category, 50.7% were 1-SKU-multiple-items, 10.8% were multiple-

SKUs-1-item, and 13% were multiple-SKUs-multiple-items. As the amount of input orders varies,

the corresponding number of picklists (and their associated queuing positions) need to also change to

different configurations.

Table 7: RQ 2: Order quantities and picklists

Order quantities #Picklists

100 8

200 16

300 24

400 32

500 40

600 48

RQ 3 deals with different order pool structures. Once again, 300 orders are used as an input but the

contents of each order vary so that they can create different structure types for the whole order pool.

Table 8 presents the seven different types we run experiments on. In order to have enough numbers of

original orders to create the seven types from, 2900 orders were used as the source. In Types 1 to 7,

each 300-order set covered 184, 165, 101, 277, 288, 334, and 274 SKUs, respectively.

Table 8: RQ 3: Order pool structure types and their ingredients

Order pool
structure types

Order catergories

1-SKU-1-item 1-SKU-multiple-
items

multiple-SKUs-
1-item

multiple-SKUs-
multiple-items

1 100% 0% 0% 0%

2 50% 50% 0% 0%

3 0% 100% 0% 0%

4 25% 25% 25% 25%

5 0% 0% 100% 0%

6 0% 0% 50% 50%

7 0% 0% 0% 100%

Finally, for RQ 4, we experiment with different allocations of the available personnel in the picking

and packing processes as it is described in Table 9. We keep the total number of available workers the

same (i.e. 12 workers) and we investigate how differences in the capacity of each process might affect

the benefits of an integrated method. The same 300 consecutive orders were used here as in RQ 1.
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Table 9: RQ 4: Personnel allocation to picking and packing

#Pickers #Packers

10 2

8 4

6 6

4 8

The experimental environment developed for these experiments is developed using MATLAB R2019b

on a computer running 64-bit Windows 10 system on a Intel Core i5-7300U processor. The Gurobi

Optimizer 9.1 is used to solve the mathematical models in each method. The termination criterion

for both methods was set to 24 hours of computational time which deemed to be sufficiently long for

the complex mathematical models compared in this paper. In other words, this appropriately long

duration was set in order to make sure that the technical characteristics of the Gurobi Optimizer

would not affect the measurement of the benefits of integration, which is the focus of this paper. This

methodological choice is also in line with recent research on warehousing (Mirzaei et al., 2021).

5. Results

In this section, the results of the experiments described in the previous section are presented. Each

subsection presents results relative to RQs 1–4, respectively.

5.1. Performance comparison under different objectives (RQ 1)

The benefits of the integrated picking and packing under different objectives stated in RQ 1 are

demonstrated by the experimental results. We begin with Fig. 2 which provides a snapshot of all

experiments conducted for this research question. Regardless of the objective function that is optimised

(shown with different colours), the integrated method (asterisk marker) performs better than the non-

integrated method (circle marker) both in terms of makespan (x-axis) and average order processing time

(y-axis). The figure also indicates that, depending on the priorities of a company, different objective

functions can be chosen to minimise those key performance indicators that are considered as more

important.

Numerical results of more performance criteria are presented in Table 10 both in absolute numbers

and in percentage difference to better illustrate the benefits of the integrated method. It can be seen

that the integrated method outperforms the non-integrated one in most cases for a number of criteria,

except for the picker efficiency criterion. The reason of this exception will be explained later.

In order to further investigate the reasons why the integrated method performs better, we can

take a closer look at the total order processing time and makespan. In Fig. 3, the time required for

each component of the total order processing time is presented. The two blue components represent

time spent in picking while the two brown components represent time spent in packing. The first
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Fig. 2: Performance of integrated and non-integrated methods under different objectives (RQ 1).

Table 10: Performance comparison of integrated and non-integrated methods for different objectives and criteria (RQ 1).

Objective
function

Method Makespan
(min)

Avg order
proc time

(min)

Total labour
efficiency

(#orders/hr/pax)

Picker efficiency
(#orders/hr/pax)

Packer efficiency
(#orders/hr/pax)

total order
processing time

+ makespan

integrated 56.05 1.62 26.76 84.54 84.47

non-integrated 79.15 1.85 18.95 121.27 59.20

improved % 29.19 12.66 41.21 -30.28 42.69

makespan

integrated 55.58 2.24 26.99 75.82 85.23

non-integrated 63.03 2.28 23.80 120.88 78.31

improved % 11.81 1.90 13.40 -37.27 8.83

total order
processing time

integrated 60.60 1.65 24.75 71.15 79.27

non-integrated 61.09 1.88 24.55 98.10 78.32

improved % 0.81 12.28 0.82 -27.48 1.21
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Fig. 3: Picking and packing waiting and execution time of integrated and non-integrated methods (RQ 1).

observation one can make from Fig. 3 is that the integrated method “sacrifices” some time while

picking (thus making it longer by 14.49 − 34.33% compared to the non-integrated method), in order

to gain significant savings from packing time (24.12 − 31.92% shorter packing processing time). A

second observation is that the main reason for these savings comes from the reduction in waiting time

before a picklist can be packed (dark brown colour). Even though the picking process itself is always

longer in an integrated method (light blue colour), the savings gained from reducing the waiting time

in packing are enough to improve the performance overall. This highlights the fact that focusing on

the optimisation of the picking process only will not necessarily lead to improved performance in more

inclusive operations, like packing process in our paper, or even beyond.

A closer look at the makespan criterion in Fig. 4 reveals a similar finding. Even though picking

is executed in a way that allows all orders to be picked (and thus be ready for packing) faster in the

non-integrated method, the method does not take into account the packing process that follows, and

results in a longer time required for all orders to get packed. Moreover, as the labour-related metrics

are defined based on the inverse of the makespan criterion, the fact that picker efficiency is higher

in the non-integrated method can be explained — it reflects faster picking but does not result in an

improvement in the overall labour efficiency.

5.2. Performance comparison under under different order quantities (RQ 2)

The benefits of the integrated picking and packing under different order quantities stated in RQ 2

are demonstrated by the experimental results. Numerical results and improvement percentages of two

performance criteria (i.e. average order processing time and makespan) are presented in Table 11,

showing the benefits of the integrated method under different order quantities. Besides demonstrating

20



350

26.61

18.55

29.67

18.61

31.63

22.94

53.27

76.02

52.80

57.47

56.77

57.45

0 10 20 30 40 50 60 70 80

Integrated

Non-integrated

Integrated

Non-integrated

Integrated

Non-integrated

to
t 

o
rd

er
 p

ro
c

ti
m

e 
+

m
ak

es
p

an
m

ak
es

p
an

to
t 

o
rd

er
p

ro
c 

ti
m

e

Makespan

picking makespan (min) packing makespan (min)

Fig. 4: Picking and packing makespan of integrated and non-integrated methods (RQ 1).

the performance improvement achieved by using the integrated method, the table also indicates that

there is a trend that shows that as the order quantity increases, the size of the improvement generally

decreases. This demonstrates the importance of selecting an appropriate wave size in designing an

integrated method.

There is only one case where we do not observe an improvement in one of the two performance

indicators. This concerns the makespan criterion for the case of 600 orders, where the integrated

method is 0.69% worse than the non-integrated one. This is due to the small role the makespan

criterion plays in our objective function for such large number of orders. More specifically, the value of

makespan counts only for 5.37% of the overall objective function and, as a result, most of the method’s

attention is automatically given towards minimising the total processing time part of the objective

function. This results not only in a 0.37% improvement for the order processing time but also in an

overall improvement of 0.31%.

Finally, although not reported here for simplicity, a similar analysis to that of RQ 1’s results was

conducted here to further investigate the reasons that lead to performance improvement. Our findings

are very similar to the ones presented earlier: the main reason for the observed improvement is in the

reduction of the waiting time before packing can take place.

5.3. Performance comparison for different order pool structures (RQ 3)

The benefits of the integrated method for different order pool structures stated in RQ 3 are demon-

strated by the experimental results. More specifically, it can be seen in Table 12 that the results of the

main criteria under different types of order pool structures from the integrated method transcend those

from the non-integrated one. The results indicate that an integrated method can take into account the
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Table 11: Performance comparison of integrated and non-integrated methods under different order quantities (RQ 2).

Order quantities Method Makespan (min) Avg order proc time (min) Total order processing
time + makespan (min)

100

integrated 24.08 1.45 169.04

non-integrated 35.60 1.68 203.73

improved % 32.37 13.78 17.02

200

integrated 40.18 1.61 361.35

non-integrated 46.93 1.87 420.03

improved % 14.38 13.91 13.97

300

integrated 59.49 1.98 653.47

non-integrated 67.09 2.39 785.13

improved % 11.33 17.28 16.77

400

integrated 79.14 2.39 1034.10

non-integrated 91.29 2.73 1184.24

improved % 13.31 12.63 12.68

500

integrated 98.29 2.87 1531.00

non-integrated 109.82 3.17 1693.26

improved % 10.49 9.52 9.58

600

integrated 123.34 3.60 2284.30

non-integrated 122.49 3.61 2291.37

improved % -0.69 0.37 0.31

special characteristics of different orders and plan their picking and packing in a way that improves

system performance. We observe the largest benefits from the cases where order pools have medium

complexity (i.e. Types 2–3), but there are also benefits for more complex combinations of orders (i.e.

Types 4–7). A deeper analysis on this research question similar to the one presented in RQ 1 indi-

cated that the main benefit of integration arises from the fact that waiting time before packing can be

reduced considerably.

5.4. Performance comparison under different workforce allocation (RQ 4)

The previous three sections indicated the importance of this final research question. One could

logically argue that one of the ways to reduce the waiting time before packing would be to shuffle the

available workforce and move some workers from picking to packing. In this section, we will investigate

the benefits of the integrated method when available workforce is allocated to each process in different

loads. Details on the performance of the integrated and non-integrated methods in RQ 4 can be found

in Table 13. As Table 13 demonstrates, the integrated method outperforms the non-integrated one in

terms of makespan and average order processing time when there are more pickers than packers. The

integrated method also achieves big reduction in makespan for the remaining two cases for a small

increase in average order processing time. Moreover, since this research question considers labour-

specific issues, we also report the respective picker and packer labour efficiency. The performance of

these two criteria from the integrated method is higher except for the picker efficiency criterion. The
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Table 12: Performance comparison of integrated and non-integrated methods under different order pool structures (RQ 3).

Order pool structure
types

Method Makespan (min) Avg order proc time (min) Total order processing
time + makespan (min)

1

integrated 25.23 1.00 324.30

non-integrated 25.96 1.04 339.45

improved % 2.83 4.60 4.46

2

integrated 46.87 1.52 501.83

non-integrated 59.35 1.78 592.53

improved % 21.02 14.67 15.31

3

integrated 72.41 2.51 825.15

non-integrated 86.79 2.99 982.91

improved % 16.57 16.00 16.05

4

integrated 61.63 2.12 697.34

non-integrated 64.08 2.28 749.36

improved % 3.83 7.23 6.94

5

integrated 53.46 2.08 678.28

non-integrated 61.16 2.26 739.08

improved % 12.60 7.83 8.23

6

integrated 75.18 2.81 919.48

non-integrated 83.71 3.04 996.67

improved % 10.18 7.52 7.75

7

integrated 101.81 3.61 1183.90

non-integrated 114.93 4.01 1317.00

improved % 11.42 9.98 10.11
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reason for this exception has been explained in RQ 1 as lower picking efficiency levers higher packing

efficiency to improve the total labour efficiency.

Table 13: Performance comparison of integrated and non-integrated methods under different workforce allocations (RQ 4).

#Pickers,
#packers

Method Makespan
(min)

Avg order
proc time

(min)

Total labour
efficiency

(#orders/hr/pax)

Picker efficiency
(#orders/hr/pax)

Packer efficiency
(#orders/hr/pax)

10 pickers,

2 packers

integrated 107.65 2.45 13.93 55.76 85.48

non-integrated 116.93 3.02 12.83 118.22 79.95

improved % 7.93 18.81 8.61 -52.84 6.91

8 pickers,

4 packers

integrated 56.05 1.62 26.76 84.54 84.47

non-integrated 79.15 1.85 18.95 121.27 59.20

improved % 29.19 12.66 41.21 -30.28 42.69

6 pickers,

6 packers

integrated 44.94 1.64 33.38 106.66 71.02

non-integrated 56.25 1.59 26.67 121.31 56.10

improved % 20.11 -2.84 25.17 -12.07 26.58

4 pickers,

8 packers

integrated 53.40 1.95 28.09 116.13 44.08

non-integrated 68.93 1.91 21.76 120.27 34.20

improved % 22.53 -2.12 29.08 -3.44 28.91

Fig. 5 provides a closer look into how the two methods compare. When there are more pickers

than packers, the main benefit of the integration is reflected on largely reduced waiting time before

packing (similar to what was found in RQ 1). When there are fewer pickers than packers, the biggest

contribution is made by the saving on waiting time before picking. No waiting time before packing

is observed here as queues disappear due to the fact that the picking process becomes so slow that

a packer is always available when needed. This indicates that, for certain scenarios, the integrated

method would not provide any benefits as there are no opportunities to optimise the packing process.

A final observation is that another type of waiting in packing process, i.e. the packer’s waiting time,

is reduced by 27.10% using the integrated method in the case of fewer pickers. This implies that the

packers’ time can be used much more efficiently.

6. Conclusions and implications

6.1. Implications for research

In this paper, we examined the benefits of integrating picking and packing planning in warehouse

operations, motivated by the characteristics of e-commerce order fulfilment. Our results indicate

that integrated planning can result in improved performance under various conditions and for several

performance indicators. Via the exploration of four research questions, it was shown that focusing solely

on the improvement of the picking process does not guarantee gains in overall system performance as

the packing process that follows can act as a bottleneck. In particular, it was found that using an

integrated method, small sacrifices in the performance of the picking process can lead to greater gains

24



179.69

250.71

115.00

111.99

87.58

77.01

97.28

47.07

150.16

149.43

150.36

147.89

170.13

148.08

201.39

145.04

16.71

119.59

227.27

504.43

210.40

210.40

210.40

210.40

210.40

210.40

210.40

210.40

0 100 200 300 400 500 600 700 800 900 1000

Integrated

Non‐integrated

Integrated

Non‐integrated

Integrated

Non‐integrated

Integrated

Non‐integrated

4
 p
ic
ke
rs
,

8
 p
ac
ke
rs

6
 p
ic
ke
rs
,

6
 p
ac
ke
rs

8
 p
ic
ke
rs
,

4
 p
ac
ke
rs

1
0
 p
ic
ke
rs
,

2
 p
ac
ke
rs

Total order (picklist) processing time ‐ waiting & execution time

picking waiting time (min) picking execution time (min) picklist waiting time in packing (min) packing execution time (min)

Fig. 5: Picking and packing waiting and execution time of integrated and non-integrated methods under different workforce
allocations (RQ 4).

during the packing process, thus resulting in improved overall performance. It was also shown that the

usage of performance indicators that consider multiple processes jointly can lead to a more accurate

picture of a warehouse’s actual performance. This finding resonates with several claims found in the

literature on the potential benefits of a more holistic approach in warehouse operations planning and

performance measurement (Boysen et al., 2020).

An integrated method can be beneficial for warehouses that receive different numbers of orders,

even though there appears to be an inverse relationship between the number of orders one has to plan

for and the benefits integration can offer. Benefits were also observed in cases where different categories

of orders were received by a warehouse, an important characteristic of e-commerce operations. Finally,

we found benefits from integrating picking and packing planning, which are likely to depend on the

workforce allocation in each process. This is logical as, in many cases in operations management, the

efficiency of a process heavily depends on the (manual or automated) resources assigned to it.

Overall, this study provides the first evidence on the potential benefits of integrating picking and

packing processes, thus directly contributing to the academic literature on warehouse integration

(Bottani et al., 2019; Boysen et al., 2020; Sprock et al., 2019; Van Gils et al., 2018a,b). At the same

time, it presents a new mathematical model for enabling such integrated planning that can form the

basis for future mathematical modelling developments in the area.

6.2. Managerial implications

This study has been motivated not only by recent academic literature but also by a real-life oper-

ations observed in a warehousing company which was also used to collect empirical data for an exper-
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imental study. As a result, both the findings of the study and the proposed mathematical model that

formed the basis for the integrated method can be of interest and applicability to practice. Result-wise,

this paper provides evidence that practitioners (both warehouse managers and developers of warehouse

management systems) can use while considering the integration of different processes. It shows that

integration can improve performance in different operational scenarios and that such improvement is

possible using the mathematical model developed in the paper coupled with a commercial solver.

The fact that the benefits of integration seem to decrease as the number of orders increases highlights

the importance of deciding how many orders should be grouped together before a planning process

begins, known as wave release (Çeven & Gue, 2017; Gallien & Weber, 2010). As the results of this

study indicate, in practice, it might be preferable to opt for multiple, smaller waves to benefit the most

from integrated planning. Moreover, demonstrating benefits for different order categories can be key

for practice and an important functionality for warehouse management systems intended to be used by

e-commerce warehouses, especially ones that act as third-party providers and they experience various

types of demand. In general, the speed at which good solutions can be provided by any method can

often be a differentiating factor for many practical applications and should be carefully considered

before any real-life implementations.

On the topic of resourcing, practitioners could seek to examine different workforce allocations in

an attempt to minimise or even remove bottlenecks. We showed, however, that integration can still

be beneficial regardless of how available workers are allocated to each process. In a real system,

an integrated method can automatically adapt to actual demand taking into account the available

workforce and outperform a non-integrated approach. Finally, even though this study is motivated by

and designed based on characteristics commonly found in e-commerce warehousing, our results indicate

that one would expect benefits of integration in non e-commerce warehouses wherever consecutive

processes can be planned together. Examining such cases would extend the impact of this work to

other warehousing types.

6.3. Limitations and future research

This study, being among the very first ones investigating this integrated picking and packing plan-

ning model, opens various potential streams of future research. Firstly, even though the warehousing

system under consideration here has been a primarily manual one, this work can be easily extended

for warehouses with different levels of automation in the picking or in the packing process. Similarly,

further extending the scope of our models to include processes such as sorting (for transportation

providers) and delivery (or other consecutive processes) will allow a more holistic consideration of the

integration problem. Other ways this line of work can be extended is by including aspects of packing

(policy) optimisation which was not considered in this study. Moreover, more complex ways for multi-

objective optimisation could be considered to better reflect the co-existence of many key performance

indicators for practitioners.

There are various ways this study can be extended to examine warehouses with different operational

characteristics. Firstly, different routing policies can be explored, to cater for different warehouses and

to offer a better approximation of a picker’s travel distance, something that can be easily implemented
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by adapting accordingly constraints Eqs. (23)–(25). Since both integrated and non-integrated methods

use the same routing policy we expect its replacement by other policies not to have a great impact

on the benefits observed; this is because any routing policy will still apply to both methods and will

only affect part of the overall performance (i.e. the one that has to do with travel time) in a similar

way. Secondly, storage policies that use multiple locations per SKU are worth considering given their

usage by some e-commerce warehouse following recent trends in academic literature (Yang et al., 2020).

Thirdly, it would be interesting to compare the performance of a common operational choice where

workers pick and then pack the orders they are responsible for. This was not considered here as a) it

can lead to queues in warehouses where the infrastructure does not allow for many packing stations

and b) it does not look into the picking and packing process holistically but rather aims to eliminate

the waiting time before packing without considering the impact this has on picking waiting time.

Methodologically, this study is somewhat limited by its case example and the use of a commer-

cial solver. On the first issue, studying the operations of another case company and/or conducting

a simulation study where empirical data are used to form input distributions (rather than specific

instances) would offer an opportunity for further statistical validation of the benefits demonstrated.

On the latter issue, due to the complexity of the mathematical models, reaching optimal solutions

require significant computational resources. The development of faster methods for solving the math-

ematical models introduced here (e.g. specialised heuristics) could therefore make a useful academic

contribution while helping drive industrial adoption as computation time can play an important role

in industrial warehouse management systems.
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Appendix A. MINLP ModelI linearisation

In order to solve the MINLP ModelI more easily, this section presents how the model is converted

to an equivalent mixed-integer linear programming (MILP). The nonlinear objective function Eq. (1)

in ModelI can be rewritten to the equivalent linear expression as,

min
(∑

j∈J
tdprocessj + tdmakespan

)
s.t.

tdmakespan ≥ tcomplete pack
rL̄

− tenter pick, ∀r ∈ R

tdmakespan ≥ 0,

(A.1)
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and the nonlinear constraints Eq. (35) in ModelI can be rewritten as,

1

2
tcomplete pack
r,l−1 +

1

2
tenter pack
rl +

1

2

∣∣∣tcomplete pack
r,l−1 − tenter pack

rl

∣∣∣+ tdexecute pack
rl = tcomplete pack

rl ,

∀r ∈ R, l ∈ L\{1},
(A.2)

and Eq. (A.2) can be further rewritten to the equivalent linear expression as,

tcomplete pack
r,l−1 − tenter pack

rl ≤ 2tcomplete pack
rl − tcomplete pack

r,l−1 − tenter pack
rl − 2tdexecute pack

rl ,

∀r ∈ R, l ∈ L\{1}

−tcomplete pack
r,l−1 + tenter pack

rl ≤ 2tcomplete pack
rl − tcomplete pack

r,l−1 − tenter pack
rl − 2tdexecute pack

rl ,

∀r ∈ R, l ∈ L\{1}

tcomplete pack
r,l−1 − tenter pack

rl + M · arl ≥ 2tcomplete pack
rl − tcomplete pack

r,l−1 − tenter pack
rl

−2tdexecute pack
rl , ∀r ∈ R, l ∈ L\{1}

−tcomplete pack
r,l−1 + tenter pack

rl + M(1− arl) ≥ 2tcomplete pack
rl − tcomplete pack

r,l−1 − tenter pack
rl

−2tdexecute pack
rl , ∀r ∈ R, l ∈ L\{1}

arl ∈ {0, 1}, ∀r ∈ R, l ∈ L,

(A.3)

and the nonlinear constraints Eq. (36) in ModelI can be rewritten to the equivalent linear expression

as,

tcomplete pack
r,l−1 − tenter pack

rl ≤ Qwait, ∀r ∈ R, l ∈ L\{1}

−tcomplete pack
r,l−1 + tenter pack

rl ≤ Qwait, ∀r ∈ R, l ∈ L\{1}.
(A.4)

Thus, a linearised MILP ModelL is formed.
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Çeven, E., & Gue, K. R. (2017). Optimal wave release times for order fulfillment systems with deadlines.

Transportation Science, 51 (1), 52–66.

Claeys, D., Adan, I., & Boxma, O. (2016). Stochastic bounds for order flow times in parts-to-picker

warehouses with remotely located order-picking workstations. European Journal of Operational

Research, 254 (3), 895–906.

Croxton, K. L. (2003). The order fulfillment process. The International Journal of Logistics Manage-

ment , 14 (1), 19–32.

De Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of warehouse order picking:

A literature review. European Journal of Operational Research, 182 (2), 481–501.

Difrancesco, R. M., van Schilt, I., & Winkenbach, M. (2021). Optimal in-store fulfillment policies for

online orders in an omni-channel retail environment. European Journal of Operational Research,

293 (3), 1058–1076.

Elbert, R. M., Franzke, T., Glock, C. H., & Grosse, E. H. (2017). The effects of human behavior on the

efficiency of routing policies in order picking: The case of route deviations. Computers & Industrial

Engineering , 111 , 537–551.

Gallien, J., & Weber, T. (2010). To wave or not to wave? Order release policies for warehouses with

an automated sorter. Manufacturing & Service Operations Management , 12 (4), 642–662.

Giannikas, V., Lu, W., Robertson, B., & McFarlane, D. (2017). An interventionist strategy for ware-

house order picking: Evidence from two case studies. International Journal of Production Economics,

189 , 63–76.

29



Grosse, E. H., Glock, C. H., & Neumann, W. P. (2017). Human factors in order picking: a content

analysis of the literature. International Journal of Production Research, 55 (5), 1260–1276.

Henn, S. (2015). Order batching and sequencing for the minimization of the total tardiness in picker-

to-part warehouses. Flexible Services and Manufacturing Journal , 27 (1), 86–114.

Hong, S., & Kim, Y. (2017). A route-selecting order batching model with the S-shape routes in a

parallel-aisle order picking system. European Journal of Operational Research, 257 (1), 185–196.
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