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Abstract

This paper proposes a subsampling inference method for extreme conditional quantiles

based on a self-normalized version of a local estimator for conditional quantiles, such as

the local linear quantile regression estimator. The proposed method circumvents difficulty

of estimating nuisance parameters in the limiting distribution of the local estimator. A

simulation study and empirical example illustrate usefulness of our subsampling inference to

investigate extremal phenomena.
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1 Introduction

Since the seminal work of Koenker and Bassett (1978), quantile regression has been widely

applied in empirical analysis. In contrast to (mean) regression analysis for conditional means

of response variables given covariates, the quantile regression technique allows us to investigate

conditional quantile functions for different quantiles including tail areas to study various extremal

phenomena.

For linear quantile regression models, Chernozhukov (2005) developed the asymptotic theory

for Koenker and Bassett’s (1978) quantile regression estimator under the extremal order quantile
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asymptotics, where the quantile level converges to zero or one at the same rate as the sample size,

n, by extending the extreme value theory (see, e.g., Resnick (1987) for a review). Furthermore,

Chernozhukov and Fernández-Val (2011) proposed feasible inference methods for the extremal

quantile regression parameters by using self-normalized statistics combined with analytical or

subsampling critical values. Their inference methods are practical and much more accurate in

extreme tails than the conventional inference methods based on the fixed quantile asymptotics.

One major limitation of these studies on the extremal quantile regression model is that the

quantile regression function must be parametrically specified.1 Chaudhuri (1991) proposed the

local polynomial quantile regression approach to estimate nonparametrically the conditional

quantile function, and investigated its asymptotic properties under the conventional fixed quantile

asymptotics, which is, however, inaccurate for conducting inference for the tails. The purpose

of this paper is to fill this gap by developing a practical inference method for nonparametric

conditional quantiles in extreme tails.

In particular, we extend the extremal order quantile asymptotics by Chernozhukov (2005) and

Chernozhukov and Fernández-Val (2011) to a nonparametric setup, and consider the situation

where the quantile converges to zero or one at the same rate as nδdn with the sample size n,

number of covariates d, and localization or bandwidth parameter δn for a local estimator, such

as the local linear quantile regression estimator. Then we propose a subsampling inference

method based on a self-normalized counterpart of the local estimator for nonparametric extremal

quantiles. Our subsampling inference avoids estimation of nuisance parameters in the limiting

distribution of the local estimator under the extremal quantile asymptotics. In contrast to the

conventional fixed quantile asymptotics based on central limit theorems, our extremal order

quantile asymptotic analysis is built upon point process theory (see, e.g., Resnick, 1987, and

Embrechts, Klüppelberg and Mikosch, 1997). See also Zhang (2018) for inference on quantile

treatment effects under the extremal order quantile asymptotics. The main theorem of this paper,

validity of our subsampling method, covers general local estimators for conditional quantiles. In

the online supplement, we verify high level conditions of this theorem by a specific example, the

local linear quantile regression estimator.

We emphasize that the main focus of this paper is on inference (i.e., confidence intervals

and hypothesis testing) for extreme conditional quantiles. For point estimation, we consider the
1In an insightful paper, Phillips (2015) characterized probabilities of quantile crossings that imply misspecifi-

cation of linear quantile regression models in the context of predictive regressions. In particular, when the slope
coefficient varies with the quantile levels and the regressor obeys a unit root process, the linear quantile predictive
regression is inevitably misspecified with high probability. It should be noted that this misspecification problem
in the population cannot be resolved by finite sample modifications of the quantile regression estimator, such as
the rearrangement method in Chernozhukov, Fernández-Val and Galichon (2010).
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extrapolation approach as in Daouia, Gardes and Girard (2013) is particularly suitable since

it allows to use more observations from less extreme quantiles (see, also Wang, Li and He,

2012, and He, Cheng and Tong, 2016). Intuitively our point estimator uses less observations

than the extrapolation approach, and in this paper the point estimator is treated merely as a

centering object to conduct subsampling inference. We regard our point process approach as a

complementary inference method to the extrapolation approach as in Daouia, Gardes and Girard

(2013).

This paper is organized as follows. In Section 2, we present our main result, validity of

subsampling inference based on the self-normalized counterpart of the local estimator for extremal

conditional quantiles. In Section 3, we conduct a simulation study, and Section 4 presents an

empirical illustration of our method. The proof of the main theorem is contained in the Appendix.

In Section 5, we describe additional results presented in the online supplement, where we verify

the high level conditions of the main theorem by a specific example, the local linear quantile

regression estimator, and discuss two extensions of our subsampling inference for varying extreme

value index models and varying coefficient models. Finally, Section 6 concludes.

2 Subsampling inference

Let {Yi, Xi}ni=1 be a sample of size n from (Y,X) ∈ R × Rd, and FY (·|·) be the conditional

distribution function of Y |X = ·. The focus of this paper is to conduct inference on the extremal

(lower) quantiles θαn(c) = inf{q : FY (q|c) ≥ αn} with αn → 0 as n → ∞ for given c ∈ Rd. The

case of upper quantiles with αn → 1 is investigated in the same manner.

For the linear regression quantiles (say, θαn(x) = x′γαn), Chernozhukov and Fernández-Val

(2011) considered the case of nαn → k̃ > 0 and proposed analytical and subsampling inference

methods based on the self-normalized object

Tn =

√
nαn(γ̂αn − γαn)

X̄ ′(γ̂mαn − γ̂αn)
,

for some m > 1, where γ̂αn is the linear quantile regression estimator and X̄ = 1
n

∑n
i=1Xi. As

they argue, although the scaling constant of (γ̂αn−γαn) in the numerator is generally impossible

to estimate without strong parametric assumptions, the above normalized object converges to

a limiting distribution that only depends on the extreme value index of the error distribution,

which allows to consistently estimate the quantiles of c′Tn by analytical or subsampling methods

to conduct inference on the conditional quantile θαn(c) = c′γαn .
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This paper extends the above inference approach by Chernozhukov and Fernández-Val (2011)

to the situation where the researcher does not know the functional form of θαn(x). In particular,

based on some local estimator θ̂αn(c) for θαn(c) with a localization or bandwidth parameter δn

to select or weight the observations around x = c, we consider its self-normalized counterpart:

Θn =
θ̂αn(c)− θαn(c)

θ̂mαn(c)− θ̂αn(c)
, (2.1)

for some m > 1.

Examples of the estimator θ̂αn(c) include the local constant, linear, or polynomial quantile

regression estimators, and the inverse of the kernel or local polynomial estimator for the condi-

tional distribution function of Y |X = c using the bandwidth δn. In the online supplement, we

focus on the local linear quantile regression estimator as a specific example of θ̂αn(c) and verify

high level conditions for our main theorem on validity of subsampling inference.

Chaudhuri (1991) studied asymptotic properties of the local quantile regression estimator

when the quantile is fixed. Chernozhukov (1998) investigated asymptotic properties of the local

quantile regression estimator under the extreme order quantile asymptotics, nδdnαn → 0 as n→

∞. Alternatively, motivated by Chernozhukov and Fernández-Val (2011), this paper considers

the extremal order quantile asymptotics in the sense that

αn → 0, nδdnαn → k ∈ (0,∞) as n→∞. (2.2)

In order to establish validity of subsampling inference based the self-normalized object Θn,

a major requirement is to guarantee that

Θn
d→ Θ∞ with a continuous limit law. (2.3)

Our main theorem below imposes this requirement as a high level condition (Assumption (i)).

However, the limiting distributions of Θn or even the local quantile estimator θ̂αn(c) are open

questions in the literature (even though the focus of this paper is not on point estimation).

In Section 1 of the online supplement, we derive the limiting distribution of Θn for a specific

example, where θ̂αn(c) is the local linear quantile regression estimator. In this section, we directly

assume (2.3) and propose a subsampling method to estimate consistently quantiles of Θ∞, which

can be used to conduct inference on θαn(c).2

2It is known that the conventional bootstrap does not work due to the nonstandard behavior of extremal
quantile regression estimators (see, e.g., Bickel and Freedman (1981, Section 6) for a proof in the classical non-
regression case). In particular, the empirical bootstrap fails in our framework, which can be deduced from a general
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Let qt denote the t-th quantile of Θ∞. The subsampling approximation for the distribution

of Θn is obtained as follows.

(Step 1) Consider all subsets of the data {Wi = (Yi, Xi)} of size b. If {Wi} is a time series, consider

Bn = n− b+ 1 subsets of size b of the form {Wi,Wi+1, . . . ,Wi+b−1}.

(Step 2) For the j-th subsample, compute a subsample analogue of Θn, that is

Θ̂
(j)
b =

θ̂
(j)
αb (c)− θ̂αb(c)

θ̂
(j)
mαb(c)− θ̂

(j)
αb (c)

, (2.4)

for j = 1, . . . , Bn, where θ̂αb(c) is the αb-th conditional quantile estimator computed using

the full sample, and θ̂
(j)
αb (c) is the αb-th conditional quantile estimator computed using

the j-th subsample and bandwidth δb = (k/bαb)
1/d with k = nδdnαn. We take αb such

that αb/αn → ∞ as n → ∞ (i.e., αb satisfies the intermediate order quantile asymptotics

(Ichimura, Otsu and Altonji, 2019)).

(Step2) Obtain q̂t as the sample t-th quantile of {Θ̂(j)
b }

Bn
j=1.

Let B denote some fixed closed ball around c. For any positive sequences {c1n} and {c2n},

c1n ∼ c2n means c1n/c2n → 1 as n→∞. The main result of this paper, the asymptotic validity

of our subsampling inference, is obtained as follows.

Theorem 1. Assume that:

(i) (2.2) and (2.3) hold true.

(ii) As n→∞, it holds b→∞, b/n→ 0, δn → 0, δb → 0, αb → 0, and αb/αn →∞.

(iii) There exist a distribution function FU∗ with Pareto-type tails of extreme value index ξ 6= 0

and measurable function ϕ such that FY−ϕ(X)(z|x) ∼ Γ(x)FU∗(z), as z ↓ F−1U∗
(0), uniformly

over x ∈ B for some positive continuous function Γ(x). Furthermore, θ̂αb(c) based on θ̂αn(c)

satisfies

F−1U∗
(1/bδdb ){θ̂αb(c)− θαb(c)}

p→ 0.

Then as n→∞,

q̂t
p→ qt for t ∈ (0, 1).

theory on weak convergence of point processes and inconsistency of the conventional bootstrap for heavy-tailed
data (see, Resnick, 2007, Section 6).

5



Assumption (i) is a high level condition on the normalized object Θn. See Section 1 in

the online supplement for primitive conditions and derivation of the limiting distribution Θ∞

for the case of the local linear quantile regression estimator. Assumption (ii) contains mild

conditions for b (subsample size), (αn, αb) (quantiles), and (δn, δb) (bandwidths). Assumption

(iii) is typically satisfied for the location-scale model Y = ϕ(X) + Γ(x)ξU∗. The error term U∗

is in the minimum domain of attraction of the extreme value distribution with shape parameter

ξ called the extreme value index. See Section 1.1 of the online supplement for a detail. The last

condition is on the estimator θ̂αb(c) at the intermediate order quantile αb, which is imposed to

control the approximation error for Θb by Θ̂
(j)
b .

To implement our subsampling inference, we need to choose: (a) size of subsamples b, (b)

constant m for normalization, (c) quantile αb, and (d) bandwidths (δn, δb) to compute Θ̂
(j)
b . For

(a), b may be chosen by applying the methods in Politis, Romano and Wolf (1999, Chapter 9)

and Bertail et al. (2004). In practice, a smaller number Bn of randomly chosen subsets can be

used, provided that Bn →∞ (see, Section 2.5 of Politis, Romano and Wolf, 1999). For (b)-(d),

we suggest the following procedure.

1. Choose αn based on researcher’s interest.

2. Choose δn by some cross validation method adapted to local estimators for conditional

quantiles (e.g., Takeuchi et al., 2006).

3. Based on b, (1), and (2), set k = nδdnαn, αb = nαn/b, δb = (k/bαb)
1/d = δn, and m =

(d+ 1)/k + 1 + p for a spacing parameter p > 0.

For αb, one may introduce a finite sample adjustment αb = min{nαn/b, 0.2} as in Chernozhukov

and Fernández-Val (2011). The spacing parameter is set as p = 0.1 in our simulation study. Our

preliminary simulation suggests that the results are similar for different values of p. Note that

given the requirement k = nδdnαn = bδdbαb in the construction of (2.4), once we choose b, αn, and

δn (and n) as in the above procedure, the bandwidth δb is determined as δb = δn. Although such

a choice of δb may be suboptimal for estimating θ̂(j)αb (c), it guarantees the validity of subsampling

inference.

We note that our main theorem applies to general local quantile estimators for θ̂αn(c). For

the numerical illustrations below, we employ the local linear quantile regression estimator

(θ̂αn(c), β̂αn(c)) = arg min
θ,β

n∑
i=1

K(δ−1n (Xi − c))ραn(Yi − θ − δ−1n (Xi − c)′β), (2.5)

where K is a kernel function, δn is the bandwidth, and ρα(v) = v(α − I{v ≤ 0}). In Section
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1 of the online supplement, we verify that this estimator satisfies the assumptions of the main

theorem under the primitive conditions below. See Section 1 of the online supplement for detailed

discussions and verifications.

Proposition 1. For the local linear estimator in (2.5), suppose Assumptions 1-3 below and

Assumption (ii) in the main theorem hold. Then Assumptions (i) and (iii) in the main theorem

are satisfied.

Let Duf(c) = ∂f(c)/∂cu for u = 1, . . . , d and f : Rd → R, and B ⊂ Rd be some fixed closed

ball around c.

Assumption 1.

(i) {Yi, Xi}ni=1 is a sample from (Y,X) ∈ R × Rd. The random variable X has the density

function fX that is positive and continuous on B.

(ii) There exist a random variable U∗ with distribution function FU∗ and a measurable function

ϕ : B→ R such that the conditional distribution function FU (z|x) of U = Y − ϕ(X) given

X = x satisfies that FU (z|x)/FU∗(z) ∼ Γ(x), as z ↓ F−1U∗
(0), uniformly over x ∈ B for some

positive continuous function Γ(x) on B. The quantile function F−1U∗
of U∗ has end-points

F−1U∗
(0) = 0 or F−1U∗

(0) = −∞. The distribution function FU∗(z) exhibits Pareto-type tails

with extreme value index ξ ∈ R, i.e.,

(1) as z ↓ F−1U∗
(0) = 0 or −∞, FU∗(z + va(z)) ∼ evFU∗(z) for all v ∈ R when ξ = 0,

(2) as z ↓ F−1U∗
(0) = −∞, FU∗(vz) ∼ v−1/ξFU∗(z) for all v > 0 when ξ > 0,

(3) as z ↓ F−1U∗
(0) = 0, FU∗(vz) ∼ v−1/ξFU∗(z) for all v > 0 when ξ < 0,

where a(z) =
∫ z
F−1
U∗ (0) FU∗(v)dv/FU∗(z) for z > F−1U∗

(0).

(iii) Let δn be a sequence of positive constants with δn → 0 as n → ∞. Assume that nδdnαn →

k ∈ (0,∞) and anδ
1+γ
n → 0 as n→∞, where γ is defined in Assumption 1 (iv) below, and

(1) an = 1/a(F−1U∗
(1/nδdn)) when ξ = 0,

(2) an = −1/F−1U∗
(1/nδdn) when ξ > 0,

(3) an = 1/F−1U∗
(1/nδdn) when ξ < 0.

Furthermore, we define bn =

 F−1U∗
(1/nδdn) for ξ = 0

0 for ξ 6= 0
.
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(iv) For each u = 1, . . . , d, Duϕ(x) exists at each x ∈ B, and there exist constants C ∈ (0,∞)

and γ ∈ (0, 1] such that Duϕ(x) is γ-Hölder continuous on B, i.e., at each x ∈ B, |Duϕ(x)−

Duϕ(c)| ≤ C‖x− c‖γ .

(v) For all n large enough, Duθαn(x) exists and is continuous at each x ∈ B and u = 1, . . . , d,

and supx∈Bn an|θαn(x)− θαn(c)− (x− c)′∂θαn(c)/∂x| → 0 as n→∞.

Assumption 2. The sequence {Ui, Xi}ni=1 with Ui = Yi − ϕ(Xi) defined in Assumption 1 (ii)

forms a stationary and strongly mixing process with a geometric mixing rate, that is, for some

C1 > 0,

sup
i

sup
A∈Ai,B∈Bi+m

|P(A ∩B)− P(A)P(B)| exp(C1m)→ 0 as m→∞,

where Ai = σ(Ui, Xi, Ui−1, Xi−1, · · · ) and Bi = σ(Ui, Xi, Ui+1, Xi+1, · · · ). Moreover, the se-

quence satisfies a condition that curbs clustering of extreme events in the following sense: P(Ui ≤

M,Ui+m ≤ M |Ai) ≤ C2P(Ui ≤ M |Ai)2 for all M ∈ [s, M̄ ], uniformly for all m ≥ 1 with some

constants C2 > 0 and M̄ > s.

Assumption 3.

(i) Let w = (w1, . . . , wd)
′ ∈ Rd. The kernel function K is a bounded positive Lipschitz function

with support [−1, 1]d and second order, that is

∫
Rd
K(w)dw = 1,

∫
Rd
K(w)wudw = 0 for u = 1, . . . , d.

(ii)
∫
Rd K(w)w̃w̃′dw is positive definite, where w̃ = (1, w1, . . . , wd)

′ ∈ Rd+1.

3 Simulation

In this section, we present simulation results to evaluate the finite sample performance of the

proposed subsampling method. We consider the following location-scale model:

Yi = 0.5 sin(Xi) +
√

2.5 + 0.5X2
i U∗,i, (3.1)

for i = 1, . . . , n, where {Xi} are i.i.d. uniform random variables on [−1, 0], and {U∗,i} are i.i.d.

random variables following either (i) t distribution with 3 or 30 degree of freedom, or (ii) Weibull

distribution with the shape parameter 3 or 30. Note that these two cases corresponds to (i)

ξ = 1/3 or 1/30 and (ii) ξ = −1/3 or −1/30, respectively. When ξ = 1/30 or −1/30, U∗ has a

light-tailed distribution.
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We compute θ̂αn(c) at c = −0.5 by using the local linear quantile regression estimator in

(2.5) with the biweight kernel K(w) = 15
16(1−w2)2I{|w| ≤ 1}. To estimate the quantile qt of Θ∞

in (2.3) based on the subsampling method, we consider Bn = n − b + 1 subsets of size b of the

form {(Yi, Xi), (Yi+1, Xi+1), . . . , (Yi+b−1, Xi+b−1)}. To illustrate the proposed subsample based

inference on θαn(c), we see the finite sample properties of the following 100(1 − t)% confidence

intervals (t ∈ (0, 1/2)) for the model (3.1) with Student’s t and Weibull noises:

C1−t(αn) = [θ̂αn(c)− q̂1−t/2{θ̂mαn(c)− θ̂αn(c)}, θ̂αn(c)− q̂t/2{θ̂mαn(c)− θ̂αn(c)}].

Table 1 presents empirical coverage probabilities of 90% (t = 0.1) and 95% (t = 0.05)

confidence intervals C1−t(αn). We consider two cases for the sample size n ∈ {2000, 5000} and

set b = 200 (for n = 2000) and b = 500 (for n = 5000). For each Monte Carlo replication, we

select the bandwidth δn by using leave-one-out cross validation (LOOCV) as explained in Remark

6 of the online supplement. We set k = nδnαn, Bn = n− b+ 1, αb = nαn/b, and m = 2/k+ 1.1.

The number of Monte Carlo repetitions is 250. The numbers in the parentheses are means

of bandwidths selected by using LOOCV. We find that the simulated coverage probabilities of

confidence intervals C1−t(αn) have similar performance in every case and they are reasonably

close to the nominal coverage probabilities.

Model t(3) t(30) Weibull(3, 1) Weibull(30, 1)
n αn Nominal 0.90 0.95 0.90 0.95 0.90 0.95 0.90 0.95

2000 0.01 0.848 0.920 0.860 0.928 0.856 0.928 0.876 0.936
(0.198) (0.197) (0.197) (0.196)

0.005 0.856 0.928 0.852 0.924 0.872 0.932 0.864 0.932
(0.223) (0.221) (0.223) (0.222)

5000 0.01 0.876 0.948 0.860 0.920 0.860 0.924 0.872 0.940
(0.191) (0.195) (0.197) (0.164)

0.005 0.864 0.940 0.868 0.932 0.884 0.948 0.852 0.936
(0.218) (0.215) (0.219) (0.182)

Table 1: Empirical coverage probabilities of C1−t(αn) for θαn(c) = F−1Y (αn|c) at c = −0.5. We
set b = 200 for n = 2000 and b = 500 for n = 5000. The numbers in the parentheses are means
of bandwidths selected by using LOOCV.

Table 2 presents empirical coverage probabilities of 90% (t = 0.1) and 95% (t = 0.05) con-

fidence intervals C1−t(αn) with n = 2000 and b ∈ {80, 120, 160, 200, 300, 400, 500}. We also use

the biweight kernel and set k = nδnαn, Bn = n−b+1, αb = nαn/b, and m = 2/k+1.1. To com-

pute confidence intervals, we use LOOCV to select δn. The number of Monte Carlo repetitions

is 250. We find that the empirical coverage probabilities are reasonably close to the nominal

ones when 1/25 ≤ b/n ≤ 1/10. This motivates us to use b = [n/10] as a practical choice of sub-
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sample size, which is employed in real data analysis in the next section. Note that our choices

of b ∈ {80, 120, 160, 200, 300, 400, 500} correspond to αb ∈ {1/4, 1/6, 1/8, 1/10, 1/15, 1/20, 1/25}

when αn = 0.01, respectively. The empirical coverage probabilities are less sensitive even for

somewhat larger values of αb.

Model t(3) t(30) Weibull(3, 1) Weibull(30, 1)
b αn Nominal 0.90 0.95 0.90 0.95 0.90 0.95 0.90 0.95

80 0.01 0.868 0.932 0.872 0.936 0.868 0.936 0.864 0.936
0.005 0.864 0.928 0.876 0.940 0.876 0.932 0.852 0.936

120 0.01 0.848 0.920 0.852 0.920 0.844 0.924 0.864 0.928
0.005 0.868 0.924 0.876 0.940 0.872 0.940 0.872 0.936

160 0.01 0.852 0.924 0.864 0.924 0.868 0.932 0.864 0.924
0.005 0.844 0.920 0.860 0.928 0.864 0.924 0.868 0.940

200 0.01 0.848 0.920 0.860 0.928 0.856 0.928 0.876 0.936
0.005 0.856 0.928 0.852 0.924 0.872 0.932 0.864 0.932

300 0.01 0.852 0.916 0.852 0.920 0.848 0.916 0.856 0.912
0.005 0.844 0.908 0.848 0.908 0.852 0.912 0.848 0.908

400 0.01 0.836 0.896 0.812 0.848 0.844 0.904 0.812 0.872
0.005 0.816 0.872 0.804 0.856 0.812 0.856 0.820 0.876

500 0.01 0.796 0.860 0.752 0.808 0.792 0.868 0.800 0.852
0.005 0.780 0.852 0.728 0.784 0.780 0.822 0.792 0.840

Table 2: Empirical coverage probabilities of C1−t(αn) for θαn(c) = F−1Y (αn|c) at c = −0.5 with
n = 2000 and b ∈ {80, 120, 160, 200, 300, 400, 500}.

3.1 Comparison with other methods

We compare finite sample properties of confidence intervals based on (i) our subsampling method,

(ii) normal approximation, and (iii) the extrapolation approach developed in Daouia, Gardes and

Girard (2013). When the quantile level αn is considered as fixed (i.e. αn = α ∈ (0, 1)), we can

also apply normal approximation of θ̂α(c) to construct confidence intervals. From Fan, Hu and

Truong (1994, Theorem 3), we can construct 100(1 − t)% confidence intervals based on normal

approximation of θ̂α(c) for fixed α ∈ (0, 1) as follows:

CN1−t(α) =

θ̂α(c)− z1−t/2

√
τ̂2(c)

nδn
, θ̂α(c)− zt/2

√
τ̂2(c)

nδn

 ,
where zt is the t-th quantile of the standard normal distribution and τ̂2(c) is an estimator of the

asymptotic variance of θ̂α(c) given by

τ2(c) =
α(1− α)

∫
K2(w)dw

fX(c)g2Y (θα(c)|c)
.
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Here, fX is the density of X and gY (·|c) is the conditional density of Y given X = c. To

estimate fX , we use kernel smoothing with the Epanechnikov kernel and bandwidth selected by

using LOOCV. For the estimation of gY (·|c), we use the method proposed in Bashtannyu and

Hyndman (2001). We also compute θ̂α(c) in the same way as our method and the bandwidth is

selected by using LOOCV.

Furthermore, in our simulation study, we consider an infeasible version of Daouia, Gardes

and Girard’s (2013) extrapolation-based estimator in eq. (1.13) of the online supplement, where

we set ξ̂(c) = ξ and â(c) = (θαn(c) − θα̃n(c))/Kξ(α̃n/αn). In other words, the second term in

eq. (1.13) of the online supplement does not involve any preliminary estimation as in Daouia,

Gardes and Girard (2013). In this case, as in Daouia, Gardes and Girard (2013, Theorem 1),

one can construct 100(1− t)% confidence intervals of θαn(c) as follows:

CE1−t(αn) =

θ̂α̃n(c) +Bn(c)− z1−t/2

√
v̂2(c)

nδn
, θ̂α̃n(c) +Bn(c)− zt/2

√
v̂2(c)

nδn

 ,
where Bn(c) = θαn(c) − θα̃n(c) and v̂2(c) is an estimator of the asymptotic variance of θ̂α̃n(c)

given by

v2(c) =
α̃n

∫
K2(w)dw

fX(c)g2Y (θα̃n(c)|c)
.

We set α̃n = nαn/b (b is the subsample size used in the computation of C1−t(αn)) and the

bandwidth δn is selected by using LOOCV. For the estimation of fX , we use kernel smoothing

with the Epanechnikov kernel and bandwidth selected by using LOOCV. For the estimation of

gY (·|c), we use the method proposed in Bashtannyu and Hyndman (2001).

Table 3 presents empirical coverage probabilities of 90% (t = 0.1) and 95% (t = 0.05)

confidence intervals C1−t(αn), CN1−t(αn), and CE1−t(αn) with n = 2000 and αn ∈ {0.01, 0.005}.

Although we do not report here, the results are similar for the case of n = 5000. To compute

the confidence interval C1−t(αn), we use LOOCV to select δn and set k = nδnαn, b = n/10,

Bn = n− b+ 1, αb = nαn/b, and m = 2/k+ 1.1. We also use the local linear quantile regression

estimator in (2.5) with the biweight kernel to compute θ̂αn(c) and θ̂α̃n(c). The number of Monte

Carlo repetitions is 250. We find that the normal approximation confidence interval CN1−t(αn)

exhibits severe size distortions particularly for the t(3) and t(30) distributions. This result clearly

endorses usefulness of the asymptotic approximation based on the extreme value theory for tail

areas as advocated in this paper. We also find that the confidence interval CE1−t(αn) based on the

infeasible estimator θ̂α̃n(c)+Kξ(α̃n/αn)â(c) (where the second term does not involve preliminary

estimation) also exhibits size distortions. This result indicates that the normal approximation
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for θ̂α̃n(c) under the intermediate quantile asymptotics may not work well for inference in tail

areas even after the bias correction by the second term Kξ(α̃n/αn)â(c).

Model t(3) t(30) Weibull(3, 1) Weibull(30, 1)
n αn Nominal 0.90 0.95 0.90 0.95 0.90 0.95 0.90 0.95

2000 0.01 C1−t(αn) 0.848 0.920 0.860 0.928 0.856 0.928 0.876 0.936
CN1−t(αn) 0.044 0.052 0.204 0.240 0.716 0.776 0.656 0.748
CE1−t(αn) 0.436 0.528 0.512 0.608 0.784 0.860 0.808 0.864

0.005 C1−t(αn) 0.856 0.928 0.852 0.924 0.872 0.932 0.864 0.932
CN1−t(αn) 0.032 0.040 0.128 0.152 0.628 0.684 0.668 0.708
CE1−t(αn) 0.256 0.304 0.408 0.496 0.768 0.816 0.740 0.812

Table 3: Empirical coverage probabilities of C1−t(αn), CN1−t(αn), and CE1−t(αn) for θαn(c) =
F−1Y (αn|c) at c = −0.5.

4 Real data illustration

We apply our methodology to conduct inference on the extremal quantiles of the GBP-AUD

exchange rate {Ri}n+1
i=1 observed every 3 hours from March 22nd, 2006 to August 30th, 2008

(n = 5053) provided by the Dukascopy Bank. Before we apply our method, we transform {Ri}

as Yi = 100 × (log(Ri+1) − log(Ri)) for i = 1, . . . , 5053, and consider an AR(1)-type structure

(Yi, Xi) = (Yi, Yi−1). Figure 4.1 depicts the transformed GBP-AUD exchange rate {Yi}ni=1. We

also use the local linear quantile regression estimator in (2.5) with the biweight kernel and set

αn ∈ {0.01, 0.005}, δn = 0.103 (for αn = 0.01), 0.115 (for αn = 0.005) which are selected by the

rule-of-thumb proposed in Yu and Jones (1998), k = nδnαn, b = [n/10] = 505, Bn = n− b + 1,

αb = nαn/b, and m = 2/k + 1.1. Table 4 presents estimated values of the extremal conditional

quantiles θ̂αn(c) at c = 0 and confidence intervals C1−t(αn). We can see that our confidence

intervals for the extreme quantiles θ0.01(c) and θ0.005(c) are reasonably informative based on the

plot in Figure 4.1.
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Figure 4.1: Plots of the transformed GBP-AUD exchange rate {Yi}5053i=1 .

αn θ̂αn(c) C0.90(αn) C0.95(αn)

0.01 -0.185 [-0.265, -0.139] [-0.274, -0.137]
0.005 -0.243 [-0.347, -0.146] [-0.363, -0.138]

Table 4: Estimated values of θαn(c) at c = 0 and confidence intervals C1−t(αn).

5 Additional results in online supplement

A major technical challenge is to establish the weak convergence of the normalized object Θn in

(2.3) under the extremal order quantile asymptotics (2.2). This is a key condition (Assumption

(i)) to establish the validity of our subsampling inference in the main theorem. Furthermore,

although the focus of this paper is inference (i.e., hypothesis testing and interval estimation) on

θαn(c), it is of independent interest what is the convergence rate and limiting distribution of

the local estimator θ̂αn(c) under the extremal order quantile asymptotics. For point estimation

of θαn(c), we consider the extrapolation approach as in Daouia, Gardes and Girard (2013) is

particularly suitable since it allows to use more observations from less extreme quantiles.

In Section 1 of the online supplement, we focus on the local linear quantile regression estimator

as a specific example of θ̂αn(c), provide primitive conditions to satisfy the assumptions in our
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main theorem, and derive the limiting distributions of the point estimator θ̂αn(c) and its self-

normalized counterpart Θn. In particular, we extend the extremal order quantile asymptotics by

Chernozhukov (2005) and Chernozhukov and Fernández-Val (2011) to a nonparametric setup,

and consider the situation where the quantile converges to zero or one at the same rate as nδdn

as in (2.2). In contrast to the conventional fixed quantile asymptotics based on central limit

theorems, our extremal order quantile asymptotic analysis is built upon point process theory.

Although theoretical developments are similar, there are at least two important directions

to extend our subsampling inference method. In Section 2 of the online supplement, we present

extensions of our main result to (a) the case where the extreme value index ξ of the error term

distribution may vary with covariates (Section 2.1), and (b) varying coefficient extremal quantile

regression models Y = X ′β(Z) + γ(X,Z)V∗ for an unknown function β(·) of covariates Z, and

error term V∗ in the domain of minimum attraction (Section 2.2).

These additional results are also new in the literature, and we also provide detailed comments

on the assumptions and theorems in the online supplement.

6 Conclusion

This paper studies inference for nonparametric extreme conditional quantiles. We propose a

subsampling inference method based on a self-normalized counterpart of a nonparametric con-

ditional quantile estimator. An attractive feature of our method is that it avoids estimation of

nuisance parameters in the limiting distribution of the quantile estimator under the extremal

quantile asymptotics. We establish asymptotic validity of the proposed method, and illustrate

its finite sample performance by a simulation study and empirical example. It is interesting to

extend the proposed method to other econometric problems associated with quantiles, such as

the quantile treatment effect analysis and quantile instrumental variable regression.
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A Proof of Theorem

Let Ã(j)
b = 1

θ̂
(j)
mαb

(c)−θ̂(j)αb (c)
, Θ

(j)
b = Ã

(j)
b (θ̂

(j)
αb (c) − θαb(c)), and Ab = −sgn(ξ) · 1/F−1U∗

(1/(bδdb )).

Define

Ĝn(x) =
1

Bn

Bn∑
j=1

I{Θ̂(j)
b ≤ x} =

1

Bn

Bn∑
j=1

I{Θ(j)
b + Ã

(j)
b (θαb(c)− θ̂αb(c)) ≤ x},

G̃n(x; ∆) =
1

Bn

Bn∑
j=1

I{Θ(j)
b + (Ã

(j)
b /Ab)∆ ≤ x}.

Then

I{Θ(j)
b ≤ x− Ã

(j)
b wn/Ab} ≤ I{Θ̂(j)

b ≤ x} ≤ I{Θ(j)
b ≤ x+ Ã

(j)
b wn/Ab},

for all j = 1, . . . , Bn, where wn = |Ab(θαb(c)− θ̂αb(c))|.

Since wn = op(1) by Assumption (iii), there exists a sequence εn ↓ 0 as n→∞ such that the

following event occurs with probability approaching one:

Ωn =
{
I{Θ(j)

b ≤ x− Ã
(j)
b εn/Ab} ≤ I{Θ(j)

b ≤ x− Ã
(j)
b wn/Ab} ≤ I{Θ̂(j)

b ≤ x}

≤ I{Θ(j)
b ≤ x+ Ã

(j)
b wn/Ab} ≤ I{Θ(j)

b ≤ x+ Ã
(j)
b εn/Ab} for all j = 1, . . . , Bn

}
.

On Ωn, it holds

G̃n(x; εn) ≤ Ĝn(x) ≤ G̃n(x;−εn). (A.1)

We next show that at the continuity points of G(x) = P(Θ∞ ≤ x), it holds G̃n(x;±εn)
p→

G(x). Non-replacement sampling implies

E[G̃n(x; εn)] = P(Θb − Ã
(j)
b εn/Ab ≤ x),

and at the continuity points of G(x),

lim
n→∞

E[G̃
(j)
b (x; εn)] = lim

b→∞
P(Θb − Ã

(j)
b εn/Ab ≤ x) = G(x),

since Θb
d→ Θ∞ (by Assumption (i)) and Ã(j)

b εn/Ab = Op(1) · εn = op(1). Since G̃n(x; εn) is a

U-statistic of degree b, the law of large numbers for U-statistics in Politis, Romano and Wolf

(1999) implies Var(G̃n(x; εn)) = o(1). This shows that G̃n(x; εn)
p→ G(x). Likewise, we obtain

G̃n(x;−εn)
p→ G(x).

Finally, since P(Ωn) → 1, (A.1) yields Ĝn(x)
p→ G(x) for each x ∈ R. Since convergence
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of distribution functions at continuity points implies convergence of quantile functions at the

continuity points, the continuous mapping theorem yields q̂t = Ĝ−1n (t)
p→ G−1(t) = qt, provided

G−1(t) is a continuity point of G(x).
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Abstract

In this supplement, we focus on the local linear quantile regression estimator as an ex-

ample of θ̂αn(c). Section 1 derives the limiting distribution of the normalized object Θn and

shows that wn := sgn(ξ)[1/F−1
U∗ (1/(bδdb ))](θαb(c)− θ̂b(c)) = op(1), which verifies Assumptions

(i) and (iii) in the main paper. In Section 1.1, we present primitive conditions for the deriva-

tion and provide detailed comments. Section 1.2 presents the limiting distribution of Θn and

the local linear quantile regression estimator. In Section 1.3, we show that wn = op(1) for

the local linear quantile regression estimator. Section 2 discusses extensions of our results

for the case where the extreme value index varies with covariates (Section 2.1) and varying

coefficient models (Section 2.2). All proofs of this supplement are contained in the Appendix.

Throughout this supplement, we focus on the local linear quantile regression estimator:

(θ̂αn(c), β̂αn(c)) = arg min
θ,β

n∑
i=1

K(δ−1
n (Xi − c))ραn(Yi − θ − δ−1

n (Xi − c)′β),

where K is a kernel function (see Assumption 3 in this supplement for details) and ρα(v) =

v(α− I{v ≤ 0}).
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Notation.

Hereafter we use the following notation. For random variables (Y,X) ∈ R×Rd, let FY (y|c) be the

conditional distribution function of Y given X = c = (c1, . . . , cd)
′ ∈ Rd and θα(c) = infy∈R{y :

FY (y|c) > α} be the α-th conditional quantile function at c. For any function f : Rd → R, let

Duf(c) = ∂f(c)/∂cu for u = 1, . . . , d. B ⊂ Rd denotes some fixed closed ball around c, and

Bn =
∏d
j=1[cj − δn, cj + δn]. For any positive sequences an and bn, we write an . bn if there

is a constant C > 0 independent of n such that an ≤ Cbn for all n, and an ∼ bn means that

an/bn → 1 as n→∞. For any a ∈ R, define sgn(a) = 1 if a > 0 and sgn(a) = −1 if a ≤ 0. We

use the notations d→ and p→ as convergence in distribution and in probability, respectively. For

a ∈ R, let [a] be the integer part of a. Let ‖ · ‖ be the Euclidean norm.

1 Proof of Proposition 1 in the main text (verification of Assump-

tions (i) and (iii))

In this section, we prepare some auxiliary results (Section 1.1) and verify (2.3) in the main paper

(Section 1.2) and wn := sgn(ξ)[1/F−1
U∗ (1/(bδdb ))](θαb(c)− θ̂b(c)) = op(1) (Section 1.3).

1.1 Assumptions and comments

We impose the following conditions.

Assumption 1.

(i) {Yi, Xi}ni=1 is a sample from (Y,X) ∈ R × Rd. The random variable X has the density

function fX that is positive and continuous on B.

(ii) There exist a random variable U∗ with distribution function FU∗ and a measurable function

ϕ : B→ R such that the conditional distribution function FU (z|x) of U = Y − ϕ(X) given

X = x satisfies that FU (z|x)/FU∗(z) ∼ Γ(x), as z ↓ F−1
U∗

(0), uniformly over x ∈ B for some

positive continuous function Γ(x) on B. The quantile function F−1
U∗

of U∗ has end-points

F−1
U∗

(0) = 0 or F−1
U∗

(0) = −∞. The distribution function FU∗(z) exhibits Pareto-type tails

with extreme value index ξ ∈ R, i.e.,

(1) as z ↓ F−1
U∗

(0) = 0 or −∞, FU∗(z + va(z)) ∼ evFU∗(z) for all v ∈ R when ξ = 0,

(2) as z ↓ F−1
U∗

(0) = −∞, FU∗(vz) ∼ v−1/ξFU∗(z) for all v > 0 when ξ > 0,

(3) as z ↓ F−1
U∗

(0) = 0, FU∗(vz) ∼ v−1/ξFU∗(z) for all v > 0 when ξ < 0,
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where a(z) =
∫ z
F−1
U∗ (0) FU∗(v)dv/FU∗(z) for z > F−1

U∗
(0).

(iii) Let δn be a sequence of positive constants with δn → 0 as n → ∞. Assume that nδdnαn →

k ∈ (0,∞) and anδ
1+γ
n → 0 as n→∞, where γ is defined in Assumption 1 (iv) below, and

(1) an = 1/a(F−1
U∗

(1/nδdn)) when ξ = 0,

(2) an = −1/F−1
U∗

(1/nδdn) when ξ > 0,

(3) an = 1/F−1
U∗

(1/nδdn) when ξ < 0.

Furthermore, we define bn =

 F−1
U∗

(1/nδdn) for ξ = 0

0 for ξ 6= 0
.

(iv) For each u = 1, . . . , d, Duϕ(x) exists at each x ∈ B, and there exist constants C ∈ (0,∞)

and γ ∈ (0, 1] such that Duϕ(x) is γ-Hölder continuous on B, i.e., at each x ∈ B, |Duϕ(x)−

Duϕ(c)| ≤ C‖x− c‖γ .

(v) For all n large enough, Duθαn(x) exists and is continuous at each x ∈ B and u = 1, . . . , d,

and supx∈Bn an|θαn(x)− θαn(c)− (x− c)′∂θαn(c)/∂x| → 0 as n→∞.

Assumption 1 (ii) is a key condition, which involves auxiliary objects ϕ(x), Γ(x), and U∗.

Intuitively, the function ϕ(x) can be considered as a general notion of the ‘boundary’ of the

conditional distribution Y |X = x, and the conditional distribution of the error term U |X = x

is approximated by a multiplicative form Γ(x)FU∗(·) so that U∗ and Γ(x) may be interpreted as

an idiosyncratic shock and skedastic function in heteroskedastic errors, respectively. Under this

assumption, the quantile function θαn(x) can be approximately decomposed into the function

ϕ(x) and remaining term, i.e.,

θαn(x) ≈ ϕ(x) + F−1
U∗

(αn/Γ(x)) ≈ ϕ(x) + Γ(x)ξF−1
U∗

(αn). (1.1)

Based on this decomposition and Taylor expansions of θαn(x) and ϕ(x) by using Assumption 1

(iv)-(v), in Theorem 1 below, we derive the limiting distribution of

(θ̂αn(c), β̂αn(c)) = arg min
θ,β

n∑
i=1

K(δ−1
n (Xi − c))ραn(Yi − θ − δ−1

n (Xi − c)′β), (1.2)

centered around the expansion coefficients for ϕ(x) and the second term in (1.1)1.
1Since we employ the conventional local linear quantile regression estimator, the quantile crossing problem

also occurs to our estimator (i.e., θ̂α(c) may not be increasing in α in finite samples). In our context with
α = αn → 0, the sequence of the estimators {θ̂αn(c)} may not be decreasing even though this feature does not
affect our asymptotic analysis. One way to circumvent the quantile crossing is to rearrange the quantile regression
estimator as in Chernozhukov, Fernández-Val and Galichon (2010) (i.e, estimate θα(c) by the α-th quantile of
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More precisely, the auxiliary function ϕ is considered as (1) the boundary function for the

case when Y has a finite lower end-point, F−1
Y (0|x) = θ0(x) = limαn↓0 θαn(x) = limαn↓0(ϕ(x) +

F−1
U (αn|x)) = ϕ(x) > −∞, or (2) the location function of Y given X for the unbounded support

case, F−1
Y (0|x) = θ0(x) = limαn↓0(ϕ(x) + F−1

U (αn|x)) = −∞, and the condition on ϕ restricts

the shape of the conditional distribution FU (·|x) of U = Y − ϕ(X) given X = x. In particular,

we assume that FU (·|x) is approximated by a multiplicative form Γ(x)FU∗(·), and that FU∗ has

a tail of type 1, 2, and 3 when ξ = 0, ξ > 0, and ξ < 0, respectively (see Resnick, 1987, for

details on these types). Assumption 1 (ii) also requires that for any x1, x2 ∈ B, z 7→ FU (z|x1)

and z 7→ FU (z|x2) are tail equivalent up to a constant. This condition is motivated by the

closure of the domain of minimum attraction under tail equivalence (see Proposition 1.19 of

Resnick, 1987). Typically, Assumption 1 (ii) is satisfied for location-scale models. See also the

comments after Assumption 2 below. The absolute value of ξ measures heavy-tailedness of the

distribution. Distributions with ξ = 0 include normal and exponential. Distributions with ξ > 0

include stable, Pareto, and Student’s t. Distributions with ξ < 0 include uniform, exponential,

and Weibull.

Assumption 1 (iii) is concerned with the canonical normalization of θ̂αn(c) − θαn(c). For

example, for Case (1), if U∗ follows the Laplace distribution FU∗(z) = 2−1e−λ|z|I{z < 0}+ (1−

2−1e−λ|z|)I{z ≥ 0} for some λ > 0, then we have a(z) = λ−1 and F−1
U∗

(τ) = λ−1 log(2τ) (as

τ ↓ 0) implying an = λ−1 and bn = λ−1(log 2− log(nδdn)). For Case (2), if U∗ follows the Pareto

distribution FU∗(z) = (1 + |z|)−1/ξI{z ≤ 0} for some ξ > 0, then we have F−1
U∗

(τ) = 1 − τ−ξ

implying an = ((nδdn)ξ − 1)−1. For Case (3), if U∗ follows the Weibull distribution FU∗(z) = (1−

e−(z/β)−1/ξ
)I{z ≥ 0} for some ξ < 0 and β > 0, then we have F−1

U∗
(τ) = β{− log(1−τ)}−ξ ∼ βτ−ξ

(as τ ↓ 0) implying an ∼ β−1(nδdn)−ξ.

Assumption 1 (iv) and (v) are concerned with smoothness of the conditional quantile function

θαn and auxiliary function ϕ. A Taylor expansion of ϕ around x = c yields

ϕ(x) = ϕ(c) + (x− c)′∂ϕ(c)

∂x
+Rϕ(x, δn), (1.3)

θαn(x) = θαn(c) + (x− c)′∂θαn(c)

∂x
+R(x, δn),

θ̂U (c) with U ∼ Uniform[0, 1]) even though its theoretical analysis for the extremal case is beyond the scope of
this paper. Furthermore, it should be noted that such a rearrangement method for the linear quantile regression is
a finite sample modification and does not resolve misspecification problems of the linear model in the population.
Indeed Phillips (2005) characterized probabilities of quantile crossings implying misspecification of linear quantile
regression models in the context of predictive regressions, and argued that the linear quantile predictive regression
may be inevitably misspecified with high probability. Although formal analysis for predictive regressions is beyond
the scope, Phillips’ (2005) analysis also endorses importance of nonparametric methods to investigate conditional
quantiles.
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and Assumption 1 (iv) guarantees

sup
x∈Bn

|Rϕ(x, δn)| = O(δ1+γ
n ). (1.4)

Assumption 1 (v) says that the remainder of the Taylor expansion of θαn(x) around x = c should

be smaller order than a−1
n , i.e.,

sup
x∈Bn

an|R(x, δn)| = o(1). (1.5)

As shown below, this condition is satisfied for location-scale models under certain smoothness

conditions.2

We also assume the following dependence structure on {Ui, Xi}.

Assumption 2. The sequence {Wi}ni=1 with Wi = (Ui, Xi) and Ui = Yi − ϕ(Xi) defined in

Assumption 1 (ii) forms a stationary and strongly mixing process with a geometric mixing rate,

that is, for some C1 > 0,

sup
i

sup
A∈Ai,B∈Bi+m

|P(A ∩B)− P(A)P(B)| exp(C1m)→ 0 as m→∞,

where Ai = σ(Wi,Wi−1, · · · ) and Bi = σ(Wi,Wi+1, · · · ). Moreover, the sequence satisfies a

condition that curbs clustering of extreme events in the following sense: P(Ui ≤ M,Ui+m ≤

M |Ai) ≤ C2P(Ui ≤ M |Ai)2 for all M ∈ [s, M̄ ], uniformly for all m ≥ 1 with some constants

C2 > 0 and M̄ > s.

Assumption 2 includes the case that the sequence of variables {Ui, Xi}ni=1, or equivalently

{Yi, Xi}ni=1, is a sequence of i.i.d. random variables. The mixing assumption on {Ui, Xi}ni=1 is

equivalent to the one on {Yi, Xi}ni=1. The non-clustering assumption is used to apply Meyer’s

(1973) theorem in (A.4) to establish the weak convergence of the point process (1.7) defined

below.

We now provide an example satisfying our assumptions. Let {U∗,i} be a sequence of i.i.d.

random variables and {Yi, Xi} are observations. Letting ξ 6= 0, consider the following location-

scale model

Yi = ϕ(Xi) + γ(Xi)U∗,i. (1.6)
2When FY (y|x) does not have a finite end-point, the remainder R(x, δn) may diverge as αn ↓ 0 in some cases.

However, in such cases, the definition of an = −1/F−1
U∗

(1/nδdn) implies an ↓ 0 as n→∞ so that the condition in
(1.5) can be still satisfied. On the other hand, the condition in (1.5) becomes more stringent for δn when an →∞.
For example, when U∗ follows the Weibull distribution FU∗(z) = (1 − e−(z/β)−1/ξ

)I{z ≥ 0} for some ξ < 0 and
β > 0, then we have an ∼ β−1(nδdn)

−ξ. Additionally, consider the location-scale model in (1.6) below with scale
function γ(x) such that Duγ(x) exists and Duγ(x) is γ-Hölder continuous at each x ∈ B and u = 1, . . . , d. In this
case, we have supx∈Bn |R(x, δn)| = O(δ1+γn ). Therefore, the condition (1.5) is satisfied when δn = o(nξ/(1+γ−dξ))
(note that ξ < 0).
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In this case, Assumption 1 (ii) is satisfied with Γ(x) = γ(x)1/ξ. Also, Assumption 1 (v) is satisfied

if Duγ(x) exists and Duγ(x) is γ-Hölder continuous at each x ∈ B and u = 1, . . . , d.3

We note that Assumptions 1 and 2 could be relaxed in certain directions for some of the

results stated below, but we decided to state a single set of sufficient assumptions for all the

results in this section. We will extend results in this section later in Section 2.

We impose the following conditions for the kernel function.

Assumption 3.

(i) Let w = (w1, . . . , wd)
′ ∈ Rd. The kernel function K is a bounded positive Lipschitz function

with support [−1, 1]d and second order, that is

∫
Rd
K(w)dw = 1,

∫
Rd
K(w)wudw = 0 for u = 1, . . . , d.

(ii)
∫
Rd K(w)w̃w̃′dw is positive definite, where w̃ = (1, w1, . . . , wd)

′ ∈ Rd+1.

These assumptions are standard in the literature and satisfied by popular kernel functions,

such as the uniform and biweight kernels. If one wishes to incorporate a discrete covariate, say

Di ∈ {1, . . . ,M}, our estimator for the α-th coniditonal quantile of Y |X = c,D = m can be

obtained as in (1.2) by replacing the kernel component “K(δ−1
n (Xi − c))” with “K(δ−1

n (Xi −

c))I{Di = m}”.

In the next section, we derive the asymptotic distribution of our local linear quantile regression

estimator.
3To see this, a Taylor expansion of γ(x) around x = c yields γ(x) = γ(c) + (x − c)′ ∂γ(c)

∂x
+ Rγ(x, δn), where

supx∈Bn |Rγ(x, δn)| = O(δ1+γn ). Thus, by noting θαn(c) = ϕ(c)+F−1
U∗

(αn)γ(c) and
∂θαn (c)

∂x
= ∂ϕ(c)

∂x
+F−1

U∗
(αn)

∂γ(c)
∂x

,
(1.3)-(1.5) imply

sup
x∈Bn

an

∣∣∣∣θαn(x)− θαn(c)− (x− c)′ ∂θαn(c)
∂x

∣∣∣∣
= sup

x∈Bn
an

∣∣∣∣θαn(x)− {ϕ(c) + F−1
U∗ (αn)γ(c)} − (x− c)′

{
∂ϕ(c)

∂x
+ F−1

U∗ (αn)
∂γ(c)

∂x

}∣∣∣∣
≤ sup

x∈Bn
an|Rϕ(x, δn)|+

F−1
U∗

(αn)

F−1
U∗

(1/nδdn)
sup
x∈Bn

|Rγ(x, δn)| → 0.
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1.2 Asymptotic distribution of estimator

Let Un,i = Ui +Rϕ(Xi, δn)− bn. Define S = S∞ × Rd, where

S∞ =


[−∞,∞) if ξ = 0,

[−∞, 0) if ξ > 0,

[0,∞) if ξ < 0.

As a preparation for the asymptotic analysis on the conditional quantile estimator θ̂αn(c), we

consider the following point process

N̂(·) =
n∑
i=1

I{(anUn,i, δ−1
n (Xi − c)) ∈ ·}, (1.7)

as a random element of the metric space Mp(S) of point processes defined on the measurable

space (S, σ(S)), where σ(S) is the σ-algebra generated by the open sets of S, and the metric space

Mp(S) is equipped with the metric induced by the topology of vague convergence (see Resnick,

1987, for details on the theory of point process). In finite samples, if ξ 6= 0, anUn,i may not be in

S∞ due to the term Rϕ(Xi, δn) and therefore we need to restrict the state space of anUn,i on S∞

in general. However, such a restriction on the state space does not cause any technical problem

since an|Rϕ(x, δn)| = O(anδ
1+γ
n ) = o(1) uniformly over x ∈ Bn under Assumption 1 (iv), and

this implies that the restriction is asymptotically negligible.

The following result plays an important role to investigate the asymptotic properties of θ̂αn(c).

Proposition 1 (Weak convergence of N̂). Under Assumptions 1-2, N̂ d→ N in Mp(S), where N

is a Poisson point process in Mp(S) with mean measure

m(du, dw) =


Γ(c)fX(c)eududw if ξ = 0,

Γ(c)fX(c)1
ξ (−u)−1/ξ−1dudw if ξ > 0,

−Γ(c)fX(c)1
ξu
−1/ξ−1dudw if ξ < 0.

(1.8)

Remark 1. Proposition 1 can be established by asymptotic theory of point process and the

weak convergence N̂ d→ N enables us to develop statistical inference on extreme order conditional

quantiles. It should be noted that the limit distribution of θ̂αn(c) is not normal (see Theorem

2). Therefore, our analysis is quite different from the extrapolation approach, in which extremal

order conditional quantiles are estimated by extrapolations of estimators for intermediate order

quantiles (nδdnαn → ∞ as n → ∞), investigated by e.g. Wang, Li and He (2012) and Daouia,
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Gardes and Girard (2013) for linear regression and kernel smoothing, respectively.

Now we study asymptotic properties of the quantile regression estimator θ̂αn(c). To this

end, we first characterize the limiting behavior of the coefficient estimator (θ̂αn(c), β̂αn(c)). In

particular, we consider the normalized object

∆n = an

 θ̂αn(c)− ϕ(c)− bn

β̂αn(c)− δn ∂ϕ(c)
∂x

 .

The object ∆n is centered around
(
ϕ(c) + bn, δn

∂ϕ(c)
∂x′

)
instead of the coefficients

(
θαn(c), δn

∂θαn (c)
∂x′

)
to cover all the cases (1)-(3) in Assumption 1. For the cases (2)-(3), we have bn = 0. Also(
θαn(c), δn

∂θαn (c)
∂x′

)
involves a bias component as illustrated in the location-scale example in

(1.6) implying
(
θαn(c), δn

∂θαn (c)
∂x′

)
=
(
ϕ(c), δn

∂ϕ(c)
∂x′

)
+ F−1

U∗
(αn)

(
γ(c), δn

∂γ(c)
∂x′

)
.

By using the Poisson point process N in Proposition 1, the asymptotic distribution of ∆n is

obtained as follows.

Theorem 1 (Asymptotic distribution of ∆n). Under Assumptions 1-3, it holds ∆n
d→ ∆∞(k)

provided ∆∞(k) is defined as a random vector in Rd+1 which uniquely minimizes the objective

function

Q∞(∆, k) = −kfX(c)

{∫
[−1,1]d

K(w)w̃dw

}′
∆−

∫
S
K(w) min{u− w̃′∆, 0}dN(u,w)

= −kfX(c)

{∫
[−1,1]d

K(w)w̃dw

}′
∆−

∞∑
i=1

K(Wi) min{Ji − W̃ ′i∆, 0}, (1.9)

with respect to ∆ ∈ Q where Q = Rd+1 for ξ ≤ 0 and Q = {a ∈ Rd+1 : maxw∈[−1,1]d w̃
′a ≤ 0}

for ξ > 0,

Ji =


log
(

Gi
2dΓ(c)fX(c)

)
if ξ = 0,

−sgn(ξ)
(

Gi
2dΓ(c)fX(c)

)−ξ
if ξ 6= 0,

Gi =
i∑

j=1

ηj ,

{ηj} = i.i.d. sequence of Exp(1) random variables,

{Wi} = i.i.d. sequence of uniform random variables on [−1, 1]d, and W̃i = (1,W ′i)′.
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Remark 2. Theorem 1 implies that the limiting distribution may be approximated by

arg min
∆∈Rd+1

{
−kfX(c)

S

S∑
i=1

K(Wi)W̃i
′
∆−

S∑
i=1

K(Wi) min{Ji − W̃i
′
∆, 0}

}
, (1.10)

for large values of S. In particular, (1.10) is equivalent to

arg min
∆∈Rd+1

S∑
i=1

K(Wi)ρ kfX (c)

S

(Ji − W̃i
′
∆),

and we can simulate the asymptotic distribution of ∆n from the weighted quantile regression.

However, this simulation requires knowledge of the objects ξ, fX(c), and Γ(c), which are unknown

to the researcher. For example when {Yi, Xi} is an i.i.d. sample, Daouia, Gardes and Girard

(2013) proposed a Pickands type estimator of ξ, which also can be applied to the varying extreme

value index where ξ may depend on c and they showed its consistency under intermediate order

asymptotics (nδdnαn → ∞ as n → ∞). We will discuss extensions of our results to the varying

extreme value index in Section 2. The density fX(c) may be estimated by the kernel estimator,

for example. On the other hand, it is not clear how to estimate Γ(c) (defined in Assumption 1

(ii)) to implement the simulation based on (1.10). Therefore, we do not pursue such an analytical

approach for inference of the conditional quantile θαn(c) and we instead consider a subsampling

method which completely avoids estimation of the nuisance components ξ, fX(c), and Γ(c).

Define ∆∞(k) = (∆∞,0(k), . . . ,∆∞,d(k))′. Based on Theorem 1, the asymptotic distribution

of θ̂αn(c) is obtained as follows.

Theorem 2 (Asymptotic distribution of θ̂αn(c) and Θn). Under Assumptions 1-3, we have that

an(θ̂αn(c)− θαn(c))
d→ ∆∞,0(k) + g(c; ξ), (1.11)

and

Θn =
θ̂αn(c)− θαn(c)

θ̂mαn(c)− θ̂αn(c)

d→ ∆∞,0(k) + g(c; ξ)

∆∞,0(mk)−∆∞,0(k)
=: Θ∞, (1.12)

for any m such that k(m−1) > d+1, provided ∆∞(k) and ∆∞(mk) are uniquely defined random

vectors in Rd+1 and

g(x; ξ) =


log(Γ(x)/k) if ξ = 0,

sgn(ξ) · (Γ(x)/k)ξ if ξ 6= 0.
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Remark 3. Theorem 2 implies that θ̂αn(c)−θαn(c) = Op(1/an), where an is defined in Assump-

tion 1 (iii). We note that an ↓ 0 for the case of ξ > 0 and an → ∞ for the case of ξ < 0. Since

an is unknown in general, we cannot use (1.11) to provide practical inference tools for θαn(c).

On the other hand, the weak convergence result in (1.12) is useful for inference on θαn(c) since

we can compute Θn, which is a randomly self-normalized version of θ̂αn(c)− θαn(c), without the

knowledge of canonical normalization an.

Remark 4 (Comparison with Daouia, Gardes and Girard (2013)). We now compare the point

estimator θ̂αn(c) with the extrapolation-based approach. Daouia, Gardes and Girard (2013)

studied kernel smoothing for estimating extremal conditional quantiles by using the relation

θtα(c)− θα(c)

a(θα(c)|c)
−Kξ(c)(1/t)→ 0,

for all t > 0 as α→ 0 under Assumption (A.1) in their paper. Here, a(·|c) is an auxiliary function

defined in Daouia, Gardes and Girard (2013), ξ(c) is the extreme value index of FY (y|c), and

Kξ(u) =
∫ u

1 v
ξ−1dv. Based on this result, one can construct an estimator of θαn(c) by

θ̂Eαn(c) = θ̂α̃n(c) +Kξ̂(c)(α̃n/αn)â(c), (1.13)

where ξ̂(c) and â(c) are estimators of ξ(c) and a(θα̃n(c)|c) respectively, α̃n is an intermediate

quantile level such that α̃n → 0 and nδdnα̃n → ∞ as n → ∞, and θ̂α̃n(c) is the intermediate

quantile regression estimator defined as

θ̂α̃n = inf
y∈R
{y : F̂Y (y|c) > α̃n}, F̂Y (y|c) =

∑n
i=1K(δ−1

n (Xi − c))I{Yi ≤ y}∑n
i=1K(δ−1

n (Xi − c))
.

Intuitively the estimator θ̂Eαn(c) uses sample information from less extreme observations to esti-

mate intermediate quantiles at α̃n, which can yield desirable risk properties as a point estimator.

Indeed Daouia, Gardes and Girard (2013) carefully studied the estimation method of the second

term in (1.13) and investigated the asymptotic properties of θ̂Eαn(c). Compared to θ̂Eαn(c), our

point estimator θ̂αn(c) uses less sample information and the convergence rate tends to be slower.

Rather our focus is on inference (i.e., confidence interval and hypothesis testing) based on the

point process theory instead of central limit theorems, and the result in Theorem 2 should be

understood as a building block for subsampling inference.

Remark 5 (Uniqueness of ∆∞(k) and continuity of G(x) = P(Θ∞ ≤ x)). Uniqueness of ∆∞(k)

is necessary to apply the convexity lemma (Geyer, 1996, and Knight, 1999) to show the weak
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convergence of ∆n. Furthermore, we need the continuity of G(x) to show the asymptotic validity

of our subsampling method. We can show the uniqueness of ∆∞(k) and continuity of G(x) if∫
Rd K(w)w̃w̃′dw is positive definite. Indeed, since Q∞(∆, k) is convex in ∆ andW is the uniform

random variable on [−1, 1]d, Chernozhukov (2005, Condition PJ) is satisfied. Therefore, we can

show the tightness of ∆∞(k) similarly to the proof of Chernozhukov (2005, Lemma 9.7). Taking

the tightness of ∆∞(k) as given and under Assumption 3 (ii), we can show that (a) ∆∞(k) is

uniquely determined almost surely, (b) ∆∞,0(mk)−∆∞,0(k) > 0 almost surely, and (c) ∆∞,0(k)

has the continuous distribution function by a similar argument to the proof of Chernozhukov and

Fernández-Val (2011, Lemma E1). Therefore, (b) and (c) imply that Θ∞ is a proper random

variable with a continuous distribution function.

Remark 6 (Choice of the bandwidth δn). To implement our point estimator θ̂αn(c) in (1.2),

we need to choose the bandwidth δn. One data-driven approach is to adapt cross validation to

the local quantile regression as in Takeuchi et al. (2006). For example, the leave-one-out cross

validation minimizes
∑n

i=1K(δ−1
n (Xi − c))ραn(Yi − θ̂(−i)

αn (c)− δ−1
n (Xi − c)′β̂(−i)

αn (c)) with respect

to δn, where (θ̂
(−i)
αn (c), β̂

(−i)
αn (c)) is obtained as in (1.2) by deleting the i-th observation (Yi, Xi).

However, its theoretical analysis is beyond the scope of this paper.

1.3 Verification of the condition on θ̂αb(c) in Assumption (iii) of the main

paper for the local linear quantile regression estimator

Define Ab = −sgn(ξ) · 1/F−1
U∗ (1/(bδdb )) and wn = |Ab(θαb(c) − θ̂αb(c))|. Note that θ̂αb(c) is the

intermediate order conditional quantile computed using the full sample of size n since αbnδdn =

knαb/αn → ∞ as n → ∞. To show wn = op(1), we apply the results in Ichimura, Otsu and

Altonji (2019). Now we assume the following conditions:

(a) ∂F−1
U (τ |x)
∂τ ∼ ∂F−1

U∗ (τ/Γ(x))

∂τ as τ ↓ 0 uniformly over x ∈ B. ∂F−1
U∗ (τ)

∂τ is regularly varying at 0

with exponent ξ + 1 for some ξ 6= 0, and limτ↓0

∣∣∣∣∂F−1
U∗ (τ)/∂τ

τ−1F−1
U∗ (τ)

∣∣∣∣ ∈ (0,∞).

(b) Conditions C1, F1, and R1 (when ξ < 0) or Conditions C2, F2, and R2 (when ξ > 0) hold

by replacing αn (in their notation) with αb.

Then, Theorems 1 and 3 in Ichimura, Otsu and Altonji (2019) yield

θαb(c)− θ̂αb(c) = Op

(√
αb

nδdnφ
2
b

)
,

11



where

φb = fY (θαb(c)|c) = fθ0(c)+U (θ0(c) + F−1
U (αb|c)|c) = fU (F−1

U (αb|c)|c)

=
1

∂F−1
U (τ |c)/∂τ

∣∣
τ=αb

∼ 1

∂F−1
U∗

(τ/Γ(c))/∂τ
∣∣
τ=αb

∼ αb/Γ(c)

L0F
−1
U∗

(αb/Γ(c))
,

for L0 = limτ↓0
∂F−1

U∗ (τ)/∂τ

τ−1F−1
U∗ (τ)

∈ (0,∞), and the wave relations follow from Assumption (ii) of the

main paper. This implies

θαb(c)− θ̂αb(c) = Op

(
Γ(c)F−1

U∗
(αb/Γ(c))√
αbnδdn

)
,

and we obtain

wn =

∣∣∣∣∣ sgn(ξ)

F−1
U∗

(1/bδdb )

∣∣∣∣∣Op
(

Γ(c)F−1
U∗

(αb/Γ(c))√
αbnδdn

)

= Op

(
k−ξΓ(c)ξ+1

√
1

αbnδdn

)
= Op

(√
αn
αb

)
= op(1),

since kn = nδdnαn(= bδdbαb)→ k ∈ (0,∞) and αn/αb → 0 as b, n→∞.

2 Extension

In this section, we discuss two extensions of the results in Section 1. In particular, we extend

our results to (i) the case where the extreme value index of U∗ may vary with covariates (Section

2.1) and (ii) varying coefficient extremal quantile regression models (Section 2.2).

2.1 Varying extreme value index

In this section we extend our results to the case where the extreme value index of U∗ may vary

with covariates, that is, the distribution of U∗ depends onX = x through the extreme value index

ξ(x) 6= 0. Before we state our results, we provide an example to motivate such an extension.

Example 1. Suppose that X is half-normal with negative support and Y given X = x is the

negative Pareto distribution such that FY (y|x) = (1 + |y|)−1/|x| for y ≤ 0 and x < 0. Then the

conditional quantile is θτ (x) = 1 − τ−|x| = 1 − τx. In this case, we cannot apply Theorem 1 in

the supplement to estimate θαn(c) (c < 0) since the conditional tail index is ξ(x) = |x| > 0 is

not constant.4

4See Daouia, Gardes and Girard (2013, Section 4) for further examples of varying extreme value index models.
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To allow dependence of ξ on X = x, we impose the following assumption.

Assumption 4. (ii’) There exists a measurable function ϕ : B → R such that the conditional

distribution function FU (z|x) of U = Y−ϕ(X) given X = x satisfies that FU (z|x)/FU∗(z|x) ∼

Γ(x), as z ↓ F−1
U∗

(0|x), uniformly over x ∈ B for some positive continuous function Γ(x)

on B. The quantile function F−1
U∗

(·|x) of U∗ given X = x has end-points F−1
U∗

(0|x) = 0 or

F−1
U∗

(0|x) = −∞. The conditional distribution function FU∗(z|x) exhibits Pareto-type tails

with extreme value index ξ(x) 6= 0, i.e.,

(2) as z ↓ F−1
U∗

(0|x) = −∞, FU∗(vz|x) ∼ v−1/ξ(x)FU∗(z|x) for all v > 0, where ξ : Rd →

[0,∞) is positive and continuous on B.

(3) as z ↓ F−1
U∗

(0|x) = 0, FU∗(vz|x) ∼ v−1/ξ(x)FU∗(z|x) for all v > 0, where ξ : Rd →

(−∞, 0] is negative and continuous on B.

(iii’) Let δn be a sequence of positive constants with δn → 0 as n → ∞. Assume that nδdnαn →

k ∈ (0,∞) and anδ
1+γ
n → 0 as n→∞, where

(2) an = −1/F−1
U∗

(1/nδdn|c) and bn = 0 when ξ(c) > 0,

(3) an = 1/F−1
U∗

(1/nδdn|c) and bn = 0 when ξ(c) < 0.

We call the set of Assumptions 1 (i), (iv) and (v), and Assumptions 4 (ii’) and (iii’) as

Assumption 1’

Remark 7. In Example 1, Assumptions 4 (ii’) and (iii’) are satisfied with ϕ(x) = 0, Γ(x) = 1,

and an = 1/((1/nδdn)c − 1). We can also check that Example 1 satisfies Assumption 1 (v). Now

we additionally assume that δn(log n)2 → 0 as n → ∞. This implies that α−δnn → 1 as n → ∞

since

δn logαn ∼ δn log(k/nδdn) = δn(log k − log n− d log δn)→ 0.

Define Dθτ (x) = dθτ (x)/dx = −τx(log τ). We have

sup
|x−c|≤δn

an|Dθαn(x)−Dθαn(c)| . kc| logαn| sup
|x−c|≤δn

|αx−cn − 1| . kc| logαn|(α−δnn − 1)

. kc| logαn|α−πnδnn δn| logαn|, for πn ∈ (0, 1)

. (log n)2δn, (2.1)

As they argue, under the von-Mises type condition, ξ(x) may be characterized as

lim
y↓θ0(x)

FY (y|x)d2FY (y|x)/dy2

{dFY (y|x)/dy}2
= ξ(x) + 1,

where θ0(x) = limα↓0 θα(x).
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where the third inequality follows from the mean value theorem. Therefore, (2.1) implies

supx∈Bn an|R(x, δn)| = o(1) and this also implies Assumption 1 (v). Analogously, the condi-

tion would be satisfied for a wide class of models if ξ(x) and Γ(x) are sufficiently smooth on B.

Furthermore, it is easy to check that Example 1 satisfies Assumption 5 below.

Under this assumption, our main results are extended as follows.

Theorem 3. Suppose that Assumptions 1’ and 2 hold. Then the same result of Proposition 1

when ξ 6= 0 holds by replacing ξ with ξ(c). Additionally, suppose that Assumption 3 holds. Then

the same results of Theorems 1 and 2 when ξ 6= 0 hold by replacing ξ with ξ(c).

For subsampling inference, we impose the following assumption.

Assumption 5. The conditional quantile density function ∂F−1
U (τ |x)/∂τ exists and satisfies the

tail equivalence relationship

∂F−1
U (τ |x)

∂τ
∼
∂F−1

U∗
(τ/Γ(x)|x)

∂τ
as τ ↓ 0,

uniformly over x ∈ B, where ∂F−1
U∗

(τ |x)/∂τ is regularly varying at 0 with exponent ξ(x) + 1

on B. We also assume that there exists a function h such that h is continuous on B and

limτ↓0

∣∣∣∣∂F−1
U∗ (τ |x)/∂τ

τ−1F−1
U∗ (τ |x)

∣∣∣∣ = h(x) ∈ (0,∞) on B.

For the case of the location-scale model Y = ϕ(X)+γ(X)U∗ with FU∗(u|x) = (1+ |u|)−1/ξ(x)

for u ≤ 0 and some positive continuous function ξ(x), we have F−1
U∗

(τ |x) = 1 − τ−ξ(x) and the

function h(x) in the above assumption coincides with ξ(x).

Under the above assumptions, the validity of our subsampling inference for the case of varying

extreme value indices is established as follows. The proof requires the convergence rate of our

estimator under the intermediate order quantile asymptotics, which can be obtained by adapting

the argument in Ichimura, Otsu and Altonji (2019) for the case of varying extreme value indices.

Theorem 4. Let t ∈ (0, 1). As n→∞, it holds b→∞, b/n→ 0, δn → 0, δb → 0, αb → 0, and

αb/αn →∞. Under Assumptions 1’, 2, 3, 5, and condition (b) in Section 1.3 of this supplement,

the same result of Theorem 1 in the main paper holds.

2.2 Varying coefficient extremal quantile regression

We can also extend our analysis in Section 2 to varying coefficient extremal quantile regression

models. Let Z be a random variable in RdZ , and fix cZ ∈ RdZ . We consider the following varying

coefficient model

Y = X ′β(Z) + γ(X,Z)V∗, (2.2)
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where β(·) = (β0(·), . . . , βd(·))′ are unknown functions of Z, γ(·) is a scale function, and V∗ is an

error term that is independent of (X,Z) and is in the domain of minimum attraction with ξ 6= 0.

This specification allows the effect of each element of X to depend on Z in a nonparametric way.

As well as nesting nonparametric additive models (Hastie and Tibshirani, 1993), this varying

coefficient model is also a generalization of the partially linear model (Robinson, 1988). Also in

the literature of regression quantiles, many papers studied the varying coefficient model and its

variants for fixed quantiles; see Lee (2003) for partially linear models, Horowitz and Lee (2005)

for additive models, Honda (2004) and Kim (2007) for varying coefficient models, among others.

In this subsection, we contribute to this literature by considering varying coefficient models in

the context of extremal quantiles.

In this setup, the assumptions in Section 2 are adapted as follows. Let BZ denote some fixed

closed ball around cZ .

Assumption 6. (i) {Yi, Xi, Zi} is a sample from (Y,X,Z) ∈ R × Rd+1 × RdZ . The random

variable (X,Z) has the distribution function F (x, z) with compactly supported conditional

distribution function FX(x|z) for z ∈ BZ . Z has the density function fZ(z) that is positive

and continuous on a neighborhood around BZ .

(ii) E[XX ′|Z = cZ ] is positive definite. Without loss of generality, let E[X|Z = cZ ] =

(1, 0, . . . , 0)′.

Assumption 7. (i) There exists a measurable function β(·) = (β0(·), . . . , βd(·))′ : BZ → Rd+1

such that the conditional quantile function of V = Y − X ′β(Z) given X = x and Z =

z satisfies that F−1
V (v|x, z)/F−1

V∗
(v) ∼ γ(x, z), as v ↓ 0, uniformly over {(x, z) : x ∈

S(X|z), z ∈ BZ} for some positive continuous function γ(x, z) on {(x, z) : x ∈ S(X|z), u ∈

BZ}, where S(X|z) is the support of FX(x|z). The quantile function F−1
V∗

of V∗ has end-

points F−1
V∗

(0) = 0 or F−1
V∗

(0) = −∞. The distribution function FV∗(v) exhibits Pareto-type

tails with extreme value index ξ 6= 0.

(ii) Let δn be a sequence of positive constants with δn → 0 as n→∞. Assume that nδdZn αn →

k ∈ (0,∞) and anδn → 0 as n→∞, where

(1) an = −1/F−1
V∗

(1/nδdZn ) when ξ > 0,

(2) an = 1/F−1
V∗

(1/nδdZn ) when ξ < 0.

Assumption 8. (i) Dvγ(x, z) = ∂γ(x, z)/∂zv exists and is continuous at each z ∈ BZ , x ∈

S(X|z) and for each v = 1, . . . , dZ .
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(ii) Dvβj(z) exists and is γ-Hölder continuous at each z ∈ BZ and for each v = 1, . . . , dZ .

Assumption 9. The kernel function K is a bounded Lipschitz function with support [−1, 1]dZ

and second order.

Under these assumptions, we consider the following point process

N̂1(·) =

n∑
i=1

I
{(

an(Vi +X ′i(β(Zi)− β(cZ))), Xi, (Zi − cZ)/δn
)
∈ ·
}
,

as a random element of Mp(S1), where

S1 =


[−∞, 0)× S(X|cZ)× RdZ if ξ > 0,

[0,∞)× S(X|cZ)× RdZ if ξ < 0.

Let Γ(x, z) = γ(x, z)1/ξ.

Proposition 2 (Weak convergence of N̂1). Under Assumptions 6-9 and Assumption 2 by replac-

ing Ui and Wi with Vi and W̃i = (Vi, X
′
i, Z
′
i)
′, respectively, it holds N̂1

d→ N1 in Mp(S1), where

N1 is a Poisson point process in Mp(S1) with mean measure

m(dv, dx, dw) =


Γ(x, cZ)fZ(cZ)1

ξ (−v)−1/ξ−1dvdFX(x|cZ)dw if ξ > 0,

−Γ(x, cZ)fZ(cZ)1
ξ v
−1/ξ−1dvdFX(x|cZ)dw if ξ < 0.

Now we focus on the model (2.2) and assume that γ(x, z) = x′σ(z) where σ(z) = (σ0(z), . . . , σd(z))
′

and X ′σ(z) > 0 almost surely for z ∈ BZ . We also assume that Dvσj(z) exists and is γ-Hölder

continuous at each z ∈ BZ and v = 1, . . . , dZ . In this case, the conditional quantile can be

written as

F−1
Y (αn|x, cZ) = x′(β(cZ) + σ(cZ)F−1

V∗
(αn)) = x′βαn(cZ),

where βαn(cZ) = β(cZ) + σ(cZ)F−1
V∗

(αn).

Based on this expression, we consider the following quantile regression problem:

β̂αn(cZ) = arg min
β∈Rd+1

n∑
i=1

K(δ−1
n (Zi − cZ))ρα(Yi −X ′iβ). (2.3)

Let ∆n = an(β̂
(αn)
n (cZ)−β(cZ)). The asymptotic distribution of the quantile regression estimator

(2.3) for the varying coefficient model (2.2) is obtained as follows. Since the proofs of Theorems

5 and 6 are analogous to those of Theorems 1 and 2, they are omitted.

16



Theorem 5 (Asymptotic distribution of ∆n). Under Assumptions 6-9 and Assumption 2 by

replacing Ui and Wi with Vi and W̃i = (Vi, X
′
i, Z
′
i)
′, respectively, it holds ∆n

d→ ∆∞(k) provided

∆∞(k) is defined as a random vector in Rd+1 which uniquely minimizes the objective function

Q∞(∆, k) = −kE[X|Z = cZ ]′∆−
∫
S1
K(w) min{v − x′∆, 0}dN1(v, x, w)

= −kE[X|Z = cZ ]′∆−
∞∑
i=1

K(Wi) min{Ji −X ′i∆, 0},

with respect to ∆ ∈ Q1, where Q1 = Rd+1for ξ ≤ 0 and Q1 ∈ {a ∈ Rd+1 : maxx∈S(X|cZ) x
′a ≤ 0}

for ξ > 0,

Ji = −sgn(ξ) ·
(

Gi
2dZΓ(Xi, cZ)fZ(cZ)

)−ξ
,

Gi =

i∑
j=1

ηj ,

{ηj} = i.i.d. sequence of Exp(1) random variables,

{X1,i} = i.i.d. sequence of random variables with the distribution function FX(·|cZ),

{Wi} = i.i.d. sequence of uniform random variables on [−1, 1]dZ .

For inference, we can consider the self-normalized version of ∆n:

Θn =
β̂αn(cZ)− βαn(cZ)∑n

i=1Kn,iX ′i(β̂mαn(cZ)− β̂αn(cZ))/
∑n

i=1Kn,i

,

where Kn,i = K(δ−1
n (Zi − cZ)).

Theorem 6 (Asymptotic distribution of Θn). Under Assumptions 6-9 and Assumption 2 by

replacing Ui and Wi with Vi and W̃i = (Vi, X
′
i, Z
′
i)
′, respectively, it holds

Θn
d→ ∆∞(k) + sgn(ξ) · k−ξσ(cZ)

E[X|Z = cZ ]′(∆∞(mk)−∆∞(k))
=: Θ∞(k,m),

for any k(m− 1) > d+ 1, provided ∆∞(k) and ∆∞(mk) are uniquely defined random vectors in

Rd+1.

Remark 8. It is possible to show the uniqueness of ∆∞(k) and continuity of the distribution

function of Θ∞(k,m) under Assumption 6 (ii) by a similar argument to ∆∞(k) and Θ∞(k,m). It

also would be possible to develop subsampling based inference for each component of Θ∞(k,m),

i.e., we could consistently estimate the quantile of each component of Θ∞(k,m) by following the
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procedure in Section 2.3 and by using the analogue of Θn computed from each subsample. To

this end, we need to derive the convergence rate of our varying coefficient estimator under the

intermediate order quantile asymptotics, which is beyond the scope of this paper.
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A Proofs

A.1 Proof of Proposition 1

We first consider the case where {Ui, Xi}ni=1 is i.i.d. Let E be finite unions and intersections of

bounded open rectangles in S. From the definition of the mean measure m in (1.8),

m(S) =


Γ(c)fX(c)

∫
(u,w)∈S e

ududw if ξ = 0,

Γ(c)fX(c)
∫

(u,w)∈S
1
ξ (−u)−1/ξ−1dudw if ξ > 0,

Γ(c)fX(c)
∫

(u,w)∈S −
1
ξu
−1/ξ−1dudw if ξ < 0,

for S ∈ E . Resnick (1987, Proposition 3.22) implies that if

lim
n→∞

E[N̂(S)] = E[N(S)] = m(S), (A.1)

lim
n→∞

P(N̂(S) = 0) = P(N(S) = 0) = exp(−m(S)), (A.2)

for all S ∈ E , then it holds N̂ d→ N in Mp(S). Thus it is sufficient for the conclusion to show

(A.1) and (A.2). Hereafter we present a proof for the case of ξ < 0. Proofs for other cases are

similar.

First, we show (A.1). For this it is sufficient to consider E of the form S = ∪Mj=1Sj , where

Sj = (uj , ūj)×SWj for j = 1, . . . ,M are nonoverlapping and nonempty subsets of S, and SWj are

intersections of open bounded rectangles of Rd. Observe that

E[N̂(S)] =

M∑
j=1

E[N̂(Sj)] =

M∑
j=1

nE
[
I{(anUn,i, δ−1

n (Xi − c)) ∈ (uj , ūj)× SWj }
]

=
M∑
j=1

nE
[
E
[
I{(anUn,i, δ−1

n (Xi − c)) ∈ (uj , ūj)× SWj }|Xi

]]
=

M∑
j=1

nE
[
E
[
I{an(Ui +Rϕ(Xi, δn)) ∈ (uj , ūj)}|Xi

]
I{δ−1

n (Xi − c) ∈ SWj }
]

=
M∑
j=1

nδdn

∫
w∈SWj

(
FU

(
ūj + o(1)

an

∣∣∣∣ c+ δnw

)
− FU

(
uj + o(1)

an

∣∣∣∣ c+ δnw

))
fX(c+ δnw)dw

=: In,

where the first equality follows from the definition of {Sj}Mj=1 (nonoverlapping), the second equal-

ity follows from the stationarity of {Ui, Xi}ni=1, the third equality follows from the law of iterated

expectation, the fourth equality follows from the definition of Un,i and property of conditional
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expectation, and the fifth equality follows from the change of variables and Assumption 1 (iv)

(implying (1.4)). Also, observe that

FU

(
u+o(1)

an

∣∣∣ c+ δnw
)

FU∗

(
u+o(1)

an

) × nδdnFU∗
(
u+ o(1)

an

)

=
FU
(

(u+ o(1))F−1
U∗

(1/(nδdn))
∣∣ c+ δnw

)
FU∗

(
(u+ o(1))F−1

U∗
(1/(nδdn))

) FU∗
(
(u+ o(1))F−1

U∗
(1/(nδdn))

)
FU∗(F

−1
U∗

(1/(nδdn)))

= (Γ(c+ δnw) + o(1))× (u−1/ξ + o(1))→ Γ(c)u−1/ξ, as n→∞,

uniformly over w ∈ [−1, 1]d, where the first equality follows from Assumption 1 (iii) and the

second equality follows from the tail properties of U (given X) and U∗ (Assumption 1 (ii)).

Therefore, (A.1) is obtained as

In =
M∑
j=1

Γ(c+ δnw){ū−1/ξ
j − u−1/ξ

j }
∫
w∈SWj

fX(c+ δnw)dw + o(1)→ m(S). (A.3)

Next, we show (A.2). The same argument to derive (A.3) yields P
(
(anUn,i, δ

−1
n (Xi − c)) ∈ S

)
∼

m(S)
n for any S ∈ E . Thus, an application of Meyer (1973) yields (A.2). Therefore, we obtain

N̂
d→ N for the case of ξ < 0 with i.i.d. observations.

We can also show the same result under geometric strong mixing condition (Assumption 2)

as an application of Meyer’s (1973) theorem and by observing that

n

[n/m]∑
i=2

P
(
(anUn,1, δ

−1
n (X1 − c)) ∈ S, (anUn,i, δ−1

n (Xi − c)) ∈ S
)

≤ O
(
n[n/m]P((anUn,1, δ

−1
n (X1 − c)) ∈ S)2

)
= O(n[n/m]δ2d

n α
2
n) = O(1/m). (A.4)

A.2 Proof of Theorem 1

Step 1: Overall sketch

Let

Kn,i = K(δ−1
n (Xi − c)), X̃n,i = (1, δ−1

n (Xi − c)′)′, ι = (θ, β′)′, ι̂αn = (θ̂αn(c), β̂αn(c)′)′,

∆ = an(ι− ιϕ,n − bne1), ιϕ,n =

(
ϕ(c), δn

∂ϕ(c)

∂x′

)′
, e1 = (1, 0, . . . , 0)′ ∈ Rd+1.
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The objective function for ι̂αn is written as

n∑
i=1

Kn,iραn(Yi − X̃ ′n,iι)

=

n∑
i=1

Kn,i[αn − I{Yi − X̃ ′n,iι ≤ 0}](Yi − X̃ ′n,iι)

= a−1
n

n∑
i=1

Kn,i[αn − I{an(Ui +Rϕ(Xi, δn)− bn)− X̃ ′n,ian(ι− ιϕ,n − bne1) ≤ 0}]

×{an(Ui +Rϕ(Xi, δn)− bn)− X̃ ′n,ian(ι− ιϕ,n − bne1)}

= a−1
n

n∑
i=1

Kn,i[αn − I{anUn,i − X̃ ′n,i∆ ≤ 0}]{anUn,i − X̃ ′n,i∆}.

Thus, we have ∆n ∈ arg min∆∈Rd+1 Qn(∆), where

Qn(∆) = −αn
n∑
i=1

Kn,iX̃
′
n,i∆−

n∑
i=1

Kn,iI{anUn,i ≤ X̃ ′n,i∆}{anUn,i − X̃ ′n,i∆}

=: −Q1n(∆)−Q2n(∆).

We also note that subtracting
∑n

i=1Kn,iI{anUn,i ≤ −δ}(−δ−anUn,i) for some δ > 0 from Qn(∆)

does not affect optimization for ∆, and denote the new objective function:

Q̃n(∆) := −Q1n(∆) + Q̃2n(∆) := −Q1n(∆) +

n∑
i=1

Kn,i`δ(anUn,i, X̃n,i; ∆),

where

`δ(u,w; ∆) = I{u ≤ w̃′∆}(w̃′∆− u)− I{u ≤ −δ}(−δ − u).

Since K(w)`δ(u,w; ∆) is a sum of convex function in ∆, Q̃n(∆) and Qn(∆) are also convex in

∆. Observe that

−Q1n(∆) = −k + o(1)

nδdn

n∑
i=1

Kn,iX̃
′
n,i∆

p→ −kfX(c)

{∫
[−1,1]d

K(w)w̃dw

}′
∆,

as n→∞ due to the law of large numbers. Moreover, by the definition of N̂ , it holds

Q2n(∆) =

n∑
i=1

Kn,i min{anUn,i − X̃ ′n,i∆, 0} =

∫
S
K(w) min{u− w̃′∆, 0}dN̂(u,w),

Q̃2n(∆) =

∫
S
K(w)`δ(u,w; ∆)dN̂(u,w).

Based on these notations, the convexity lemma (Geyer, 1996, and Knight, 1999) says that if
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(a) Q̃n (or Qn): Rd+1 → R̄ is convex and lower semicontinuous in ∆ for each n ∈ N,

(b) Q̃n (or Qn) marginally converges to a limit function Q̃∞ : Rd+1 → R̄ defined by

Q̃∞(∆, k) = −kfX(c)

{∫
[−1,1]d

K(w)w̃dw

}′
∆ +

∫
S
K(w)`δ(u,w; ∆)dN(u,w), (A.5)

over a dense subset of Rd+1,

(c) Q̃n (or Qn) is finite over a non-empty open set D0 ⊂ Rd+1,

(d) Q̃∞ is uniquely minimized over Rd+1 at a random vector ∆∞(k),

then we obtain the conclusion, ∆n
d→ ∆∞(k).

Condition (a) is satisfied from the definitions of Qn(∆) and Q̃n(∆). Condition (d) is assumed.

Condition (c) is satisfied by setting D0 as (i) any non-empty open bounded subset of Rd+1 (for

ξ ≤ 0) or (ii) any non-empty open bounded subset of ∆N := {∆ ∈ Rd+1 : maxw∈[−1,1]d w̃
′∆ < 0}.

Thus, it remains to check Condition (b) (in Step 2). Finally in Step 3, we verify the second

equality in (1.9).

Step 2: Check Condition (b)

Note that Q̃∞(·, k) in (A.5) is the marginal weak limit of {Q̃n(·)} if and only if (Q̃n(∆j), j =

1, . . . , L)
d→ (Q̃∞(∆j , k), j = 1, . . . , L) for any finite collection {∆1, . . . ,∆L}. Let T : Mp(S) →

RL be a mapping defined by

N 7→
(∫

S
K(w)`δ(u,w; ∆1)dN(u,w), . . . ,

∫
S
K(w)`δ(u,w; ∆L)dN(u,w)

)′
.

Also define

κ = max
w∈[−1,1]d,∆∈{∆1,...,∆L}

w̃′∆, κ0 = max
w∈[−1,1]d

w̃′∆.

Based on this notation, we check Condition (b) for three cases: (i) ξ = 0, (ii) ξ < 0, and (iii)

ξ > 0.

Case (i) ξ = 0. Note that the map (u,w) 7→ K(w)`δ(u,w; ∆) is continuous on S = [−∞,∞)×

Rd and vanishes outside the compact set [−∞,max(κ,−δ)] × [−1, 1]d with κ < ∞. Then since

Mp(S) is equipped with the vague topology, this implies that T : Mp(S)→ RL is continuous, and

the continuous mapping theorem combined with N̂ d→ N (Proposition 1) yields Condition (b).

Case (ii) ξ < 0. Note that the map (u,w) 7→ K(w) min{u − w̃′∆, 0} is continuous on

S = [0,∞)×Rd and vanishes outside the compact set [0,max(κ, 0)]× [−1, 1]d with κ <∞. Then
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T : Mp(S) → RL is continuous, and the continuous mapping theorem combined with N̂
d→ N

(Proposition 1) yields Condition (b).

Case (iii) ξ > 0. Let ∆P := {∆ ∈ Rd+1 : maxw∈[−1,1]d w̃
′∆ > 0}. Since ∆N ∪∆P is dense in

Rd+1, it is enough to show that Q̃n(∆)
d→ Q̃∞(∆, k) for each ∆ ∈ ∆N , and Q̃n(∆)

p→ +∞ with

Q̃∞(∆, k) = +∞ for each ∆ ∈ ∆P .

(I) Pick any ∆ ∈ ∆N . The map (u,w) 7→ K(w)`δ(u,w; ∆) is continuous on S = [−∞, 0)×Rd

and vanishes outside the set S = [−∞,max(κ,−δ)] × [−1, 1]d, where κ < 0 on ∆N . Note that

S is compact since κ < 0 if ∆ ∈ ∆N . Thus, the continuous mapping theorem combined with

N̂
d→ N (Proposition 1) yields Q̃n(∆)

d→ Q̃∞(∆, k).

(II) Now pick ∆ ∈ ∆P . Note that `δ(u,w; ∆) = min{w̃′∆−u, 0} ≥ 0 for any u ≥ −δ. Hence,

for any u ≥ −δ and ε > 0, it holds

`δ(u,w; ∆) = I{−δ ≤ u ≤ w̃′∆}(w̃′∆− u) ≥ I{−δ ≤ u ≤ 0, w̃′∆ ≥ ε}ε. (A.6)

This implies

Q̃n(∆) ≥ −Q1n(∆) + V1,n + V2,n,

where

V1,n :=
n∑
i=1

K(δ−1
n (Xi − c))`δ(anUn,i, X̃n,i; ∆)I{anUn,i ≤ −δ},

V2,n :=
n∑
i=1

K(δ−1
n (Xi − c))I{−δ/an ≤ Un,i ≤ 0, X̃ ′n,i∆ ≥ ε}ε.

Observe that V1,n = Op(1) by the argument in (I). For V2,n, note that for each ε > 0,

P(−δ/an ≤ Un,1 ≤ 0, X̃ ′n,1∆ ≥ ε, δ−1
n (X1 − c) ∈ [−1, 1]d)

=

∫
I
{
−δ/an ≤ u+Rϕ(x, δn) ≤ 0, (1, δ−1

n (x− c)′)∆ ≥ ε, δ−1
n (x− c) ∈ [−1, 1]d

}
dFU (u|x)fX(x)dx

= δdn

∫
I{−δ/an ≤ u+Rϕ(c+ δnw, δn) ≤ 0}

×I{w̃′∆ ≥ ε, w ∈ [−1, 1]d}dFU (u|c+ δnw)fX(c+ δnw)dw

& δdn

∫
I{−δ/an + δ1+γ

n ≤ u ≤ −δ1+γ
n , w̃′∆ ≥ ε, w ∈ [−1, 1]d}dFU (u|c+ δnw)dw

& δdn,

where the second equality follows from the change of variables, the first inequality follows from

(1.4) and infx∈B fX(x) > 0 (by Assumption 1 (i) and (iv)), and the second inequality follows
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from infx∈B P(U ≤ 0|X = x) > 0 (by Assumption 1 (ii)). Therefore, V2,n & Op(nδ
d
n)

p→ +∞ in

R̄. Combining these results, we obtain Q̃n(∆)
p→ +∞ for any ∆ ∈ ∆P . Therefore, Condition

(b) is satisfied when ξ > 0.

Step 3: Alternative representation of Q∞(∆, k) (2nd equality in (1.9))

From Resnick (1987, Proposition 3.8), the point process defined by {Gi,Wi} corresponds to the

Poisson point process with mean measure m̃(du, dw) = du× 2−ddw on

S̃ =


[−∞,∞)× [−1, 1]d if ξ = 0,

[−∞, 0)× [−1, 1]d if ξ > 0,

[0,∞)× [−1, 1]d if ξ < 0.

Now consider the mapping J : S̃→ S̃ defined by

(u,w) 7→



(
log
(

u
2dΓ(c)fX(c)

)
, w
)

if ξ = 0,(
−
(

u
2dΓ(c)fX(c)

)−ξ
, w

)
if ξ > 0,((

u
2dΓ(c)fX(c)

)−ξ
, w

)
if ξ < 0.

Then from Resnick (1987, Proposition 3.7), the point process defined by {J(Gi,Wi)} corresponds

to the Poisson point process with mean measure

m̃(J−1(du, dw)) =


2dΓ(c)fX(c)× eudu× 2−ddw if ξ = 0,

2dΓ(c)fX(c)×
(

1
ξ (−u)−1/ξ−1

)
du× 2−ddw if ξ > 0,

2dΓ(c)fX(c)×
(
−1
ξu
−1/ξ−1

)
du× 2−ddw if ξ < 0.

This implies that m̃(J−1(·)) = m(·) on σ(S̃). Recall that the kernel function K is compactly

supported on [−1, 1]d. Then we can restrict the state space S of N on S̃. Therefore, Q∞(∆, k)

can be represented as

Q∞(∆, k) = −kfX(c)

{∫
[−1,1]d

K(w)w̃dw

}′
∆−

∞∑
i=1

K(Wi) min{Ji − W̃ ′i∆, 0}.
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A.3 Proof of Theorem 2

A.3.1 Proof of (1.11)

Note that θαn(x) = F−1
Y (αn|x) = ϕ(x) + F−1

U (αn|x) by Assumption 1 (ii). When ξ 6= 0,

Assumption 1 (ii)-(iii) imply

an(θαn(c)− ϕ(c)) = anF
−1
U (αn|c)

= −sgn(ξ) · (Γ(c)ξ + o(1))
F−1
U∗

(αn)

F−1
U∗

(1/(nδdn))
→ −sgn(ξ) · k−ξΓ(c)ξ. (A.7)

When ξ = 0, we can similarly show that

an(θαn(c)− ϕ(c)− bn)→ − log Γ(c) + log k. (A.8)

Indeed, similarly to Step 1 in the proof of Chernozhukov (2005, Lemma 9.1), we can show that

for m ∈ (0, 1) ∪ (1,∞),
F−1
U (αn|c)− F−1

U∗
(αn)

F−1
U∗

(mαn)− F−1
U∗

(αn)
→ log(1/Γ(c))

logm
. (A.9)

Furthermore, the following result is well known in extreme value theory (cf. de Haan (1984) or

Chapters 1 and 2 in Resnick (1987)): When ξ = 0, for m, ` ∈ (0,∞),

F−1
U∗

(`mτ)− F−1
U∗

(`τ)

a(F−1
U∗

(τ))
→ logm, as τ ↓ 0, (A.10)

where a(·) is the auxiliary function defined in Assumption 1 (ii) (see also Lemma 9.2 (iv) and the

proof of Chernozhukov (2005, Lemma 9.1)). Therefore, (A.9) and (A.10) yield (A.8) as follows:

an(θαn(c)− ϕ(c)− bn) =
F−1
U (αn|c)− F−1

U∗
(1/nδdn)

a(F−1
U∗

(1/nδdn))

∼
F−1
U (k/nδdn|c)− F−1

U∗
(k/nδdn)

a(F−1
U∗

(1/nδdn))
+
F−1
U∗

(αn)− F−1
U∗

(1/nδdn)

a(F−1
U∗

(1/nδdn))

∼
F−1
U∗

(ek/nδn)− F−1
U∗

(k/nδdn)

a(F−1
U∗

(1/nδdn))
· log(1/Γ(c))

log e
+
F−1
U∗

(k/nδdn)− F−1
U∗

(1/nδdn)

a(F−1
U∗

(1/nδdn))

→ log e · − log Γ(c)

log e
+ log k = − log Γ(c) + log k. (A.11)

Theorem 1 in the supplement implies

∆n
d→ ∆∞(k). (A.12)
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Therefore, (1.11) is obtained as

an(θ̂αn(c)− θαn(c))

= an(θ̂αn(c)− ϕ(c)− bn)− an(θαn(c)− ϕ(c)− bn)

d→ ∆∞,0(k) + g(c; ξ), (A.13)

where the convergence of the first term follows from (A.12) and the convergence of the second

term follows from (A.7) and (A.8). Therefore, we obtain the conclusion.

A.3.2 Proof of (1.12)

Define ∆m
n and Qmn (∆) by replacing αn with mαn in ∆n and Qn(∆), respectively. A similar

argument to the proof of Theorem 1 in the supplement yields the weak convergence of

(∆m
n ,∆n) ∈ arg min

(∆m′,∆′)′∈R2(d+1)
{Qmn (∆m) +Qn(∆)},

to the limiting distribution

(∆∞(mk),∆∞(k)) = arg min
(∆m′,∆′)′∈R2(d+1)

{Q∞(∆m,mk) +Q∞(∆, k)}. (A.14)

Here the random vectors ∆∞(mk) and ∆∞(k) are uniquely determined since the objective func-

tion Qmn (∆m) +Qn(∆) is a sum of objective functions in the proof of Theorem 1. From (A.14),

the continuous mapping theorem yields

an(θ̂mαn(c)− θ̂αn(c))

= an{(θ̂mαn(c)− ϕ(c)− bn)− (θ̂αn(c)− ϕ(c)− bn)}
d→ ∆∞,0(mk)−∆∞,0(k). (A.15)

By (A.13) and (A.15), we obtain the conclusion as

Θn =
an(θ̂αn(c)− θαn(c))

an(θ̂mαn(c)− θ̂αn(c))

d→ ∆∞,0(k) + g(c; ξ)

∆∞,0(mk)−∆∞,0(k)
.

A.4 Proof of Theorem 3

The proof is analogous to the ones for Theorems 1 (in the supplement) and 2.
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A.5 Proof of Theorem 4

The proof is analogous to the one for Theorem 1 in the main paper.
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