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Abstract

The human language system exhibits systematic compositionality: the ability to

produce and understand a potentially infinite number of novel linguistic expressions

by systematically combining known atomic components. This type of systematic

compositionality is central to the human ability to learn from limited data and make

compositional generalizations. There has been a long-standing debate whether this sys-

tematicity can be captured by connectionist architectures. Recent years have witnessed

a resurgence of interest in this problem with the revival of neural networks. In particular,

neural sequence-to-sequence models, as a powerful workhorse of natural language pro-

cessing (NLP), have been successfully applied to various NLP tasks. However, despite

widespread adoption, there is mounting evidence that neural sequence-to-sequence

models are deficient in compositional generalization.

In this thesis, we investigate the problem of how to improve compositional gener-

alization of neural sequence-to-sequence models in pursuit of building systems with

human-like systematic compositionality. First, assuming that connectionist architectures

are fundamentally incapable of acquiring this systematic compositionality which is, in

contrast, an inherent part of symbolic (e.g., grammar-based) systems, we attempt to

marry symbolic structure with neural models to combine the best of both worlds. We

present a two-stage decoding strategy to augment neural sequence-to-sequence models

(connectionist architecture) with semantic tagging (symbolic structure), in which an

input utterance is tagged with semantic symbols representing the meaning of individual

words. Experimental results demonstrate that our framework improves compositional

generation for semantic parsing across datasets and model architectures.

Secondly, despite superior compositional generalization, it has not yet been em-

pirically established that symbolic models are appropriate for handling the noise and

complexity of natural language, as evidenced by their sub-par performance in practical

applications. Therefore, tackling compositional generalization via pure architectural

modification has the potential to maintain the robustness and flexibility of neural models

required to process real language. We thus attempt to devise a more competent neural

model than standard sequence-to-sequence models for compositional generalization.

To approach this problem, we design Dangle, a new neural network architecture for

sequence-to-sequence modeling to learn more disentangled representations for better

compositional generalization compared to the Transformer model. Empirical results

on both semantic parsing and machine translation verify that our proposal leads to
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more disentangled representations and better generalization, outperforming competitive

baselines and more specialized techniques

Previously, we assess the proposed model on synthetic benchmarks to isolate com-

positional generalization. However, real-world settings involve both complex natural

language and compositional generalization. We thus move on to apply disentangled

sequence-to-sequence models to real-world compositional generalization challenges.

Before doing so, we first propose a methodology for identifying compositional patterns

in real-world data and create a new machine translation benchmark that better represents

practical generalization requirements than existing artificial challenges.

Then we introduce two key modifications to Dangle which encourage learning

more disentangled representations more efficiently. We evaluate the proposed model on

existing real-world benchmarks and the benchmark created in this thesis. Experimental

results demonstrate that our new architecture achieves better generalization performance

across tasks and datasets and is adept at handling real-world challenges.
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Chapter 1

Introduction

Human language exhibits systematic compositionality; human language speakers are

able to produce and understand a potentially infinite number of novel linguistic ex-

pressions by systematically combining known atomic components (Chomsky, 2014;

Montague, 1970). This type of compositionality is central to the ability of humans to

learn from very limited data and make generalizations, which has been recently de-

scribed as systematic or compositional generalization (Lake and Baroni, 2018; Kim and

Linzen, 2020). For example, if a person knows the meaning of the utterance “A boy ate

the cake on the table in a house” and the verb “like”, it is natural for them to understand

the utterance “A boy likes the cake on the table in a house” when they encounter it for

the first time. There has been a long-standing debate about whether this systematicity

can be captured by connectionist architectures (Fodor and Pylyshyn, 1988; Marcus,

2003). For instance, Fodor and Pylyshyn (1988) have argued that failure to capture

systematicity is a major deficiency of neural architectures, contrasting human learners

who can readily apply known grammatical rules to arbitrary novel word combinations

to individually memorizing an exponential number of sentences.

Recent years have witnessed a resurgence of interest in this problem as neural

models achieved tremendous success in natural language processing (Otter et al., 2018).

In particular, neural sequence-to-sequence models (e.g., the Transformer architecture,

Vaswani et al. (2017) ) have been successfully applied to various NLP tasks ranging

from semantic parsing (Dong and Lapata, 2016; Jia and Liang, 2016; Scholak et al.,

2021), to machine translation (Sutskever et al., 2014; Bahdanau et al., 2015; Vaswani

et al., 2017) and summarization (See et al., 2017; Liu et al., 2022). This general

architecture treats different natural language tasks as sequence transduction where a

sequence of source symbols is first encoded into continuous vectors, and then from these
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2 Chapter 1. Introduction

source encodings, a decoder autoregressively generates a sequence of target symbols.

However, despite widespread adoption, there is mounting evidence that neural sequence-

to-sequence models are deficient in compositional generalization (Finegan-Dollak et al.,

2018; Kim and Linzen, 2020; Keysers et al., 2020; Li et al., 2021). In the context of

semantic parsing, Finegan-Dollak et al. (2018) showed that despite being effective at

handling questions with different surface forms but the same meaning, modern neural

semantic parsers fail to generalize compositionally to questions with unseen meaning

representations. Kim and Linzen (2020) revealed that neural sequence-to-sequence

models are more adept at lexical generalization (i.e., novel combination of familiar

syntactic structure and words) than structural generalization (i.e., novel combination

of familiar syntactic components). Li et al. (2021) demonstrated that neural machine

translation models fail badly at translating synthesized novel phrases, although they

perform remarkably well under traditional metrics.

How to enable human-like compositional generalization with neural networks has

both scientific and practical value. Firstly, it might help us answer the long-standing

question of whether connectionist architectures alone are capable of achieving human-

level systematicity. Secondly, when deploying neural models in the wild, they often

suffer from distribution shifts where the training distribution differs from the test dis-

tribution (Koh et al., 2021). Because of their ubiquity in real-world machine learning

applications, neural models with better compositional generalization would be prac-

tically useful, especially for handling distribution shifts pertaining to novel or rare

long-tail compositional patterns.

In this thesis, we investigate the problem of how to improve compositional gen-

eralization of neural sequence-to-sequence models from different perspectives. First,

assuming that connectionist architectures are fundamentally incapable of systematic

compositionality which is, in contrast, an inherent part of symbolic (e.g., grammar-

based) systems, we attempt to address the question how we can combine symbolic

structure with neural models to obtain the best of both worlds. In Chapter 3, We

present a two-stage decoding strategy to augment neural sequence-to-sequence models

(connectionist architecture) with semantic tagging (symbolic structure), in which an

input utterance is tagged with semantic symbols representing the meaning of individual

words. The proposed approach improves compositional generalization while preserving

as much of the flexibility and generality of neural models as possible.

Secondly, despite superior compositional generalization, it has not yet been em-

pirically established that symbolic models are appropriate for handling the noise and
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complexity of natural language, as evidenced by their sub-par performance in practical

applications. Therefore, tackling compositional generalization via pure architectural

modifications possesses some special benefits. It has the potential to maintain the

robustness and flexibility of neural models required to process real language. We thus

assume that the inadequacy in compositional generalization is (at least partly) due to

the architectural design of neural models. Then, a natural question is how we can devise

a more competent neural model for compositional generalization. To approach this

problem, we propose a new neural architecture for sequence-to-sequence modeling,

which learns more disentangled representations for better compositional generalization.

We first assess the proposed model on synthetic benchmarks designed with com-

positional generalization in mind. However, real-world settings involve both complex

natural language and compositional generalization. To investigate real-world com-

positional generalization, we propose a methodology for identifying compositional

patterns in real-world data and create a new machine translation benchmark that better

represents practical generalization requirements than existing artificial challenges. We

hope that the introduced methodology and benchmark will advance the development of

new modeling and learning solutions for real-world compositional generalization.

Finally, to apply the proposed sequence-to-sequence model to real-world composi-

tional generalization challenges, we further improve the model by introducing two key

modifications to encourage learning more disentangled representations more efficiently.

Experimental results demonstrate that our new architecture achieves better generaliza-

tion performance across real-world tasks and datasets and is particularly effective for

handling long-tail compositional patterns.

We briefly describe our modeling solutions and benchmark below.

1.1 Thesis Overview

1.1.1 Semantic Tagging

In contrast to neural sequence-to-sequence models, compositional generalization poses

no problem for traditional semantic parsers (Zettlemoyer and Collins, 2005, 2007;

Wong and Mooney, 2006, 2007; Liang et al., 2013) which typically use a (probabilistic)

grammar; the latter defines the meaning of individual words and phrases and how to

best combine them in order to obtain meaning representations for entire utterances.

Motivated by the superiority of classical grammar-based semantic parsers in composi-
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tional generalization (Shaw et al., 2021), we propose to incorporate symbolic structure

into neural models by adopting a two-stage decoding strategy with semantic tags as

the intermediate layer. Specifically, given a natural language utterance, each word is

first labeled with a semantic symbol representing its meaning via a tagger. Semantic

symbols are atomic units like predicates (in λ-calculus) or columns (in SQL). The tagger

explicitly aligns semantic symbols to tokens or token spans in the utterance. Moreover,

the prediction of each semantic symbol is conditionally independent of other symbols

in the logical form. This is reminiscent of lexicons in classical semantic parsers, but a

major difference is that our tagger is a neural model which considers information based

on the entire utterance and can generalize to new words. Then a sequence-to-sequence

model takes the utterance and predicted tag sequence, which serves as a soft constraint

on the output space, and generates the final meaning representation. Our proposal

preserves much of the flexibility and generality of sequence-to-sequence models while

inheriting some symbolic characteristics via lexicon-style alignments and two-stage

information processing.

We evaluate the proposed approach on three semantic parsing benchmarks covering

different semantic formalisms (λ-calculus and SQL) with LSTM- and Transformer-

based sequence-to-sequence models (Dong and Lapata, 2016, 2018; Vaswani et al.,

2017). Experimental results demonstrate that our framework improves compositional

generation for semantic parsing across datasets and model architectures.

1.1.2 Disentangled Neural Sequence-to-Sequence Model

Ideally, neural networks that model the meaning of sentences should represent different

semantic factors of a sentence (e.g., lexical meaning and semantic relations) in a

disentangled way. Neural units modeling a particular semantic factor should be relatively

invariant to changes in other factors. For example, the relation between “table” and

“house” in the sentence “A boy ate the cake on the table in a house (beside the tree).”

and its representation should not be affected by whether there is a PP (beside the

tree) modifying “house”. However, in a standard neural encoder (e.g., transformer-

based), semantic factors tend to be entangled so that changes in one factor affect

the representation of others. To remedy this, we proposed Dangle, a Disentangled

sequence-to-sequence model which allows us to learn disentangled representations

for compositional generalization. Specifically, at each time step of the decoding, the

proposed model adaptively re-encodes the source input by conditioning the source



1.1. Thesis Overview 5

representations on the newly decoded target context. We therefore build specialized

representations which make it easier for the encoder to exploit relevant-only information

for each prediction. In this way, we can effectively disentangle semantic factors involved

in different prediction steps.

As a proof-of-concept, we perform experiments on two synthetic semantic parsing

benchmarks COGS (Kim and Linzen, 2020), CFQ (Keysers et al., 2020), and one

semi-synthetic machine translation benchmark CoGnition (Li et al., 2021) to isolate

compositional generalization. Empirical results verify that Dangle leads to more disen-

tangled representations and better generalization, outperforming competitive baselines

and more specialized techniques.

1.1.3 A Real-world Compositional Generalization Challenge

As a general architecture innovation, Dangle has the potential of improving compo-

sitional generalization across a wide range of real-world tasks. However, it is still

unclear whether Dangle is effective in real-world settings involving both complex natu-

ral language and compositional generalization. Before studying this problem, we first

create ReaCT, a new REAl-world dataset for Compositional generalization in machine

Translation to better emulate a real-world setting.

We develop a new methodology for detecting examples representative of compo-

sitional generalization in naturally occurring text. Given a training and test set, our

methodology consists of three steps: (a) we discard examples from the test set that

contain out-of-vocabulary (OOV) or rare words (in relation to training) to exclude novel

atoms which are out of scope for compositional generalization; (b) we then measure how

compositional a certain test example is with respect to a training corpus; we introduce a

metric which allows us to identify a candidate pool of highly compositional examples;

(c) using uncertainty estimation (Malinin and Gales, 2021) , we further select examples

from the pool that are both compositional in terms of surface form and challenging in

terms of generalization difficulty. Based on this methodology, we create a machine

translation benchmark using IWSLT 2014 German→ English dataset as our training

corpus and the WMT 2014 German→ English shared task as our test corpus.

1.1.4 Real-world Disentangled Sequence-to-Sequence Learning

Finally, to apply disentangled sequence-to-sequence models to real-world settings, we

devise R-Dangle, an extension of Dangle tailored for real-world languages tasks
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Specifically, we present two key modifications to Dangle which encourage learning

more disentangled representations more efficiently. The need to perform re-encoding

at each time step substantially affects Dangle’s training time and memory footprint. It

becomes prohibitively expensive on datasets with long target sequences, e.g., programs

with 400+ tokens in datasets like SMCalFlow (Andreas et al., 2020). To alleviate

this problem, instead of adaptively re-encoding at each time step, we only re-encode

periodically, at some interval. Our second modification concerns disentangling the

representations of source keys and values, based on which the encoder in Dangle (and

also Transformers) passes source information to the decoder. Instead of computing keys

and values using shared source encodings, we disassociate their representations: we

encode source values once and re-encode keys periodically.

We evaluate the proposed model on existing benchmarks (Andreas et al., 2020; Li

et al., 2021) and the benchmark created in this thesis. Experimental results demonstrate

that our new architecture achieves better generalization performance across tasks and

datasets. In particular, performing translation with R-Dangle on a diverse corpus of

1.3M WMT examples indicates that it is particularly effective for handling long-tail

compositional patterns.

The contributions of the thesis include:

• We proposed a two-stage decoding strategy to augment neural sequence-to-

sequence models (connectionist architecture) with semantic tagging (symbolic

structure) (Zheng and Lapata, 2021). Experimental results demonstrate that

our framework improves compositional generation for semantic parsing across

semantic formalisms and model architectures.

• We designed Dangle, a new neural network architecture for sequence-to-sequence

modeling to learn more disentangled representations for better compositional

generalization compared to the Transformer model (Zheng and Lapata, 2022).

• We proposed a new methodology for identifying compositional patterns in real-

world data and created a new real-world machine translation benchmark that

better represents practical compositional generalization requirements than existing

artificial challenges (Zheng and Lapata, 2023).

• We extended Dangle and applied it to real-world benchmarks. Experimental

results demonstrate that our new architecture achieves superior generalization per-

formance across tasks and datasets and is adept at handling real-world challenges
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(Zheng and Lapata, 2023).

1.2 Thesis Outline

The remainder of this thesis is organized as follows:

• Chapter 2 first presents background knowledge on neural sequence-to-sequence

models and the theoretical interpretation of compositional generalization. We

then discuss the empirical evaluation of compositional generalization with neural

sequence-to-sequence models and summarize the main challenges. Finally, we

describe existing and concurrent attempts to overcome these challenges.

• Chapter 3 presents a new decoding framework that preserves much of the flexibil-

ity and generality of sequence-to-sequence models while featuring lexicon-style

alignments and two-stage information processing. Experimental results on three

semantic parsing datasets show that the proposed approach consistently improves

compositional generalization across model architectures, domains, and semantic

formalisms.

• Chapter 4 presents a new network architecture (Dangle) for sequence-to-sequence

modeling. We first demonstrate via a toy experiment that one of the reasons

hindering compositional generalization of neural models relates to representa-

tions being entangled. Then we propose an extension to sequence-to-sequence

models which encourages disentanglement by adaptively re-encoding (at each

time step) the source input. Experimental results on semantic parsing and ma-

chine translation empirically show that our proposal delivers more disentangled

representations and better generalization.

• Chapter 5 presents a new real-world dataset for compositional generalization

in machine translation. To better emulate a real-world setting, we propose a

methodology for identifying compositional patterns in real data and create a new

machine translation benchmark based on this methodology.

• Chapter 6 presents an extension of Dangle tailored for real-world compositional

generalization challenges. We introduce two key modifications to Dangle to

encourage learning more disentangled representations more efficiently. Experi-

mental results on existing benchmarks and the newly created one demonstrate
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that our new architecture achieves better generalization performance across tasks

and datasets.

• Chapter 7 concludes the thesis and discusses directions for future work



Chapter 2

Background

As discussed in Chapter 1, neural sequence-to-sequence models are a powerful workhorse

of natural language processing. In this chapter, we first present background knowledge

of neural sequence-to-sequence models, which have evolved from pure RNN-based

architectures (Cho et al., 2014; Sutskever et al., 2014) to attention-based architectures

(Vaswani et al., 2017). Then we describe the theoretical foundation of compositional

generalization and the empirical evaluation of compositional generalization for neural

sequence-to-sequence models. We summarize the main challenges in building neural

networks with human-like compositional generalization. Finally, we describe existing

attempts to overcome these challenges.

2.1 Neural Sequence-to-Sequence Models

Neural sequence-to-sequence models have been successfully applied to various NLP

tasks ranging from semantic parsing (Dong and Lapata, 2016; Jia and Liang, 2016;

Scholak et al., 2021), to machine translation (Sutskever et al., 2014; Bahdanau et al.,

2015; Vaswani et al., 2017) and summarization (See et al., 2017; Liu et al., 2022). This

general paradigm treats different natural language tasks as sequence transduction where

a sequence of source symbols X = [x1,x2, ...,xn] is first encoded into continuous vectors

via an encoder, and then a decoder takes these source encodings and autoregressively

generates a sequence of target symbols Y = [y1,y2, ...,ym]. Specifically, the input

sequence X is first embedded into a sequence of continuous vectors X = [x1,x2, ...,xn],

which are then fed to an encoder that fuses context information at each location,

performs non-linear transformation, and outputs a sequence of contextualized vector

representations H = [h1,h2, ...,hn] as source encodings. On the target side, the decoder

9
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autoregressively takes the symbol generated at the preceding time step yt−1, likewise

embeds it into a vector yt−1, calculates the hidden state, and outputs the probability

over the next word p(yt |X ,Y<t).

Depending on how the encoder and decoder are instantiated, three popular architec-

tures have been proposed over time.

2.1.1 Recurrent Neural Networks

Pioneering the application of neural networks to machine translation, the encoder-

decoder paradigm based on recurrent neural networks (RNNs) was originally pro-

posed to model the conditional probability p(yt |X ,Y<t) (Cho et al., 2014; Sutskever

et al., 2014). In this framework, an RNN encoder reads the sequence of vectors

X = [x1,x2, ...,xn] one by one, and outputs a fixed-length context vector v:

ht = f (ht−1,xt) (2.1)

and

v = q({h1, · · · ,hn}) , (2.2)

where f and q are some nonlinear functions.

Then another RNN decoder is used to compute the conditional probability with the

initial hidden state set to the representation v:

st = f (st−1,yt−1) (2.3)

and

p(yt |X ,Y<t) = g(yt−1,st ,v) (2.4)

where g is a nonlinear, potentially multi-layered, function that outputs the probability

of yt , and st is the hidden state of the decoder RNN.

Sutskever et al. (2014) used a long short-term memory (LSTM) unit (Hochreiter

and Schmidhuber, 1997) as f and q({h1, · · · ,hT}) = hT . At each time step, the LSTM

unit recurrently absorbs an input vector xt , updates its internal memory ct and outputs a
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hidden state ht :

ft =σ
(
Wf xt +U f ht−1 +Vf ct−1 +b f

)
(2.5)

it =σ(Wixt +Uiht−1 +Vict−1 +bi) (2.6)

c̃t = tanh(Wcxt +Ucht−1 +bc) (2.7)

ct =ftct−1 + it c̃t (2.8)

ot =σ(Woxt +Uoht−1 +Voct +bo) (2.9)

ht =ot tanh(ct) (2.10)

where Vf , Vi and Vo are diagonal matrices; Wf , Wi, Wc, Wo and U f , Ui, Uc, Uo are

parameter matrices; b f , bi, bc, bo are parameter vectors. The memory cell ct is updated

by partially forgetting the existing memory ct−1 and adding a new memory content c̃t .

The extent to which the existing memory is forgotten is modulated by a forget gate

ft , and the degree to which the new memory content is added to the memory cell is

modulated by an input gate it . The output ht is obtained via an output gate ot modulating

the exposure of memory content.

2.1.2 Recurrent Neural Networks with Attention

Instead of computing a fixed context vector v for passing the source information to the

target side, Bahdanau et al. (2015) proposed the attention mechanism to compute a

distinct context vector vi at each time step.

First, they used a bidirectional RNN to calculate a sequence of forward hidden states

and a sequence of backward hidden states. The two hidden states at each location are

concatenated to obtain the source encodings [h1,h2, ...,hn]. Then, the context vector vi

is computed as a weighted sum of these vectors:

vi =
n

∑
j=1

αi jh j. (2.11)

The weight αi j of h j is computed by

αi j =
exp
(
ei j
)

∑
Tx
k=1 exp(eik)

, (2.12)

where

ei j = a(si−1,h j)

is an attention component that scores how much the output at position i attends to the

inputs around position j. The score is based on the RNN hidden state si−1 and the
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j-th hidden state h j. The attention component is parametrized as a feedforward neural

network.

Finally, the RNN decoder uses both the previously generated input and the newly

extracted context vector to update its hidden state:

si = f (si−1, [yi−1 ;vi]).

where [· ; ·] denotes vector concatenation, and each conditional probability is computed

as:

p(yt |X ,Y<t) = g(yt−1,st ,vi) (2.13)

2.1.3 The Transformer Architecture

The Transformer model was proposed to enable higher parallelization and compute

efficiency, as well as to facilitate learning long-range dependencies (Vaswani et al.,

2017). It also adopts an encoder-decoder architecture where the encoder and decoder

are both composed of a stack of multiple layers. In the encoder, each layer has two

sub-layers. The first is a multi-head self-attention layer, and the second is a position-

wise fully connected feed-forward network. Similarly, the decoder also uses the two

sub-layers and an additional cross-attention layer that accesses the source information

by performing attention over the output of the encoder stack.

Multi-Head Scaled Dot-Product Attention Extending the original attention mecha-

nism, Vaswani et al. (2017) proposed multi-head scaled dot-product attention. Given

queries and keys of dimension dk, and values of dimension dv. The output corresponding

to each query is computed as a weighted sum of the values where the weights are the

softmax of dot products of the query with all keys, each divided by
√

dk.

Attention(Q,K,V ) = softmax(
QKT
√

dk
)V (2.14)

where Q, K and V are query, key and value matrices obtained by respectively packing

together keys, values, and queries.

Instead of performing a single attention function, the model first linearly projects

the queries, keys and values to multiple versions of queries, keys and values (multiple

heads) with different weight matrices, and then performs attention for each head in

parallel:
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MultiHead(Q,K,V ) = Concat(head1, ...,headh)W O (2.15)

where headi = Attention(QW Q
i ,KW K

i ,VWV
i ) (2.16)

where W Q
i , W K

i , and WV
i are the projection weight matrices for the i-th head. Note that

the outputs of multiple attention heads are concatenated and projected to the final output

with the weight matrix W O. Compared to a single attention head, multi-head attention

allows the model to attend to information from different representation subspaces at

different positions.

The multi-head scaled dot-product attention is used in three different ways: the

self-attention in the encoder, the self-attention in the decoder and the cross-attention in

the decoder.

Position-wise Feed-Forward Networks In addition to the attention component, the

Transformer model also adopts a position-wise feed-forward network to transform the

input at each position separately. The transformation operation is nonlinear, consisting

of two linear projections with a ReLU activation in between:

FFN(x) = max(0,xW1 +b1)W2 +b2 (2.17)

where x is the input vector and W1, W2, b1 and b2 are parameter matrices or vectors.

2.2 Theoretical Foundations of Compositional General-

ization

Before discussing how to build a system that mimics the compositional abilities of

human language speakers, we first examine how humans acquire and process natural

language utterances and describe the distinguishing properties of the human language

system.

Systematicity Human language capacities are systematic:

“The ability to produce/understand some sentences is intrinsically con-
nected to the ability to produce/understand certain others .”(Fodor and
Pylyshyn, 1988)
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For example, the two sentences “John loves the girl.” and “The girl loves John.” are

systematically related and we do not find native speakers in English who know how

to utter and understand one and do not know how to utter and understand the other.

This contrasts with learning a language by individually memorizing an exponential

number of sentences in an atomic way. Since humans are able to understand and

produce sentences they have never seen before, they must use some systematic process

to recompose parts and rules that they know innately or have internalized before rather

than memorizing an enormous phrase book.

Productivity Productivity is a concept closely related to systematicity, but with spe-

cial emphasis on the unbounded nature of language. It is the ability to produce and

understand a potentially infinite number of linguistic expressions by finite means (Chom-

sky, 2014). Chomsky argued that the knowledge underlying linguistic competence is

generative — i.e., one’s knowledge of language supports an unbounded productive

capacity. Nevertheless, it has not been empirically established that anyone does or

could utter or understand more than a finite number of sentence types. As a result, it

is unsurprisingly more controversial than systematicity. These de facto constraints on

performance are often argued to be the consequence of the limited memory and lifespan

of humans.

Compositionality How humans infer meanings from language symbols has been

a long-standing research question, having received much attention in linguistics and

philosophy. One of the most well-known theories is the principle of compositionality

(Partee, 1995): “The meaning of a compound expression is a function of the meanings

of the parts and of the way they are syntactically combined”. Depending on how local

the composition operations are, there exist two interpretations of compositionality of

language (Dankers et al., 2022). In the local (or strong) interpretation, the meaning of

an expression depends only on the meanings of its parts, regardless of their internal

structure and the external context (Jacobson, 2002). This implies that the meaning

of any semantically coherent phrase is conditionally independent of the rest of the

sentence. This is reminiscent of the type of compositionality observed in arithmetic: the

meaning of (2 + 3) is always 5, independent of the context it occurs in. However, natural

language is much more complex and nuanced than that. In some cases, the processing

of meaning requires a more global approach. For example, polysemous words need to

be disambiguated from broader context information (e.g., in the sentence “these dates
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are perfect for our dish/wedding”, “dates” could refer to the fruit or days of a month);

in anaphora, a pronoun’s interpretation depends on its antecedent (e.g., in the sentence

“Jimmy has a child who influenced him”, “him” refers to Jimmy ). The existence of

these frequent linguistic phenomena that cannot be resolved locally leads to the global

(or weak) form of compositionality: the meaning of an expression depends on its parts

in a compositional way, but the composition function and the parts’ meaning could

take into account global syntactic structures and semantic information (Szabó, 2012;

Garcı́a-Ramı́rez, 2019; Dankers et al., 2022). In addition, language also contains various

idiomatic expressions whose meanings are not derived from their parts at all (e.g., “to

kick the bucket” has the informal meaning “to die”). An idiom’s figurative meaning is

established by convention and typically considered non-compositional (Swinney and

Cutler, 1979).

Based on the various theoretical interpretations described above, we summarize

three distinguishing features humans exhibit concerning their underlying compositional

capability:

1. Humans can process language expressions that they have never seen before by

systematically generalizing to novel compositions of known components. In

classical symbolic systems, these known components are assumed to be grammar

or lexical rules that are acquired or known innately.

2. The human language system is, to some extent, locally (strongly) compositional

in that the meaning of a semantically coherent word/phrase is conditionally

independent of the rest of the sentence.

3. There also exist many exceptions to the purely local compositionality property of

language where the processing of meaning requires a more global approach.

2.3 Empirical Evaluation

There has been a long-standing debate about whether these features of compositionality

can be captured by connectionist architectures (Fodor and Pylyshyn, 1988; Marcus,

2003; Lake and Baroni, 2018). Recent years have witnessed a resurgence of interest

thanks to the tremendous success of neural networks at various natural language under-

standing and generation tasks (Sutskever et al., 2014; Vaswani et al., 2017; Dong and

Lapata, 2016; Jia and Liang, 2016). To empirically evaluate compositional generaliza-

tion in neural networks, previous work has translated theoretical concepts related to
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compositionality of language into behavioral tests and proposed a variety of benchmarks

that allow for measuring how models learn and generalize compositionally. In this

thesis, we consider two classical NLP tasks: semantic parsing and machine translation.

Compositional Type In a broad sense, any test sentence that a model has not seen

during training requires some sort of compositional generalization. However, different

types of compositional generalization have been found to pose varying challenges to

neural sequence-to-sequence models. On a high level, they can be divided into three

categories: paraphrase generalization, lexical generalization, and structural generaliza-

tion. Examples of each category are shown in Table 2.1. Given the set of all utterances

Dx and the set of their meaning representations Dy in a training set:

• in paraphrase generalization, the test example involves an unseen X(X /∈ Dx)

and a seen Y (Y ∈ Dy). Some word/phrase in a sentence is replaced with its

paraphrase with the same meaning, so the context that the original phrase occurs

in is recomposed with its paraphrase. The overall meaning of the new sentence

remains unchanged.

• in lexical generalization, the test example involves both an unseen X(X /∈Dx) and

an unseen Y (Y /∈ Dy). A word with a different meaning substitutes the original

word in a familiar syntactic structure, but the resulting combination has not been

seen before. The overall meaning of the new sentence is changed.

• in structural generalization, the test example likewise involves both a unseen

X(X /∈ Dx) and a unseen Y (Y /∈ Dy). Different from lexical generalization, famil-

iar syntactic components (such as nominal and prepositional phrases) give rise to

novel combinations, leading to a new sentence with a novel syntactic structure.

The overall meaning of the sentence is also changed.

Note that in reality, an example could be a complex hybrid of the above three types

of generalization.

Traditional semantic parsing benchmarks such as GeoQuery (Zelle and Mooney,

1996) and ATIS (Price, 1990) commonly adopt question-based splits where many

examples in the test set have the same query templates (induced by anonymizing named

entities) as examples in the training (see Chapter 3 for more details). As a result, many

of the queries in the test set are seen in training and parsers are being evaluated for their

ability to generalize to questions with different surface forms but the same meaning.
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Training Set

A boy ate the cake on the table in a house.

*cake(x4); *table(x7); boy(x1) AND eat.agent(x2, x1) AND eat.theme(x2, x4)

AND cake.nmod.on(x4, x7) AND table.nmod.in(x7, x10) AND house(x10)

Test Set ( Paraphrase Generalization )

A boy had the cake on the table in a house.

*cake(x4); *table(x7); boy(x1) AND like.agent(x2, x1) AND like.theme(x2, x4)

AND cake.nmod.on(x4, x7) AND table.nmod.in(x7, x10) AND house(x10)

Test Set (Lexical Generalization)

A boy likes the cake on the table in a house.

*cake(x4); *table(x7); boy(x1) AND like.agent(x2, x1) AND like.theme(x2, x4)

AND cake.nmod.on(x4, x7) AND table.nmod.in(x7, x10) AND house(x10)

Test Set (Structural Generalization)

A boy ate the cake on the table in a house beside the tree.

*cake(x4); *table(x7); *tree(x13); boy(x1) AND eat.agent(x2, x1) AND

eat.theme(x2, x4) AND cake.nmod.on(x4, x7) AND table.nmod.in(x7, x10)

AND house(x10) AND house.nmod.beside(x10, x13)

Table 2.1: Examples in the style of COGS (Kim and Linzen, 2020) showcasing para-

phrase, lexical and structural generalization. In paraphrase generalization, the word

”ate” is replaced with its paraphrase the word ”had”. The overall meaning of the test

example remains the same as the training example. In lexical generalization, a familiar

word (e.g., like) is attested in a familiar syntactic structure but the resulting combination

has not been seen before. In structural generalization, familiar syntactic components

give rise to novel combinations (e.g., only prepositional phrases with nesting depth 2

have been previously seen whereas new combinations show nestings of depth 3 or 4).
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Dataset Task
# examples avg. length

train valid test source target

GeoQuery (SQL) Semantic Parsing 536 159 182 7.4 33.0

GeoQuery (λ-calculus) Semantic Parsing 598 – 282 7.4 19.0

ATIS (SQL) Semantic Parsing 4,812 121 347 10.4 136.3

ATIS (λ-calculus) Semantic Parsing 4,472 451 451 10.4 28.1

COGS Semantic Parsing 24,155 3,000 21,000 8.5 54.0

CFQ Semantic Parsing 95,743 11,968 11,968 13.8 29.0

CoGnition Machine Translation 196,246 10,000 10,800 9.8 10.0

SMCalFlow-CS Semantic Parsing 25,404 1,324 1,325 11.7 63.5

ReaCT Machine Translation 162,239 7,283 3000 24.1 23.5

Table 2.2: Statistics on semantic parsing and machine translation benchmarks used in

this thesis. For semantic parsing, the average length is computed based on tokens split

by space; for machine translation, it is based on BPE tokens.

Therefore, they largely fall into paraphrase generalization. In contrast, when adopting a

query-based split, the structure of the queries in the test set is unobserved at training

time, and parsers therefore must generalize to questions with different meanings, thus

demanding more lexical and structural generalization. Finegan-Dollak et al. (2018)

showed that despite being very effective on the question-based split, the performance

of neural sequence-to-sequence models drastically drops when shifting to query-based

splits.

COGS is a synthetic semantic parsing dataset designed for testing compositional

generalization (Kim and Linzen, 2020). The utterances and paired logical forms are

generated using a probabilistic context-free grammar. In addition to the standard

splits of Train/Dev/Test, COGS provides a generalization (Gen) set that covers five

types of compositional generalization: interpreting novel combinations of primitives

and grammatical roles, verb argument structure alternation, and sensitivity to verb

class, interpreting novel combinations of modified phrases and grammatical roles,

generalizing phrases nesting to unseen depths. The former three fall into lexical

generalization while the latter two require structural generalization. They found that

structural generalization is much more challenging to neural sequence-to-sequence

models than lexical generalization.

CoGnition is a relatively realistic compositional generalization dataset targeting

machine translation (Li et al., 2021). This benchmark includes 216K English-Chinese

sentence pairs; source sentences were taken from the Story Cloze Test and ROCStories
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Corpora (Mostafazadeh et al., 2016, 2017) and target sentences were constructed by

post-editing the output of a machine translation engine. It also contains a synthetic test

set to quantify and analyze compositional generalization of neural MT models. This test

set includes 10,800 sentence pairs, which were constructed by embedding synthesized

novel compounds into training sentence templates. These compounds are synthesized

by composing atomic words with 12 syntactic patterns (corresponding to NP, VP, and

PP). Depending on the chosen syntactic patterns, the constructed test examples could

involve lexical or structural generalization. Li et al. (2021) demonstrated that neural

machine translation models fail badly in translating synthesized novel phrases, although

they perform remarkably well under traditional metrics.

Compositional Level The taxonomy described above concentrates on a coarse-

grained and discrete categorization of compositional generalization. However, within

each category, examples can vary greatly in terms of the level of composition and

the difficulty of generalization. For example, substituting one word in a sentence is

a far less drastic change than constructing a completely new sentence using the same

syntactic structure but an entirely different set of words. Intuitively, the latter involves

a more complex composition and raises a higher requirement for the compositional

generalization ability of models. We review benchmarks that explicitly consider this

dimension of compositional generalization below.

CFQ is a large-scale semantic parsing benchmark specifically designed to measure

compositional generalization (Keysers et al., 2020). It contains 239,357 compositional

Freebase questions paired with SPARQL queries. CFQ was automatically generated

from a set of rules in a way that precisely tracks which rules (atoms) and rule com-

binations (compounds) were used to generate each example. Using this information,

the authors generate three splits with maximum compound divergence (MCD) while

guaranteeing a small atom divergence between train and test sets. In this dataset, atoms

refer to entities and relations and compounds to combinations thereof. Large compound

divergence indicates the test set is compositionally different than the train set to a large

extent. Experiments on this dataset show that that neural sequence-to-sequence models

fail to generalize compositionally. More interestingly, there is a surprisingly strong

negative correlation between compound divergence and accuracy.

In the original MCD splits, the notion of atoms and compounds depends on the

rule-based procedure that generates the source and target examples. It cannot be

directly applied to existing non-synthetic datasets. (Shaw et al., 2021) introduced Target
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Maximum Compound Divergence (TMCD) splits for GeoQuery and Spider (Yu et al.,

2018b) in which they define the notion of atoms and compounds based only on the

target representations and apply the same procedure to create splits with maximum

compound divergence.

In Chapter 5, we present ReaCT, a real-world machine translation benchmark

for compositional generalization. The generalization test set is obtained by detecting

compositional patterns in relation to an existing training set from a large and diverse

pool of candidates. Specifically, we use the IWSLT 2014 German→ English dataset

as our training corpus and the WMT 2014 German→ English shared task as our test

corpus and detect from the pool of WMT instances those that exemplify compositional

generalization with respect to IWSLT. In the creation process, a metric based on n-gram

matching is adopted to assess how compositional a certain example is with respect to a

training corpus. This procedure allows us to identify naturally occurring compositional

patterns in the hope of better representing practical generalization requirements than

artificially constructed challenges. Likewise, the compositional test set constitutes a

formidable challenge for neural sequence-to-sequence models, whose performance on

it lags behind the in-distribution performance by a margin of about 20 BLEU points.

Local vs Global Compositionality Synthetic benchmarks almost exclusively con-

sider the local interpretation of compositionality where the meaning of an expression is

computed in a completely local manner, independent of its external context. Natural

benchmarks like GeoQuery and ATIS only cover a small fraction of natural language

and are likewise shown to largely adhere to this strong local principle (Jia and Liang,

2016). As discussed in the previous section, local compositionality cannot represent the

full complexity of natural language.

Dankers et al. (2022) introduce an over-generalization machine translation test to

investigate whether neural MT models can translate idioms properly. For instance, the

idiom “raining cats and dogs” should be considered globally to arrive at its meaning

“heavy rainfall”. A local approach would yield an overly literal, non-sensical translation

while a global process is required to produce the correct translation. Aside from the

test, they call for developing benchmarks using real data to evaluate compositionality

on natural language, where composing meaning is not as straightforward as doing the

math.

There are a few benchmarks which, despite not explicitly targeting the concept

of global compositionality, use noisy and complex real data and try to simulate real-
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Dataset Split Compositional Type Highly Compositional Real Language

GeoQuery
ATIS

QUESTION Paraphrase 7 4

QUERY Lexical | Structural 7 4

COGS – Lexical | Structural 7 7

CFQ – Lexical | Structural 4 7

CoGnition – Lexical | Structural 7 7

SMCalFlow-CS – Lexical | Structural 7 4

ReaCT – Lexical | Structural 4 4

Table 2.3: A summary of compositional generalization attributes for semantic parsing

and machine translation benchmarks. QUESTION means question-based splits; QUERY

means query-based splits.

world generalization challenges. One example is ReaCT, the benchmark developed in

this thesis. Another one is SMCalFlow-CS (Andreas et al., 2020; Yin et al., 2021), a

large-scale semantic parsing dataset for task-oriented dialogue, featuring real-world

human-generated utterances about calendar management. Yin et al. (2021) proposed

a compositional skills split of SMCalFlow (SMCalFlow-CS) that contains single-turn

sentences from one of two domains related to creating calendar events (e.g., Set up a

meeting with Adam) or querying an org chart (e.g., Who are in Adam’s team? ), paired

with LISP programs. The training set consists of samples from single domains while

the test set contains compositions thereof (e.g., create a meeting with Adam and his

team). Since zero-shot compositional generalization is highly non-trivial due to novel

language patterns and program structures, they consider a few-shot learning scenario,

where a small number of cross-domain examples are included in the training set. The

benchmarks described above and their attributes are summarized in Table 2.3.

Challenges Now we distill the main challenges in building neural network models

with human-like compositional generalization:

1. Structural generalization is typically harder than lexical generalization while both

of them are generally much more difficult than paraphrase generalization.

2. Examples of increasing compositional levels regarding a training set become

increasingly challenging to neural sequence-to-sequence models trained on the

set.

3. The central part of the challenge lies in how to simultaneously capture local com-

positionality that allows for reliable generalization, and global compositionality

that is essential for handling the full complexity of natural language.
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Dataset Example

GeoQuery
Utterance : What state borders New York ?

λ-calculus : ( lambda $0 e ( and ( state:t $0 ) ( next to:t $0

New York ) ) )

SQL : SELECT border FROM border info WHERE state name =

"New York"

ATIS
Utterance : Show me the flights arriving at DAL

λ-calculus : ( lambda $0 e ( and ( flight $0 ) ( to $0 DAL ) ) )

SQL : SELECT DISTINCT flight alias.flight id FROM

airport AS airport alias , flight AS flight alias

WHERE airport alias.airport code = "DAL" AND

flight alias.to airport = airport alias.airport code

COGS
Utterance : A boy ate the cake on the table in a house.

logical form : *cake(x4); *table(x7); boy(x1) AND eat.agent(x2, x1)

AND eat.theme(x2, x4) AND cake.nmod.on(x4, x7) AND

table.nmod.in(x7, x10) AND house(x10)

CFQ
Utterance : What sibling of M0 was M1’ s parent?

SPARQL query : SELECT DISTINCT ?x0 WHERE { ?x0

ns:people.person.child M1 . ?x0

ns:people.person.sibling M0 . FILTER ( ?x0 !=

M0 ) }

CoGnition
Utterance (en) : That winter, Taylor barely moved from the fire.

Utterance (zh) : 那年冬天，泰勒几乎没有从大火中挪动过。

SMCalFlow-CS
Utterance : Create an event called ” Dentist Appointment ” for December 18 th

at 2 : 00 pm .

Lispress : ( Yield :output ( CreateCommitEventWrapper

:event ( CreatePreflightEventWrapper

:constraint ( Constraint[Event] :start ( ?= (

DateAtTimeWithDefaults :date ( MD :day # ( Number

18 ) :month # ( Month " DECEMBER " ) ) :time (

NumberPM :number # ( Number 2 ) ) ) ) :subject ( ?=

# ( String " Dentist Appointment " ) ) ) ) ) )

ReaCT
Utterance (en) : both setting of tasks must successfully be mastered under supervi-

sion .

Utterance (de) : beide aufgabenstellungen müssen unter aufsicht erfolgreich

bewältigt werden .

Table 2.4: Examples for semantic parsing and machine translation datasets used in this

thesis.



2.4. Existing Approaches 23

2.4 Existing Approaches

Existing approaches attempt to advance compositional generalization following three

directions, namely devising new models, introducing novel objective functions, and

resorting to data augmentation.

Models Traditional statistical semantic parsers (Zelle and Mooney, 1996; Ge and

Mooney, 2005; Zettlemoyer and Collins, 2005; Wong and Mooney, 2006, 2007; Zettle-

moyer and Collins, 2007) typically consist of three key components: a grammar, a

trainable scoring model, and a parsing algorithm. The grammar determines the space of

derivations from utterances to logical forms, and the model together with the parsing

algorithm finds the highest-scoring derivation. These components jointly define the

meaning of individual words and phrases and how to best combine them in order to

obtain meaning representations for entire utterances.

Some more recent work inherits this general paradigm. For example, Herzig and

Berant (2021) make use of a neural network to instantiate the scoring model and develop

a span-based parser which predicts a tree over an input utterance, explicitly encoding

how partial programs compose over spans in the input. Shaw et al. (2021) propose a hy-

brid model that combines a high-precision grammar-based approach with a pre-trained

sequence-to-sequence model, aiming to handle both compositional generalization and

natural language variation. Akyurek and Andreas (2021) incorporate a lexicon into

sequence models to disentangle lexical phenomena from syntactic ones. Guo et al.

(2020) devise a hierarchical poset decoding architecture that consists of three compo-

nents: sketch prediction, primitive prediction, and traversal path prediction. All these

approaches try to explicitly instill compositional bias into neural models by combining

them with task-specific grammars, rules, or procedures. In contrast, Bergen et al. (2021)

propose a new neural model – Edge Transformers in the hope of implicitly inducing

more compositional solutions. The two major innovations in this architecture are to

associate vector states with every pair of input nodes and employ a novel triangular

attention mechanism to simulate the process of unification in logic programming.

Objective Functions Oren et al. (2020) and Yin et al. (2021) augment the standard

cross entropy training objective with attention supervision loss. They first exploit

off-the-shelf alignment tools (such as the FastAlign word alignment package (Dyer

et al., 2013)) to induce word- or span-level correspondences between the input and
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output sequence. Then these alignments are used to guide the learning of the attention

mechanism of neural sequence-to-sequence models. Conklin et al. (2021) apply meta-

learning to directly optimize for out-of-distribution generalization. They sub-sample

existing training data to construct pairs of tasks for meta-learning in an effort to inhibit

memorization and encourage generalization.

Data Augmentation Another line of work resorts to various data augmentation strate-

gies as a way of injecting a compositional inductive bias into neural models. In this

paradigm, heuristics, grammars, or generative models are employed to synthesize par-

allel examples to augment the existing training data (Jia and Liang, 2016; Andreas,

2020; Akyürek et al., 2021; Wang et al., 2021; Qiu et al., 2022a). Jia and Liang (2016)

induce a high-precision synchronous context-free grammar from training data, which

allows for sampling new datapoints involving recombination of existing known pat-

terns. Andreas (2020) do away with task-specific grammar engineering in favor of a

simple rule-based data augmentation protocol. Under this protocol, synthetic training

examples are constructed by taking real training examples and replacing fragments with

other fragments that appear in at least one similar environment. Akyürek et al. (2021)

develop a learning-based data augmentation approach. They first use a prototype-based

generative model to generate new recombinations of training examples and then another

sampling procedure to select more of useful examples. Wang et al. (2021) generate syn-

thetic examples for semantic parsing by first generating new programs (e.g., SQL) via a

PCFG, and then using a BART-based translation model to map programs to utterances.

Qiu et al. (2022a) learn a quasi-synchronous context-free grammar and the parameters

of the corresponding probabilistic model from training data. Synthetic examples are

sampled from this probabilistic generative model to augment the training data for a

sequence-to-sequence model.

Hybrid Methods Pre-trained large language models have demonstrated tremendous

success in a wide variety of NLP tasks (Peters et al., 2018; Devlin et al., 2019; Raffel

et al., 2020; Lewis et al., 2020; Brown et al., 2020). They have been proven effective

in learning syntactic and semantic information as well as world knowledge from unan-

notated text corpora, which could be transferred to and benefit downstream tasks. It is

thus no surprise that researchers have explored the potential of large language models

for compositional generalization. Oren et al. (2020) found that using fixed ELMO and

BERT embeddings improves compositional generalization, but performance on out-of-
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distribution compositions is still substantially lower than in-distribution performance.

Furrer et al. (2020) investigate the performance of finetuning varying sizes of T5 models

on CFQ. While pretraining leads to significant improvements in performance compared

to non-pre-trained counterparts, the biggest T5 model with 11B parameters still lags

behind specialized architectures. Qiu et al. (2022b) evaluate the impact of the model

scale of large language models on a suite of compositional generalization challenges

in semantic parsing. They observe generally flat or negative scaling curves with full

fine-tuning and more positive scaling curves with prompt tuning. In some cases, the

latter can match or surpass the former’s performance for larger models. In general,

fine-tuning smaller models obtains optimal or near-optimal performance.

Most existing approaches rely on task and domain-specific grammars or rules to

devise new models, training objectives, and data augmentation protocols. Therefore,

improved compositional generalization on a particular dataset or task (most work focus

on semantic parsing) often comes with compromised flexibility and generality and does

not translate to gains in other datasets or tasks. This is in contrast with human language

speakers who are competent generalists and can perform many language tasks. On the

other hand, approaches based on pre-trained language models are general paradigms

but show limited success in those compositional generalization challenges. In this

thesis, we aim to advance compositional generalization while maximally maintaining

the flexibility and generality of neural networks.

2.5 Summary

In this chapter, we introduced different variants of neural sequence-to-sequence models,

one of the most widely adopted neural networks in natural language processing. We then

described the theoretical foundations of compositional generalization and the empirical

evaluation of compositional generalization for neural sequence-to-sequence models.

Empirical evaluation reveals that the main deficiencies of current sequence-to-sequence

models lie in highly compositional lexical and structural generalization. Existing

attempts to overcome these challenges often come with compromised flexibility and

generality and thus could not be appropriate for modeling noisy and complex natural

language. It thus motivated our work to advance compositional generalization while

maximally maintaining the flexibility and generality of neural networks.
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Semantic Tagging

In this chapter, we focus on compositional generalization in semantic parsing, as the

majority of existing approaches and benchmarks concerning this problem are based

on semantic parsing (Finegan-Dollak et al., 2018; Keysers et al., 2020; Shaw et al.,

2021). Motivated by traditional semantic parsing where compositionality is explicitly

taken into account by symbolic grammars (Zettlemoyer and Collins, 2005, 2007; Wong

and Mooney, 2006, 2007; Liang et al., 2013), we investigate the problem of how to

incorporate symbolic structure into neural semantic parsers for better compositional

generalization. In this chapter, we propose a new decoding framework that preserves

much of the flexibility and generality of sequence-to-sequence models while featuring

lexicon-style alignments and two-stage information processing. Specifically, we decom-

pose decoding into two phases where an input utterance is first tagged with semantic

symbols representing the meaning of individual words, and then a sequence-to-sequence

model is used to predict the final meaning representation conditioning on the utterance

and the predicted tag sequence. Experimental results on three semantic parsing datasets

show that the proposed approach consistently improves compositional generalization

across model architectures, domains, and semantic formalisms.

3.1 Introduction

Semantic parsing aims at mapping natural language utterances to machine-interpretable

meaning representations such as executable queries or logical forms. Sequence-to-

sequence neural networks (Sutskever et al., 2014; Bahdanau et al., 2015; Vaswani et al.,

2017) have emerged as a general modeling framework for semantic parsing, achieving

impressive results across different domains and semantic formalisms ((Dong and Lapata,

27
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Training Set

What is the density of Texas?

SELECT density FROM state WHERE state name = "texas"

Test Set (Question split)

What is the population density of Maine?

SELECT density FROM state WHERE state name = "maine"

Test Set (Query Split)

How many people live in Washington?

SELECT population FROM state WHERE state name = "washington"

Table 3.1: Two test examples from the question- and query-based splits of GEOQUERY

and a training example included in both splits. The example in the question-based

split shares the same query pattern as the training example while the example in the

query-based split has a query pattern different from the training example.

2016; Jia and Liang, 2016; Iyer et al., 2017; Wang et al., 2020), inter alia). Despite

recent success, there has been mounting evidence (Finegan-Dollak et al., 2018; Keysers

et al., 2020; Herzig and Berant, 2021; Lake and Baroni, 2018) that these models fail at

compositional generalization, i.e, they are unable to systematically generalize to unseen

compositions of seen components. For example, a model that observed at training time

the questions “How many people live in California?” and “How many people live in

the capital of Georgia?” fails to generalize to questions such as “How many people live

in the capital of California?”. This is in stark contrast with human language learners

who are able to systematically generalize to such compositions (Fodor and Pylyshyn,

1988; Lake et al., 2019).

Previous work (Finegan-Dollak et al., 2018) has exposed the inability of semantic

parsers to generalize compositionally simply by evaluating their performance on differ-

ent dataset splits. Existing semantic parsing datasets commonly adopt question-based

splits where many examples in the test set have the same query templates (induced

by anonymizing named entities) as examples in the training. As a result, many of the

queries in the test set are seen in training, and parsers are being evaluated for their

ability to generalize to questions with different surface forms but the same meaning

(i.e., paraphrase generalization introduced in Section 2.3). In contrast, when adopt-

ing a query-based split, the structure of the queries in the test set is unobserved at

training time, and parsers therefore must generalize to questions with different mean-

ings. Table 3.1 illustrates the difference between question- and query-based splits on
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GEOQUERY (Zelle and Mooney, 1996).

On the contrary, compositional generalization poses no problem for traditional

semantic parsers (Zettlemoyer and Collins, 2005, 2007; Wong and Mooney, 2006, 2007;

Liang et al., 2013) which typically use a (probabilistic) grammar; the latter defines the

meanings of individual words and phrases and how to best combine them in order to

obtain meaning representations for entire utterances. Neural semantic parsers do away

with representing symbolic structure explicitly in favor of a more general approach

which directly transduces the utterance into a logical form, avoiding domain-specific

assumptions and grammar learning. They usually deliver better performance in practical

applications, especially when equipped with pre-trained embeddings or language models

(Roy et al., 2022).

Given the superior compositional generalization ability of grammar-based semantic

parsing, a natural question is: how can we marry it with neural models to combine

the best of both worlds? In this chapter, we attempt to address this challenge. We

believe that the symbolic paradigm provides two important insights that could guide our

design of neural semantic parsers with better compositional generalization. Firstly, the

probability of a logical form is decomposed into local factors under strong conditional

independence assumptions while in neural semantic parsing the prediction of each

symbol directly depends on all previously decoded symbols. This strong expressivity

may hurt compositional generalization since different kinds of information are bundled

together, rendering the model’s predictions susceptible to irrelevant context changes.

Secondly, there exist hard alignments between logical constructs and linguistic ex-

pressions but in neural parsers, the two are only loosely related via the soft attention

mechanism. Explicit alignments can help distinguish which language segments are

helpful for predicting certain components in the logical form, potentially improving

compositional generalization.

Motivated by the above discussion, we devise a new decoding framework that

preserves much of the flexibility and generality of sequence-to-sequence models while

featuring lexicon-style alignments and separate information processing. Specifically,

we decompose decoding into two phases. Given a natural language utterance, each word

is first labeled with a semantic symbol representing its meaning via a tagger. Semantic

symbols are atomic units like predicates (in λ-calculus) or columns (in SQL). The tagger

explicitly aligns semantic symbols to tokens or token spans in the utterance. Moreover,

the prediction of each semantic symbol is conditionally independent of other symbols

in the logical form. This is reminiscent of lexicons in classical semantic parsers, but
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Figure 3.1: We first tag natural language input X with semantic symbols (e.g., pred-

icates shown in red) and predict tag sequence Z. We generate the final semantic

representation Y , given X and Z as input.

a major difference is that our tagger is a neural model which considers information

based on the entire utterance and can generalize to new words. A sequence-to-sequence

model takes the utterance and predicted tag sequence which serves as a soft constraint

on the output space, and generates the final meaning representation. Our framework is

general in that it could incorporate any sequence-to-sequence model as the base model

and augment it with semantic tagging.

We evaluate the proposed approach on query-based splits of three semantic parsing

benchmarks: ATIS, GEOQUERY, and a subset of WIKISQL covering different semantic

formalisms (λ-calculus and SQL). We report experiments with LSTM- and Transformer-

based models (see Section 2.1 for more details) (Dong and Lapata, 2016, 2018; Vaswani

et al., 2017) demonstrating that our framework improves compositional generation

across datasets and model architectures. Our approach is also superior to a recent data

augmentation proposal (Andreas, 2020), specifically designed to enhance compositional

generalization.

3.2 Model Architecture

Our goal is to learn a semantic parser that takes as input a natural language utter-

ance X = [x1,x2, ...,xn] and predicts a meaning representation Y = [y1,y2, ...,ym]. We
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decompose the parser p(Y |X) into a two-stage generation process:

p(Y |X) = p(Y |X ,Z)p(Z|X) (3.1)

where Z = [z1,z2, ...,zn] is a tag sequence for X . Every tag zt is a symbol in Y (roughly)

representing the meaning of xt . Therefore, the first-stage model p(Z|X) is essentially a

tagger that tries to predict the meanings of individual words. The second-stage model

takes the word sequence X and its accompanying tag sequence Z as input, and generates

the final semantic representation Y . Figure 3.1 shows this two-stage generation process.

It is important to note that tags Z are latent and must be induced from training data,

i.e., pairs of natural language utterances and representations of their meaning. We

discuss how the tagger is learned in Section 3.3.

3.2.1 Semantic Tagging

As shown in Figure 3.1, the tagging model p(Z|X ;θ) contains an encoder which trans-

forms input sequence x1,x2, ...,xn into a sequence of context-sensitive vector represen-

tations h1,h2, ...,hn. Each word xi is mapped to embedding xi, and the sequence of

word embeddings X = [x1,x2, ...,xn] is fed to a bi-directional recurrent neural network

with long short-term memory (LSTM) units (Hochreiter and Schmidhuber, 1997). A

bi-LSTM recursively computes the hidden states at the t-th time step via:

−→
h i = fLSTM (

−→
h i−1,xi) (3.2)

←−
h i = fLSTM (

←−
h i+1,xi) (3.3)

hi = [
−→
h i ;
←−
h i] (3.4)

where hi is the concatenation of vectors
−→
h i and

←−
h i, and fLSTM refers to the LSTM

function. We feed both hi and xi to the final output layer in order to predict tags z:

p(Z|X ;θ) =
n

∏
i=1

p(zi|X ;θ) (3.5)

=
n

∏
i=1

softmax(Whi +Uxi +b) (3.6)

W , U , and b are parameters in the output layer.

These semantic tags are automatically induced from logical forms without any

extra annotation and vary depending on the meaning representation at hand (e.g., λ-

calculus, SQL). They provide a task-specific middle layer, serving the goal of injecting

inductive bias for compositional generalization. It is different from part-of-speech
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tagging (Toutanova et al., 2003) or universal semantic tagging (Abzianidze and Bos,

2017) in the classical NLP pipeline. Those tagging modules typically express general

syntactic or semantic information independent of downstream tasks and require (often

costly ) additional annotation.

3.2.2 Meaning Representation Generation

LSTM-based encoder-decoder models with an attention mechanism have been success-

fully applied to a wide range of semantic parsing benchmarks (Dong and Lapata, 2016;

Jia and Liang, 2016; Iyer et al., 2017), while Transformers have rapidly gained popu-

larity for various NLP tasks including semantic parsing (Wang et al., 2020; Sherborne

et al., 2020; Platanios et al., 2021; Scholak et al., 2021). Our approach is model-agnostic

in that it could be combined with any type of sequence-to-sequence model; to highlight

this versatility, we present experiments with both LSTM- and Transformer-based mod-

els. We first embed the predicted tag and word sequences, obtaining tag embeddings

eg
1,e

g
2, ..,e

g
n and word embeddings ew

1 ,e
w
2 , ...,e

w
n . Then, we concatenate the two types of

embeddings at each time step and feed them to a sequence-to-sequence model:

ut = [eg
t ;ew

t ] (3.7)

U = [u1,u2, ...,un] (3.8)

Y = fseq2seq(U) (3.9)

where [· ; ·] denotes vector concatenation and fseq2seq denotes a sequence-to-sequence

model variant (LSTM- or Transformer-based in our case) that takes a sequence of vector

representations as input and ultimately generates a logical form. Tag embeddings are

shared with the target symbol embeddings. Therefore, the only adaptation we make

to the baseline model is to replace the original word embeddings with tag-augmented

input.

3.3 Model Learning

Our proposed approach combines a semantic tagger with a sequence-to-sequence model.

The tagger learning problem is challenging since Z is unobserved. In this section, we

explain how the tagger and the overall model are trained.
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λ-calculus

X : Columbus to Chicago one way on Thursday

Z : Columbus/from to/null Chicago/to one/oneway way/oneway on/null Thurs-

day/day

S : oneway, from, to, day, null

Y : ( lambda $0 e ( and ( oneway $0 ) ( from $0 columbus:ci ) ( to

$0 chicago:ci ) ( day $0 thursday:da ) ) )

SQL

X : What is the area of Washington

Z : What/null is/null the/null area/area of/null Washington/state name

S : area, state name, null

Y : SELECT area FROM state WHERE state name = "washington"

Table 3.2: Utterances X , their meaning representations Y , symbol sets S, and predicted

word/tag sequences Z.

3.3.1 Tagger Learning

We learn a tagger p(Z|X ;θ) from training data consisting of pairs of natural language

utterances X = [x1,x2, ...,xn] and symbol sets S = {s1,s2, ...,sl} (with s j ∈ Y ). The

symbol set contains atomic semantic units such as λ-calculus predicates and SQL

column names. Table 3.2 presents examples of symbol sets for these two formalisms.

As can be seen, symbols have close ties to utterances, there is often a correspondence

between them and individual words or phrases. It is therefore natural to predict this

(basic) part of a meaning representation via a tagger. To bridge the gap between the tag

sequence we intend to predict and the symbol set we have as supervision, we introduce

latent variable A = [a1,a2, ...,an] where a j denotes the index of a word aligned to s j. We

add (n− l) null symbols to target set S = {s1,s2, ...,sl,sl+1, ...,sn} because n is typically

larger than l, and we allow the tagger to output null for some words.

Entity Linking For some symbols, it is rather straightforward to determine the corre-

sponding alignments based on the results of entity linking, a critical subtask in semantic

parsing which is generally treated as a preprocessing step (Dong and Lapata, 2016;

Jia and Liang, 2016). We thus define the following two rules to automatically align

symbols to words in an utterance based on entity linking: (1) for λ-calculus expressions,

if a predicate takes only one entity as an argument (e.g., day $0 thursday:da) and
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this entity can be linked to a word or phrase in the utterance, we assume there is an

alignment between them (e.g., day aligns to Thursday); (2) for SQL expressions, if

the entity in a filter clause (e.g., state name = "washington") can be linked to an

expression in the utterance, again we align the column (e.g., state name) to the linguis-

tic expression (e.g., Washington). Both rules capture the intuition that some semantic

symbols are implied by corresponding entities without being explicitly verbalized. As

shown in Table 3.2, there is no linguistic expression in the utterance “What is the area

of Washington” which corresponds to the logical expression of state name, instead

state name is implied by the entity washington.

Expectation-Maximization Besides entity linking, there remain symbols without

alignments, such as unary predicates (e.g., oneway $0). For these, we use an EM-style

algorithm which iteratively infers latent alignments A and uses them to update the

tagger. A hard-EM algorithm that predicts the most probable A seems reasonable as in

most cases there is a single correct alignment. However, we find that hard-EM renders

training unstable and prone to overfitting to incorrect alignments. We instead warm up

the training with a soft-EM algorithm first and switch to hard-EM later on. Without

loss of generality, we describe the algorithm for all symbols including those that could

be aligned via (entity linking) rules. Specifically, we model the generation of S as

follows:

p(S|X ;θ) = ∑
A

p(A|X)p(S|X ,A;θ)

= ∑
A

p(A|X)
n

∏
j=1

p(za j = s j|X ;θ) (3.10)

where p(A|X) is a uniform prior over A and p(za j = s j|x;θ) is the tagger model above.

We could constrain the alignment from words to symbols to be injective (as this would

more faithfully capture the complex dependencies between them). Unfortunately, this

renders posterior inference on A intractable. Instead, we model the alignment of each

symbol independently as:

p(S|X ;θ)=∑
A

n

∏
j=1

p(a j|X)
n

∏
j=1

p(za j = s j|X ;θ)

=
n

∏
j=1

∑
a j

p(a j|X)p(za j = s j|X ;θ) (3.11)



3.3. Model Learning 35

Under this assumption, we are able to exactly compute the posterior probability of each

alignment a j:

πi j(θ) = p(a j = i|X ,S;θ)

=
p(a j = i|X)p(zi = s j|X ;θ)

∑
n
k=1 p(a j = k|X)p(zk = s j|X ;θ)

(3.12)

Note that we manually set the value of πi j(θ) if a j can be induced in advance via entity

linking. At the t-th iteration, we first use the present tagger p(Z|X ;θt) to compute

πi j(θ
t), the likelihood of aligning symbol s j to word xi. For soft-EM, these assignments

are then directly used to train the tagger with the following objective:

Jt(θ) =
n

∑
i=1

n

∑
j=1

πi j(θ
t) log p(zi = s j|X ;θ) (3.13)

θ
t+1 = argmax

θ

Jt(θ) (3.14)

For hard-EM, one could exploit πi j(θ
t) to induce the most probable alignment for

each symbol. However, there are cases where a symbol is aligned to multiple words,

e.g., when the same word occurs multiple times in an utterance or when a symbol is

aligned to a phrase. To deal with such cases, we induce a hard version of the posterior

probability π̃i j(θ
t) in the following way:

π̃i j(θ
t) =

1 if πi j(θ
t) > β

0 otherwise
(3.15)

(1≤ j ≤ l)

π̃i j(θ
t) =

1−∑
l
k=1 π̃ik

n− l
(3.16)

(l +1≤ j ≤ n)

where β is a threshold used to discretize the soft alignment distributions. Reshaping

the posteriors in this manner allows a symbol to be aligned to multiple words while

removing noisy incorrect alignments. Equation (3.16) ensures that the sum of posteriors

corresponding to a word is one, in the hope of encouraging the predicted tag sequence

distribution to be as close to a normal tag sequence distribution as possible. We replace

πi j(θ
t) in J (θ|θt) with π̃i j(θ

t) as the training objective to perform hard-EM updates:

J̃t(θ) =
n

∑
i=1

n

∑
j=1

π̃i j(θ
t) log p(zi = s j|X ;θ) (3.17)

θ
t+1 = argmax

θ

J̃t(θ) (3.18)
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Algorithm 1: Training the tagger
Input: Dataset D where each example is a question x paired with symbol set s.

Number of soft-EM updates Ts. Number of overall updates T .

Output: Tagger model parameters θT+1

Initialize tagger parameters θ1 randomly;

for t = 1, ...,T do
sample an example (x, s)

if t < Ts then
/* do soft-EM update */

Compute πi j(θ
t)

θt+1← Optimizer(θt ,∇θt Jt(θt))

else
/* do hard-EM update */

Compute π̃i j(θ
t)

θt+1← Optimizer(θt ,∇θt J̃t(θt))

end

end
return θT+1

Our training procedure is shown in Algorithm 1. Note that in each EM iteration, we use

objective Jt(θ) or J̃t(θ) to compute the gradient and update parameters once rather than

maximizing the objective function.

3.3.2 Parser Learning

Learning a semantic parser in our setting is straightforward. After training the tagger,

we run it over the examples in the training data and obtain tag sequence Ẑ for each pair

of utterance X and meaning representation Y .

Ẑ = argmax
Z

p(Z|X ;θ) (3.19)

Then, we maximize the likelihood of generating Y given X and Ẑ:

θ̂ = argmax
θ

log p(Y |X , Ẑ;θ) (3.20)
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3.4 Experimental Setup

Datasets Our experiments evaluate the proposed framework on compositional gen-

eralization. We present results on query-based splits for three widely used semantic

parsing benchmarks, namely ATIS (Dahl et al., 1994), GEOQUERY (Zelle and Mooney,

1996), and WIKISQL (Zhong et al., 2017). For GEOQUERY (880 language queries

to a database of U.S. geography) and ATIS (5,410 queries to a flight booking system)

meaning representations are in λ-calculus and SQL. We adopt the split released by

Finegan-Dollak et al. (2018) for SQL. We create query-based splits for λ-calculus and

we use the preprocessed versions provided in Dong and Lapata (2018), where natural

language expressions are lowercased and stemmed with NLTK (Bird et al., 2009), and

entity mentions are replaced by numbered markers.

WIKISQL is a large-scale semantic parsing dataset released more recently (Zhong

et al., 2017). It is used as a testbed for generating an SQL query given a natural

language question and table schema (i.e., table column names). Since SQL queries

in most examples are simple and only contain one filtering condition (e.g., SELECT

city of license WHERE frequency = 89.9), we use a subset (16,835 training

examples, 2,602 validation examples, and 4,915 test examples) containing queries

with more than one filtering condition (e.g., SELECT year WHERE manufacturer =

plymouth AND date = february 9). These examples are more compositional and

better suited to evaluating compositional generalization.

Comparison Models On ATIS and GEOQUERY we trained two baseline sequence-

to-sequence models: LSTMs with attention and Transformers as the base units (see

Section 2.1 for a detailed introduction). To examine whether our results carry over

to pretrained contextual representations, we report experiments with an LSTM model

enhanced with RoBERTa (Liu et al., 2019). We put an LSTM encoder-decoder on

top of RoBERTa which first uses RoBERTa to encode input utterances and then the

output encodings are fed to the LSTM-based sequence-to-sequence model to generate

queries. We also compare against two related approaches. The first is GECA (Andreas,

2020), a recently proposed data augmentation method aimed at injecting a compositional

inductive bias into sequence-to-sequence models via synthesizing new training examples.

Synthetic examples are constructed by taking real training examples and replacing

fragments with other fragments that appear in at least one similar environment. The

second is Attention Supervision introduced in Oren et al. (2020). They encourage
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generalization by supervising the decoder attention with pre-computed token alignments.

The FastAlign word alignment package (Dyer et al., 2013) is used to induce the token-

level alignments. We use the alignments induced by our tagger instead of an off-the-shelf

word aligner adopted in their paper.

For WIKISQL, our baseline model follows the coarse-to-fine decoding approach

(Coarse2fine) put forward in Dong and Lapata (2018) which is well suited to the

formulaic nature of the queries, takes the table schema into account, and performs on

par with some more sophisticated models (McCann et al., 2018; Yu et al., 2018a). They

predict SELECT and WHERE SQL clauses separately (all queries in WIKISQL follow

the same format, i.e., “SELECT agg op agg col WHERE (cond col cond op cond

AND)...”, which is a small subset of the SQL syntax). The SELECT clause is predicted

via two independent classifiers, while the WHERE clause is generated via a sequence

model with a sketch as an intermediate outcome. Their encoder augments question

representations with table information by computing attention over table column vectors

and deriving a context vector to summarize the relevant columns for each word.

Our tagger uses Coarse2fine’s table-aware encoder to predict tags. Our parser

diverges slightly from their model: while for each word the context vector is originally

computed by the attention mechanism, we replace it with the column vector specified

by the corresponding tag.

Configuration We implemented the base semantic parsers (the LSTM and Trans-

former models) with fairseq (Ott et al., 2019). As far as GECA is concerned, we have a

different setting from Andreas (2020): we use the preprocessed versions provided by

Dong and Lapata (2018) for ATIS and GEOQUERY, while they report experiments on

GEOQUERY only, with different preprocessing. We used their open-sourced code to

generate synthetic data for our setting in order to make experiments comparable. For

Coarse2fine, we used the code released by the authors.

Hyperparameters for the semantic taggers were validated on the development split

of ATIS and were directly copied for GEOQUERY because of its small size. Dimensions

of hidden vectors and word embeddings were selected from {150, 200, 250, 300}. The

number of layers was selected from {1, 2}. The batch size was set to 20 and the overall

update step was set to 20,000. The number of steps for soft-EM updates was selected

from {5,000, 7,000, 10,000, 13,000}. The threshold β used in hard-EM was selected

from {0.20, 0.23, 0.26, 0.29, 0.32, 0.35}. We used the Adam optimizer (Kingma and

Ba, 2015) to train the models and the learning rate was selected from {0.0001, 0.0003,
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Method
λ-calculus SQL
GEO ATIS GEO ATIS

GECA 48.1 51.6 52.1 24.0

Transformer 39.8 51.2 53.9 23.0

Transformer + ATTENTION SUPERVISION 43.4 53.3 58.6 22.0

Transformer + SEMANTIC TAGGING 44.0 53.0 61.9 28.6

LSTM 49.8 56.2 48.5 28.0

LSTM + ATTENTION SUPERVISION 53.6 59.7 46.9 28.7

LSTM + SEMANTIC TAGGING 52.1 62.1 63.6 29.1

RoBERTa 54.4 57.5 58.8 28.6

RoBERTa + ATTENTION SUPERVISION 56.3 59.9 59.3 28.4

RoBERTa + SEMANTIC TAGGING 57.5 63.7 69.6 27.7

Table 3.3: Exact-match accuracy on GEOQUERY and ATIS; results are averaged over 5

random seeds.

Method Overall Where

Coarse2fine 58.0 71.3

Coarse2fine + ATTENTION SUPERVISION 58.8 72.8

Coarse2fine + SEMANTIC TAGGING 60.6 75.0

Table 3.4: Evaluation results on a WIKISQL subset. Overall: exact-match accuracy of

whole SQL expressions; Where: accuracy of predicting WHERE clauses.

0.001}. Our semantic parsers used the same hyperparameters as the base models except

for some necessary changes to incorporate tag inputs. For models using RoBERTa, we

first freeze RoBERTa and train the model for some steps, and then resume fine-tuning.

Evaluation We use exact-match accuracy as our evaluation metric, namely the percent-

age of examples that are correctly parsed to their gold standard meaning representations.
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Method
λ-calculus SQL

GEO ATIS GEO ATIS

LSTM 16.1 / 10.9 / 23.2 13.7 / 9.8 / 20.1 14.1 / 5.6 / 31.8 21.3 / 26.5 / 23.7

LSTM + ST 16.5 / 9.7 / 21.7 13.0 / 8.9 / 15.9 19.0 / 6.7 / 10.5 22.1 / 24.9 / 23.9

ROBERTA + ST 13.0 / 9.6 / 19.7 12.9 / 6.9 / 16.4 12.7 / 5.7 / 11.8 22.6 / 16.6 / 32.8

Table 3.5: Breakdown of different types of error. In each cell, the left shows the proportion

of predicting correct semantic symbols but incorrect queries; the middle is the proportion

of predicting a subset of correct symbols (i.e., missing some semantic symbols); the

right is the proportion of predicting symbols which do not exist in gold queries. ST stands

for semantic tagging.

3.5 Results

Does Tagging Help Parsing? Table 4.6 summarizes our results on ATIS and GEO-

QUERY. On both datasets, we observe that the proposed tagger (+SEMANTIC TAGGING

) boosts the performance of the base model (i.e., Transformer, LSTM) for both λ-calculus

and SQL. The LSTM model is generally superior to Transformer except on SQL GEO-

QUERY. Enhancing the LSTM model with pretrained contextual representations (see

the last block in the table) generally increases accuracy, yet our semantic tagger brings

improvements on top of ROBERTA (with the exception of SQL ATIS). This points to

the generality of our approach which benefits neural parsers with different architectures

trained on distinct semantic representations. Gains are particularly significant on ATIS

with λ-calculus (we observe an absolute improvement of 6.2 points over ROBERTA)

and GEOQUERY with SQL (with 10.8 points absolute improvement over ROBERTA).

In some settings, attention supervision also achieves improvements over baseline

sequence models, but these are inconsistent and sometimes it even slightly hurts per-

formance. We find that attention supervision is sensitive to the weight hyperparameter

that controls the strength of attention loss and requires careful tuning to achieve good

performance. We conjecture that the soft attention mechanism (even with proper su-

pervision signals) is still sensitive to irrelevant context changes and prone to errors

in cases requiring compositional generalization. The LSTM+SEMANTIC TAGGING

model achieves better accuracy than GECA which adopts a data augmentation strategy

to train an LSTM-based sequence-to-sequence model for compositional generalization.

We incorporate a similar inductive bias into the parser but in an orthogonal way.

Results on WIKISQL are shown in Table 3.4. Semantic tagging boosts Coarse2fine
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in terms of exact match. In particular, it improves the prediction of WHERE clauses,

by a 4.3% absolute margin. We would not expect semantic tagging to benefit any

other parts of the generation of the SQL query, since only WHERE clauses are decoded

sequentially in the Coarse2fine model. Gains in the generation of WHERE clauses

translate to improvements in overall accuracy. Attention supervision also improves

generalization but falls behind our semantic tagger.

Do Meaning Representations Matter? Improvements of our semantic tagger on

ATIS with SQL and GEOQUERY with λ-calculus are less dramatic compared to ATIS

with λ-calculus and GEOQUERY with SQL. Upon closer inspection, we find that

ATIS SQL queries typically include many bridging columns that are used to join two

tables (e.g., the column airport alias.airport code in Table 2.4). This arises

from the complex database structure in ATIS: there are 32 tables in total and each

query involves 6.4 tables on average. These bridging columns are SQL-specific and

generally do not align with any linguistic expressions, so we cannot improve their

prediction via semantic tagging. A prerequisite for semantic tagging is that there

exist alignments between language expressions and atomic semantic symbols. We

could restrict the semantic tagger to only predicting symbols that align with linguistic

expressions and leave the generation of other symbols to the second stage. However,

how to automatically select appropriate symbols as semantic tags is an avenue for future

work.

On GEOQUERY with λ-calculus, the semantic tagger performs extremely well,

achieving 86.2% accuracy in predicting semantic symbols, but the final accuracy in

predicting queries is only 52.1% (LSTM+SEMANTIC TAGGING). Although semantic

tagging can help generalize to utterances where seen syntactic structure and concept

words are combined in an unseen way (e.g., Monkeys like bananas generalizes to

Cats like fish ), it fails to generalize to utterances with unseen syntactic structure (e.g.,

Monkeys like bananas generalizes to Cats like fish that like water). Handling utterances

with unseen composition of seen syntactic components is yet another generalization

challenge for modern semantic parsers.

Where do Gains Come from? Our approach transfers much of the prediction of

semantic symbols from the sequence-to-sequence model to the tagger; it does this by re-

placing the attention mechanism, which learns to attend to specific parts of an utterance,

with per-word tagging which considers all parts of an utterance. We hypothesize that
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this architecture can better exploit source information to predict individual semantic

symbols. To test this hypothesis, we analyzed errors in the predictions of the LSTM

model with and without the proposed semantic tagger, and classified them into three

types. The first type predicts incorrect queries but correct semantic symbols. The

second type predicts only a subset of correct semantic symbols, thus omitting some

semantic symbols. The third type predicts wrong semantic symbols that do not exist

in gold queries. As shown in Table 3.5, semantic tagging mainly reduces the errors

of predicting wrong semantic symbols, while in some cases it can lead to a modest

increase in the first type of errors. Overall, semantic tagging improves the prediction of

individual semantic symbols even though this improvement does not always translate

into more accurate queries.

3.6 Summary

In this chapter, we presented a two-stage decoding framework, aiming to improve

compositional generalization in neural semantic parsing. Central to our approach is a

semantic tagger which labels the input with semantic symbols representing the meanings

of individual words. A neural sequence-to-sequence parsing model considers the input

utterance and the predicted tag sequence to generate the final meaning representation.

Our framework can be combined with different neural models and semantic formalisms.

Experimental results on three semantic parsing datasets show that the proposed ap-

proach consistently improves compositional generalization across model architectures,

domains, and semantic formalisms. It also demonstrates superior performance to related

compositional generalization approaches (Andreas, 2020; Oren et al., 2020).

However, the success of semantic tagging requires well-defined local alignments

between language expressions and logical expressions, which is not always present

in real-world applications. Moreover, semantic tagging focuses on modeling lexical

meanings and does not explicitly take into account syntactic relations. As a result, it is

not expected to aid the generalization relating to novel syntactic structures. In the next

chapter, we will propose a model attempting to tackle both problems.
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Disentangled Sequence-to-Sequence

Learning

In the previous chapter, we propose a two-stage decoding framework without drastically

compromising the flexibility of sequence-to-sequence models. However, there still

exists one major obstacle that renders the framework less flexible and general compared

to pure neural network systems. A prerequisite to semantic tagging is the presence

of unambiguous local correspondences between language expressions and semantic

symbols. However, this condition does not always hold in real-world applications. It

can not handle cases where some fragments of the output do not have any alignment

with the input (e.g., SQL-specific expressions in semantic parsing) or the alignment is

more complex than a strict local one-to-one mapping (e.g., a many-to-many mapping

in machine translation). As discussed in Section 2.2, more complex and global many-

to-many mappings between words and meanings are ubiquitous in natural language.

One word could participate in the shaping of multiple meaning units and likewise, one

meaning unit could derive from multiple words (e.g., polysemy and anaphora).

As a result, tackling compositional generalization via pure architectural modifi-

cations without a symbolic component possesses some special benefits. It has the

potential to fully maintain the robustness and flexibility of neural models required to

process noisy and complex natural language. In this chapter, we thus assume that the

incompetence in compositional generalization is (at least partly) due to the architecture

design of neural models and investigate: how can we devise a more competent neural

model for compositional generalization? To approach this problem, we design a new

neural architecture for sequence-to-sequence modeling to learn more disentangled rep-

resentations than standard sequence-to-sequence models (e.g., Transformer) for better

43
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compositional generalization. The generality of the proposal allows us to apply the

model to any sequence-to-sequence task. We therefore perform experiments on both

semantic parsing and machine translation. Experimental results show that our proposal

delivers more disentangled representations and better generalization.

4.1 Introduction

There is mounting evidence suggesting that the very popular sequence-to-sequence

architectures struggle with compositional generalization (Finegan-Dollak et al., 2018;

Lake and Baroni, 2018; Keysers et al., 2020; Herzig and Berant, 2021). In order to

devise a more competent neural model for compositional generalization, we first look

at the question: what are possible factors that lead to this failure?

One potential cause is spurious correlations that have been shown in different sce-

narios to hinder out-of-distribution generalization (Jia and Liang, 2017; Gururangan

et al., 2018; Arjovsky et al., 2019; Sagawa et al., 2020). Models that rely on simple but

predictive superficial clues (Weissenborn et al., 2017) can do well on in-distribution

test sets, but lack robustness to distributional shifts. For example, Jia and Liang (2017)

showed the existing well-performing neural systems for reading comprehension are

brittle when evaluated on paragraphs that contain adversarially inserted sentences. Nev-

ertheless, spurious correlation has been mostly exposed in the context of classification.

It is unclear if the problem is the only obstacle to better generalization especially in

more complex tasks like structured prediction. In this chapter, we identify an orthogonal

entanglement problem with how different semantic factors (e.g., lexical meaning and

semantic relations) are represented in neural sequence models that hurt generalization.

Ideally, neural networks should represent semantic factors in a disentangled way by

virtue of the principle of compositionality (Partee, 1995). As discussed in Section 2.2,

the local (or strong) interpretation of compositionality suggests that semantic proper-

ties of syntactic constituents are, to a certain extent, conditionally independent of the

context.

Disentanglement, i.e., the ability to uncover explanatory factors from data, is often

cited as a key property of good representations (Bengio et al., 2013). For example,

a model trained on 3D objects might learn factors such as object identity, position,

scale, lighting, or color. Several types of variational autoencoders Kingma and Welling

(2014) have been proposed for the unsupervised learning of disentangled representations

in images (Higgins et al., 2017; Kim and Mnih, 2018; Chen et al., 2018). However,
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some of the underlying assumptions of these models have come under scrutiny recently

(Locatello et al., 2019).

Disentanglement for linguistic representations remains under-explored and has

mostly focused on separating the style of text from its content (John et al., 2019; Cheng

et al., 2020). In the context of sentence-level semantics, we argue that disentangled

representations should be able to discriminate different semantic factors and neural

units modeling a particular semantic factor should be relatively invariant to changes

in other factors. Table 2.1 shows an example. The relation between “table” and

“house” in the sentence “A boy likes the cake on the table in a house (beside the

tree)” and its representation should not be affected by whether there is a PP modifying

“house”. However, we hypothesize that in a standard neural encoder (e.g., transformer-

based) semantic factors tend to be entangled so that changes in one factor affect the

representation of others. We further illustrate this problem in an artificial setting in

Section 4.2 and find that a simple marking strategy enhances the learning of disentangled

representations.

Motivated by this finding, we propose an extension to sequence-to-sequence models,

which allows us to learn disentangled representations for compositional generalization.

Specifically, at each time step of the decoding, we adaptively re-encode the source

input by conditioning the source representations on the newly decoded target context.

We therefore build specialized representations which make it easier for the encoder to

exploit relevant-only information for each prediction and disentangle relevant source

factors across different predictions. Experiments on three benchmarks across semantic

parsing and machine translation, namely COGS (Kim and Linzen, 2020), CFQ (Keysers

et al., 2020), and CoGnition (Li et al., 2021), empirically verify that our proposal leads

to better generalization, outperforming competitive baselines and more specialized

techniques.

4.2 Disentanglement in a Toy Experiment

We first shed light on the problem of entangled representations with a toy experiment

and then move on to describe our modeling solution. For simplicity, we only focus on

relations as the kind of semantic factors a model aims to represent, but the entanglement

issue could also exist in representations of other factors, such as lexical meaning.
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Figure 4.1: The model used in the toy experiment to predict the relation between e1 and

ec and the relation between ec and e2.

Data Creation Let x = [e1,r1,ec,r2,e2] denote a sequence of symbols. We want to

predict the relation between e1 and ec, and ec and e2, which we denote by y = (y1,y2),

with y1 ∈ L1 and y2 ∈ L2 where L1 are a set of relation labels for y1 and L2 are a set

of relation labels for y2. For simplicity, we set e1, ec, and e2 to the same symbol e

(i.e., e1,ec,e2 ∈ {e}) whereas r1 ∈ R1 and r2 ∈ R2 denote different relation symbols

(R1 and R2 are the corresponding sets of relation symbols). In this toy setting, we will

further assume that different relation symbols determine different relation labels (e.g.,

for the phrases “cat in house” and “cat with house”, “in” and “with” represent two

distinct relations between “cat” and “house”). In reality, relations between words could

be dependent on broader context or not verbalized at all. We also assume that there is a

one-to-one mapping between relation symbols and relation labels (i.e., between L1 and

R1 and L2 and R2).

We construct a training set by including examples [e1,r1,ec,r2,e2] where r1 is the

same relation symbol throughout while r2 can be any relation symbol in R2 (r1 ∈
{rtrain}, r2 ∈ R2). We also include examples [e1,r1,ec] with all relation symbols from

R1 occurring in isolation (r1 ∈ R1). This way, the training set covers all primitive

relations, but contains only a particular type of relation composition (i.e., {rtrain}×R2).

In contrast, the test set contains all unseen compositions [e1,r1,ec,r2,e2] (i.e., r1 ∈
R1\{rtrain},r2 ∈ R2) which will allow us to evaluate a model’s ability to generalize. We

set each relation set to include 10 relation symbols (|R1|= |R2|=10).

Finally, we simplistically only consider the relations of the target word ec with its

left and right words e1 and e2. In reality, a model would be expected to capture sentence-
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level semantics, i.e., a word’s relation to all context words in a sentence (including no

relation).

Modeling For each input symbol, we sample a vector from a Gaussian distribution

N (0,0.22I) and freeze it during training. As shown in Figure 4.1, we first embed

each example x into a sequence of vectors [w1,w2, ...,wn] (where n = 3 or n = 5) and

transform them into contextualized representations [h1,h2, ..,hn] using a Transformer

encoder (Vaswani et al., 2017). To predict the relation between two symbols, we then

concatenate their corresponding representations and feed the resulting vector to an MLP

for classification.

To study how changes in relation y1 affect the prediction of y2 at test time, we explore

two training methods. One is joint training where a model learns to predict both y1

and y2 (i.e., h1 and h3 are concatenated to predict y1 or h3 and h5 are concatenated to

predict y2). The other method is separate training where a model is trained to only

predict y2 (i.e., only h3 and h5 are concatenated to predict y2). For separate training, we

basically ignore examples [e1,r1,ec] which only include r1, as they have no bearing on

the prediction of y2.

Observation With separate training, the model learns to ignore r1, the accuracy of

predicting y2 on the test set is 100%, regardless of which value r1 takes. This indicates

that random perturbation of r1 alone does not lead to generalization failure. It also

follows that there is no spurious correlation between r1 and y2. However, when the

model is trained to predict both relations (which is what happens in realistic settings

since we need to capture all possible relations) r1 has a huge impact on the prediction

of y2 whose accuracy drops to approximately 55%. Taken together, these results suggest

that the model fails to generalize to new relation compositions due to its internal

representations being entangled and as a result, changes in one relation affect the

representation of others.

Why is there a wide performance gap between joint and separate training? At test

time the model processes the same utterance (no matter whether it is trained jointly

or separately), and could in theory be susceptible to both r1 and r2. However, the

induced representations show fundamentally different behaviors and remain invariant

to r1 with separate training. A possible explanation is that modern neural networks

trained with stochastic gradient descent have a learning bias towards simple functions

(Shah et al., 2020). When r1 is not predictive of y2, relying only on r2 whilst remaining
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invariant to r1 constitutes a simpler function than making use of both r1 and r2. As a

result, in separate training the model learns to ignore extraneous information, focusing

exclusively on r2. On the contrary, in joint training the target of predicting both y1 and

y2 forces the hidden states (e.g., h3) to capture information about both relations, leading

to the entanglement problem discussed above.

A Simple Solution Although separate training presents a solution to entanglement, it

is unrealistic for real-world data as it would be extremely inefficient to train separate

models for each relation (the number of relations is quadratic with respect to sentence

length). Instead, we explore a simple but effective approach where a single model

takes as input an utterance enriched with different indicator features for different

targets. Specifically, given utterance [e1,r1,ec,r2,e2], and assuming we wish to predict

relation y1, we add indicator feature 1 for symbols e1, r1, and ec (marking the relation

and its immediate context), and 0 for all other symbols. The model then takes as

input the utterance and relation indicators, i.e., [1,1,1,0,0] for y1 and [0,0,1,1,1] for

y2, and learns embeddings for indicators during training. It thus learns specialized

representations for each prediction rather than shared representations for all predictions.

Based on the simplicity bias, the two representations will guide the model towards

exclusively relying on r1 and r2, naturally disentangling different relations by encoding

them separately. Such a model predicts y1 with 100% test accuracy and y2 with 97%.

4.3 Learning to Disentangle

While the marking strategy offers substantial benefits in learning disentangled relation

representations, we typically do not have access to explicit labels indicating which

words are helpful for predicting a specific relation. Nevertheless, the idea of learning

representations specialized for different predictions (albeit with shared parameters) is

general and could potentially alleviate the entanglement problem for compositional

generalization.

Let X = [x1,x2, ...,xn] denote a source sequence. As described in Section 2.1,

canonical sequence-to-sequence models like the Transformer model (Vaswani et al.,

2017) first encode it into a sequence of contextualized representations which are then

used to decode target symbols Y = [y1,y2, ...,ym] one by one. The same source encodings

are used to predict all target symbols, and are therefore expected to capture all semantic

factors in the input. However, these could be entangled as demonstrated in our analysis
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above. To alleviate this issue, we propose to learn specialized source representations

for different predictions by adaptively re-encoding the source input at every step of the

decoding.

Specifically, at the t-th time step, we concatenate the source input with the previously

decoded target and obtain the context for the current prediction Ct = [x1,x2, ...,xn,y1,y2,

...,yt−1, [PH]] where [PH] is a placeholder (e.g., a mask token when using a pretrained

encoder). Ct is then fed to a standard encoder (e.g., the Transformer encoder) to obtain

the contextualized representations Ht = [ht,1,ht,2, ...,ht,n]:

Ht = fAdaptive Encoder(Ct) (4.1)

The adaptive encoder could optionally consist of two components. Ct is first fed to

k1 Transformer encoder layers to fuse the target information:

H̄t = fAdaptive Encoder1(Ct) (4.2)

where H̄t is a sequence of contextualized representations [h̄t,1, h̄t,2, ..., h̄t,n, h̄t,n+1, ..., h̄t,n+t ].

Then, optionally the first n vectors corresponding to source tokens are extracted and fed

to another k2 Transformer encoder layers for further processing:

Ht = fAdaptive Encoder2(H̄t [: n]) (4.3)

The key difference from the encoder in standard sequence-to-sequence models is

that at each time step we adaptively re-compute source representations that condition

on the newly decoded target [y1,y2, ...,yt−1]. This way, the target context informs the

encoder of predictions of interest at each time step. This simple modification unburdens

the model from capturing all source information through a forward pass of encoding.

Instead, based on the simplicity bias, the model tends to zero in on information relevant

to the current prediction, remaining invariant to irrelevant details, thereby improving

disentanglement. One might argue that the decoder in standard sequence-to-sequence

models could also extract specialized information for each prediction (through the

cross-attention mechanism). However, it would fail to do so when working with an

entangled encoder that produces problematic representations for out-of-distribution

examples and breaks down the decoding process.

We propose two strategies for exploiting the target-informed encoder. Firstly, we

use a multilayer perceptron (MLP) to predict yt based on h̄t,n+t :

p(yt |X ,Y<t) = fMLP(h̄t,n+t) (4.4)
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Figure 4.2: The proposed model at the t-th time step. It concatenates the source input

X with the previously decoded output Y<t and feeds it into a Transformer encoder to

induce the target-informed adaptive source encodings. Then we either use an MLP or a

Transformer decoder to predict the next token.

Secondly, we incorporate the proposed encoder into the standard encoder-decoder

architecture: we take source encodings Ht and feed them together with the previous

target [y1, ...,yt−1] to a standard decoder (e.g., Transformer-based) to predict yt :

p(yt |X ,Y<t) = fDecoder(Y<t ,Ht) (4.5)

For complex tasks like machine translation, we empirically find that preserving the

encoder-decoder architecture and adopting the extra second component for encoding is

essential to achieving good performance.

We adopt the Transformer architecture to instantiate the encoder and decoder, how-

ever, the proposed method is generally applicable to any sequence-to-sequence model.

The model is shown in Figure 4.2. We maintain separate position encodings for source

and target symbols (e.g., x1 and y1 correspond to the same position). To differentiate

between source and target content, we also add a source (target) type embedding to all

source (target) token embeddings. Compared to the classical Transformer, our proposal

increases the running time from O(n2 +m2) to O(m(n2 +m2)) where n is input length

and m is output length. In the next chapter, we will attempt to improve the efficiency of

our approach.
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4.4 Experiments: Semantic Parsing

In this section, we present our experiments for evaluating the proposed Disentangled

sequence-to-sequence model which we call Dangle. We refer to the two variants of

Dangle as Dangle-enc and Dangle-encdec. In this chapter, as a proof of concept, we

adopt synthetic benchmarks to isolate compositional generalization. We first focus on

two fully synthetic semantic parsing benchmarks which target compositional general-

ization. Our second suite of experiments reports results on a partly synthetic machine

translation benchmark for compositional generalization.

4.4.1 Datasets

Our semantic parsing experiments focus on two benchmarks. The first one is COGS

(Kim and Linzen, 2020) which contains natural language sentences paired with logical

forms based on lambda calculus (see an example in Table 2.4). In addition to the

standard splits of Train/Dev/Test, COGS provides a generalization (Gen) set that covers

five types of compositional generalization: interpreting novel combinations of primitives

and grammatical roles, verb argument structure alternation, and sensitivity to verb class,

interpreting novel combinations of modified phrases and grammatical roles, generalizing

phrase nesting to unseen depths.

The former three fall into lexical generalization while the latter two require structural

generalization. Interpreting novel combinations of modified phrases and grammatical

roles involves generalizing from examples with PP modifiers within object NPs to PP

modifiers within subject NPs. The generalization of phrase nesting to unseen depths is

concerned with two types of nesting: nested CPs (e.g., [Mary knows that [John knows

[that Emma cooks]CP ]CP ]CP) and nested PPs (e.g., Ava saw the ball [in the bottle [on

the table]PP]PP). The training set only contains nestings of depth 0–2, where depth 0

is a phrase without nesting. The generalization set contains nestings of strictly greater

depths (3–12). The Train set includes 24,155 examples and the Gen set includes 21,000

examples.

Our second benchmark is CFQ (Keysers et al., 2020), a large-scale dataset specifi-

cally designed to measure compositional generalization. It contains 239,357 composi-

tional Freebase questions paired with SPARQL queries (see an example in Table 2.4).

CFQ was automatically generated from a set of rules in a way that precisely tracks

which rules (atoms) and rule combinations (compounds) were used to generate each

example. Using this information, the authors generate three splits with maximum com-
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pound divergence (MCD) while guaranteeing a small atom divergence between train

and test sets. In this dataset, atoms refer to entities and relations and compounds to

combinations thereof. Large compound divergence indicates the test set contains many

examples with unseen syntactic structures. We evaluate our model on all three splits.

Each split consists of 95,743/11,968/11,968 train/dev/test examples.

4.4.2 Comparison Models

On COGS, we trained a baseline Transformer (Vaswani et al., 2017) with sinusoidal

(absolute) and relative position embeddings (Shaw et al., 2018; Huang et al., 2020).

We assessed the effect of pretraining on compositional generalization, by also fine-

tuning BART-base (Lewis et al., 2020) on the same dataset. We created disentangled

versions of Transformer adopting both the Dangle-enc and Dangle-encdec architectures.

The pretrained version of our model only adopts the Dangle-encdec architecture to be

compatible with BART-base.

We also compared with two models specifically designed for compositional general-

ization on COGS. The first one is Tree-MAML (Conklin et al., 2021), a meta-learning

approach whose objective directly optimizes for out-of-distribution generalization.

Their best-performing model uses tree kernel similarity to construct meta-train and

meta-test task pairs. The second approach is LexLSTM (Akyurek and Andreas, 2021),

an LSTM-based sequence-to-sequence model whose decoder is augmented with a lexi-

cal translation mechanism that generalizes existing copy mechanisms to incorporate

learned, decontextualized, token-level translation rules. The lexical translation module

is intended to disentangle lexical phenomena from syntactic ones.

Furrer et al. (2020) showed that pretrained sequence-to-sequence models are key to

achieving good performance on CFQ. We compared against their T5-11B-mod model

which obtained the best results among various pre-trained models. This is essentially a

T5 model with 11B parameters fine-tuned on CFQ with intermediate representations

(i.e., SPARQL queries are simplified to be structurally more aligned to the input for

training and then post-processed to obtain the original valid SPARQL at inference time).

We built both variants of our model on top of RoBERTa (Liu et al., 2019) due

to the effectiveness of pre-training on this dataset. The encoder-decoder variant (i.e.,

Dangle-encdec) uses RoBERTa as the encoder and a randomly initialized Transformer

decoder. We do not build Dangle-encdec based on pretrained sequence-to-sequence

models like BART, as the complex predicates in CFQ cause an extremely long target
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Model OSM CP PP Overall

Tree-MAML (Conklin et al., 2021) 0.0 0.0 0.0 66.7

LexLSTM (Akyurek and Andreas, 2021) 0.0 0.0 1.3 82.1

Transformer (ABS) 0.0 3.4 8.9 85.5

+ Dangle-enc 0.0 11.4 5.7 85.9

+ Dangle-encdec 0.0 10.8 6.9 86.0

Transformer (REL) 0.0 0.0 0.0 83.3

+ Dangle-enc 0.0 13.8 13.5 85.4

+ Dangle-encdec 0.0 14.4 13.2 85.6

BART-base 0.0 11.5 9.0 85.1

+ Dangle-encdec 0.0 26.5 60.6 88.3

Table 4.1: Exact-match accuracy on COGS by type of structural generalization and

overall. OSM refers to generalizing from object modifier PPs to subject modifier PPs; CP

and PP are recursion depth generalization for sentential complements and prepositional

phrases. ABS denotes absolute position embeddings; REL denotes relative position

embeddings

sequence when tokenized with the BART tokenizer. We instead use a custom decoder

with RoBERTa, which allows for taking those predicates as atomic units and attaining a

short average target length. To tease apart the effect of pretraining and the proposed

approach, we implement another baseline, which uses RoBERTa as the encoder and

likewise a Transformer decoder. Finally, we compared against HPD (Guo et al., 2020),

a hierarchical poset decoding architecture which consists of three components: sketch

prediction, primitive prediction, and traversal path prediction. This model is highly

optimized for the CFQ dataset and achieves competitive performance.

We implemented all comparison models and Dangle with fairseq (Ott et al., 2019).

4.4.3 Model Configuration

On COGS, the small in-distribution development (Dev) set makes model selection

extremely difficult and non-reproducible. We follow Conklin et al. (2021) and sam-

ple a small subset from the generalization (Gen) set denoted as ‘Gen-Dev’ for tuning

hyper-parameters. Best hyper-parameters were used to rerun the model with 5 different

random seeds for reporting final results on the Gen set. For the baseline Transformer,

the layer number of encoder and decoders are both 2. The embedding dimension is 300.
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Model
2 3 4 5

CP PP CP PP CP PP CP PP

Transformer (ABS) 3.4 8.9 1.2 6.6 0.8 5.5 3.1 8.2

+ Dangle-enc 11.4 5.7 10.3 8.8 14.3 8.6 12.7 13.4

Transformer (REL) 0.0 0.0 0.0 0.6 0.1 2.5 1.4 4.6

+ Dangle-enc 13.8 13.5 18.2 19.4 24.7 31.9 27.2 44.3

Table 4.2: Exact-match accuracy for CP and PP recursion on different splits of COGS

(recursion depth with [2−5] range). ABS denotes absolute position embeddings; REL

denotes relative position embeddings.

The feedforward embedding dimension is 512. We use the same configuration for Trans-

former + Dangle-encdec. For Transformer + Dangle-enc, to maintain approximately

identical model size with the baseline, we used the same embedding dimension and set

the number of the encoding layers to 4. For all models, we initialized embeddings (on

the both source and target side) with Glove (Pennington et al., 2014).

For the RoBERTa + Dangle model on CFQ, we use a separate target vocabulary; the

target embedding matrix is randomly initialized and learned from scratch. RoBERTa-

base is combined with a Transformer decoder that has 2 decoder layers with embedding

dimension 256 and feedforward embedding dimension 512. All hyper-parameters

are chosen based on validation performance. On CFQ, for both RoBERTa-base and

RoBERTa+Dangle, results are averaged over 3 random seeds.

4.4.4 Results

Table 4.1 shows our results on COGS broken down by type of structural generalization

and overall. All models achieve 0 accuracy on generalizing from PP object modifiers

to PP subject modifiers. We find this is due to a predicate order bias. In all training

examples, “agent” or “theme” come before preposition predicates like “in”, so the mod-

els learn this spurious correlation and cannot generalize to cases where the preposition

precedes the predicate.

Interestingly, a vanilla Transformer outperforms more complex approaches like

Tree-MAML and LexLSTM. We conjecture the large discrepancy is mostly due to our

use of Glove embeddings, which comparison systems do not use. Pretraining in general

substantially benefits lexical generalization, our Transformer and BART-base models

achieve nearly perfect accuracy on all such cases in COGS. An intuitive explanation is
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Model MCD1 MCD2 MCD3 Mean

T5-11B-mod (Furrer et al., 2020) 61.6 31.3 33.3 42.1

HPD (Guo et al., 2020) 72.0 66.1 63.9 67.3

RoBERTa-base 60.6 33.6 36.0 43.4

+ Dangle-enc 78.3 59.5 60.4 66.1

+ Dangle-encdec 78.4 59.9 61.3 66.5

Table 4.3: Exact-match accuracy on CFQ, Maximum Compound divergence (MCD) splits.

RoBERTa-base denotes a baseline model that uses RoBERTa as the encoder and a

randomly initialized Transformer decoder. We do not build Dangle based on pre-trained

sequence-to-sequence models like BART, as the complex predicates in CFQ cause an

extremely long target sequence when tokenized with the BART tokenizer (90+ tokens

on average). With RoBERTa, we use a custom decoder, which allows for taking those

predicates as atomic units and obtaining a short average target length (about 30).

that pretrained embeddings effectively capture common syntactic roles for tokens of the

same type (e.g., “cat” and “dog”) and facilitate the generalization of the same decoding

strategy to all of them. Dangle significantly improves generalization performance

on CP and PP recursion when combined with our base Transformer and BART-base.

Dangle-enc and Dangle-encdec perform similarly on top of the base Transformer.

To further show the potential of our proposal, we evaluated Transformer + Dangle-

enc on additional COGS splits. Table 4.2 shows how model performance changes

with exposure to progressively larger recursion depths. Given recursion depth n, we

created a split by moving all examples with depth ≤ n from Gen to Train set. As can

be seen, Transformer + Dangle-enc, especially the variant with relative embeddings,

is continuously improving with exposure to additional training examples. In contrast,

the vanilla Transformer does not seem to benefit from additional examples, even when

relative position encodings are used. We can also explain why adding more recursion in

training boosts generalization performance. In the original split, many nouns never occur

in examples with recursion depth 2, which could tempt the model to exploit this kind of

dataset bias for predictions. In contrast, seeing words in different contexts (e.g., different

nesting depth) effectively reduces the possibility of learning these spurious correlations

and therefore improves compositional generalization.

CFQ results are shown in Table 4.3. RoBERTa + Dangle substantially boosts the

performance of RoBERTa, and is in fact superior to T5-11B-mod. This result highlights
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Figure 4.3: t-SNE visualization of hidden states corresponding to predicates “in”, “on”,

and “beside” on training examples with PP recursion depth 4 and test examples with

PP recursion depth 5. Different colors denote different recursion contexts and different

shapes of markers correspond to different predicates.

the limitations of pretraining as a solution to compositional generalization underscoring

the benefits of our approach. RoBERTa + Dangle is comparable to HPD which is a

special-purpose architecture highly optimized for the CFQ dataset. On the contrary,

Dangle is generally applicable to any sequence-to-sequence task including machine

translation, as we will show in Section 4.5.

4.4.5 Analysis

As discussed in Section 4.2, we hypothesize that a neural model’s inability to perform

compositional generalization partly arises from its internal representations being entan-

gled. To verify this, we visualize the hidden representations for a Transformer model

with and without Dangle. Specifically, we train both models on the 4th split of COGS

(i.e., data with maximum PP recursion depth 4) and test on examples with PP recursion

depth 5. Then, we extract the hidden states before the softmax layer used to predict

the preposition predicates “in”, “beside”, and “on” and use t-SNE (van der Maaten

and Hinton, 2008) to visualize them. Ideally, the representations of these prepositions

should be invariant to the contexts accompanying them so that their prediction is not

influenced by distribution shifts (e.g., contextual changes from PP recursion 4 to PP

recursion 5).

The visualization is shown in Figure 4.3. Different colors correspond to different

recursion depths while different shapes of markers denote different prepositions (e.g., for

a training example like “NP in NP in NP in NP in NP”, the hidden states corresponding

to the four “in” prepositions have the same marker but different colors). In training,
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Model
COGS CFQ

IntraV InterV ↓ R IntraV InterV ↓ R

Transformer 0.24 0.64 0.37 0.25 1.13 0.22

+ Dangle-enc 0.19 0.73 0.26 0.01 0.52 0.01

Transformer 0.28 0.44 0.63 0.32 1.06 0.30

+ Dangle-enc 0.23 0.54 0.42 0.04 0.48 0.08

Table 4.4: Entanglement for Transformer and our approach (+Dangle-enc) on COGS and

CFQ (for which both models employ a RoBERTa encoder). Results for training/test set

in first/second block. Intra/InterV denotes intra/inter-class variance and R is their ratio.

Transformer’s hidden states within the same preposition scatter more widely compared

to those of Dangle, which implies that its internal representations conflate information

about a preposition’s context with itself. In other words, Transformer’s hidden states

capture more context variations in addition to variations corresponding to the predicate

of interest. This in turn causes catastrophic breakdown on the test examples, where

Transformer’s hidden states cannot discriminate context from predicate information

at all. This is in stark contrast with Dangle, where information about predicates is

preserved even in the presence of unseen contexts.

We further design a metric to quantify entanglement in neural representations

drawing inspiration from Kim and Mnih (2018). Their metric assumes the ground-truth

factors of a dataset are given, and it is applied to images with one factor fixed and

all other factors varying randomly; if the representation is perfectly disentangled, the

dimension with the lowest variance should correspond to the fixed factor. Since in

our setting we do not have access to ground-truth factors, we assume the variable-

length target token sequence is the factor of interest. We also do not need to perform a

mapping between neurons and factors, because their correspondence is hard-coded in

sequence-to-sequence models (e.g., a predicate and the hidden units used to predict it).

For each predicate y occurring in different examples e, we extract all corresponding

representations {ve,y}, i.e., the last layer of the hidden states used to predict y, and

compute the empirical variance Vare(vi
e,y) for each y; we compute intra-class variance

as the average of all predicates’ variance weighted by their respective frequency:

Vintra =
1
d

d

∑
i=1

Ey Vare(vi
e,y) (4.6)

where d is the dimension of hidden states and E is the weighted average of their
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Training Set

en: That winter, Taylor barely moved from the fire.

zh: 那年冬天，泰勒几乎没有从大火中挪动过。

Test Set

en: That winter, the dog he liked barely moved from the fire.

zh: 那年冬天，他喜欢的狗狗几乎没有从火堆里挪动过。

Table 4.5: A training and test example from the CoGnition dataset. The test example is

constructed by embedding the synthesized novel compound “the dog he liked” into the

template extracted from the training example “That winter, [NP] barely moved from the

fire.”.

variances. Intuitively, if the representations are perfectly disentangled, they should

remain invariant to context changes and intra-class variance should be zero.

We also measure inter-class variance by taking the mean of ve,y for each predicate y

and then computing the variance of the means:

Vinter =
1
d

d

∑
i=1

Vary Ee(vi
e,y) (4.7)

Inter-class variance, on the contrary, should be relatively large for these hidden states,

because they are intended to capture class variations. The ratio of intra- and inter-class

variance collectively measures entanglement.

As shown in Table 4.4, representations in Dangle consistently obtain lower intra- to

inter-class ratios than baseline models on both COGS and CFQ on both training and

test sets.

4.5 Experiments: Machine Translation

4.5.1 Dataset

We also applied our approach to CoGnition (Li et al., 2021), a recently released semi-

natural compositional generalization dataset targeting machine translation. This bench-

mark includes 216K English-Chinese sentence pairs; source sentences were taken from

the Story Cloze Test and ROCStories Corpora (Mostafazadeh et al., 2016, 2017) and

target sentences were constructed by post-editing the output of a machine translation

engine. It also contains a synthetic test set to quantify and analyze compositional
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generalization of neural MT models. This test set includes 10,800 sentence pairs, which

were constructed by embedding synthesized novel compounds into training sentence

templates. Table 4.5 shows an example. Each newly constructed compound is combined

with 5 different sentence templates, so that every compound can be evaluated under 5

different contexts.

4.5.2 Comparison Models

We compared our model to a Transformer translation model following the same setting

and configuration of Li et al. (2021). We adopted the encoder-decoder architecture vari-

ant of our approach (i.e., Dangle-encdec), as the encoder-only architecture performed

poorly possibly due to the complexity of the machine translation task. The number

of parameters was kept approximately identical to the Transformer baseline for a fair

comparison. All models were implemented using fairseq (Ott et al., 2019). More details

are provided below.

We adopted a Transformer translation model consisting of a 6-layer encoder and

a 6-layer decoder with hidden size 512. Each training batch includes 8,191 tokens at

maximum. This model was trained for 100,000 steps and we chose the best checkpoint

on the validation set for evaluation. Again, we experimented with sinusoidal (absolute)

and relative position embeddings.

We used the same hyperparameters as the baseline model except for the number

of layers which we tuned on the validation set; for relative position embeddings,

the encoder has 4 vanilla source-only Transformer encoder layers on top of 4 target-

informed Transformer encoder layers (i.e., k1 = 4 and k2 = 4) and the decoder has 4

Transformer decoder layers; for absolute position embeddings, the encoder has 4

vanilla source-only Transformer encoder layers on top of 2 target-informed Transformer

encoder layers (i.e., k1 = 2 and k2 = 4) and the decoder has 6 Transformer decoder

layers. For a fair comparison, we also experimented with 8 encoder layers and 4 decoder

layers for the Transformer baseline and found that it performs similarly to the standard

6-layer architecture.

4.5.3 Results

As shown in Table 4.6, + Dangle-encdec improves over the base Transformer model

by 1.2 BLEU points when relative position embeddings are taken into account. In

addition to BLUE, Li et al. (2021) evaluate compositional generalization using novel
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Model ↓ ErrRInst ↓ ErrRAggr ↑ BLEU

Transformer (ABS) 29.4 63.8 59.4

+ Dangle-encdec 24.4 55.5 59.7

Transformer (REL) 30.5 63.8 59.4

+ Dangle-encdec 22.8 50.6 60.6

Table 4.6: BLEU and compound translation error rates (ErrR) on the compositional

generalization test set. Subscript Inst denotes instance-wise error rate while Aggr

denotes aggregate error over 5 contexts. All results are averaged over 3 random seeds.

ABS denotes absolute position embeddings; REL denotes relative position embeddings.

compound translation error rate which is computed over instances and aggregated over

contexts. + Dangle-encdec variants significantly reduce novel compound translation

errors both across instances and on aggregate by as much as 10 absolute accuracy

points (see first two columns in Table 4.6). Across metrics, our results show that +

Dangle-encdec variants handle compositional generalization better than the vanilla

Transformer model.

4.5.4 Analysis

Two natural questions emerge given the substantial gain achieved by Dangle on the

compositional generalization (CG) test set: (a) Is this gain related to our treatment of

the entanglement problem? and (b) How does entanglement manifest itself in machine

translation? We attempt to answer these questions with an example.

In the CG test set, five new utterances are constructed by embedding the novel

compound ”behind the small doctor on the floor” into five sentence templates. In the

training set, the phrases “behind the [ADJ] [NOUN]” and “the [ADJ] [NOUN] on

the floor” appear frequently, but the phrase “behind the [ADJ] [NOUN] the [ADJ]

[NOUN]” is very rare. This poses a serious challenge for the baseline encoder-decoder

model, which mistakenly translates the compound phrase into 地板后面的小医生 (the

small doctor behind the floor), or 地板上的小医生 (the small doctor on the floor),

or altogether ignores the translation of some content words like 地板后面 (behind

the floor). It seems the baseline model cannot simultaneously represent the relation

between “behind” and “the small doctor” and the relation between “the small doctor”

and “the floor”, even though the two are conditionally independent. In contrast, Dangle

generates the correct translation 地板上的小医生后面 in all five contexts. We believe
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this is due to the proposed adaptive encoding mechanism and its ability to decompose

the representation problem of an unfamiliar compound phrase into sub-problems of

familiar phrases (i.e, “behind the small doctor” and “the small doctor on the floor”).

4.6 Summary

In this chapter, we first identified an entanglement problem with how different se-

mantic factors (e.g., lexical meaning and semantic relations) are represented in neural

sequence models that hurts generalization. Then we proposed an extension to sequence-

to-sequence models which allows us to learn more disentangled representations for

compositional generalization. We have argued that taking into account the target context

makes it easier for the encoder to exploit specialized information for improving its

predictions. Experiments on semantic parsing and machine translation have shown that

our proposal improves compositional generalization without any model-, dataset-, or

task-specific modification. Despite the promising performance, we exclusively evaluate

the proposal on synthetic benchmarks to isolate compositional generalization. In the

later chapters, we will extend the proposed model and apply it to real-world language

tasks.





Chapter 5

A Real-world Compositional

Generalization Challenge

In the previous chapter, we evaluated Dangle on two synthetic semantic parsing bench-

marks, namely COGS (Kim and Linzen, 2020) and CFQ (Keysers et al., 2020), and one

semi-natural machine translation benchmark, namely CoGnition (Li et al., 2021). Syn-

thetic datasets are typically generated via context-free grammars with a small lexicon

and can not represent the full complexity and noise of natural language. As a general

architectural innovation, Dangle has the potential of improving compositional general-

ization while fully maintaining the robustness and flexibility of neural models required

to process real language. Thus, we would like to extend and apply Dangle to real-

world settings involving both complex and noisy natural language and compositional

generalization.

Before doing so, we need to first address the evaluation problem: what is an

appropriate benchmark for evaluating real-world compositional generalization? In

this chapter, we develop a new methodology for detecting examples representative of

compositional generalization in naturally occurring text to better emulate a real-world

setting. Based on the proposed methodology, we create a real-world machine translation

challenge to complement the existing benchmarks.

5.1 Introduction

Models of compositional generalization are as good as the benchmarks they are eval-

uated on. Several existing benchmarks are made of artificially synthesized examples

using a grammar or rules to systematically control for different types of generalization
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(Lake and Baroni, 2018; Kim and Linzen, 2020; Keysers et al., 2020; Li et al., 2021).

Unfortunately, synthetic datasets lack the complexity of real natural language and

may lead to simplistic modeling solutions that do not generalize to real-world settings

(Dankers et al., 2022). Other benchmarks focus on naturally occurring examples but

create train-test splits based on the properties of formal meaning representations of

examples (e.g., logical forms, Finegan-Dollak et al. (2018); Shaw et al. (2021)). Un-

fortunately, formal annotations of meaning are not readily available for tasks beyond

semantic parsing. Since compositional generalization is a general problem, it is desir-

able to define it based on natural language without being limited to semantic parsing

and the availability of formal annotations.

In this chapter, we develop a new methodology for detecting examples representative

of compositional generalization in naturally occurring text. Given a training and test

corpora: (a) we discard examples from the test set that contain out-of-vocabulary (OOV)

or rare words (in relation to training) to exclude novel atoms which are out of scope

for compositional generalization; (b) we then measure how compositional a certain test

example is with respect to the training corpus; we introduce a metric which allows us

to identify a candidate pool of highly compositional examples; (c) using uncertainty

estimation, we further select examples from the pool that are both compositional in

terms of surface form and challenging in terms of generalization difficulty. Following

these three steps, we create a machine translation benchmark using the IWSLT 2014

German-English dataset as our training corpus and the WMT 2014 German-English

shared task as our test corpus. Analysis on the created benchmark shows that it contains

much more diverse patterns in terms of lexical and syntactic composition than existing

artificial benchmarks.

5.2 The ReaCT Dataset

It is fair to assume that a SOTA model deployed in the wild (e.g., a Transformer-based

translation system) will be constantly presented with new test examples. Many of them

could be similar to seen training instances or compositionally different but in a way that

does not pose serious generalization challenges. An ideal benchmark for evaluating

compositional generalization should therefore consist of phenomena that are of practical

interest while challenging for SOTA models. To this end, we create ReaCT, a new

REAl-world dataset for Compositional generalization in machine Translation. Our key

idea is to obtain a generalization test set by detecting compositional patterns in relation
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Selected Examples Compositional Degree Uncertainty

7 but what can we do about this ? 2 / 8 = 0.25 —

7 please report all changes here . 5 / 6 = 0.83 0.054

4 you have disabled your javascript ! 5 / 6 = 0.83 0.274

Table 5.1: Candidate examples from the WMT corpus. Different n-grams previously seen

in the IWSTL training corpus are highlighted in color. The first example is composed of

two n-grams (but and what can we do about this?) with a compositional degree 0.25,

and is discarded in the second stage. The second example has a high compositional

degree but receives a low uncertainty score, and is thus filtered in the third stage. The

third example is high in terms of both compositional degree and uncertainty, and is

included in the compositional test set.

to an existing training set from a large and diverse pool of candidates. Specifically, we

use the IWSLT 2014 German→ English dataset as our training corpus. The IWSLT

2014 De→En dataset consists of approximately 170K sequence pairs. We used the

fairseq script prepare-iwslt14.sh to randomly sample approximately 4% instances

of this dataset as validation set and kept the rest as training set. Following standard

practice, we created an in-domain test set, the concatenation of files dev2010, dev2012,

tst2010, tst2011, and tst2012. We use the WMT 2014 German→ English shared task

as our test corpus and detect from the pool of WMT instances those that exemplify

compositional generalization with respect to IWSLT. This procedure identifies naturally

occurring compositional patterns which we hope better represent practical generalization

requirements than artificially constructed challenges.

5.2.1 Compositional Test Set

In the following, we describe how we identify examples that demand compositional

generalization. While we create our new benchmark with machine translation in mind,

our methodology is general and applicable to other settings such as semantic parsing.

For instance, we could take a relatively small set of annotated user queries as our

training set and create a generalization challenge from a large pool of unlabeled user

queries.

Filtering Out-of-Vocabulary Atoms Compositional generalization involves gener-

alizing to new compositions of known atoms. The WMT corpus includes many new
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semantic and syntactic atoms that are not attested in IWSLT. A large number of these are

out-of-vocabulary (OOV) words which are by definition unknown and out of scope for

compositional generalization. We thus discard WMT examples with words occurring

less than 3 times in the IWSLT training set which gives us approximately a pool of

1.3M examples. For simplicity, we do not consider any other types of new atoms such

as unseen word senses or syntactic patterns.

Measuring Compositionality How to define the notion of compositional generaliza-

tion is a central question in creating a benchmark. Previous definitions have mostly

centered around linguistic notions such as constituents or context-free grammars (Kim

and Linzen, 2020; Keysers et al., 2020; Li et al., 2021; Shaw et al., 2021). These notions

are appropriate for synthetic examples or logical forms as their underlying hierarchical

structures are well-defined and can be obtained with ease.

Since we do not wish to synthesize artificial examples or be limited to formal

language but rather detect real-world utterances, relying on the notion of constituent

might be problematic. Sentences in the wild are often noisy and ungrammatical and

it is far from trivial to analyze their syntactic structure so as to reliably identify new

compositions of known constituents. We overcome this problem by devising a metric

based on n-gram matching which assesses how compositional a certain example is with

respect to a training corpus.

Specifically, we first create a lookup dictionary of atomic units by extracting all

n-grams that occur more than 3 times in the training corpus. Given a candidate sen-

tence, we search the dictionary for the minimum number of n-grams that can be

composed to form the sentence. For example, for sentence “x1x2x3x4x5” and dictionary

(x1,x2,x3x4,x5,x1x2,x3x4x5,), the minimum set of such n-grams is (x1x2,x3x4x5). A

sentence’s compositional degree with respect to the training corpus is defined as the ratio

of the minimum number of n-grams to its length (e.g., 2/5 = 0.4 for the above example).

We select the top 60,000 non-overlapping examples with the highest compositional

degree as our candidate pool. As we will discuss in the next chapter ( Section 6.3.3),

compositional degree further allows us to examine at a finer level of granularity how

model performance changes as test examples become increasingly compositional.

Estimating Uncertainty Examples with the same compositional degree could pose

more or less difficulty to neural sequence models (see last two utterances in Table 5.1).

Ideally, we would like to identify instances that are compositional in terms of the surface
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Dataset # examples
Comp Word n-gram POS n-gram

Degree 2 3 2 3

COGS 21,000 0.392 6,097 24,275 12 27

CoGnition 10,800 0.502 1,865 13,344 1 38

CFQ 11,968 0.268 168 2,736 8 30

ReaCT 3,000 0.811 19,315 33,652 76 638

Table 5.2: Dataset Statistics: unique novel n-grams computed over words and parts of

speech (POS) in ReaCT, and test partitions of COGS, CoGnition, and CFQ benchmarks.

ReaCT shows a much higher compositional degree and more diverse n-gram patterns

compared to other benchmarks.

form and hard in terms of the underlying generalization (see the third example in

Table 5.1). We detect such examples using a metric based on uncertainty estimation and

orthogonal to compositional degree. We quantify predictive uncertainty based on model

ensembles, a method that has been successfully applied to detecting misclassifications

and out-of-distribution examples (Lakshminarayanan et al., 2017; Malinin and Gales,

2021).

We follow the uncertainty estimation framework introduced in Malinin and Gales

(2021) for sequence prediction tasks. Specifically, we train M = 10 Transformer

models with different random initializations on IWSLT (our training corpus). Give the

ensemble of models {P(Y |X ;θ(m))}M
m=1 whose parameters are assumed to be sampled

from an approximate posterior q(θ|D), the predictive posterior is obtained by taking

the expectation over the ensemble:

P(Y |X ,D) = Eq(θ|D)

[
P(Y |X ,θ)

]
≈ 1

M ∑
M
m=1 P(Y |X ,θ(m)) (5.1)

Malinin and Gales (2021) introduced reverse mutual information (RMI) between

each model and the predictive posterior to measure diversity or disagreement between

models in the ensemble :

M
[
Y,θ|X ,D

]
= Eq(θ|D)

[
EP(Y |X ,D)

[
ln

P(Y |X ,D)

P(Y |X ,θ)

]]
(5.2)

The assumption is that model disagreement on examples reflects knowledge uncer-

tainty which is the models’ uncertainty in predictions due to lack of understanding of

the task rather than data uncertainty, the intrinsic uncertainty associated with the task

(e.g., a sentence could have multiple correct translations).
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Since it is intractable to evaluate the expectation over all Y s due to the combinatorial

explosion of the hypothesis space, in practice, we approximate it using 10 samples from

the predictive posterior for the ensemble via a product-of-expectations:

P(Y |X ,D) =
m

∏
l=1

Eq(θ|D)

[
P(yl|Y<l,X ,θ)

]
(5.3)

which is implemented in fairseq (Ott et al., 2019) to ensemble models for generation.

We run inference over the candidate pool created in the previous stage; for each

example in this pool, we compute the knowledge uncertainty. Note that the computation

does not require access to gold targets. Thus, our approach could be used to select

examples from a large pool of unannotated candidates.

We empirically found that the most uncertain examples are extremely noisy and

barely legible (e.g., they include abbreviations, typos, and non-standard spelling). We

thus discard the top 2,000 uncertain examples and randomly sample 3,000 instances

from the next 18,000 most uncertain examples in an attempt to create a generalization

test set with diverse language patterns and different levels of uncertainty.

5.2.2 Analysis

In this section, we analyze the compositional nature of ReaCT by comparing it to

several popular benchmarks. Specifically, for all datasets, we count the number of

novel test set n-grams that have not been seen in the training. We extract n-grams over

words and parts of speech (POS); word-based n-grams represent more superficial lexical

composition while n-grams based on POS tags reflect more of syntactic composition.

As shown in Table 5.2, despite being considerably smaller compared to other

benchmarks (see # examples column), ReaCT presents substantially more diverse

patterns in terms of lexical and syntactic composition. It displays a much bigger number

of novel word n-grams, which is perhaps not surprising. Being a real-world dataset, it

has a larger vocabulary and more linguistic variation. While our dataset creation process

does not explicitly target novel syntactic patterns (approximated by POS n-grams),

ReaCT still includes substantially more compared to other benchmarks. This suggests

that it captures the complexity of real-world compositional generalization to a greater

extent than what is achieved when examples are synthesized artificially. We show

ReaCT examples with novel POS n-gram compositions in Table 5.3. These are novel

syntactic patterns approximated by POS n-grams.
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Train Test

• and i can ’t believe you ’re here and that i ’m meeting

you here at ted . ( PRP RB IN NN . )

• you see , this is what india is today . the ground reality

is based on ( DT NN NN VBZ VBN IN ) a cyclical

world view .

the account data is provided to

you directly via e-mail .

• a couple of hours ( DT NN IN NNS ) later , the sun

will shine on the next magnifying glass .

• but this could also be used for good . ( MD RB VB

VBN IN NN . )

both setting of tasks must success-

fully be mastered under supervi-

sion .

• the national science foundation , other countries ( JJ

NN NN , JJ NN ) are very interested in doing this

• no , they are full of misery . ( VBP JJ IN NN .)

its warm water temperature ,

small depth are convenient for

bathing .

Table 5.3: Novel syntactic compositions in ReaCT test set (syntactic atoms of the same

type are color coded). POS-tag sequences for these atoms are shown in parentheses

(PRP:pronoun, RB:adverb, IN: preposition, NN/S:noun singular/plural, DT: determiner,

JJ: adjective, MD:modal, VBZ/P: non-/3rd person singular present, VBN: verb past

participle.)

5.3 Summary

In this chapter, we proposed a methodology for identifying compositional patterns in

real-world data to represent practical generalization requirements. Given a training and

test corpora: (a) we discard examples from the test set that contain out-of-vocabulary

(OOV) or rare words (in relation to training) to exclude novel atoms; (b) we then

measure how compositional a certain test example is with respect to the training corpus;

(c) using uncertainty estimation, we further select examples from the pool that are

both compositional in terms of surface form and challenging in terms of generalization

difficulty. Based on our methodology, we create a machine translation benchmark

using the IWSLT 2014 German-English dataset as our training corpus and detecting

3,000 highly compositional examples from the WMT 2014 German-English training

corpus as our test set. We show that the constructed test set contains much more diverse

compositional patterns than existing artificial benchmarks. In the next chapter, we will

use the created benchmark to assess models’ performance on real-world compositional

generalization.





Chapter 6

Real-world Disentangled

Sequence-to-Sequence Learning

The main motivation for Dangle (see Chapter 4) was to advance compositional general-

ization while maintaining the robustness and flexibility of neural models required to

process real language. However, in Chapter 4 we only evaluated Dangle on synthetic

benchmarks in order to isolate compositional generalization. Therefore, it is still unclear

whether Dangle is effective in real-world settings involving both complex and noisy

natural language and compositional generalization. In this chapter, we aim to extend

Dangle and apply it to real-world language tasks, including ReaCT developed in the

previous chapter.

To this end, we propose a new variant of Dangle, which adaptively re-encodes keys

periodically, at some interval. Our modifications encourage learning more disentangled

representations more efficiently. We benchmark the proposed model on existing datasets

(Andreas et al., 2020; Li et al., 2021) and the ReaCT benchmark. Experimental results

demonstrate that our new architecture achieves better generalization performance across

tasks and datasets and is adept at handling real-world challenges.

6.1 Introduction

In this chapter. we aim to advance real-world compositional generalization via general

neural architectural modifications which are applicable to a wide range of real tasks.

Our starting point is Dangle introduced in Chapter 4, a sequence-to-sequence model that

learns more Disentangled representations by adaptively re-encoding (at each time step)

the source input. For each decoding step, Dangle learns specialized source encodings
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by conditioning on the newly decoded target which leads to better compositional

generalization compared to vanilla Transformers where source encodings are shared

throughout decoding. Although promising, the results presented in Chapter 4 are based

on synthetic datasets, leaving open the question of whether Dangle is effective in real-

world settings involving both complex and noisy natural language and compositional

generalization.

We present two key modifications to Dangle which encourage learning more dis-

entangled representations more efficiently. The need to perform re-encoding at each

time step substantially affects Dangle’s training time and memory footprint. It becomes

prohibitively expensive on datasets with long target sequences, e.g., programs with 400+

tokens in datasets like SMCalFlow (Andreas et al., 2020). To alleviate this problem,

instead of adaptively re-encoding at each time step, we only re-encode periodically, at

some interval. Our decoder is no different from a vanilla Transformer decoder except

that it just re-encodes once in a while in order to update its history information. Our

second modification concerns disentangling the representations of source keys and

values, based on which the encoder in Dangle (and also in Transformers) passes source

information to the decoder. Instead of computing keys and values using shared source

encodings, we disassociate their representations: we encode source values once and

re-encode keys periodically.

We evaluate the proposed model on existing benchmarks (Andreas et al., 2020;

Li et al., 2021) and the ReaCT benchmark introduced in the previous chapter. Exper-

imental results demonstrate that our new architecture achieves better generalization

performance across tasks and datasets and is adept at handling real-world challenges.

Machine translation experiments on a diverse corpus of 1.3M WMT examples show it

is particularly effective for long-tail compositional patterns.

6.2 The R-Dangle Model

In this section, we describe the proposed model, which we call R-Dangle as a shorthand

for Real-world Disentangled Transformer.

6.2.1 Background: The Dangle Model

We first briefly recap Dangle introduced in Chapter 4, focusing on the encoder-decoder

architecture which delivers better performance on complex tasks like machine transla-
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tion.

Let X = [x1,x2, ...,xn] denote a source sequence; let fEncoder and fDecoder denote a

Transformer encoder and decoder, respectively. X is first encoded into a sequence of

contextualized representations H:

H = fEncoder(X) (6.1)

which are then used to decode target tokens [y1,y2, ...,ym] one by one. At the t-th

decoding step, the Transformer takes yt−1 as input, reusing the source encodings H
and target memory Mt−1 which contains the history hidden states of all decoder layers

corresponding to past tokens [y1,y2, ...,yt−2]:

yt ,Mt = fDecoder(yt−1,H,Mt−1) (6.2)

This step not only generates a new token yt , but also updates the internal target memory

Mt by concatenating Mt−1 with the newly calculated hidden states corresponding

to yt−1.

Dangle differs from vanilla Transformers in that it concatenates the source input

with the previously decoded target to construct target-dependent input for adaptive

decoding:

Ct = [x1,x2, ...,xn,y1,y2, ...,yt−1, [PH]] (6.3)

Ht = fAdaptive Encoder(Ct) (6.4)

The adaptive encoder consists of two components. Ct is first fed to k1 Transformer

encoder layers to fuse the target information:

H̄t = fAdaptive Encoder1(Ct) (6.5)

where H̄t is a sequence of contextualized representations [h̄t,1, ..., h̄t,n, h̄t,n+1, ..., h̄t,n+t ].

Then, the first n vectors corresponding to source tokens are extracted and fed to another

k2 Transformer encoder layers for further processing:

Ht = fAdaptive Encoder2(H̄t [: n]) (6.6)

Finally, the adaptive source encodings Ht together with the target context Y<t =

[y1,y2, ...,yt−1] are fed to a Transformer decoder to predict yt :

yt ,Mt = fDecoder(Y<t ,Ht ,{}) (6.7)
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In a departure from vanilla Transformers, Dangle does not reuse the target memory

from previous steps, but instead re-computes all target-side hidden states based on new

source encodings Ht .

Similarly to Transformers, Dangle accesses source information at each decoding

step via encoder-decoder attention layers where the same encodings Ht are used to

compute both keys Kt and values Vt :

Kt = HtW K (6.8)

Vt = HtWV (6.9)

Ot = Attention(Qt ,Kt ,Vt) (6.10)

where key and value projections W K and WV are parameter matrices; and Qt , Kt , Vt ,

and Ot are respectively query, key, value, and output matrices, at time step t.

6.2.2 Re-encoding at Intervals

The need to perform re-encoding (and also re-decoding) at each time step substantially

increases Dangle’s training cost and memory footprint, so that it becomes computation-

ally infeasible for real-world language tasks with very long target sequences (e.g., in

the region of hundreds of tokens). Adaptively re-encoding at every time step essentially

means separating out relevant source concepts for each prediction. However, the Trans-

former is largely capable of encoding source phrases and decoding corresponding target

phrases (or logical form fragments in semantic parsing), as evidenced by its remarkable

success in many machine translation and semantic parsing benchmarks (Vaswani et al.,

2017; Wang et al., 2020; Zheng and Lapata, 2021). This entails that the entanglement

problem (i.e., not being able to disassociate the representations of different concepts

for a sequence of predictions) does not occur very frequently. We therefore relax the

strict constraint of re-encoding at every step in favor of the more flexible strategy of

re-encoding at intervals.

Given source sequence X = [x1,x2, ...,xn], we specify P = [t1, t2, ..., tl](ti+1− ti = o)

in advance, i.e., a sequence of re-encoding points with interval o. Then, during decoding,

when reaching a re-encoding point t(t = ti), we update source encodings Ht and target

memory Mt :

Ht = fAdaptive Encoder(Ct) (6.11)

yt ,Mt = fDecoder(Y<t ,Ht ,{}) (6.12)
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where fAdaptive Encoder denotes the adaptive encoder described in Section 6.2.1. For the

next time step t(ti < t < ti+1), we fall back to the vanilla Transformer decoder using the

source encodings Hti computed at time step ti:

yt ,Mt = fDecoder(yt−1,Hti,Mt−1) (6.13)

Note that we always set t1 to 1 to perform adaptive encoding at the first time step.

6.2.3 Disentangling Keys and Values

During decoding, Dangle accesses source information via cross-attention (also known

as encoder-decoder attention) layers where the same source encodings are used to

compute both keys and values. The core design principle underlying Dangle is that

learning specialized representations for different purposes will encourage the model

to zero in on relevant concepts, thereby disentangling their representations. Based on

the same philosophy, we assume that the source keys and values encapsulate different

aspects of source information, and that learning more specialized representations for

them would further improve disentanglement, through the separation of the concepts

involved.

A straightforward way to implement this idea is using two separately parameterized

encoders to calculate two groups of source encodings (i.e., corresponding to keys and

values, respectively) during re-encoding. However, in our preliminary experiments, we

observed this leads to serious overfitting and performance degradation. Instead, we

propose to encode values once and only update keys during adaptive encoding. We

compute source values via the standard Transformer encoder:

Hv = fEncoder(X) (6.14)

and adaptively re-encode source keys at an interval:

Hk
t = fAdaptive Encoder(Ct) (6.15)

yt ,Mt = fKV Decoder(Y<t ,Hv,Hk
t ,{}) (6.16)

where fKV Decoder denotes a slightly modified Transformer decoder where source keys

and values in each cross-attention layer are calculated based on different source encod-
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ings:

Kt = Hk
t W

K (6.17)

V = HvWV (6.18)

Ot = Attention(Qt ,Kt ,V) (6.19)

At time step t (where ti < t < ti+1), we perform vanilla Transformer decoding:

yt ,Mt = fKV Decoder(yt−1,Hv,Hk
ti,Mt−1) (6.20)

Note that fully sharing values could potentially cause some entanglement, however,

we did not observe this in practice. We also experimented with a variant where keys

are shared and values are repeatedly re-computed but empirically observed it obtains

significantly worse generalization performance than the value-sharing architecture

described above. This indicates that entanglement is more likely to occur when sharing

keys.

6.3 Experimental Setup

6.3.1 Datasets

We evaluated R-Dangle on two machine translation datasets and one semantic parsing

benchmark which we selected to maximally reflect natural language variations and

real-world generalization challenges.

ReaCT is the machine translation benchmark developed in Chapter 5. The IWSLT

2014 De→En dataset consists of approximately 170K sequence pairs. We used the

fairseq script prepare-iwslt14.sh to randomly sample approximately 4% of this

dataset as validation set and kept the rest as training set. Following standard practice,

we created an in-domain test set, the concatenation of files dev2010, dev2012, tst2010,

tst2011, and tst2012. We created a compositional test set from the WMT’14 De→En

training corpus (see Section 5.2 for more details).

CoGnition is another machine translation benchmark targeting compositional general-

ization (see an example in Table 2.4) (Li et al., 2021). It contains a synthetic test set to

quantify and analyze compositional generalization of neural MT models. This test set

was constructed by embedding synthesized novel compounds into training sentence tem-



6.3. Experimental Setup 77

plates. Each compound was combined with 5 different sentence templates, so that every

compound can be evaluated under 5 different contexts. A major difference between

REACT and CoGnition is the fact that test sentences for the latter are not naturally

occurring. Despite being somewhat artificial, CoGnition overall constitutes a realistic

benchmark which can help distinguish subtle model differences compared to purely

synthetic benchmarks. For example, we showed in Chapter 4 that the encoder-only

variant of Dangle performed badly on this dataset in spite of impressive performance on

synthetic semantic parsing benchmarks (Kim and Linzen, 2020; Keysers et al., 2020).

SMCalFlow-CS is a large-scale semantic parsing dataset for task-oriented dialogue

(Andreas et al., 2020), featuring real-world human-generated utterances about calendar

management (see an example in Table 2.4). Yin et al. (2021) proposed a compositional

skills split of SMCalFlow (SMCalFlow-CS) that contains single-turn sentences from one

of two domains related to creating calendar events (e.g., Set up a meeting with Adam)

or querying an org chart (e.g., Who are in Adam’s team? ), paired with LISP programs.

The training set S consists of samples from single domains while the test set C contains

compositions thereof (e.g., create a meeting with Adam and his team). Since zero-shot

compositional generalization is highly non-trivial due to novel language patterns and

program structures, we follow previous work (Yin et al., 2021; Qiu et al., 2022a) and

consider a few-shot learning scenario, where a small number of cross-domain examples

are included in the training set. We report experiments with 6, 16, and 32 examples.

6.3.2 Models

Machine Translation On machine translation, our experiments evaluated two variants

of R-Dangle depending on whether keys and values are shared (R-Dangleshr) or separate

(R-Danglesep). We implemented all translation models with fairseq (Ott et al., 2019).

Following previous work (Li et al., 2021; Zheng and Lapata, 2022), we compared with

the machine translation models Dangle and vanilla Transformer using the popular fairseq

configuration transformer iwslt de en. We also implemented a bigger variant of

these models using a new configuration, which empirically obtained better performance.

We used 12 encoder layers and 12 decoder layers. We set the dropout to 0.3 for

attention weights and 0.4 after activations in the feed-forward network. We also

used pre-normalization (i.e., we added layer normalization before each block) to ease

optimization. Following Zheng and Lapata (2022), we used relative position embeddings
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CoGnition 1 2 4 8

R-Dangleshr 62.5 62.3 62.3 61.9

R-Danglesep 63.4 63.1 62.3 62.1

ReaCT 1 2 4 8

R-Dangleshr 11.8 11.9 11.8 11.6

R-Danglesep 12.3 12.2 11.9 11.7

Table 6.1: BLEU score for R-Dangle variants (with different re-encoding intervals) on

CoGnition and ReaCT compositional generalization test sets. Note that R-Dangleshr

with interval 1 is Dangle. Results are averaged over 5 random runs on CoGnition and 3

random runs on ReaCT.

(Shaw et al., 2018; Huang et al., 2020) which have demonstrated better generalization

performance.

Hyperparameters for R-Dangle were tuned on the respective validation sets of

CoGnition and ReaCT. Both R-Dangleshr and R-Danglesep used a 12-layer decoder. For

R-Dangleshr, we tuned the number of layers of the two adaptive components k1 and k2,

and set k1 and k2 to 2 and 10, respectively. For R-Danglesep, we shared some layers of

parameters between the value encoder and the adaptive key decoder and experimented

with different sharing strategies. Finally, we adopted a 10-layer value encoder and a

10-layer key encoder (k1 = 2 and k2 = 8). The top 8 layers in the two encoders were

shared. This configuration produced 12 differently parametrized transformer encoder

layers, thus maintaining an identical model size to the baseline.

Semantic Parsing Qiu et al. (2022a) showed the advantage of pre-trained sequence-

to-sequence models on SMCalFlow-CS. We therefore built R-Dangle on top of BART-

large (Lewis et al., 2020), which is well supported by fairseq. We used BART’s

encoder and decoder to instantiate the adaptive encoder and decoder in our model. For

compatibility, we only employ the R-Dangleshr architecture. We also set k1 and k2 to 2

and 10, respectively.

6.3.3 Results

Disentangling Keys and Values Improves Generalization Table 6.1 reports the

BLEU score (Papineni et al., 2002) achieved by the two R-Dangle variants on ReaCT

and CoGnition, across different re-encoding intervals. R-Danglesep is consistently
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Models
CoGnition ReaCT

↓ ErrRInst ↓ ErrRAggr ↑ ind-test ↑cg-test ↑IWSLT14 ↑cg-test

Transformer (small) 30.5 63.8 69.2 59.4 34.4 9.5

Dangle (small) 22.8 50.6 69.1 60.6 — —

Transformer (large) 23.4 53.7 70.8 61.9 36.0 11.4

Dangle (large) 19.7 47.0 70.6 62.5 36.1 11.8

R-Danglesep (interval = 1 ) 16.0 42.1 70.7 63.4 36.0 12.3

Table 6.2: Machine Translation Results: we compare R-Dangle to baseline models on

CoGnition and ReaCT. The small variant has a 6-layer encoder and decoder; the large

variant has a 12-layer encoder and decoder. For CoGnition, we report instance-wise and

aggregate compound translation error rates (ErrR) on the compositional generalization

test set (cg-test) and BLEU on both in-domain test set (ind-test) and cg-test. For ReaCT,

we report BLEU on the in-domain IWSLT 2014 De→En test set and the compositional

generalization test set (cg-test) created in this paper. Results are averaged over 5

random runs on CoGnition and 3 random runs on ReaCT.

better than R-Dangleshr which confirms that representing keys and values separately is

beneficial. We also observe that smaller intervals lead to better performance (we discuss

this further later).

Table 6.2 compares R-Danglesep (with interval 1) against baseline models. In

addition to BLUE, we report novel compound translation error rate, a metric introduced

in Li et al. (2021) to quantify the extent to which novel compounds are mistranslated. We

compute the error rate over instances and an aggregate score over contexts. R-Danglesep

delivers compositional generalization gains over Dangle and vanilla Transformer models

(both in terms of BLEU and compound translation error rate), even though their

performance improves when adopting a larger 12-layer network. R-Danglesep achieves

a new state of the art on CoGnition (a gain of 0.9 BLEU points over Dangle and 1.5

BLEU points over the Transformer baseline). R-Danglesep fares similarly on ReaCT; it

is significantly superior to the Transformer model by 0.9 BLEU points, and Dangle by

0.5 BLEU points. Moreover, improvements on compositional generalization are not at

the expense of in-domain performance (R-Dangle obtains similar performance to the

Transformer and Dangle on the IWSLT2014 in-domain test set).

R-Dangle Can Handle Long-tail Compositional Patterns Bettter We next examine

model performance on real-world examples with diverse language and different levels
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Systems 8-C 16-C 32-C

BERT2SEQ (Yin et al., 2021) — 33.6 53.5

BERT2SEQ+SS (Yin et al., 2021) — 46.8 61.7

C2F (Yin et al., 2021) — 40.6 54.6

C2F+SS (Yin et al., 2021) — 47.4 61.9

T5 (Qiu et al., 2022a) 34.7 44.7 59.0

T5+CSL (Qiu et al., 2022a) 51.6 61.4 70.4

BART-large 32.1 47.2 61.9

+R-Dangleshr (interval = 6) 36.3 50.6 64.1

Table 6.3: Semantic Parsing Results: we compare R-Dangle to various systems on

SMCalFlow-CS. *-C denote different settings with 8, 16, and 32 cross-domain examples

added to the training set. Results for BERT and C2F models are from Yin et al. (2021).

Results for T5 models are from Qiu et al. (2022a). Results for BART and R-Dangle are

averaged over 3 random runs.

of composition. Specifically, we train R-Danglesep (interval=1) and a Transformer

on the IWSTL14 corpus and test on the pool of 1.3M WMT examples obtained after

filtering OOV words (see Section 5.2 for more details). Figure 6.2 plots the difference

in BLEU between the two models against compositional degree. This fine-grained

evaluation reveals that they perform similarly on the majority of less compositional

examples (BLUE difference is around zero), however, the performance gap becomes

larger with more compositional examples (higher difference means higher BLEU for

R-Danglesep). This indicates that R-Dangle is particularly effective for handling long-

tail compositional patterns.

R-Dangle Boosts the Performance of Pretrained Models The “pre-train and fine-

tune” paradigm (Peters et al., 2018; Devlin et al., 2019; Raffel et al., 2020; Lewis et al.,

2020) has been widely adopted in NLP, and semantic parsing is no exception (Shin

et al., 2021; Qiu et al., 2022a). We further investigate R-Dangle’s performance when

combined with a pre-trained model on the SMCalFlow-CS dataset (across the three

cross-domain settings). Table 6.3 shows that R-Dangleshr boosts the performance of

BART-large, which suggests that generalization improvements brought by R-Dangle

are complementary to generalization benefits afforded by large-scale pre-training (see

Chapter 4 for a similar conclusion). The proposed model effectively marries pre-training

with disentangled representation learning to achieve better generalization.
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Figure 6.1: Training cost (hours) and test accuracy vs interval length. R-Danglek was

trained on SMCalFlow-CS using 4 A100 GPUs. For each interval, we perform 5 random

runs. Error bars are 95% confidence intervals.

In Table 6.3, we also compare R-Dangle with other top-performing models on

SMCalFlow-CS. These include: (a) a sequence-to-sequence model with a BERT en-

coder and an LSTM decoder using a copy mechanism (BERT2SEQ; Yin et al. 2021);

(b) the coarse-to-fine model of Dong and Lapata (2018) which uses a BERT encoder

and a structured decoder that factorizes the generation of a program into sketch and

value predictions; (c) and combinations of these two models with span-supervised

attention (+SS; Yin et al. 2021). We also include a T5 model and a variant thereof

trained on additional data using a model called Compositional Structure Learner (CSL)

to generate examples for data augmentation (T5+CSL; Qiu et al. 2022a). R-Dangle with

BART performs best among models that do not use data augmentation across composi-

tional settings. Despite its excellent performance, R-Dangle still lags behind T5+CSL,

which indicates that in some scenarios explicitly injecting compositional inductive bias

(through grammars) is still helpful for further improving the generalization of neural

networks. At a high level, how to build neural systems that show human-like symbolic

information processing is still an open problem.

Larger Re-encoding Intervals Reduce Training Cost The results in Table 6.1 in-

dicate that re-encoding correlates with R-Dangle’s generalization ability, at least for

machine translation. Both model variants experience a drop in BLEU points when

increasing the re-encoding interval to 8. We hypothesize that this sensitivity to interval

length is task-related; target sequences in machine translation are relatively short and
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Figure 6.2: Difference in BLEU score between R-Danglesep (interval = 1) and Transformer

vs compositional degree. A positive score means R-Danglesep is better than Transformer.

Each data point is computed on 30K WMT examples. R-Dangle shows increasing

performance improvements as test examples become more compositional.

representative of real language, whereas in SMCalFlow-CS, the average length of target

sequences (in formal language) is 99.5 (when tokenized with the BART tokenizer)

and the maximum length is 411. It is computationally infeasible to train R-Dangle

with small intervals on this dataset, however, larger intervals still produce significant

performance gains.

Figure 6.1 shows how accuracy and training time vary with interval length on

SMCalFlow-CS with the 16-C setting. Larger intervals substantially reduce training

costs with an optimal speed-accuracy trade-off in between 10 and 50. For instance,

interval 40 yields a 4x speed-up compared to interval 10 while achieving similar

accuracy (i.e., 50.3% vs 50%). Therefore, SMCalFlow-CS allows a much larger interval

that is able to achieve both superior generalization to Transformer and better compute

efficiency than Dangle. Interestingly, the performance is not changing monotonically.

The random variance, shown in the error bars, could partly explain this. Besides, we

conjecture that it could also be due to the effect of re-encoding points. A large interval

could produce new re-encoding points that a small interval does not produce and these

points could be critical to generalization performance. As a result, raising intervals

sometimes leads to performance boosts. In general, finding the minimum set of critical

re-encoding points to achieve an optimal trade-off between generalization and efficiency

is an open research problem, which we leave to future work.
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6.4 Summary

In this chapter, we have moved closer towards real-world compositional generalization.

We adapted Dangle to real-world tasks by improving upon it with two key modifica-

tions. We showed that re-encoding keys periodically, at some interval, improves both

efficiency and accuracy. Experimental results on real-world language tasks including

both semantic parsing and machine translation showed that the disentangled sequence-

to-to-sequence models deliver superior compositional generalization compared to the

Transformer model across tasks, metrics, and datasets. Machine translation experiments

on a diverse corpus of 1.3M WMT examples show the proposed R-Dangle model is

particularly effective for long-tail compositional patterns. As a general neural network

architecture, R-Dangle inherits the robustness and flexibility of neural models and is

adept at handling real-world challenges.





Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we investigated how to improve compositional generalization of neural

sequence-to-sequence models, aiming at building systems with human-like systematic

compositionality. We studied this problem from two different perspectives. Firstly,

motivated by the inherent compositionality of grammar-based systems for seman-

tic parsing, in Chapter 3 we attempted to incorporate symbolic structure into neural

sequence-to-sequence models. The key challenge is how to combine the best of both

worlds: the compositional nature of symbolic systems and the flexibility and robustness

of neural systems. We proposed a two-stage decoding strategy, aiming to improve

compositional generalization while having a robust and flexible system that is applica-

ble to different datasets and semantic formalisms. Specifically, we augmented neural

sequence-to-sequence models (connectionist architecture) with semantic tagging (sym-

bolic structure). An input utterance is first tagged with semantic symbols representing

the meaning of individual words, and then the final meaning representation is gener-

ated based on the tagged input. This two-stage decoding process leads to improved

compositional generalization across different semantic parsing datasets and semantic

formalisms.

The success of semantic tagging assumes that there is a well-defined one-to-one

mapping between input symbols and output symbols. However, this condition does

not always hold in real-world applications. For example, when the output logical

form in semantic parsing includes many formalism-specific symbols that do not align

with language expressions or the output utterance in machine translation bears a more

complex and global many-to-many relationship to the input utterance. In Chapter 4,

85
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we thus tackled compositional generalization through pure neural architectures without

symbolic components. It has the potential to fully maintain the robustness and flexibility

of neural models required to perform many real language tasks. We designed Dangle,

a new neural network architecture for sequence-to-sequence modeling to learn more

disentangled representations for better compositional generalization. Specifically, we

first identified an entanglement problem with how different semantic factors (e.g., lexical

meaning and semantic relations) are represented in neural sequence models that hurts

generalization. Then we proposed an extension to sequence-to-sequence models which

adaptively re-encodes (at each time step) the source input by conditioning the source

representations on the newly decoded target context. This mechanism makes it easier

for the encoder to exploit specialized information for each prediction and disentangle

relevant source factors across different predictions. We conducted experiments on

two semantic parsing benchmarks and one machine translation benchmark specifically

designed for testing compositional generalization. We empirically verified that this new

network architecture leads to better generalization than the Transformer architecture.

The main motivation of advancing compositional generalization via pure architec-

tural modifications is to preserve the flexible and general ability of neural networks

to perform real-world tasks. However, as a proof-of-concept, we evaluated Dangle

exclusively on synthetic datasets to isolate compositional generalization. We would

like to move towards more real-world compositional generalization. In Chapter 5, we

first addressed the evaluation problem: we developed a new methodology for detecting

examples representative of compositional generalization in naturally occurring text to

better emulate a real-world setting. Based on the methodology, we created a real-world

machine translation challenge to complement the existing benchmarks. In Chapter 6, we

adapted Dangle to real-world language tasks with two key modifications. We showed

that re-encoding keys periodically, at some interval, improves both efficiency and accu-

racy. Experimental results confirmed that our modifications improve generalization in

real-world settings across tasks, metrics, and datasets and our new benchmark provides

a challenging testbed for evaluating new modeling efforts.

The findings of this thesis include:

• We proposed a two-stage decoding strategy to augment neural sequence-to-

sequence models (connectionist architecture) with semantic tagging (symbolic

structure) for semantic parsing. We showed that for tasks that show clear local

alignments between the source input and the target output, explicitly taking into

account the alignments leads to improved compositional generalization.
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• We proposed a new family of neural network architectures for compositional gen-

eralization, namely disentangled sequence-to-sequence models. We showed that

learning specialized representation for different purposes ( through re-encoding

and key value separation) gives rise to more disentangled representations and

superior compositional generalization compared to the widely used Transformer

architecture.

• We developed a new methodology for creating real-world compositional general-

ization challenges, in which we detect examples representative of compositional

generalization with respect to a training set in naturally occurring text. Based on

the proposed methodology, we created a real-world machine translation challenge

to complement the existing compositional generalization benchmarks.

7.2 Future Work

Avenues for future research about compositional generalization are many and varied.

We discuss several promising topics as follows:

Evaluation of Compositional Generalization Systems of compositional generaliza-

tion are as good as the benchmarks they are evaluated on. While it is well known that

compositionality is central to human language ability, there is no agreement as to what

it means for a system to be compositional. Different benchmarks evaluating composi-

tional generalization imply different interpretations of compositionality. Most existing

synthetic benchmarks (Lake and Baroni, 2018; Kim and Linzen, 2020; Keysers et al.,

2020) stick to a local and arithmetic-like interpretation: the meaning of expressions

is computed from its parts independently of the external context as in arithmetic the

meaning of (3 + 2) is always 5, independently of where it occurs. Dankers et al. (2022)

highlight this limitation of existing benchmarks and call for developing benchmarks

using real data to evaluate human-like compositionality. As discussed in Section 2.2,

in natural language there exist many frequent linguistic phenomena that do not adhere

to this local protocol such as polysemy, anaphora, idioms and so on. Therefore, an

ideal benchmark would emphasize compositional aspects of language without ignoring

weakly or non-compositional aspects of language.

Efficient Disentangled Representation Learning The disentangled sequence-to-

sequence model proposed in this thesis has shown superior performance in composi-
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tional generalization compared to the Transformer model. However, its cubic complexity

hinders its application to scenarios with extremely long examples and limited compute

resources. In this thesis, we only explore a simple and general periodic re-encoding

strategy to speed up training and inference. On machine translation, the optimal gener-

alization performance still requires using small interval values. R-Dangle with small

intervals still runs much slower than an equivalent Transformer model. It would be

extremely costly to run a large R-Dangle model with small intervals on large datasets.

However, potentially more efficient re-encoding strategies based on different assump-

tions could be introduced to further narrow the gap. For example, we empirically find

that the Transformer models fail more frequently at compositional generalization for

rare words. A direct solution taking into account this factor is to only re-encode for

the prediction of rare words. This is efficient because rare words, by definition, do not

occur frequently, therefore unburdening the model of frequent re-encoding.

Causal Representation Learning A potential alternative to learning disentangled

representations for better generalization is causal representation learning (Scholkopf

et al., 2021). Causal representation learning aims to discover causal relations underly-

ing the data generating process and model the effect of interventions and distribution

changes. Causal relations are expected to hold more robustly across different envi-

ronments and tasks than statistical associations. They have the potential to provide

predictions for situations that are very far from the observed distribution and enable

more robust out-of-distribution generalization. As an example, the notion of indepen-

dent mechanisms has been introduced from the field of causal inference to motivate

the design of neural networks with independent modular structures (Goyal et al., 2021;

Lamb et al., 2021). If a neural model is able to learn the underlying causal relations

between every meaning unit and language symbols that it originates from, it would

generalize compositionally.

Large Language Models Large language models (Peters et al., 2018; Devlin et al.,

2019; Raffel et al., 2020; Lewis et al., 2020; Brown et al., 2020) have achieved tremen-

dous success in a variety of NLP tasks. However, they have shown limited success

at improving compositional generalization, as discussed in Chapters 4 and 6. The

limited gain partly arises from the standard “pre-train and fine-tune” paradigm where

the pre-trained model is fully fine-tuned on downstream tasks. There is accumulating ev-

idence suggesting that fine-tuning the full model tends to overfit to the training data and
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hurts generalization in out-of-distribution settings whereas parameter-efficient tuning or

prompting without any parameter updates has shown more robust generalization (Lester

et al., 2021; Li and Liang, 2021; Qiu et al., 2022b). However, parameter-efficient tuning

or prompting could be not expressive enough to learn complex tasks. Recently, He

et al. (2022) performed comprehensive empirical studies on different parameter-efficient

fine-tuning methods. They proposed a new fine-tuning method achieving compara-

ble results to fine-tuning all parameters on complex sequence-to-sequence tasks such

as machine translation and summarization. While they only perform experiments in

standard settings, it could be beneficial for the more challenging compositional setting

because parameter-efficient fine-tuning could potentially reduce overfitting and facilitate

generalization.
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