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Abstract

As artificial intelligence (AI) and machine learning (ML) models get increasingly incorporated

into critical applications, ranging from medical diagnosis to loan approval, they show a

tremendous potential to impact society in a beneficial way, however, this is predicated on

establishing a transparent relationship between humans and automation. In particular,

transparency requirements span across multiple dimensions, incorporating both technical and

societal aspects, in order to promote the responsible use of AI/ML.

In this thesis we present contributions along both of these axes, starting with the technical side

and model transparency, where we study ways to enhance tractable probabilistic models

(TPMs) with properties that enable acquiring an in-depth understanding of their

decision-making process. Following this, we expand the scope of our work, studying how

providing explanations about a model’s predictions influences the extent to which humans

understand and collaborate with it, and finally we design an introductory course into the

emerging field of explanations in AI to foster the competent use of the developed tools and

methodologies.

In more detail, the complex design of TPMs makes it very challenging to extract information

that conveys meaningful insights, despite the fact that they are closely related to Bayesian

networks (BNs), which readily provide such information. This has led to TPMs being viewed

as black-boxes, in the sense that their internal representations are elusive, in contrast to BNs.

The first part of this thesis challenges this view, focusing on the question of whether it is

feasible to extend certain transparent features of BNs to TPMs. We start with considering the

problem of transforming TPMs into alternative graphical models in a way that makes their

internal representations easy to inspect. Furthermore, we study the utility of existing

algorithms in causal applications, where we identify some significant limitations. To remedy

this situation, we propose a set of algorithms that result in transformations that accurately

uncover the internal representations of TPMs.

Following this result, we look into the problem of incorporating probabilistic constraints into

TPMs. Although it is well known that BNs satisfy this property, the complex structure of TPMs

impedes applying the same arguments, thus advances on this problem have been very limited.

Having said that, in this thesis we provide formal proofs that TPMs can be made to satisfy both

probabilistic and causal constraints through parameter manipulation, showing that

incorporating a constraint corresponds to solving a system of multilinear equations.

We conclude the technical contributions studying the problem of generating counterfactual

instances for classifiers based on TPMs, motivated by the fact that BNs are the building blocks
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of most standard approaches to perform this task. In this thesis we propose a novel algorithm

that we prove is guaranteed to generate valid counterfactuals. The resulting algorithm takes

advantage of the multilinear structure of TPMs, generalizing existing approaches, while also

allowing for incorporating a priori constraints that should be respected by the final

counterfactuals.

In the second part of this thesis we go beyond model transparency, looking into the role of

explanations in achieving an effective collaboration between human users and AI. To study this

we design a behavioural experiment where we show that explanations provide unique insights,

which cannot be obtained by looking at more traditional uncertainty measures. The findings of

this experiment provide evidence supporting the view that explanations and uncertainty

estimates have complementary functions, advocating in favour of incorporating elements of

both in order to promote a synergistic relationship between humans and AI.

Finally, building on our findings, in this thesis we design a course on explanations in AI, where

we focus on both the technical details of state-of-the-art algorithms as well as the overarching

goals, limitations, and methodological approaches in the field. This contribution aims at

ensuring that users can make competent use of explanations, a need that has also been

highlighted by recent large scale social initiatives. The resulting course was offered by the

University of Edinburgh, at an MSc level, where student evaluations, as well as their

performance, showcased the course’s effectiveness in achieving its primary goals.



Lay Summary

The adoption of automation systems has already demonstrated its potential to benefit society,

reducing human labour and democratizing tools. However, it is quite common to have a well

performing model, that is able to achieve a high accuracy, but is unable to provide any

additional evidence that it bases its predictions on the appropriate criteria. This may pose

serious challenges in high-stakes applications, as additional justification, other than accuracy, is

needed in order to be confident that the model can be trusted as well as to guard against the

adverse effects of potential model failures. For instance, when a model suggests a certain

therapy for a patient, it is important to be able to provide some evidence that its

decision-making process takes into account factors and interactions that are known to be

important to human doctors, otherwise its questionable whether this prediction should be

followed, due to the potentially life threatening associated risks.

These concerns have sparked an ongoing discussion on achieving a transparent relationship

between models and human users. This includes making sure that models are able to explain

their decision-making process, as well as that people are able to properly understand them.

Unfortunately, most models cannot provide explanations due to their complex design, however

some of them make assumptions that greatly facilitate extracting such information. Moreover,

even when explanations are available, they are intended for a diverse audience, including data

scientists, policy makers, doctors, and lay users which may have different backgrounds, so it is

important to make sure that they satisfy the explanatory needs of all affected parties. Therefore,

this thesis explores both technical and social aspects of transparency. We start with considering

a recently introduced model class, where we show that it naturally supports multiple features

that enable acquiring meaningful information out of it. Then we proceed to study the influence

of various elements on the relationship between humans and AI, and finally we design a course

to introduce people to model explanations.
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Chapter 1

Introduction

1.1 Preface

Artificial intelligence (AI) and especially machine learning (ML) has been increasingly

incorporated into a wide range of critical applications, such as healthcare (Kononenko, 2001;

Loftus et al., 2019), criminal justice (Chouldechova, 2017; Christin, 2017; Kleinberg et al.,

2017), credit risk assessment (Chen et al., 2016b; Finlay, 2011), and loan approval (Wu et al.,

2019). At the same time, automated systems have an effect on casual everyday decisions, by

recommending news articles (Alvarado and Waern, 2018), movies (Bennett et al., 2007), and

music (Mehrotra et al., 2018). At the core of this ML predominance lies the expectation that

models can be more accurate than humans (Poursabzi-Sangdeh et al., 2021), something that

has already been demonstrated in various tasks (Culverhouse et al., 2003; Goh et al., 2020;

Hilder et al., 2009; Grove et al., 2000). Having said that, employing algorithms even as

recommendation systems for cultural products (like movies) makes them part of the human

culture, since they not only handle cultural products, but they also influence peoples’ decisions

and perceptions (Gillespie, 2016). This also means that they should not be viewed as mere tools

(Bozdag, 2013), but rather as entities that hold their own values (Alvarado and Waern, 2018).

As such, it is paramount to make sure that their values align with those of humans, thus

enabling ML’s responsible integration to society (Russell et al., 2015; Gabriel, 2020; Christian,

2020). This need is further magnified by several recent instances of automated systems

perpetuating undesired historical human biases, such as Amazon’s recruitment algorithm

exhibiting misogynistic behaviour (Meyer, 2018), or commercial tools utilized by the US

criminal justice system being extremely biased against black defendants (Angwin et al., 2016;

Dressel and Farid, 2018). Apart from that, ML failures can arise, for example, due to misuse,

as in the case of an individual who spent an extra year in prison due to a typographical error in

one of the inputs that was given to the ML system (Wexler, 2017). Of course, poor model

design is another major source of catastrophic failures with far-reaching implications, such as

putting people in danger due to inaccurate air quality assessment (McGough, 2018), or by
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providing life-threatening cancer treatment recommendations (Strickland, 2019; Ross and

Swetlitz, 2018). These and other similar pitfalls, along with the consequences and confusion

that come with them (Galanos, 2019; Aleksander, 2017), has lead to some extreme arguments

about ML potentially eroding the social fabric and even posing a threat to society’s democratic

foundation (Bozdag and Van Den Hoven, 2015).

In light of such concerns, there has been a surge of publications, increasing by about 100%
every other year (Larsson et al., 2019), considering approaches that allow human users to get a

more in-depth understanding of a model’s decision making process. This encompasses many

areas, including explainability in AI (XAI), fairness, and, responsibility (Arrieta et al., 2020;

Mehrabi et al., 2021; Ehsan et al., 2022), which have now come to incorporate numerous

perspectives from law regulation and philosophical ethics. When considering explainability, we

can contrast approaches to extract explanations in a post-hoc manner to approaches that are

transparent by design, such as when employing models that allow for readily inspecting their

inner workings (Linardatos et al., 2020), like rule-based classifiers. These are seemingly

complementary research directions, however both have the end-goal of conveying information

regarding a model’s decision-making process. Post-hoc methods come with the advantage of

being applicable to virtually any model, albeit there is the potential risk of the generated

explanations being inaccurate, for example due to some underlying approximations. On the

other hand, transparent by design approaches provide insights that faithfully capture a model’s

reasoning, however this usually comes at the expense of sacrificing some of the accuracy.

Both of these directions can lead to significant advancements, and deciding which to use

depends on the application at hand as well as the stakeholders that are going to interact with the

resulting explanations. For example, while there is a growing body of academic work

highlighting the benefits of employing transparent models in high-stakes applications (Rudin,

2019; Rudin et al., 2022; Afnan et al., 2021; Katsikopoulos et al., 2022; Quinn et al., 2022; von

Eschenbach, 2021), there is also evidence that XAI generated explanations can facilitate the

integration of AI in an array of critical domains, including finance (Bracke et al., 2019;

Bussmann et al., 2021; Ariza-Garzón et al., 2020) and healthcare (Pawar et al., 2020; Antoniadi

et al., 2021; Payrovnaziri et al., 2020). These results have motivated a series of works that

empirically study the factors that influence the relationship between human users and

automated systems (Lai et al., 2020; Lai and Tan, 2019; Poursabzi-Sangdeh et al., 2021; Chu

et al., 2020; Carton et al., 2020).

This thesis is motivated by developments on both model transparency and XAI. The majority

of the thesis (Chapters 3, 4, 5) is devoted on studying tractable probabilistic models (TPMs)

and establishing properties that equip them with a series of transparent characteristics. TPMs

provide a high degree of flexibility, allowing for incorporating context-specific information, as

well as for efficiently representing distributions that are computationally intractable by more

traditional graphical models (Darwiche, 2003). However, although TPMs are closely connected

to Bayesian networks (BNs), which are considered to be one of the most transparent model

classes (Arrieta et al., 2020), their complex inner representation makes it very challenging to
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extract meaningful information out of them, as opposed to BNs, which can be easily inspected

by human users. To address this issue, our research has focused on the question of whether it is

feasible to extend certain transparent features of BNs to TPMs. In particular, we provide the

following contributions:

• We provide novel transformation algorithms that can translate certain classes of TPMs

into transparent graphical models, thus making their internal representations easy to

inspect.

• We prove the theoretical feasibility of incorporating a priori probabilistic constraints into

TPMs, similarly to Bayesian networks.

• We propose a way to generate counterfactual instances for classifiers based on TPMs, by

taking into account their multilinear structure.

Following these results, the latter part of this thesis (Chapters 7, 8) looks into the broader

landscape of transparency, which goes beyond obtaining algorithmic explanations and into

identifying their role in driving the safe and responsible integration of AI into socially

impacting applications (Principles, 2017). While the former part constitutes of technical

contributions and is the primary focus of the thesis, this part considers social aspects of

transparency, namely user competence and human/AI collaboration. This investigation was

motivated by the understanding that in order to successfully integrate AI in social applications,

it is necessary to study the effect of explanations on users’ behaviour so we can develop

informed practices that facilitate the formation of a high performance, transparent relationship

between humans and AI (Ehsan et al., 2022). Following this, our research has focused on ways

to ensure proper use and understanding of explanations, as well as studying their effect on the

human/AI collaborative performance. In particular, we provide the following contributions:

• We design a behavioural experiment that explores how the interaction of human

confidence, model confidence, and the degree of model assistance influence a user’s

behaviour. The final results suggest that explanations can provide unique insights that

cannot be obtained be uncertainty estimates, as well as that the users’ confidence in their

capacity to perform a task significantly influences their reliance, understanding, and trust

towards a model.

• We design a course introducing XAI and transparent by design approaches. Once both of

them are introduced and contrasted with each other, the course focuses on recent

developments in XAI, detailing its scope, goals, and limitations, while also introducing

some state-of-the-art techniques to educate affected parties. Students’ evaluations, as

well as their performance showcased the course’s effectiveness in familiarizing them

with the field.
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1.2 Transparency and TPMs

TPMs are a class of probabilistic models that extend traditional graphical models, such as BNs,

in the sense that every directed/undirected graphical model can be represented as a TPM, while

also potentially leading to exponential savings in both inference time and storing space

(Darwiche, 2003). Although, this is a significant development that can be very useful in

high-dimensional problems, it comes at the cost of TPMs losing all of the transparency-related

properties that turned graphical models into an indispensable tool for scientific discovery

during the last decades. For example, looking at BNs, all variable relationships are represented

on a directed (usually acyclic) graph (Darwiche, 2009). This has the very appealing advantage

of clearly expressing dependencies in the data, by only drawing arrows between variables.

Furthermore, once the BN is specified, graphical tests can accurately recover all conditional

independencies, without the need to perform any algebraic manipulations (Geiger et al., 1990).

Due to these properties BNs are considered one of the most transparent model classes, since

their internal representations can be easily inspected, by construction. It is this strength that has

turned BNs into the backbone of causal inference, too; causal relationships are represented

through a BN, while graphical criteria identify which causal effects can be estimated using

observational data (Pearl, 2009b). Naturally, BNs have found numerous applications in integral

applications (Kalet et al., 2015; Castelletti and Soncini-Sessa, 2007; Shenton et al., 2014;

Uusitalo, 2007; Stewart-Koster et al., 2010; Friis-Hansen, 2000).

In addition to the above, BNs allow for incorporating various forms of a priori constraints, like

temporal (Dechter et al., 1991) and probabilistic (Darwiche, 2009) ones, which can be encoded

during model design, by directly adjusting the topology of the directed graph. The combination

of all these properties imparts a high degree of flexibility, and offers a powerful alternative to

black-box models, especially when considering high-stakes applications (Rudin, 2019; Rudin

et al., 2022).

However, a downside is that inference in BNs is intractable, in the sense that computing

marginal probabilities is NP-hard (Cooper, 1990). On top of that, specialized routines are

required to perform the inferential step. This is the main motivation behind the recent

emergence of TPMs, as an alternative approach that generalizes traditional BNs. TPMs directly

encode the joint distribution of a set of variables, in a way that allows for a simple mechanism

for performing inference, while potentially leading to reductions in both space and time

complexity. Consequently, they have gathered significant attention in many applications (Wang

and Wang, 2016; Rathke et al., 2017; Amer and Todorovic, 2015; Stelzner et al., 2019; Zheng

and Pronobis, 2019).

Having said that, TPMs do not allow for gaining the same kind of in-depth insights about their

internal representations, such as inspecting the dependencies between the various variables.

Furthermore, constraint incorporation in TPMs has been very challenging, and apart from some

simple cases, it is still unclear whether they have the capacity to perform this task. These
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challenges have effectively turned TPMs into black-box models, despite them being motivated

by and closely related to BNs. Therefore, our research addresses this issue by further exploring

the link between TPMs and transparent graphical models, with the goal of moving TPMs out of

the black-box territory. More specifically, the research questions we pursue are:

• Is it possible to transform TPMs into non-trivial BNs? It is well known that every BN

can be transformed into an equivalent TPM (Darwiche, 2003). However, existing

approaches for achieving the inverse transformation result in uninformative BNs (Zhao

et al., 2015; Peharz et al., 2016; Butz et al., 2020). This is problematic since although a

TPM might contain, for example, causal information, it is not possible to recover it, so it

is essentially treated as a black-box model, but this is only due to the limitations of

existing transformations. In Chapter 3, we formally prove this limitation, while we also

examine sufficient conditions that can result in exact inverse transformations without any

loss of information. Furthermore, we consider a certain class of TPMs and introduce a

novel connection with chain graphs (Buntine, 1995). This results in a directed graph over

an augmented set of variables which precisely captures the internal representation of

models in the class, while also allowing for expanding their semantics to incorporate

notions of causal inference.

• Is it possible to incorporate probabilistic constraints to TPMs? Probabilistic

constraints into BNs can be easily integrated by manipulating their topology. On top of

that, graphical criteria can be used to recover all conditional independencies that are

implied by a certain BN (Geiger et al., 1990). Contrary to that, the problem of extending

the same operations to TPMs has received very little attention, owing to their complex

structure that inhibits a clear understanding of the relationships between variables. In

Chapter 4, we consider the problem of incorporating probabilistic constraints into TPMs,

looking into both conditional and unconditional independence constraints, as well as a

certain kind of causal ones. In pursuing this question, we were able to provide formal

proofs that constraint incorporation to TPMs corresponds to satisfying a system of

multilinear equations, thus showing that it is indeed possible to enforce such constraints

through parameter adjustments.

• Is it possible to generate counterfactual instances for TPMs? Counterfactual

reasoning, i.e. the ability to imagine how something would have been, given what

actually happened, has been a topic studied within philosophy, psychology and AI

(Roese, 1997; Menzies and Beebee, 2001; Wachter et al., 2018). The ability to infer

counterfactual probabilities by explicitly stating the causal dynamics that govern a set of

variables and appropriately adjusting an underlying BN, has been a major breakthrough

in AI, in particular (Pearl, 2009b). A related problem that has gained a lot of popularity

during the last years is whether given a classification model and a datapoint it is possible

to generate a new (hypothetical) datapoint that is as close as possible to the original one,

but is classified differently by the model (Russell, 2019; Mothilal et al., 2020; Sokol and
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Flach, 2019). The close relationship between BNs and TPMs, inspired us to explore if it

is possible generate counterfactuals using TPMs, by taking advantage of their specific

topology. The outcome of this endeavour is presented in Chapter 5, where we introduce a

novel algorithm that is guaranteed to generate valid counterfactuals. Furthermore, the

developed framework allows for constraining the final value of any set of variables,

while it is applicable to the whole class of multilinear models, which includes rule-based

classifiers and random forests. Finally, depending on the underlying model it is possible

to generate infinite sets of counterfactuals, contrary to the majority of existing

algorithms.

1.3 Transparency and Explanations

Following the main technical contributions, the final chapters focus on contextualizing XAI

and model transparency in the broader endeavour of achieving the responsible integration of AI

in social applications. Both of the aforementioned approaches aim at conveying information

about a model’s decision-making process to human users (either by designing models in certain

ways or by developing post-hoc tools), so a natural next step would be to engage with parties

that either use or are affected by AI in order to ensure that explanations are properly used, as

well as to study their effect on the formation of the human-AI relationship. In fact, there seems

to be a strong link between these two desiderata, supported by evidence suggesting that users’

understanding and competence have a great influence on their willingness to employ an

automated system (Balfe et al., 2018; Sheridan and Telerobotics, 1992; Merritt and Ilgen,

2008), meaning that both of these factors may have direct implications on the adoption of AI in

practical applications (Linegang et al., 2006; Wright et al., 2019).

There is already a considerable body of work that explores the effectiveness of explanations on

improving human accuracy (Mahbooba et al., 2021; Guo, 2020; Gunning et al., 2019; Gunning

and Aha, 2019). This is a fairly reasonable approach, built on the premise that by explaining the

reasons behind a model’s prediction, human users can judge if the reasoning is sound, allowing

them to reach an informed decision regarding whether to follow the corresponding prediction.

Despite that, findings about the utility of explanations in making a model’s internal reasoning

clear to users are still ambiguous (Lai et al., 2020; Lai and Tan, 2019; Poursabzi-Sangdeh et al.,

2021; Chu et al., 2020; Carton et al., 2020). This has raised concerns about the way humans

perceive model explanations overall, calling for additional surveys to shed some light on this

topic (Doshi-Velez and Kim, 2017; Vaughan and Wallach, 2020). Moreover, there is also

alarming evidence suggesting that practitioners utilize XAI techniques in a wrong way (Kaur

et al., 2020), where the misuse may arise both due to an incomplete technical understanding of

XAI, as well as due to misunderstandings regarding XAI’s intended use.

In addition to the above, users’ own self-confidence in their ability to perform a task, is another

factor that has an influence both on the human-AI relationship (Zhang et al., 2020; Bansal
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et al., 2021b), and on the way users interact with explanations (Suresh et al., 2021; Liao and

Varshney, 2021). Despite that, little is known about the specific role of self-confidence in the

context of decision-making tasks, so it is still unclear how it might affect key metrics, such as

accuracy, reliance, understanding, and trust towards a model. Motivated by the aforementioned

challenges, our research provides for an attempt towards promoting the proper use of XAI,

while also studying the effect of explanations on the relationship between human users and AI.

More specifically, we target research questions related to:

• Human-AI collaboration. One of the ultimate goals of XAI is to facilitate building an

effective relationship between users and AI, however, there is still no general consensus

about the specifics of its influence. The majority of existing studies explore the capacity

of explanations to improve the combined human-model predictive accuracy, however,

there is evidence suggesting that uncertainty estimates might be more effective in

inducing this effect (Poursabzi-Sangdeh et al., 2021; Chu et al., 2020; Carton et al.,

2020). Having said that, this approach looks at uncertainty estimates and explanations as

competing notions, missing out on any potential, non accuracy-related, benefits that

might be gained by combining the two together. Furthermore, while there is evidence

suggesting that a user’s own self-confidence influences attitude towards explanations

(Suresh et al., 2021; Liao and Varshney, 2021), the magnitude of this effect in the context

of decision-making tasks is still unclear, in contrast to other settings, where more

in-depth insights are available (De Vries et al., 2003; Yang et al., 2017). In Chapter 7, we

present a behavioural experiment to close this gap, studying the impact of user

confidence on the combined human-model accuracy, as well as for assessing the effect of

combining explanations and uncertainty estimates. Our results indicate that explanations

offer unique insights and significantly improve model understanding, compared to

uncertainty estimates. Moreover, we provide evidence that self-confidence has a

significant influence on a user’s reliance, understanding, and trust towards a model.

• Education in XAI. As mentioned earlier, practitioners face various kinds of challenges

when applying XAI techniques, most of them stemming from their incomplete

understanding of the field. A way to address this issue would be to offer the affected

parties sufficient education to help them understand and appropriately apply the right

techniques. However, there is a stark lack of academic resources on XAI, such as

university level courses, while online articles discussing related things, do not provide

for a holistic, systematic approach. In fact, there is only a single academic course on

XAI, offered by Harvard University (Lakkaraju and Lage, 2019), as well as some

tutorials (Samek and Montavon, 2020; Camburu and Akata, 2021), but they are usually

intended for researchers. In Chapter 8, we present a course designed for introducing

students and professional to the field of XAI. This work served as a guideline for

implementing and delivering an actual MSc course, offered by the University of

Edinburgh, putting our proposals into action. Finally, upon completion, students

provided us with very positive feedback.
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1.4 Thesis Structure

In Chapter 2 we provide a concise introduction to sum product networks (SPNs), and discuss

the previous work relevant to Chapters 3, 4, 5. In Chapter 6 we outline the XAI techniques and

previous work relevant to Chapters 7, 8. The following chapters are based on the

accompanying publications or submitted manuscripts:

• Chapter 1:

I. Papantonis and V. Belle, “Transparency: Why do we care?”. In Proceedings of

the 15th International Conference on Agents and Artificial Intelligence, 2023.

• Chapter 3:

I. Papantonis and V. Belle, “Interventions and counterfactuals in tractable

probabilistic models”, in Knowledge Representation Reasoning Meets Machine

Learning, Workshop at NeurIPS, 2019.

I. Papantonis and V. Belle, “Transparency in Sum-Product Network

Decompilations”, 2022. (under submission)

• Chapter 4:

I. Papantonis and V. Belle, “Closed-form results for prior constraints in

sum-product networks”, Frontiers in Artificial Intelligence, 4, 2021.

• Chapter 5:

I. Papantonis and V. Belle, “Principled diverse counterfactuals in multilinear

models”, in Workshop on Explainable AI in Finance, ICAIF, 2021.

• Chapter 7:

I. Papantonis and V. Belle, “Why not both? Self-Confidence and the

Complementary Effect of Uncertainty and Explanations in Decision-Making

Tasks”, 2023. (under submission)

• Chapter 8:

V. Belle and I. Papantonis, “Principles and practice of explainable machine

learning”, Frontiers in Big Data, 39, 2021.

A. Bueff, I. Papantonis, A. Simkute, and V. Belle, “Explainability in machine

learning: a pedagogical perspective”, Arxiv preprint, 2022.

Finally, in Chapter 9 we conclude this thesis and discuss future directions.
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Part I

Transparency and TPMs
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Chapter 2

Related work - Tractable Probabilistic
Models

In this chapter we are going to introduce sum-product networks (SPNs), as well as review the

literature that is going to be relevant to Chapters 3, 4, 5. Moreover, part of the results in

Chapter 3 concern probabilistic sentential decision diagrams (PSDDs), which is another class

of TPMs, however since they are relevant to that chapter only, we introduce them in Chapter 3.

Furthermore, to facilitate the presentation, the related work is divided in two chapters, 2 and 6,

where the former covers tractable models, and the latter focuses on explanations and social

aspects of AI. We believe that this division will bring the relevant material closer to where they

are indeed needed, making for a better overall presentation.

2.1 Sum Product Networks

One of the key limitations of traditional Bayesian networks is that inference may be

exponential, meaning that often approximate inference techniques must be employed, which

require additional computational resources, and may potentially lead to inaccurate results.

Furthermore, another consequence is that since learning the parameters of a BN involves

inference as an intermediate step, learning might be intractable as well. These challenges have

led to the development of tractable probabilistic models, as an alternative way to encode a

distribution.

The main idea was introduced in (Darwiche, 2003), where the author considers the problem of

representing the distribution of a set of discrete variables as a polynomial. For example, if a

binary variable X follows a Bernoulli distribution with probability of success equal to p, then

the polynomial F(1X=1, 1X=0) = p · 1X=1 + (1− p) · 1X=0, where 1X=1, 1X=0 are indicators

for the events X = 1, X = 0, respectively, computes the probability of every event by setting

the corresponding variables equal to their values:
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• Pr(X = 1) = F(1, 0) = p

• Pr(X = 0) = F(0, 1) = 1− p

It is not very hard to see that any discrete distribution can be rewritten as a polynomial by

explicitly representing every state. For example, the joint distribution of two binary variables,

X1, X2 can be written as:

F(1X1=1, 1X1=0, 1X2=1, 1X2=0) = Pr(X1 = 1, X2 = 1)1X1=1 · 1X2=1 + Pr(X1 = 0, X2 =

1)1X1=0 · 1X2=1 + Pr(X1 = 1, X2 = 0)1X1=1 · 1X2=0 + Pr(X1 = 0, X2 = 0)1X1=0 · 1X2=0.

More generally, let X be a set of discrete variables, x represent a state of the variables in X, and

Φ(x) the probability of state x. The polynomial ∑x Φ(x)∏(x), where ∏(x) is the product of

the indicators corresponding to state x1, is called the canonical network polynomial of the

distribution. Having this polynomial comes with some very appealing advantages regarding

inference:

• Marginalizing a variable requires a single computation of this polynomial.

• Conditioning on an event requires computing the network polynomial twice.

This means that exact inference involves at most 2 computations of the network polynomial,

instead of invoking expensive subroutines. Of course, on the other hand, this polynomial is

exponential in the number of variables, so it is itself expensive to compute. Having said that,

the idea behind sum-product networks (SPNs) is to identify ways to express the network

polynomial in a more compact form, i.e. deriving a factorized network polynomial, since once

computing it becomes efficient, exact inference becomes efficient as well.

More specifically, SPNs are rooted directed graphs that explicitly represent the computations in

a network polynomial. A SPN S over variables X is made of alternating layers of sum and

product nodes, with all leaf nodes corresponding to univariate distributions. Any edge exiting a

sum node has a non-negative weight assigned to it. The value of a product node is the product

of its children, while the value of a sum node is a weighted sum of its children,

∑uj∈Ch(ui) wijSj(x), where Ch(ui) is the set containing the children of node ui, and Sj is the

sub-SPN rooted at node uj. We can define an SPN, as follows:

• Any tractable univariate distribution is a SPN.

• The product of two SPNs with disjoint set of variables is also a SPN.

• The weighted sum of two SPNs with the same set of variables is a SPN.

SPNs can greatly reduce the time and space complexity of inference, by taking advantage of

context-specific independence relationships or by reusing intermediate computations (Poon and

1For example, if x = (X1 = 0, X2 = 1), then ∏(x) = 1X1=0 · 1X2=1
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Figure 2.1: A SPN representing a uniform distribution over the states of five binary variables
with an even number of 1’s, adapted from (Poon and Domingos, 2011). For simplicity, weights

are omitted from the SPN.

Domingos, 2011). As a matter of fact, SPNs are strictly more tractable as BNs (Zhao et al.,

2015), meaning that any BN with tabular conditional probability tables (CPTs) can be

transformed to a SPN in polynomial time, but not the opposite. Furthermore, there are certain

distributions that can be encoded as compact polynomial sized SPNs, that cannot be compactly

represented as BNs. For example (Poon and Domingos, 2011), show that a uniform distribution

over the states of five binary variables with an even number of 1’s requires an exponential

number of components, when represented as a BN (since any component corresponds to a

complete state), while a SPN achieves the same task in size linear in the number of variables.

The reason behind this massive improvement is that SPNs allow for reusing intermediate

computations, in contrast to BNs, as seen in Figure 2.1, where we denote the events

Xi = 1, Xi = 0 with Xi,¬Xi, respectively, to make the presentation more compact.2

Arguably, one of the most popular algorithms for compiling a BN into a SPN is the variable

elimination reverse topological ordering (VErto) one presented in (Darwiche, 2003), which is

based on variable elimination. The procedure starts by first specifying a topological ordering of

the nodes in the BN3, and then iteratively eliminating each variable from the CPTs it appears,

resulting in a SPN representing the same distribution as the initial BN. For example, Figure

2.2a shows the well-known example of a BN representing the relationship between the events

of raining (R), a sprinkler being on (S), and the grass being wet (W) (Alpaydin, 2020).

According to this BN, both the weather conditions (raining or not) and the status of the

sprinkler (on/off) have an influence on whether the grass is wet, while the corresponding

probabilities indicate the likelihood of each event. In order to compile it to a SPN, the first step

2We are going to use this convention throughout Chapters 3, 4, 5.
3A topological ordering of the variables X1, X2, · · · , Xn in a BN is a permutation Xσ(1), Xσ(2), · · · , Xσ(n), such

that for any k = 1, 2, · · · , n all the parents of Xσ(k) appear within Xσ(1), · · · , Xσ(k−1).
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(a) A BN
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(b) The corresponding
SPN

Figure 2.2: A BN and the corresponding SPN that results from the compilation algorithm in
(Darwiche, 2003).

is to specify a topological ordering, such as S, R, W (alternatively, R, S, W is another valid

ordering). Eliminating variables in this order, the resulting SPN is shown in Figure 2.2b. Both

the BN and SPN represent the same distribution, while when traversing the SPN from root to

leaf, every path meets the variables in the way specified by the topological ordering used

during the compilation process.

A central notion in SPNs is that of the scope of a node, which refers to the set of variables over

which the node is defined. Intuitively, each node computes a quantity that depends only on the

variables in its scope, and changes in the remaining ones do not affect its output. More

formally, the scope of a node n is defined as:

Scope(n) =

{X}, if n is an indicator variable 1X=0 or 1X=1

∪c∈Ch(N)Scope(c), otherwise

where Ch(n) denotes the children of a node, i.e. the set of all nodes that are connected to n
with edges exiting from n.
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At this point, it should be noted that not every SPN represents a valid distribution, since it is

possible to construct SPNs corresponding to network polynomials with missing terms (Poon

and Domingos, 2011). However, completeness and decomposability are two properties that

guarantee that a SPN indeed represents a valid distribution:

• A sum node, n, is complete if all of its children have the same scope, meaning that

Scope(j) = Scope(k) for all j, k ∈ Ch(n). In this case, the outcome of the sub-SPN

rooted at node n is Sn(·) = ∑j∈Ch(n) wnjSj(·), where ∑j wnj = 1. Intuitively, this

property ensures that if all of the nodes in Ch(n) are valid distributions, then node n is a

valid distribution, too, since a convex combination of distributions is a distribution itself.

• A product node, n, is decomposable if all of its children have disjoint scopes, meaning

that Scope(j) ∩ Scope(k) = ∅ for all j, k ∈ Ch(n). In this case, there is a partition of

Scope(n) = {X1, · · · , X|Ch(n)|} such that we have that

Sn(X1 ∪ · · · ∪X|Ch(n)|) = ∏j∈Ch(n) Sj(Xj). Intuitively, this property utilizes the fact

that the product of distributions over disjoint sets is a valid distribution, so if all of the

children of a product node are valid distributions, then this node is a valid distribution

itself.

Finally, selectivity is another useful property, since it allows SPNs to compute the most

probable explanation with a single computation. A sum node n is selective if for any

assignment x, only one of its children has a non-zero output. We conclude this section by

noticing that SPNs resulting from the VErto algorithm satisfy all these properties, since they

are complete, decomposable, and selective (Darwiche, 2003).

2.1.1 Graphical transformations of SPNs

As already discussed, every BN can be represented as a SPN, so a natural question is whether

the inverse is also true. This was initially studied in (Zhao et al., 2015), where the authors

propose an algorithm to achieve this goal, by interpreting sum nodes as latent random variables.

Given a SPN defined over variables X1, X2, · · · , Xk, the exact procedure is as follows:

• Introduce a set of latent variables, Z1, Z2, · · · , Zn, one for each sum node in the SPN.

• Create an empty BN over the original observable variables, X1, X2, · · · , Xk, and the new

latent variables, Z1, Z2, · · · , Zn.

• Draw edges from each Zi to the original variables belonging in the scope of the sum

node for which Zi was created for.

A similar approach was proposed subsequently in (Peharz et al., 2016), where the difference is

that the authors take into account the hierarchical structure of SPNs, so instead of only
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connecting each latent variable with the original variables in its scope, they allow for

connections between latent variables, Zi → Zj, as long as the sum node corresponding to Zj is

in the scope of the one corresponding to Zi. More recently, a new transformation was proposed

in (Butz et al., 2020), where this time the authors make the extra assumption that the SPN

under examination is compiled from a BN (using the VErto algorithm). Furthermore, the

authors argue that when some latent variables have the same children, it is possible to collapse

them into a single latent variable. Figure 3.2, in Chapter 3 gives an example of the differences

between these approaches.

An advantage of being able to transform SPNs back to BNs (apart from making SPNs

transparent) is that it opens the door for studying causal queries using the SPN. In fact,

performing causal inference using SPNs has been the topic of an emerging line of research. In

(Zečević et al., 2021a), the authors propose a way for utilizing SPNs in order to estimate

interventional distributions4, using the SPN as a functional mapping between BN structures

and distributions. Furthermore, in (Zečević et al., 2021b), the authors show that SPNs can be

used to represent both observational and interventional distributions, although each requires a

dedicated SPN. Finally, in (Darwiche, 2022), a different approach is presented, where a BN is

compiled into a SPN, and then both the original BN and the resulting SPN are used in order to

compute either causal or non-causal queries.

2.1.2 Constraints in SPNs

Although the problem of constraint satisfaction has been studied extensively in BNs, little is

known about the plausibility of incorporating independence constraints in SPNs. To the best of

our knowledge, the only relevant result is presented in (Peharz et al., 2014), where the authors

discuss how in order to represent the structure X1 → X3 ← X2 as a SPN, which implies that

X1⊥X2, it is necessary to enforce equality between certain parameters (as shown in Figure 4.1,

in Chapter 4). However, this observation is only applicable to this rather simple case, while it

also requires the underlying BN structure to be known a priori. This leaves open the question

of what happens in the general case, for example when the underlying structure is not known or

when the SPN contains context-specific relationships.

On the other hand, it is well-known that it possible to enforce probabilistic independence

constraints to BNs by adjusting either their structure or their parameters (Meek, 1995), leading

to multiple works that take advantage of this property. For example, the authors in (De Campos

et al., 2009) address the problem of structure learning in BNs in the presence of probabilistic

constraints reflecting expert knowledge. Furthermore, in (Feelders and Van der Gaag, 2006),

the authors propose a way to learn the parameters of a BN by taking into account qualitative

constraints describing relationships between variables. Ancestral constraints, enforcing

parent-child relationships, have also been explored, for example in (Chen et al., 2016a). An

4More details about such distributions in Chapter 3
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alternative line of research, can be found in (Dechter et al., 1991; Dechter, 1999), where the

authors consider the problem of incorporating temporal constraints.

2.1.3 Counterfactuals in SPNs

Counterfactuals have a long standing history within philosophy (Lewis, 1974; Ruben, 1990), as

well as within the causal modelling community (Pearl, 2009b). Furthermore, they have found

many applications into XAI, where they have gained significant traction in recent years, partly

because there is evidence suggesting that non-technical audience feels more comfortable

interpreting such explanations over alternatives, such as propositional rules (Binns et al., 2018).

Furthermore, counterfactuals inherently convey a notion of “closeness” to the actual world, in

the sense that they allow for detecting a set of minimal changes that can alter a model’s

decision. When it comes to BNs, counterfactuals are usually studied using Pearl’s do-calculus

(Pearl, 2009b), which requires knowing the specific functional relationships between all

variables in the model. This is a highly non-trivial task, often requiring human experts to

hand-craft the final model. Due to this challenge, an alternative approach for generating

counterfactuals was proposed in the seminal work of Wachter et al. (Wachter et al., 2018),

based on Lagrange multipliers, assuming the classifier is differentiable. This method does not

require such an in-depth model specification, while it is also compatible with BNs that exhibit

context-specific independencies. In contrast, extending Pearl’s framework to such BNs is still

ongoing (Tikka et al., 2019).

Building on top of the results in (Wachter et al., 2018), Russel (Russell, 2019) proposes a

modified framework, based on mixed integer programming (MIP), to generate counterfactuals

for linear models. As the author notes, this approach resolves some technical issues of

(Wachter et al., 2018), while it also provides a principled way for generating diverse

counterfactuals, since utilizing only a single counterfactual can be overly restrictive, impeding

a better model understanding. The MIP approach to generating counterfactuals has been

explored in a series of additional works as well. In (Cui et al., 2015; Tolomei et al., 2017) the

authors propose such a method, especially designed for tree ensemble models. The resulting

optimization problems are guaranteed to output a counterfactual instance (or possibly an

infinite set of counterfactuals), however they are only applicable to tree models, and they do not

support incorporating a priori diversity constraints, i.e. constraints that force a set of features to

take on certain values or satisfy inequality conditions. This is important for many applications,

since it is often the case that certain features are immutable (their values cannot be changed),

such as a person’s height. Alternative MIP formulations can be found in (Kanamori et al.,

2020, 2021), which are applicable to linear models, however it is again unclear how to

incorporate a priori constraints, as well as whether it is possible to apply these methods to

classifiers that are based on SPNs.

Apart from the aforementioned approaches, the problem of generating counterfactual instances

has been considered from alternative angles as well. In a recent line of work (Shih et al., 2018;
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Shi et al., 2020; Choi et al., 2020), a different framework for producing counterfactuals is

presented, based on utilizing intermediate architectures, such as OBDDs (Bryant, 1992). At the

core of these works lies the idea of compiling a classifier into a structure that supports

counterfactual generation in polynomial time. An advantage of this approach is that such

models usually support answering a number of different queries in polynomial time, not only

counterfactuals. That being said, the compiled model can be exponentially larger than the

original one, while at the same time this approach supports only a single distance function, thus

posing limitations on the expressiveness and flexibility of the resulting counterfactuals.
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Chapter 3

Graphical representations of TPMs

3.1 Introduction

In recent years, there has been an increasing interest in studying causality-related properties in

machine learning models (Bau et al., 2018; Besserve et al., 2018). Broadly speaking (Pearl,

2019), the motivation stems from extending the query and reasoning capabilities over

probabilistic domains. That is, in standard probabilistic models, one is simply interested in

conditioning on observations Pr(y | x): e.g., what is the likelihood of being tall given that you

play basketball? Causal reasoning allows us to reason about interventions Pr(y | do(x)): e.g.,

what is the probability of a person being tall given that he/she is made to play basketball?.

Counterfactual queries allow us to reason about alternate worlds Pr(y | x∗): e.g., how tall

would a person be if he/she was playing football instead of basketball?

A fundamental challenge underlying stochastic models, however, is the intractability of

inference (Cooper, 1990). This has led to the paradigm of tractable probabilistic models

(TPMs), where conditional or marginal distributions can be computed in time linear in the size

of the model. Although initially limited to low tree-width models (Bach and Jordan, 2002),

recent TPMs such as sum product networks (SPNs) (Poon and Domingos, 2011; Gens and

Domingos, 2013) and probabilistic sentential decision diagrams (PSDDs) (Kisa et al., 2014)

are derived from arithmetic circuits (ACs) and knowledge compilation approaches, more

generally (Darwiche, 2002; Choi and Darwiche, 2017), which exploit efficient function

representations and also capture high tree-width models. These models can also be learnt from

data (Gens and Domingos, 2013; Kisa et al., 2014), leveraging the efficiency of inference.

Both of these models are closely related to Bayesian networks (BNs), as any BN can be

compiled into a SPN (Darwiche, 2003) or a PSDD (Shen et al., 2016). However, their internal

representation makes it very challenging to identify relationships and dependencies among the

variables, in contrast to BNs, where it is immediate to uncover all the conditional

independencies within a set of variables. In other words, BNs are transparent models, while
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SPNs and PSDDs act as black-boxes. Earlier works address this issue by developing

de-compilation algorithms that transform TPMs back to BNs in order to make the underlying

relationships clear (Zhao et al., 2015; Peharz et al., 2016; Butz et al., 2020), hoping that it

would also enable TPMs to be used in causal inference applications. In fact, on studying the

relationship between SPNs and BNs (Zhao et al., 2015), the authors conclude with:

The structure of the resulting BNs can be used to study probabilistic dependencies

and causal relationships between the variables of the original SPNs.

In this chapter, we begin by studying the causal utility of the BNs generated by the methods in

(Zhao et al., 2015; Peharz et al., 2016; Butz et al., 2020). Following that, we study the problem

of de-compiling SPNs and PSDDs into graphical models, in a way that moves them closer

towards the spectrum of transparency. More precisely, we present the following contributions:

• We prove that existing SPN to BN de-compilations result in graphs that support only

trivial causal queries, providing an answer to the claims in (Zhao et al., 2015).

• We propose a new de-compilation algorithm that leads to an exact SPN to BN

de-compilation, for SPNs compiled from BNs using the VErto algorithm, thus enhancing

the transparency of SPNs by accurately uncovering their internal representations.

• We establish a novel relationship between PSDDs and chain graphs (CGs) that both

enhances the PSDDs’ transparency, as wells as allow for equipping them with a form of

causal semantics.

3.2 Background

3.2.1 PSDDs

Probabilistic sentential decision diagrams (PSDDs) are parameterized sentential decision

diagrams (SDDs), which provide a language for representing propositional formulas in a way

that allows for a series of useful quantities to be efficiently computed. The main idea is to

represent a propositional formula in the form (p1 ∧ s1) ∨ · · · ∨ (pk ∧ sk), where the pi’s are

called primes, and the si’s are called subs. The primes are required to form a partition, while

the variables appearing in the primes and the subs must not overlap. For example, a SDD

representation of the expression A ∨ B is

A ∨ B ≡ (A ∧⊤) ∨ (¬A ∧ B) (3.1)

Clearly, the primes, A,¬A form a partition, while the primes and subs involve non-overlapping

sets of variables.
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Figure 3.1: The SDD and PSDD that are induced by formula the 3.1 and the vtree in 3.1a.

In order to determine which variables are going to appear within the primes and which within

the subs, SDDs utilize a variable tree (vtree), which is a binary tree with leaves that are in

one-to-one correspondence with the variables in the SDD. The variables that can be reached

through the tree’s left child appear in the primes, while those reached through the right one

appear in the subs. For example, following the vtree in Figure 3.1a, the formula (3.1), results

into the SDD in Figure 3.1b. Decision nodes are denoted with circles, and they compute the

disjunction of their children. Moreover, the number within a decision node indicates the vtree

node that determines the primes and the subs. For example, the SDD root contains the number

2, so (looking at the tree in Figure 3.1a) the primes should contain A, and the subs B, which is

indeed the case. Finally, the base1 of a SDD node, denoted with [·], corresponds to the formula

it represents after removing terms that are tautologically true or false. In our example, the base

of the root is [(A ∧⊤) ∨ (¬A ∧ B)] = A ∨ B.

We are now ready to formally define SDDs, as in (Darwiche, 2011). S is a SDD that respects

vtree v iff:

• S = ⊤ or S = ⊥. The corresponding bases are [⊤] = True and [⊥] = False.

• S = X or S = ¬X and v is a leaf with variable X. Base: [X] = X and [¬X] = ¬X

• S = (p1 ∧ s1) ∨ · · · ∨ (pk ∧ sk), v is an internal vtree node, p1, · · · , pn are SDDs

respecting v’s left child, s1, · · · , sn are SDDs respecting v’s right child, and p1, · · · , pn

form a partition. Base: [(p1 ∧ s1) ∨ · · · ∨ (pk ∧ sk)] =
∨

i=1,...,k[pi] ∧ [si].

PSDDs build on top SDDs by parameterizing them so they induce a valid distribution, as

follows: each prime pi is assigned a non-negative parameter θi such that ∑k
i=1 θi = 1 and

θi = 0 if and only if si = ⊥. Additionally each terminal node containing ⊤ is replaced by

X : θ, where X is the variable in the corresponding vtree node, and θ is a parameter such that

0 < θ < 1. Using this notation, let n be a PSDD node normalized for a vtree node v, then n
defines a distribution over the variables in v as follows (Kisa et al., 2014):

• If n is terminal node, and the corresponding vtree node, v, has a single variable X, then
1In the original paper, the term semantics is used, however, in the context of a PSDD the term “base” is more

common.
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n Prn(X) Prn(¬X)

X : θ θ 1 - θ

⊥ 0 0

X 1 0

¬X 0 1

• If n is a decision node and v has left children X and right children Y, then

Prn(x, y) = Prpi(x) · Prsi(y) · θi, for the unique i for which x |= pi. Prpi(·), Prsi(·)
denote the distribution of the PSDD nodes corresponding to the sub-PSDDs pi, si,

respectively.

Figure 3.1c, shows the PSDD corresponding to the SDD in Figure 3.1b. By construction,

PSDDs enforce properties analogous to completeness and decomposability (Kisa et al., 2014),

thus enabling tractable inference in the same manner as SPNs do. On top of that, PSDDs allow

for integrating logical constraints in a distribution by taking advantage of the underlying SDD,

so that only assignments satisfying the constraints have non-zero probability. This has found

applications in domains where structural properties need to be enforced, such as when

computing valid routes on a map (Shen et al., 2018).

3.2.2 Causal Inference

Traditionally, causal analysis has been based on structural equation models (SEMs) (Pearl,

2009a), which provide for an effective way to encode dependencies between variables, as well

as for studying causal queries. Probabilistic relationships are represented using a BN, modeling

the joint distribution, while the specific mechanism that governs the functional relationships

between the various variables are given as a set of structural equations, {FV : V ∈ V}, where

V is the set of the model’s variables. A consequence of having access to these equations is that

in order to define a probability distribution over the BN, it is sufficient to define it over the set

of exogenous variables, U, which contains all variables, X, with PAx = ∅, where PAx denotes

the set of X’s parents. This is because all the remaining variables are functions of those in U.

Interventional distributions, i.e. the distribution of a set of variables, after a second set of

variables is forced to attain certain values, are of central importance in causal inference.

Assuming an intervention on a variable X, denoted by either do(X = x) or do(x), the joint

distribution of the remaining variables, V−x, under this intervention, is

Pr(V−x|do(X = x)) = Pr(V−x ,X=x)
Pr(X=x|PAx)

. However, graphical criteria are extensively used in order

to express interventional distributions in terms of conditionals and marginals (Pearl, 2009a).

We introduce one of the most prominent such criterion in Section 3.6, as we utilize it in our

proofs.

Another class of queries, that highlight the power of causal inference, are counterfactuals,

expressions of the form Pr(Y = y|do(X = x), E = e), meaning “Given that we observed
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evidence e, in the factual world, what is the probability of Y being equal to y, had X been equal

to x?”. These statements can be handled using the following steps (Pearl, 2009b):

i Abduction: Update the distribution Pr(U) by incorporating the evidence, to obtain

Pr(U|e).

ii Action: Perform the intervention do(X = x) and substitute x into all equations

involving X.

iii Prediction: Use the updated distribution, graph, and equations to compute the

probability of Y = y.

Chain graphs (CGs) form another class of graphical models that has received considerable

attention in causal analysis applications. While BNs contain only directed edges, CGs allow for

undirected edges as well, resulting in graphical models capable of representing exponentially

more distributions than BNs (Pena, 2007). The causal interpretation of these graphs was

studied in (Lauritzen and Richardson, 2002), where the authors investigated ways to perform

interventions in CGs. Having said that, there is no established general framework for studying

counterfactuals in CGs, however the specific topology of the graphs studied in this chapter,

allows for treating such queries in the same way as BNs.

3.3 Graphical representations of SPNs

3.3.1 Causal Utility of Existing Decompilations

All the existing SPN de-compilation algorithms, discussed in Chapter 2 (Zhao et al., 2015;

Peharz et al., 2016; Butz et al., 2020), result in BNs that are defined over both the latent and the

observable variables. Figures 3.2b, 3.2c, 3.2d, depict the result of applying each of these

algorithms, respectively, to the SPN in Figure 3.2a, which was compiled from a simple chain

BN with 3 variables. Looking at them it is clear that in terms of transparency the introduction

of the latent variables leads to transformations that result in uninformative BNs that do not

retain any of the original information in the initial BN in 3.2a. This situation seems rather

problematic, since even when a SPN is compiled from a simple and informative BN, existing

transformations might fail to recover it. Furthermore, looking at Figure 3.2, an intuitive

observation is that if the initial BN represented causal relationships between X1, X2, X3, the

decompiled BNs attribute every correlation to latent factors. This means that even if we assume

we start with a BN that represents a set of causal assumptions, compiling the BN to a SPN, and

then decompiling it using any of the existing transformations, results in a complete loss of

information. The following result formalizes this intuitive observation, by showing that the fact

that there is no edge coming out of the observable variables implies that all interventional

distributions are trivial.
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Figure 2: Transformation in [20]
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ii Action: Perform the intervention do(X = x).

iii Prediction: Use the probability measure and the graph, from the previous steps,
to compute the probability of Y = y, under the intervention do(X = x), utilizing
the probabilities Pr(U|e).

Chain graphs (CGs) form another class of graphical models that has received con-
siderable attention in causal analysis applications. While BNs contain only directed
edges, CGs allow for undirected edges as well, resulting in graphical models capable
of representing exponentially more distributions than BNs [32]. The causal interpreta-
tion of these graphs was studied in [33], where the authors investigated ways to perform
interventions in CGs. To our knowledge there is no established, general, framework for
studying counterfactuals in CGs, however the specific topology of the graphs we are
going to study, allows for treating such queries in the same way as BNs.

3. Main Results

3.1. The SPN Case
SPNs are an elegant formalism for capturing weighted mixtures of distribution, and

so the expressive power of SPNs and standard BNs has been of considerable interest.
The question of how to transform SPNs to BNs was studied in [19] and subsequently
in [20]. More recently, a new transformation was proposed in [21]. All the trans-
formations rely on the same idea; interpret sum nodes as latent variables, and then
connect them to the observable variables in their scope. The algorithms only differ in
the specifics of the connection and the number of latent variables they induce. What

6

(d) SPN to BN (Butz
et al., 2020)

Figure 3.2: The final BNs that result from each transformation

Proposition 3.1. Let B be a BN, V the set of its nodes, and X ⊆ V such that no node in X has

an edge coming out of it, then Pr(V−X|do(X)) = Pr(V−X).

This immediately leads to the following:

Theorem 3.2. The BN, B, that results after transforming an SPN using the procedure

described in (Zhao et al., 2015), (Peharz et al., 2016), or (Butz et al., 2020), satisfies the

property Pr(V−X|do(X)) = Pr(V−X), for any X ⊆ V, where V is the set of the observable

variables.

The above result shows that existing interpretations do not result in BNs that can accommodate

for interesting causal queries. This limitation stems from the fact that sum nodes are interpreted

as latent variables, which leads to every probabilistic dependency been attributed to unobserved

confounders, not to direct interaction between the variables. In turn, it is not surprising that all

interventions are trivial, since the resulting BNs hold no meaningful information about the

relationships between the variables.
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Figure 3.3: Examples of indicator children and grandchildren

3.3.2 A New Decompilation Approach

The results in the previous section identify some of the implications of not being able to

accurately decompile a SPN, in causality-related applications. However, even if a SPN

represents purely associational, non-causal, relationships, the resulting BNs may fail to

represent the dependencies between the variables, hindering the SPN’s transparency. It is now

reasonable to wonder whether this is due to an inherent limitation of SPNs, or an artifact of the

existing transformations. One might argue that a SPN is merely a computational representation

of the joint distribution of a BN, meaning that its purpose is to capture the functional

characteristics of the joint distribution and provide an efficient way of computing it. Looking at

SPNs from this angle, existing decompilation algorithms just reflect the various functions that

SPNs define internally in order to perform the necessary computations. For example, Figure

3.2b represents the fact that the SPN in Figure 3.2a consists of 5 sub-SPNs; one defined over all

X1, X2, X3, two over X2, X3, and two over just X3.

However, in the remaining of this section, we show that under certain conditions it is possible

to decompile SPNs to far more informative BNs, that contain no artificial latent variables,

rather they only include the original SPN variables. This involves utilizing alternative

interpretations of the SPN sum nodes, as well as making use of the SPN parameters. This is a

novel aspect of our approach, since none of the existing decompilation algorithms take into

account the SPN parameters, although they contain information that cannot be retrieved by

looking at the SPN structure alone (Peharz et al., 2014). More precisely, we assume that a BN

B is an I-map for the distribution it represents (i.e. the independence relationships that can be

inferred from the BN, are indeed satisfied by the distribution), and we consider the problem of

decompiling the SPN that results from compiling B using the VErto algorithm, back into B.

This is the exact same setting as in (Butz et al., 2020), where the proposed algorithm can

perform an exact decompilation in certain cases. Having said that, we propose an algorithm

that always results in an exact decompiled BN.

As shown in Section 3.3.1, the assumption that every sum node corresponds to a latent variable

is very restricting, having detrimental effects on the transparency and causal utility of the
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decompiled BN. Although all existing decompilation algorithms share this assumption, this is

not the only way of interpreting sum nodes. As a matter of fact, a meaningful probabilistic

interpretation can be given to any sum node of a SPN that represents a variable (Paris et al.,

2020). A sum node, S, represents a variable, V, if it has as many children as the number of

states of V, and an indicator corresponding to one of V’s states can be reached either

immediately (i.e., it is a child of S) or after one intermediate layer (i.e., it is a grandchild of S).

For example, in both Figures 3.3a, 3.3b the root represents X1, since it has as many children as

X1’s states, and each of them reaches a unique indicator either immediately (3.3a) or through a

product node (3.3b). As shown in (Paris et al., 2020), if a sum node represents V, then it

encodes the conditional distribution of V given the context set by its ancestors. For example, in

Figure 3.4b, the sum node in the red double circle (corresp. the blue double circle) models the

distribution of X2|X1 = 0 (corresp. X2|X1 = 1). Analogously, in Figure 3.4c, the sum node in

red models the distribution of X3|X1 = 0, X2 = 0, since it represents X3, while starting from

the root, the path leading to this sum node contains indicators corresponding to the context

X1 = 0, X2 = 0.

An important consequence of having a sum node representing a variable is that it is no longer

necessary to introduce latent variables to define conditional distributions. Furthermore, we can

now make two crucial observations about the qualitative properties of SPNs that result from the

VErto algorithm. To this end, let B be a BN, and SPNC be the corresponding compiled SPN,

then the following properties hold:

• Property 1 Every sum node in SPNC represents a variable (Darwiche, 2003; Paris

et al., 2020).

• Property 2 Let V be a variable in B, and S be the set of sum nodes representing V in the

SPN, S = {S|S is a sum node, Represent(S) = V}, where for any sum node, S,

Represent(S) denotes the variable represented by S. Then, since SPNC is compiled

using a topological ordering, each of the paths that start from the root and end in one of

the nodes in S meets sum nodes representing the same variables. For example, looking at

Figure 3.4b, X2 is represented by the nodes in the red and blue double circles. Starting

from the root, all paths leading two these nodes include just the root, which represents

X1. In addition, the double circles in Figures 3.4c, 3.4d correspond to all the nodes

representing X3. It is not difficult to see that all paths ending in one of these nodes,

include the root (representing X1) as well as one of the nodes that represent X2. This is a

direct consequence of having a topological ordering.

At this point we should remind ourselves that the goal of any decompilation algorithm is to

recover the parent-child relationships represented by the underlying BN, B. Having this in

mind, properties 1 and 2 imply that for every variable, V, SPNC defines its conditional

distribution by conditioning on all of its SPN ancestors, X1, · · · , Xk, i.e. the variables that

appear earlier than V in SPNC , denoted by CS. This resembles the conditional distributions of
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V in B, however this is defined by conditioning only on its parents, P1, · · · , Pm, denoted by

CB, not all of its ancestors. Regardless, the crucial observation here is that since SPNC was

compiled following a topological ordering respecting B, then CB ⊆ CS and furthermore all

variables in CS \ CB are non-descendants of V in B.

In general, distributions that factorize according to a BN respect the local Markov property

(Peters et al., 2017), which states that a variable is independent of its non-descendants given its

parents. In our case, since CB contains exactly the parents of V in B, the aforementioned

property makes sure that for any set, ND, comprised of non-descendants of V in B, we have

that Pr(V|CB) = Pr(V|CB, ND). Connecting this with the observations in the previous

paragraph, we immediately see that Pr(V|CS) = Pr(V|CB), since CB ⊆ CS and

CS \ CB ⊆ ND.

This remark implies that the task of decompiling SPNC is equivalent to inferring which of the

variables in CS are non-descendants of V in the underlying BN. This is because since for any

variable, V, it is straightforward to identify the set CS, so if the set of non-descendants

(CS \ CB) is also known, then their difference is equal to CS \ (CS \ CB) = CB, which

uncovers the parents of V in B.

We are now ready to give an intuitive description of the decompilation process: looking at the

ancestors of any variable in SPNC , V, we can immediately identify CS, which is a superset of

CB. Furthermore, since V’s conditional distribution must respect B, the local Markov property

guarantees that only variables in CS \ CB (i.e. non-descendants in B) can be removed from CS

without affecting the distribution. This means that once we establish a way to remove

redundant variables from CS, then the ones that are going to remain by the end of the

elimination process are going to be exactly the parents of V in B. It should be noted that this

interplay between the local Markov property in B and the conditioning sets in SPNC is novel

to the presented approach, and is not found in any existing decompilation algorithm, including

the one presented in (Butz et al., 2020), which has exactly the same scope as our work. All

previous algorithms rely on structural SPN properties alone, where the presented approach

utilizes information about B, yet in a way that does not require B to be known beforehand,

rather only involving properties that follow from its existence.

The only thing remaining is to come up with a way for identifying the variables in CS \ CB.

However, this can be easily done by using the following proposition:

Proposition 3.3. Let Y, X1, X2, · · · , Xn be binary random variables. If there is a Xk, such

Pr(Y|X1, X2, · · · , Xk = 0, · · · , Xn) = Pr(Y|X1, X2, · · · , Xk = 1, · · · , Xn), then

Y⊥Xk|X1, X2, · · · , Xk−1, Xk+1, · · · , Xn.

Finally, Proposition 3.3 can be invoked implicitly by considering appropriate induced trees up

to a sum node S′, which generalize standard induced trees (Zhao et al., 2016).

Definition 3.4. Let S be a complete and decomposable SPN over variables X1, · · · , Xn, and

T = (TV , TE) be a subgraph of S . T is called an induced subtree up to node S′ of S if:
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Algorithm 1 SPN to BN decompilation

Require: A SPN over X1, · · ·Xn, compiled using the VErto algorithm, SPNC
B ← the empty BN over X1, · · ·Xn
Not-visited← {X1, · · ·Xn}
while Not-visited ̸= ∅ do

Pick a variable Xk ∈ Not-visited
RepXk

← {S|S is a sum node, Represent(S) = Xk}
AncestorsXk ← {Xm|∃ S: Represent(S) = Xm, S is above nodes in RepXk

}
if AncestorsXk = ∅ then

Not-visited← Not-visited\{Xk}
continue

end if
for every variable Xm ∈ AncestorsXk do

RepXm
← {S|S is a sum node, Represent(S) = Xm}

for every Sm ∈ RepXm
do

TreesSm ← {T|T ∈ SubtreesS(SPNC) for a S ∈ RepXk
, Sm ∈ T}

PairedTreesSm ← {(t0, t1)|t0, t1 ∈ TreesSm , 1Xm=0 ∈ t0, 1Xm=1 ∈ t1,
otherwise they contain the same indicators}

for every (t0, t1) ∈ PairedTrees do
S0 ← the end node in t0
S1 ← the end node in t1
if S0 ̸= S1 then

Add Xm → Xk to B
break

end if
end for

end for
end for
Not-visited← Not-visited\{Xk}

end while
return B

• Root(S) ∈ TV .

• If v ∈ TV is a sum node, then exactly one child of v in S is in TV , and the corresponding

edge is in TE.

• If v ∈ TV is a product node, then all children of v in S are in TV , and the corresponding

edges are in TE

• S′ ∈ TV , and once S′ is reached, the tree expansion stops.

An induced tree up to a sum node S′ results from traversing a SPN top-down, such that for

every sum node only one of its children is included in the tree, for every product node all of its

children are in the tree, and as soon as S′ is reached the procedure terminates. For a SPN S , we

denote the collection of all induced subtrees up to node S′ as SubtreesS′(S). The terminal

node models the conditional distribution of the variable represented by S′, given the context

implied by the indicators in the tree. For example, the sum node in the double red circle in
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Figure 3.4d is the terminal node of the induced tree in red, and it models

Pr(X3|X1 = 0, X2 = 1), since this tree contains indicators for X1 = 0, X2 = 1. In turn, if

S0, S1 represent the same variable V, comparing T0 ∈ SubtreesS0(S), T1 ∈ SubtreesS1(S),
where T0, T1 differ only in the state of an indicator made for a single variable X, implicitly

invokes Proposition 3.3. If S0 ̸= S1, then the equality in 3.3 does not hold, meaning X cannot

be removed from the conditioning set, so by the local Markov property X ∈ CB, i.e. X must be

a parent of V in B. Alternatively, if all such nodes are identical, then X can be removed from

the conditioning set without affecting the distribution, which means that X ∈ CS \ CB. This

way, Algorithm 1 utilizes a unique blend of information about both the structure and

parameters of SPNC to enable an exact decompilation.

The following theorem is the culmination of our analysis, proving the validity of Algorithm 1.

Theorem 3.5. Let B be a BN that is an I-map for the distribution it represents, and let SPNC
be the SPN that results from compiling B using the VErto algorithm. Then applying Algorithm

1 to SPNC outputs exactly B.

Example: Figure 3.4 demonstrates the general process with an example. The original BN is

shown in Figure 3.4a, while the remaining figures show the compiled SPN, along with the trees

that have to be examined following Algorithm 1. It is well known that compiling the BN in

3.4a results in a SPN where the sum nodes in double circles in Figure 3.4b must have identical

parameters (Peharz et al., 2014), which is why the corresponding edges are marked. Apart from

that, the parameters of the remaining sum nodes are in general distinct, since they are not

bound to satisfy any constraint.

Starting with X1, we see that CS = ∅⇒ CB = ∅, so X1 has no parents in the underlying BN.

Next, moving on to X2, we have that CS = {X1}. Looking at Figure 3.4b, we need to compare

the sum node in red (which models the distribution Pr(X2|X1 = 0)) to the node in blue (which

models Pr(X2|X1 = 1)). Since these nodes have identical parameters, we have that

Pr(X2|X1 = 0) = Pr(X2|X1 = 1), so by Proposition 3.3 we conclude that

Pr(X2|X1) = Pr(X2), which combined with the local Markov property makes sure that

X1 ̸∈ CB ⇒ CB = ∅, so neither X2 has a parent in the underlying BN. It only appears as if X1

influences the distribution of X2 because all layers of a SPN are connected, but this is not really

the case. Moving on to X3, we see that CS = {X1, X2}. Figures 3.4c, 3.4d highlight the trees

that need to be considered to decide whether X1 belongs to CB. Comparing the corresponding

sum nodes, we see that they model distinct distributions (since they do not not have equal

parameters), meaning that X1 ∈ CB, so the edge X1 → X3 is added to the BN. Finally, we have

to repeat this process for X2, which is shown in Figures 3.4e, 3.4f. Again, since the final sum

nodes are not identical, the edge X2 → X3 is added, exactly recovering the BN in Figure 3.4a.

The above example shows how Algorithm 1 combines information about the structure and

parameters of the compiled SPN in order to perform an exact decompilation. In contrast, even

for relatively simple cases, like those in Figures 3.2a, 3.4a, all existing algorithms fail to
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Figure 3.4: Illustration of applying Algorithm 1. Indicators in red are reached traversing the
red paths, while indicators in blue are reached via blue paths. Indicators and edges in purple are
belong to both red and blue paths. Edges marked with the same symbol have equal parameters.
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Figure 2: A PSDD for the student enrollment problem, which results from parameterizing the SDD in Figure 1. The parameters
were learned from the dataset in Table 1 (also shown in Table 2).

(p1, s1, θ1), . . . , (pk, sk, θk). Graphically, we will just anno-
tate the edge into element (pi, si) with the parameter θi. Fig-
ure 2 provides examples of this notation.

We next define the distribution of a PSDD, inductively.
That is, we first define the distribution induced by a terminal
node. We then define the distribution of a decision node in
terms of the distributions induced by its primes and subs.
Definition 2 (PSDD Distribution) Let n be a PSDD node
that is normalized for vtree node v. Node n defines a distri-
bution Prn over the variables of vtree v as follows.
– If n is a terminal node, and v has variable X , then

n Prn(X) Prn(¬X)
X :θ θ 1− θ
⊥ 0 0
X 1 0
¬X 0 1

– If n is a decision node (p1, s1, θ1), . . . , (pk, sk, θk) and v
has left variables X and right variables Y, then

Prn(xy)
def
= Prpi(x) ·Prsi(y) · θi for i where x |= pi.

Applying this definition to the PSDD of Figure 2 leads to the
distribution in Table 2 for its root node. The following table
depicts the distribution induced by a non-root node in this
PSDD, which appears in the middle of Figure 2.

x y Prpi(x) Prsi(y) θi Prn(xy)
P A 1 0.25 0.4 0.1
P ¬A 1 0.75 0.4 0.3
¬P A 1 0 0.6 0.0
¬P ¬A 1 1 0.6 0.6

Table 3: Distribution of node n = (¬P,¬A)(P,>).

The SDD node associated with a PSDD node n is called
the base of n and is denoted by [n]. When there is no ambi-
guity, we will often not distinguish between a PSDD node n
and its base [n].

A PSDD assigns a strictly positive probability to a vari-
able instantiation iff the instantiation satisfies its base. This

can be seen, for example, in Table 3. This is also the first key
property of PSDDs.

Theorem 1 (Base) Consider a PSDD node n that is nor-
malized for vtree node v. If Z are the variables of vtree v,
then Prn(z) > 0 iff z |= [n].

We will now discuss the second key property of PSDDs,
which reveals the local semantics of PSDD parameters.

Theorem 2 (Parameter Semantics) Let n be a decision
node (p1, s1, θ1), . . . , (pk, sk, θk). We have θi = Prn([pi]).

Consider the PSDD in Figure 2 and its decision node n
in Table 3. Prime ¬P of this node has parameter 0.6. Ac-
cording to Theorem 2, we must then have Prn(¬P ) = 0.6,
which can be verified in Table 3. Similarly, Prn(P ) = 0.4.

The third key property of PSDDs is the relationship be-
tween the local distributions induced by its various nodes
(node distributions) and the global distribution induced by
its root node (PSDD distribution)—for example, the rela-
tionship between the distribution of node n in Table 3 and
the PSDD distribution given in Table 2.

Node distributions are linked to the PSDD distribution by
the notion of context.

Definition 3 (Context) Let (p1, s1), . . . , (pk, sk) be the el-
ements appearing on some path from the SDD root to node
n.1 Then p1 ∧ . . . ∧ pk is called a sub-context for node n
and is feasible iff si 6= ⊥. The context is a disjunction of all
sub-contexts and is feasible iff some sub-context is feasible.

Consider Figure 1. The three decision nodes normalized for
vtree node v = 5 have the contexts ¬L∧K, L and ¬L∧¬K.
Moreover, the terminal nodes normalized for vtree v = 6
have the contexts:

– A: ¬L ∧K ∧ P
– ¬A: L ∧ ¬P
– ⊥: (¬L ∧K ∧ ¬P ) ∨ (¬L ∧ ¬K ∧ ¬P ) = (¬L ∧ ¬P )
– >: (L ∧ P ) ∨ (¬L ∧ ¬K ∧ P ) = (L ∨ ¬K) ∧ P.
Contexts satisfy interesting properties.

1That is, n = pk or n = sk.

Figure 3.5: A PSDD over variables A, L, K, P, originally in (Kisa et al., 2014).

perform this task. This limitation has had a direct impact on a number of related works, such as

the one presented in (Darwiche, 2022), where the author has to maintain both a BN and the

corresponding compiled SPN in order to study interventional queries, despite the fact that all

computations are performed using just the SPN. This is because maintaining only the SPN

would result in losing all the information about the way variables are connected, hindering any

subsequent causal analysis. Nevertheless, using Algorithm 1 it is no longer necessary to

maintain the original BN, since all this information can be recovered at any point. This means

that the compiled SPN can be used to compute both standard observational queries, as well as

interventional ones (by first decompiling it to a BN and then following (Darwiche, 2022)). This

observation is also related to the results in (Zečević et al., 2021b), where the authors argue that

observational and interventional queries each require a distinct SPNs. However, SPNs

compiled from BNs demonstrate that it is possible for a single SPN to answer both kinds of

queries, mitigating the need to maintain separate SPNs.

3.4 A novel PSDD graphical representation

This section is concerned with the problem of representing PSDDs in a way that uncovers their

internal representations and improves their transparency. Although this is a similar endeavour

to the one in the previous section, this time the analysis will be based on a key feature of

PSDDs, that is the ability to establish a deterministic dependency between a node and its

children. More precisely, if n = (p1 ∧ s1) ∨ · · · ∨ (pk ∧ sk) is a PSDD node, then its base can

be written as [n] =
∨

i=1,...,k[pi] ∧ [si]. This means that the value of node n is uniquely

determined by the values of its children. This is in contrast to SPNs, where each node defines a

distribution but has no intrinsic value, since a PSDD node, n, both defines a distribution and
represents the formula [n].

The idea behind the proposed algorithm is to interpret [n] and [pi], [si], i = 1, . . . , k as having

a parent-child relationship, in order to generate a CG that represents the internal connections in

a PSDD. Consequently, if a PSDD is defined over variables V, the goal of the proposed

transformation is not to capture the connections between these variables, but to make clear in
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which ways they are combined into more complex expressions by the PSDD. In a sense this is

similar to the SPN de-compilations in (Zhao et al., 2015; Peharz et al., 2016; Butz et al., 2020),

but instead of having latent variables with no meaningful interpretation, this time each of the

newly introduced variables corresponds to a propositional formula over V. Algorithm 2

presents the details of the transformation. It takes as input the propositional formula

represented by the PSDD and recursively decomposes it to generate a CG.

Algorithm 2 PSDD to CG
Require: The SDD base ϕ = c1 ∨ · · · ∨ cn, where ci = pi ∧ si, over variables x1, . . . , xk

Create a variable corresponding to the whole expression, v0 = ϕ
Create a variable, vi, for each ci
Create an arrow from vi to v0, i = 1, . . . , n
for each ci = pi ∧ si do

Create a variable vp
i for pi and a variable vs

i for si

Create an arrow from vj
i to vi, for j ∈ {p, s}

end for
Repeat this process recursively, until the literal are reached
Once this procedure is over, connect the literals with undirected edges, so they form a chain

This transformation results in a model containing directed edges, with the exception of the

edges between the observable variables (i.e. the literals), which are undirected. This choice, of

keeping these edges undirected, reflects the following:

• There exists some correlation among these variables.

• No assumption is made about the source of it.

In the absence of additional information regarding the direction of the dependence between the

variables, including undirected edges allows for a general treatment of the subject, without

resorting to additional assumptions. Of course, in the presence of additional related

information, the undirected edges could be replaced with directed ones. On the other hand, the

alternative strategy of not including any edges between the observable variables, would encode

the assumption that they are independent, which is rather strong and limiting.

We can now define a probability distribution over the CG resulting from Algorithm 2. From

now on, the newly introduced variables will be referred to as augmented variables, denoted

with A, while the set of the original variables will be denoted with V. Using this notation, a

joint distribution over the augmented and original variables can be defined as follows:

• If A ∈ A, and PAA denotes the set of its parents, then:

Pr(A = 1|PAA) =

1 if assignments in PAA render A = 1

0 otherwise
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(L ∧ ((¬P ∧ ¬A) ∨ P )) ∨ ((¬L ∧K) ∧ (P ∧A)) ∨ ((¬L ∧ ¬K) ∧ P )

L ∧ ((¬P ∧ ¬A) ∨ P ) (¬L ∧K) ∧ (P ∧A) (¬L ∧ ¬K) ∧ P

(¬P ∧ ¬A) ∨ P

¬L ∧ ¬K¬L ∧K¬P ∧ ¬AP ∧A

LKPA

Figure 3.6: The resulting CG. Colored edges connect parent nodes (created for the same colored
clause), to their children.

• Pr(V) = PrPSDD(V), where PrPSDD(V) is the PSDD distribution.

It is not difficult to see that the above construction yields a valid distribution over the CG:

Theorem 3.6. Let G be the CG resulting from Algorithm 2, and A, V be the sets of augmented

and original variables, respectively. Then their joint distribution over G factorizes as:

Pr(V, A) = PrPSDD(V) · ∏
A∈A

Pr(A|PAA)

Example: The following example showcases how to construct a CG using Algorithm 2. The

PSDD in Figure 3.5 corresponds to a problem considered in (Kisa et al., 2014). L (Logic), K

(Knowledge Representation), P (Probability), and A (Artificial Intelligence), represent

university courses. Students must enroll to them, while also obeying the following constraints:

P ∨ L, A⇒ P, K ⇒ (A ∨ L) (where implication means if they enroll in LHS, then they must

enroll in RHS).

The underlying SDD corresponds to the following propositional formula:

((¬L ∧ K) ∧ (P ∧ A)) ∨ (L ∧ ((¬P ∧ ¬A) ∨ P)) ∨ ((¬L ∧ ¬K) ∧ P) (3.2)
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Algorithm 2 takes (3.2) as input and constructs a CG, as follows: It first creates a node

corresponding to the whole expression. Then, since (3.2) is composed of three disjunctions,

three new nodes are created, with edges pointing from them to their disjunction. This

procedure goes on recursively, until the literals, here A, L, K, P, are reached (see Figure 3.6).

By construction, V = {A, P, K, L}, while A contains the following variables:

A1 = P ∧ A, A2 = ¬P ∧ ¬A, A3 = ¬L ∧ K, A4 = ¬L ∧ ¬K, A5 = P ∧ A4,

A6 = A1 ∧ A3, A7 = P ∨ A2, A8 = L ∧ A7, A9 = A5 ∨ A6 ∨ A8

3.4.1 Counterfactuals

The transformation presented in the previous section makes the internal connections in PSDDs

clear and easily accessible. In this section we show that by taking advantage of the resulting

CG it is possible to establish novel connections between PSDDs and concepts from causal

inference. Intuitively, since the value of each variable in the CG is deterministically decided by

its parents, we can consider the parents as causing their children to attain their value, thus

opening the door to study counterfactual statements involving the PSDD’s internal rules. This

means that on top of serving as a transparent representation of a PSDD, the final CG allows for

expanding the PSDD semantics beyond standard conditioning, enabling us to assess how

probable it would have been for a rule to be satisfied (or not) had some conditions been

different.

Furthermore, although it is not clear how to study counterfactuals for general CGs, the specific

form of the ones resulting from Algorithm 2 allows for mitigating this limitation. This is

because apart from the variables in V, the remaining graph is directed, so it can be treated just

like a regular BN. This observation is reflected in the following theorem, stating that

interpreting V in the CG resulting from Algorithm 2, the same way as the exogenous variables,

U, in a BN, leads to a valid counterfactual distribution (X|Y=y denotes substituting all

appearances of Y, in X, with y):

Theorem 3.7. Let G be the result of Algorithm 2, then a counterfactual query of the form

Pr(A = a|do(X = x), E = e), where A ∈ A, X, E ∈ A∪ V, is equal to:

∑
V:V⊨A|X=x=a

Pr∗(V) =
Pr(A|X=x = a, E = e)

Pr(E = e)
= Pr(A|X=x = a|E = e),

where Pr∗(V) = Pr(V)
Pr(E=e) if V ⊨ E = e, and 0 otherwise.

Example (Cont.): Going back to our previous example, suppose we have observed that the

branching rule A ∧ P was not satisfied; meaning there is a student who did not enroll to both A
and P. What is the probability that the rule would have been satisfied, had the student enrolled

to P? Formally, we ask for the probability of Pr(A1 = 1|do(P = 1), A1 = 0). According to
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Counterfactual Conditional Marginal
0.0

0.2

0.4

0.6

0.8

A5 = 1

A5 = 0

Figure 3.7: Comparison of distributions

Theorem 3.7, the updated distribution is

Pr(A, L, K, P|A1 = 0) = Pr(A,L,K,P)
Pr(A1=0) if A = 0 or P = 0, and 0 otherwise. Furthermore,

following the intervention P = 1, the updated equation of A1 is equal to A1 = A, meaning that

the desired probability can be easily computed as Pr∗(A1 = 1) = Pr∗(A = 1) = Pr(A=1,P=0)
Pr(A1=0) .

The same process can be repeated for any query; for example, suppose there is a student not

satisfying the property “he/she has enrolled to P, while not enrolling to neither L or K”, what is

then the probability of him/her satisfying this property, had he/she enrolled to K? This time the

probability of interest is Pr(A5 = 1|do(K = 0), A5 = 0), which reduces to

Pr(L = 0, K = 1, P = 1)/0.4 = 0.1/0.4 = 0.25, by repeating the same steps, as before.

Figure 3.7 compares this counterfactual distribution to the conditional, Pr(A5|K = 0), and the

plain marginal, Pr(A5), where all computations are based on the distribution represented by

the PSDD in Figure 3.5.

The above provides some insights into the way counterfactuals of the form

Pr(E = e
′ |do(X), E = e), such as Pr(A1 = 1|do(P = 1), A1 = 0), are computed. Looking at

the previous calculations, this probability is equal to Pr(A=1,P=0)
Pr(A∧P=0) , so although the intervention

forced P = 1, the probability in the numerator involves the event P = 0. An intuitive way to

read the numerator is that it computes the probability that the variable P getting another value

(than the one intervened upon) was responsible for observing the evidence. In this case, since

the intervention was P = 1, we ask how responsible was the event P = 0, for observing that

A ∧ P = 0. The only compatible configurations with this scenario are A = 1, P = 0 and

A = 0, P = 0. The result takes only the former into account, because in the latter it is A = 0,

so it is not P = 0 that is solely responsible for observing the evidence, since A ∧ P = 0,

regardless of P’s value.



36 Chapter 3. Graphical representations of TPMs

3.5 Discussion and Conclusions

In this work, we studied ways to enhance the transparency of SPNs and PSDDs. For SPNs, it

was shown that existing BN interpretations result in very restricted graphs that neither reveal

the SPNs’ internal representations nor allow for studying causal queries. To address this issue,

we identified a set of sufficient conditions as well as an algorithm that incorporates multiple

sources of information, in order to achieve an exact SPN to BN de-compilation. For PSDDs, a

novel CG interpretation that uncovers their internal reasoning was established, thus allowing

for expanding their semantics to include a notion of counterfactuals.

There is a number of interesting future research directions stemming from these results. For

example, looking back at the derivation of Algorithm 1, we see that properties 1 and 2 are the

only essential requirements to guarantee that an exact decompilation is possible. This implies

that the algorithm should be applicable to any SPN satisfying them, not only those compiled

using the VErto algorithm. An immediate consequence is that even when learning a SPN from

data, instead of compiling it from a BN, as long as these two properties are enforced during

training, it should be possible to generate a BN without any additional hidden variables that

agrees with the SPN distribution. This points towards a very interesting research direction,

where fully transparent models are learned directly from data in an end-to-end manner,

combining the efficient inference of SPNs with the representational transparency of BNs,

opening the door for utilizing SPNs in applications where model transparency is essential

(Rudin, 2019). This is in stark contrast to existing approaches, which pose serious transparency

limitations. Other interesting directions include studying potential ways to utilize the PSDD

counterfactuals to quantify the importance of a feature (or internal rule), or appropriately

adjusting Algorithm 1 so it can handle SPNs representing BNs with context-specific

independence.
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3.6 Proofs

Rules of do-Calculus

What follows is an essential graphical tool for deciding under what conditions we can reduce

interventional queries to conditional ones. Here, Bx denotes the graph obtained after deleting

all the edges pointing to X, Bx the one resulting after deleting all the edges emerging from X,

and Bxz refers to the graph where both edges incoming to X and stemming from Z are deleted.

Definition 3.8. (Rules of do-Calculus) Let B be a BN, and Pr(·) the probability measure

induced by it. If X, Y, Z, W are disjoint sets, then the following hold:

Rule 1: Pr(y|do(x), z, w) = Pr(y|do(x), w) if (Y⊥Z|X,W)BX
.

Rule 2: Pr(y|do(x), do(z), w) = Pr(y|do(x), z, w) if (Y⊥Z|X,W)BXZ
.

Rule 3: Pr(y|do(x), do(z), w) = Pr(y|do(x), w) if (Y⊥Z|X,W)BXZ(W)
, where Z(W) is

the set of Z-nodes that are not ancestors of any W-node in BX.

Proof of Proposition 3.1

Using the 3rd rule of Pearl’s do-calculus, it suffices to show that (X⊥U∪ (V \X))BX
. By

assumption, no edges emanate from nodes in X, which implies that each of them will be

isolated in BX, so the desired independence holds, meaning that

Pr(U, V−X|do(X)) = Pr(U, V−X). In addition, we have that

Pr(V−X|do(X)) = ∑U Pr(U, V−X|do(X)) = ∑U Pr(U, V−X) = Pr(V−X).

Proof of Theorem 3.2

All the proposed transformations result in bipartite BNs, with edges only from latent to

observable variables. Since no edges stem out of the observable variables, the result follows by

applying the above proposition.

Proof of Proposition 3.3

Without loss of generality, we can assume that k = n, since otherwise we can just swap indices

between Xk and Xn. Applying the law of total probability, we get that

Pr(Y|X1, · · · , Xn−1) = ∑
Xn

Pr(Y, Xn|X1, · · · , Xn−1) =

Pr(Y|X1, · · · , Xn−1, Xn = 0) · Pr(Xn = 0|X1, · · · , Xn−1)+

Pr(Y|X1, · · · , Xn−1, Xn = 1) · Pr(Xn = 1|X1, · · · , Xn−1) =

Pr(Y|X1, · · · , Xn−1, Xn = 0) · Pr(Xn = 0|X1, · · · , Xn−1)+

Pr(Y|X1, · · · , Xn−1, Xn = 0) · Pr(Xn = 1|X1, · · · , Xn−1) =

Pr(Y|X1, · · · , Xn−1, Xn = 0) · (Pr(Xn = 0|X1, · · · , Xn−1) + Pr(Xn = 1|X1, · · · , Xn−1)) =
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Pr(Y|X1, · · · , Xn−1, Xn = 0)

By symmetry, we also have that

Pr(Y|X1, · · · , Xn−1, Xn = 1) = Pr(Y|X1, · · · , Xn−1),

concluding the proof.

Proof of Theorem 3.5

Let V be a variable represented by some sum node in SPNC , and S be the set of all sum nodes

representing V, S = {S|S is a sum node, Represent(S) = V}. Properties 1 and 2 imply that

all S ∈ S model the conditional distribution of V, given a configuration of its ancestors in

SPNC , X1, · · · , Xk. Furthermore, both B and SPNC represent the same distribution, which

factorizes according to B, so it satisfies the local Markov property. This means that

Pr(V|X1, · · · , Xk) = Pr(V|P1, · · · , Pm), where P1, · · · , Pm are V’s parents in B. This is

because since SPNC was compiled using a topological ordering all of the Pi’s are within the

set {X1, · · · , Xk}, and the remaining variables are non-descendants. Finally, Proposition 3.3 is

used in order to identify the variables that should be removed from the conditional, i.e. the

non-descendants of V in B. This is done in an implicit way, by just comparing certain induced

trees, as follows:

• Pick a variable, Xm, that is represented by a sum node that is closer to the root than all

nodes in S. Any variable satisfying this property appears before V in the underlying

topological ordering.

• Pick a node, Sm, representing Xm, and let

TreesSm = {T|T ∈ SubtreesS(SPNC) for some S ∈ S, Sm ∈ T} be the set of all

induced sub-trees that pass through Sm and end in one of the nodes in S

• Let t0, t1 ∈ TreesSm , such that they both contain exactly the same indicators for all

variables, except from Xm. Instead, when it comes to Xm, 1Xm=0 ∈ t0, 1Xm=1 ∈ t1.

• Furthermore, let S0, S1 ∈ S be the end nodes of t0, t1, respectively. Then S0 models the

distribution of V|x1:k,−m, Xm = 0, while S1 models V|x1:k,−m, Xm = 1, where x1:k,−m

are the states of the variables X1, · · · , Xm−1, Xm+1, · · · , Xk, which are the same in both

conditionals, since t0, t1 include the same indicators for each of these variables. By

construction, the two conditioning sets only differ in the state of Xm.

• If S0 ̸= S1, then by Proposition 3.3 we conclude Xm and V are not conditionally

independent (since Pr(V|x1:k,−m, Xm = 0) ̸= Pr(V|x1:k,−m, Xm = 1)), so Xm must be a

parent of V in B. On the other hand, if S0 = S1, we cannot reach a definite conclusion,

so we consider a new pair of trees t0, t1 ∈ TreesSm and repeat the same process. If after

considering all such trees no two distinct sum nodes can be found, we then consider



3.6. Proofs 39

another node representing Xm and repeat the steps above. Finally, if this loop terminates

without identifying two distinct sum nodes, then

Pr(V|x1:k,−m, Xm = 0) = Pr(V|x1:k,−m, Xm = 1) for all values of x1:k,−m, so again by

Proposition 3.3 we can conclude that Xm must not be a parent of V in B.

Proof of Theorem 3.6

This directly follows from the following observations:

• Any inconsistent joint assignment between variables in V and A, e.g.

V1 = 0, V2 = 1, A1 = V1 ∧V2 = 1, has a probability equal to zero, by definition.

• Any consistent joint assignment leads to all conditional distributions of variables in A
being equal to 1, by definition, so it reduces to a probabilistic query involving only

variables in V. Now since the distribution of V is defined in terms of the PSDD, which

represents a valid distribution, it is a valid distribution as well.

Proof of Theorem 3.7

The first step is to update the distribution of V, given evidence E = e:

Pr∗(V) = Pr(V|E = e) =
Pr(V, E = e)

Pr(E = e)

At this point we should remind ourselves that every instantiation of V, determines the values of

all variables in the model, including E. This means, that in the above expression, all values of

V that do not lead to E = e, result into the probability Pr(V, E = e) = 0. For the rest of the

values we have that V ⊨ E = e, so Pr(V, E = e) = Pr(V).

The desired outcome follows, since if A|X=x is the updated equation determining the value of

A after performing an intervention, then, by the law of total probability, Pr(A|X=x = a) is

equal to the sum of the probabilities of all assignments of V that lead to A|X=x = a. Utilizing

the updated distribution of V, Pr∗(V), to perform this calculation, we conclude that:

Pr(A = a|do(X = x), E = e) = ∑
V:V⊨A|X=x=a

Pr∗(V) = ∑
V:V⊨A|X=x=a

Pr(V, E = e)
Pr(E = e)

= ∑
V:V⊨A|X=x=a∧V⊨E=e

Pr(V, E = e)
Pr(E = e)

= ∑
V:V⊨A|X=x=a∧V⊨E=e

Pr(V)

Pr(E = e)
=

Pr(A|X=x = a, E = e)
Pr(E = e)

= Pr(A|X=x = a|E = e)
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Constraints in SPNs

4.1 Introduction

Incorporating constraints is a major concern in data mining and probabilistic machine learning

(Raedt et al., 2010; Friedman and Van den Broeck, 2019; Kisa et al., 2014), since a wide

variety of problems require the prediction to be integrated with reasoning about various forms

of constraints. This ranges from constraining the support of a distribution, such as when

modelling routes on maps (Shen et al., 2018; Xu et al., 2018), to enforcing certain

independence relationships, such as when approving loan predictions (Mahoney and Mohen,

2007). That is, when modelling routes, we may require the prediction model to respect the

presence of physical paths between nodes on the map, in the sense of assigning zero probability

to impossible or infeasible paths. Analogously, when approving loans, we may have

conditional constraints for eliminating bias, e.g, the prediction should be independent of the

applicant’s ethnicity or gender.

While the problem of constraint satisfaction in BNs has been extensively studied, the

relationship between constraints and TPMs remains an open question. In this chapter, we study

the feasibility of incorporating various kinds of probabilistic constraints in SPNs. Although

SPNs are closely related to BNs, the techniques that have been developed for the latter are not

immediately applicable to the former, since their representations are dramatically different. In

fact, this is related to the findings in Chapter 3, since whenever a SPN satisfies the identified

sufficient conditions, it is possible to utilize the de-compiled BN, apply one of the existing BN

constraint-related approaches, and then compile it back to a SPN. However, in this chapter we

study the complementary situation, exploring whether it is possible to incorporate probabilistic

constraints to arbitrary SPNs, even when they are not compiled from BNs. If the answer to this

question is positive, then it means that SPNs exhibit some powerful transparent features even in

the general case, allowing for integrating a priori expert knowledge.

Our focus is to explore whether the incorporation of probabilistic constraints in SPNs is at all

feasible, on a theoretical level, as well as suggest an optimization based framework for carrying
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out this task. Research towards this question has been extremely limited, since the only known

result is that the constraints that are implied by the structure X1 → X3 ← X2 can be indeed

encoded into a SPN (Peharz et al., 2014) by requiring certain parameters to be equal (see

Figure 4.1). However, this does not address the general case where SPNs are not compiled

from BNs, but are directly learned from data, instead. More precisely, we present the following

contributions:

• We provide proofs that it is possible to enforce (unconditional) independence constraints,

conditional independence constraints, as well as interventional ones to SPNs.

• Furthermore, we prove that all of them correspond to the SPNs’ parameters satisfying a

multivariate system of equations.

• Finally, we propose two different optimization schemes for training SPNs in the presence

of such constraints.

These results extend SPN capabilities in a way that brings them closer to traditional BNs,

moving them further towards the spectrum of transparent models. As far as suggesting an

optimization framework, our approach for studying this question is inspired by recent

approaches, where the problem of constraint satisfaction is addressed by adding regularization

terms in the objective function (Xu et al., 2018; Marquez Neila et al., 2017). In the next

section, we briefly review the main idea underlying this approach.

4.2 Background

4.2.1 Optimization

Constrained optimization is concerned with developing techniques allowing for optimizing

functions under a set of constraints. For example, Figure 4.2 depicts the problem of minimizing

a function, while requiring the solution to belong to the shaded area. One of the most common

ways to address that, is to transform the objective function, so it takes the constraints into

account. The problem of interest is to maximize the likelihood of a model (with a vector of

parameters w), L(w), under constraints Ci(w) = 0, 1 ≤ i ≤ N, so:

maxwL(w), s.t. C1(w) = 0, · · · , CN(w) = 0

The transformed objective function, Λ, introduces a number of auxiliary variables, as many as

the constraints, λ1, · · · , λN , and takes the following form

Λ(w, λ1, · · · , λN) = L(w) + ∑N
n=1 λnCn(w). It can be shown that all of the solutions of the

original problem correspond to stationary points of the new objective function (Protter and

Morrey, 1985).
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X1 X2

X3

(a) BN

+

× ×

¬X1 X1+ +

× ×× ×

¬X2 X2

+++ +

¬X3 X3

(b) SPN

Figure 4.1: Examples of BN inducing an independence constraint, and the corresponding SPN.
Imposing equality between parameters of same coloured edges enforces the independence con-

straint.

There are various numerical methods to solve this problem, such as projected gradient descent,

where an initial vector w(0) is updated incrementally, and then gets projected onto the surface

defined by the constraints, until it converges to a solution of the problem. Furthermore, in cases

where the objective function is in a special form, such as a quadratic polynomial, other

approaches might be more efficient. See (Marquez Neila et al., 2017) for a more extensive

discussion on the subject.

Alternative ways to address constraint optimization problems include recent advances, such as

(Cotter et al., 2019a,b), where the optimization objective is formulated as a game between two

players. Approaches like these can be readily incorporated within our framework, since we are

going to make use of only differentiable constraints, as we will see in what follows.

Optimization problems like the above require all of the feasible solutions to satisfy the

constraints. When this is the case, the constraints are referred to as hard. Alternative

formulations of the problem could yield feasible solutions not satisfying the constraints. These

constraints are called soft, because instead of demanding the solutions to adhere to them, we

introduce a penalty term in the objective function, for each time they get violated. For example,

if all of the Ci(w) = 0, 1 ≤ i ≤ N were treated as soft constraints, then after setting
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Figure 4.2: An example of optimizing a function, while constraining the solution to lie on the
shaded part.

λ1, · · · , λN to some value reflecting the cost of violating the corresponding constraint, the soft

version of the problem would be to maximize the function L(w) + ∑N
n=1 λnCn(w), so each

time some Ci is not equal to zero, it induces a penalty. In this case, all λi are treated as

hyperparameters, so they are specified before the optimization takes place. Furthermore, now

we are interested in the maxima of this function, as opposed to the case of hard constraints,

where we were interested in the stationary points of the transformed function.

4.3 Constraint satisfaction

In this section we establish a link between constraint satisfaction and the SPN’s parameters,

generalizing the results in (Peharz et al., 2014), where the authors discuss that in order to

encode the triplet X1 → X3 ← X2 as a SPN, it is necessary to equate certain parameters (see

Figure 4.1). The presented results are based on the fact that SPNs naturally exhibit a

correspondence between parameters and probabilities. Although this is a simple observation, it

is also crucial, since independence constraints can be usually expressed as an equality between

probabilities. For example, if we want to incorporate the constraint that “A is independent of

B”, we have to ensure that the equality Pr(A, B) = Pr(A) · Pr(B) holds in the final model.

This equality can be re-written in terms of the SPN parameters, allowing for uncovering a

system of equations that guarantee that the constraint is satisfied. In what follows, we exploit

this observation to prove it is feasible to incorporate various constraints in SPNs.

4.3.1 Conditional constraints

The first result concerns the case of constraining the likelihood so it enforces conditional

independence between two variables. More precisely, assume variables Xi, Xj, and another
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variable Xk, whose values we would like to condition on. Constraints similar to this appear in

the fair AI literature (Zemel et al., 2013; Zafar et al., 2015; Hardt et al., 2016; Grgić-Hlača

et al., 2016; Mary et al., 2019), where the objective is to eliminate bias, such as racial

discrimination, from predictive models, by enforcing an appropriate set of conditions. For

example, Xi could represent the outcome of a loan application, Xj could represent the

applicant’s ethnicity, and Xk could be the applicant’s salary. The goal of a conditional

constraint, then, would be to make sure that the probability of granting a loan application is

independent of the applicant’s ethnicity, given the salary. It should also be noted that such

properties can only be imposed during model training/calibration, since otherwise even the

marginal distribution of a variable might have been biased, affected by information regarding

the protected attribute, which leaked during training. This situation could arise under various

circumstances, such as when applying a model to an imbalanced dataset (Mehrabi et al., 2021;

Piotr Sapiezynski, 2017), in which case conditional constraints can impede such information

leakage from happening.

As previously mentioned, SPNs allow for establishing a clear connection between probabilistic

queries and the model’s parameters. This is essential for our approach, since, in general, it is

not clear how to achieve this connection. The following result establishes the relationship

between conditional independence constraints and the parameters of an SPN.

Theorem 4.1. Let S be a SPN representing the joint distribution of variables X1, · · · , Xn. Let

Xi, Xj, Xk be binary variables, then a conditional independence constraint of the form

Xi⊥Xj|Xk is equivalent to a quadratic multivariate system of equations on the SPN’s

parameters.

At this point, it should be noted that although the above result is stated for binary SPNs, to

make the presentation easier to follow, it holds for discrete SPNs in general, as shown in

Section 4.8. Furthermore, by slightly modifying Theorem 4.1, it should be possible to enforce

context-specific independence conditions in the SPN, such as Xi⊥Xj|Xk = 1. This showcases

the flexibility of SPNs, since, to the best of our knowledge, there are no known results

regarding whether context-specific independence can be incorporated into regular BNs.

4.3.2 Interventional constraints

Interventional distributions are used extensively in causal modelling, since they compute

probabilities after an external intervention on a variable is performed, as discussed in the

previous chapter. The new objective is to train a model while incorporating constraints of the

form Pr(X−i|do(Xi = 0)) = Pr(X−i|do(Xi = 1)), where X−i denotes the set of all model

variables, excluding Xi. Constraints of this kind can have powerful implications regarding the

causal mechanisms between Xi and the rest of the variables.
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The following is a well known formula connecting the interventional to the observational

distribution of some variables (Pearl, 2009b), which will be utilized to prove Theorem 4.2:

Pr(X−i|do(Xi = i)) =
Pr(X−i, Xi = i)
Pr(Xi = i|paXi)

Theorem 4.2. Let S be a SPN representing the joint distribution of variables X1, · · · , Xn. Let

Xi be a binary variable, then the constraint Pr(X−i|do(Xi = 0)) = Pr(X−i|do(Xi = 1)) is

equivalent to a multivariate linear system of equations on the SPN’s parameters.

In section 4.8 we discuss how to extend this result to the general case.

4.3.3 Independence constraints

The last kind of constraints we are going to consider are those enforcing independence between

variables. There are some already existing approaches, such as (Xu et al., 2018), allowing for

incorporating rules expressed as propositional formulas within the model, in order for example

to impose certain structure on the outcome variable, but doing the same with probabilistic ones

still poses a major challenge. Using a similar reasoning as in the previous cases, it is possible to

prove that incorporating independence constraints is analogous to the SPN’s parameters

satisfying a multivariate system of equations:

Theorem 4.3. Let S be an SPN representing the joint distribution of variables X1, · · · , Xn.

Let Xi, Xj be two binary variables, then an (unconditional) independence constraint of the form

Xi⊥Xj is equivalent to a quadratic multivariate system of equations on the SPN’s parameters.

In section 4.8 we discuss how to extend this result to the general case.

4.4 System solutions

The results presented so far establish a relationship between various forms of constraints and

multivariate systems of equations. Having said that, it stills remains to show that solutions to

these systems exist. While the fact that parameter tuning can indeed be carried out effectively

to enforce certain constraints in BNs (Meek, 1995) is reassuring, it is not enough to make sure

that the systems identified in the previous sections have valid solutions. However, by utilizing

their specific forms, it is possible to reach the conclusion that all of them can be solved indeed.

More specifically, a well known result coming from the field of commutative algebra states that

a system of multivariate polynomials, where the number of unknown variables is greater than

the number of equations in the system, can either have no solution or infinitely many solutions

(Greuel et al., 2002; Cox et al., 2013; Sottile, 2011). Furthermore, looking at the equations that

make up each of the systems in Theorems 4.1, 4.2, 4.3, which can be found in Section 4.8,
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none of them has a constant term (i.e. the systems are homogeneous). This means that for each

of these systems, setting all variables equal to zero yields a solution, which implies that the

systems have in fact infinite solutions, which is in tune with the corresponding result for BNs

(Meek, 1995). Consequently, as long as more than 8 variables appear in the system in Theorem

4.1, more than 2 variables appear in 4.2, and more than 4 variables appear in 4.3, all of them

have an infinite number of solutions. However, since during optimization the primary objective

is to maximize the likelihood, the value of the likelihood function can be used to select the

solution that leads to the best performing model.

When it comes to solving these systems, on top of the standard numerical solvers, specialized

algorithms have been developed to address such cases, like for example the cylindrical

algebraic decomposition (Collins, 1975; Arnon et al., 1984). Finally, this section highlights the

utility of Theorems 4.1, 4.2, 4.3, since on top of establishing a connection between SPN

parameters and various kinds of constraints, by uncovering the exact form of the resulting

systems they help us show that it is possible for all constraints to be enforced.

4.5 Revisiting existing constraints

Earlier in this chapter, it was briefly mentioned that the constraints implied by the BN structure

in Figure 4.1a can be encoded into a SPN by making sure that certain parameters are equal, as

in Figure 4.1b. In this section, we demonstrate how this fact can be obtained using the

presented results. To this end, let a SPN, S , having the same structure as in Figure 4.1b, and

assume we would like to enforce the constraint X1⊥X2. We will now show how the presented

results naturally lead to the realization that this corresponds to an equality between parameters

in blue, as well as between those in red. Looking at the SPN, it is not difficult to see that the

implied factorization is:

S(X1, X2, X3,¬X1,¬X2,¬X3) = w11X1 · (w21X2 · (w31X3 + w32¬X3) + w22¬X2 · (w33X3 + w34¬X3))

+ w12¬X1 · (w23X2 · (w35X3 + w36¬X3) + w24¬X2 · (w37X3 + w38¬X3))

Using this notation, we would like to prove that w21 = w23 and that w22 = w24. To this end,

using Theorem 4.3, we need to enforce the conditions:

Pr(X1, X2) = Pr(X1) · Pr(X2), Pr(X1,¬X2) = Pr(X1) · Pr(¬X2), (4.1)

Pr(¬X1, X2) = Pr(¬X1) · Pr(X2), Pr(¬X1,¬X2) = Pr(¬X1) · Pr(¬X2)

All of these probabilities can be computed using the SPN, since for example,

Pr(X1, X2) = S(1, 1, 1, 0, 0, 1). Rewriting the equations in (4.1) in terms of the SPN’s

parameters yields the following:
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Algorithm 3 Training with soft constraints

Require: SPN structure S, dataset D, constraints Cn, hyperparameters αn, learning rate γ
Initialize SPN parameters, w
while convergence criterion is not satisfied do

Sample a d ∈ D
w(k)← w(k−1) + γ(∇wS(d) + ∑n αn∇wCn)
NormalizeWeights(S)

end while
return S



w11w21 = w11(w11w21 + w12w23)

w12w23 = w12(w11w21 + w12w23)

w11w22 = w11(w11w22 + w12w24)

w12w24 = w12(w11w22 + w12w24)

⇔


w11w21

w12w23
=

w11(w11w21 + w12w23)

w12(w11w21 + w12w23)

w11w22

w12w24
=

w11(w11w22 + w12w24)

w12(w11w22 + w12w24)

⇔


w21

w23
= 1

w22

w24
= 1

The final equations clearly rediscover that the conditions w21 = w23 and w22 = w24 must hold,

meaning there are infinitely many solutions, exactly as expected following the discussion in

Section 4.4.

4.6 Optimization framework

The previous sections introduced the connection between the network polynomial of a SPN

and various probabilistic queries. In this section we are going to discuss how to utilize these

insights in order to train SPNs that incorporate probabilistic constraints. Many works (Gens

and Domingos, 2013; Adel et al., 2015; Rooshenas and Lowd, 2014) attempt to learn both the

structure and the parameters of a SPN, where the tuning of the parameters’ values is usually

achieved using a heuristic, such as the proportion of the training instances in a sum node.

However, as noted in (Zhao et al., 2016), first learning the structure, using some of the

aforementioned approaches, and then fitting the parameters, yields better results. In what

follows we are going to follow the latter approach, assuming that the SPN structure is known,

since the focus of this section is on the model’s parameters.

As seen in Section 4.2.1, incorporating soft constraints is equivalent to adding new terms in the

objective function. In our case, all of these terms are differentiable, since they are polynomials,

so any standard optimization algorithm could be utilized to train the model. Algorithm 3

describes a pipeline for carrying out this procedure. Apart from including the extra terms in the

objective function, it also allows for a hyperparameter, α, so it is possible to adjust the relative

importance of each constraint. Finally, since it might be the case that after each iteration the

parameters of a sum node are not normalized (meaning they do not sum to 1), after each update
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Algorithm 4 Training with hard constraints

Require: SPN structure S, dataset D, constraints Cn, learning rate γ
Initialize SPN parameters, w
while convergence criterion is not satisfied do

Sample a d ∈ D
w(k)← PC1,...,Cn(w(k−1) + γ∇wS(d))
NormalizeWeights(S)

end while
return S

the SPN has to be normalized, for example following the approach described in (Peharz et al.,

2015).

In contrast, if they are treated as hard constraints, projected gradient descent or approaches like

the one developed in (Marquez Neila et al., 2017) should be used. Algorithm 4 is a variation of

Algorithm 3, adapted to this case. The modification lies on the fact that after the weights are

updated, then they are projected on the space defined by the constraints, using the PC1,...,Cn(·)
operator, see (Marquez Neila et al., 2017; Zhao et al., 2016) for different projection techniques

and their effect on the resulting solutions. All of the required constraints can be uncovered in

analytical form, following the steps outlined in the proofs.

4.7 Conclusions

In this chapter, we provided proofs regarding the theoretical feasibility of incorporating various

kinds of constraints to SPNs. By taking advantage of the network polynomial and the SPNs’

multilinear structure, we were able to show that enforcing each of the considered constraint is

equivalent to the parameters of the SPN satisfying a system of equations. Furthermore, we

discussed two different optimization-based approaches to integrate the constraints to a SPN

learned from data.

The obtained results demonstrate that SPNs possess some transparent features even in the

general case, and are complimentary to the ones presented in Chapter 3. This opens the door

for employing SPNs in applications where background information is available or when certain

probabilistic assumptions need to be satisfied by the resulting model.

From here, there is a number of promising directions regarding future research. In this chapter,

we only consider probabilistic constraints, so extending the results to account for propositional

ones seems like a natural next step. In fact, PSDDs satisfy this property by construction, while

also being tractable. This means that progress related to the feasibility of imposing

probabilistic constraints to PSDDs, may lead to models that combine tractable inference with

the flexibility to incorporate a wide range of a priori assumptions. Since PSDDs have a

multilinear structure, just like SPNs, a variation of the techniques used in the presented proofs,

could provide the first step in tackling this question.
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Another promising direction comes from exploring ways to incorporate inequality constraints,

for example that a certain configuration should have a higher likelihood than others. This task

can be efficiently performed in the BN case (De Campos et al., 2009), but it remains an open

question whether this is the case for SPNs as well. As with the equality constraints that were

presented in this chapter, it is not a matter of immediately applying the same reasoning used in

the BN case, except for when the conditions in Chapter 3 hold, however, taking advantage of

the network polynomial in a similar way as in this chapter, could again facilitate proving the

desired result.
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4.8 Proofs

Proof of Theorem 4.1

Let S(x) = ∑x f (x)∏N
n=1 1xn be the canonical network polynomial of an SPN. The given

conditional independence relationship corresponds to the equality

Pr(Xi, Xj|Xk) = Pr(Xi|Xk) · Pr(Xj|Xk), which can further be rewritten as follows:

Pr(Xi, Xj|Xk) = Pr(Xi|Xk) · Pr(Xj|Xk) =⇒ Pr(Xi, Xj, Xk)

Pr(Xk)
=

Pr(Xi, Xk)

Pr(Xk)
· Pr(Xj, Xk)

Pr(Xk)

(4.2)

=⇒ Pr(Xi, Xj, Xk) · Pr(Xk) = Pr(Xi, Xk) · Pr(Xj, Xk)

Next, we express the above probabilities in terms of S (where X corresponds to the assignment

X = 1, and ¬X to X = 0):

Pr(Xi, Xj, Xk) = ∑
x:xi ,xj,xk

f (x)1xi 1xj 1xk + ∑
x:¬xi ,xj,xk

f (x)1¬xi 1xj 1xk + ∑
x:xi ,¬xj,xk

f (x)1xi 1¬xj 1xk

+ ∑
x:xi ,xj,¬xk

f (x)1xi 1xj 1¬xk + ∑
x:¬xi ,¬xj,xk

f (x)1¬xi 1¬xj 1xk + ∑
x:¬xi ,xj,¬xk

f (x)1¬xi 1xj 1¬xk

+ ∑
x:xi ,¬xj,¬xk

f (x)1xi 1¬xj 1¬xk + ∑
x:¬xi ,¬xj,¬xk

f (x)1¬xi 1¬xj 1¬xk

Pr(Xi, Xk) = ∑
x:xi ,xk

f (x)1xi 1xk + ∑
x:¬xi ,xk

f (x)1¬xi 1xk + ∑
x:xi ,¬xk

f (x)1xi 1¬xk + ∑
x:¬xi ,¬xk

f (x)1¬xi 1¬xk

Pr(Xj, Xk) = ∑
x:xj,xk

f (x)1xj 1xk + ∑
x:¬xj,xk

f (x)1¬xj 1xk + ∑
x:xj,¬xk

f (x)1xj 1¬xk + ∑
x:¬xj,¬xk

f (x)1¬xj 1¬xk

Pr(Xk) = ∑
x:xk

f (x)1xk + ∑
x:¬xk

f (x)1¬xk

The next step is to substitute these quantities into (4.2) and carry out the computations. In

doing so, products of the form 1xk · 1¬xk , as well as 1xk · 1xk , will arise. To deal with the

former, it is enough to observe that the product of indicators corresponding to different states is

always equal to zero, since a variable cannot be at two states at the same time, so

1xk · 1¬xk = 0. For the latter, since 1xk ∈ {0, 1}, and 02 = 0, 12 = 1, it follows that

1xk · 1xk = 1xk . With this in mind, substituting to (4.2) and equating the coefficients of same

terms leads to the following system of equations:

∑
x:xk

f (x) · ∑
x:xi ,xj,xk

f (x) = ∑
x:xi ,xk

f (x) · ∑
x:xj,xk

f (x)
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∑
x:xk

f (x) · ∑
x:¬xi ,xj,xk

f (x) = ∑
x:¬xi ,xk

f (x) · ∑
x:xj,xk

f (x)

∑
x:xk

f (x) · ∑
x:xi ,¬xj,xk

f (x) = ∑
x:xi ,xk

f (x) · ∑
x:¬xj,xk

f (x)

∑
x:xk

f (x) · ∑
x:¬xi ,¬xj,xk

f (x) = ∑
x:¬xi ,xk

f (x) · ∑
x:¬xj,xk

f (x)

∑
x:¬xk

f (x) · ∑
x:xi ,xj,¬xk

f (x) = ∑
x:xi ,¬xk

f (x) · ∑
x:xj,¬xk

f (x)

∑
x:¬xk

f (x) · ∑
x:¬xi ,xj,¬xk

f (x) = ∑
x:¬xi ,¬xk

f (x) · ∑
x:xj,¬xk

f (x)

∑
x:¬xk

f (x) · ∑
x:xi ,¬xj,¬xk

f (x) = ∑
x:xi ,¬xk

f (x) · ∑
x:¬xj,¬xk

f (x)

∑
x:¬xk

f (x) · ∑
x:¬xi ,¬xj,¬xk

f (x) = ∑
x:¬xi ,¬xk

f (x) · ∑
x:¬xj,¬xk

f (x)

Each of these equations correspond to a quadratic multivariate polynomial, since there are

terms that are contained in both factors of each product. For example, the first equation has the

product ∑x:xk
f (x) ·∑x:xi ,xj,xk

f (x). It is not difficult to see that states having

Xi = 1, Xj = 1, Xk = 1 are compatible with both sums, so the corresponding terms will appear

in both of them, meaning that when multiplying the two sums, these terms will be squared.

Looking at the proof, the equation in (4.2) induces a system with as many equations as the

number of possible configurations of Xi, Xj, Xk. Since all of them were assumed to be binary,

there are 2 · 2 · 2 = 8 such configurations, exactly as many as the equations in the system. In

the general case, where Xi ∈ {0, 1, · · · , i− 1}, Xj ∈ {0, 1, · · · , j− 1} and

Xk ∈ {0, 1, · · · , k− 1}, the resulting system contains i · j · k equations, meaning that the

number of equations scale linearly with respect to the range of each variables.

Proof of Theorem 4.2

The proof follows the same reasoning as before, so the first step is to rewrite the given

constraint:

Pr(X−i|do(Xi = 0)) = Pr(X−i|do(Xi = 1))

⇒ Pr(X−i, Xi = 0)
Pr(Xi = 0|paXi)

=
Pr(X−i, Xi = 1)
Pr(Xi = 1|paXi)

⇒ Pr(X−i, Xi = 0) · Pr(Xi = 1|paXi) = Pr(X−i, Xi = 1) · Pr(Xi = 0|paXi)

⇒ Pr(X−i, Xi = 0) · Pr(Xi = 1, paXi) = Pr(X−i, Xi = 1) · Pr(Xi = 0, paXi)

The next step is to express these probabilities in terms of the network polynomial and substitute

them to the above expression. These computations are repetitive and closely resemble those in

the proof of Theorem 4.1, which is why we opted for omitting them. The important observation

is that the result is a system of multivariate polynomials, in this case, too. To prove they are

linear ones as well, it suffices to note that in both products Pr(X−i, Xi = 0) · Pr(Xi = 1, paXi)
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and Pr(X−i, Xi = 1) · Pr(Xi = 0, paXi), the set of parameters involved in the first factor is

disjoint with the one appearing in the second factor, since the parameters that remain after

setting Xi = 0 vanish when setting Xi = 1 (and vice versa).

Following the discussion about extending the binary case to the general case, after Theorem

4.1, it should not be surprising that a similar argument holds true for Theorem 4.2 as well. The

main observation is that enforcing an interventional constraint, for the non-binary case,

Xi ∈ {0, 1, · · · , i− 1}, can be transformed into the following series of pairwise equalities:

Pr(X−i|do(Xi = 0) = Pr(X−i|do(Xi = 1), Pr(X−i|do(Xi = 1) = Pr(X−i|do(Xi =

2), . . . , Pr(X−i|do(Xi = i− 1) = Pr(X−i|do(Xi = i)). Each equation involves X−i and only

two states of Xi, so (a slight modification of) Theorem 4.2 applies to each of them, meaning

that each of these equalities induces a system of 2 equations. Putting everything together, the

overall number of equations in the system is 2(i− 1).

Proof of Theorem 4.3

To prove this result, again, the first observation is that the given constraint corresponds to the

equality Pr(Xi, Xj) = Pr(Xi) · Pr(Xj). Following that, all the probabilities involved can be

expressed in terms of the network polynomial, S:

Pr(Xi, Xj) = ∑
x:xi ,xj

f (x)1xi 1xj + ∑
x:¬xi ,xj

f (x)1¬xi 1xj + ∑
x:xi ,¬xj

f (x)1xi 1¬xj + ∑
x:¬xi ,¬xj

f (x)1¬xi 1¬xj

Pr(Xi) = ∑
x:xi

f (x)1xi + ∑
x:¬xi

f (x)1¬xi

Pr(Xj) = ∑
x:xj

f (x)1xj + ∑
x:¬xj

f (x)1¬xj

Next, we substitute these quantities to the constraint’s equation, so we get that:

∑
x:xi ,xj

f (x)1xi 1xj + ∑
x:¬xi ,xj

f (x)1¬xi 1xj + ∑
x:xi ,¬xj

f (x)1xi 1¬xj

+ ∑
x:¬xi ,¬xj

f (x)1¬xi 1¬xj = ∑
x:xi

f (x) ·∑
x:xj

f (x)1xi 1xj

+ ∑
x:xi

f (x) · ∑
x:¬xj

f (x)1xi 1¬xj + ∑
x:¬xi

f (x) ·∑
x:xj

f (x)1¬xi 1xj

+ ∑
x:¬xi

f (x) · ∑
x:¬xj

f (x)1¬xi 1¬xj

Equating the coefficients we get the following system of equations:

∑
x:xi ,xj

f (x) = ∑
x:xi

f (x) ·∑
x:xj

f (x)

∑
x:¬xi ,xj

f (x) = ∑
x:¬xi

f (x) ·∑
x:xj

f (x)

∑
x:xi ,¬xj

f (x) = ∑
x:xi

f (x) · ∑
x:¬xj

f (x)
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∑
x:¬xi ,¬xj

f (x) = ∑
x:¬xi

f (x) · ∑
x:¬xj

f (x)

Each of these equations correspond to a quadratic multivariate polynomial, since in each

equation the sums appearing on the right hand side have some terms in common. For example,

looking at the first equation, the assignment setting all the variables equal to 1 is compatible

with both summations, so the term f (x1, · · · , xn) appears in both of them. Clearly, by

multiplying them we end up with a squared parameter.

Theorem 4.3 can be extended to the general case, as well, following the same arguments as

before. Assuming that Xi ∈ {0, 1, · · · , m− 1}, Xj ∈ {0, 1, · · · , k− 1}, then enforcing an

independence constraint results in a multivariate quadratic system of m · k equations.

At this point, looking at the proofs it might appear like the proposed framework can only be

applied when having a non-factorized, canonical, polynomial representation. However, this is

not the case, since upon a closer inspection, the only essential requirement is to be able to

compute all the probabilities utilized in the proofs. SPNs can compute these probabilities

regardless of whether they encode the canonical polynomial or one of its factorized

representations. Of course, the more compact a SPN is, the more efficient is inference utilizing

it, but it is always possible to infer these probabilities. After obtaining all the necessary

quantities (each one requiring a single pass over the SPN), they can be substituted into the

corresponding equations. Although the proofs are based on the canonical polynomial, in

practical applications any of its factorized representations can be used, leading again to a

system of equations, which is expressed entirely in terms of the SPN’s parameters.

This reasoning applies to all the considered constraints, not only the independence ones, since

the only essential requirement is to be able to substitute the probabilistic quantities appearing

in a constraint with the corresponding SPN outcomes, thus obtaining a system involving only

the SPN’s parameters. As discussed in the preceding paragraph, all the necessary probabilities

can be inferred when using a SPN. For example, enforcing a conditional constraint of the form

Pr(X1|X2) = Pr(X1|¬X2), requires computing Pr(X1, X2), Pr(X1,¬X2), Pr(X2), Pr(¬X2)

(using a SPN) and substituting them into the equation

Pr(X1, X2) · Pr(¬X2) = Pr(X1,¬X2) · Pr(X2), leading to an equation involving only the

SPN parameters.



Chapter 5

Counterfactuals in SPNs

5.1 Introduction

In recent years explanations for machine learning (ML) models have gained a lot of

prominence, especially in the context of safety critical applications. This is due to the

black-box nature of many of the state-of-the-art models, which impedes a thorough

understanding of their internal reasoning. One of the most important challenges is how can one

be sure that the algorithm bases its decisions on the proper criteria, or that it does not

discriminate against certain minority groups?

Bayesian networks (BNs) have been traditionally deployed in applications where such

considerations are crucial, due to their ability to clearly represent relationships between

variables, and incorporate causal information. One of the most celebrated properties of BNs is

their ability to compute counterfactual quantities of the from “what would have been the value

of Y, had X been equal to x?”, which has been extensively utilized in high-stakes applications,

such as in finance (Dhar, 1998; Fatum and Hutchison, 2010), healthcare (Prosperi et al., 2020;

VanderWeele, 2020), and criminal justice (Mishler et al., 2021; Sampson et al., 2006).

Having said that, one of the challenges of computing counterfactual quantities is that they

require a very careful specification of the mechanisms that underlie the interactions of all the

variables included in the model. This is a highly non-trivial task, usually involving

domain-expert knowledge as well as hand-crafting the final models. However, ML models

often involve a prohibitively high number of variables to allow for accurately specifying every

interaction. Complications like this, have led to the emergence of a related line of research

within the field of explainability in AI (XAI), where the objective is to identify simplified

“computational” counterfactuals. The term computational reflects the underlying idea of this

approach, where a classification model is treated as a function, and, given an instance, X, the

objective is to find a counterfactual instance, Y, such that X and Y are as close as possible, but

the model predicts a different class for each of them.
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This line of research has led to the development of a general framework for producing

counterfactual instances for any differentiable classification model, as described in (Wachter

et al., 2018). Building on top of that, the authors in (Mothilal et al., 2020) proposed a method

for generating diverse counterfactuals for differentiable models, while the work in (Russell,

2019) addressed some technical challenges, proposing a new framework that is based on mixed

integer programming (MIP).

In this chapter, we extend the framework in (Russell, 2019) to the non-linear case, so it allows

for generating computational counterfactuals for multilinear models. This model class includes

Bayesian network classifiers (BNCs) (Friedman et al., 1997), as well as decision trees, and

random forests. In order to address the BNC case we utilize discriminative SPNs, since they

subsume all BNCs, allowing for studying the latter under a unified framework. More

specifically, we present the following contributions:

• We show that by taking advantage of a model’s multilinear structure, it is possible to

formulate an integer linear program (ILP) that is guaranteed to generate valid

counterfactuals.

• We demonstrate how one can seamlessly generate diverse counterfactuals using the

presented framework.

• We demonstrate how to apply it to decision trees (DTs), random forests (RFs), as well as

discriminative SPNs, possibly resulting into an infinite set of counterfactuals.

• We show that the presented framework generalizes other existing frameworks, while we

also discuss how it can be easily adjusted to generate alternative forms of explanations.

5.2 Background

In this section we are going to briefly introduce DTs, RFs, and discriminative SPNs, as these

models are going to be used in the remaining of this chapter.

5.2.1 Decision Trees

Decision trees (DTs) are tree-like structures that contain a set of conditional control statements,

such as X ≤ a. Each assignment is consistent with exactly one root-to-leaf path, while control

statements are arranged in a hierarchical manner, where intermediate nodes represent decisions

and leaf nodes can be either class labels (for classification problems) or continuous quantities

(for regression problems).

The majority of decision tree learning algorithms operate in a top-down manner, iteratively

partitioning the whole dataset into smaller ones, and conditioning on the values of the feature
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X1 ≤ 10

X2 ≤ 50 X2 ≤ 20

1 0 1 0

(a) A Decision Tree

(b) A Random Forest

Figure 5.1: Examples of decision trees and random forests. Solid lines are followed if the
corresponding rule is satisfied, dashed lines if it is not.

that contains the most information. This has led to the development of a number of metrics that

quantify the amount of information that is gained when splitting the dataset according to a

specific feature, such as Gini impurity (Bishop, 2006). In turn, these metrics can be used in

order to design algorithms that learn DTs from data, such as CART (Moore II, 1987).

An advantage of employing DTs is that their internal rule-based architecture is relatively easy

to inspect, allowing for assessing the quality of the model. This is one of the major reasons

DTs are usually utilized in cases where the model’s understandability is essential. However,

large DTs containing a lot of rules are not easy to interpret anymore, requiring additional

explainability tools in order to reason about their internal behaviour (Arrieta et al., 2020).

5.2.2 Random Forests

DTs have been employed in various applications due to the transparency they exhibit, at least

as long as they are kept at a reasonable size. However, one of their major limitations is their

tendency to overfit a dataset, leading to high variance models that fail to maintain good

performance when dealing with new data.

Random forests (RFs) aim at overcoming this challenge by combining multiple trees, resulting

in more stable models with lower variance. The main insight underlying this approach is to

sample with replacement from the training dataset in order to construct multiple new datasets,

thus implementing the idea of bagging (Breiman, 1996). Following that, a decision tree is

trained over each of these newly acquired datasets, leading to an ensemble of independent

trees. Then, in prediction time, an aggregation measure, such as majority voting (for

classification) or averaging (for regression), combines the predictions of each tree in order to

generate the prediction of the whole forest.
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(b) DSPN

Figure 5.2: BNC and DSPN representations of the same Naive Bayes model.

The procedure described above results in very expressive and accurate models, however this

comes at the expense of interpretability, since the whole forest is far more challenging to

explain, compared to single decision trees. This has led to the development of various

techniques that attempt to explain the inner reasoning of a RF (Arrieta et al., 2020).

5.2.3 Discriminative Sum-Product Networks

Discriminative sum-product networks (DSPNs) are rooted directed graphical models, similar to

the generative SPNs considered in the previous chapters. The only difference between the two

is that DSPNs represent the conditional distribution of a variable, while generative SPNs

represent the full joint distribution. Moreover, DSPNs enable tractable inference in the same

manner as generative SPNs, by enforcing completeness and decomposability. DSPNs are

preferred in classification problems, since although it is feasible to learn the full joint

distribution using a generative SPN, and then employ it to compute any conditional

distribution, directly learning the desired conditional distribution yields better results (Lafferty

et al., 2001). This is because the joint distribution implicitly encodes all the corresponding

conditionals, so it is a much more challenging task, compared to focusing on learning just a

single conditional distribution. Furthermore, any BN representing the conditional distribution

of a discrete variable (i.e. any BNC) can be represented as a DSPN, similarly to how any BN

representing the joint distribution can be transformed into a generative SPN. Figure 5.2 depicts

two equivalent representations of a naive Bayes model, made for the conditional distribution of

Y|X1, X2, X3, one as a BNC (Figure 5.2a), and one as a DSPN (Figure 5.2b).

5.3 Problem Derivation

This section introduces our approach for generating counterfactuals, inspired by (Russell,

2019), but addressing one of its key limitations; the range of models it applies to. Specifically,

we extend the existing framework to multilinear models, such as DTs and BNCs, as well as

ensembles thereof that utilize majority voting, such as RFs. In what follows all variables are
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assumed to be binary, to allow for an easier presentation, however, in Section 5.3.4 an

extension to the non-binary case is provided.

Before going any further, we define a quantity similar to the decision function, developed in

(Shih et al., 2018), as follows:

Definition 5.1. Let G : X→ {0, 1} be a binary classification function, and PG
0 (X), PG

1 (X) be

multilinear polynomials of indicator variables, where all coefficient are equal to 1 and there is

no constant term. Then PG
0 (X) ∈ {0, 1} (respectively, PG

1 (X)) is called the 0-decision (resp.

1-decision) polynomial of G, iff G(X) = 0⇔ PG
0 (X) = 1 (resp. G(X) = 1⇔ PG

1 (X) = 1)

Decision polynomials provide for a multilinear representation of arbitrary binary classifiers. In

(Shih et al., 2018), decision functions play a similar role, but there is no requirement for them

to be multilinear. However, this additional condition is required in order to be able to derive an

optimization problem in ILP format.

In the remaining of this section, some general results regarding decision polynomials are

derived, which are going to provide the basis of the subsequent algorithms. The next

proposition follows immediately from the definition, and will be used extensively throughout

the rest:

Proposition 5.2. Let G : X→ {0, 1}, and PG
0 (X), PG

1 (X) be the decision polynomials. Then

∀x ∈ X PG
0 (x) + PG

1 (x) = 1

The following statement is a simple observation that since each term of a decision polynomial

is equal to either 0 or 1, in order for the polynomial to output 0, each term has to be equal to 0.

Proposition 5.3. Let G : X→ {0, 1}, and PG
0 (X), PG

1 (X) be the decision polynomials.

Assuming PG
0 (X) = T1(X) + T2(X) + · · ·+ Tk(X), where each Ti ∈ {0, 1}, then

PG
0 (X) = 0⇒ T1(X) = T2(X) = · · · = Tk(X) = 0. The same holds for PG

1 (X).

Proposition 5.3 implies that in order to make sure that a decision polynomial outputs 0, it is

enough to make sure that each monomial equals 0. The next challenge is due to the fact that

these monomials are products of indicator functions, not linear combinations thereof, which

impedes us from formulating a linear optimization problem. A key insight for overcoming this

difficulty is that since indicator functions can be equal to either 0 or 1, making sure that not all

of them are equal to 1 is sufficient to guarantee that their product is equal to 0. The following

proposition states a simple condition that leads to this outcome.

Proposition 5.4. Let X1, X2, · · · · Xk ∈ {0, 1}, then the following hold:

X1 · X2 · · ·Xk−1 · Xk = 1⇔ X1 + X2 + · · ·+ Xk = k and

X1 · X2 · · ·Xk−1 · Xk = 0⇔ X1 + X2 + · · ·+ Xk ≤ k− 1.

At this point, Propositions 5.3 and 5.4 already provide for a set of constraints that are sufficient

to ensure that a datapoint is classified as either 0 or 1. For example, if the goal is to generate an
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Algorithm 5 Counterfactuals for multilinear models
Require: A multilinear model M

Compile the k-DP of M, where k ∈ {0, 1}
Form the objective function
if the counterfactual has to be classified in the k-class then

Add the constraints in Proposition 5.5 to the problem
else

Apply the inequality constraints in Proposition 5.4 to every term of the DP
end if

instance that belongs into the 1-class, then it is enough to consider the 0-decision polynomial

and force it to output 0. This can be done by considering each of its terms, say

X1 · X2 · · ·Xk−1 · Xk, and adding the constraint X1 + X2 + · · ·+ Xk ≤ k− 1. This procedure

guarantees that all the terms will be equal to 0, so the solution to the problem, X, satisfies

PG
0 (X) = 0⇒ PG

1 (X) = 1, i.e. it is classified as 1.

However, having said that, storing both polynomials requires additional resources, while it

could also be the case that one of them is significantly smaller than the other one, so it would

be preferable to express the problem in terms of this polynomial to end up with a more compact

optimization problem. A natural way to address this situation would be perform the

complementary task of the one considered so far; forcing a decision polynomial to be equal to

1. For example, this could be achieved by defining a set of constraints that when satisfied force

a term in the decision polynomial to be equal to 1, and the rest equal to 0. As a matter of fact, in

the following proposition we show that it is indeed possible to uncover such a set of constraints:

Proposition 5.5. Let P0(X) = X11 · · ·X1k + X21 · · ·X2m + · · ·+ Xn1 · · ·Xnl , where each

Xi ∈ {0, 1}, be the 0-decision polynomial of a model. Furthermore, let the constraints

X11 + X12 · · ·+ X1k ≥ k · δ1, X21 + X22 · · ·+ X2m ≥ m · δ2, . . . , Xn1 + Xn2 · · ·+ Xnl ≥
l · δn, ∑n

i=1 δi = 1, where δi ∈ {0, 1}. If an assignment, X′, satisfies these constraints, then

P0(X′) = 1. An analogous statement holds for P1(X).

We have now developed most of the the necessary machinery to formulate a counterfactual

generating optimization problem, shown in Algorithm 5. In the following subsections we

address the first two points in Algorithm 5, providing ways to recover the DPs of DTs, RFs and

BNCs, as well as discussing how to set the weights of the weighted l1 norm, which is going to

serve as our objective function. Furthermore we provide some adjustments that need to be

made in order to take into account the characteristics of the aforementioned models.

5.3.1 Decision trees

In this section we are going to examine how to use the branching rules in a DT to generate a

decision polynomial. To this end, we make use of the fact that any DT can be transformed into
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an equivalent rule-based classifier (Quinlan, 1987), which allow us to derive a multilinear

representation of a DT over the set of rules it naturally induces.

An example of the general process can be seen in Figure 5.1a, which contains a very simple

decision tree. It is defined over two continuous variables, X1, X2, but it can also be seen as a

function over its internal rules, X1 ≤ 10, X2 ≤ 50, X2 ≤ 20. To construct the 0-DP, we

traverse the DT bottom-up and we include a term for each path that ends in a 0 leaf. Whenever

a rule, R, in a path is satisfied, we make an indicator 1[R]. On the other hand, if a rule is not

satisfied, we form the difference 1− 1[R]. Finally, the term is constructed by considering all

rules in the path and multiplying the aforementioned quantities. The 1-DP is constructed by

considering all paths that end into a 1 leaf and following the same process. The following are

the decision polynomials for the DT in Figure 5.1a:

PG
1 (X1, X2) = 1[X1 ≤ 10] · 1[X2 ≤ 50] + (1− 1[X1 ≤ 10]) · 1[X2 ≤ 20],

PG
0 (X1, X2) = 1[X1 ≤ 10] · (1− 1[X2 ≤ 50]) + (1− 1[X1 ≤ 10]) · (1− 1[X2 ≤ 20]),

where 1 is the indicator function.

In both polynomials, all monomials are monic, while there is no constant term. Furthermore,

since each term corresponds to a single root-to-leaf path, each polynomial outputs either 0 (if

the given assignment does not satisfy any path) or 1 (if a path is satisfied), so we conclude that

they are indeed valid DPs. This process exemplifies the general reasoning, which remains

unaltered, no matter how large a DT is.

Having the decision polynomials, we can now form a distance function and put all the pieces

together. To this end, let d = (X1, X2) be a factual datapoint of interest. Utilizing the weighted

l1 norm, ∥ · ∥1,w, and the rule representation of the DT, the distance between two points can be

defined as follows:

∥d− d′∥1,w = w1|1[X1 ≤ 10]− 1[X′1 ≤ 10]|+ w2|1[X2 ≤ 20]− 1[X′2 ≤ 20]|
+ w3|1[X2 ≤ 50]− 1[X′2 ≤ 50]|,

where w1, w2, w3 are constants. The last step is to remove the absolute values from the

objective function. This is simple to do, since the values of the indicators

1[X1 ≤ 10], 1[X2 ≤ 20], 1[X2 ≤ 50] are known quantities, and 0 ≤ 1[·] ≤ 1. The result is the

objective function of the final optimization problem.

Going on with the example, let us also assume that (X1, X2) satisfies X1 ≤ 10, 20 < X2 ≤ 50,

so it is classified into the 1 class. Using the 0-DP and applying Proposition 5.5 (i.e. forcing it to

be equal to 1), the final optimization problem is:

min w1(1− 1[X′1 ≤ 10]) + w21[X′2 ≤ 20] + w3(1− 1[X′3 ≤ 50]) s.t.
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1[X′1 ≤ 10] + (1− 1[X′2 ≤ 50]) ≥ 2 · δ1,

(1− 1[X′1 ≤ 10]) + (1− 1[X′2 ≤ 20]) ≥ 2 · δ2,

δ1 + δ2 = 1

The solution of this problem depends on the values of w1, w2, w3, however, is guaranteed to be

an instance that is classified as 0 by the DT. In fact, this process will result into an infinite set of

counterfactuals, since if for example the solution turns out to be

1[X′1 ≤ 10] = 1, 1[X′2 ≤ 20] = 0, 1[X′2 ≤ 50] = 0, then X1 remains unaltered, but for X2 we

have that every element of the set {(X1, X′2) : X′2 > 50} is a valid counterfactual to d, with

respect to the decision tree. This is an extension of the framework in (Russell, 2019), where the

outcome was a single point.

Finally, we discuss the amount of constraints that has to be added to the optimization problem.

As the DPs encode the root-to-leaf paths of the decision tree, the amount of constraints depends

on the number of distinct root-to-leaf paths, m. The added flexibility of expressing the final

problem using either of the two DPs, allows for efficiently handling situations that would be

otherwise problematic. For example, if there is a DT having only one path that leads to a 0-leaf,

and all the remaining ones lead to a 1-leaf, then everything can be encoded using the 0-DP in a

highly efficient manner, using a single constraint, instead of m− 1 ones. This demonstrates

that the worst-case scenario is when there is an equal number of 0-leaf and 1-leaf paths, in

which case the cost of encoding the constraints is the same, no matter which DP is utilized.

This means that in the worst case O(m
2 ) constraints would be necessary, each one involving

O(p) variables, where p is the length of the longest path in the tree.

5.3.2 Random Forests

In this section, we examine how to handle ensembles of multilinear models, using RFs as an

example. Although the process is similar in spirit, incorporating information from multiple

models poses an additional challenge. For example, looking at Figure 5.1b we can verify that

the 1-DP of each tree is:

T1 : PT1
1 (X1, X2, X3) = 1[X2 ≤ 1] · 1[X3 ≤ 2] + (1− 1[X2 ≤ 1]) · 1[X3 ≤ 10],

T2 : PT2
1 (X1, X2, X3) = 1[X1 ≤ 5] · 1[X2 ≤ 2],

T3 : PT3
1 (X1, X2, X3) = 1[X1 ≤ 3] · 1[X3 ≤ 5] + (1− 1[X1 ≤ 3]) · (1− 1[X2 ≤ 6])

As usual, each polynomial encodes all the 0 or 1 assignments of each individual tree, but how

can we combine them all together so they encode the behaviour of the forest? A first remark is

that in order to make sure that the model outputs, for example, 1, it is enough to enforce a

constraint that at most one 0-decision polynomial outputs 1. This would mean that the outcome
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of at least 2 out of the 3 decision trees is equal to 1, so the whole forest has an output of 1,

assuming majority voting.

This kind of reasoning can be applied to ensembles will an arbitrary number of trees, and will

be the base of extending the current framework. In fact, it turns out that this approach

corresponds to a generalization of the one we presented for DTs, as shown at the end of this

section. The following proposition provides for a way to infer whether a decision polynomial is

equal to 1.

Proposition 5.6. Let PG
0 (X) = X11 · · ·X1k + X21 · · ·X2m + · · ·+ Xn1 · · ·Xnl , where each

Xi ∈ {0, 1}, be the 0-decision polynomial of a model. Furthermore, let the constraints

X11 + X12 · · ·+ X1k − k ≤ δ− 1, X21 + X22 · · ·+ X2m −m ≤ δ− 1, · · · ,
Xn1 + Xn2 · · ·+ Xnl − l ≤ δ− 1, where δ ∈ {0, 1}. If X, δ satisfy all of them, then

δ = 0⇒ PG
0 (X) = 0. An analogous statement holds for PG

1 (X).

Proposition 5.6 can be seen as an indicator of whether a DT outputs 0 or 1, and it can be used

to control the behaviour of a RF. For example, assuming we utilize the 0-DPs to generate an

instance that is classified as 1, we need to make sure that at least half of these 0-DPs output 0.

By adding the constraints in Proposition 5.6 for every DT in the RF and demanding that at least

half of the corresponding indicators are equal to 0, we enforce just that, so the majority of the

DTs have an outcome equal to 1, meaning that the whole forest outputs 1.

As it was the case with DTs, Proposition 5.6 suffices to generate valid counterfactuals for RFs.

However, the same considerations as before apply to the RF case, so it would be desirable to be

able to express the optimization problem in terms of a single DP. As it turns out, it is possible

to extend Proposition 5.5 so it can handle the RF case as well:

Proposition 5.7. Let T1, T2, · · · , Tm be the DTs of a RF, F. For each Tj, consider P
Tj
0 (X) and

add all the constraints appearing in Proposition 5.5, except for the last one, which is replaced

by ∑n
i=1 δji = δj, where δji appears in the i-th constraint of the j-th tree and δj ∈ {0, 1} is a

newly introduced variable. Finally, add the constraint ∑m
i=1 δi >

⌊m−1
2

⌋
. If an assignment, X,

satisfies these constraints, then the majority of trees output 1, so F outputs 1 as well.

These results connect the behaviour of a single model to the behaviour of the ensemble,

allowing to control the number of models that output a certain outcome. However, tree

ensembles present an additional challenge that needs to be addressed; that is, we need to make

sure that the solution of the optimization problem is consistent. In this setting, the term

consistency is used in the sense that if the solution dictates that a condition of the form X ≤ α

holds, then all the conditions of the form X ≤ β, where α ≤ β hold as well. Furthermore, by

the same reasoning, if a condition X ≤ α does not hold, then no condition X ≤ β, where

α ≥ β should hold. To this end, I define the following quantities:

Definition 5.8. Let T1, T2, · · · , Tn be DTs and X one of the variables in their scope. We define:
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• Fx = {X ≤ a : X ≤ a ∈ F(Ti), i ∈ {1, 2, · · · , n}}, where F(Ti) is the set of all the

internal rules in Ti. In turn, Fx is the set of all the rules among all the trees that involve

variable X.

• Furthermore, let X ≤ a be an element of Fx, and define

F+
x (X ≤ a) = {X ≤ b : X ≤ b ∈ Fx, b ≥ a}, the set of rules involving X where the

threshold is larger than a, and F−x (X ≤ a) = {X ≤ b : X ≤ b ∈ Fx, b ≤ a}, the rules

where the threshold is smaller than a.

The following proposition provides a way to achieve consistency by enforcing a set of

constraints:

Proposition 5.9. Let T1, T2, · · · , Tn be DTs that form a RF. Then, the constraints

∑ fi∈F+
x (X≤a) 1[ fi] ≥ |F+

x (X ≤ a)| · 1[X ≤ a] and

∑ fi∈F−x (X≤a) 1[ fi] ≤ |F−x (X ≤ a)| · 1[X ≤ a], guarantee that the final solution is consistent

wrt the rule X ≤ a.

Looking at Proposition 5.9 we see that two constraints per rule are enough to guarantee

consistency. We can now examine the number of constraints that are required in order to

generate a counterfactual from a RF. Clearly, we have to include the counterfactual generating

constraints as well as the consistency ones. The former, amounts to incorporating the DP of

each tree in the forest. Based on our results for the DT case, assuming there are N trees,

O(Nm
2 ) constraints are required in the worst case, where m is the maximum number of distinct

paths among all N trees. For the latter, we have to add two constraints per rule, meaning that

O(NF∗), where F∗ = maxT1,··· ,TN (FTi), constraints are required. Combining these together, in

the worst case O(N(m
2 + F∗)) constraints are needed to define a counterfactual generating

problem, which scales linearly with respect to the number of trees in the forest.

We are now ready to demonstrate how to generate counterfactuals for RFs, by combining

Proposition 5.6, Proposition 5.5, and Proposition 5.9. Returning to our running example,

shown in Figure 5.1b, let d = (X1, X2, X3) be a datapoint that satisfies the conditions

X1 ≤ 3, X2 ≤ 1, X3 ≤ 2, meaning that all 3 DTs classify d as 1. Assuming we utilize the

1-DPs, the following optimization problem generates a set of solutions that are classified as 0
by the RF, by forcing the majority of the 1-DPs to output 0:

min w1(1− 1[X1 ≤ 5]) + w2(1− 1[X1 ≤ 3]) + w3(1− 1[X2 ≤ 1])

+ w4(1− 1[X2 ≤ 2]) + w5(1− 1[X2 ≤ 6]) + w6(1− 1[X3 ≤ 2])

+ w7(1− 1[X3 ≤ 10]) + w8(1− 1[X3 ≤ 5]) s.t.
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1[X2 ≤ 1] + 1[X3 ≤ 2]− 2 ≤ δ1 − 1,

1− 1[X2 ≤ 1] + 1[X3 ≤ 10]− 2 ≤ δ1 − 1

1[X1 ≤ 5] + 1[X2 ≤ 2]− 2 ≤ δ2 − 1,

1[X1 ≤ 3] + 1[X3 ≤ 5]− 2 ≤ δ3 − 1

1− 1[X1 ≤ 3] + 1− 1[X2 ≤ 6]− 2 ≤ δ3 − 1,

δ1 + δ2 + δ3 ≤ 1


0 generating constraints

1[X1 ≤ 5] ≥ 1[X1 ≤ 3]
}

X1 consistency constraints

1[X2 ≤ 2] + 1[X2 ≤ 6] ≥ 2 · 1[X2 ≤ 1],

1[X2 ≤ 6] ≥ 1[X2 ≤ 2]

1[X2 ≤ 1] ≤ 1[X2 ≤ 2],

1[X2 ≤ 1] + 1[X2 ≤ 2] ≤ 2 · 1[X2 ≤ 6]


X2 consistency constraints

1[X3 ≤ 5] + 1[X3 ≤ 10] ≥ 2 · 1[X3 ≤ 2],

1[X3 ≤ 10] ≥ 1[X3 ≤ 5]

1[X3 ≤ 2] ≤ 1[X3 ≤ 5],

1[X3 ≤ 2] + 1[X3 ≤ 5] ≤ 2 · 1[X3 ≤ 10]


X3 consistency constraints

Finally, in Section 5.6, we establish a connection between the optimization scheme for DTs and

the one developed for RFs, showing that the latter is a generalization of the former.

5.3.3 Discriminative Sum-Product Networks

The last class of models we discuss are discriminative SPNs over binary variables, so we can

obtain a unified framework that is readily applicable to any BNC. Retrieving the DPs of a

DSPN is relatively straightforward, utilizing its interpretation as a collection of induced tree

models (Zhao et al., 2016), which was introduced in Chapter 3. Each induced tree is derived by

traversing the DSPN top-down, where for every sum (resp. product) node only one (resp. all) of

its children is included in the final tree, as outlined in the first 3 conditions in definition 3.4. In

the worst case, if a DSPN defined over N variables exhibits no context-specific independence,

then this process results into 2N induced trees, one for each assignment (Zhao et al., 2016).

However, if there are such relationships, then the DSPN can be much more compact, resulting

in fewer and shallower trees. In any case, the worst case complexity is in tune with known

complexity results regarding counterfactual generation for BNCs (Shih et al., 2018).

Assuming a DSPN representing a conditional distribution of the form Y|X1, · · · , XN , each

induced tree contains a set of indicators, which decides the state of the variables in the

conditioning set (Peharz et al., 2014). This means that if a tree contains indicators

1Xi1=i1 , · · · , 1Xik
=ik , then it computes the probability of Y|Xi1 = i1, · · · , Xik = ik. Looking at
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all the induced trees and collecting the states of the variables in the conditioning set, it is

relatively easy to construct the DPs, as follows:

• Let T be an induced tree, and Xi1 = i1, · · · , Xik = ik be the state of the corresponding

conditioning variables.

• Compute the odds
Pr(Y=1|Xi1=i1,··· ,Xik

=ik)

Pr(Y=0|Xi1=i1,··· ,Xik
=ik)

. If this is greater than 1, it means that this

particular state results in Y being classified as 1, so a term corresponding to the

conditioning set should be added to the 1-DP (where if Xi = 1 the term contains Xi, but

if Xi = 0 the term contains 1− Xi). Otherwise, this term should be added to the 0-DP,

instead.

• Repeat this process until all induced trees have been considered.

Once the DP(s) are known, then it is only a matter of enforcing the desired constraints, as per

Algorithm 5.

5.3.4 Parameters, Prime Implicants, the Non-Binary Case, and Diversity

5.3.4.1 Parameters

In this section, we discuss how to set the weights, w, in the ℓ1 norm as well as some possible

extensions. In the original work in (Wachter et al., 2018), the inverse of the median absolute

deviation (MAD) of a feature was utilized:

MADk = medianj∈D(| Xj,k −medianl∈D(Xl,k) |) (5.1)

where D is the dataset, and Xi,k denotes the value of feature k, in data point i.

As the authors argue, this comes with the advantage of being able to capture the intrinsic

volatility of a feature, while also being robust to outliers. However, in our framework we

consider binary variables, where using MAD is inappropriate, since it is always equal to 0.

Instead, we follow the approach in (Russell, 2019), opting for using the inverse standard

deviation of a variable.

5.3.4.2 Generalizations

A special case worth mentioning arises when all weights are equal to 1. Then, the resulting

distance, ∥ · ∥1,1, reduces to the Hamming distance (Shi et al., 2020), and the solution of the

minimization problem reflects the smallest number of changes that are necessary to make the

model change its output. As a matter of fact, this number has already gained significant

attention within an emergent line of research regarding explainability approaches, where it is



66 Chapter 5. Counterfactuals in SPNs

known as the robustness of a classifier (Shi et al., 2020). This means that the presented

framework can compute a model’s robustness by just setting all weights equal to 1. However, it

is much more flexible, since Hamming distance does not allow for assigning different weights

to features, they are all treated as being equally important. In contrast, the distance function

used in this work admits non-uniform feature weights, reflecting the relative importance of

each term

Furthermore, although the focus of this chapter is on generating counterfactuals, it is possible

to generate prime implicant (PI) explanations (Shih et al., 2018), by making a few minor

adjustments. Unlike counterfactual explanations that compute a minimal set of changes enough

to alter the model’s decision, PI-explanations compute a minimal set of feature values that is

enough to maintain the model’s decision, no matter the values of the remaining features.

Similarly, conditional PI explanations provide the same information, but with the additional

constraint that the conditioning variables should be members of the PI set. In other words, they

uncover the smallest super-set of the conditioning variables that guarantees that the model’s

outcome cannot be altered by changes in the remaining variables. The details of how to adjust

the presented framework to generate PI-explanations, as well as the validity of the newly

derived framework, are shown in Section 5.6.

5.3.4.3 The non-binary case

So far, it has been assumed that all variables (or rules) are binary, but it is possible to extend the

framework to the non-binary case, by utilizing a simple transformation. In general, let X be a

variable taking values in {0, 1, · · · , k}. We can now introduce k new binary variables,

X0, X1, · · · , Xk, such that Xi = 1⇔ X = i. Furthermore, we need to add the constraint

∑k
i=0 Xi = 1 to enforce that X takes exactly one value. Employing this trick it is immediate to

handle the non-binary case.

5.3.4.4 Diverse Counterfactuals

One of the benefits of this proposal is that it is seamless to generate diverse counterfactuals,

which is not possible for many of the existing techniques, but it is a benefit of employing ILP,

as recognized by Russel (Russell, 2019). In the BNC case it is as simple as just setting the

variables to their desired values, leaving everything else intact. For example, if we would like

to generate a counterfactual satisfying X = 1, for some variable X, then we just need to add

the constraint X = 1 on top of the constraints shown in Algorithm 5. In the DT and RF cases,

since variables may be continuous, a user could ask for counterfactuals that satisfy conditions

such as a ≤ X ≤ b, for a variable X (or a set of variables). This is again easy to handle, since

the condition a ≤ X ≤ b, is enough to decide the values of some of the constraints in Fx. Then,

it is just a matter of plugging these values into the optimization problem (as constraints) and

proceeding as normal, leaving the rest unchanged. In contrast, for most of the existing
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Sex Age Race Juvenile felonies Prior crimes Two year residivism Outcome
Factual Male 33 Caucasian 0 2 Yes Low score
Counterfactual Male 33 Caucasian > 0 2 Yes High score
Diverse counterfactual Female 33 Caucasian (=0) 0 2 Yes High score
Factual Male 21 Black 0 0 Yes High score
Counterfactual Male ≤ 19.5 Black 0 0 Yes Low score
Diverse counterfactual Male (> 20) > 21.5 Black 0 0 Yes Low score
Factual Male 27 Black 0 0 No Low score
Counterfactual Male 27 Black 0 > 4.5 No High score
Diverse counterfactual Male < 21.5 Black 0 (=0) 0 No High score
Factual Male 32 Black 0 0 No Low score
Counterfactual Male 27 Black 0 > 1.5 No High score
Diverse counterfactual Male 32 Caucasian ≥ 1 (≤ 1) 0 No High score
Factual Male 43 Caucasian 0 2 No Low score
Counterfactual Female 43 Caucasian 0 2 No High score
Diverse counterfactual (Male) 43 Caucasian 0 > 4 No High score

Table 5.1: COMPAS dataset instances

approaches, incorporating a-priori constraints is a highly non-trivial task, usually achieved by

utilizing a set of heuristics.

5.4 Experiments

In this section, we will demonstrate some of the advantages of utilizing the proposed

framework. To this end, we examine three different case studies, based on the COMPAS,

LSAT, and Congressional Voting Records datasets. For the first two, a DT and a RF,

respectively, are employed, while the last one is based on a Naive Bayes Classifier, although

any BNC can be used. In Tables 5.1, 5.2, counterfactual conditions are in bold, while diversity

conditions are inside a parenthesis.

COMPAS: COMPAS is a popular algorithm for assessing the likelihood that a person will

reoffend (recidivate) within two years from being released from prison. It has drawn significant

attention within the fairness in AI community, due to the number of biases it exhibits, such as

favoring white inmates against black ones (Dressel and Farid, 2018). The dataset contains the

COMPAS training variables (age, race, sex, number of prior crimes, number of juvenile

felonies), whether the inmate actually reoffended within a two-year period (two year

residivism), as well as the final score generated by the algorithm. A DT was trained on this

dataset to predict the risk of reoffending.

Table 5.1 shows the records of 5 inmates, where the first row represents the factual datapoint,

the second an unconstrained counterfactual, and the third one is making use of the diversity

constraints. Looking at the first one, we see that the unconstrained counterfactual is in fact an

infinite counterfactual set, since any instance satisfying “juvenile felonies > 0” is a valid

counterfactual.

At this point, judging from the unconstrained counterfactual alone, it would be difficult to

assess whether the model exhibits any bias. However, this is a case where diversity constraints
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Sex LSAT Race UGPA Outcome
Factual Male 34 White 3 Pass
Counterfactual Male ≤ 19.25 White 3 Fail
Diverse counterfactual Male (> 25) 34 Black < 1.95 Fail
Factual Male 36.5 White 3.2 Pass
Counterfactual Male ≤ 20.75 Black ≤ 1.95 Fail
Diverse counterfactual Male ≤ 19.25 (White) White ≤ 2.15 Fail
Factual Female 43 White 2.8 Pass
Counterfactual Female ≤ 26.75 White 2.8 Fail
Diverse counterfactual Female (< 20)≤ 19.25 White ≤ 2.15 Fail
Factual Male 35 White 2.7 Pass
Counterfactual Male 35 Black ≤ 1.95 Fail
Diverse counterfactual Male ≤ 19.25 (White) White 2.7 Fail
Factual Male 33 White 3 Pass
Counterfactual Male 33 Black ≤ 1.85 Fail
Diverse counterfactual Male ≤ 19.25 (White) White 3 Fail

Table 5.2: LSAT dataset instances

can lead to valuable insights. Enforcing the “number of juvenile felonies = 0”, results into a

counterfactual that uncovers the model’s hidden biased behavior, since it suggests that had the

inmate been female, the model would predict a high score of reoffending.

LSAT: LSAT is another popular dataset in the fairness literature, since it exhibits a strong bias

against black people, too. In this setting, the model has to predict whether students will pass

the bar exam, based on their sex, age, law school admission test (lsat), and undergraduate gpa

(ugpa). Table 5.2 shows 5 student records, along with the model’s prediction. The first

unconstrained counterfactual again corresponds to an infinite set, where making sure that lsat is

less than 19.25 is enough to alter the model’s prediction.

While looking at this counterfactual does not reveal any biases, the relative discrepancy

between the factual value of lsat and the counterfactual condition (about 15 points), should be

an indicator that constraining lsat closer to its factual value could expose biased behavior.

While incorporating inequality constraints is in general very challenging, in the proposed

framework it reduces to assigning specific values to some of the variables in the final

optimization problem. As it turns out, enforcing that lsat is greater than 25 leads to a

counterfactual that clearly showcases the bias in the model, since it suggests that information

about the student’s race can be used to alter the model’s decision.

This case also demonstrates how such counterfactuals can be used to guide the inspection of

the dataset in order to identify the reasons behind this behavior. Upon further exploration, we

found that 96.7% of male, white students passed the bar, while the same percentage for male,

black students was 77.8%. Furthermore, the number of white students in the dataset was about

21 times that of black ones. This shows that black, male students are severely

under-represented, while the imbalance between successful/unsuccessful students in the two

groups may prompt the model to assign significant predictive power to a student’s race.

Having said that, utilizing the counterfactual it is possible to perform a more targeted analysis,

to uncover imbalances that are not as apparent. To this end, the dataset was inspected for black,
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Outcome
Factual + + + - - - + + + - + - - - + + Democrat
Prime implicants ✓ ✓ ✓ ✓ Democrat
Conditional prime implicants ✓ ✓ ✓ ✓ ✓ Democrat
Factual + + - + + + - - - + - + - + - + Republican
Prime implicants ✓ ✓ ✓ ✓ ✓ Republican
Conditional prime implicants ✓ ✓ ✓ ✓ ✓ ✓ ✓ Republican
Factual + - + - - - - + + + - - - - + + Democrat
Prime implicants ✓ ✓ ✓ Democrat
Conditional prime implicants ✓ ✓ ✓ ✓ Democrat
Factual - - - + + + - - - - - + + + - + Republican
Prime implicants ✓ ✓ ✓ ✓ ✓ ✓ Republican
Conditional prime implicants ✓ ✓ ✓ ✓ ✓ ✓ Republican
Factual - - + - - + + + + + + - - - + + Democrat
Prime implicants ✓ ✓ ✓ Democrat
Conditional prime implicants ✓ ✓ ✓ ✓ ✓ Democrat

Table 5.3: Congressional Voting Records dataset instances

male students with lsat < 19.5 and gpa = 3, only to find out that all such students failed to

pass the bar. However, for white, male students, with the same characteristics, half of them

passed the bar. On top of this discrepancy, even the specific instances prompted biased

behavior, since, for example, a black student with lsat = 19, gpa = 3, failed, while a white

one with lsat = 17.5, gpa = 3, succeeded, encouraging the model to take racial information

into account.

Following this analysis, it should come as no surprise that the RF picked up a corresponding

bias, since by looking at the individual DTs we found 6 different paths that lead to a positive

outcome for white, male students with gpa < 3, as opposed to only 1 for black students. This

means that the RF is more “forgiving” towards white students with low gpa, compared to black

ones with the same characteristics. Targeting these two specific subgroups was guided by the

insights obtained from the diverse counterfactuals, which eventually led to the discovery of

significant information regarding both the dataset and the model. In contrast, none of the

approaches in (Cui et al., 2015; Tolomei et al., 2017; Kanamori et al., 2020, 2021) support

diversity constraints, which would hinder performing the same kind of analysis.

Congressional Voting Records: This dataset contains the votes of the U.S. House of

Representatives Congressmen on 16 key votes. This time, the problem is to predict whether a

person is a Democrat or a Republican, based on these 16 votes. To this end, a Naive Bayes

classifier was used, however the same analysis can be performed for any BNC. Table 5.3 shows

how 5 particular congressman voted (where + represents voting for, and - voting against). This

time, instead of computing counterfactuals, we present prime implicants explanations, as

generated by the slightly adjusting the proposed framework (see Section 5.6).

Looking at the first instance, the unconditional prime implicants form a set of 4 elements,

meaning that as long as the votes regarding topics 3, 4, 5, 14 remain the same, the model will

always classify that person as a Democrat. Furthermore, to inspect the model in more detail, it

is possible to compute conditional prime implicants. For example, requiring that the first vote

remains the same, we see that the resulting explanation now has 5 elements, some of them not
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present in the unconditional explanation. This result indicates there is some relationship among

these variables, which could in turn motivate an additional analysis. As in the previous

experiments, these kind of insights are gained by taking advantage of the flexibility of the

presented framework, since it allows for generating multiple kinds of explanations, under only

minimal modifications, as opposed to the approaches in (Cui et al., 2015; Tolomei et al., 2017;

Kanamori et al., 2020, 2021).

5.5 Future work and conclusions

In this chapter, we present a framework for generating counterfactual explanations for

(ensembles of) multilinear models. This extends the methodology in (Russell, 2019), as well as

generalizes some of the results in (Shih et al., 2018). We show how to apply these results to

DTs, RFs, and BNCs, however any multilinear model can be utilized, instead. This is in

contrast to methods like, (Fernández et al., 2020), which is based on a modification of the

CART algorithm, so it is only applicable to DTs and RFs. We show how the new framework

permits more expressive distance functions, that incorporate the relative importance of each

term, instead of treating all feature changes as equally important or feasible. Furthermore, the

BNC case was based on discriminative SPNs, so the presented results further enhance the

transparent characteristics of SPNs, equipping them with the ability to generate both

counterfactuals and prime implicant explanations. Finally, we demonstrate how diversity

constraints can facilitate inspecting a model for biased behaviour, highlighting their advantages

over unconstrained counterfactuals.

There is a number of interesting research directions that can be motivated from this work. A

first remark is that as can be seen from the complexity results, the worst case scenario is

exponential, so there are cases where encoding a DP can be impractical. These situations

showcase the importance of developing approximate representations of DPs, that correctly

classify instances with high probability. This seems like a natural next step, especially

considering the long-standing research line of approximate reasoning in BNs, as well as some

recent attempts at approximate reasoning with DTs and RFs (Deng, 2014). An alternative way

to address this issue, without resorting to approximations, could be to embed it into

optimization frameworks, such as column generation (Michele Conforti, 2014), that can

effectively handle large problems. Advances in these areas could facilitate generating

out-of-the-box counterfactuals, leading to their wider adaptation in practical applications.
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5.6 Proofs and Extensions

Proof of Proposition 5.5

Let X be an assignment that satisfies all the constraints. From the constraint ∑n
i=1 δi = 1 we

have that there is a unique j, such that δj = 1. This δj appears in a constraint of the form

Xj1 + Xj2 · · ·+ Xjp ≥ p · δj ⇒ Xj1 + Xj2 · · ·+ Xjp ≥ p. However, it also holds that

Xj1 + Xj2 · · ·+ Xjp ≤ p, so putting these two expressions together we have that

Xj1 + Xj2 · · ·+ Xjp = p⇒ Xj1 · Xj2 · · ·Xjp = 1, by Proposition 5.4, which means that

P0(X) = 1.

Proof of Proposition 5.6

If δ = 0, the constraints can be rewritten as:

X11 + X12 · · ·+ X1k ≤ k− 1

X21 + X22 · · ·+ X2m ≤ m− 1

· · ·
Xn1 + Xn2 · · ·+ Xnl ≤ l − 1

By Proposition 5.4, this means that all terms in the 0-DP are zero, so P0(X) = 0.

Proof of Proposition 5.7

The last constraint enforces that more that half of the δi’s are equal to 1. The result follows,

since each δi is an indicator of the corresponding DT’s outcome, so for more than half of them

their 0-DP is equal to 1, i.e. their outcome is 0, thus the whole RF classifies the final instance in

the same category.

Proof of Proposition 5.9

Let X ≤ a be a feature in a RF. The first case we are going to examine is when this rule is not

satisfied, meaning that 1[X1 ≤ a] = 0. Then, the first constraint reduces to

∑ fi∈F+
x (X≤a) 1[ fi] ≥ 0, which always holds. The second constraint however becomes

∑ fi∈F−x (X≤a) 1[ fi] ≤ 0, which means that ∑ fi∈F−x (X≤a) 1[ fi] = 0, forcing all rules within

F−x (X ≤ a) to be false as well, thus guaranteeing consistency wrt to the feature X ≤ a.

The other case we need to examine is when 1[X1 ≤ a] = 1. Then, the first constraint becomes

∑ fi∈F+
x (X≤a) 1[ fi] ≥ |F+

x (X ≤ a)|, which implies that all rules within F+
x (X ≤ a) are also

satisfied. The second constraint becomes ∑ fi∈F−x (X≤a) 1[ fi] ≤ |F−x (X ≤ a)|, which always

holds.

Proof that the RF schema generalizes the DT one
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To prove this claim it suffices to consider a trivial RF, comprised of just a single tree, and show

that the constraints in Section 5.3.2 reduce to the ones in Section 5.3.1. Without loss of

generality, we can assume we are using the 0-DP to formulate the optimization problem, since

the same argument applies to the other case as well. Let T be a DT, and let us first consider the

case of generating an instance that is classified as 1. To this end, the constraints in Proposition

5.6 will be utilized, treating T as a trivial RF, F.

The 0-DP of F is identical to the 0-DP of T, so

PF
0 (X) = PT

0 (X) = X11 · X12 · · ·X1k + X21 · X22 · · ·X2m + · · ·+ Xn1 · Xn2 · · ·Xnl .

Following the procedure in Proposition 5.6, we have to add the constraints:

X11 + X12 · · ·+ X1k − k ≤ δ1 − 1

X21 + X22 · · ·+ X2m −m ≤ δ1 − 1

· · ·
Xn1 + Xn2 · · ·+ Xnl − l ≤ δ1 − 1

δ1 ≤ 0

δ1=0
=⇒



X11 + X12 · · ·+ X1k ≤ k− 1

X21 + X22 · · ·+ X2m ≤ m− 1

· · ·
Xn1 + Xn2 · · ·+ Xnl ≤ l − 1

where the implication follows from the fact that since δ1 ≥ 0, the constraint δ1 ≤ 0 leads to

δ1 = 0. Looking at the right-hand side, we see that these are exactly the constraints that result

from Proposition 5.4, thus establishing the desired equivalence for this case.

Furthermore, we have to examine the case of generating an instance that is classified as 0, using

the 0-DT. Again, treating T as a trivial RF, Proposition 5.7 can be used to obtain the following

set of sufficient constraints:

X11 + X12 · · ·+ X1k ≥ k · δ1

X21 + X22 · · ·+ X2m ≥ m · δ2

· · ·
Xn1 + Xn2 · · ·+ Xnl ≥ l · δn

n

∑
i=1

δi = δ

δ > 0

δ=1
=⇒



X11 + X12 · · ·+ X1k ≥ k · δ1

X21 + X22 · · ·+ X2m ≥ m · δ2

· · ·
Xn1 + Xn2 · · ·+ Xnl ≥ l · δn

n

∑
i=1

δi = 1

where this time the implication follows from the fact that δ ∈ {0, 1}, so the constraint δ > 0
leads to δ = 1. Again, these are exactly the constraints in Proposition 5.5. Additionally, since

there is only a single tree in forest, it is not necessary to include the consistency constraints,

because inconsistencies only arise when combining multiple trees. This concludes the proof of

the claim that the RF constraints generalize the DT ones.

From Counterfactuals to Prime Implicants
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The procedure of computing the prime implicants of an instance is a simple modification of the

one developed for computing counterfactuals. Let us assume the instance of interest is

X = (X1, X2, · · · , Xn). Furthermore, without loss of generality, we can assume that it is

classified as 1 by the model. To compute the prime implicants of X, we have to form the

objective function (with all coefficients equal to 1) and all the constraints that are necessary so

the solution to the optimization problem is classified again as 1. Finally, instead of minimizing

this function, we have to maximize it. Intuitively, by doing so, we ask what is the largest set of

features that can change values, without altering the model’s decision.

The following argument proves that this process indeed results in computing the prime

implicants of X. Let us assume that the solution to this problem dictates that variables

Xi1 , Xi2 , · · · , Xik , should change values, while the variables in

Z = {X1, X2, · · · , Xn} \ {Xi1 , Xi2 , · · · , Xik} should not. Then Z is equal to the prime

implicants. To see this, let us assume that Z contains m elements, and that the number of prime

implicants of X are l < m. Then, as long as these l variables maintain their values, the model

will classify the datapoint as 1. In turn, this means that all the remaining n− l variables can

switch values, and the model’s prediction will remain 1, which implies that these n− l
variables constitute a feasible solution of the optimization problem of the previous paragraph.

Now this leads to a contradiction, since by assumption the optimal solution of that problem

alters the values of n−m variables, so any other solution must alter the values of at most that

many variables, i.e. the inequality n−m ≥ n− l ⇒ l ≥ m should hold, which is a

contradiction.
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Transparency and Explanations





Chapter 6

Related work - Explanations and Trust

In this chapter we are going to review the XAI techniques and related work relevant to

Chapters 7, 8.

6.1 XAI

The positive impact of AI/ML on society is coupled with the very significant challenge of

being able to understand a model’s decision-making process. This has given rise to the field of

explainability in AI (XAI) which aims at developing tools that facilitate performing post-hoc

analysis to discover useful insights. Some of the most popular forms of XAI generated

explanation types are the following:

• Visual explanations aim at generating visualizations that facilitate the understanding of

a model. Although there are some inherit challenges (such as the inability to grasp more

than three dimensions), the developed approaches can help in gaining insights about the

decision boundary or the way features interact with each other. Due to this, in most cases

visualizations are used as complementary techniques, especially when appealing to a

non-expert audience.

• Explanations by simplification refer to the approach of approximating a black-box

model using a simpler model that is easier to interpret. The main challenge comes from

the fact that the simple model has to be flexible enough so it can approximate the

complex model accurately.

• Feature importance explanations attempt to explain a model’s decision by quantifying

the influence of each input variable. This results in a ranking of importance scores,

where higher scores mean that the corresponding variable was more important for the

model. These scores alone may not always constitute a complete explanation, but serve

as a first step in gaining some insights about the model’s reasoning.
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(a) SHAP (b) Counterfactuals (c) PDP

(d) Anchors (e) Deletion Diagnostics (f) InTrees

Figure 6.1: Various XAI approaches

On top of that, XAI approaches can be also categorized based on their scope, meaning whether

they explain a specific model prediction (local explanations), or the overall model behaviour

(global explanations). Furthermore, they can be categorized based on their applicability,

meaning whether they are designed to operate on specific models (model-specific), or they are

general enough to be applied to any model (model-agnostic). Model-specific XAI techniques

leverage the properties of a certain model architecture to design efficient algorithms that

generate explanations without resorting to approximations. On the other hand, model-agnostic

techniques have to be flexible enough, so they do not depend on the intrinsic architecture of a

model, thus operating solely on the basis of relating the input of a model to its outputs. In the

remaining of this section, some of the XAI techniques that will be needed in later chapters are

reviewed, while Figure 6.1 provides a brief graphical summary thereof.

6.1.1 SHAP

SHAP (Shapley Additive exPlanations) (Lundberg and Lee, 2017) is a model agnostic method

for explaining individual predications. SHAP learns local explanations by utilising Shapley

Values (Shapley, 1952) from co-operative game theory, in order to measure feature attributions.

The objective is to build a linear model around the instance to be explained and then interpret

the coefficients as feature importance scores.
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Shapley values provide a means to attribute rewards to agents conditioned on the agent’s total

contribution to the final reward. In a cooperative setting, agents collaborate in a coalition and

are rewarded with respect to their individual contribution. In order to apply this technique to

ML models, it is necessary to make adjustments so the problem is expressed in a game

theoretic manner:

• Setting/Game: SHAP interprets the model prediction on a single input, x, as a game.

• Agents/Players: The different features of input x are interpreted as being individual

players.

• Reward/Gain: Measured by taking the model prediction on the input x and subtracting

the marginal predictions, i.e. predictions where some of the features are absent.

Having made these adjustments, the Shapley value of feature i equals:

ϕi = ∑
S⊂F\{i}

|S|!(|F| − |S| − 1)!
|F|! [ fS∪{i}(xS∪{i})− fS(xS)]

where F is the set of all features, fS∪{i}(xS∪{i}) is the models decision when the features in

S ∪ {i} are given as input, and fS(xS) is the decision when only features in S are given.

6.1.2 Counterfactuals

A counterfactual explanation is a statement that identifies how a given prediction would need to

change for an alternate outcome to occur. Key to counterfactuals is the idea of “the closest

possible world” which signifies the smallest possible change on a set of variables that suffices

to alter a model’s outcome (Lewis, 1973). For example, if a loan application is rejected, then

providing a counterfactual (i.e. a successful application which is as similar as possible to the

original one), makes it easier for a person to identify the important information that is relevant

to their specific application. In a sense, counterfactuals highlight why a decision was not made,

in contrast to other approaches that aim at explaining why a decision was made.

One of the most popular frameworks for generating counterfactuals for ML models is based on

(Wachter et al., 2018), where the authors express the problem as:

min
x

d(x, xi) s.t.

f (x) = Y

where d is a distance function, xi is the factual datapoint, x is the counterfactual one, f (·) is the

ML model, and Y is the category we would like the counterfactual point to be classified into.

For differentiable models, this problem can be solved using Lagrange multipliers, along with

an optimization scheme, such as ADAM (Kingma and Ba, 2015).
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6.1.3 PDPs

Another prominent means of explaining a ML model is using visualizations, especially when

communicating explanations to a non-technical audience. A Partial Dependence Plot (PDP/PD)

(Friedman, 2001) plots the average prediction as a feature’s value changes. These plots can

reveal the nature of the relationship between a feature and the output, for example, whether it is

linear or exponential. PDPs present global explanations, as the method factors all instances and

provides an explanation regarding the (marginal) global relationship between a feature and the

model prediction. Assuming we are interested in examining the partial dependence of the

model f on a feature s, we have to compute:

f ∗(xs) =
N

∑
i=1

f (xs, X(i)
−s)

where N is the cardinality of the dataset, and X(i)
−s is the i-th datapoint, excluding feature s.

Furthermore, it is not difficult to extended this method to account for the partial dependence of

a function on more than one features, however, this is usually done for one or two features.

6.1.4 Anchors

Rule-based classifiers have been traditionally utilized due to their transparency, since they are

easy to inspect and understand. Anchors (Ribeiro et al., 2018) are a XAI technique that builds

on this principle, aiming at generating simple if-then rules to describe a model’s reasoning.

They explain individual predictions locally by identifying a decision rule that “anchors” the

prediction in question, thus they operate on instance level. A rule anchoring a prediction

implies that changes to the remaining feature values do not impact the prediction. A rule’s

coverage is defined as the fraction on instances that satisfy the “if” part of the rule. Moreover, a

rule’s precision is the fraction of instances that satisfy both the “if” and the “then” part.

Formally, an anchor, A, is defined as the solution of the following problem:

max
A s.t. P(prec(A)≥τ)≥1−δ

cov(A)

where prec(A) = ED(z|A)(1 f (x)= f (z)) is the precision, D(z|A) is the data distribution given

the anchor, f (z) is the ML model, 1 is the indicator function, and cov(A) = ED(z)(A(z)) is

the coverage. In words, this optimization problem looks for if-then rules where the

preconditions (the “if” part) contains conditions that are satisfied by as many instances as

possible, while requiring that these points also satisfy the “then” part, with high probability.

This way the resulting rules are not based on niche characteristics of the specific datapoint at

hand, but are as generally applicable as possible.
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6.1.5 Deletion Diagnostics

Deletion diagnostics is a technique which investigates the model as a function of its training

data. It considers the impact of removing a particular training instance from the dataset on the

final model (Cook, 1977). By removing an instance with significant influence from training,

deletion diagnostics can help with model understanding. In this context, an instance is

considered to be influential if its removal causes the parameters of the trained model to change

significantly or results in notably different predictions on the remaining instances. This can aid

in debugging by locating influential instances that are detrimental to the model’s accuracy.

Influence functions (Koh and Liang, 2017) are a contemporary alternative to standard methods

of deletion diagnostics, wherein the removal of an instance i is approximated, and the model

does not need to be retrained with instance i removed. This makes it more efficient to estimate

the influence of a datapoint on the final model, since, retraining a model every time an instance

is removed is very computation intensive.

6.1.6 InTrees

InTrees (Deng, 2014) are a model-specific XAI method for tree ensembles, which take

advantage of the tree architecture to produce interpretable explanations. It can be seen as a

collection of multiple algorithms which aim to:

• Extract rules.

• Rank rules.

• Prune rules, removing irrelevant or redundant variable-value pairs from a rule.

• Select rules, choosing a compact set of relevant rules and dismissing redundant ones.

• Summarize the model by taking extracted rules and returning a simplified tree ensemble.

InTrees demonstrate how certain black-box architectures may contain pieces of information

that can facilitate the model’s understanding. It is worth noting that in the core of this

technique lies the idea that although a tree ensembles might be opaque, each of its constituents

is transparent, so they can be readily inspected.

6.2 Human-AI collaboration

The importance of establishing a transparent relationship between human users and automation

on fostering an effective collaboration between the two parties has been consistently identified

in prior literature. In (Bhatt et al., 2021) the authors called for utilizing diverse estimates that
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convey multiple aspects of the underlying model uncertainty to promote transparency and help

users comprehend the degree to which a model’s predictions should be followed. Moreover, the

findings in (Ashoori and Weisz, 2019) suggested that in high-stakes applications uncertainty

estimates might not be enough, since the absence of explanations may lead to users entirely

dismissing a model, regardless of its accuracy.

Motivated by such discussions, a growing body of recent empirical investigations focus on the

relative effect of uncertainty and explanations on joint accuracy and trust. For example, the

findings in (Zhang et al., 2020), suggested that simply providing participants with information

about model confidence, i.e. the probability a model assigns to its predictions, is more effective

than explanations in improving trust and joint accuracy, as well as that explanations were not

successful in allowing participants disentangle between high and low confidence predictions.

Moreover, the results in (Lai and Tan, 2019) demonstrated that the best joint accuracy was

achieved when presenting information containing the model’s prediction paired with the

corresponding model confidence, in line with (Zhang et al., 2020). Pairing local feature

importance explanations and model predictions was slightly less effective, while presenting

explanations alone, led only to a minor improvement compared to the baseline.

Another related study is presented in (Bansal et al., 2021b), which explores whether combining

model confidence and explanations can further improve the accuracy of the human-AI team.

The resulting analysis showed that when both parties had comparable individual accuracy, then

presenting participants with the model’s prediction and confidence led to the ensemble

achieving superior joint accuracy. The authors found no further improvement when pairing this

information with explanations, concluding that the former strategy is as effective as the latter,

while also being substantially simpler.

Moreover, in both (Bansal et al., 2021b; Zhang et al., 2020) it has been acknowledged that a

user’s self-confidence should have an effect on the joint human-AI accuracy in the context of

decision-making tasks. Despite this being an intuitive remark, to the best of our knowledge,

this idea has not been empirically verified. This is in contrast to alternative settings, such as

when humans function as operators being in charge of deciding whether to perform a task

manually or delegate it to a model, where the role of self-confidence has received considerable

attention. In (Lee and Moray, 1994), the authors provided evidence that participants turned into

automation only when their trust in its capabilities exceeded their own, otherwise they tended

to performed a task manually. These findings are extended in (De Vries et al., 2003), where the

results indicated that there exists a fundamental bias towards people trusting their own abilities,

instead of the model. Moreover, in (Lewandowsky et al., 2000), it is shown that participants’

self-confidence determined whether they retained control or not, strengthening the previous

findings.

Apart from exploring the effect of explanations on accuracy in decision-making tasks, other

surveys focus on alternative questions, such as the one in (Dodge et al., 2019), which explored

the efficacy of explanations in helping human users detect unfair model behaviour.
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Interestingly, the results revealed that local explanations were the most effective in exposing

fairness discrepancies among individuals, while global ones instilled more confidence in the

users that their understanding was correct. In addition, the study in (Wang and Yin, 2021),

brought a new perspective by exploring the comparative effect of explanation styles on model

understanding, across datasets of varying difficulty. The final results uncovered that the

difficulty of the application significantly influenced the effect of explanations on model

understanding, while also indicating that local explanations improved participants’ objective

understanding, and that global explanations improved their self-reported subjective

understanding.

A methodological approach shared by many recent studies on trust in the human-AI

collaboration, is that trust is measured using agreement and switching percentages. The former

is the fraction of times that the user and the model agreed on their final predictions, while the

latter is the percentage of times users switched their predictions to follow the model, assuming

the two parties initially disagreed. This approach is in contrast with the predominant practice in

the human factors and human-computer interaction communities, where trust is assessed based

on either specialized trust measuring scales such as (Madsen and Gregor, 2000; Jian et al.,

2000; Adams et al., 2003; Cahour and Forzy, 2009), sophisticated implicit behavioural

measures (De Vries et al., 2003; Miller et al., 2016), or combinations thereof. Furthermore,

focusing exclusively on the aforementioned percentages to measure trust poses a major

methodological shift, since both of them are indicators of reliance (Miller et al., 2016; Lee and

See, 2004), so this paradigm presupposes that trust can be indirectly inferred through reliance.

6.3 Education in XAI

The rapid emergence of XAI has provided a wide variety of explanations that allow for

inspecting a model from multiple angles. Following these developments, a natural next step is

to make sure that these tools are competently used by parties interacting with automated

systems. In fact, this is also highlighted in the IEEE Global Initiative on Ethics of Autonomous

and Intelligent Systems (Shahriari and Shahriari, 2017), which contains contributions from 250
thought leaders throughout the world. Furthermore, considering that XAI has only recently

emerged, many practitioners are not familiar with the developments in the field, thus

developing academic resources contributes to the field’s visibility/accessibility, while also

promoting the engagement between the AI community and communities utilizing AI/ML

systems (Bhatt et al., 2020b,a).

In line with such guidelines, a few technical tutorials on XAI have been developed, including

(Samek and Montavon, 2020), where the authors focus on methods for explaining deep neural

networks, and (Camburu and Akata, 2021), which puts emphasis on natural language

explanations. However, it should be noted that such tutorials are usually presented in academic

workshops and are intended to other researchers, not practitioners/data scientists. To alleviate



6.3. Education in XAI 83

this issue, a XAI course designed for graduate students was offered by the Stanford University

(Lakkaraju and Lage, 2019), centered around technical discussions regarding various XAI

approaches.

Apart from the above, the work presented in (Khosravi et al., 2022), identifies ways in which

XAI can be used to enhance educational processes. This is a complementary research direction,

since it does not consider how to teach XAI in itself, but rather its utility as a component in

educational systems. The authors go on and discuss some hypothetical cases, showcasing the

benefits of incorporating XAI approaches into interactive interfaces. Although this work does

not directly touch upon teaching/introducing the related XAI approaches, it presupposes that

both students and educators are to some extent capable of interpreting and understanding the

corresponding outputs, which necessitates the development of accessible material introducing

the relevant XAI tools.



Chapter 7

Human-AI collaboration

7.1 Introduction

AI and ML models have already become an indispensable component in many applications,

ranging from medical diagnosis to criminal justice. However, full automation is not always

desirable, especially in high-stakes applications, for example due to ethical (Naik et al., 2022)

or fairness (Mehrabi et al., 2021) concerns. Instead, in such cases, humans should be assisted

by automated systems so that the two parties reach a joint decision, stemming out of their

interaction. The advantage of this approach is that while it makes use of sophisticated AI

systems, humans retain full agency over the final decision, limiting the adverse effect of

potential poor model predictions. One of the primary objectives of this human-AI collaboration

is to achieve high performance, a goal that requires human users to be able to decide when to

follow the model’s predictions, which is a multi-faceted objective, influenced by complex

interactions between multiple factors (Lee and See, 2004; Hoff and Bashir, 2015; Adams et al.,

2003).

Identifying such factors as well as the way they influence user behaviour and attitude towards a

model has been an active research area for decades within the human factors and the AI

communities, resulting in several behavioural theories describing the dynamics of the

human-AI interaction (Lee and Moray, 1992; Linegang et al., 2006; Madsen and Gregor,

2000). A consistent point of convergence among these theories is that both model-related

factors, such as the extent to which a model is perceived to be reliable and understandable, and

user-related factors, such as their self-confidence in their abilities to carry out a task, play a

crucial role in the formation of the human-AI relationship.

As far as model-related factors are concerned, the emergence of explainable AI has sparked a

surge of empirical studies that explore the effect of different explanation styles on model

understanding, or the capacity of explanations to allow users detect unfair model behaviour

(Lai and Tan, 2019; Wang and Yin, 2021; Dodge et al., 2019; Lai et al., 2020). Moreover, with
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respect to reliability, recent studies have contrasted the influence of model predictions,

uncertainty estimates, and explanations on users’ perceived model reliability, comparing their

relative effectiveness on instilling trust and/or inducing a complementary performance benefit,

where the joint human-AI accuracy is superior to the individual accuracy of either party (Zhang

et al., 2020; Bansal et al., 2021b; Green and Chen, 2019; Lundberg et al., 2018). While this is

an ongoing endeavour, there has been substantial evidence suggesting that uncertainty

estimates are at least as effective as explanations in achieving these goals. Moreover,

uncertainty estimates are arguably simpler to implement and communicate to diverse

audiences, raising questions about the overall utility of explanations.

Having said that, surveys that consider both uncertainty estimates and explanations, usually

view them as competing sources of reliability-related information. While this approach has the

merit of providing a common ground upon which it is possible to compare the two, it reduces

explanations to reliability indicators, even though their primarily function is to enhance

understanding (Hoffman et al., 2018). In addition, while prior research suggests that

information regarding reliability and understanding have complementary functions (Zuboff,

1988; Sheridan, 1989; Lee and Moray, 1992; Madsen and Gregor, 2000; Kelly, 2003), the

aforementioned approach fails to capture this aspect and provide relevant insights. For

example, uncertainty estimates may help users decide the extent to which to rely on a model,

but they provide no justifications in cases where a model makes incorrect predictions,

hindering model acceptance (Ashoori and Weisz, 2019). On the other hand, while explanations

mitigate this issue, inferring a model’s prediction and uncertainty based on explanations alone,

requires substantial technical expertise, while also inducing a very high cognitive load, making

it an inefficient strategy for practical applications (Kaur et al., 2020).

In addition to the above, users’ self-confidence in their abilities to complete a certain task is

another factor that influences multiple aspects of the human-AI relationship (Lee and Moray,

1992; Lewandowsky et al., 2000; De Vries et al., 2003; Lee and See, 2004). A number of

empirical surveys have studied this effect in tasks where humans function as operators,

deciding whether to perform a task manually or allocate it to a model, providing evidence that

humans’ self-confidence has a significant influence on trust and reliance. Despite such findings,

in the context of joint decision-making, where humans are always in charge of taking a

decision, and the model takes on an advisory role, self-confidence has received very little

attention. This leaves a significant gap in empirical investigations, especially considering that

many surveys in the domain explore questions concerning trust in automation.

Moreover, another point that warrants further consideration is the way trust is operationalized

in recent surveys. In particular, trust is almost exclusively assessed through the lens of

agreement and switching percentages (Zhang et al., 2020), as opposed to using specialized trust

measuring scales, such as those developed in (Madsen and Gregor, 2000; Jian et al., 2000;

Adams et al., 2003; Cahour and Forzy, 2009). Nevertheless, it is well established that both of

these percentages measure reliance, not trust, and that they may fail to account for confounding

variables, such as time constraints, inherent application risks, or users’ own self-confidence
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(Miller et al., 2016; Chancey et al., 2013). This is because although trust has been identified to

mediate reliance on automation, trust is a broader attitude towards automation, while reliance is

a behaviour that may potentially constitute a manifestation of trust (Ajzen, 1980; Lee and See,

2004). For example, it is possible for one to rely on a model without really trusting it, simply

because one lacks the background to take an informed decision. On the other hand, it is also

possible for users to base their decisions solely on their own knowledge, so any agreement with

the model is only coincidental, not a manifestation of reliance or trust.

In this chapter we attempt to address these issues by conducting an empirical study to identify

the effect of self-confidence and various types of model assistance on human-AI collaboration.

In particular, we seek to identify how the joint accuracy of the ensemble is affected by users’

confidence, as well as whether there are differences in user behaviour depending on the

provided level of model assistance. Moreover, we seek to uncover potential non

accuracy-related benefits of bringing together uncertainty estimates and explanations, looking

for differences in terms of reliance, understanding, and trust towards the model. With this we

aim to provide evidence that although uncertainty estimates may be as effective as explanations

with respect to performance, the latter influence other key aspects, so pairing the two together

induces a complementary effect by leveraging the simplicity of uncertainty estimates and the

unique insights offered by explanations. More specifically we present the following

contributions:

• We design and implement an online empirical study with human participants.

• We identify a complementary effect between uncertainty estimates and explanations,

with the former being sufficient for improving performance, and the latter leading to

significant improvements in both subjective and objective model understanding.

• We provide evidence that human self-confidence significantly influences the joint

human-AI accuracy, while we also illustrate the pitfalls of not properly adjusting for this

effect.

• We showcase how different uncertainty measures influence user behaviour.

• We show that both human and model confidence affect reliance, understanding, and trust.

• We demonstrate the limitations of using switching and agreement percentages as a proxy

for trust.

7.2 Study Overview

In this study we design a salary prediction task, and we seek to answer questions along two

principal axes. On the one hand, we follow the discussions in (Bansal et al., 2021b) and we

seek to obtain deeper insights regarding the role of the interaction of human and model
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confidence in influencing joint accuracy. As the authors note, this interaction should play an

important part in regulating joint accuracy, however, there is no concrete evidence supporting

this view. In this work we fill this gap, while further expanding on this idea, exploring not only

how the joint accuracy is affected, but also how reliance, understanding, and trust are shaped as

a result of this interaction. On the other hand, we seek to find evidence of added benefits of

pairing uncertainty estimates with explanations. Recent surveys have consistently

demonstrated that in terms of accuracy the former is at least as effective as the latter, suggesting

that uncertainty alone is enough to promote an effective human-AI collaboration. However, it is

still unclear whether combining uncertainty and explanations can yield alternative, non

accuracy related benefits. In this work we look for differences with respect to model

understanding, which is an important factor, linked to aspects such as model acceptance and

long-term adoption (Adams et al., 2003). Similarly, motivated by the discussions in (Bhatt

et al., 2021), we explore the effect of combining uncertainty measures of different scope on

users’ behaviour. In particular, we ask the following research questions:

RQ1 How is joint predictive performance influenced by the interaction of human confidence,

model confidence, and the degree of model assistance?

RQ2 How are reliance, understanding, and trust towards the model affected by the same

factors?

RQ3 Does the combination of explanations and uncertainty measures offer non

accuracy-related, complementary benefits?

RQ4 How uncertainty estimates of varying scope influence user behaviour?

Studying these questions, we aim to assess the role of self-confidence in decision-making tasks,

as well as how different combinations of information elicit differences in user behaviour.

Moreover, we demonstrate the pitfalls of using switching and agreement percentages as a proxy

for studying trust. In sum, our goal is to uncover concrete advantages of employing

combinations of diverse information sources, promoting research that further expands on this

topic. This is especially important considering that in naturalistic settings, stakeholders expect

combinations of multiple sources of information. More specifically, we aim to test the

following hypotheses:

H1 Superior joint accuracy will be observed when humans have low self-confidence, and the

model makes high confidence predictions. Moreover, pairing model prediction and

confidence will be sufficient to induce this effect.

H2 Participants provided with explanations will have better model understanding.

H3 Reliance, understanding and trust towards the model will be affected by both human

confidence and model confidence, as follows:
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H3.1 Reliance will be affected primarily by human confidence, and to a lesser extent by

model confidence. Furthermore, we expect to find an increase in reliance when

humans have low confidence and the model makes high confidence predictions .

H3.2 Understanding will be similarly affected by both human and model confidence . In

addition, we expect an increase in understanding when both parties have high

confidence.

H3.3 Trust will be affected primarily by human confidence, and to a lesser extent by

model confidence. We also expect an increase in trust when both parties have high

confidence.

H4 The difference between uncertainty measures of distinct scopes (global vs local) will

induce differences in user behaviour.

7.2.1 Experimental Design

7.2.1.1 Participants

We recruited 112 participants from Amazon Mechanical Turk for our experiment. 49
participants were women, and 63 were men. 18 participants were between age 18 and 29, 45
between age 30 and 39, 23 between 40 and 49, and 26 were over 50 years old. Furthermore,

our task was available only to USA residents, due to the fact that the selected dataset contained

information that was relevant to the USA social context.

7.2.1.2 Dataset

We designed a modified version of the task presented in (Zhang et al., 2020), where

participants had to predict whether a person’s annual salary was greater than 50000 dollars.

However, since this task was based on the Adult dataset, which contains data from the 1994
Census1, we needed to adjust the salary threshold to account for inflation. Considering that in

this time span the US dollar has seen a cumulative price increase of 101.09%, the adjusted

value became 100500, which was rounded up to 100000 dollars. The dataset contains 48842
instances, and each one is comprised of 14 features. Following the authors in (Zhang et al.,

2020), we opted for using only the 8 most relevant ones, so participants were not overloaded

with information. These features corresponded to a person’s: age, employer, education, marital

status, occupation, ethnic background, gender, as well as the hours-per-week spent working.

We trained a gradient boosting decision tree model on 80% of this dataset, leaving the

remaining 20% to test its final performance, which turnout out to be 82%.

1Link: https://archive.ics.uci.edu/ml/datasets/adult
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7.2.1.3 Task Instances

The reason we selected the Adult dataset, was that it contains instances of varying difficulty,

where some of them are relatively easy to predict for lay users with no prior related experience,

while others can be significantly harder. This allows for actively manipulating participants’

self-confidence to study its effect on various aspects of the human-AI collaboration. In

contrast, the authors in (Wang and Yin, 2021), utilized datasets that were either relatively easy

or very hard for lay users. A limitation of this approach is that when participants perform a task

for which they have no related knowledge or intuition, they are in a state of absolute ignorance

promoting a blind reliance on the model, which is first very different from being uncertain and

second very far from real-life situations. Indeed, it is highly improbable that a model will be

employed by stakeholders having no knowledge/intuition regarding the application at hand.

Instead, our prediction task is quite intuitive and mostly requires common sense knowledge,

while also allowing for different degrees of confidence in one’s predictions.

In order to select the actual task instances, we first set the threshold for low confidence model

predictions at 65%, meaning that any prediction with probability not exceeding that number,

was considered to be a low confidence model prediction. The corresponding threshold for high

confidence predictions was set at 80%. We intentionally opted for a relatively large gap

between the two thresholds in order to avoid the interval in-between where it is ambiguous

whether a prediction should be seen as having low or high confidence. We then went through

the resulting filtered dataset looking for instances of varying complexity, from a human’s

perspective. After completing this step, we needed to make sure that humans and model have

comparable individual performances, to match the setting in (Bansal et al., 2021b). Following

the suggestion in (Zhang et al., 2020), we used a stratified sampling approach, constraining the

model accuracy to be 75%, since the unconstrained accuracy (82%) was very high for lay

people. By the end of this procedure, we identified 56 instances, equally divided into the 4
configurations of human/model confidence: (Human - High & Model - High), (Human - High

& Model - Low), (Human - Low & Model - High), (Human - Low & Model - Low). In order to

verify that these instances were indeed effective both in inducing different states of human

confidence and in allowing for comparable human-model performance, we recruited 15
participants from Amazon Mechanical Turk, asking them to provide a confidence score and

prediction for each of these datapoints. Finally, we confirmed that our categorization was

effective at inducing a different level of self-confidence to lay users (Z = 8, p < 0.001), as

well as that the selected instances allowed for a comparable accuracy between participants and

model (Average human accuracy = 65.6%, 95% confidence interval (54.2, 76.4))2.

2For the former we used Wilcoxon’s signed-rank test, while the latter was estimated using the bootstrap method.
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7.2.1.4 Design

In order to address our research questions, we designed a prediction task where in each trial

participants needed to go through a three-step process. First, they had to inspect an instance,

and provide an initial prediction about that person’s salary, as well as an estimate of their

confidence. Following that they were provided with varying levels of model assistance,

depending on the condition (see below), and then they were asked to give their final prediction,

where they were free to either maintain or change their initial one. Figure 7.1 shows an

example of this procedure. Finally, participants needed to provide an estimate of how much

they relied on the model for that prediction, how much they felt they understood its

decision-making process, as well as to which extent they trusted the model’s prediction. These

three steps were repeated in each trial, and after completing the task participants were given a

test comprised of 9 multiple choice questions, adapted from (Wang and Yin, 2021), to assess

their objective understanding of the model.

In more detail, there were 4 experimental conditions, each one providing an increasing level of

model support:

• Prediction: In this condition, after participants submitted their initial prediction and

confidence score, they are shown only the model’s prediction for the same instance.

After inspecting it, they are asked to submit their final answer. This serves as the baseline

condition, providing only minimal model assistance.

• Local Confidence: In this condition, participants were shown both the model’s

prediction and the corresponding model confidence, i.e the probability that the model

assigned to each prediction.

• Combined Confidence: In this condition, participants were shown all the information

that was available in the previous one, plus the recall for each class, , i.e. the fraction of

times an instance is correctly identified by the model as being a member of the class.

Here, recall acts as a global meta uncertainty estimate, providing information about the

robustness of a model’s own confidence. Combining these uncertainty measures should

help participants gain a more refined picture of the model’s performance, since knowing

that a model is, say, 80% confident in its prediction, but predictions for this class are

correct only 50% of the time, is more informative than just knowing the model’s

confidence.

• Explanations: In this condition, participants were shown all of the previous information,

as well as a local and a global explanation. Based on the findings in (Wang and Yin,

2021), we employed feature importance explanations for both, due to their effectiveness

in promoting a better model understanding. Local explanations showed how much each

feature influenced the model to reach a particular prediction, while global ones displayed

the average overall impact of each feature. All explanations were generated based on

SHAP.
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(a) Unassisted prediction

(b) Assisted prediction

Figure 7.1: (a) Participants needed to inspect a datapoint and provide their unassisted predic-
tion/confidence. (b) The model assistance presented to participants, depending on condition.
Participants in the Prediction condition were shown the datapoint and the information next to
P . In Local, they were shown P + L . In Combined, they were shown P + L

+ C . Finally, in Explanations, they were shown all the information contained in this slide.

Participants were randomly assigned to one of the four conditions. Within subjects we

manipulated model confidence and human confidence, such that participants in each condition

were presented with an equal number of trials with each confidence combination. More

precisely, each participant was presented with 4 instances of each of the following certainty

combinations: (Human - High & Model - High), (Human - High & Model - Low), (Human -

Low & Model - High), (Human - Low & Model - Low). Participants were also asked to

provide their confidence in each of their predictions, which was used to confirm that our
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manipulation was successful in inducing varying degrees of confidence in this sample too

(Z = 200, p < 0.001).

In addition, we matched the number of instances with people earning less/more than 100K

dollars within each certainty combination, such that two out of the four instances of each

combination showed people gaining more than 100K dollars. Order of presentation of

instances was random. Our dependent variables are accuracy, reliance, subjective

understanding of the model, trust and objective understanding of the model.

7.2.1.5 Procedure

Upon accepting to take part in the experiment, participants were presented with the task

instructions, which matched the demands of each condition. In the Explanations condition,

after participants read the instructions, they went through an introduction on explanations and

the interpretation of the local and global explanation plots. Then, they were presented with

three multiple-choice questions testing whether they conceptually understood the distinction

between local and global explanations and whether they were able to correctly interpret the

explanation plots. Participants in this condition needed to answer 2 or 3 questions correctly to

be included in the sample.

Once the introduction was completed, participants in all conditions went through a

familiarization phase, consisting of 12 trials. In each trial, participants first inspected a person’s

profile for whom the age, employer, education, marital status, occupation, ethnic background,

gender and hours per week spent working were provided. Participants had to predict whether

this person gains more or less than 100K dollars per year and to give their confidence in their

prediction by clicking on a Likert scale ranging from 1 (low) to 7 (high). In the next slide,

participants were provided with the model’s assistance, which contained different kinds of

information depending on the condition (see Section 7.2.1.4) and they were asked to give their

final prediction, which could be the same or different from their initial one. Once both of these

steps were performed, participants were shown the real life outcome for the person under

consideration. The aim of our familiarization phase was two-fold. First, participants could

understand better their task and develop some familiarity with the model’s assistance

(especially in the case of the Explanations condition, which contained a greater amount and a

more diverse set of information) but more importantly, participants had the opportunity to gain

some insight about the model’s performance. In particular, given that participants were

provided with the real-life outcomes, they were exposed to instances where the model erred,

from which they could infer that following the model blindly would not be a fruitful strategy.

After the end of the familiarization phase, participants were informed that they were about to

start with the main phase of the experiment, which consisted of 16 trials. In each of them, the

two first steps were identical to the first two steps of the familiarization phase, that is

participants inspected an instance, they provided their prediction and their confidence in their
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prediction and in the next slide they were provided with the model’s assistance and they were

required to provide their final prediction for this instance. In the test phase, however, after

submitting their final prediction, instead of inspecting the real life outcome, participants were

asked to answer on a scale from 1 to 7 to which extent they agreed with the following

statements, which we borrowed from the scales in (Cahour and Forzy, 2009; Adams et al.,

2003):

• I relied on the model to reach my final prediction.

• I understand the model’s decision making process.

• I trust the model’s prediction for this person.

Finally, after going through all 16 trials, participants were presented with an exit survey of 9
multiple choice questions which assessed their objective understanding of the model, adapted

from (Wang and Yin, 2021).3 The aim of these questions was to address H2, since they allowed

for comparing model understanding across conditions. This made possible to identify whether

explanations offer any significant added benefits, compared to providing users with uncertainty

estimates alone. The questions cover a wide spectrum of objectives related to understanding:

• Global feature importance: Participants were asked to select the most/least influential

features the model utilizes to reach its predictions. (2 questions)

• Local feature importance: Participants were given a person’s profile, and they were

asked to select the most influential feature for this particular case. (1 question)

• Counterfactual thinking: Participants were presented with a person’s profile, as well as

a list of changes in the values of the features, and they were asked to select which of

these changes would be sufficient to alter the model’s prediction. (2 questions)

• Model simulation: Participants were given a profile, and they were asked to answer

what they believed the model’s prediction for this person would be. (2 questions)

• Error detection: Participants were shown a profile, as well as the model’s prediction,

and they were asked whether they find this prediction to be correct or not. (2 questions)

To make sure that participants were attentive, we included two attention checks in the

experiment, where they were given instructions about which answer they should submit. Those

who failed to pass the checks, were excluded from the analysis. The base payment was $3.20
for participants in the Explanations condition, and $3.00 for the rest of them, since the former

required participants to go through an introduction on feature importance explanations.

Moreover, to further motivate participants, we included two performance based bonuses; those

3All the question can be found in Appendix A.
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who provided a correct final prediction on more than 12 of the 16 main trials were given an

extra $0.30, and those who answered correctly more than 6 of the questions in the exit survey

received a bonus of $0.10.

7.3 Results
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Figure 7.2: (a) Participants’ unassisted and assisted accuracy. The red dotted line shows the
model’s accuracy. (b) Difference between participants assisted and unassisted accuracy, for
each condition. (c) Difference in participants’ accuracy as a function of the model’s confidence.

In this section we present an analysis of our obtained data. All confidence intervals (CIs) were

calculated using the non-parametric bootstrap estimation method (Efron and Tibshirani, 1986).

Pairwise comparisons between conditions were performed using the Mann-Whitney U Test
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(McKnight and Najab, 2010), while all other comparisons were conducted using Wilcoxon’s

signed-rank test (Woolson, 2007). Details about all CIs and comparisons can be found in

Appendix B.

7.3.1 Performance

The first set of analyses examined the effect of human confidence, model confidence, and

model assistance (condition) on human performance. To address this question, we began with

comparing the individual accuracy of the two parties, so that we can then assess whether the

ensemble achieved superior performance. To this end, we compared participants’ accuracy

before exposure to any model assistance (Unassisted Performance) to the model’s accuracy.

Figure 7.2a, depicts participants’ unassisted performance per condition, along with a 95%
confidence interval. Details about all CIs are presented in Appendix B. Figure 7.2a shows that

75% belongs to all CIs, so participants and model showed comparable performance in all

conditions, thus recreating the setting in (Bansal et al., 2021b).

Then, we compared participants’ performance after exposure to the model’s assistance

(Assisted Performance) to the model’s accuracy. Figure 7.2a, shows the assisted performance,

along with the corresponding 95% CIs. Participants’ assisted performance was significantly

better than 75% in all but the Prediction condition, suggesting that even the simple strategy of

pairing model predictions with confidence, as in the Local condition, is beneficial to

participants’ performance, in line with the findings in (Bansal et al., 2021b). On the other hand,

participants in the Prediction condition failed to surpass the model’s performance, suggesting

that predictions alone are not as effective in improving the joint performance, supporting the

findings in (Lai and Tan, 2019).

Having established that the model’s assistance helped the ensemble surpass the individual

model accuracy, we continue by examining whether it surpassed participant’s individual

accuracy as well. Figure 7.2b, shows the 95% CIs of the difference between participants’

assisted and unassisted performance, per condition. Participants’ assisted performance was

significantly better than their unassisted performance in the Prediction and Local conditions.

On the contrary, the same comparison did not yield statistically significant results in the

Combined and Explanations conditions, even though the point estimates were positive. This

pattern can be explained, at least in part, by the fact that participants in the Combined and

Explanations conditions already had better performance in their unassisted predictions

compared to participants in the Prediction and Local conditions, leaving less room for

improvement for them. Interestingly, when the point estimate of participants’ unassisted

accuracy was lower than the model’s accuracy (conditions Prediction and Local), the

ensemble surpassed the accuracy of both parties, however, when the point estimate was higher

than 75% (conditions Combined and Explanations), it failed to significantly outperform

participants’ individual accuracy. In (Bansal et al., 2021b), participants’ accuracy was always
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Figure 7.3: The difference between unassisted and assisted human performance, broken down
by condition, human confidence, and model confidence. The red line shows the model’s accu-

racy.

lower than the model’s, so this might explain why the ensemble achieved superior accuracy in

all tasks in their study.

Expanding on the above findings, we then isolated the effect of the different levels of model

confidence (Low/High) on participants’ accuracy (see Figure 7.2c). The resulting analysis

showed that, with the exception of the Prediction condition, model confidence did not appear

to modulate participants’ performance. Note that the Prediction condition was the only one

where participants had in fact no information about whether the model had low or high

confidence, and taking into account the width of the corresponding CI, which suggests that

there was substantial variation in participants’ accuracy, this result might be due to noise in the

data.

A careful inspection of the pattern of the results discussed so far leads to a seemingly

paradoxical observation: Focusing on the Local condition, we found that the model’s

assistance significantly improved participants’ performance, yet when we broke down this

effect for the different levels of model confidence, neither high nor low confidence model

predictions significantly improved participants’ performance. This leads to the puzzling

conclusion that when considering model assistance in general, it helped participants improve

their accuracy, but when considering its assistance on low and high confidence predictions

separately, the effect vanishes. This phenomenon is known as the Simpson’s paradox, and it

has been extensively studied in statistics, causal inference and philosophy (Wagner, 1982;

Julious and Mullee, 1994; Hernán et al., 2011). In statistical terms, this indicates that there are

important confounding variables and/or causal relationships, that have not been accounted for

into the analysis. The emergence of this phenomenon in our analysis perfectly captured the
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potential perils of not taking into account human confidence, since as soon as we adjusted for

this factor, the paradox resolved itself.

Figure 7.3 breaks down the difference between assisted and unassisted accuracy, as a function

of condition, human confidence, and model confidence. Participants’ accuracy showed a

significant improvement when they were themselves uncertain, but the model showed high

confidence in its predictions, in all but the Combined condition (see Appendix B), meaning

that the significant effect in the Local condition was driven by this interaction. Furthermore,

for the Combined condition, we found a significant improvement when both model and human

confidence were low. These findings demonstrated that although we found no significant

overall improvement for participants in the Combined and Explanations conditions,

interpreting our results through the interaction of human and model confidence allowed us to

detect fine grained effects that would have been otherwise missed.

On the other hand, when participants were confident about their predictions, but the model was

not, there was virtually no difference in accuracy, indicating that participants’ predictions were

primarily driven by their own intuitions or knowledge of the world. Finally, when both parties

were confident in their predictions, participants’ performance slightly declined, but this effect

only reached significance in the Explanations condition. A possible interpretation of this

pattern is that explanations and high model confidence prompted participants to exhibit a

slightly over-reliance on the model, which is consistent with the findings in (Kaur et al., 2020).

The fact that the reverse trend was observed in the Prediction condition strengthens this

interpretation, suggesting that in the absence of uncertainty estimates, participants’ own

confidence dominated, thus no over-reliance was observed. These findings provide strong

evidence in favour of H1, suggesting that the interaction between human and model confidence

is an important factor influencing when and how much a model’s predictions will be followed,

above and beyond model confidence.

7.3.2 Reliance, Understanding, and Trust

This set of analyses examines the effect of human confidence, model confidence and condition

on participants reliance, understanding, and trust. Following the discussion in (Wobbrock and

Kay, 2016), we opted for analyzing our data using a semi-parametric ANOVA approach, which

is robust against violations of the underlying parametric ANOVA assumptions, such as

normality, in line with numerous recent studies (Roo and Hachet, 2017; Gugenheimer et al.,

2017; Hartmann et al., 2019; Thoravi Kumaravel et al., 2020; Kudo et al., 2021) that utilize

non- or semi-parametric methods. In particular, we based our analysis on the Wald-type

statistic proposed in (Konietschke et al., 2015).



98 Chapter 7. Human-AI collaboration

High Low

Human Confidence

0

1

2

3

4

5

R
el

ia
nc

e

Model Confidence
High
Low

(a)

High Low

Model Confidence

0

1

2

3

4

5

6

R
el

ia
nc

e

Condition
Prediction
Local
Combined
Explanations

(b)

Figure 7.4: (a) Differences in reliance with respect to the interaction of human and model
confidence. (b) Differences in reliance with respect to the interaction of condition and model

confidence.

7.3.2.1 Reliance

Starting with reliance, a three-way repeated measures ANOVA with Human

Confidence×Model Confidence×Condition identified a main effect of Human Confidence

(W(1) = 40.17, p < 0.001), a main effect of Model Confidence (W(1) = 5.138, p = 0.023),

as well as an interaction between Condition and Model Confidence

(W(3) = 17.574, p = 0.001). Participants’ reliance dropped by 7.8% when they themselves

were confident, compared to when they were uncertain. Moreover, participants’ reliance

increased by 2.4% when the model made high confidence predictions. Contrasting these two

effect sizes, we see that the former is more than 3 times bigger than the latter, providing

evidence that it is primarily human confidence that influences model reliance, in line with

H3.1. However, overall this hypothesis was only partially confirmed, since we did not detect a

significant interaction between human and model confidence (W(1) = 1.344, p = 0.246).

That being said, we suspect this was due to sample size limitations, since the combination of

confidences (Human - Low & Model - High) showed the greatest reliance, suggesting that a

bigger sample size would lead to statistically significant results (see Figure 7.4a).

With respect to the interaction between Condition and Model Confidence, pairwise

comparisons revealed that this effect was due to the Local condition (Z = 32, p < 0.001).

Moreover, as Figure 7.4b shows the remaining conditions exhibited virtually no variation in

reliance for the different levels of model confidence. In the Local condition, participants’

reliance was 9.8% higher when the model was confident, compared to when it was not. A

possible interpretation of this finding is that while local confidence communicates model

uncertainty, it does not provide any meta-information quantifying the robustness of this

information, thus it did not allow participants to adjust their reliance. This is because they were

only aware of the model’s uncertainty, but they did not have any information about either the
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Figure 7.5: (a) Differences in understanding with respect to the interaction of human and model
confidence. (b) Differences in understanding with respect to each condition.

model’s global error rates (as in the Combined condition) or about the reasons behind the

prediction (as in the Explanations condition). This is a very interesting finding that

demonstrates that although extra information might not necessarily lead to better predictive

accuracy, it can play a major part in adjusting human behaviour.

7.3.2.2 Understanding

Moving on we turn our attention to participants understanding, and how it was impacted by the

various factors in our study. A three-way repeated measures ANOVA with Human

Confidence×Model Confidence×Condition identified a main effect of Human Confidence

(W(1) = 18.114, p < 0.001), a main effect of Model Confidence

(W(1) = 23.015, p < 0.001), a main effect of Condition (W(3) = 10.944, p = 0.012), as well

as an interaction between Human Confidence and Model Confidence

(W(1) = 3.963, p = 0.047). Participants’ subjective understanding improved by 3.2%, when

they had high confidence, suggesting that they took into account their own knowledge when

interpreting the model’s predictions. Moreover, participants’ understanding improved by 4.6%
when the model was confident, compared to when it was not, providing evidence that high

confidence model predictions made participants feel more certain that their understanding was

correct. With respect to the interaction of human and model confidence, pairwise comparisons

revealed that when both human and model confidence were high, understanding was

significantly higher than all the remaining combinations. In more detail, compared to the

combinations (Human - High & Model - Low), (Human - Low & Model - High), (Human -

Low & Model - Low), understanding was 4.72% (Z = 1755, p < 0.001), 6.41%
(Z = 1555, p < 0.001), and 7.84% (Z = 1148.5, p < 0.001), higher, respectively. This

provided evidence that the interaction of human and model confidence influences model
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understanding, which fully supported H3.2. No other comparison yielded significant

differences (see Figure 7.5a and Appendix B)
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Figure 7.6: (a) Differences in trust with respect to the interaction of human and model confi-
dence. (b) Differences in trust with respect to the interaction of condition and model confidence.

Finally, looking at the main effect of Condition, pairwise comparisons showed that subjective

understanding ratings in the Explanations condition differed significantly from the ones in the

Local (U = −2.5, p = 0.0365) and Combined (U = −3.01, p = 0.007) conditions, but not

from the ones in the Prediction condition (U = −1.13, p = 0.774). Figure 7.5b shows the

average subjective understanding per condition. The fact that there was no difference between

the Explanations and Prediction conditions, is consistent with the finding that humans tend to

project their reasoning on the model, without actually having a well-versed understanding of

the model’s decision making process. In contrast, in the Local and Combined conditions,

participants were aware of the model’s uncertainty, so they were more conservative with their

understanding scores. The actual discrepancy of model understanding between the

Explanations and Prediction conditions will become more apparent in Section 7.3.3, where

we discuss participants’ objective model understanding.

7.3.2.3 Trust

We concluded this part of the analysis studying participants’ trust towards the model’s

predictions. A three-way repeated measures ANOVA with Human Confidence×Model

Confidence×Condition identified a main effect of Human Confidence

(W(1) = 46.269, p < 0.001), a main effect of Model Confidence

(W(1) = 12.942, p < 0.001), as well as an interaction between Condition and Model

Confidence (W(3) = 14.817, p = 0.002). Participants’ trust increased by 5% when they were

confident in their predictions. Moreover, participants’ trust increased by 3.7% when model

confidence was high. The difference in size between these two effects suggests that while both
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influenced participants’ trust, the uncertainty stemming due to their own confidence had a

slightly more pronounced effect. Despite the fact that we did not find significant evidence in

favour of the effect arising from the interaction between human and model confidence

(W(1) = 1.358, p = 0.244), we suspect that this was mainly due to sample size limitations,

since the pattern shown in Figure 7.6a, suggested that when both parties were confident,

participants’ trust was likely higher. As it was the case when studying reliance, H3.3 was

partially supported, calling for further investigations on the effect of the interaction of human

and model confidence on trust.

Finally, following up on the interaction between Condition and Model Confidence, pairwise

comparisons revealed that in the Local (Z = 88, p = 0.035) and Explanations
(Z = 77, p = 0.016) conditions participants tended to trust high confidence model predictions

more than low ones (see Figure 7.6b). In the Local condition, high confidence model

predictions improved trust ratings by 6.3%. In the Explanations condition, this difference was

even more pronounced, and equal to 8.4%. There is a rather intuitive interpretation of this

result, in the sense that when participants were presented with local confidence information, it

was reasonable that high confidence predictions imparted higher levels of trust. However, when

these scores were complemented with global error rates, participants became aware of the fact

that high confidence predictions might not necessarily translate into high accuracy, which is

why they did not induce the same level of trust (Z = 160, p = 1). Having said that, when all

this information was paired with explanations, participants were able to inspect the model’s

reasoning for each individual instance, so high confident predictions paired with reasonable

explanations bypassed the uncertainty induced due to poor global error rates (as when the

model predicts More than 100K dollars).

7.3.3 Objective Understanding

In this section we studied objective model understanding, as captured via the 9 multiple choice

questions that participants completed before exiting the experiment. We looked for differences

between Prediction and every other condition, to assess whether including uncertainty

estimates or explanations led to improved understanding, compared to providing model

predictions alone. Recall that these questions addressed 5 different aspects of objective model

understanding. Each aspect is analyzed separately in order to gain a more refined picture of

participants’ understanding. Figure 7.7, shows the difference in scores between conditions,

broken down by each aspect of understanding. Starting with global feature importance,

participants’ scores in the Explanations condition significantly outperformed those in the

Prediction one, while there was no difference between the remaining contrasts. This result was

not surprising since global feature importance information was available to participants in the

Explanations condition. However, the fact that there was no difference among the remaining

conditions highlighted that uncertainty estimates were as effective as plain predictions in

helping participants infer such information.
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Figure 7.7: Difference between Prediction and every other condition, for each aspect of model
understanding.

With respect to local feature importance the discrepancy was even more severe, since no

participant in the Prediction, Local, Combined conditions was able to provide a correct

answer. On the other hand, 64.3% of the participants in the Explanations condition answered

this question correctly. Again, we expected participants in the latter to have an edge on this

task, however, in contrast to global feature importance which remains constant across

instances, local feature importance information depends on the instance at hand, meaning that

this effect was not due to mere memorization. Instead, participants needed to critically reflect

on the information presented throughout the experiment to reach their decision. This sharp

difference clearly demonstrated that when it came to inferring local feature importance the

information in the remaining conditions was insufficient.

Participants’ scores in the counterfactual component of the test showed again that only those in

the Explanations condition significantly outperformed those in the Prediction condition. This

is a very interesting finding, indicating that although explanations contained factual

information, participants were able to extract counterfactual knowledge out of them, while

uncertainty information did not provide any such benefits. The exact same pattern was

observed when considering the aspect of model simulation, despite the fact that explanations

themselves did not explicitly contain any information regarding simulating the model’s

behaviour. Regardless, the enhanced understanding of the model’s decision making process

helped participants in the Explanations condition achieve superior performance in the

simulation component of the test.

Finally, participants’ ability to detect erroneous model predictions was assessed, where no

significant differences between conditions were found. Error detection closely resembled the

main prediction task, since it required inspecting an instance and the corresponding model

prediction to assess its correctness. This means participants in all conditions had substantial

exposure/familiarity with this procedure, which explains why there was no difference in their
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performance. Overall, the preceding analysis provided strong evidence suggesting that

explanations led to better model understanding, compared to uncertainty estimates, thus fully

supporting H2.
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Figure 7.8: The switching percentages for the different model predictions. Each subplot corre-
sponds to a combination of human and model confidence.

7.3.4 Switching and Agreement

We concluded our analysis by addressing two issues, starting with the effect of pairing

uncertainty estimates of different scopes, and then moving to the potential pitfalls of utilizing

switching and agreement percentages to measure trust. To this end, we began with a brief

qualitative analysis of users’ switching behaviour. Unfortunately, when isolating trials where

participants’ initial answer differed from the model’s prediction, the statistical power of our

analysis is greatly reduced, so our tests fail to detect significant differences. Despite that, there

are some clear patterns present in the data, from which we can gain valuable insights, so we

opted for providing a qualitative analysis, instead of dismissing them. Overall, participants’

switching percentage in the Prediction, Local, Combined, Explanations conditions was 50%,

37%, 45%, and 34%, respectively. Furthermore, in all conditions switching helped participants
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improve their performance, since by altering their initial prediction to follow the model’s

suggestion their accuracy increased by 41%, 25%, 15%, and 17%, following the same order as

before.

Focusing on the Local and Combined conditions, we looked for differences in switching

behaviour that can be explained by the fact that global error rates were available in the latter,

but not in the former. Figure 7.8 depicts the percentage of trials participants switched their

prediction, depending on Condition, Human Confidence, and Model Confidence, where we

differentiate between cases where the model predicts Less than 100K and those where it

predicts More than 100K. In the (Human - High & Model - Low) combination participants

exhibited a similar behaviour in both conditions, presumably because their behaviour was

driven by their own intuitions. However, in every other confidence combination participants’

behaviour in the Local and Combined conditions were strikingly different. One the one hand,

in the Local condition, switching percentages between the two classes were almost identical,

but on the other hand, in the Combined condition, the switching percentage when the model’s

prediction was Less than 100K was much higher than when the prediction was More than

100K, consistent with the view that the poor global error rates of the More than 100K class

lessened the chances of participants switching to match the model’s prediction. Inversely, the

great global error rates in the Less than 100K class prompted participants to follow these

suggestions.

This is more clearly demonstrated when (Human - Low & Model - High), where knowing that

the model had 91% success rate when predicting Less than 100K, encouraged participants in

the Combined condition to switch in 89% of the trials, compared to 60% in the Local one. In

line with this reasoning, when the prediction was More than 100K, participants in the former

condition were aware that model performance was relatively poor, so their switching

percentage plummeted to 41%, which is substantially lower than the 57% in the Local
condition. This observation perfectly captures the added benefits of pairing these estimates

together, as global error rates convey information about the robustness of local confidence

scores themselves, which is in line with H4, however, additional studies are necessary in order

to provide more robust evidence confirming this effect.

In the same vein, while the Combined and Explanations conditions followed a similar trend

for instances with high human confidence, the pattern was drastically different for low

confidence instances. Especially when (Human - Low & Model - Low), the trends got reversed,

which could be interpreted as additional evidence that explanations promoted case by case

reasoning. According to this account, participants in the Explanations condition looked past

the poor error rate of the More than 100K predictions, using explanations to verify whether the

model’s reasoning was sound for the instance at hand. Notably they were very successful in

doing so, since their accuracy in cases where they switched to follow a More than 100K model

prediction was 80%. Future research should investigate this topic in more detail, however this

pattern along with the one in Section 7.3.2.3, provided some very promising indications in

favour of this interpretation of the results.
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Figure 7.9: The difference between trust and reliance, in terms of the interaction of human
and model confidence. Solid bars correspond to trials where participants did not switch their

prediction, while dashed ones are computed based on switching trials.

Finally, we discuss a pattern that illustrates the non-equivalence of reliance and trust. Figure

7.9 shows the average difference between participants’ trust and reliance scores, once

considering trials where participants did not switch their predictions (regardless of whether

they initially agreed with the model), and once considering only trials where they switched. In

the former, there was a positive trend for all human/model combinations of confidence,

meaning that participants’ trust scores were higher than their reliance ones. However, when

considering only switching trials, a stark contrast was observed, with the trend getting

completely reversed, and reliance scores dominating the corresponding trust ones. We should

note that this discrepancy was induced by differences in reliance, since although participants’

trust increased by 5.51% in switching trials, the corresponding increase in reliance was equal to

an impressive 33.11%. Even though we only offer a qualitative account of this phenomenon,

the observed pattern is consistent with previous works that argue that both agreement and

switching percentages are indicators of reliance, not trust. Adding to this, we found that in 29%
of all trials where participants and model agreed, their reported reliance scores were lower that

3 out of 7, meaning that their predictions were predominantly driven by their own intuitions.

This indicates that switching percentage is a stronger indicator of reliance, since human-model

agreement on its own does not necessarily imply high reliance. Regardless, interpreting either

as a manifestation of trust may result to misleading conclusions.

7.4 Discussion

In this section we discuss and contextualize our results, as well as we propose several future

research directions.
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7.4.1 The role of human confidence

Our findings provided strong evidence that human confidence has a major effect on multiple

aspects of the joint human-AI synergy. Extending the results in (Bansal et al., 2021b), we

showed that humans were predominantly benefited by the model’s assistance in cases where

they are uncertain, but the model made high confidence predictions. This finding is in line with

highly influential existing theories on human-computer interaction (Lee and See, 2004; Hoff

and Bashir, 2015), where it is argued that users’ self-confidence impacts their attitude towards

automation. Furthermore, the results presented in Section 7.3.1, demonstrated that not

accounting for human confidence may severely distort an analysis. In light of these findings,

future experimental studies should be designed in a way that records or controls for human

confidence, instead of solely focusing on model confidence. Interestingly, an emerging line of

research calls for training ML models using procedures that incorporate human confidence

(Bansal et al., 2021a; Mozannar and Sontag, 2020; Wilder et al., 2020), indicating that there is

a general interest into utilizing and accounting for this factor.

Beyond predictive performance, our findings suggested that the influence of human confidence

extends to users’ reliance, understanding, and trust towards a model. Moreover the discussion

in Section 7.3.4, emphasized that human confidence also influenced switching and agreement

percentages, while also raising concerns about the suitability of these two indicators to assess

trust. Previous research has been consistent that both of these measure reliance (Dixon and

Wickens, 2006; Madhavan and Phillips, 2010; Miller et al., 2016), and has discussed the

caveats of studying trust through reliance (Chancey et al., 2015; Hussein et al., 2020). In our

opinion, this calls for rethinking experimental designs or for adjusting the way final results are

interpreted. A potential resolution would be to compliment reliance indicators with items from

specialized trust measuring scales, and assess trust based on both, which has been the standard

practice within the human factors and human-computer interaction communities (Wang et al.,

2009; Chancey et al., 2013; Moray et al., 2000; Merritt and Ilgen, 2008), or to use more

elaborated behavioural indicators that capture multiple aspects of trust, such as those in

(De Vries et al., 2003; Miller et al., 2016). An alternative to modifying the experimental

designs, would be to motivate surveys and form hypotheses in terms of reliance (Lee and See,

2004).

7.4.2 The complementary effect of uncertainty and explanations

Another central question we explored in this work concerns the role of combining uncertainty

estimates and explanations. Prior work suggested that in terms of accuracy, pairing model

predictions with the corresponding confidence is as effective as pairing them with explanations

(Bansal et al., 2021b; Lai and Tan, 2019; Lai et al., 2020), implying that, performance-wise,

uncertainty estimates are as powerful as explanations, while arguably being simpler to

understand and implement. Consistent with this idea, our results provided evidence that when
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both predictions and confidence information were available, providing participants with

additional information did not lead to better performance. Despite that, we identified a strong

complementary effect, since participants in the Explanations condition had significantly

higher self-reported understanding, while also exhibiting a far superior objective model

understanding. Interestingly, although only feature importance explanation were provided, their

effect permeated multiple aspects of model understanding. Increased understanding has been

linked to higher rates of model acceptance (Shin, 2021), while the findings in (Ashoori and

Weisz, 2019) indicate that when the stakes are high, ethical considerations may lead to people

entirely dismissing a model, regardless of its accuracy, unless they are able to understand its

decision-making process. A promising future direction is to adopt a longitudinal experimental

design and quantify the effect of explanations on model acceptance or retention. In general,

user behaviour is shaped over multiple interactions with the model through an extended period

of time, where unexpected or otherwise surprising behaviour may manifest, so longitudinal

designs have the potential to provide important insights that are missed by cross sectional

designs, which do not record how user behaviour changes over extended periods of time.

Moreover, our results indicated that complementary effects can be found within uncertainty

measures too, as discussed in Section 7.3.4. This is consistent with the recent discussions in

(Bhatt et al., 2021), demonstrating how communicating different kinds of uncertainty

information can induce different user behaviour. In this work we considered predicted

probabilities and recall, however there is a lot of room for exploring different measures or

combinations thereof, such as precision, false discovery rate, etc. In particular, we find the

approach of combining information with diverse scopes (e.g. local and global) to be very

promising and worthy of further exploration. An immediate follow up study stemming from

our work could explore the effect of more refined global uncertainty information. For example,

instead of providing the overall recall of each class, we could first cluster the datapoints based

on similarity, and then compute cluster-wise recalls. This localized version of a global

summary allows for capturing potential variability in model performance within the same class,

depending on sub-population characteristics. However, it should be noted that such approaches

require users to have a certain level of numerical competency, which differs substantially from

person to person (Zikmund-Fisher et al., 2007), so alternatives exploring visualizations and/or

natural language expressions of uncertainty should be considered as well.

7.4.3 Explanations in AI

Our findings suggested that explanations provided unique insights that impact model

understanding, however explanatory needs are highly dependent on the application (Zhou et al.,

2021; Ribera and Lapedriza, 2019). Our work only considered feature importance explanations,

however alternative scenarios may call for different types of explanations, such as generating

counterfactual instances (Wachter et al., 2018) or propositional rules (Ribeiro et al., 2018).

Although there is a number of recent surveys that compare the effect of various explanation
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types (Wang and Yin, 2021; Bansal et al., 2021b; Lai and Tan, 2019), to our knowledge there

has not been a systematic effort to study the relationship between application characteristics

and explanation style preference or efficacy. Furthermore, even within the same application, we

expect stakeholders of different expertise to have different explanatory preferences.

Finally, in Section 7.3.1, we provided evidence that when participants had low confidence,

model assistance significantly improved their performance, especially when the model

generated high confidence predictions. Having said that, when both parties had high

confidence, we mostly observed a downwards trend, which resulted in a significant decline in

performance in the Explanations condition. It is possible that this finding was due to

participants’ having an information overload (Poursabzi-Sangdeh et al., 2021), where they had

a hard time keeping track of all the information that was presented to them. However, other

surveys have raised concerns about human over-reliance on a model when explanations are

provided (Bansal et al., 2021b; Kaur et al., 2020), so the observed decline in accuracy might be

related to this phenomenon. In our view, a promising step towards resolving this situation

could be to explore the effect of communicating information about the robustness of an

explanation. Most XAI techniques heavily rely on approximations, which means that the final

explanation might not be faithful to the model, thus distorting its decision-making process.

Moreover, even if no approximations are performed, explanations might face stability issues,

where small feature perturbations may lead to drastically different explanations (Yeh et al.,

2019). If presented with such information, it is reasonable to assume that users would be more

skeptical of explanations, thus reducing their over-reliance. All things considered, we believe

that the interplay between uncertainty and explanations calls for further exploration, as it can

be integral in guiding the safe and responsible adaptation of automated systems.

7.5 Limitations

We acknowledge that one limitation of our study is that we only recruited participants residing

in USA, thus we make no claims about the cross-cultural validity of our results. Moreover, we

did not record information about participants’ familiarity and attitude towards AI, so our results

may be influenced by participants predispositions towards automation. Furthermore,

participants were not experts on salary prediction tasks. We alleviated this limitation by

including a familiarization phase in our experiment. The fact that participants’ performance

was comparable to the model’s indicates that our approach was effective.

Another limitation is that participants were not held liable for their performance, which bared

no consequence to them. We addressed this limitation by providing additional

performance-based rewards to motivate participants strive for optimal performance.
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7.6 Conclusions

Previous empirical studies have demonstrated that pairing model predictions and confidence is

more effective than explanations in assisting humans improve their accuracy in

decision-making tasks. In this work we ask whether bringing them together can provide

complementary, non-accuracy related benefits, while also exploring how the interaction of

human and model confidence influences human-AI joint accuracy, reliance, understanding, and

trust towards the model. To this end, we conducted a study with 112 human participants. We

found strong evidence suggesting that human performance is improved in cases where they

have low confidence themselves, but the model makes high confidence predictions. Moreover,

we found that pairing uncertainty estimates with explanations induces a complementary effect,

resulting in high performance and significantly better model understanding. We concluded our

findings by providing a qualitative analysis outlining the benefits of combining uncertainty

estimates with different scopes, as well as the potential pitfalls of utilizing reliance indicators to

measure trust.

We hope that this work will motivate future research that further investigates the role of

self-confidence and how different combinations of information influence the human-AI

collaboration, in situations where time constraints or other inherent risks are present.

Furthermore, another promising direction would be to explore whether interactive methods

where humans can actively enquiry a model to satisfy their explanatory needs yield additional

benefits, compared to static strategies (like the ones considered in this experiment). Achieving

a synergistic relationship between humans and AI is set to be one of the main end goals of the

responsible incorporation of AI in our society, and advances along these lines should hopefully

bring us a step closer to achieving these endeavours.



Chapter 8

Education in XAI

8.1 Introduction

As technological advancements have increased computational hardware, modern research has

resulted in high performing ML models that have found numerous applications. However, in

many of these applications models are treated as black boxes, where the output in no way

indicates the decision making process behind it. Consequently, model understanding poses a

notable challenge that is imperative to overcome if it is to meet the objective of responsible and

beneficial use of ML systems.

To this end, the field of explanations in AI (XAI) has emerged, aiming at designing tools and

methodologies that allow the extraction of meaningful information out of black-box models

(Arrieta et al., 2020; Linardatos et al., 2020). Although XAI is a relatively young field, it has

already generated an impressive amount of scientific literature (Larsson et al., 2019).

Furthermore, there is a number of high-performance, open-source implementations of some of

the most popular XAI techniques, which has facilitated their rapid adoption in commercial

settings. This can be also seen by the spike of scientific publications discussing the deployment

of XAI in healthcare, banking, e-commerce, cybersecurity, etc.

However, when it comes at actually employing XAI in practical applications, there is alarming

evidence that professionals/data scientists use these tools in a wrong way (Kaur et al., 2020),

where misuse most often arises due to misunderstandings around the scope and kind of insights

that can be gained when using certain XAI techniques. Consequently, this leads to sub-optimal

use of XAI, and by a misinterpretation of the resulting explanations. This finding is related to a

broader issue regarding the proper use of AI/ML, which is commonly referred to as user

competence.

Despite the need for developing the technical skills required to competently use the tools

provided by an AI-driven society, XAI related academic resources are extremely limited.
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Although there is a number of tutorial and introductory articles that can be found online, there

is only a single formal academic course on XAI (Lakkaraju and Lage, 2019).

In this chapter we fill attempt to alleviate this situation, providing a pedagogical perspective on

how to structure a course on XAI, in a way the introduces students and professionals to various

explainability techniques, while also keeping an eye on the big picture of the field. This

proposal takes a distinct stance from the course in (Lakkaraju and Lage, 2019), since the latter

focuses on introducing several technical approaches, while the presented course emphasizes the

conceptual aspects of explanations, and the discussed techniques are introduced as specific

realizations of broader conceptual categories. This decouples individual XAI techniques from

the overall objectives, advantages, and challenges of XAI, allowing for updating the material in

accordance with the new developments in the field. In particular:

• We structure a course around a putative data scientist, Jane, and discuss how she might

go about explaining her models by asking the right questions.

• We pair each lecture with a series of open-ended questions to promote an exchange of

ideas between lecturers and/or participants.

• We develop a series of technical tutorials that discuss practical implementations of XAI

techniques.

• We evaluate the course based the feedback and assignments provided by the MSc

students that attended the course, as it was offered by the University of Edinburgh.

8.2 Learning Objectives

Probably the most common way to introduce XAI to individuals interested in applying related

techniques is through tutorials, for example (Bennetot et al., 2021; Rothman, 2020). However,

most of them are targeted towards a technical research audience, where the purpose is research

discovery among peers and not the teaching of fundamentals. Keeping in mind that tutorials

usually serve as short, technical introductions to a subject, providing detailed insights regarding

the nuances of different techniques or explanations styles is beyond their scope. In contrast, a

tutorial following the thrust of the contributions of this chapter was presented at AAMAS

20221.

One of the main goals of the course is to fill this need, by imparting a number of key concepts.

The first one is that the various explainabilty approaches can be taxonomized such that a

technique can be selected by considering explanation types, explanation properties, advantages

and disadvantages, as well as the specific model under consideration. Another important

concept is that XAI can be used to structure a narrative in order to successfully answer

1Link to AAMAS 2022 tutorials: https://aamas2022-conference.auckland.ac.nz/program/tutorials/
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potential questions raised by stakeholders, in line with recent works providing evidence that

explainability techniques are best linked to stakeholder questions (Arya et al., 2019). Along

with imparting theory, an equally important goal is to provide students with experience in

applying these explainability techniques using commonly available APIs, so they can gain an

understanding of the implementation pipeline (e.g. data cleaning, parameter tuning, etc).

In broader terms, this course enables inclusivity, empowerment, and responsibility with respect

to XAI. In regards to inclusivity, the course suggests strategies that can help make XAI more

easily understood/accessible, especially since current developments can be very technical and

difficult to grasp for those not keeping up with the state of the art. Focusing on a representative

subset of techniques and showing that they can be tightly coupled with certain types of

questions, provides an accessible strategy for introducing students/practitioners into the field.

With respect to empowerment, the course is designed for students with some experience with

data, however it also includes preparatory lectures on machine learning. It gives students the

opportunity to engage with machine learning models, debug them, and inspect whether the

resulting models fit their purpose. In terms of enabling responsibility, it is widely

acknowledged that responsible design in artificial intelligence includes many facets, from bias

detection to value alignment. In this broad picture of ensuring that machine learning models

perform as they should, explainability is an essential ingredient, so it is important that

practitioners can make competent use of such tools.

To the best of our knowledge, this is the first work on this topic, so it is not possible to make

empirical comparisons. However, the course was evaluated based on students’ final

assignment, as well as their feedback, achieving very positive results. Hopefully this will be the

start of a discussion on how to effectively teach this very important topic.

Upon completion of this course, students are expected to have learnt to apply XAI techniques to

enquiry a given model, as well as to have gained an overview understanding of the conceptual

distinctions of explanations. More specifically, the expected learning outcomes are as follows:

• Analyze: Describe the context of the machine learning application and why

explainability would help, but also scrutinise which kind of explainability technique is

necessary.

• Design: Define the implementation pipeline for an application; provide a means to clean

the data, install and set up one or more post hoc explainability techniques.

• Apply: Competently apply a wide range of techniques and tools, also knowing their

particular features and drawbacks. Have the foundations to understand new and

upcoming methods and techniques.

• Evaluate: Critically reflect on the results of XAI techniques and investigate their utility

in the given context.
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In particular, since both the theoretical and practical aspects are covered, students should be

able to understand the context in which these techniques are deployed, but also understand the

theory in justifying these techniques. The final project in particular is an opportunity for

students to create a narrative and an application and motivate and argue for or against a model

by using a sequence of techniques.

8.3 Course structure and content

The course consists of 9 lectures, which cover the following topics: i) ML preface, ii) XAI

preface, iii) SHAP, iv) PDP/ICE, v) Counterfactuals, vi) Anchors, vii) Deletion diagnostics,

viii) InTrees, ix) Future research directions. Furthermore, the course includes 4 tutorial

sessions, where students have the chance to engage in coding exercises and raise practical

issues about the corresponding XAI techniques. Finally, students are expected to submit 2
assignments and a final project.

In order to focus on the evaluation of the course, all the information about the specifics of how

each technique was introduced to students, the Jane narrative, as well as the open ended

questions, have been moved to Appendix C, while a discussion about the tutorials and the

intermediate assignments can be found in Appendix D.

8.3.1 Final Project

The final project requires students to consider a ML application, and then carry out all the

necessary steps to train a model. After the training is completed, students need to utilize a

series of XAI techniques to evaluate the resulting model and argue about whether it should be

retained or dismissed. The minimum time commitment expected from students is 14 hours.

Essentially all aspects of the problem specification are decided by the students, i.e. dataset

selection, model selection, XAI techniques. Furthermore, students need to come up with a

narrative describing the problem, for example, “Taking a credit scoring dataset, and the

XGBoost model, convince a banking institution to reject the model using (at least) technique 1

and technique 2”. The goal of the project is to prompt students to use various XAI techniques

in order to convince a (hypothetical) stakeholder to approve/dismiss the underlying model.

This situation resembles what students might come across when applying XAI in a professional

setting, so it is important that they can form sound arguments based on the explanations at hand.
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Table 8.1: A description of the questions included in the analysis.

8.4 Evaluation Methodology

To assess the effectiveness of the course, a modified version of the Course Experience

Questionnaire (CEQ) and a general performance analysis based on the coding assignment were

used.
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8.4.1 Context and Participants

Sixteen survey responses were collected from the students who attended the presented course

as part of their MSc studies at the University of Edinburgh. Eight of the respondents were

postgraduate research students, five were doing non-academic work, while three responded

“Other”. Prior to taking this course, 87.5% of respondents were not familiar with the topic of

XAI. Most of the respondents had at least some practical experience of working with ML

(81.3%) and theoretical knowledge of ML (81.3%). One respondent had no theoretical or

practical knowledge of ML, and two respondents had some theoretical, but no practical ML

experience. Four respondents rated their practical experiences in ML as close to expert level,

and six rated their theoretical ML knowledge close to expert level.

8.4.2 Procedures and Data Collection

Conventionally the CEQ is employed as a measure of teaching quality of university courses

(Ramsden, 1991). The questionnaire assumes a strong connection between the quality of

student learning and student perceptions of teaching (McInnis, 1997). When combined with the

additional course assessment items and adapted to the course context it can reliably be applied

as a domain-neutral indicator of university course quality (Griffin et al., 2003). For this study

12 items were selected from the original version of the CEQ based on their relevance to the

XAI course context (see appendix E). These items were scored on a 5-point Likert-type rating

scale from “strongly disagree” to “strongly agree”.

In addition to the CEQ items, context-specific items were used in order to gather information

about (i) pre-existing skills and theoretical knowledge of XAI; (ii) pre-existing skills and

theoretical knowledge of Machine Learning (ML); (iii) satisfaction of the diversity of the

taught techniques; (iv) course ability to build understanding of XAI techniques; (v) level of

comprehension of the conceptual distinctions, advantages, and disadvantages of the XAI

techniques covered in the course; (vi) success in meeting the four pre-set learning objectives.

These responses were also based on a five-point Likert scale. Finally, in an open-ended manner,

students were asked to list their favourite aspect of the course and to suggest anything that

could help to improve the course in future. The resulted questionnaire was given to the students

after concluding the final lecture, but before the results of the final assignment came out, so

they were not aware of whether they had passed the course.

8.4.3 Data Analysis

The results were divided into two parts. Overall CEQ scoring of the responses, as well as

quantitative and qualitative analysis of the individual statement ratings. The CEQ raw scores

were recorded as follows: a raw score of 1 (‘strongly disagree’) was recoded to −100, 2 to

−50, 3 to 0, 4 to 50, and 5 (‘strongly agree’) to 100, eliminating the need for decimal points.



116 Chapter 8. Education in XAI

4 5 6 7 16 17 19

2.0

2.5

3.0

3.5

4.0

4.5

5.0

R
at

in
g

Figure 8.1: Questions

Analyze Design Evaluate Apply

3.6

3.8

4.0

4.2

4.4

4.6

R
at

in
g

Figure 8.2: Objectives

The scoring of negatively worded items was reversed. In interpreting CEQ results, a negative

value corresponds to disagreement with the questionnaire item and a positive value to

agreement with the item. Positive high scores indicate high course quality as perceived by

graduates. The responses revealed a high positive overall CEQ score of 12, 050, which

indicated high course quality as perceived by respondents. The CEQ is widely accepted as a

reliable, verifiable, and useful measure of the perceived course quality (Griffin et al., 2003).

On top of that, in order to gain a more fine grained picture of students’ responses, individual

questions 4, 5, 6, 7, 16, 17, 19, 20, 21, 22, 23 were analyzed. Questions 20− 23 correspond to

the learning objectives (Analyze, Design, Evaluate, Apply), while the remaining ones

correspond to items indicating the level of students’ satisfaction/confidence (see Table 8.1).

The analysis was performed by estimating a 95% confidence interval for the average score of

each of these questions. Each interval was constructed using the non-parametric bootstrap

method (Efron and Tibshirani, 1986). Figures 8.1, 8.2 show the obtained results,

Starting from Figure 8.1, questions 16, 17 examined whether the course was overly theoretical

or practical (respectively), so the fact that they have both received a score of about 3, indicated

that the course exhibited a nice balance between the two, not favouring one over the other. The

observed difference of about 0.5 could be attributed to the fact that while all the lectures were

comprised of both theoretical and technical parts, none of the assignments had theoretical
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exercises, which could be perceived as giving a greater emphasis on the technical side, by the

students. Among the remaining items, question 4 received the lowest score (which was still

significantly better than average), so future implementations of the course could include more

practical aspects that would support students’ ability to apply taught XAI techniques in their

own models. Apart from that, all other questions received a score significantly higher than 4 (as

indicated by the limits of the confidence intervals). This suggested high perceived course

effectiveness in building an overall understanding of XAI, while it also indicated that students

were satisfied by the diversity of the XAI techniques covered in the course. It is worth noting

that question 19, which concerned the overall course satisfaction, received an average score of

more than 4.5, with the upper bound of the corresponding confidence interval being very close

to 5.

Moving on to Figure 8.2, all of the objectives received a high score (significantly higher than

3), with Analyze having the highest point estimate, 4.4, providing evidence of the students’

confidence in deciding the appropriate XAI techniques for the problem at hand. Both Design

and Evaluate achieved a score of 4, suggesting that students felt comfortable designing

pipelines for explaining a model, and interpreting the final results. Finally, Apply had a slightly

lower average score, as well as a wider confidence interval, implying there was greater variation

in the corresponding scores given by the students. In fact, to get an even more detailed picture

of the underlying distributions of scores, Figure 8.3 shows a collection of barplots representing

the relative frequency of each. For all objectives, 4 was the most common score given by

students, which indicated their agreement with the statement that the corresponding objective

was met by the course. For the Evaluate and Apply there was a single student that gave a rating

of 2, but otherwise ratings were mostly on the high end of the spectrum. Having said that, this

could be seen as evidence that future implementations of the course would benefit by including

additional intermediate assignments, putting more emphasis on practical aspects of XAI.

To further assess the effectiveness of the course, an analysis of the students’ performance on

the final project was performed. Each submission was evaluated based on the the students’

ability to carry out the pipeline shown in the class (data preprocessing, model training, model

explanation), as well as the quality of their arguments. Since the project was open-ended, the

correction guidelines were that the code should run correctly, the pipeline should be executed

reasonably well, and the arguments should be substantial, following the insights gathered from

the explanations. Based on that, all students were able to pass the course, demonstrating a

sufficient level of competence in performing the aforementioned tasks.

Moreover, about 26% of the students considered both a transparent and a black-box model to

address the selected application, although there were no related instructions. This was an

indication that (at least a portion of the) students took away the message that black-box models

should be used only when achieving significantly better performance than transparent ones.

However, since the course was focused on XAI, it was reasonable that most of the students

opted for considering just black-box models. Furthermore, about 89% of the students used at

least 3 XAI techniques, although 2 were enough to met the project’s requirements. This was an
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Figure 8.3: The students’ answers on how much the course met each of its objectives

indication that students felt confident to inspect a model from multiple angles, using techniques

that bring different insights. Among them, about 87% carried out a comparison between

importance scores coming from SHAP and those coming from LIME (Ribeiro et al., 2016),

which is another popular XAI technique. This was evidence that students took proactive

measures to make sure that a feature’s importance was robust. This was in tune with the course

material, where it was emphasized that due to the underlying approximations, many XAI

techniques suffer from stability issues. Finally, 15% of the students received a borderline pass,

due to the fact that although they performed the pipeline adequately, when forming their

arguments in favour or against retaining a model, they underutilized the obtained insights.

Despite that, their arguments were substantial, so they were sufficient to pass the course,

however they could have been strengthened by taking into account all the available information.

With respect to the qualitative part of the analysis, the open-ended questions revealed specific

aspects of the course that were recognised as respondents’ favourite. Eleven respondents

answered the question “what was your favourite aspect of the course?”. Tutorials were

mentioned by five respondents. Students appreciated being able to try out the theoretical course

aspects in a practical way using the provided workbooks. For example, S-5 said: “trying out

the techniques in the workbooks”. S-9 said: “practical application in lab books”. S-7 said:

“the workbooks and assignment questions. They had the right mix of theory and practical

aspects”. Five respondents mentioned recorded lectures and tutorials. Students appreciated

being able to discuss the course material in the online tutorials and lectures. S-1 put it: “the
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discussion and Knowledge exchange during Lectures and Tutorial classes”. S-2 said: “the

meaningful discussions and open-ended questions”. S-8 said: “the ambience of the teams’

sessions is done with a “brainstorming” approach which gives us the opportunity to discuss

ideas, bring questions from the real world and hear different opinions”. Respondents also

mentioned open-ended questions, sufficient examples, and assignment questions. Overall

responses were very positive, for example S-2 said: “I was very impressed with the structure

and delivery of the material...It [the course] made me not only appreciate the XAI

fundamentals but the whole approach towards applying ML algorithms...I consider myself very

lucky for selecting this course and I believe it has helped me tremendously in my understanding

of ML projects.” S-6 said: “I have understood why the area of XAI techniques has gotten

attention and is important to make AI / ML available for general use in the Data Analytics

Project.” S-8 reflected: “The topic of XAI it’s very interesting! Thank you for including it in the

program and giving us exposure to these approaches.”

8.5 Discussion and Implications

Overall, the survey results supported the claim that the course material and its delivery can be

highly effective in teaching XAI techniques. Analysis of individual ratings showed that this

course was especially useful in promoting understanding of a diverse array of XAI techniques,

and their conceptual distinctions, advantages, and disadvantages. The respondents’ answers to

open-ended questions suggested that interactive and practical aspects of the course were

important in the successful process of translating XAI theory into practical skills. The open

questions and codebooks were also important parts of the course, especially in combination

with the ensuing discussions. The survey results also suggested that the course can be effective

in teaching XAI techniques to individuals having no or minimal experience and knowledge

about XAI.

Students’ performance and forum questions suggested that, besides the technical aspects, such

as consideration of Python libraries updates, the course could be improved by providing more

support for the output analysis and evaluation aspect of the XAI. Most of the students found

this part most challenging. This was also reflected in a slightly lower overall score of the the

evaluation learning objective, i.e., the ability to critically reflect on the results from the XAI

techniques and suggest how it helps the given context. This could be because the selected

datasets were not relevant to students’ professional or research interests, however it could also

mean that more practical exercises focused on the analysis part should be included in the

course. Potentially more practice analysing XAI outputs could lead to a better understanding.

8.5.1 Limitations

The scores of the questionnaire were self-reported and reflected the subjective evaluation of

respondents’ own understanding of the course material. The high evaluations of the course
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effectiveness were reflected in the objective assignment performances. Although this course

has been delivered to data science experts working within the banking sector, in this chapter

only the students’ responses were analysed. This limitation prevented evaluation of the

generalisability of the course effectiveness across different settings and expertise levels. In the

future, further surveys will be conducted to assess the effectiveness of the course for the more

experienced data science and ML experts strictly working in the professional setting.

8.6 Conclusions

In this chapter, an approach for structuring a course on explainability in machine learning was

presented. The aim of designing the course was to provide a formal introduction to the field of

explainability. Although advances in XAI come at a rapid pace, the fundamental ideas and

objectives are likely to remain the same. The course was primarily designed for industry

professionals, data scientists, and students with a programming and data science background.

One of the main drivers governing the development of the material was to address the reported

misuse XAI techniques in practical applications.

To this end, a combination of diverse XAI techniques was included in the material, focusing on

conceptual details and distinctions between different explanation types. Furthermore, each

lecture was structured around a putative data scientist and the challenges she might come

across when trying to provide explanations for a model’s behaviour. Finally, most of the

lectures were accompanied by a workbook demonstrating the function and utility of the

corresponding XAI technique, in order to allow students to gain some hands-on experience.

Students’ feedback and performance provided strong evidence that the course was effective in

meeting its learning objectives.
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Chapter 9

Conclusions

Achieving a transparent and responsible integration of AI/ML systems in critical applications,

is set to be a decisive factor in ensuring that they have a positive impact on society. This thesis

is motivated by such concerns and provides for an attempt at exploring several dimensions of

transparency, addressing both technical and social aspects of it. With respect to the former, we

consider the problem of establishing connections between TPMs and BNs. TPMs extend

traditional BNs, allowing for a simple and unified framework for performing inference, while

also potentially leading to reductions in the required time and space. However, this comes at

the expense of losing the clear representational semantics of BNs, the very property that has

rendered them indispensable in a wide array of high-stakes applications. Following this

endeavour, we were able to develop novel algorithms and provide formal proofs that TPMs

support several interpretable features, similarly to BNs. Moreover, with respect to the latter, we

study the influence of self-confidence, model explanations, and uncertainty estimates on the

relationship between humans and automated systems. Finally, we take proactive measures to

promote the competent use and understanding of explanations.

9.1 Summary of contributions

In Chapter 3, we seek to answer the question of whether it is possible to transform TPMs into

alternative graphical models, in a way that uncovers their internal representations. We begin by

highlighting the limitations of existing SPN to BN decompilations, and how the resulting

graphs may fail to recover important information that is embedded in a SPN. To mitigate this

issue, we identify sufficient conditions, as well as utilize alternative interpretations of SPN sum

nodes, in order to design the first exact decompilation algorithm. By taking advantage of the

SPN’s structure and parameters, we prove that the resulting algorithm can always accurately

decompile SPNs that compiled from BNs. Furthermore, in deriving this algorithm, we uncover

novel insights regarding the connection between the local Markov property in BNs and the

distributions represented by SPN sum nodes. Moving on, we consider PSDDs, where we
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propose an algorithm that clearly depicts their inner hierarchical structure. This transformation

is based on the specific properties of SDDs, which naturally allow for establishing parent child

relationships between the internal PSDD rules. We conclud the chapter by showing how the

resulting graph can be used to expand the PSDD semantics, allowing to define a valid

counterfactual distribution over its internal rules.

Moving to our next question, in Chapter 4 we study the problem of constraint incorporation in

SPNs. It is well known that BNs satisfy this property, since adjusting the graph’s topology

during model specification, allows for easily injecting them with domain knowledge. However,

when it comes to SPNs, existing results are limited, while their complex underlying formalism

makes it challenging to apply the same arguments as in the BN case. In pursuing this question,

we provide formal proofs that it is indeed possible to perform this task in SPNs, too, showing

that they support both probabilistic and interventional constraints. This result makes use the

SPN’s multilinear representation, which allows for identifying a correspondence between

incorporating a constraint and satisfying a multivariate system of equations involving the SPN

parameters. Furthermore, we retrieve sufficient conditions that guarantee that the resulting

systems are solvable, i.e. the constraints can be enforced. We demonstrate the effectiveness of

our approach by showing how it can easily recover related existing results, while we also

propose two optimization approaches for training SPNs under constraints.

Our last technical contribution is presented in Chapter 5, where we explore whether

discriminant SPNs can be used as a skeleton for developing a framework for generating diverse

counterfactuals for BN-based classifiers. To answer this question, we take advantage of

multilinearity, formulating an ILP program, which we formally prove is guaranteed to output

valid counterfactual instances. On top of that, under slight modifications the same framework

can be used in order to generate prime implicant explanations, which provide additional

insights regarding a model’s decision making process. Moreover, since our approach only

assumes a multilinear model structure, it is applicable to the whole class of multilinear models.

This includes decision trees and random forest, for which we show how they can be

incorporated into our proposed framework, as well as that this may potentially lead to an

infinite set of counterfactuals, instead of just a single instance. We also draw connections with

other related recent approaches, showing that some of them correspond to a special case of our

framework. Finally, we empirically demonstrate how diverse counterfactuals can be used to

guide uncovering biased model behaviour.

In Chapter 7, we move past the technical side of transparency, studying how various factors

influence the relationship between human users and AI models. To this end, we design and

implement a behavioural experiment to explore the effect of users’ self-confidence, as well as

to assess whether there are potential complementary benefits of combining uncertainty

estimates and explanations. In particular, we explore how the interaction of user confidence,

model confidence, and model assistance affects the accuracy, reliance, understanding, and trust

towards a model. The subsequent data analysis provides evidence supporting the view that

uncertainty and explanations have indeed complementary functions, with the former being
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sufficient for improving accuracy in decision making tasks, and the latter providing unique

insights about the model’s decision making process. Moreover, we provide evidence that

self-confidence has a significant effect on multiple aspects of user behaviour, while we also

demonstrate how failing to account for it may distort the interpretation of the final results. In a

similar spirit, we discuss potential pitfalls of utilizing reliance indicators to measure trust,

raising concerns about their suitability to perform this task.

Finally, following our previous findings, in Chapter 8 we design and evaluate an introductory

XAI course. Despite the fact that XAI has been one of the most prominent approaches to

satisfy the pressing need of ensuring that AI/ML systems are sensible and align with human

expectations, academic resources on the topic have been limited so far. To alleviate this issue,

we develop a course discussing the various explanation types and the kind of insights they

provide, while also suggesting ways to combine multiple explanations together in order to gain

a more well-versed understanding of the underlying model. The resulting course was offered

by the University of Edinburgh, at MSc students, during the 2021-2022 academic season.

Students’ performance on the final assignment, as well as their own feedback suggest that the

course is effective in providing a good overview of the field, thus validating our approach.

9.2 Future work

There are several future research directions stemming from our work, addressing both technical

and social dimensions transparency. When it comes to TPMs, one of the most promising

research topics is directly related to the findings in Chapter 3. In particular, SPNs have already

found many applications due to their ability to easily define mixtures of distributions (Wang

and Wang, 2016; Rathke et al., 2017; Amer and Todorovic, 2015; Stelzner et al., 2019; Zheng

and Pronobis, 2019). However, as we discuss in Chapter 3, in general this comes at the cost of

interpreting sum nodes as uninformative latent variables. A way around this limitation is to

impose a connection between sum nodes and quantities that have meaningful interpretations.

For example, in our results this is achieved by interpreting sum nodes as representing a

variable. There have already been some early attempts that implicitly make use of this

observation, such as (Desana and Schnörr, 2017; Zheng et al., 2018), in order to propose more

transparent SPN-like variants, however there is still a lot of room for developing systematic

approaches for taking advantage of this property. Research along this line could result into

highly flexible, interpretable, tractable models.

Another promising direction is motivated by the results presented in Chapter 4, and concerns

the potential of using SPNs as auxiliary models to facilitate constraining neural networks. As

seminal works, such as (Xu et al., 2018; Xie et al., 2019), demonstrate, tractable architectures

can be used in order to embed deep learning models with symbolic knowledge, for example

forcing them to take into account physical constraints when generating routes on a map. Our

results provide for a complementary research direction, where instead of deterministic
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constraints, SPNs are used to impose probabilistic ones, such as enforcing independence

between variables. Based on the findings in Chapter 4, SPNs have the capacity to perform this

task, opening the door for further developing hybrid techniques that combine TPMs with neural

networks. Additional research topics include investigating ways to generate counterfactual

instances for TPMs. In Chapter 5, we make a step in this direction, combining TPMs with

flexible distance functions that consider the relative cost of modifying each variable. However,

other distance functions, such as those in (Cui et al., 2015), allow for incorporating semantic

constraints into the resulting counterfactuals. In principle, such functions should be compatible

with our framework, since they are linear, so research along this line would enable probing

TPMs for counterfactuals that are constrained across multiple dimensions.

In terms of the transparency aspects considered in Chapters 7,8, there is a number of interesting

directions that can be motivated by our contributions. For example, the relationship between a

user’s self-confidence and application-specific characteristics, such as high-stakes outcomes or

time constraints calls for further investigation. Although similar questions have been studied in

the context of humans acting as machine operators (Chancey et al., 2017; Miller et al., 2016),

they have not received the same attention in decision-making tasks. The same holds true with

respect to the way a user’s behaviour is shaped through repeated interactions with a model.

Exploring the effect of time on the human-AI synergy can lead to more robust findings,

analogous to the ones in (Yang et al., 2017; Kraus et al., 2020; Chen et al., 2018), since this is a

more naturalistic setting, resembling real-life conditions, so the resulting findings are more

likely to translate to practical applications. Moreover, studying the effectiveness of different

combinations of uncertainty and explanations makes up for another interesting direction. Our

findings indicate that different sources of information elicit different user behaviours, so a

natural next step would be to consider the effect of alternative estimates/explanations and

combinations thereof. Research along these lines could greatly facilitate identifying the

advantages of various ensembles of information, which could in turn have significant

implications when designing interfaces to enable users to actively interrogate a model in order

to satisfy their explanatory needs (Cheng et al., 2020; Gomez et al., 2020; Hohman et al., 2019;

Wexler et al., 2019).

Finally, given the diverse backgrounds and goals of the stakeholders that interact with

automated systems, developing specialized courses that are focused on the most prominent

models/explanations within a certain application domain, e.g. healthcare, would allow

stakeholders to get a more in-depth understanding regarding the nuances of the tools that are

relevant to them, compared to more general courses that aim at covering a wide spectrum of

techniques.

We believe that all aspects of transparency considered in this thesis may lead to interesting and

exciting future developments, which should facilitate the safe and responsible integration of

automated systems. In our opinion this is one of the greatest challenges presented to the

scientific and sociotechnical communities, and its outcome will decide to a large extent the
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imprint of automation. We hope that the contributions contained in this thesis will prove to be

useful in this endeavour.



Appendix A

Objective Model Understanding
Questions

The following are the 9 multiple choice questions that were used to assess participants’

objective model understanding. All questions and answers were taken from the test developed

in (Wang and Yin, 2021). The correct answers are in red.

A.1 Global Feature Importance

A.1.1 Question 1

In general, the value of which feature has the greatest influence on the model’s predictions?

a) Age b) Employer

c) Education d) Marital Status

e) Occupation f) Ethnic Background

g) Gender h) Hours-per-week

A.1.2 Question 2

In general, the value of which feature has the least influence on the model’s predictions?

a) Age b) Employer

c) Education d) Marital Status

e) Occupation f) Ethnic Background

g) Gender h) Hours-per-week
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A.2 Local Feature Importance

A.2.1 Question 3

Figure A.1: Question 3

For this particular person, the value of which feature had the greatest influence on the model’s

prediction?

a) Age b) Employer

c) Education d) Marital Status

e) Occupation f) Ethnic Background

g) Gender h) Hours-per-week
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A.3 Counterfactuals

A.3.1 Question 4

Figure A.2: Question 4

Our model currently predicts this person earns more than 100K dollars. If we change only one

feature of this profile but leave all other features unchanged, which of the following changes is

going to change our model’s prediction (i.e., make the model predict that the person earns less

than 100K dollars)?

a) Change Age from 43 to 25

b) Change Marital Status from Separated to Married

c) Change Ethnic Background from White to Black

d) Change Gender from Male to Female
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A.3.2 Question 5

Figure A.3: Question 5

Our model currently predicts this person earns less than 100K dollars. If we change only one

feature of this profile but leave all other features unchanged, which of the following changes is

going to change our model’s prediction (i.e., make the model predict that the person earns more

than 100K dollars)?

a) Change Age from 40 to 50

b) Change Employer from State Government to Federal Government

c) Change Marital Status from Not Married to Married

d) Change Hours-per-week from 40 to 45
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A.4 Model Simulation

A.4.1 Question 6

Figure A.4: Question 6

What do you think our model will predict for this person?

a) The model will predict this person earns Less than 100K dollars

b) The model will predict this person earns More than 100K dollars

A.4.2 Question 7

Figure A.5: Question 7

What do you think our model will predict for this person?

a) The model will predict this person earns Less than 100K dollars

b) The model will predict this person earns More than 100K dollars
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A.5 Error Detection

A.5.1 Question 8

Figure A.6: Question 8

Our model predicts that this person earns Less than 100K dollars. Do you believe this

prediction is correct?

a) Yes, I think this prediction is correct

b) No, I think this prediction is wrong

A.5.2 Question 9

Figure A.7: Question 9

Our model predicts that this person earns Less than 100K dollars. Do you believe this

prediction is correct?

a) Yes, I think this prediction is correct

b) No, I think this prediction is wrong



Appendix B

CIs and Comparisons

Here are all the details of the CIs and comparisons that were presented in Chapter 7. All CIs

and all p-values have been adjusted using the Bonferroni correction method in order to control

the family-wise error rate.

B.1 CIs for Section 7.3.1

Condition Average Accuracy 95% CI
Prediction 70.5% (64.7, 76.7)
Local 74.1% (69.8, 79.4)
Combined 77.6% (73.4, 81.6)
Explanations 76.7% (73.6, 79.9)

Table B.1: Participants’ unassisted accuracy

Condition Average Accuracy 95% CI
Prediction 77.9% (74.7, 80.8)
Local 78.5% (75, 82.3)
Combined 79.9% (76.3, 83.4)
Explanations 78.3% (75.4, 81)

Table B.2: Participants’ assisted accuracy

Condition Average Difference 95% CI
Prediction 7.36% (2.45, 11.8)
Local 4.46% (0.44, 7.81)
Combined 2.23% (−1.11, 5.35)
Explanations 1.56% (−1.33, 4.68)

Table B.3: Difference in participants’ assisted and unassisted accuracy
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Condition Model Confidence Average Difference 95% CI
Prediction Low 1.33% (−4.46, 6.25)
Prediction High 13.39% (2.67, 22.32)
Local Low 4.91% (−2.67, 10.71)
Local High 4.01% (−1.78, 9.82)
Combined Low 3.57% (−3.12, 8.92)
Combined High 0.89% (−4.46, 6.25)
Explanations Low 1.78% (−2.23, 5.8)
Explanations Low 1.33% (−2.67, 5.8)

Table B.4: Difference in participants’ assisted and unassisted accuracy, with respect to the
levels of model confidence

Condition Human Confidence Model Confidence Average Difference 95% CI

Prediction Low Low 5.35% (−2.67, 1.25)
Prediction High Low −2.67% (−8.92, 3.57)
Prediction Low High 22.32% (10.71, 33.03)
Prediction High High 4.46% (−7.14, 14.28)
Local Low Low 8.92% (−1.78, 17.85)
Local High Low 0.89% (−5.35, 6.25)
Local Low High 10.71% (2.67, 17.85)
Local High High −2.67% (−8.03, 2.67)
Combined Low Low 8.92% (0.89, 16.07)
Combined High Low −1.78% (−8.92, 4.46)
Combined Low High 7.14% (−2.67, 16.96)
Combined High High −5.35% (−10.71, 0.89)
Explanations Low Low 6.25% (−2.67, 13.39)
Explanations High Low −2.67% (−5.35, 1.78)
Explanations Low High 8.03% (0.0, 16.07)
Explanations High High −5.35% (−9.82, 0.0)

Table B.5: Difference in participants’ assisted and unassisted accuracy, with respect to the
levels of human and model confidence

B.2 Effects and comparisons for Section 7.3.2.1

Factor df Statistic p-value

Condition 3 5.529 0.137
Model Confidence 1 5.138 0.023
Condition×Model Confidence 3 17.574 0.001
Human Confidence 1 40.17 < 0.001
Condition×Human Confidence 3 5.255 0.154
Model Confidence×Human Confidence 1 1.344 0.246
Condition×Model Confidence×Human Confidence 3 2.703 0.44

Table B.6: ANOVA table for Section 7.3.2.1

Condition Average Difference Statistic p-value

Prediction 0.15% 198 1
Local 9.87% 32 < 0.001
Combined 1.41% 166 1
Explanations −1.65% 175 1

Table B.7: Difference in participants’ reliance between high and low confidence model predic-
tions
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B.3 Effects and comparisons for Section 7.3.2.2

Factor df Statistic p-value

Condition 3 10.944 0.012
Model Confidence 1 23.015 < 0.001
Condition×Model Confidence 3 6.765 0.08
Human Confidence 1 18.114 < 0.001
Condition×Human Confidence 3 2.206 0.531
Model Confidence×Human Confidence 1 3.963 0.047
Condition×Model Confidence×Human Confidence 3 4.788 0.188

Table B.8: ANOVA table for Section 7.3.2.2

Human/Model Confidence Contrast Average Difference Statistic p-value

High/High vs High/Low 6.41% 1555 < 0.001
High/High vs Low/Low 7.84% 1148.5 < 0.001
High/High vs Low/High 4.72% 1755 < 0.001
High/Low vs Low/Low 1.69% 2683 0.975
High/Low vs Low/High −1.42% 2848 1
Low/High vs Low/Low 3.12% 2443 0.218

Table B.9: Difference in participants’ understanding between the various configurations of
human/model confidence

Condition Contrast Average Difference Statistic p-value

Explanations vs Prediction 5.58% −1.13 0.5
Explanations vs Local 7.83% −2.5 0.036
Explanations vs Combined 7.97% −3.01 0.007

Table B.10: Difference in participants’ subjective understanding between Explanations and
the remaining conditions

B.4 Effects and comparisons for Section 7.3.2.3

Factor df Statistic p-value

Condition 3 1.862 0.601
Model Confidence 1 12.942 < 0.001
Condition×Model Confidence 3 14.817 0.002
Human Confidence 1 46.269 < 0.001
Condition×Human Confidence 3 0.661 0.882
Model Confidence×Human Confidence 1 1.358 0.244
Condition×Model Confidence×Human Confidence 3 2.078 0.556

Table B.11: ANOVA table for Section 7.3.2.3
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Condition Average Difference Statistic p-value

Prediction −1.64% 153 1
Local 6.34% 88 0.035
Combined 2.1% 160 1
Explanations 8.37% 77 0.016

Table B.12: Difference in participants’ trust between high and low confidence model predic-
tions

B.5 CIs for Section 7.3.3

Contrast Aspect Average Difference 95% CI

Local vs Prediction Global feature importance −0.143 (−0.35, 0.1)
Combined vs Prediction Global feature importance 0 (−0.28, 0.28)
Explanations vs Prediction Global feature importance 0.964 (0.64, 1.28)
Local vs Prediction Local feature importance 0 (0, 0)
Combined vs Prediction Local feature importance 0 (0, 0)
Explanations vs Prediction Local feature importance 0.643% (0.46, 0.82)
Local vs Prediction Counterfactuals −0.036 (−0.42, 0.35)
Combined vs Prediction Counterfactuals −0.143 (−0.46, 0.17)
Explanations vs Prediction Counterfactuals 0.893 (0.53, 1.25)
Local vs Prediction Model simulation 0.25 (−0.35, 0.85)
Combined vs Prediction Model simulation 0.143 (−0.32, 0.60)
Explanations vs Prediction Model simulation 0.5 (0.07, 0.92)
Local vs Prediction Error detection 0.25 (−0.25, 0.75)
Combined vs Prediction Error detection 0.036 (−0.39, 0.46)
Explanations vs Prediction Error detection −0.036 (−0.5, 0.42)

Table B.13: Difference in participants’ objective model understanding
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Course structure and content

In what follows, we outline the structure of the course in Chapter 8, which assumes a basic

understanding of machine learning and/or data analytics, as well as basic programming skills in

python. When delivering the course, technical details were discussed right after motivating the

need of the corresponding technique. The remaining of this section follows Jane, a putative

data scientist, in her quest to gain a deeper understanding of the decision-making process

underlying a model’s outcomes.

ML preface

The lecture starts with introducing Jane, a data scientist working in bank, that has been tasked

with developing a ML model to automate the process of approving a loan. However, due to the

sensitive nature of this application, she knows that performance alone is not enough, she needs

to be able to gain insights regarding the model’s internal reasoning. After thinking about it, she

realizes she has two main options:

• She can go for a transparent model, resulting in a clear interpretation of the decision

boundary, allowing for immediately inspecting how a decision is made. For example, if

using logistic regression, the notion of defaulting can seen as a weighted sum of features,

so a feature’s coefficient will tell you this feature’s impact on predicting a loan default.

• Otherwise, she can go for an opaque model, which usually achieves better performance

and generalizability than its transparent counterparts. Of course, the downside is that in

this case is it will not be easy to interpret the model’s decisions.
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Figure C.1: Jane’s choices: should she go for a transparent model or an opaque one?

After giving various transparent models (such as linear models, k-NN classifiers, and decision

trees) a try, the resulting accuracy is not satisfactory, compared to the accuracy black-box

models (like random forests, neural networks, and support vector machines) achieve. Among

them, she finds out that random forests have the best performance, so this is what she will use.

The downside is that the resulting model is not immediate to explain anymore (cf. Figure C.2).

Figure C.2: As transparent models become increasingly complex they may lose their explain-
ability features. The primary goal is to maintain a balance between explainability and accuracy.
In cases where this is not possible, opaque models paired with post-hoc XAI approaches pro-

vide an alternative solution.

Throughout this lecture, there should be a running discussion about the technical details that

render a model to be thought of as transparent or black-box, since the goal here is to highlight

which properties make a model more understandable to a human, emphasising intuition. This

serves as a first step towards understanding the necessity of developing XAI techniques in
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order to enhance black-box models with interpretable features, so they resemble their

transparent counterparts.

Open ended questions, such as those below, are presented to students for debate and discussion;

such questions are discussed in each lecture:

• Can you think of a reason for why opaque models, often, have better performance than

transparent models?

• Can you think of cases when opaque models are outperformed by transparent models?

(Hint: consider relational data.)

• Can you argue about why we may want to solve a ML challenge using both transparent

and opaque modelling?

By encouraging students to think about the pros and cons of the two approaches and provide

use cases, they encounter the challenges that arise when deciding whether to employ a

transparent or an opaque model.

XAI preface

In this lecture, Jane takes her first look into the field of XAI, since she needs generate

explanation for her model’s decisions. To this end, her first step is to find out more details

about the role of XAI as a means to identify issues, such as:

• User Acceptance: By providing explanations, users are more likely be satisfied and

accept a ML decision.

• Improving Human Insight: Beyond just using ML to perform automation tasks,

scientists can use ML for research purposes with respect to big data. An intelligible

model can provide information to scientists based on the data being modelled.

• Legal Imperatives: Using ML to assess legal liability is a growing issue, as auditing

situations to determine liability requires clear explanations from a model’s decision. The

European Union’s GDPR legislation decrees citizens’ right to an explanation further

strengthens the need for intelligible models.

Open ended questions to present at the end of the lecture include:

• Can you argue how XAI differs from standard criteria that assess the “goodness” of a

ML model?

• If a medical system offers 98% accuracy over a transparent model that only offers 88%
accuracy, what might you prefer, and why?
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• Would an ensemble of different transparent models be considered transparent?

Again, these questions can motivate discussions about timely topics in the deployment of ML,

as well as help students appreciate the difference between standard performance measures and

explainability.

SHAP

In this lecture, Jane decides to apply her first XAI technique. Looking at the available

open-source implementations, she decides to utilize SHAP, which is arguably one of the most

popular and widely used approaches. She goes on applying SHAP to explain a specific

decision made by the model. At this point, there should be a discussion about the technical

details and theoretical motivation of SHAP. After this is done, returning to the Jane example,

she computes the importance of each feature and shares it with the stakeholders that are

responsible for confirming that a model is ready for deployment. Figure C.3 shows an example

of the outcome that results when using SHAP. The lecture is concluded with a discussion about

the information displayed on this plot, followed by the corresponding open-ended questions.

From a pedagogical perspective, introducing SHAP comes with a number of benefits, such as:

• It exemplifies how well established mathematical ideas can be adjusted to take on new

problems, demonstrating the multidisciplinary nature of ML related research.

• Another benefit is that Shapley values are known to satisfy some important properties,

allowing for a discussion focused on why these properties are important when generating

explanations, or why it is important to have such theoretical guarantees.

• A recent line of research has explored ways to design models that are “immune” to

Shapley values explanations, in the sense that although they might be heavily biased,

SHAP fails to uncover this behaviour (Slack et al., 2020). Raising this issue can motivate

a discussion about possible pitfalls of XAI techniques, as well as the need to examine a

model from various perspectives, instead of utilizing only a single technique.

• The current implementation of the SHAP python module comes with an array of

different visualisations, which the students can inspect in order to strengthen their

understanding of SHAP.

• Different choices in how to define fS(xS) lead to different variants of SHAP (Lundberg

and Lee, 2017), which, again, can motivate a discussion about the impact as well as the

consequences of each choice, emphasizing the need not to treat XAI techniques as black

box solutions, but rather making informed choices based on the application at hand.

Open ended questions include:
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• What are the trade offs and differences between TreeSHAP and KernelSHAP?

• How could a biased trained model “trick” SHAP by hiding its bias, i.e. assign Shapley

values to protected features that do not match their actual importance in the model’s

decision?

• With KernelSHAP, the sampling for missing values assumes feature independence, is

there a way to remedy this issue? Can you think of possible solutions?

These questions aim at motivating a discussion around the assumptions and computational

aspects of evaluating SHAP values. They require students to think about the differences

between sampling from the marginal and the conditional distributions, as well as the

computational complexity they induce. This question has also been considered in recent

academic works (Van den Broeck et al., 2020), so interested students can also look into them,

as well as alternative strategies to compute Shapley values (Castro et al., 2009).

Figure C.3: Jane decides to use SHAP, but cannot resolve all of the stakeholder’s questions. Its
also worth noting that although SHAP is an important method for explaining opaque models,
users should be aware of its limitations, often arising from either the optimization objective or

the underlying approximation.

PDP/ICE

In the previous lecture, Jane generated some importance scores using SHAP, but upon further

inspection the stakeholders came up with a reasonable question: could it be that the model

relies heavily on an applicant’s salary, for example, missing other important factors? How

would the model perform on instances where applicants have a relatively low salary? For

example, assuming that everything else in the current application was held intact, what is the

salary’s threshold that differentiates an approved from a rejected application?
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These questions cannot been addressed using SHAP, since they refer to how the model’s

predictive behaviour would change, where SHAP can only explain the instance at hand, so Jane

realises that she will have to use additional techniques to answer these questions. To this end,

she decides to employ Individual Conditional Expectation (ICE) plots to inspect the model’s

behaviour for a specific instance, where everything except salary is held constant, fixed to their

observed values, while salary is free to attain different values. She could also complement this

technique using Partial Dependence Plots (PDPs) to plot the model’s decision boundary as a

function of the salary, when the rest of the features are averaged out. This plot allows her to

gain some insights about the model’s average behavior, as the salary changes (Figure C.4). At

this point, the technical details of PDP/ICE should be introduced, leading to the open-ended

questions.

Figure C.4: Visualizations can facilitate understanding the model’s reasoning, both on an in-
stance and a global level.

Open ended questions include:

• What are the key limitations of PDP/ICE?

• Roughly sketch a 3-dimensional PDP and ICE plot. Based on that, argue about whether

this makes explaining the model easier or not.

• Instead of averaged out values, how can you show the minimum and maximum for the

features in PDP? Is that useful?

This time the questions are more focused on the limitations of PDP/ICE, as well as possible

ways to manipulate them in order to produce new visualizations. Having a discussion around
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these topics can help students identify alternative visualizations that remedy some of these

issues, for example ALE plots. Furthermore, coming up with ways to modify the existing plots

to convey different kind of information can instil confidence into the students that they have

grasped the important details of PDP/ICE.

Counterfactuals

As before, Jane discusses her new results with the stakeholders, explaining how these plots

provide answers to the questions that were raised, but this time there is a new issue to address.

In the test set there is an application that the model rejects, which comes contrary to what

various experts in the bank think should have happened. This leaves the stakeholders in

question of why the model decides like that and whether a slightly different application would

have been approved by the model. Jane decides to tackle this using counterfactuals. She

applies this approach and she finds out that it was the fact that the applicant had missed one

payment that led to this outcome, and that had he/she missed none the application would had

been accepted (Figure C.5).

Figure C.5: Counterfactuals produce a hypothetical instance, representing a minimal set of
changes of the original one, so the model classifies it in a different category.

At this point, the theoretical details of how counterfactuals are computed should be discussed,

so the students get a sense of potential pitfalls and limitations that may arise when empoying

them in practical applications. Introducing counterfactuals comes with certain benefits, such as:

• They provide an entry point for drawing connections with concepts from causal

inference (CI). CI is expected to be one of the most promising future research directions,

but it is often challenging for students to grasp the underlying concepts. However, the
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notion of counterfactuals used in XAI is a simplified version of the ones in CI, so it is

possible to build on them in order to facilitate the understanding of more advanced ideas.

• In addition, discussing the progression from the initial work in (Wachter et al., 2018) to

more recent advances demonstrates how XAI is a dynamic field, where a technique can

be refined by taking into account new requirements or desiderata. This could help

develop students’ critical thinking, enabling them to identify the reasons behind such

progressions happen.

• Finally, counterfactuals showcase the interplay between XAI and other domains, such as

fairness in AI, or applications, like model debugging, all of which exemplifies the

interdisciplinarity of XAI related research. For example, by probing a model through

generating multiple counterfactuals, we can examine whether changes on sensitive

attributes (such as gender) may lead to the model producing a different outcome. If this

is the case, then this is a clear indication that the model exhibits biased behaviour.

Open ended questions this time include:

• Can you get multiple counterfactuals for a given instance? If yes, how should we

interpret them?

• How can we handle discrete features?

• How would counterfactuals work with image data?

These questions aim at motivating a discussion about the interpretation of counterfactuals, as

well as more conceptual issues. For example, the last question prompts the students to think

whether it makes sense to consider single pixel perturbations within an image as a meaningful

way to uncover information. Informing a person that the model’s decision can be changed if a

small number of pixels take on a different value is probably not helpful, so, instead, it would be

more meaningful to look for counterfactuals with repsect to objects and shapes within an

image, as opposed to pixels.

Anchors

In this lecture, the stakeholders think that the counterfactuals provide some insights that seem

reasonable, but now that they see how influential the number of missed payments is, they think

that it would be nice to be able to extract some kind of information explaining how the model

operates for instances that are similar to the one under consideration, for future reference.

Jane thinks about it and she decides to use anchors in order to achieve just that, generate

easy-to-understand “if-then” rules that approximate the opaque model’s behaviour in a local

area (Figure C.6). The resulting rules would now look something like “if salary is greater than

20k £ and there are no missed payment, then the loan is approved.”
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Figure C.6: Local explanations as rules. High precision means that the rule is robust and that
similar instances will get the same outcome. High coverage means that large number of the

points satisfy the rule’s premises, so the rule “generalizes” better.

The lecture should proceed with a discussion focused on the technical details of anchors, as

well as the interpretation of precision and coverage, leading up to the open-ended questions.

Open ended questions include:

• What would you choose between anchors with high precision and low coverage vs

anchors with low precision and high coverage?

• Can you give examples of rules that might apply to recent data you have encountered?

Can you argue about what precision/coverage you expect them to have?

• Compare anchors to other local explainability techniques, such as SHAP. What are the

advantages and disadvantages compared to it?

The questions above can motivate a discussion about the utility of anchors under different

conditions, as well as a comparison between rules and other forms of explanations, such as

importance scores. This gives students the chance to compare different techniques and then

potentially reach the conclusion that the answer to this depends largely on the audience the

explanation is intended for. This is an important topic that has gained a lot of traction within

the academic community, so students can familiarize themselves with timely topics, as well as

deepen their understanding on communicating explanations (Bhatt et al., 2020b).
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Deletion diagnostics

Following the findings gathered using the techniques in the previous lectures, the stakeholders

are happy with both the model’s performance and the degree of explainability. However, upon

further inspection, they found out that there are some data points in the training dataset that are

too noisy, probably not corresponding to actual data, but rather to instances that were included

in the dateset by accident. They turn to Jane, in order to get some insights about how deleting

these data points from the training dataset would affect the models behaviour. This is exactly

why deletion diagnostics have been developed for, so Jane decides to utilize this approach to

answer this question. As it turns out, deletion diagnostics show that omitting these instances

would not affect the models performance (Figure C.7).

Figure C.7: The quality of a ML model is vastly affected by the quality of the data it is trained
on. Finding influential points that can, for example, alter the decision boundary or encourage
the model to take a certain decision, contributes in having a more complete picture of the

model’s reasoning.

At this point there should be a discussion about traditional approaches to compute quantities

related to deletion diagnostics, as well as contemporary approaches, especially influence

functions, that greatly reduce the resources needed for computing the same quantities for

modern ML models.

Open ended questions include:

• Can you explain how deletion diagnostics can be done efficiently without retraining?

• Do you think deletion diagnostics can be applied to random forests?
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• What do you think is the relative usefulness of deletion diagnostics compared to

influence functions?

This time the questions are mostly on the practical side, aiming at motivating a discussion

around the differences of deletion diagnostics and influence functions. This encourages

students to think about scenarios where, for example, only one of them is applicable, as well as

the advantages and disadvantages of employing each technique.

Figure C.8: Extracting rules from a random forest. Frequency of a rule is defined as the propor-
tion of data instances satisfying the rule condition. The frequency measures the popularity of
the rule. Error is defined as the number of instances that are incorrectly classified by the rule.
So she is able to say that 80% of the customers satisfy the rule “if income >20k and there are

0 missed payments, the application is approved” with 100% accuracy (ie. 0% error).

InTrees

The last XAI technique discussed in the lectures is InTrees. This is motivated by the

stakeholders asking Jane if it is possible to have a set of rules describing the model’s behaviour

on a global scale, so they can inspect it to find out whether the model has picked up any

undesired functioning. At this point, Jane thinks that this is generally a hard task, but since she

uses a Random Forest, she could potentially go for a technique that takes this into account,

utilizing the underlying ensemble of Decision Trees to generate accurate global rules. This is

because since a Decision Tree already consists of a number of rules, it should be possible to

extract and combine the most robust rules in the ensemble. Indeed, this is exactly the

motivation behind InTrees, extracting, ranking, pruning, and summarizing the collection of

rules generated by the ensemble of Decision Trees. (Figure C.8).

After introducing the technical details of this technique, there should be a discussion focused

on the previous observation, and how it perfectly captures the utility of model-specific

techniques; instead of relying on universal approximations, develop alternatives that take
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advantage of the specific characteristics of the model at hand. The majority of model-agnostic

approaches make significant assumptions about the underlying model, which are often violated,

compromising the quality of the resulting explanations. Consequently, one of the main drives

of model-specific explanations is to reduce the number of assumptions, leading to more

accurate results. Introducing InTrees has the benefit of clearly demonstrating the concept in a

simple way, as opposed to more mathematically challenging alternatives, for example neural

network LRP explanations (Bach et al., 2015). This should improve the students’

understanding of why model-specific explanations are important, without obscuring the

message with overly complex technical details.

Open ended questions include:

• What is the tradeoff between frequency and error in practical scenarios? Which should

we aim to optimize?

• Can you argue with examples about what happens if pruning is not applied?

• Can a similar idea be applied to non-tree ensembles (e.g. SVM, neural networks)? If so,

how do you think this would be possible?

This time the questions touch upon both practical issues of deploying InTrees and more

conceptual aspects. In particular, the last question can motivate a discussion around the

features of tree ensembles that make them suitable for developing techniques such as InTrees.

Contrasting them to different models can highlight their dissimilarities, as well as how

properties that can be found in these models may lead to new approaches. For example, while

neural networks do not have internal splitting rules, their layered structure allows for

back-propagating messages that quantify the importance of each feature, such as in LRP (Bach

et al., 2015).

Future research directions

The final lecture of the course is about the future of XAI related research. Its goal is to discuss

limitation of XAI and prepare students for the next generation of techniques, as well as to

provide an overview of which concepts are likely to play a central role in the future. This way

the interested students have the chance to study these concepts in advance, so they have the

prior knowledge required to grasp future techniques. Of course, it is not possible to be

exhaustive and cover all directions, instead we provide an indicative list of current XAI

limitations.
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Figure C.9: Possible avenues for XAI research.

An important point of emphasis for students is to realize that limitations arise both on a

technical and a practical level. Most of the existing techniques, especially model-agnostic ones,

require resorting to approximations. This means that there is always the danger that the

resulting explanations might not be accurate, or even be misleading. Furthermore, existing

approaches are not really able to identify spurious correlations and report them back. Due to

this, it is possible for features to look like they have a strong influence on each other, when, in

reality, they only correlate due to a confounder. A possible resolution to these issues could be

introducing more concepts from causal analysis, which is already a major drive in related areas,

such as fairness in ML. For example, if an explanation was accompanied by a causal model it

would not be difficult to check for any spurious correlations.

On a more practical level, developing XAI pipelines to explain a model is still an open research

question. Currently, there is no consensus regarding neither the characteristics of a good

explanation, nor the way of combining existing techniques in order to adequately explain a

model. While there is some overlap between the various explanation types, for the most part

they appear to be segmented, each one addressing a different question. This hinders the

development of pipelines that aim at automating explanations, or even reaching an agreement

on how a complete explanation should look like. On top of that, it is not clear whether

explanations should be selective (focus on primary causes of the decision making process), or

contrastive (indicate why a model made decision X, and provide justification for deciding X

rather than Y), or both, and how to extract such information from current techniques.

Audiences interacting with XAI may include experts in the field, policy-makers, or end users

with little ML background, so intelligibility should be varied in its explanations depending on

the knowledge level and objectives of the audience. Interdisciplinary research combining
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psychology, sociology, and cognitive sciences can help XAI in delivering appropriate

explanations (Miller, 2019).

Open ended questions include:

• What do you think are the most important limitations of XAI?

• Can you suggest ways to automate XAI?

• Can you suggest ways to address the potential dangers of transparency?

These questions give students the chance to express their views on how to take on these

challenges. 1 This can motivate a discussion around what they think are the most important

topics moving forward, as well as how the future of XAI might look like.

1Articles that address related questions can also be found in the literature, for example (Weller, 2019), which
interested students are pointed to, so they can study a more in-depth analysis.
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Tutorials and Assignments

The course in Chapter 8 includes 4 jupyter notebook (Kluyver et al., 2016) tutorials, covering

SHAP, Counterfactuals, Anchors, and InTrees (PDP/ICE and deletion diagnostics omitted for

simplicity). Each tutorial demonstrates a singular XAI technique, while 2 of them (SHAP and

Counterfactuals) come with additional questions that students must analyse and answer for

assessment. These questions include technical code based implementations of a specific XAI

technique and short answer questions asking for student interpretation of the outputs.

Tutorials

At the beginning of each tutorial, students need to import the relevant python libraries

(pandas, numpy, etc.) as well as the library associated with the corresponding XAI

technique. Following the initial setup, basic ML preprocessing practices such as handling

missing values, visualizations, and feature engineering, are applied.

The next step is Modelling, which includes training the model and assessing its performance.

Each tutorial uses an arbitrary model, the majority of which are black-box models, and

performance is measured by looking at the accuracy, precision, recall, and f1 scores.

The third section of the tutorial is where the corresponding XAI technique is applied. The

SHAP and Counterfactual tutorials end with a series of assignment questions which comprise a

portion of the submission work. Assignment questions include 2-3 short answer questions

regarding the technique and/or potential concerns in applying a given model, followed by 3-4
technical questions where the student will need to apply the XAI technique either on another

model or on an augmented dataset. In the remaining of this section, aspects of the SHAP

tutorial are presented to give a representative example of the structure/content of each tutorial.
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SHAP: The first step is to import the relevant library (!pip install shap) and after

preprocessing the data and training a LGBM model, SHAP is invoked. As LGBM is a tree

ensemble method, the model-specific SHAP implementation is utilized (see figure D.1).

Included throughout the tutorial are summary questions, which are designed as general

discussions points following the introduction of a ML or XAI technique. Questions (1− 2) are

specific to assessing the black-box model, while questions (3− 10) are specific to SHAP and

its implementation. In general, these questions are discussed with students during tutorial

sessions.

Figure D.1: Demonstration of applying SHAP in the corresponding tutorial.

1. How would you interpret 50% precision?

2. Which metric do you think would be of the most interest to a stakeholder developing a

model that aims to predict students’ performance?

• This summary question brings attention to one of the learning aims, that is these

techniques can be used as part of a greater explanatory narrative.

3. Generate SHAP explanation plots for instances in class 0. What is the link between these

graphs and what has been generated for class 1?

4. What are the 5 most important features which are driving this model’s decisions?

• Here students are asked to read the output of one of the SHAP plots.

5. How would you interpret the horizontal axis of the a summary plot? What does a SHAP

value of −1.5 mean?

• Students are asked to discuss the characteristics of a SHAP plot and the

corresponding values. As there is a bit of a learning curve to understanding such

plots, these discussions are important to help students understand the outputs.

6. Can we express SHAP values in terms of probability? Justify your answer.

• A more open-ended question asking students to reflect how SHAP values can be

interpreted.
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7. According to the SHAP plots, which student is most likely to fail?

• Students are asked to analyse the SHAP outputs for a number of local explanations.

8. Are there any features which are important for the model, but could indicate some

fairness issues?

• This question brings the notion of fairness to the students’ attention as well as a

larger discussion of local explanations.

9. Produce a SHAP plot for a student (feel free to select your own observation). How

different is it from the global plot?

• Here students can apply a SHAP plot on an instance to get more familiar with the

technique and its implementation.

10. What does the horizontal spectrum on the top of the SHAP plot show? What do those

values mean?

• Students are asked to discuss the features of a SHAP plot.

At the end of the tutorial, the assignment questions are presented to the students. Overall,

questions can be separated into technical (coding focused) and short answer. For the SHAP

workbook questions 1− 5 are primarily technical, while 6− 7 are short answer ones, requiring

students interpreting some outcomes.

1. Use the public dataset introduced in this tutorial and apply an XGBoost model. Your

outcome variable will be Portuguese language scores pooled into class 0 and 1. Make

predictions on your test set and produce a set of measures that describe the model’s

performance.

• Students are asked to apply a new model, different from the tutorial section of the

workbook, and simply assess its performance.

2. Using SHAP summary plots, what are the 5 most important features in the model?

• Here students are asked to apply SHAP and assess which features are the most

significant to the model.

3. Create a decision plot for all observations and all features in your test set, highlight

misclassified observations and create decision plots for the set of misclassified

observations and for 4 single misclassified observations. Then include force plots for all

observations as well as for the set of misclassified observations.

• This questions requires students to identify incorrect predictions of the model and

then produce a series of SHAP plots for these points. The purpose is to see if any

feature-value pairs have a significant correlation with inaccurate predictions.
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4. Make SHAP dependence plots of the 4 most important features. Use sex as the feature

possibly influencing SHAP outputs. This done by setting the interaction index as

“sex”.

• Students are now asked to use SHAP plots to see if there is any bias in the model.

5. In light of the plots from 3 and 4, discuss whether the interaction effect between sex and

other features can meaningfully impact the predictions of your model.

• The first short answer questions asks students to interpret the outputs from the

previous questions. The aim is for the students to list a series of observations based

on the generated SHAP plots.

6. Discuss how various SHAP-based plots can be used in the process of model validation.

• A more open-ended short answer question, asking students to discuss the various

SHAP graphs and their uses.

7. Write a paragraph for a non-technical audience explaining how your model makes

predictions, based on the SHAP outputs. Ensure the text is clear of jargon!

• Here students are expected to write a longer short-answer response, summarizing

the previous plots and analysing the results. Importantly, students should tailor

their response to a non-expert.
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Questionnaire



  

XAI Course Feedback Form 
1. Which of the following best describes your current status: 

   Research Student (Masters or PhD) 

 

   Non-Academic Worker 

                               Other 

2. How did you hear about the XAI course? 

   UoE Email list 

 

   Word of mouth (friend, family, colleague) 

 

Other 

 

3. Please rate your familiarity with the topic of XAI from a score of 1 (not at all familiar) to 5 

(very familiar) prior to taking this course 

1 2 3 4 5 
 

 
4. Please rate your hands-on experience with ML from a score of 1 (no prior  experience) to 5 

(an expert) prior to taking this course 

1 2 3 4 5 
 

 

 

 

 

5. Please rate the level of theoretical knowledge of ML from a score of 1 (no prior  knowledge) to 5 

(an expert) prior to taking this course 

1 2 3 4 5 
 

 

 

 

 

 

 

6. Please rate how confident do you feel in applying the XAI techniques you learned in  your own models 

from a score 1 (not at all confident) to 5 (very confident) 

1 2 3 4 5 
 

 
7. Please rate how satisfied are you from the diversity of XAI techniques covered in the  course from a score 

1 (not at all satisfied) to 5 (very satisfied) 

1 2 3 4 5 
 

 
8. Please rate how much do you feel your understanding of XAI was benefited by the     course from a score 

1 (not at all) to 5 (very) 

1 2 3 4 5 
 

 
9. Please rate how much do you feel you have comprehended the conceptual distinctions, advantages, 

and disadvantages of the XAI techniques covered in the  course from a score of 1 (not at all) to 5 

(very) 

1 2 3 4 5 
 



  

10. Please rate each statement from a score of one (strongly disagree) to five (strongly         agree) 

 

Strongly 

Disagree (1) Disagree (2) Neutral (3) Agree (4) 

Strongly  

Agree        (5) 
 

The teaching staff 

made the subject                                                                                                            

interesting 

 

The teaching staff  

made an effort to 

understand difficulties                                                                                                           

 students were having 

with their work 

 

The teaching staff gave   

helpful feedback  

 

The materials needed 

to do the course were                                                                                                         

 readily available 

 

The materials were 

relevant to learning in                                                                                                         

 this course 

 

There was a sufficient 

variety of learning                                                                                                         

 materials 

 

It was clear what was 

expected of me in this                                                                                                                                                                                                           
course 

 

I was generally given 

enough time to 

understand the things we 

had to learn 

 

The course was overly 

theoretical and abstract 

 

The course was overly 

practical 

 

Given the nature of the 

assignments, the materials, 

videos and explanations 

provided were sufficient and 

accessible 

 

Overall, I am satisfied               with 

this course 



  

11. Please rate how successful you were in meeting the learning objectives from a score  of 1 (not all 

successful) to 5 (very successful) 

 

 
 

Unsuccessful 

Neither 

successful nor 

unsuccessful 

 

Somewhat 

successful Successful 

 

Very 

Successful 

 

Analyze: Describe the context 

of the machine learning 

application and why 

explainability would help, but 

also scrutinise which kind of 

explainability technique  is 

necessary. 

 

Design: Define the 

implementation 

pipeline for the project: 

provide a means to clean 

the data, install 

and set up one or more                                                                                                         
post hoc explain ability 

techniques through a self-

chosen set of 

programming 

platforms. 

 

Evaluation:Critically  reflect 

on the results      from such 

techniques and suggest how it 

helps the 

problem context. 

 

Apply: Competently apply a 

wide range of techniques and 

tools, also knowing their 

particular features and 

drawbacks. Have the 

foundations to 

understand new and 

upcoming methods and 

techniques. 

 

 

12. What was your favourite aspect of the course? 

 

 

13. Do you have any suggestions for improving the course in future?
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Montavon, Andrea Vedaldi, Lars Kai Hansen, and Klaus-Robert Müller, editors, Explainable

AI: Interpreting, Explaining and Visualizing Deep Learning, volume 11700 of Lecture Notes

in Computer Science, pages 23–40. Springer, 2019. . URL

https://doi.org/10.1007/978-3-030-28954-6_2.

James Wexler, Mahima Pushkarna, Tolga Bolukbasi, Martin Wattenberg, Fernanda Viégas, and

Jimbo Wilson. The what-if tool: Interactive probing of machine learning models. IEEE

transactions on visualization and computer graphics, 26(1):56–65, 2019.

Rebecca Wexler. When a computer program keeps you in jail. New York Times, 2017.

Bryan Wilder, Eric Horvitz, and Ece Kamar. Learning to complement humans. arXiv preprint

arXiv:2005.00582, 2020.

Jacob O Wobbrock and Matthew Kay. Nonparametric statistics in human–computer

interaction. Modern statistical methods for HCI, pages 135–170, 2016.

Robert F Woolson. Wilcoxon signed-rank test. Wiley encyclopedia of clinical trials, pages 1–3,

2007.

https://doi.org/10.1007/978-3-030-28954-6_2


178 BIBLIOGRAPHY

Julia L Wright, Jessie YC Chen, and Shan G Lakhmani. Agent transparency and reliability in

human–robot interaction: the influence on user confidence and perceived reliability. IEEE

Transactions on Human-Machine Systems, 50(3):254–263, 2019.

Mingli Wu, Yafei Huang, and Jianyong Duan. Investigations on classification methods for loan

application based on machine learning. In 2019 International Conference on Machine

Learning and Cybernetics (ICMLC), pages 1–6, 2019. .

Yaqi Xie, Ziwei Xu, Mohan S Kankanhalli, Kuldeep S Meel, and Harold Soh. Embedding

symbolic knowledge into deep networks. Advances in neural information processing

systems, 32, 2019.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic loss

function for deep learning with symbolic knowledge. In Proceedings of the 35th

International Conference on Machine Learning, volume 80, pages 5502–5511,
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