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Abstract 

 

Understanding how genetics contributes to the variation of complex traits and 

diseases is one of the key objectives of current medical studies. To date, a large 

portion of this genetic variation still needs to be identified, especially considering 

the contribution of low-frequency and rare variants. Omics data, such as 

proteomics and metabolomics, are extensively employed in genetic association 

studies as ‘proxies’ for traits or diseases of interest. They are regarded as 

“intermediate” traits: measurable manifestations of more complex phenotypes 

(e.g., cholesterol levels for cardiovascular diseases), often more strongly 

associated with genetic variation and having a clearer functional link than the 

endpoint or disease of interest. Accordingly, the genetics of omics have the 

potential to offer insights into relevant biological mechanisms and pathways and 

point to new drug targets or diagnostic biomarkers. The main goal of this thesis 

is to expand the current knowledge about the genetic architecture of protein 

glycomics and bile acid lipidomics, two under-studied omic traits, but which are 

involved in several common diseases. 

 

First, in Chapter 2 I compared genetic regulation of glycosylation of two different 

proteins, transferrin and immunoglobulin G (IgG). By performing a genome-wide 

association study (GWAS) of ~2000 European samples, I identified 10 loci 

significantly associated with transferrin glycosylation, 9 of which were previously 

not reported as being related with the glycosylation of this protein. Comparing 

these with IgG glycosylation-associated genes, I noted both protein-specific and 

shared associations. These shared associations are likely regulated by different 

causal variants, suggesting that glycosylation of transferrin and IgG is genetically 

regulated by both shared and protein-specific mechanisms. Next, in Chapter 3 I 

investigated the effect of rare (MAF<5%) predicted loss-of-function (pLOF) and 

missense variants on the glycome of transferrin and IgG in ~3000 samples of 

European ancestry. Using multiple gene-based aggregation tests, I identified 16 

significant gene-based associations for transferrin and 32 for IgG glycan traits, 
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located in 6 genes already known to have a biological link to protein glycosylation 

but also in 2 genes which have not been previously reported. 

Finally, in Chapter 4 I applied a similar approach to bile acid lipidomics, exploring 

the genetic contribution of both common and rare variants. Despite more than 

double the sample size (N = ~5000) compared to protein glycomics analysis, I 

identified only 2 loci, near the SLCO1B1 and PRKG1 genes, significantly 

associated with bile acid traits., for which I noted a sex-specific effect. Further, I 

found 3 rare variant gene-based associations, in genes not previously reported 

as associated with bile acid levels. While the biological mechanisms linking these 

genes to levels of bile acid is not immediately clear, there is evidence in the 

literature of their involvement in bile acid synthesis and secretion and in liver 

diseases. 

In summary, in my thesis I describe the genetic architecture of the protein 

glycome and the bile acid lipidome: the former has a higher genetic component, 

while the latter is largely influenced by environmental factors (e.g., sex, diet, gut 

flora). Despite the limited sample size, we were able to describe rare variant 

associations, demonstrating that isolated populations represent a useful strategy 

to increase statistical power. However, additional statistical power is needed to 

identify the possible effect of protein glycome and bile acid lipidome on complex 

disease. A clearer understanding of the genetic architecture of omics traits is 

crucial to develop informed disease screening tests, to improve disease diagnosis 

and prognosis, and finally to design innovative and more customised treatment 

strategies to enhance human health.  
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Lay summary 

 

Understanding how our genes influence our risk of developing certain diseases 

is one of the main goals of current medical and scientific research. Many common 

diseases, such as type 2 diabetes or heart disease, are usually affected by the 

contributions of multiple genetic variants and genes, in conjunction with 

influences from our environment, both physical and social (e.g., pollution, diet, 

socio-economic status, education). Due to this complex interplay, people sharing 

a similar genetic make-up can have different disease outcomes, meanwhile 

genetically different people may still have similar disease manifestations. In this 

intricate scenario, the “signal” coming purely from the genetic contribution to the 

disease can thus get lost and become faint and hard to detect. As a result, the 

influence of genetics on complex diseases is not yet fully worked out. 

 

Collections of specific molecules produced or modified by our body are usually 

called “omics”: for example, the complete set of proteins that can be found in our 

organism is called “proteome”. Omics are quantitative traits positioned in between 

genetic variation and complex diseases. Being under stronger genetic influence, 

it is usually easier to identify which genes or genetic variants influence omics 

rather than complex diseases themselves. These omics can thus be used as a 

“proxy” for the more complex diseases: for example, investigating which genes 

influence the level of cholesterol in blood, rather than trying to understand the 

genetic causes of a broad range of cardiovascular diseases. 

 

The main goal of this thesis is to expand the current knowledge on how our DNA 

influences the entire set of two classes of molecules which are known to be 

involved in several common diseases. To do so, I studied the DNA of people 

coming from “isolated” populations: groups of people that, due to geographical or 

cultural reasons, have had limited immigration from other populations. Due to 

their peculiar history, they often have a unique genetic make-up and I have looked 

at how it impacts the two classes of molecules. The first class are glycans, which 
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are sugar structures that can be found attached to the surface of many proteins 

and are thus collectively called “glycomics”. The second is bile acids, fatty 

molecules produced by the liver and contributing to food digestion and nutrient 

absorption, which are part of “lipidomics”. I studied the DNA of thousands of 

Europeans to understand how it influences, on one hand, the amount of glycans 

that can be found attached to proteins; and on the other hand, the levels of bile 

acids in blood. I analysed not only DNA variation that can be easily found in many 

individuals, but also that present only in a few people among a population (rare 

variation) and is known to have a disruptive effect on the function of the genes. 

 

Overall, I found glycan levels of transferrin and immunoglobulin G (IgG) proteins 

to be largely determined by both common and rarer genetic elements. I identified 

10 DNA regions that varied between individuals with high and low levels of 

glycans attached to transferrin protein, 9 of which were not reported previously. 

Of these regions, some also affect the levels of glycans attached to IgG protein, 

while others are uniquely linked to one of the two proteins. I also identified rare, 

high-impact variants affecting the levels of transferrin and/or IgG glycans in both 

known and not previously reported genes. In contrast, levels of bile acids were 

less influenced by DNA variation and more likely shaped by environmental 

factors, such as sex, diet and composition of gut microbiota. I identified only 2 

DNA regions varying between individuals with high and low levels of bile acids, 

which, interestingly, affect levels of bile acids differently in men and in women. 

Further, I identified rare, high-impact variants affecting the levels of bile acids in 

3 genes, which have already been studied in relation to bile acid synthesis and 

secretion, and to diseases of the liver. 

 

Overall, understanding which regions of DNA make the “omics” profile of each of 

us unique is crucial to develop more efficient disease screening and treatment 

strategies and, ultimately, improve people's health.  
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Chapter 1: Introduction 

 

1.1 Why study the genetic architecture of human traits and diseases? 

Understanding how genetics contributes to variation of phenotypes is one of the 

most essential and yet longest-standing questions in genetics. Extensive 

knowledge of genetics is fundamental for understanding how cells, organisms, 

populations and species live, evolve and die. Further, improving our 

understanding of how genetic variants contribute to and whether they cause 

human diseases is one of the main goals of modern medical genetics. In the 

context of human population studies, the characterisation of all genetic variation 

contributing to the heritable phenotypic variability of a given trait or disease 

describes its “genetic architecture”. In particular, the genetic architecture of a 

complex trait depends both on the number of genetic variants influencing the 

phenotype, but also the magnitude of their effects on the phenotype, their 

frequency in the studied population, and the interactions between each other 

and/or with the environment1. All these elements contribute to the relationship 

between genotype and phenotype and provide a more complete picture of the 

variation of a complex trait or disease compared to the assessment of heritability 

alone. Here, heritability is defined as the estimated proportion of variance in a 

phenotypic trait that is due to additive genetic factors. Complex traits can in fact 

have similar heritability estimates but widely different genetic architecture. Height 

is an example of a highly heritable trait (estimates ranging from ~50% to ~90%)2–

5, with a polygenic architecture - it is influenced by a large number of variants 

scattered across multiple different genes across the genome. By contrast, 

phenylketonuria, a Mendelian autosomal recessive disorder, is considered a 

monogenic disease - mutations at a single locus, the PAH locus, are responsible 

for the impaired activity of the phenylalanine hydroxylase enzyme and the 

accompanying hyperphenylalaninemia phenotypes6. With a global disease 

prevalence of 0.004%7, phenylketonuria mutations are rather rare but some of 

them are responsible, alone, for severe hyperphenylalaninaemia. 
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In summary, genetic architecture can strikingly vary from one complex trait or 

disease to the other. This should be taken into consideration when designing a 

study: traits more similar to height will require large population-based collections 

and genome-wide common variant data, while traits such as phenylketonuria will 

either need sequence data or family-based approaches to detect associated 

variants. Better understanding of the genetic architecture of complex traits and 

diseases is crucial to develop informed disease screening tests, improve disease 

diagnosis and prognosis, and finally design innovative and more customised 

treatment strategies to enhance human health8.  
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1.2 Complex traits result from the contributions and interactions of multiple 

genetic and environmental risk factors 

Complex traits result from the contributions and interactions of multiple genetic 

variants and environmental risk factors. Due to this relationship between multiple 

genetic contributors and environment, different genotypes can lead to the same 

phenotype, and conversely the same genotype can give rise to different 

phenotypic manifestations based on the effects of the environment. Clear 

relationships between genotype and phenotype have thus been uncovered for a 

few complex traits8. Due to the many “actors” involved and their complex 

interactions, genetic architecture, that is the number and attributes of genetic 

variants contributing to a phenotype, varies from trait to trait9. 

 

To exemplify this concept, the number and characteristics of associated genetic 

variants can be compared between diseases or other complex traits. For 

example, type 1 and type 2 diabetes mellitus, despite having a similar phenotype 

(hyperglycaemia), show a clearly different genetic architecture (Figure 1, panel 

a). Type 1 diabetes, an autoimmune disease causing the destruction of insulin-

producing β-cells in the pancreas, is influenced, together with common variants, 

also by a relevant portion of  rare/low-frequency genetic variants10. While the 

former generally, but not always, have a smaller effect on disease susceptibility, 

the latter commonly have a larger impact. On the other hand, the genetic 

architecture of type 2 diabetes has been found to be predominantly represented 

by multiple common genetic variants with small effect on disease susceptibility, 

with just a handful of low-frequency or rare variants being overall reported11–13, 

even considering the findings of recent large-scale, multi-ancestry studies14–17. 

Moving from complex diseases to complex traits of biomedical interest, Vitamin 

D levels, measured as 25-hydroxyvitamin D, have, despite the large sample size 

tested18, been found associated with a limited number of genetic variants, some 

of which, especially the rarer ones, have a large effect size19 (Figure 1, panel b). 

In contrast, low-density lipoprotein (LDL) cholesterol level appears to be 

regulated by a larger number of genetic loci, showing a wide range of effect 
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sizes20,21 (Figure 1, panel b). Despite the fundamentally different genetic 

architectures, the two biochemical traits have a similar heritability (~50%)22,23. 

 

Overall, the genetic architecture of most complex traits is characterised by many 

variants of varying effect size and allele frequency, similar to type 2 diabetes and 

LDL cholesterol (Figure 1). Accordingly, a mixed discovery strategy aimed at 

identifying both common and rare variants, with both small and large effect sizes, 

is likely needed to elucidate the genetic architecture of these traits24. 
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Figure 1. Examples of different genetic architectures of complex diseases 

and biomedical traits. a) Minor allele frequency (MAF) and effect size 

(measured by odds ratio) of genome-wide significant SNPs for type 1 and type 2 

diabetes mellitus. Odds ratios give the odds of individuals having a phenotype 

(outcome) associated with a specific risk allele (exposure), compared with the 

odds of the same phenotype for individuals who do not have that same risk allele. 

Data used to generate this plot panel was taken respectively from Bradfield et al. 

(2011)25(9,934 cases and 16,956 controls), and DIAGRAM (2012)26(34,840 

cases and 114,981 controls). b) MAF and effect size (represented by beta) of 

genome-wide significant SNPs for vitamin D (25-hydroxyvitamin D) and low-

density lipoprotein (LDL) cholesterol. Beta quantifies in standard deviations the 

altering effect a reference allele has on the phenotype of interest. Data used to 

generate this figure was taken respectively from Manousaki et al. (2017)27 and 

Willer et al. (2013)20. The figure was reproduced from Timpson et al. (2018)9 with 

permission. 
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1.3 Analysis strategies to investigate the genetic architecture of complex traits 

 

Different types of genetic architecture should be assessed by tailored study 

designs, as each genetic data type and analysis strategy has its own merits and 

disadvantages, with the only common ground of all being subject to the limitations 

of sample size. Genetic data include genotypes and sequence data - e.g. whole 

exome or genome - and analytical methods include single variant associations 

tests, such as genome-wide association studies (GWAS), or variant aggregating 

tests, such as burden tests. 

 

GWAS tests for a difference in phenotype between individuals with different 

genotypes at a particular genetic variation. The most commonly used genetic 

variants in GWAS are single-nucleotide polymorphisms (SNPs), whose genotype 

is usually obtained using microarrays. Genotypes that have not been assayed 

directly can be statistically estimated using imputation. By comparing the 

haplotypes of individuals subjected to genome-wide genotyping to sequenced 

haplotypes, or haplotypes derived from denser genotyping arrays, observed in a 

reference panel, it is possible to impute missing genetic variation at millions of 

additional genomic sites28. Thanks to imputation, adequately powered GWAS are 

able to identify the genetic contribution of variants as rare as 0.1% MAF in 

samples of European ancestry29. Accordingly, GWAS have successfully identified 

a large number of significantly associated loci across numerous complex traits 

and diseases30. Nevertheless, a large portion of the genetic contribution to 

complex traits still remains unexplained, despite the increase in sample size and 

thus statistical power31. For example, a large GWAS of type 2 diabetes32 identified 

143 risk variants at genome-wide significance, of which only 4 are rare (0.01% 

≤ MAF < 1%), in > 650k individuals of European ancestry (62,892 cases and 

596,424 controls). All tested variants however explain only a small portion of the 

disease variability (SNP-based h2 = ~20%), while the contribution of rare variants 

to type 2 diabetes still need to be fully assessed, even in larger, more recent, and 

multi-ancestry studies14–17. On the other hand, with the steady growth of GWAS 

sample sizes, the newly identified common variants generally have smaller 
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effects on risk. By continuously increasing statistical power, GWAS association 

signals for several complex traits thus tend to spread broadly and very densely 

across the genome, in what has been described as “omnigenic model”, including 

near many genes without an obvious connection to the trait of interest33. Even if 

the genetic make-up of some complex traits and diseases is currently far from 

being exhaustively explained, continuously increasing GWAS power would 

therefore paradoxically pose a challenge in identifying key biological pathways 

and causal mechanisms behind the trait of interest. 

At the current statistical power, GWAS generally fails to detect the contribution 

not only of common variants with very small effects, but also of rare and low-

frequency variants (MAF < 1%), which, by contrast, have been hypothesised to 

have larger effect sizes and, especially in the case of coding variants from exome 

sequencing, to possibly implicate “core” genes having a clear functional link to 

the biology of the trait of interest34. The impact of rare variants on a range of 

human phenotypes is well established, with many Mendelian disorders and rare 

forms of common diseases being attributed to individual, highly penetrant 

alleles35. The role that rare variation plays in common diseases and complex traits 

has started to be investigated fairly recently, allowing the identification of rare 

variants affecting trait variation or disease risk, evaluation of the relative impact 

of individual genes to overall phenotype variability and to further the 

understanding of trait genetic architecture13,36–38. To allow genotyping of rare 

variants, next-generation whole-genome (WGS) and whole-exome sequencing 

(WES) technologies are employed. High-throughput parallel-sequencing 

approaches generate billions of short sequence reads, which are then aligned to 

a reference genome to identify genetic sites where sequenced individuals vary. 

Despite sequencing providing an unprecedented opportunity to investigate the 

roles of low-frequency and rare variants in complex diseases, identification of 

these variants in sequencing-based association studies presents considerable 

challenges. The statistical power of classical single-variant-based association 

tests applied to rare variants is in fact remarkably low - the power decreases as 

the allele frequency decreases - unless analysing very large sample sizes or 
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detecting variants with large effect size31. With the exception of few biobank 

resources, such as UK Biobank39, cohorts with sequencing data available are not 

usually large, due to the high cost of sequencing data40, further decreasing power. 

To address these power issues, statistical methods specifically tailored for rare 

variant association analysis are used. Instead of testing each variant individually, 

as commonly done in GWAS, rare variant methods increase power by 

aggregating association signals across multiple rare variants included in a 

biologically relevant region, such as a gene. For this reason, these methods are 

called gene-based aggregation tests of multiple variants. Further, variants tested 

are chosen not only based on their MAF but usually also on their impact on amino 

acid sequence, predicted functional roles and deleteriousness. Burden tests 

represent one class of aggregation tests. They collapse information for multiple 

genetic variants into a single genetic score and test for association between this 

score, capturing the cumulative effects of rare variants in the region, and the trait 

of interest41,42. Since burden tests assume that rare variants in the region are all 

causal and affect the phenotype in the same direction with similar magnitudes, 

they suffer from a substantial loss of power if these assumptions are violated43,44. 

Variance-Component Tests, such as the sequence kernel association test 

(SKAT)45, represent an alternative to burden tests. Instead of aggregating 

variants, these methods test for association by evaluating the distribution of the 

aggregated score test statistics of individual variants. SKAT performs best when 

the tested genetic region contains both protective and deleterious variants or 

many non-causal variants, and is computationally efficient for performing 

genome-wide sequencing association studies in large samples. Overall, the 

performance of gene-based aggregation tests depends on the underlying genetic 

architecture of the trait analysed. For regions with a large number of causal 

variants with the same direction of association, burden tests are likely to be more 

powerful. Conversely, if both risk-increasing and risk-decreasing variants are 

expected in a region or if the majority of variants are non-causal, variance-

component tests should be the method of choice31. Since trait architecture is 

usually unknown, omnibus tests such as SKAT-O46, ACAT-O47 and SMMAT-E48, 

combining the strength of burden and variance-component tests, have been 
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developed. Finally, aggregation tests of multiple variants have been extended to 

take into account population structure and cryptic relatedness48. 
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1.4 Why use genetically isolated populations? 

Describing the genetic architecture of a trait is inevitably bound to the limits of 

statistical power. Power required for detecting associations between a trait or 

disease and SNP markers is affected by sample size, allele frequency and effect 

size of the causal genetic variants, linkage disequilibrium with genotyped markers 

and inheritance models (e.g., additive, dominant, and multiplicative models)49–51. 

Together with choosing the most suitable type of data and method to better 

describe the genetic architecture of the trait of interest, employing genetically 

isolated populations can as well empower association studies. 

“Population isolates” refer to population groups which derive from a small number 

of founding individuals and have been separated for many generations from 

surrounding populations. The geographical and/or cultural isolation of these 

populations has several genetic consequences, such as higher homogeneity than 

the general population and thus a reduced effective population size (i.e. the 

effective number of individuals required to explain the observed genetic 

variability)52. Due to the combined effect of endogamy, bottlenecks, genetic drift 

and selection, certain alleles at a particular locus can reach fixation or extinction 

in isolated populations, thus reducing the amount of genetic variability53,54. As a 

result, some variants that contribute to complex traits or diseases may be rare in 

the general population but have risen to higher frequency in the isolate. For 

example, it has been reported that about one tenth of whole genome sequencing 

variants from the VIKING cohort, a collection of samples from the isolated 

northern Scottish Shetland islands, are unique to the isolate or are seen at 

frequencies at least ten-fold higher than in cosmopolitan populations55. In 

addition, LD tends to extend over longer distances in isolates than in the general 

population56–58, thus generating longer haplotypes which facilitate disease 

association studies and empower imputation approaches59. Reduced allelic 

variability combined with extended LD, can thus boost statistical power for trait 

association at low-frequency and rare variants in isolated populations, compared 

with non-isolated populations with wider allelic diversity. 
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Not only allele frequency, but, as a consequence, also the prevalence of diseases 

can be influenced by isolation. Each isolate shows a unique profile of rare disease 

alleles, which may be coupled with a higher prevalence of some diseases and 

lower incidence of others60,61. For example, the Pima Indians of Arizona are 

characterised by a very high prevalence of type 2 diabetes (∼20%)62,63, but report 

nearly no case of type 1 diabetes64. Finally, in addition to reduced genetic 

complexity, individuals from isolates tend to be also environmentally 

homogeneous, by sharing common lifestyle and cultural habits and by being 

exposed to similar environmental conditions. This represents another potentially 

advantageous property of population isolates, since the reduced noise coming 

from environmental confounding factors increase statistical power. While 

employing genetic isolated populations offers several advantages as discussed 

earlier, it is important to acknowledge that this approach is not without limitations 

or potential drawbacks. The presence of longer haplotypes, facilitating the 

discovery of genetic associations, is in fact a double-edge sword. On one hand, 

longer LD stretches can in fact increase the power to detect genetic associations, 

but on the other hand, they can reduce the resolution, making it more challenging 

to identify the specific causal variants within a broad association peak65. 

Another factor that must be considered when studying isolated populations is the 

complex population structure, which can cause spurious associations if not 

properly accounted for. A linear mixed model (LMM) is a statistical method 

commonly used in GWAS to account for the correlation structure among 

individuals and to correct for population stratification and familial relatedness. The 

LMM takes into account both fixed effects and random effects. Fixed effects 

represent systematic effects assumed to be constant across the entire 

population, such as the genetic variant tested and other covariates as age, sex, 

or environmental factors. Random effects account instead for the variation in the 

genetic background of individuals and the relatedness among them, capturing the 

effects that are specific to individual subjects and are not constant across the 

population. Including random effects in the LMM in the form of a kinship matrix, 

which captures the correlation between individuals due to shared genetic 
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background, helps to control for population stratification and familial relatedness. 

The LMM thus estimates the effect size of each genetic variant on the phenotype 

of interest while adjusting for both fixed and random effects65. 

In conclusion, genetically isolated populations possess several unique features, 

such as genetic, environmental and phenotypic homogeneity, higher frequency 

of otherwise rare alleles and higher disease prevalence. Despite the smaller 

sample size, these features can enhance the power for locus identification in 

genetic association studies of complex traits, especially for low-frequency and 

rare variants, compared to the general population. On the other hand, the study 

of genetic isolated populations requires statistical methods able to correct for the 

high levels of kinship and GWAS downstream analyses to pint-point the plausible 

association causal variants. 
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1.5 Genetic studies of complex, multifactorial diseases have so far given 

limited answers 

 

As previously mentioned, complex diseases are driven by a combination of 

environmental and genetic factors. Due to their high prevalence, complex 

diseases represent a substantial burden for the public health systems66, which 

will likely further increase due to the ageing population. For nearly two decades 

GWAS has been one of the tools of choice to identify genetic risk loci implicated 

in complex diseases67. Despite the thousands of genomic loci which have been 

significantly associated with human diseases so far, our understanding about the 

biological function of the identified variants is still limited: this is mainly due to the 

fact that GWAS do not necessarily pinpoint causal variants and genes. 

 

First of all, while local correlation of multiple genetic variants due to linkage 

disequilibrium facilitates the identification of an associated locus, it also 

complicates discerning the causal variant(s)68. In addition, most of the association 

signals map to non-coding regions of the genome, for which biological 

interpretation in the context of the analysed disease is intrinsically 

challenging69,70. Also GWAS where too many hits are involved represents a 

challenge from the causal interpretation point of view. In a recent GWAS5 (one of 

the largest studies so far, counting 5.4 million individuals), 12,111 independent 

SNPs were identified as significantly associated with height, accounting for nearly 

all of the common SNP-based heritability in populations of European ancestry. 

These SNPs are clustered within 7,209 non-overlapping loci, covering a large 

portion of the total human genome, about 21%. Accordingly, authors argue that, 

at this point, adding more data will not reveal more (common) variants in 

European populations. While this work obviously marks a milestone in our 

understanding of the contribution of genetics to complex traits, it also exemplifies 

how many complex traits are driven by enormously large numbers of variants of 

small effects and genes not directly related to the phenotype33. 
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Overall, identifying and characterising “core” causal variants and genes, and their 

interacting pathways, in the context of the molecular pathophysiology of diseases 

remains a difficult task. Why do such a high number of genes outside of the 

pathways regarded as key to the trait of interest appear in GWAS, as the sample 

size increases? 

 

In the human body, multiple biochemical networks and physiological mechanisms 

interact with one another in a complex coordinated fashion. These systems, 

which are typically under genetic control, often respond to environmental stimuli 

via feedback mechanisms and are packed with redundancies and compensatory 

mechanisms. These intricate systems can be visualised as hierarchical 

structures71, with genes at the base and clinical endpoints defining the disease at 

the top (Figure 2). There are thus a multitude of contributing factors, positioned 

at different levels of these hierarchies and ultimately influenced by genetics, 

which may affect a certain clinical endpoint interpreted as a symptom or sign of 

disease. Further, different underlying pathologies, and thus different genetic 

causes, can lead to similar phenotypic endpoints. In such hierarchically structured 

physiologic systems, the effect of genes on a disease endpoint is mediated by a 

multitude of intermediary phenotypes. Genetic contribution gradually attenuates, 

becoming thus more difficult to identify and dissect, moving from one hierarchy 

level to a higher one. This description of the genetic contribution to complex, 

multifactorial disease fits well with the previously mentioned omnigenic model33, 

suggesting that all genes expressed in disease-relevant cells are likely 

responsible to affect the functions of core disease-related genes, and ultimately, 

the clinical manifestation of the disease. 
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Figure 2. Schematic diagram of the hierarchical relationship linking genes 

to clinical manifestations of a disease. Effect of genes and their products (P) 

on the disease is mediated by several “intermediary” phenotypes - here indicated 

as low-level (LL), intermediate (INT) and high-level (HL) phenotypes - in a 

hierarchical fashion. The thickness of the arrows denotes the strength of the 

contribution of a lower-level factor to a higher-level factor. Accordingly, the 

genetic contribution grows more faint and subtle moving from the bottom to the 

top of the scheme. Conversely, the effect of environmental conditions on different 

levels of the hierarchy likely diminishes going from the top to the bottom of the 

scheme, as represented by the inverted triangle on the left-hand side of the figure. 

This figure was reproduced from Schork, 199772. (Reprinted with permission of 

the American Thoracic Society. Copyright © 2022 American Thoracic Society. All 

rights reserved. Cite: Schork, N. J/1997/Genetics of complex disease: 

Approaches, problems, and solutions/Am. J. Respir. Care Med./156(4)/S103–

S109. The American Journal of Respiratory and Critical Care Medicine is an 

official journal of the American Thoracic Society). 
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1.6 Employing omics techniques to reveal the molecular underpinnings of 

complex, multifactorial diseases 

 

Due to the hierarchical structure characterising most physiologic systems in our 

bodies, linking-up a complex disease with the “core” genes that ultimately 

influence is a challenging task. Most importantly, associated loci detected will 

generally have very small effect sizes and an unclear biological role in the context 

of the disease of interest. 

 

A strategy that could boost statistical power and facilitate the biological 

interpretation of identified genes is to switch the focus from complex diseases to 

intermediate phenotypes. Intermediate phenotypes are typically more proximally 

related to the genetic substrate than high-level, disease end-points: thanks to 

their position in the hierarchical structure of physiologic systems, they are in fact 

influenced by a smaller number of genes. Intermediate traits can thus be 

employed in genetic association studies as “proxies” for complex diseases of 

interest: they can be considered as measurable manifestations of more complex 

phenotypes, usually more directly linked to the underlying biology and more 

strongly associated with genetic variants than the complex trait or disease itself. 

For example, quantitative traits such as cardiac hypertrophy or cholesterol level 

were used as intermediate phenotypes of complex cardiovascular diseases, such 

as cardiac insufficiency or stroke73. In type 2 diabetes, insulin receptor resistance 

has been employed as intermediate phenotype between several susceptibility 

genes and clinical diabetes74,75.  

 

Intermediate phenotypes and diseases differ not only for their proximity to the 

genetic substrate, but also in the statistical models commonly used for their 

GWAS analysis. Linear regression is used to test associations between genetic 

variants and quantitative traits, such as intermediate phenotypes, which are 

represented by numerical values and can vary along a continuum, typically 

following a normal distribution. Logistic regression is instead suitable for 

examining the relationship between genetic variants and dichotomous outcomes, 
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such as disease status (affected/unaffected). The outcome of linear regression is 

the estimation of regression coefficients quantifying, in both direction and 

magnitude, the change in the mean value of the quantitative trait for each 

additional copy of the effect allele, assuming an additive genetic model. While the 

outcome of logistic regression represents the logarithm of the odds ratios (ORs), 

quantifying the change in odds, or likelihood, to be disease affected for each 

additional copy of the effect allele. Overall, quantitative traits, as intermediate 

phenotypes, tend to provide better statistical power to detect a genetic effect. 

Analysing continuous traits by linear regression gives access to a larger range of 

values, which increases the variability in the data and can thus improve the 

possibility of detecting a genetic effect, if one exists. On the other hand, studying 

disease end-points through case-control association studies and logistic 

regression necessarily use observations on the less informative observed 

disease scale, being these dichotomous rather than continuous76. 

 

Omics, representing a set of specific biological molecules that can be found in 

the human organism (e.g. proteomics, metabolomics, etc.), are an excellent 

example of intermediate phenotypes and are widely used to identify causal genes 

underlying common diseases77–82. Thanks to their intermediate position, 

mediating between the genetic substrate and disease endpoints, omics are more 

amenable to genetic mapping than complex, multifactorial diseases83, and, at the 

same time, are closer to the underlying biological mechanism. 

 

Once genomic variants have been statistically associated with a disease, omics 

technologies can be employed to identify the underlying molecular mechanisms. 

For example, GWAS of type 2 diabetes and BMI successfully identified a robust 

association between FTO gene and obesity84,85. Epigenomics and 

transcriptomics data were then employed to suggest a potential mechanism for 

the genetic association between FTO and obesity. A variant in FTO causes the 

activation of downstream targets IRX3 and IRX5 during early adipocyte 

differentiation, which results in a shift toward obesity phenotypes (e.g. lipid 

storage, increased fat store and body-weight gain)86.  



 

18 

 

Omics data can be also used to categorise patients into subtypes or along a 

spectrum of a diseases, based on their specific molecular signatures, providing 

thus a more nuanced approach to patient stratification, beyond the classic binary 

classification of healthy and diseased. This expanded stratification can be hugely 

beneficial for disease diagnosis and treatment87. Additionally, integrating 

polygenic risk scores (PRS) into omics studies can enhance our understanding 

of disease complexity and individual risk profiles. By capturing the cumulative 

effect of variants across all genome on the trait or disease of interest, PRS can 

aid in the identification of patient subtypes with distinct molecular profiles and 

varying disease susceptibilities88. 

 

Finally, using omics as proxies of complex diseases can also provide statistical 

advantages in genetic association studies. It is known that inconsistency in 

disease diagnosis can introduce phenotyping errors reducing discovery potential 

for genetic associations89–91. And in the cases of complex, multifactorial diseases 

it can be difficult to determine how to measure disease outcomes, often leading 

to heterogenous phenotypes89,92,93. For example, high misdiagnosis rates have 

been estimated for Alzheimer’s disease94, bipolar disorder95, migraine, 

fibromyalgia and psychogenic disorder96, due to overlap of symptoms with other 

diseases and/or mistakes in application of diagnostic criteria. Once again, omics 

can be employed in lieu of complex disease to avoid the reduction in statistical 

power due to heterogeneity in phenotype definition. However, omics are of course 

not immune from measurement errors. They should undergo thorough pre-

processing and quality control procedures in order to provide robust results97. 

 

In conclusion, intermediate phenotypes are quantitative traits positioned in 

between genetic variation and complex diseases. Employing omics as 

intermediate phenotypes have allowed identification of disease-associated 

variants and elucidation of molecular mechanisms behind complex diseases. 

They are successfully used for biomarker/drug discovery, patient stratification 

and disease classification. However, except rare cases, no single omic is able to 
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capture the whole complexity of molecular events leading to human disease. 

Different omics should be thus combined to create a more comprehensive picture 

of the mechanisms underlying human phenotypes and diseases98. 
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1.7 Pleiotropy in complex traits and methods to dissect it 

Given that numerous complex traits and diseases are influenced by a large 

number of genes and genetic variants, the phenomenon of pleiotropy is frequently 

observed. Pleiotropy occurs when a genetic locus has an effect on multiple 

phenotypes, suggesting that these traits may thus share common underlying 

biology. Identifying the pleiotropic effects of specific genes on complex traits and 

diseases may be useful for understanding their underlying causes, and provides 

insights into the biological mechanisms underlying the traits and their potential 

comorbidities99. It is not enough for a genetic locus to be found associated with 

more than one trait for it to be pleiotropic: the underlying cause for the observed 

pleiotropic behaviour is in fact key and many alternative models for an apparent 

“pleiotropic” effect can fit the observed data (Figure 3). Biological pleiotropy refers 

to a genetic locus having a direct biological influence on more than one 

phenotypic trait (Figures 3a, 3b and 3c). It can occur both at the allelic level, 

where a single causal variant contributes to multiple phenotypes (Figure 3a); or 

at the gene level, where various distinct variants in the same region are 

associated with different traits (Figure 3b and 3c). Mediated pleiotropy occurs 

when a variant directly affects one trait, which in turn affects another (Figure 3d), 

so that the genetic association to a phenotype is mediated by another phenotype. 

Finally, spurious pleiotropy includes various sources of bias causing a genetic 

locus to falsely appear as associated with multiple phenotypes (Figures 3e and 

3f). 

 

Since “correlation is not causation”, Mendelian randomisation is the method of 

choice in genetic epidemiology100 to identify cases of mediated pleiotropy, where 

the association between a genetic variant and a phenotype is mediated by 

another trait. Similar to a randomised controlled trial, Mendelian randomisation 

(MR) uses genetic variation, attributed to the individual randomly at conception, 

as a natural experiment to divide the population into subgroups and investigate 

the causal effect of a modifiable risk factor, also referred to as “exposure”, on a 

health outcome in observational data101. MR thus uses genetic variants as 
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proxies to obtain valid causal inferences for the effect of the exposure on the 

outcome. Therefore, choosing valid genetic instrumental variables (IV) is crucial 

for a successful MR study. For a genetic variant to be a valid IV for causal 

inference in an MR test, three key assumptions must be met: (1) the genetic 

variant must be directly associated with the exposure; (2) the genetic variant must 

not be related to confounding factors obscuring the connection between the 

exposure and the outcome; and (3) the genetic variant affects the outcome only 

through the exposure102,103. Colocalisation analysis is another method that has 

been developed to distinguish different pleiotropy scenarios. In particular, it 

allows us to assess whether two traits are regulated by the same underlying 

causal variant or by two distinct causal variants, possibly in linkage disequilibrium, 

in the same gene or region104. As good practice, colocalisation is often used 

jointly with Mendelian randomisation to assess the validity of instrumental 

variables for a given genetic region. For example, a genetic instrument of the 

exposure could be in linkage disequilibrium with another variant that 

independently influences the outcome, either directly or via an alternative 

exposure. This would represent a violation of one of the three assumptions of 

Mendelian randomisation. If there is strong evidence that the association signals 

of exposure and outcome do not colocalise, meaning that the two traits are 

influenced by distinct causal variants, then it is implausible that variants in that 

region represent valid instrumental variables for the exposure105. Other than 

validation for MR, colocalisation methods are widely used to assess whether 

disease endpoints and potential biological mediators might share one or more 

causal variants104,106, in order to favour mechanistic interpretation of disease 

endpoints and associated genetic variants identified by GWAS. 

 

In conclusion, Mendelian Randomisation uses genetic variants associated with 

modifiable traits (exposures) to identify causal associations with diseases 

(outcomes). Colocalisation instead is used to discern between two possible 

underlying situations at a genetic region: distinct causal variants, possibly in 

linkage disequilibrium, or a single shared casual signal influencing two traits. 
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Figure 3. Different types of underlying pleiotropic structures. In each 

scenario, the observed genetic variant (S) is found associated with phenotypes 1 

and 2 (P1 and P2) by GWAS. The observed variant S is in linkage disequilibrium 

(LD) with a causal, generally unobserved, variant (red star) that affects one or 

more phenotypes. In some cases, the causal variant may be identified directly by 

GWAS and the figures can be simplified accordingly. a) Biological pleiotropy at 

the allelic level, with a single causal variant affecting both phenotypes. b) 

Biological pleiotropy with colocalising association: the observed genetic variant is 

in strong LD with two causal variants in the same gene, each one affecting a 

different phenotype. c) Biological pleiotropy at the genic level, with two 

independent causal variants in the same gene affecting different phenotypes. d) 

Mediated pleiotropy, where the causal variant affects P2 through P1: P1 lies on 

the causal pathway to P2, and thus the association occurs between the observed 

variant and both phenotypes. e) Spurious pleiotropy: the causal variant affects 

only P1, but P2 has been linked to P1 due to misclassification or sampling bias, 

causing a spurious association between the observed variant and the P2. f) 

Spurious pleiotropy, where the observed variant is in LD with two causal variants 

in different genes, each one affecting a different phenotype. The figure was 

reproduced from Solovieff et al., 2013 with permission. 
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1.8 Thesis aim: investigating the genetic architecture of understudied 

molecular traits with known involvement in health 

 

The aim of this thesis is to investigate the genetic architecture of two classes of 

omics, known for being involved in a great number of complex diseases, but that 

have thus far received limited attention by the scientific community: protein 

glycomics and bile acid lipidomics. While the biochemical pathways involved in 

the synthesis of these two omic classes are well characterised, there is currently 

an insufficient understanding of their genetic regulation. In this thesis therefore I 

have taken advantage of different genetic data available, namely imputed 

genotypes and whole exome sequencing data, and different statistical methods 

for identification of genetic associations, such as GWAS and gene-based 

aggregation tests, to investigate both common and rare variants contributing to 

variation of protein glycomics and bile acid lipidomics. Especially for rare and low 

frequency variants, I leveraged the increased statistical power provided by 

genetically isolated populations. Using statistical methods designed for 

identifying causation and pleiotropy, such as Mendelian randomisation and 

colocalisation analysis, I then assessed the potential impact of protein glycome- 

and bile acid lipidome-associated variants on health-related traits and diseases, 

to gain insights of the underlying molecular mechanisms. 

 

In the following paragraphs I briefly describe the structure and function of the 

omics studied in this thesis - protein glycome and bile acid lipidome - highlighting 

their known involvement in diseases and what has been reported so far regarding 

their genetic architecture. I then describe in more detail the work that has been 

carried out in each results chapter of this thesis. In brief, the results chapters 

reflect three underlying aims of this thesis - 1) understanding the differential 

regulation of glycosylation of two different proteins, 2) understanding the 

contribution of low frequency and rare variants to protein glycosylation and 3) 

understanding the genetic architecture of bile acid lipidome. In the concluding 

discussion chapters I compare similarities and differences in genetic regulation 

of two different omics intermediate phenotypes. 
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1.8.1 Protein glycome 

 

N-glycosylation is one of the most common protein post-translational 

modifications (PTMs), where carbohydrate structures called glycans are 

covalently attached to an asparagine (Asn or N) residue of a polypeptide 

backbone. Glycosylated proteins, referred to as glycoproteins, are known for 

performing a plethora of different relevant functions in the cell, with mainly 

structural, modulatory and signalling properties107. Protein glycosylation can be 

evaluated at three distinct levels: released glycans, glycopeptides, or whole 

glycoproteins. The most common high-throughput approach involves analysing 

released glycans, which are obtained by cleaving glycan structures from the 

protein carrier. This method allows for detailed structural characterisation of 

glycan species and is largely independent of the original glycoprotein source108. 

Although adaptable to various glycoproteins, current high-throughput analysis of 

glycopeptides is primarily used to examine immunoglobulin glycosylation. Due to 

the increased quantity and complexity of analytes in comparison to released 

glycans, this approach requires analytical techniques with high sensitivity and 

resolution. Finally, analysis of intact glycoprotein is emerging in the field of high-

throughput glycomics, enabling the characterisation of the proteoform distribution 

of an isolated protein; however, it faces limitations in sensitivity and glycoform 

resolution108. Several high-throughput approaches for the analysis of released 

glycans are available, hydrophilic interaction liquid chromatography with 

fluorescence detection using ultrahigh-performance liquid chromatography 

(HILIC-UHPLC-FLD) being the most used109. Accordingly, prior to glycome 

measurement, the glycoprotein of interest must be purified and attached glycans 

must be cleaved of their protein carrier. Large-scale studies of individual 

glycoprotein glycomes still face challenges due to the absence for several 

glycoproteins of affordable, fast, and efficient purification methods in a large 

samples110. HILIC-UHPLC-FLD is then used to separates glycans based on their 

size, structure and charge. This technology allows for complete characterisation 

of complex glycan mixtures in a relatively short time and is the method of choice 
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for routine analysis of protein glycosylation with previously characterised glycan 

structures110. Integration of the resulting chromatogram peaks can be performed 

manually, which represent one of the most time-consuming tasks in analysis of 

large number of individuals, or using an automatic semi-supervised method111. 

For annotation of novel glycan structures, UHPLC may be coupled with other 

methods that can provide further structural information, especially mass 

spectrometry (MS) with Liquid Chromatography with tandem mass spectrometry 

(LC-MS) techniques. This synergetic approach can be used to annotate glycan 

structures in samples that are representative of the larger sample set110. 

 

Thanks to improvements of available high-throughput analytical methods, 

glycomics is an emerging omics field, studying the whole collection of glycans in 

biological systems112. N-glycans are built from only ten monosaccharides (i.e. 

fucose, galactose, glucose, N-acetylgalactosamine, N-acetylglucosamine, 

glucuronic acid, iduronic acid, mannose, sialic acid and xylose) but are 

characterised by vast structural diversity and high complexity. N-glycan structures 

result in fact from a sophisticated interplay of glycosyltransferases, glycosidases, 

transporters, transcription factors and other proteins113, with a number of 

epigenetic and environmental factors contributing to N-glycome composition as 

well114,115. Accordingly, the glycome is expected to be several orders of 

magnitude more complex than the proteome itself116. Protein N-glycosylation is 

involved in a multitude of biological processes, including receptor interaction, 

immune response, protein secretion and transport117.,Changes in N-glycosylation 

patterns have been associated with the ageing process118 and a wide range of 

diseases, including Parkinson’s disease119, low back pain120, rheumatoid 

arthritis121, ulcerative colitis122, Crohn’s disease122, type 2 diabetes123 and 

cancer124–126. In addition, N-glycans are considered as potential therapeutic 

targets127 and biological markers for ageing118 and disease prognosis123,128–130. 

 

Nevertheless, genetic regulation of N-glycosylation is not yet fully understood. 

Previous GWAS have focused either on the N-glycome of total blood plasma 

proteins or on glycosylation of one specific protein - immunoglobulin G (IgG). 
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Thus far, sixteen genomic regions have been associated with N-glycosylation of 

total blood plasma proteins131–134, simultaneously assaying glycosylation of all 

proteins in plasma, without the possibility to distinguish protein-specific 

glycosylation. On the other hand, protein-specific GWAS of IgG N-glycans 

identified 27 associated genomic regions135–138. IgG antibodies are one of the 

most abundant proteins in human serum, and their alternative N-glycosylation is 

suggested to trigger different immune responses and thus impacts the action of 

the immune system139. Overall, the majority of loci identified as associated with 

N-glycosylation of proteins mapped onto genes encoding glycosyltransferases, 

enzymes directly involved in the biochemical pathway of N-glycosylation, or, in 

the specific case of IgG, involved in differentiation and maturation of B cells (since 

IgG is produced by fully differentiated B-lymphocytes called plasma cells). Protein 

N-glycosylation-associated loci were found also around genes associated with 

transcription factor activity, corroborating the idea that protein N-glycosylation is 

a complex process, genetically regulated by an intricate interplay of multiple 

genes133,135. 

 

In Chapter 2, I investigate the genetic regulation of glycosylation of transferrin 

protein. This represents the first protein-specific study for a protein other than 

IgG. Further, this allows for the first time to compare the genetic regulation of 

glycosylation of two different proteins - transferrin and IgG - potentially giving 

insight also on their protein-specific contribution to glycosylation of total plasma 

protein. After expanding the current knowledge of genetic regulation of protein 

glycosylation by including a new protein, in Chapter 3 I extend instead the number 

of variants assayed for association with protein glycosylation, by focusing on rare 

and low frequency pLOF and missense variants in exome sequencing. Further, I 

investigate the potential impact of rare variants associated with glycosylation on 

health-related traits. 

 

In addition to the directly measured glycan structures, defined by the number of 

their glycan peak (GP for IgG, TfGP for transferrin), which were analysed in both 

Chapter 2 and 3, in Chapter 3 I assayed the genetic association also of several 



 

27 

glycan derived traits. These derived traits represent common biologically 

meaningful features shared among several measured glycans or the overall 

presence of a certain sugar structure on the totality of glycan traits measured (e.g. 

percentage of fucosylated glycans, triantennary glycans, monogalactosylated 

glycans, etc.). The structural characterization of actually measured transferrin 

(TfGP) and IgG (GP) glycan traits is available respectively at Supplementary 

Table 2 of Trbojević-Akmačić et al.140 and Supplementary Table 1 of Huffman et 

al.141 The description and computing formulas of derived transferrin glycan traits 

representing the relative abundance of a certain sugar structure are available at 

Supplementary Table 15 of the Chapter 3 of this thesis. The description and 

computing formulas of derived IgG glycan traits capturing shared biological 

features are available at Supplementary Table 1 of Huffman et al.141, while those 

representing the relative abundance of a certain sugar structure are available at 

Supplementary Table 16 of the Chapter 3 of this thesis. Details about the number 

of transferrin and IgG glycan traits analysed, the different cohorts used, and their 

sample size are also visually summarised in Supplementary Figure 1. Finally, to 

point out that certain glycan structures tend to co-occur or exhibit consistent 

patterns, I show in Supplementary Figure 2 and Supplementary Figure 3 the inter-

trait correlation structure of transferrin and IgG glycans respectively in VIKING 

cohort, as example.  
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1.8.2 Bile acid lipidome 

Bile acids (BA), together with cholesterol, phospholipids and bilirubin, comprise 

the principal constituents of bile. They are synthesised from cholesterol in the 

liver and subsequently stored in the gallbladder. After ingestion of food, bile flows 

into the duodenum, where, thanks to BA, it contributes to the digestion of lipid-

soluble nutrients142. BA are then absorbed from the terminal ileum and 

transported back to the liver via the portal vein - a process termed “enterohepatic 

circulation”143. Lipid molecules, including bile acids, can be quantified using two 

primary methods: direct infusion mass spectrometry analysis, also known as 

shotgun lipidomics, and liquid chromatography-mass spectrometry (LC-MS) 

analysis. Infusion-based approaches are advantageous for their simplicity and 

straightforward lipid quantification but have limitations in terms of sensitivity and 

the ability to distinguish between isomeric lipid species144. LC–MS is a powerful 

analytical technique used for separation, identification, and quantification of both 

unknown and known compounds as well as to elucidate the structure and 

chemical properties of different molecules. LC–MS typically provides a higher 

sensitivity than shotgun, allowing for the detection and quantification of a wide 

range of lipid species, including the low abundant ones145. Additional benefits of 

LC–MS include confident identification of lipid structures, enabling identification 

and differentiation of lipid isomers146. 

BA biosynthesis is the primary pathway for cholesterol catabolism, which occurs 

via two different pathways: the classical (or neutral) pathway and the alternative 

(or acidic) pathway, both involving several members of the cytochrome P450 

enzyme superfamily (i.e. CYP7A1, CYP8B1, CYP7B1 and CYP27A1)147. Primary 

BA cholate (CA) and chenodeoxycholate (CDCA) represent the two end products 

of these pathways. In the intestinal lumen, especially in the colon, gut flora 

deconjugates, oxidates and dehydroxylates the primary BA produced in the liver 

to generate secondary BA, with deoxycholate (DCA), a CA derivative, and 

lithocholate (LCA), a CDCA derivative, being the most prevalent143. Once 

transported back to the liver, these secondary BA can be further processed to 
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form tertiary BA (e.g. tauroursodeoxycholate and ursodeoxycholate)148, which 

represent only marginal BA species under normal conditions149. Overall, these 

syntheses and metabolic pathways allow the generation of several BA species, 

which ensures the perfect solubilisation and absorption of a broad range of 

lipophilic molecules in the intestine, but also perform a multitude of signalling 

activities in the body. 

BA have in fact emerged as versatile hormone-like signalling molecules endowed 

with systemic endocrine functions149, serving as ligands for G protein-coupled 

receptors, such as Takeda G-protein-coupled receptor 5 (TGR5)150, and for 

nuclear hormone receptors, such as farnesoid X receptor (FXR)151. Through 

activation of these signalling pathways, BA have been shown to regulate not only 

their own synthesis and enterohepatic recirculation, but also triglyceride, 

cholesterol, energy and glucose homeostasis149. Accordingly, dysregulation of 

bile acid homeostasis has been linked to cholestatic liver disorders, cholesterol 

gallstone disease and other gallbladder-related conditions147, inflammatory bowel 

disease152, type 2 diabetes153, obesity154 and non-alcoholic fatty liver disease155, 

but also to carcinogenesis in several tissues or organs156. 

Despite the recognised role of BA in human health and the detailed 

characterisation of BA’s biochemical pathways, their genetic regulation is poorly 

understood. While several studies investigating the genetic contribution to the 

variability of blood metabolites77,157–163 have been published so far, research 

focusing specifically on BA in a large sample from the general population is still 

lacking. 

In Chapter 4, similarly to the previous chapters, I investigate the contribution of 

both common and low-frequency/rare variants to variability of bile acids, also 

reporting sex-specific associations. Further, I explore whether complex traits or 

diseases influence bile acids variability.
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Chapter 2: Genetic regulation of transferrin and IgG glycome 

2.1 Introduction 

 

Glycosylation is a common post-translational modification that involves the 

attachment of sugar structures, called glycans, to the surface of human proteins. 

While the genetics of proteins themselves have been extensively studied, the 

discovery of genetic factors that contribute to the glycome - the set of glycans 

present on a protein - is still lagging behind. Thus far, three GWASs have been 

performed on the N-glycome of total human plasma proteins, which involved 

around 3500 individuals in the discovery set and have collectively identified 16 

distinct genetic regions131–133. Out of these, 15 genetic regions have been 

confirmed in independent sample sets through validation within the original 

studies or a subsequent investigation by Sharapov et al.134. While these studies 

simultaneously assayed glycosylation of all proteins in plasma, protein-specific 

glycosylation GWAS have been so far limited to IgG protein. These publications 

have discovered 33 significantly associated genetic regions and replicated 29 of 

them in separate sample sets. The first GWAS found genetic variations near four 

glycosyltransferase genes and five other regions not previously linked to protein 

glycosylation132. Shen et al.164 expanded this list by five regions, including one 

containing a glycosyltransferase gene. Wahl et al.138 replicated several 

associations previously discovered and identified a novel one, unrelated to 

glycosyltransferase genes. Klarić et al.135 drastically increased the sample size 

of the previous studies from around 2000 participants in the discovery stage to 

over 8000 participants, identifying 27 genetic regions associated with IgG 

glycosylation, 22 of which were consistently replicated in independent datasets. 

 

In this chapter, I investigate genes and genetic variants influencing glycan traits 

of transferrin. Transferrin is a protein produced in the liver and released into the 

bloodstream, where it binds to iron and transports it to tissues and cells that 

require it. It plays an important role in iron metabolism, by maintaining adequate 

iron levels in the body and preventing iron overload. Human plasma transferrin 
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N-glycome was analysed at the level of released glycans by HILIC-UHPLC-FLD 

and separated into 35 glycan peaks, whose structural characterization is reported 

by Trbojević-Akmačić et al.140 Since the intensity of chromatogram peaks 

obtained from glycan quantification can vary largely, raw data have undergone 

total area normalisation to transform measurements to comparable scales. Total 

area normalisation was performed by dividing the area of each of the 35 

chromatographic peaks by the total area of the corresponding chromatogram. 

Resulting measures are therefore relative abundances of each glycan structure 

in the overall transferrin glycosylation profile. Normalised glycan traits were then 

log transformed to reduce the skewness of their distribution. Finally, batch effect 

creating sub-groups of measurements due to factors unrelated to biological 

variation was removed by using empirical bayes batch correction. The efficiency 

of this procedure in removing experimental noise was assessed by comparing, in 

raw and processed data, the variation of standard samples (6 pooled samples 

previously quantified, thus not affected by experimental errors from the current 

study) and the correlation of duplicated samples (9 samples from the current 

study which were analysed twice), present on each of the 12 96-well plates. As 

expected, correlation of duplicated samples overall increased thanks to the 

applied procedure (Supplementary Figure 4), while also batch effect across 

different plates was reduced (Supplementary Figure 5). 

 

This study represents the first exploration of the genetic factors influencing the 

glycome of transferrin. Until now, it has not been possible to study protein-specific 

pathways regulating glycosylation for proteins other than IgG, due to technical 

challenges that have hindered the quantification of glycosylation of individual 

glycoproteins in large samples. Here, I report genetic variants associated with 

variation of 35 transferrin glycan traits (TfGP), and also compare these variants 

with those associated with 24 glycan traits (GP) of the IgG protein, whose 

structures have been described by Huffman et al.141 For loci associated with the 

glycosylation of both transferrin and IgG, I assess whether the underlying causal 

variants are specific to each protein or rather shared between the two proteins. 

To the best of my knowledge, this is the first study investigating whether the same 
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post-translational modification of two proteins is regulated by the same genes and 

whether it is driven by the same underlying causal variants.  
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2.2 Published article 

 

This work was published as an article in the journal Nature Communications on 

24 March 2022 after completing formal peer review. A copy of the Author 

Accepted Manuscript prior to proofing is included below, provided under the terms 

of the Creative Commons Attribution License CC BY 4.0. The formatted article, 

detailed methods, and supplementary information are available at: 

https://doi.org/10.1038/s41467-022-29189-5. 

In this study, I conducted single-cohort GWAS and performed meta-analysis of 

the transferrin and IgG glycome, starting from clean genotypic and phenotypic 

data. I also carried out down-stream analyses, with the exception of SMR-HEIDI 

analysis of the transferrin glycome and gene expression/complex traits, which 

was conducted by Yakov A. Tsepilov. I used my own scripts to perform pairwise 

conditional and colocalisation analysis of the transferrin and IgG glycome. Sodbo 

Z. Sharapov obtained gene expression data for selected genes and created 

Figure 5. Lucija Klarić helped formalise the likelihood ratio test for evaluating the 

impact of transferrin protein levels on transferrin glycome associations. I wrote 

the initial draft of the manuscript with the assistance of Irena Trbojević-Akmačić 

(for methods on glycan measurements and more technical description of glycan 

structures and binding sites in the introduction), Yakov A. Tsepilov (for SMR-

HEIDI methods) and Sodbo Z. Sharapov (for technical details regarding data 

retrieval of gene expression data toward Figure 5). The full list of author 

contributions can be found in the “Author contributions” section of this article.  

https://doi.org/10.1038/s41467-022-29189-5
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Abstract 

Post-translational modifications diversify protein functions and dynamically 

coordinate their signalling networks, influencing most aspects of cell physiology. 

Nevertheless, their genetic regulation or influence on complex traits is not fully 

understood. Here, we compare the genetic regulation of the same PTM of two 

proteins – glycosylation of transferrin and immunoglobulin G (IgG). By performing 

genome-wide association analysis of transferrin glycosylation, we identify 10 

significantly associated loci, 9 of which were not reported previously. Comparing 

these with IgG glycosylation-associated genes, we note protein-specific 

associations with genes encoding glycosylation enzymes (transferrin - MGAT5, 

ST3GAL4, B3GAT1; IgG - MGAT3, ST6GAL1), as well as shared associations 

(FUT6, FUT8). Colocalisation analyses of the latter suggest that different causal 

variants in the FUT genes regulate fucosylation of the two proteins. Glycosylation 

of these proteins is thus genetically regulated by both shared and protein-specific 

mechanisms.  
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Introduction 

Post-translational modifications (PTMs) are essential mechanisms used by cells 

to diversify and extend their protein functions beyond what is dictated by protein-

coding sequences in the genome. These chemical reactions range from the 

addition of small moieties, such as phosphate (phosphorylation), complex 

biomolecules, as in glycosylation, to proteolytic cleavage165. PTMs alter the 

structure and properties of proteins and are thus involved in the dynamic 

regulation of most cellular events. It is common for a PTM enzyme to target 

multiple substrates or interact with multiple sites. For example, only 18 histone 

deacetylases target more than 3600 acetylation sites on 1750 proteins166. 

Environmental or pathological conditions can lead to dysregulation of PTM 

activities, which has been related to aging167 and several diseases, including 

cancer, diabetes, and neurodegeneration168–170. Despite their importance, little is 

known about genetic regulation of post-translational modifications. 

 

N-glycosylation is one of the most common protein PTMs, where carbohydrate 

structures called glycans are covalently attached to an asparagine (Asn) residue 

of a polypeptide backbone. N-glycans are characterised by vast structural 

diversity and high complexity. While polypeptides are encoded by a single gene, 

N-glycan structures result from a sophisticated interplay of glycosyltransferases, 

glycosidases, transporters, transcription factors, and other proteins113. Protein N-

glycosylation is involved in a multitude of biological processes117. Accordingly, 

changes in N-glycosylation patterns have been associated with aging118 and a 

wide range of diseases, including Parkinson’s disease119, lower back pain120, 

rheumatoid arthritis121, ulcerative colitis122, Crohn’s disease122, type 2 diabetes123 

and cancer124–126. However, for most of these conditions it still remains to be 

clarified whether the disease causes changes in N-glycosylation or vice-versa. In 

addition, N-glycans are considered as potential therapeutic targets127 and 

prognostic biological markers123,128–130. 
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As with other PTMs, genetic regulation of N-glycosylation is not yet fully 

understood. Previous genome-wide association studies (GWAS) have so far 

focused either on the N-glycome of total blood plasma proteins as a whole or on 

glycosylation of one specific protein - immunoglobulin G (IgG)131–138. IgG 

antibodies are one of the most abundant proteins in human serum, and their 

alternative N-glycosylation is suggested to trigger different immune response and 

thus impacts the action of the immune system139. N-glycan structures are 

predominantly of the biantennary complex type and vary due to additions of core 

fucose, galactose, sialic acid, and bisecting N-acetylglucosamine (GlcNAc), with 

disialylated digalactosylated biantennary glycan with core fucose and bisecting 

GlcNAc being the most complex N-glycan structure on IgG171. While a clear 

overlap in genetic control between total plasma proteins and IgG N-glycosylation 

was highlighted by previous studies133, it was not possible, until recently, to 

identify protein-specific N-glycosylation pathways for glycoproteins other than 

IgG due to technical challenges of their isolation in large cohorts. 

 

Here we investigate whether the same PTM of two proteins is regulated by the 

same genes and whether they are driven by the same causal genetic variants. 

We report genes associated with the regulation of transferrin N-glycosylation and 

compare these with the genetic regulation of glycosylation of a different protein 

(IgG). Transferrins are blood plasma glycoproteins regulating the level of iron in 

an organism. Iron plays a central role in many essential biochemical processes 

of human physiology: the cells’ need for iron in the face of potential danger as an 

oxidant has given rise to a complex system that tightly regulates iron levels, tissue 

distribution, and bioavailability172. Human transferrin has two N-glycosylation 

sites – at the N432 and N630 residues, with biantennary disialylated 

digalactosylated glycan structure without fucose being the most abundant glycan 

attached173,174. We performed genome-wide association meta-analysis 

(GWAMA) of 35 transferrin N-glycan traits (N=1890) and compared it with 

GWAMA of 24 IgG N-glycan traits (N=2020) in European-descent cohorts, 

discovering both protein-specific and shared associations. For loci associated 

with the N-glycosylation PTM of both transferrin and IgG, we used colocalisation 
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analysis to assess whether the underlying causal variants are protein-specific or 

rather shared between these proteins. We then suggested a molecular 

mechanism by which these independent causal variants could regulate the 

expression of glycosylation related genes in different tissues. 

 

 

Results 

Loci associated with transferrin N-glycosylation 

To investigate the genetic control of transferrin N-glycosylation and assess 

whether the same genes and underlying causal variants are associated with N-

glycosylation of both transferrin and IgG, we first performed GWAS of 

glycosylation for each protein (i.e. transferrin and IgG). A more extensive GWAS 

on the genetic regulation of IgG glycosylation has already been published135, so 

we focus here on glycosylation of transferrin. We performed GWAS of 35 ultra-

high-performance liquid chromatography (UHPLC)-measured transferrin N-

glycan traits and Haplotype Reference Consortium (HRC) r1.128-imputed genetic 

data in two cohorts of European descent, CROATIA-Korcula (N=948) and 

VIKING (N=952). Overall, we identified 8 loci genome-wide significantly 

associated (p-value ≤ 1.43×10-9) with transferrin N-glycans in the CROATIA-

Korcula cohort (Supplementary Figure 1, Supplementary Data 1), 6 of which 

replicate in the VIKING cohort (p-value ≤ 0.00625) (Supplementary Figure 2, 

Supplementary Data 2). Replicated loci contained genes encoding 

glycosyltransferases, enzymes directly involved in the biochemical pathway of N-

glycosylation (MGAT5, ST3GAL4, B3GAT1, FUT8 and FUT6) and the transferrin 

(TF) gene. Cohort-specific heritability estimates for each transferrin glycan trait 

(Supplementary Data 3) ranged from 0% (VIKING TfGP2 and TfGP12) to 67% 

(CROATIA-Korcula TfGP23) and were high overall (>40% for the majority of the 

traits), similar to heritabilities previously reported for the total plasma glycome175 

as well as immunoglobulin G glycosylation176. To further increase the power of 
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our analyses, we performed fixed-effect inverse-variance meta-analysis of the 

discovery and replication cohort, discovering 2 additional loci (FOXI1 and 

HNF1A) (Table 1). To identify secondary association signals at each genomic 

region, we performed approximate conditional analysis on transferrin N-glycan 

traits using GCTA-COJO software177. Overall, we identified 15 independently 

contributing variants, located in 10 genomic loci significantly associated (p-value 

≤ 1.43×10-9, Bonferroni adjusted for the number of glycan traits) with at least one 

of the 35 transferrin N-glycan traits (Table 1, Figure 1, complete list of all 

associations in Supplementary Data 4). Multiple SNPs independently contributed 

to transferrin N-glycan variation in 4 out of 10 loci, all mapping to 

glycosyltransferase genes. The highest number of independently associated 

SNPs (3) was observed for the glucuronyltransferase locus, B3GAT1, while two 

SNPs contributed to transferrin N-glycan levels in the 

acetylglucosaminyltransferase locus (MGAT5), the fucosyltransferase locus 

(FUT8) and the sialyltransferase locus (ST3GAL4) (Supplementary Data 5). 

 

To assess the potential impact of transferrin protein levels on the reported 

transferrin glycome associations, we utilised the transferrin cis-protein 

quantitative trait locus (pQTL), rs8177240178. This variant is associated with 

transferrin protein abundance and so can act as a proxy for protein levels and is 

not in linkage disequilibrium with glycan QTL (glyQTL) rs6785596, the sentinel 

glycosylation-associated SNP in TF (LD r2= 0.02). Two glycans, TfGP3 and 

TfGP9, were significantly associated with transferrin cis-pQTL. However, both 

cis-pQTL and the glyQTL (rs6785596) contribute to the variation of TfGP3 levels, 

while only the cis-pQTL contributes to levels of TfGP9. Overall, this suggests that 

glycan associations with the TF gene are only completely accounted for by the 

transferrin protein levels in the case of TfGP9 (Supplementary Data 6). Further 

details about the potential effects of transferrin gene expression and protein 

levels can be found in Supplementary Results and Supplementary Data 19. 
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Figure 1. Transferrin and IgG N-glycome GWAMA summary Miami plot. Miami plot 

pooling together meta-analysis results obtained across all 35 transferrin glycan traits at 

the top in orange, and across all 24 IgG glycan traits at the bottom in blue. The pooling 

was performed by selecting the lowest p-value (y-axis) from all 35 (TF) or 24 (IgG) glycan 

traits for every genomic position (x axis). For transferrin N-glycome associations, “*” 

marks loci previously reported in total blood plasma N-glycome GWAS131–134, while “~” 

marks loci previously reported in IgG N-glycome GWAS135–138. Bonferroni-corrected 

genome-wide significance threshold for the transferrin N-glycome meta-analysis 

(horizontal red line in the top part of the plot) corresponds to 1.43×10-9, while Bonferroni-

corrected genome-wide significance threshold for the IgG N-glycome meta-analysis 

(horizontal red line in the bottom part of the plot) corresponds to 2.08×10-9. For simplicity, 

SNPs with p-value > 1×10−3 are not plotted. Gene or sets of genes annotated for 

transferrin N-glycome loci have been prioritised in this study; gene or sets of genes 

annotated for IgG N-glycome loci are those prioritised by Klarić et al.135. P-values are 

derived from two-sided Wald test with one degree of freedom. 
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Table 1. Loci genome-wide significantly associated with at least one of the 35 transferrin N-glycan traits in GWAMA. 

Glycosyltransferase loci are reported at the top of the table, while other loci are listed at the bottom of the table. Each locus is represented 

by the SNP with the strongest association in the region, according to the p-value rejecting the null hypothesis of no association with at least 

one of 35 transferrin glycan traits. An association was considered significant if the p-value was lower than or equal to 1.43×10-9, the genome-

wide significance threshold Bonferroni-corrected for the number of glycan traits. 

 

Locus Gene SNP EA OA EAF 
No. of 

SNPs 

Lead 

glycan 

Phe. 

var. 

No. of 

glycans 
Beta SE P 

2:134839539-

135024803 
MGAT5 rs2442046 C G 0.747 2 TfGP23 0.071 4 -0.44 0.037 1.38x10-32 

11:126052988-

126312874 
ST3GAL4 rs4055121 T C 0.12 2 TfGP17 0.131 9 0.782 0.046 9.67x10-64 

11:133906302-

134613230 
B3GAT1 rs74622686 A G 0.905 3 TfGP21 0.144 3 0.931 0.053 8.53x10-70 

14:65751627-

66281192 
FUT8 rs2411815 A T 0.306 2 TfGP20 0.092 3 -0.469 0.035 2.69x10-41 

19:5813766-

5841356 
FUT6 rs12019136 A G 0.039 1 TfGP32 0.079 5 -1.016 0.083 2.00x10-34 
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3:133433470-

133499063 
TF rs6785596 A T 0.047 1 TfGP3 0.065 3 0.787 0.075 1.57x10-25 

5:169535155-

169535155 
FOXI1 rs115399307 T C 0.018 1 TfGP23 0.031 1 0.941 0.152 5.18x10-10 

8:15831868-

16623073 
MSR1 rs41341748 A G 0.027 1 TfGP35 0.031 1 0.778 0.109 1.16x10-12 

11:114381448-

114384985 

NXPE1/ 

NXPE4 
rs1671819 A G 0.454 1 TfGP14 0.02 1 -0.2 0.032 3.32x10-10 

12:121420263-

121424861 
HNF1A rs2393775 A G 0.638 1 TfGP28 0.019 1 -0.203 0.033 8.97x10-10 

Locus - coded as “chromosome: locus start–locus end” (GRCh37 human genome build); Gene - suggested candidate gene; SNP - variant with the strongest association in 

the locus; EA - SNP allele for which the effect estimate is reported; OA - other allele; EAF - frequency of the effect allele; No. of SNPs - number of SNPs in the locus 

independently contributing to trait variation according to GCTA-COJO; Lead glycan - glycan trait with the strongest association to the reported SNP; Phe. var. - proportion 

of variance in phenotype explained by the strongest associated SNP; No. of glycans - number of glycan traits significantly associated with variants at the given locus; Beta 

- effect estimate for the SNP and glycan with the strongest association in the locus; SE - standard error of the effect estimate, P - p-value of the effect estimate (two-sided 

Wald test with one degree of freedom). 
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Prioritising candidate genes associated with transferrin N-glycosylation 

For the 10 loci associated with the transferrin N-glycome, we identified plausible 

candidate genes following multiple lines of evidence, such as evaluating the 

biological role of the candidate gene in the context of protein N-glycosylation, 

assessing colocalisation with eQTL, and investigating variant effects on the 

coding sequence or on putative transcription factor binding sites. 

 

The majority of genes that were closest to variants associated with transferrin N-

glycosylation had a clear biological link to protein N-glycosylation. In particular, 

for 5 out of 10 loci, the closest genes (i.e. MGAT5, ST3GAL4, B3GAT1, FUT8, 

and FUT6) encode glycosyltransferases, key enzymes in protein glycosylation, 

that have been previously associated with IgG and/or total plasma protein 

glycosylation (Supplementary Data 7). Another gene closest to variants 

associated with transferrin N-glycosylation and with a validated functional role in 

plasma protein glycosylation is HNF1A, a transcription factor previously 

associated with protein fucosylation (Supplementary Data 7). On the other hand, 

we also identified 3 loci that had not been associated with N-glycosylation. A 

locus on chromosome 3 contains the transferrin (TF) gene, which encodes the 

transferrin glycoprotein. A locus on chromosome 5 containing FOXI1 encodes a 

member of the forkhead family of transcription factors (Forkhead box I1). Finally, 

a locus on chromosome 8 contains the MSR1 gene, encoding the class A 

macrophage scavenger receptor, a trimeric integral membrane glycoprotein. 

Another gene of potential biological relevance at the chromosome 8 locus is the 

tumour suppressor candidate 3 (TUSC3), which encodes a protein localised to 

the endoplasmic reticulum and acting as a component of the 

oligosaccharyltransferase complex, responsible for N-linked protein 

glycosylation. 

 

Using eQTL analysis in PhenoScanner, variants associated with transferrin N-

glycosylation (and their proxies, LD r2 > 0.8) were identified to be significantly 

associated with the expression of multiple genes in several human tissues 
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involved in transferrin metabolism (Supplementary Data 8a). For example, 

variants associated with transferrin glycosylation were associated with ST3GAL4 

expression in liver and whole blood, with B3GAT1 expression in visceral adipose 

omentum, liver, and whole blood, with TF expression in several adipose tissues 

and with HNF1A, FUT8, and MGAT5 expression in whole blood. The majority of 

these genes were also the closest to the strongest association in the locus. We 

next used Summary data-based Mendelian Randomization (SMR) analysis 

followed by the Heterogeneity in Dependent Instruments (HEIDI) test179 to assess 

whether expression of these genes colocalises with transferrin glycosylation 

(TfGP) traits. SMR-HEIDI provided evidence of colocalisation, suggesting that the 

same underlying causal SNPs are likely to regulate both transferrin glycosylation 

traits and gene expression, for B3GAT1 in liver and peripheral blood and 

ST3GAL4 in liver (Supplementary Data 8b). 

 

We next explored whether any of the SNPs independently contributing to 

transferrin glycosylation (or their proxies) result in a change of amino acid 

sequence using the Ensembl Variant Effect Predictor (VEP) v97180. While the 

majority of associated variants (> 60%) were classified as intronic, several SNPs 

were identified as missense variants: rs115399307 (chr5:169535155-T/C) 

causes the substitution of the non-polar, aliphatic amino acid isoleucine (I) to the 

polar, hydrophilic amino acid threonine (T) in the FOXI1 transcription factor. 

Similarly, NXPE4 variant rs550897 (chr11:114442103-A/G, r2=0.94 with 

rs1671819) causes an amino acid substitution from tyrosine (Y) to histidine (H). 

Genetic variant rs41341748 (chr8:16012594-A/G) disrupts a stop codon 

sequence in MSR1, causing an elongated transcript with the amino acid arginine 

(Arg) added to the protein chain (Supplementary Data 9). The FUT6 variant 

rs17855739 (chr19:5831840-T/C, r2=0.95 with rs12019136) maps to the 

enzyme’s catalytic domain and the allele T results in a change from negatively 

charged glutamic acid (E) to positively charged lysine (K), which leads to a full-

length, but inactive, enzyme181. While the effect of reduced enzymatic activity on 

fucosylation of transferrin glycans needs to be experimentally validated, we 

observed that levels of TfGP32 are significantly lower in individuals carrying the 
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T allele at rs17855739, compared to those with two C alleles (Supplementary 

Figure 3). The structure of TfGP32 is currently not known, but its genetic 

association signal colocalises with two plasma glycan traits containing antennary 

fucose (A4F1G3S[3,3+6,3+6]3, A4F1G4S[3,3,3,6]4) and overall plasma 

antennary fucosylation (Supplementary Figure 4, Supplementary Results). 

Overall, this suggests that transferrin might contribute to these plasma glycan 

peaks and that TfGP32 might contain antennary fucose and could therefore be a 

proxy for FUT6 activity. However, these inferences need to be further 

experimentally validated. 

 

Finally, we used the regulatory sequence analysis tools (RSAT)182 to assess if 

variants associated with transferrin N-glycosylation overlap transcription factor-

binding sites and hence may be hypothesised to affect transcription factor 

binding. From the list of prioritised genes, we selected the two encoding 

transcription factors, FOXI1 and HNF1A, and checked whether associated 

variants in the remaining 8 loci were likely to affect binding of these transcription 

factors. Overall, binding of both FOXI1 and HNF1A transcription factors might be 

affected by the sentinel variant (the SNP with lowest p-value in the region for the 

given glycan trait) in the FUT8 gene. Similarly, binding of HNF1A might be 

affected by the sentinel variants in the TF and ST3GAL4 loci (Supplementary 

Data 10). 

 

Shared genetic associations with complex traits and diseases 

To assess whether variants associated with transferrin glycosylation were also 

associated with complex traits and diseases we used PhenoScanner183, followed 

by SMR-HEIDI to determine whether the shared associations are caused by the 

same underlying causal variant (colocalisation). We observed an overlap of 

transferrin N-glycan-associated SNPs and their proxies with variants associated 

with complex trait- and disease-associated variants for 5 out of 10 glycosylation 

loci (Supplementary Data 11a). For the remaining shared associations, we had 

no power to assess colocalisation (Supplementary Results for further details). 
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Interestingly, variants at the TF locus have been previously associated with 

serum concentration of carbohydrate-deficient transferrins (CDT) 

(Supplementary Data 11a), less glycosylated transferrin isoforms traditionally 

used as a biomarker of excessive alcohol consumption184, thus corroborating our 

finding for a related trait. We then assessed SMR-HEIDI findings (Supplementary 

Data 11b) using bi-directional Mendelian Randomisation (MR) to infer the causal 

direction between glycan traits and complex traits, and further validated the 

colocalisation results using a Bayesian approach. After Bonferroni correction (p-

value < 0.05/8 = 6.2510-3), there was no evidence of complex traits having an 

effect on glycan traits. However, we found positive associations of levels of 

TfGP14 and ulcerative colitis, and levels of TfGP28 and C-reactive protein levels, 

LDL and total cholesterol (Supplementary Data 12), although these results relied 

on few instrumental variables and were driven by associations in a single locus 

(Supplementary Figure 5). Contrary to the SMR-HEIDI analysis, Bayesian 

colocalisation analysis suggested that the association of ulcerative colitis and 

TfGP14 levels at the NXPE1/NXPE4 locus are driven by independent, trait-

specific causal variants. However, colocalisation confirmed that the associations 

between TfGP28 and C-reactive protein levels, LDL and total cholesterol are 

driven by a shared causal variant at the HNF1A locus (Supplementary Data 13, 

Supplementary Figure 5). 

 

Comparison of genetic regulation of glycosylation of transferrin and 

immunoglobulin G 

One of the main aims of this study is to understand if the N-glycosylation of two 

proteins is regulated by the same enzymes and if so, whether the same 

underlying genetic variant or a set of variants are driving the process. To address 

this question, in addition to the already described GWAMA of transferrin 

glycosylation, we performed a GWAMA of 24 UHPLC IgG N-glycan traits in the 

same individuals (N=2020), following the same protocol. 13 loci were significantly 

associated with at least one of the 24 IgG N-glycan traits (Figure 1, 

Supplementary Data 14). The IgG N-glycome GWAS was annotated using genes 
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or sets of genes prioritised by Klarić et al.135 By comparing the two GWAS we 

discovered mainly protein-specific associations, but also two genomic regions 

that were associated with glycosylation of both proteins (Figure 1). The protein-

specific associations were with genes encoding known glycosylation enzymes 

(transferrin - MGAT5, ST3GAL4, B3GAT1; IgG - ST6GAL1, MGAT3), but also 

with transcription factors (transferrin - HNF1A, FOXI1; IgG - IKZF1, RUNX3), the 

protein itself (transferrin - TF; IgG - TMEM121, gene in proximity of IGH genes 

encoding immunoglobulin heavy chains) as well as other genes (transferrin - 

MSR1; IgG - TXLNB, ABCF2, SMARCB1 region, HLA-region). Interestingly, the 

regions containing FUT8 and FUT6, genes encoding fucosyltransferases, 

enzymes adding core and antennary fucose, respectively, to the synthetized 

glycan, were associated with glycosylation of both proteins (Figure 1). We then 

proceeded to assess whether the same underlying causal variants in these 

regions are controlling glycosylation for both proteins using colocalisation 

analysis. 

 

Given that multiple glycan traits of the same protein can be associated with the 

same locus, we first asked whether all glycan traits of the same protein 

associated with a certain locus, colocalise (Supplementary Figure 6). Indeed, we 

found strong support for colocalisation (PP.H4 > 80 %, where PP.H4 represents 

the posterior probability for the same underlying causal variant contributing to trait 

variation), suggesting that for a given protein, all glycan traits associated with 

these loci are regulated by the same underlying causal variant (Supplementary 

Data 15, Supplementary Figures 7-9). One example of within-protein 

colocalisation can be seen in Figure 2. We next tested whether at the same 

genomic region, glycosylation of two different proteins is regulated by the same 

underlying causal variants. For this, we selected as the protein-representative 

glycan trait the one with the lowest p-value in the given region (one pair for each 

locus - transferrin TfGP20 and IgG GP7 for the FUT8 locus and transferrin 

TfGP32 and IgG GP20 for the FUT6 locus) and proceeded to test for 

colocalisation between glycosylation of the two proteins. We found strong support 

against colocalisation in both genomic regions (PP.H3 = 100% at FUT8 locus, 
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PP.H3 = 99.71% at FUT6 locus, where PP.H3 represents the posterior probability 

for different underlying causal variants contributing to trait variation) (Figure 3 and 

Figure 4, Supplementary Data 16). Since colocalisation methods are sensitive to 

multiple independent variants in the region contributing to the trait variation, which 

was the case here, we validated our findings with the PwCoCo approach100 

(Methods) and again, obtained robust evidence against the colocalisation 

hypothesis for all tested traits in both loci (Supplementary Data 16 and 

Supplementary Results for further details). 

 

 

 

 

Figure 2. Local association patterns for transferrin (A) TfGP32 and (B) 

TfGP34 glycans, and (C) their colocalisation pattern at the FUT6 locus. 

TfGP32 and TfGP34 association patterns colocalise, with PP.H4 (posterior 

probability for hypothesis 4, of colocalisation) of 99.87%. The natural logarithm of 

Approximate Bayes Factor (ABF) of each SNP for transferrin TfGP32 and 

transferrin TfGP34 in the FUT6 region shows that TfGP32 and TfGP34 
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associations are concordant (the patterns of ln(ABF) calculated for each SNP of 

both traits overlap), suggesting that the same underlying causal variant is 

associated with both traits. SNP most strongly associated in the region with the 

listed glycan trait is reported in bold and labelled. 

 

 

 

Figure 3. Local association patterns for (A) transferrin TfGP20 and (B) IgG 

GP7 glycans at the FUT8 locus. TfGP20 and IgG GP7 association patterns do 

not colocalise, with PP.H3 (posterior probability for hypothesis 3, of different 

causal variants) of 100%. Colocalisation patterns are not reported since the width 

of the FUT8 region makes the plot non-informative. SNP most strongly associated 

in the region with the listed glycan trait is reported in bold and labelled. For 

comparison, SNP most strongly associated with the other listed glycan trait is 

reported in italic, in the same panel.  
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Figure 4. Local association patterns for (A) transferrin TfGP32 and (B) IgG 

GP20 glycans, and (C) their colocalisation pattern at the FUT6 locus. 

TfGP32 and IgG GP20 association patterns do not colocalise, with PP.H3 

(posterior probability for hypothesis 3, of different causal variants) of 99.7%). The 

natural logarithm of Approximate Bayes Factor (ABF) of each SNP for transferrin 

TfGP32 and IgG GP20 in the FUT6 region shows that TfGP32 and GP20 

associations are not concordant (the patterns of ln(ABF) calculated for each SNP 

of both traits do not overlap), suggesting that two different underlying causal 

variants in this region regulate glycosylation of these two proteins. SNP most 

strongly associated in the region with the listed glycan trait is reported in bold and 

labelled. For comparison, SNP most strongly associated with the other listed 

glycan trait is reported in italic, in the same panel.  
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Having established that different underlying causal variants regulate 

glycosylation at the FUT6 and FUT8 loci, we next explored the potential 

mechanisms behind these associations. The RSAT analysis suggests that the 

sentinel transferrin glycosylation SNP in the FUT8 region might be affecting 

binding of the HNF1A transcription factor (Supplementary Data 10). Similarly, it 

was previously shown that the sentinel IgG glycosylation SNP in the same FUT8 

region potentially affects binding of the IKZF1 transcription factor135. In addition, 

we observed protein-specific associations with two transcription factors: 

transferrin glycosylation was associated with variants in the HNF1A locus and 

IgG glycosylation was associated with variants in the IKZF1 locus (Figure 1). We 

therefore checked expression of these genes in tissues where the two proteins 

are predominantly expressed. It is known that plasma transferrin, encoded by TF 

gene, is mostly secreted by hepatocytes185, while IgG, the heavy chain constant 

region of which is encoded by IGHG gene, is predominantly synthesised by the 

antibody-secreting plasma cells, the fully differentiated form of B-lymphocytes186. 

Indeed, we see that IGHG1 (encoding the most prevalent IgG1 subclass) is highly 

expressed in plasma cells and has low expression in hepatocytes, while the 

converse is true for TF (Figure 5). Similarly, the transcription factor encoded by 

HNF1A is predominantly expressed in the hepatocytes, while IKZF1 is mainly 

expressed in plasma cells (Figure 5). Altogether these suggest that two distinct 

causal variants regulating glycosylation of transferrin and IgG in the FUT8 locus 

might have tissue-specific effects, where the transferrin-associated variant 

affects the binding of HNF1A in liver and the IgG-associated variant affects the 

binding of IKZF1 in plasma cells, with both influencing expression of the FUT8 

gene and therefore affecting fucosylation of the two proteins.  
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Figure 5. Expression of TF, IGHG1, HNF1A and IKZF1 in main tissues of 

transferrin and IgG synthesis (liver and plasma cells). Gene expression data, 

expressed in gene counts, was scaled to transcripts per million (TPM) and 

log2(1+TPM) transformed. The data for hepatocyte (N=513) and plasma (N=53) 

cell samples were obtained from the ARCHS4 portal187. TF encodes transferrin 

protein, IGHG1 encodes the constant region of immunoglobulin heavy chains, 

HNF1A and IKZF1 encode two transcription factors involved in glycosylation of 

transferrin and IgG respectively. In the plot, the middle line represents the 

median, lower and upper limits of the box represent 1st and 3rd quartile, whiskers 

represent 1.5 interquartile range. All individual data points are overlapped to the 

box plot.  
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Discussion 

Post-translational modifications (PTMs) are essential mechanisms that 

dynamically regulate a large portion of cellular events by altering the structure 

and properties of proteins165. In common with other PTMs, genetic regulation of 

protein N-glycosylation has not been extensively investigated. Here, we 

performed genome-wide association meta-analysis of glycosylation of two 

proteins - transferrin and IgG - and compared how their glycosylation is 

genetically regulated. In the GWAS of the transferrin N-glycome, (N=1890), we 

identified 10 significantly associated loci, two of which (near FOXI1 and MSR1) 

were never previously associated with the glycome of any protein. The other eight 

have been previously associated with glycosylation of transferrin, total plasma 

proteins and/or IgG (Supplementary Data 7). The previous study on 

carbohydrate-deficient transferrin (CDT)188, a composite measure that gives 

partial insight into the sialylation status of the protein, reported two genetic 

regions associated with the trait, near PMG1 and TF, one of which we also found 

in this study (TF). Here, we were able to measure 35 different transferrin glycan 

traits, providing higher resolution of underlying structures and insight into the 

overall transferrin N-glycome. The total plasma glycome quantifies the glycome 

of all proteins in plasma, but without information on which glycan was bound to 

which protein. Given that IgG and transferrin are among the most abundant 

plasma glycoproteins117, an overlap in genetic control of transferrin and IgG N-

glycomes with that of total plasma proteins is to be expected. Sharapov et al.133 

previously indicated that some of the genomic loci associated with the plasma 

glycome overlap with loci associated with IgG N-glycosylation. The present work 

suggests that the MGAT5, ST3GAL4, and B3GAT1 loci, that were also observed 

in the total plasma protein GWAS, might be capturing a signal within plasma 

protein glycosylation that comes from transferrin N-glycosylation. 

 

We then compared the genetic architecture underlying glycosylation of transferrin 

and IgG proteins. Using the GWAS from this study we showed that there are both 

protein-specific and shared genetic loci. Looking specifically at 



 

53 

glycosyltransferase enzymes, the main “drivers” of this post-translational 

modification, that catalyse the transfer of saccharide moieties from a donor to an 

acceptor molecule, MGAT5, ST3GAL4, and B3GAT1 were only associated with 

transferrin while ST6GAL1 and MGAT3 were only associated with glycosylation 

of IgG. On the other hand, two fucosyltransferase genes, FUT8 and FUT6, were 

associated with both proteins. Since antennary fucose (produced by the FUT6 

enzyme) is not typically found on IgG, we hypothesise that IgG glycosylation 

might be indirectly associated with FUT6 through antennary fucosylation of other 

enzymes or proteins involved in glycosylation of IgG. Even though the genes 

encoding FUT6 and FUT8 enzymes were associated with glycosylation of both 

proteins, using Approximate Bayes Factor colocalisation analysis, we showed 

that associations with transferrin and IgG N-glycosylation at these genomic 

regions is driven by independent underlying causal variants, where one variant 

regulates fucosylation of transferrin and the other of IgG. Our results suggest that 

while the same fucosyltransferase enzymes are involved in N-glycosylation of 

both transferrin and IgG proteins, the process is independently regulated by 

protein-specific causal variants. 

 

There are at least two mechanisms that could explain how different variants in an 

enzyme-coding gene could have distinct effects on two different substrates. If the 

two variants were in the coding region of the gene and affected the amino-acid 

sequence of the enzyme, they could affect the enzyme’s specificity for binding 

each protein. However, none of the sentinel variants in the FUT8 and FUT6 loci 

were in strong linkage disequilibrium (LD) with coding variants from the enzymes’ 

active sites, suggesting that this is likely not the mechanism of regulation of 

fucosylation of the two proteins. In addition, overall, SNPs associated with 

transferrin glycosylation predominantly mapped to regulatory rather than coding 

regions of the genome (Supplementary Data 9). The other hypothesis is that 

these two variants affect the expression of enzymes in different tissues. In 

common with all other antibodies, most of IgG found in blood plasma is produced 

by bone marrow plasma cells, the fully differentiated form of B-cells186. The 

transferrin found in blood plasma is mostly produced by liver hepatocytes185. In 



 

54 

addition, the glycomes of the two proteins were also associated with different 

transcription factor genes, namely, variants in the IKZF1 region were associated 

with IgG glycosylation, and variants in the HNF1A region with transferrin 

glycosylation. IKZF1, a transcription factor predominantly expressed in immune 

cells and tissues, has been functionally validated as a regulator of IgG core 

fucosylation in lymphoblastoid cells: IKZF1 binds to regulatory regions of FUT8 

and, in turn, knockdown of IKZF1 results in increased expression of FUT8 and 

increased core fucosylation of IgG135. On the other hand, we showed that 

transferrin glycosylation-associated variants in the FUT8 region might affect the 

binding of HNF1A, a transcription factor predominantly expressed in the liver. 

Lauc et al.132 have shown that HNF1A knockdown results in down-regulation of 

FUT6 and up-regulation of FUT8 in the HepG2 hepatocyte cell line. While it might 

be expected that a change in levels of FUT6 and FUT8 enzymes would impact 

levels of antennary and core fucosylation (their enzymatic products), this link, 

especially in the context of transferrin glycosylation, has yet to be experimentally 

proven. Overall, our data could suggest that the two different causal variants may 

affect the binding of different transcription factors in different tissues and therefore 

regulate the glycosylation of the two plasma proteins in a tissue-specific manner. 

However, the effect of specific SNPs on binding of the two transcription factors 

and their downstream effect on expression of fucosyltransferases in a tissue-

specific manner, still needs to be functionally validated. 

 

In addition to HNF1A, variants in the FUT8 locus associated with transferrin 

glycosylation might also be affecting the binding of the FOXI1 transcription factor. 

However, unlike HNF1A, possible involvement of FOXI1 in the regulation of the 

transferrin fucosylation is to date unknown and would require functional 

validation. We also found that HNF1A binding could also be affected by variants 

associated with glycosylation in the TF and ST3GAL4 genes. While these 

relationships were hitherto undocumented and need further supporting evidence, 

they may suggest that HNF1A might regulate multiple genes associated with 

transferrin N-glycosylation. 
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The most strongly N-glycosylation-associated variant for the TF gene, 

rs6785596, can be considered an example of a “cis-glyQTL”: a genomic locus 

that explains variation in glycosylation levels and is local to the gene encoding 

the protein being glycosylated. Similar was observed for IgG glycosylation, where 

associated variants mapped to the IGH locus137, a genetic region encoding the 

heavy chain of immunoglobulin G. The transferrin glycosylation “cis-glyQTL” is 

an eQTL for expression of transferrin in adipose tissue, but not in liver, where 

transferrin is predominantly expressed. The variant is also in middling LD (r2 = 

0.57) with a missense variant, rs179989, providing potential alternative 

explanation for the association. Altogether, the exact mechanism of how these 

“cis-glyQTL” could be affecting glycosylation levels remains unclear. Considering 

causal relations between the transferrin glycome and complex traits and 

diseases, we found associations between levels of TfGP28 and C-reactive 

protein levels, LDL and total cholesterol. These associations were, however, 

driven by a single locus encoding the transcription factor HNF1A, suggesting that 

the locus might be pleiotropic and has an impact on both transferrin glycan levels 

and complex traits. 

 

In conclusion, by performing the GWAS of the plasma transferrin N-glycome and 

comparing it with that of the IgG N-glycome, we were able to describe similarities 

and differences in the genetic regulation of post-translational modification of two 

different proteins. When focusing on glycosyltransferases, the main enzymes of 

this PTM, we showed that there are associations specific to each protein, but also 

those that are involved in glycosylation of both proteins. For the latter, we showed 

that fucosylation of transferrin and IgG are regulated by independent, protein-

specific variants in the FUT8 and FUT6 genes. In the FUT8 region, these variants 

are likely to regulate fucosylation of transferrin and IgG in a tissue-specific 

manner, potentially acting through tissue-specific transcription factors. Additional 

studies, with larger sample sizes and focusing on other non-IgG proteins, will be 

necessary to further unravel the genetic architecture of N-glycosylation and to 

understand its relationship with human diseases and complex traits. While PTMs 

involved in intracellular signalling (e.g. phosphorylation) remain difficult to 
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quantify in a high-throughput manner, here we investigated glycosylation of two 

plasma proteins, constraining the analysis to one type of PTM in the extracellular 

space. The impact of genetics on other, both intra- and extra-cellular post-

translational modifications will be an interesting area of future research. 

 

 

 

Methods 

Population cohorts 

The CROATIA-Korcula isolated population cohort includes samples of blood 

DNA, plasma and serum, anthropometric and physical measurements, 

information related to general health, medical history, lifestyle, and diet for ~3000 

residents of the Croatian island of Korčula189. Written informed consent was given 

and the study was approved by the Ethics Committee of the Medical School, 

University of Split (approval id: 2181-198-03-04/10-11-0008). The Viking Health 

Study - Shetland (VIKING) is a family-based, cross-sectional study that seeks to 

identify genetic factors influencing cardiovascular and other disease risk in the 

population isolate of the Shetland Isles in northern Scotland190. Genetic diversity 

in this population is decreased compared to mainland Scotland, consistent with 

the high levels of endogamy. 2105 participants were recruited between 2013 and 

2015, most having at least three grandparents from Shetland. Fasting blood 

samples were collected and many health-related phenotypes and environmental 

exposures were measured in each individual. All participants gave written 

informed consent and the study was approved by the South East Scotland 

Research Ethics Committee, NHS Lothian (reference: 12/SS/0151). Details of 

cohort-specific demographics, genotyping, quality control, and imputation 

performed before GWAS can be found in Supplementary Data 17. 
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Phenotypic data 

Transferrin and total IgG N-glycome quantification for CROATIA-Korcula and 

VIKING samples was performed at Genos Glycobiology Laboratory. Isolation of 

the protein of interest and N-glycan quantification is described in more detail in 

Supplementary Materials and Methods and in Trbojević-Akmačić et al.191 for 

transferrin and by Trbojević-Akmačić et al.192 for IgG. Briefly, proteins were first 

isolated from blood plasma (IgG depleted blood plasma in the case of transferrin) 

using affinity chromatography binding respectively to anti-transferrin antibodies 

plates for transferrin and protein G plates for IgG. The proteins isolation step was 

followed by enzymatic release and labelling of N-glycans with 2-AB (2-

aminobenzamide) fluorescent dye. IgG N-glycans have been released from total 

IgG (all subclasses). N-glycans were then separated and quantified by hydrophilic 

interaction ultra-high-performance liquid chromatography (HILIC-UHPLC). As a 

result, transferrin and total IgG samples were separated into 35 (transferrin: 

TfGP1− TfGP35) and 24 (IgG: GP1−GP24) chromatographic peaks. It is worth 

noting that there is no correspondence structure-wise between transferrin TfGP 

and IgG GP traits labelled with the same number.  

Prior to genetic analysis, raw N-glycan UHPLC data was normalised and batch 

corrected to reduce the experimental variation in measurements. Total area 

normalisation was performed by dividing the area of each chromatographic peak 

(35 for transferrin, 24 for IgG) by the total area of the corresponding 

chromatogram. Resulting measures are therefore relative abundances of each 

glycan structure in the overall glycosylation profile. Due to the multiplicative 

nature of measurement error and right-skewness of glycan data, normalised 

glycan measurements were log10-transformed. Batch correction was then 

performed using the empirical Bayes approach implemented in the “ComBat” 

function of the sva 3.34.0 R package193, modelling the technical source of 

variation (96-well plate number) as batch covariate. Batch corrected 

measurements where then exponentiated back to the original scale. 
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Genome-wide association analysis 

Genome-wide association analyses (GWAS) were performed in the two cohorts 

of European descent, CROATIA-Korcula and VIKING. Associations with 35 

transferrin N-glycan traits were performed in 948 samples from CROATIA-

Korcula and 959 samples from VIKING. Associations with 24 IgG N-glycan traits 

were performed in 951 samples from CROATIA-Korcula and 1086 samples from 

VIKING. The sample size of the same cohort differs between transferrin and IgG 

due to the different number of samples successfully measured for each protein. 

Prior to GWAS, each glycan trait was rank transformed to normal distribution 

using the “rntransform” function from the GenABEL 1.1-6 R package194 and then 

adjusted for age and sex, as fixed effects, and relatedness (estimated as the 

kinship matrix calculated from genotyped data) as random effect in a linear mixed 

model, calculated using the “polygenic” function from the GenABEL R 

package194. Residuals of covariate and relatedness correction were tested for 

association with HRC (Haplotype Reference Consortium)28 imputed SNP 

dosages using the RegScan v0.5 software195, applying an additive genetic model 

of association.  

 

Meta-analysis 

Prior to meta-analysis the following quality control was performed on cohort-level 

GWAS summary statistics. We removed all SNPs with a difference in allele 

frequency between the two cohorts higher than +/- 0.3 (~37,000 SNPs in total), 

as well as variants showing a minor allele count (MAC) lower or equal to 6 (~6 

million SNPs in total). Cohort-level GWAS were then meta-analysed (N=1890 for 

transferrin and N=2020 for IgG N-glycans, for ~10.7 million SNPs) using METAL 

v2011-03-25 software196, applying the fixed effect inverse-variance method, 

followed by genomic control correction. Mean genomic control inflation factor 

(λGC) was 0.997 (range 0.982-1.011) for transferrin N-glycans and 0.995 (range 

0.981-1.008) for IgG N-glycans meta-analysis, showing that the confounding 

effects of family structure were correctly accounted for. The standard genome-
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wide significance threshold was Bonferroni corrected for the number of N-glycan 

traits analysed: variants were considered statistically significant if their p-value 

was lower than 5×10−8/35 = 1.43×10-9 for transferrin and 5×10−8/24= 2.08×10-9 

for IgG N-glycan traits. 

 

We used a positional approach to define genomic regions (loci) significantly 

associated with transferrin N-glycan traits, following the procedure adopted by 

Sharapov et al.133 For each glycan trait, we grouped all genetic variants located 

within a 500 kb window (+/- 250 kb) from the sentinel SNP in the same locus. To 

obtain a unique list of loci that are independent of the specific glycan trait, we 

then merged this list of sentinel SNP-glycan trait pairs for all 35 glycan traits and 

applied a similar procedure - all SNP-glycan trait pairs within a 1000 kb window 

(+/-500 kb from sentinel SNP) were grouped in the same locus, resulting in a 

unique list of sentinel SNP-top glycan trait pairs, summarising the genomic 

regions most strongly associated with N-glycans across all traits. A visual 

representation of the procedure can be seen in Supplementary Figure 10. For all 

sentinel SNP-top glycan trait pairs, regional association plots were created with 

LocusZoom197 and visually checked - in case of overlapping patterns of 

association, only the sentinel SNP-top glycan trait pair showing the lowest p-value 

was selected as a locus representative. 

 

Impact of transferrin protein levels on transferrin glycome associations 

To assess the potential impact of transferrin protein levels on transferrin glycome 

associations and to check whether the associations in the region of the TF gene 

are driven by protein levels, we tested association of transferrin cis-pQTL 

rs8177240178 with transferrin glycosylation using the likelihood ratio test 

implemented in the lmtest 0.9-38 R package198 between the following models: 

M0: glycan ~ age + sex 

M1: glycan ~ age + sex + pQTL (rs8177240) 

M2: glycan ~ age + sex + glyQTL (rs6785596) 

M3: glycan ~ age + sex + pQTL (rs8177240) + glyQTL (rs6785596) 
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where pQTL is the SNP most strongly associated with transferrin levels and here 

used as proxy for the protein levels, and glyQTL is the SNP most strongly 

associated with transferrin glycan levels in the TF gene region.  

The likelihood ratio tests were performed between: 

• M0 and M1 to assess associations of glycans and pQTL (rs8177240)  

• M1 and M3 to assess whether glyQTL contributes to glycan levels even 

when the pQTL is included in the model 

• M2 and M3 to assess whether pQTL contributes to glycan levels even 

when the glyQTL is included in the model 

To control for increased levels of relatedness between subjects in our studies, 

the models were fitted using linear mixed models as implemented in the lme4qtl 

0.0.2 R package199, with age, sex, pQTL and glyQTL as fixed effects and kinship 

matrix as a random effect. The kinship matrix was estimated from the genotyped 

data using the “ibs” function from GenABEL194 R package. 

Transferrin N-glycan traits post-meta-analysis follow-up 

The meta-analysis follow-up analyses were performed only for the transferrin N-

glycans meta-analysis, since genetic regulation of IgG N-glycosylation has 

already been explored in a larger, IgG-specific study135 and is beyond the scope 

of the present work. 

 

Conditional analysis and phenotypic variance explained 

To capture the overall contribution to phenotypic variation at each genomic region 

and identify secondary association signals at a locus, we performed approximate 

conditional analysis using the GCTA-COJO177 1.91.4beta stepwise model 

selection, “cojo-slct”, with the IgG and transferrin N-glycan meta-analysis 

summary statistics and genotypes of 10,000 unrelated individuals of white British 

ancestry from UK Biobank200 as independent LD reference panel. Collinearity 

was restricted to 0.9 and the p-value threshold was set to 1.43×10-9 for transferrin 
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and to 2.08×10-9 for IgG. Reported joint p-values were then adjusted by the 

genomic control method201. The list of samples for the independent LD reference 

panel was created with R 3.6.0, while the panel itself was generated using Plink 

2.0202. After sample extraction from the UK Biobank full dataset, SNP 

deduplication was performed both by position (removing all SNPs not carrying a 

unique position on the chromosome) and marker name (--rm-dup exclude-all 

function). We acknowledge that UK Biobank might not be a perfect reference 

population for the CROATIA-Korcula cohort, however there are no other 

reference panels with suitable ancestry and sample size (>4,000)177. The 

proportion of variance (var) in phenotype (Y) explained by independently 

associated SNPs at each transferrin N-glycans associated locus was calculated 

with the following formula 

 

var(𝑌) =  
2 ∗ freq ∗ (1 − freq) ∗ 𝛽2

var(𝑌 covariates adjusted residuals)
  

(1) 

where freq represents the frequency of the SNP’s effect allele, β is the effect 

estimate for the SNP and phenotype association at the locus, Y covariates 

adjusted residuals are the residuals resulting from the adjustment of the 

phenotype by age and sex, as fixed effects, and relatedness (estimated as the 

kinship matrix calculated from genotyped data) as random effect in a linear mixed 

model. The “polygenic” function from the GenABEL R package was used also to 

estimate cohort-specific heritability for each transferrin glycan trait. 

 

Gene prioritisation 

For all genome-wide significant loci we suggested plausible candidate genes 

combining different evidence, namely evaluating biological role in the context of 

protein N-glycosylation of genes nearest to sentinel variants (positional mapping), 

assessing colocalisation with gene expression (expression quantitative trait loci, 

eQTL) or investigating associated variant’s predicted effects on the protein 



 

62 

sequence or on putative transcription factor binding sites. Positional gene 

mapping was performed using FUMA v1.3.5e SNP2GENE function203. Genes 

having a clear biological link to protein N-glycosylation (e.g. genes coding for 

enzymes involved in biochemical pathway of protein glycosylation) and genes 

previously associated with IgG and/or total blood plasma proteins N-glycome 

were given a priority. The overlap of independent significant SNPs identified by 

COJO with eQTL was investigated using PhenoScanner v1.1 database183, taking 

into account significant genetic association (p-value < 5×10–8) at the same or 

strongly (LD r2 > 0.8) linked SNPs in populations of European ancestry. The 

Ensembl Variant Effect Predictor (VEP v 97) tool180 was used to determine 

putative functional effect and impact on a transcript or protein of independent 

significant SNPs and their strongly (LD r2 > 0.8) linked SNPs in populations of 

European ancestry. Among genes prioritised so far, two were transcription factors 

(i.e. HNF1A and FOXI1), while the remaining were non transcription factor 

protein-coding genes (i.e. MGAT5, TF, MSR1, NXPE1/NXPE4, ST3GAL4, 

B3GAT1, FUT8 and FUT6). Using the Regulatory sequence analysis tools 

(RSAT) v2018-08-04 program matrix-scan182, we applied a pattern-matching 

procedure to search for sequences recognized as binding sites for HNF1A and 

FOXI1 transcription factors in associated regions of the other 8 prioritised genes. 

Position-specific scoring matrices (PSSMs), representing the frequency of each 

nucleotide at each position of the transcription factor motif, were downloaded for 

HNF1A and FOXI1 from the JASPAR204 database. For each of the 8 genomic 

regions explored for possible transcription factor binding sites, we included the 

most strongly associated SNP and a 60 bp surrounding sequence (30 bp either 

side of the sentinel SNP). The significance threshold was set to the p-value ≤ 

0.003, Bonferroni corrected for 16 tests performed (8 putative transcription factor 

binding sites tested for 2 transcription factors). 
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Overlap and colocalization analysis with gene expression levels and complex 

traits 

The PhenoScanner v1.1 database183 was used to investigate the overlap of 

significant transferrin glycosylation SNPs with gene expression levels and 

complex human traits. As previously described, we considered traits with 

genome-wide significant association (p-value < 5×10–8) at the same or strongly 

(LD r2 > 0.8) linked SNPs in populations of European ancestry. We then used 

Summary data-based Mendelian Randomization (SMR) analysis followed by the 

Heterogeneity in Dependent Instruments (HEIDI) test179 to assess whether 

overlapping expression and complex traits, identified by PhenoScanner, were 

also colocalising with transferrin glycosylation (TfGP) traits. The SMR test 

indicates whether two traits are associated with the same locus, and HEIDI test 

specifies whether both traits are affected by the same underlying functional SNP. 

Each of 10 sentinel SNPs – TfGP pair (Table 1) was used for SMR/HEIDI analysis 

with gene expression levels and several complex traits. Summary statistics for 

gene expression levels in tissues/cell types were obtained from the Blood eQTL 

study205 (http://cnsgenomics.com/software/smr/#eQTLsummarydata), the 

CEDAR project206 (http://cedar-web.giga.ulg.ac.be/), and the GTEx project 

version 7207 (https://gtexportal.org/home/). Summary statistics for complex traits 

were obtained from various resources. In total, we used data for 3 tissues/cell 

types: CD19+ B lymphocytes (CEDAR), GTEx liver (GTEx) and peripheral blood 

(the Blood eQTL study) and 8 complex traits. Full list of GWAS collections, tissues 

and complex traits see in Supplementary Data 18. SMR/HEIDI analysis was 

performed according to the protocol described by Zhu et al.179 We used sets of 

SNPs having the following properties: (1) being located within ± 250 kb from the 

sentinel SNPs identified in the present study; (2) being present in both the primary 

GWAS and eQTL data/GWAS for the complex trait; (3) having MAF ≥ 0.03 in both 

datasets; (4) having squared Z-test value ≥ 10 in the primary GWAS. Those SNPs 

that met criteria (1), (2), (3), (4), had the lowest p-value in the primary GWAS and 

were in high LD (r2 > 0.8) with the sentinel SNPs were used as instrumental 

variables to elucidate the relationship between gene expression/disease and 

TfGP (we define them as “top SNPs”). It should be noted that SMR/HEIDI analysis 

http://cnsgenomics.com/software/smr/#eQTLsummarydata
http://cedar-web.giga.ulg.ac.be/
https://gtexportal.org/home/
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does not identify a causative SNP affecting both traits. It can be either the top 

SNP or any other SNP in strong LD. After defining the set of eligible SNPs for 

each locus, we made the “target” and “rejected” SNP sets and added the top SNP 

to the “target” set. Then we performed the following iterative procedure of SNP 

filtration: if the SNP from the eligible SNP set with the lowest PSMR had r2 > 0.9 

with any SNP in the “target” SNP set, it was added to the “rejected” set; otherwise, 

it was added to the “target” set. The procedure was repeated until eligible SNP 

set was exhausted, or the “target” set had 20 SNPs. If we were unable to select 

three or more SNPs, the HEIDI test was not conducted. HEIDI statistics was 

calculated as 

 

𝑇𝐻𝐸𝐼𝐷𝐼 =  ∑ 𝑧𝑑(𝑖)
2 ,

𝑚

𝑖
 

(2) 

where m is the number of SNPs selected for analysis, zd(i) =  
di

SE(di)
⁄  and di =

 βSMRi
−  βSMR (top SNP). 

The results of the SMR test were considered statistically significant if PSMR < 

1.7 × 10-4 (0.05/302, where 302 is a total number of tests corresponding to 

analysed loci and gene expression/disease traits). Inference of whether a 

functional variant may be shared between the TfGP and gene expression/disease 

were made based on the HEIDI test: PHEIDI ≥ 0.001 (possibly shared), and PHEIDI 

< 0.001 (sharing is unlikely). 

We then proceeded to further explore SMR-HEIDI significant findings using bi-

directional Mendelian Randomisation (MR), as implemented in the 

TwoSampleMR 0.5.6 R package208. MR uses genetic variants as instrumental 

variables to investigate the effects of one trait (exposure) on another trait 

(outcome), assuming that the instrumental variables associate with the outcome 

only through the exposure. GWAS summary statistics for complex traits were 

obtained from the IEU GWAS database209 and their references are listed in 

Supplementary Data 18. For each glycan and complex trait, we selected as 

instruments for the exposure genetic variants associated with the trait at genome-
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wide significance (p-value < 5×10−8) and independent (r2 = 0.001, using the 

European population from the 1000 Genomes Project reference panel). To 

distinguish causal relationships from confounding by LD, we followed-up 

significant MR tests (p-value ≤ 0.05/8 = 6.2510-3, Bonferroni corrected for the 

number of tests) with approximate Bayes factor colocalisation analysis, 

developed by Giambartolomei et al.106 and implemented in the “coloc.abf” 

function from the coloc 4.0-6 R package, using default priors of 10-4 for prior 

probability of SNP being associated with trait 1 or trait 2 (p1 and p2) and 10-5 for 

prior probability of a SNP being associated with both traits (p12). To further 

assess the robustness of our findings, where available, we performed the “coloc” 

analysis using a different complex-trait GWAS dataset compared to the SMR-

HEIDI analysis (listed in Supplementary Data 18). Colocalisation analysis tests 

whether local genetic association signals for different traits are driven by the 

same shared causal variant or distinct variants. This Bayesian method provides 

posterior probabilities (PP) for 5 different hypotheses: the null hypothesis of no 

association with either of the traits (H0) and four alternative hypotheses of either 

association with only the first or the second of the traits (H1, H2), or association 

of both traits via distinct underlying causal variants (H3), or association of both 

traits through a shared causal variant (H4) i.e. trait colocalisation. A posterior 

probability >80% was considered as robust evidence supporting the tested 

hypothesis. 

 

Colocalisation analysis for transferrin and IgG N-glycan traits 

The FUT8 and FUT6 genomic regions were significantly associated with both 

transferrin and IgG N-glycans. To investigate a possible overlap in genetic control 

of glycosylation between the two proteins, we used the approximate Bayes factor 

colocalisation analysis implemented in coloc R package106, followed by pairwise 

conditional and colocalization analysis (PwCoCo)100 in case of multiple 

independent variants contributing to the trait variation. A posterior probability > 

80% was considered as robust evidence supporting the tested hypothesis. 
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Overview of the overall procedure can be seen in Supplementary Figure 6. First, 

we assessed whether for one protein all glycans that are associated with the 

same genomic region (p-value ≤ 5x10-8) are regulated by the same underlying 

variants. For each protein (i.e. transferrin and IgG) and each genomic region (i.e. 

FUT8 and FUT6), we tested separately the group of glycans carrying only one 

independent association signal at locus and the group of glycan traits showing 

multiple independent signals of association (Supplementary Figure 6). Pairs of 

glycan traits obtaining a PP.H4 > 80% (suggestive of colocalisation) were pooled 

in the same colocalisation group, following the principle that if trait A colocalises 

with trait B and trait B colocalises with trait C, thus also trait A and trait C 

colocalise. For each within-protein colocalisation group identified, the glycan trait 

with the lowest p-value was selected as group representative and carried on to 

the next step, where traits with single and multiple independent associations for 

each protein were tested for colocalisation. Similar to previous steps, glycan traits 

were grouped together on the basis of their colocalisation analysis results and 

the lowest p-value representative was chosen for the next step, where finally 

representative transferrin and IgG glycans were tested for between-protein 

colocalisation. 

 

For glycan traits with multiple independent association signals and lacking strong 

evidence for colocalisation, we applied PwCoCo100 approach. Briefly, the 

PwCoCo approach tests not only the traits’ full, complete GWAS association 

statistics for colocalisation, but also summary statistics conditioned for the top 

primary association, testing whether any of the underlying causal variants 

between traits colocalise. For example, assuming that each trait is carrying two 

conditionally independent association signals in the tested region, colocalisation 

analysis will be conducted between both full and conditioned association statistics 

(conditioned for each independent variable), for a total of nine pairwise 

combinations. Secondary association signals at FUT8 and FUT6 loci for both 

transferrin and IgG N-glycans were assessed using GCTA-COJO approximate 

conditional analysis stepwise model selection177 and an LD reference panel of 

10,000 unrelated, white British ancestry individuals from UK Biobank200. We then 
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performed the association analysis conditional on identified secondary 

association signals at FUT8 and FUT6 loci using GCTA-COJO177 “cojo-cond” and 

the same 10,000 UK Biobank samples LD reference panel, with 5×10-8 p-value 

threshold and used those for pairwise colocalisation analyses.  

 

Expression of N-glycome associated genes in transferrin and IgG-relevant 

tissues 

Gene expression data for TF, IGHG1, HNF1A and IKZF1, expressed in gene 

counts, for hepatocytes (529 samples) and plasma cells (648 samples) was 

obtained from ARCHS4 portal187. Samples with total number of gene counts less 

than 5,000,000 were filtered out, leaving 513 hepatocyte and 53 plasma cell 

samples for the analysis. Gene counts were scaled to transcripts per million 

(TPM) and log2(1+TPM) transformed. 

 

 

Data availability 

The full summary statistics from the GWAS of 35 transferrin glycan traits and 24 

IgG glycan traits generated in this study have been deposited in the DataShare 

repository (https://datashare.ed.ac.uk/handle/10283/4088). There is neither 

Research Ethics Committee approval, nor consent from individual participants, to 

permit open release of the individual level research data underlying this study. 

The datasets analysed during the current study are therefore not publicly 

available. Instead, the research data and/or DNA samples are available from 

accessQTL@ed.ac.uk on reasonable request, following approval by the QTL 

Data Access Committee and in line with the consent given by participants. Each 

approved project is subject to a data or materials transfer agreement (D/MTA) or 

commercial contract. The UK Biobank genotypic data used in this study were 

approved under application 19655 and are available to qualified researchers via 

the UK Biobank data access process (http://www.ukbiobank.ac.uk/register-

https://datashare.ed.ac.uk/handle/10283/4088
mailto:accessQTL@ed.ac.uk
http://www.ukbiobank.ac.uk/register-apply/
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apply/). The position-specific scoring matrices (PSSMs) for HNF1A and FOXI1 

genes used in this study are available in the JASPAR204 database under the 

accession code MA0046.2 

(http://jaspar.genereg.net/api/v1/matrix/MA0046.2/?format=transfac) and 

MA0042.1 (http://jaspar.genereg.net/api/v1/matrix/MA0042.1/?format=transfac), 

respectively. The summary statistics for gene expression levels in tissues/cell 

types used in this study are available in the Blood eQTL study 

(http://cnsgenomics.com/software/smr/#eQTLsummarydata), in the CEDAR 

project (http://cedar-web.giga.ulg.ac.be/), in the GTEx project version 7 

(https://gtexportal.org/home/) and in the eQTLGen consortium 

(https://www.eqtlgen.org/). The summary statistics for complex traits are 

available in various publicly available resources, as detailed in Supplementary 

Data 18. 

 

 

Code availability 

The following software packages were used in this study: Ensembl variant effect 

predictor (VEP): 

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html; 

phenoscanner: https://github.com/phenoscanner/phenoscanner; 

GCTA-COJO: https://yanglab.westlake.edu.cn/software/gcta/#COJO; 

coloc: https://github.com/chr1swallace/coloc; 

TwoSampleMR: https://mrcieu.github.io/TwoSampleMR/. 

The remaining code used in this paper may be requested from the authors. 

  

http://www.ukbiobank.ac.uk/register-apply/
http://jaspar.genereg.net/api/v1/matrix/MA0046.2/?format=transfac
http://jaspar.genereg.net/api/v1/matrix/MA0042.1/?format=transfac
http://cnsgenomics.com/software/smr/#eQTLsummarydata
http://cedar-web.giga.ulg.ac.be/
https://gtexportal.org/home/
https://www.eqtlgen.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html
https://github.com/phenoscanner/phenoscanner
https://yanglab.westlake.edu.cn/software/gcta/#COJO
https://github.com/chr1swallace/coloc
https://mrcieu.github.io/TwoSampleMR/
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2.3 Conclusion 

I conducted the first GWAS of UHPLC-measured transferrin glycome (35 glycan 

traits, N = 1890), and identified ten significantly associated loci, two of which (near 

FOXI1 and MSR1 genes) had not previously been associated with the 

glycosylation of any protein. 

By comparing the glycan-associated loci of transferrin with those of IgG (24 

glycan traits, N = 2020), I was able to describe for the first time similarities and 

differences in the genes and variants contributing to the glycome of these two 

proteins. When focusing on loci containing genes encoding glycosyltransferase, 

enzymes that play a key role in the glycosylation process, we found both 

associations specific to each protein (transferrin - MGAT5, ST3GAL4 and 

B3GAT1; IgG - ST6GAL1 and MGAT3) and associations shared by the two 

proteins (FUT8 and FUT6). For the shared associations, we showed that 

glycosylation of transferrin and IgG is regulated by independent, protein-specific 

variants in FUT8 and FUT6 genes. In the FUT8 region, these independent 

variants likely regulate the glycosylation of transferrin and IgG in a tissue-specific 

manner, acting through tissue-specific transcription factors HNF1A and IKZF1. 

 

While some low frequency associations were identified (MAF = 0.047 for 

rs6785596 - TF; MAF = 0.018 for rs115399307 - FOXI1; MAF = 0.027 for 

rs41341748 - MSR1), this chapter mainly described common variation associated 

with the transferrin glycome. Similarly, while a stop lost (rs41341748 - MSR1) and 

several missense variants (rs115399307 – FOXI1, rs550897 - NXPE4 and 

rs17855739 - FUT6) (Supplementary Data 9) were identified and described in this 

chapter, the majority of transferrin glycans-associated variants (>60%) were 

classified as intronic by VEP180.In the next chapter, I expand our current 

knowledge on the genetic architecture of the protein glycome by focusing on the 

contribution of low frequency and rare variants having an impact on the gene 

coded product.
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Chapter 3: Rare and low frequency variants contributing to 

variation in the protein glycome 

 

3.1 Background 

 

GWAS studies have successfully identified numerous genetic loci associated with 

complex traits and diseases, but as sample sizes have increased, the effects of 

newly identified variants on trait measurements or disease risk have become 

smaller33. This "omnigenic model" suggests many common variant associations 

emerging from GWAS may not provide a mechanistic understanding of the 

studied trait210. By contrast, rare-variant studies usually detect larger-effect 

variants that can implicate genes whose function is core to the studied trait, 

providing more direct insights into its biology. The contribution of rare variants to 

several human traits is well established, with many disorders being explained by 

individual, highly penetrant alleles35,211. Recent rare-variant studies, aided by 

advances in statistical methods and improved accessibility to sequencing data, 

have not only pinpointed genes with significant association with diseases but 

have also showed that rare variants play an important role in the genetic 

architecture of complex traits and diseases212–214. 

 

All protein glycome studies so far, including the one reported in Chapter 2, have 

used single-variant GWAS tests to investigate the genetic regulation of 

glycosylation, succeeding in identifying mainly common associated variants, 

located in non-coding regions of the genome131–138,215. Therefore, the contribution 

of low frequency and rare variants (MAF < 5%) on glycan variation, and their 

possible impact on human health, has not been thoroughly explored. In this 

chapter, I employ multiple gene-based aggregation tests (i.e. burden test, SKAT 

and omnibus tests such as SKAT-O) to examine the effect of rare, predicted loss-

of-function (pLoF) and missense variants from whole exome sequencing (WES) 

on transferrin and IgG glycan traits. Details about the number of transferrin and 

IgG glycan traits analysed, the different cohorts used, and their sample size are 
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reported in Supplementary Figure 1. In addition to the directly measured glycan 

structures, (35 for transferrin and 24 for IgG) which were analysed in Chapter 2, 

in this Chapter I also include several glycan derived traits. These derived traits 

(16 for transferrin as described in Supplementary Table 15 of this chapter, 54 as 

defined by Huffman et al.141 plus 16 as detailed in the Supplementary Table 16 

of this Chapter for IgG) represent common biologically meaningful features 

shared among several measured glycans or the overall presence of a certain 

sugar structure on the totality of glycan traits measured (e.g. percentage of 

fucosylated glycans, triantennary glycans, monogalactosylated glycans, etc.). For 

transferrin glycan traits, the individuals studied in this Chapter are the same 

analysed in Chapter 2 (VIKING N=952, batch 2 of CROATIA-Korcula N=938). For 

IgG glycans instead, additional cohort/sample size are added (ORCADES 

N=1959, batch 1 of CROATIA-Korcula N=849) to the individuals assayed in 

Chapter 2 (VIKING N=1079, batch 2 of CROATIA-Korcula N=941). 

 

In addition to increasing statistical power by testing the cumulative effects of 

multiple rare variants in genetic regions, I also benefited from the favourable 

features of genetically isolated populations - the increase in frequency of some 

otherwise rare variants, due to high genetic drift in these populations, resulting in 

increased power to identify rare variant associations. Further, WES studies allow 

for the identification of rare variants with a large impact on the coded product, 

which often have a more direct role in biological mechanisms. I also investigated 

the potential impact of rare variants associated with glycosylation on health-

related traits. Chapter 2 expanded the current knowledge of genetic architecture 

underlying human glycomic variation by identifying genetic variants contributing 

to glycosylation of transferrin, a previously unstudied protein in this sense. In this 

chapter I explore the effect of rare genetic variation on protein glycosylation.  
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3.2 Manuscript pre-print 

 

The following chapter is based on a manuscript submitted to a preprint server. A 

copy of the manuscript (available at 

https://www.medrxiv.org/content/10.1101/2022.12.26.22283911v1) is included 

below, with permission from the co-authors. 

 

Exome sequencing reveals aggregates of rare variants in 

glycosyltransferase and other genes influencing immunoglobulin G 

and transferrin glycosylation 

 

Arianna Landini1,2, Paul R.H.J. Timmers1,2, Azra Frkatović-Hodžić3, Irena 

Trbojević-Akmačić3, Frano Vučković3, Tea Pribić, Regeneron Genetics Center4, 

Gannie Tzoneva4, Alan R. Shuldiner4, Ozren Polašek5,6, Caroline Hayward1, 

Gordan Lauc3,7, James F. Wilson*1,2 & Lucija Klarić*1 

1 MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, 

Edinburgh, United Kingdom 

2 Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, United 

Kingdom 

3 Genos Glycoscience Research Laboratory, Zagreb, Croatia 

4 Regeneron Genetics Center, Tarrytown, NY, USA 

5 Department of Public Health, School of Medicine, University of Split, Split, Croatia 

6 Algebra University College, Zagreb, Croatia 

7 Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia 

* Authors contributed equally. 

Correspondence to: J.F.W ( ) or L.K. ( ) 

 

In this study, I conducted gene-based aggregation analysis, GWAS and ExWAS 

of the transferrin and IgG glycome, and gene-based aggregation analysis of 

health-related traits. I used pre-processed glycan data and formulas for 

calculating derived glycan traits developed by Irena Trbojević-Akmačić and Azra 

Frkatović-Hodžić, as well as clean exome sequence data provided by Regeneron 

and a gene-based aggregation analysis pipeline created by Paul R.H.J. Timmers. 

https://www.medrxiv.org/content/10.1101/2022.12.26.22283911v1
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I wrote the first draft of the manuscript, with significant contributions from Lucija 

Klarić on the interpretation of rare variant associations independent of ExWAS 

signals and link between transferrin glycosylation and human health.  
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Introduction 

Genome-wide association studies (GWAS) have so far identified thousands of 

loci associated with human complex traits and diseases. However, the large 

majority of these variants are found in noncoding regions of the genome216, 

posing a challenge when attempting to uncover their functional impact on the 

phenotype. On the contrary, whole-exome sequencing (WES) studies offer the 

opportunity to identify rare variants of larger effect in the encoded protein, such 

as predicted loss of function (pLoF) and missense variants, for which causal 

biological mechanisms are generally easier to elucidate217. Methods for exome-

wide rare variant analysis have been successfully employed to discover variants 

and genes associated with both complex molecular traits157 and diseases12,36. 

While single-variant tests, such as GWAS, are largely adopted to explore 

associations of common genetic variants with phenotypes of interest, they have 

little power to identify rare variant associations, due to the low number of 

observations. Therefore, a set of methods testing cumulative effects of multiple 

rare variants in genetic regions, where rare variants are grouped at the gene level 

(also known as ‘masks’) via a collapsing test, such as burden tests, or variance-

component tests (e.g. sequence kernel association test, SKAT218) were 

developed. In addition to increasing the statistical power by aggregating multiple 

rare-variants, using genetically isolated populations can provide unique 

opportunities for novel discovery in an association study219. Recent bottlenecks, 

restricted immigration and limited population size lead to increased genetic drift. 

Consequently, in such populations some otherwise rare variants can substantially 

increase in frequency compared to the general population, therefore increasing 

association power for these variants. 

Glycosylation is one of the most common post-translational modifications, where 

sugar residues, called glycans, are attached to the surface of proteins. Changes 

in protein N-glycosylation patterns have been described in the ageing 

process220,221 and in a wide variety of complex diseases, including autoimmune 

diseases222, diabetes123, cardiovascular diseases223, neurodegenerative 

diseases224 and cancer225. Despite glycans having an important role in human 
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health and serving as potential biomarkers in clinical prognosis and diagnosis129, 

we have just started scratching the surface of the complex network of genes 

regulating protein glycosylation. All studies published to date exploring the 

genetic regulation of total plasma protein, immunoglobulin G (IgG) and transferrin 

N-glycosylation have employed single variant-based GWAS tests, mostly 

uncovering common variants located in non-coding regions of the genome131–

133,135–138,215. Rare variants contributing to glycan variation, and their impact on 

human health, thus remain unexplored. 

To address this knowledge gap, we used multiple gene-based aggregation tests 

to investigate how rare (MAF<5%) pLoF and missense variants from whole 

exome sequencing affect 51 transferrin (N = 1907) and 94 IgG (N = 4912) glycan 

traits in European-descent cohorts. IgG is both the most abundant antibody and 

one of the most abundant proteins in human serum. It contains evolutionary 

conserved N-glycosylation sites in the constant region of each of its heavy chains, 

occupied by biantennary, largely core-fucosylated and partially truncated glycan 

structures, that may carry a bisecting N-acetylglucosamine and sialic acid 

residues226,227. Transferrin is a blood plasma glycoprotein that binds iron (Fe) and 

consequently mediates its transport through blood plasma. Human transferrin 

has two N-glycosylation sites, with biantennary disialylated digalactosylated 

glycan structure without fucose being the most abundant glycan attached173,174.  

In this study, we used gene-based aggregation of rare variants to identify several 

genes associated with transferrin and IgG glycosylation traits. Significant genes 

include known protein glycosylation genes as well as novel genes with no 

previously known role in post-translational modification. Importantly, several 

associations would not have been detectable by single-point analysis and one 

association was detected as result of enrichment of rare variants in population 

isolates. Finally, we highlight the impact of rare variation in these genes on health-

related traits by performing gene-based aggregation tests of 116 health-related 

traits together with gene lookups in public repositories of gene-based association 

tests. 
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Results 

Exome variant annotation 

To assess the effect of rare genetic variants on glycosylation of two proteins, we 

sequenced the exomes of 4,801 participants of European ancestry. After quality 

control, a total of 233,820 distinct autosomal coding genetic variants were 

available in the ORCADES cohort (N=2090), 244,649 in the VIKING cohort 

(N=2106) and 340,203 in the CROATIA-Korcula cohort (N=2872). Percentages 

of variants for each effect category in the total sequenced coding variation are 

similar across the three cohorts (Table 1). More than half (~53%) of the 

sequenced coding variants are missense variants, of which nearly half (~28% of 

total coding variation) are classified as likely or possibly deleterious by multiple 

variant effect predictor algorithms (see Methods). The second most represented 

effect category is synonymous mutations (~33%), followed by variants in splice 

regions (~8%), predicted loss of function (pLoF) (~4%) and in-frame 

insertions/deletions (~1.5%). Around one quarter of coding variants in the 

ORCADES and VIKING cohorts are singletons (minor allele count, MAC=1); this 

percentage is instead higher in CROATIA-Korcula cohort (~35%), possibly due 

to the larger sequenced sample size. 
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Table 1. Number of coding exome variants sequenced in the complete 

sample of 3 isolated cohorts. Counts and prevalence of autosomal variants 

observed in WES-targeted regions across all individuals in the ORCADES, 

CROATIA-Korcula and VIKING cohort, by type or functional class for all and for 

singleton variants (MAC= 1). 

 ORCADES (N=2090) 
CROATIA-Korcula 

(N=2872) VIKING (N=2106) 

Variant category 
No. of 

variants 

% of 
total 

coding 
variants 

Variants 
% with 
MAC=1 

No. of 
variants 

% of 
total 

coding 
variants 

Variants 
% with 
MAC=1 

No. of 
variants 

% of 
total 

coding 
variants 

Variants 
% with 
MAC=1 

coding variants 233,820  25.1% 340,203  35.5% 244,649  28.9% 

pLOF 8639 3.69% 37.1% 12,970 3.81% 47.2% 9025 3.69% 41.4% 

Splice acceptor 872 0.37% 37.8% 1309 0.38% 45.5% 945 0.39% 42.7% 

Splice donor 1042 0.45% 37.5% 1506 0.44% 48.1% 1079 0.44% 40.4% 

Stop gained 2833 1.21% 36.8% 4171 1.23% 47% 2879 1.18% 41.8% 

Frameshift 3401 1.45% 37.8% 5274 1.55% 47.9% 3583 1.46% 42.1% 

Stop lost 151 0.06% 32.5% 244 0.07% 43% 182 0.07% 39% 

Start lost 340 0.15% 30% 466 0.14% 44.2% 357 0.15% 30.3% 

Missense 124,416 53.2% 27% 183,056 53.8% 37.6% 130,299 53.3% 30.6% 

Likely benign (0-1) 56,366 24.1% 21.8% 80,777 23.7% 31.6% 59,141 24.2% 25.4% 

Possibly 
deleterious (2-3) 31,693 13.5% 28.1% 47,235 13.9% 39.1% 33,138 13.5% 31.6% 

Likely deleterious 
(4-5) 35,728 15.3% 34.2% 54,187 15.9% 45.4% 37,384 15.3% 38.2% 

Unclassified 
missense 629 0.27% 23% 857 0.25% 29.3% 636 0.26% 23.1% 

Splice region 18,580 7.95% 24.7% 26660 7.84% 32.4% 19,297 7.89% 27.8% 

In-frame indel 3383 1.45% 21.5% 5244 1.54% 29.5% 3606 1.47% 26% 

Protein altering 3 0% 33.3% 4 0% 25% 2 0% 0% 

Stop retained 1 0% 0% 2 0% 50% 1 0% 25.2% 

Synonymous 78,798 33.7% 21.1% 112,267 33% 31.6% 82,419 33.7% 100% 
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Exome-wide aggregated rare variant analysis of transferrin and IgG glycomes 

We performed exome-wide gene-based tests across 51 transferrin traits 

(glycome subset of CROATIA-Korcula N = 948, VIKING N = 959) and 94 IgG 

glycan traits (glycome subset of ORCADES N = 1960, CROATIA-Korcula N = 

1866, VIKING N = 1086), testing low frequency and rare (MAF <5%) pLoF and 

missense variants. In total, we identified 16 significant associations for transferrin- 

(Supplementary Table 1) and 32 significant associations for IgG- (Supplementary 

table 2) glycan traits, at Bonferroni-corrected p-values of 8.06x10-8 and 1.19x10-

7, respectively (Figure 1, Table 2). Most gene-aggregated rare variants were 

associated with protein-specific glycans (transferrin: variants in FUT6, TIRAP, 

MSR1 and FOXI1 genes, IgG: variants in MGAT3, ST6GAL1 and RFXAP genes); 

only FUT8 was associated with glycans from both proteins (Table 2, 

Supplementary Tables 1 and 2). Almost all identified genes encode key enzymes 

in protein glycosylation (MGAT3, ST6GAL1, FUT6, FUT8) or have been 

previously associated with transferrin and IgG glycan traits in GWAS analysis 

(MSR1, FOXI1)135,215. The exceptions are TIRAP and RFXAP, which have no 

previously known link to protein glycosylation. We successfully replicated (p-

value < 3.2x10-4 for transferrin, p-value < 5.9x10-4 for IgG) associations of glycans 

with low-frequency and rare variants from 4 genes - FUT6 and TIRAP with 

transferrin glycans, and FUT8 and MGAT3 for IgG glycans (Table 2) - as 

frequencies of variants in these genes are similar across the studied cohorts 

(Supplementary Table 3). While the associations of IgG glycans and variants from 

FUT8 replicated, the association of transferrin glycans with variants from the 

same gene did not reach the significance threshold for replication (p-value in 

VIKING = 1.7x10-3), likely because of the 7-fold decreased frequency of the 

rs2229678 variant in the VIKING (MAF = 0.0056) compared to CROATIA-Korcula 

(MAF = 0.049) cohort (Supplementary Table 4). However, given the known 

biological role of FUT8 in protein glycosylation as a fucosyltransferase (one of the 

enzymes involved in the synthesis of glycans), we believe this association to be 

real. Associations of rare variants from the CROATIA-Korcula cohort in the MSR1 

gene with transferrin glycosylation also did not formally replicate in the VIKING 
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cohort (p-value = 8.6x10-4) (Table 2). However, the cumulative allele count of rare 

variants in this gene is different between CROATIA-Korcula (MAC=46) and the 

VIKING cohort (MAC=38) (Supplementary Table 3), decreasing the power to 

replicate. We also detected a couple of isolate-specific associations that are 

driven by variants increased in frequency compared to publicly accessible 

biobanks and variant repositories. Namely, the rs750567016 variant in ST6GAL1 

that affects IgG glycosylation is more than 300 times more common in ORCADES 

(MAF = 3.3x10-3) than in UK Biobank (MAF = 1.0x10-5) or gnomAD (MAF = 

9.0x10-6) and is absent from CROATIA-Korcula and VIKING cohorts. The 

rs115399307 variant in FOXI1, associated with transferrin glycosylation, is seven 

times more common in VIKING (MAF = 2.1x10-2) than in CROATIA-Korcula 

cohort (MAF = 2.7x10-3), UK Biobank (MAF = 8.5x10-3) and gnomAD (MAF = 

7.1x10-3) (Supplementary Table 4). While the role of sialyltransferase ST6GAL1 

in IgG glycosylation is well described, the roles of the transcription factor FOXI1 

and the regulatory factor X-associated protein RFXAP still need to be confirmed 

and investigated.  
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Figure 1. Miami plot summarising the results from exome-wide gene-based 

tests for transferrin and IgG glycan traits. Genomic positions of the genes, 

calculated as the mean position of variants included in the reported mask, are 

labelled on the x-axis and the –log10 of the p-value for each rare-variants 

aggregating test on the y-axis. For each gene-glycan association, the lowest p-

value across multiple masks, multiple variant aggregate tests and cohorts was 

selected for plotting. The Bonferroni-corrected significance threshold for 

transferrin glycan traits (horizontal red line in the top part of the plot) corresponds 

to 8.06x10-8, while Bonferroni-corrected threshold for the IgG glycan traits 

(horizontal red line in the bottom part of the plot) corresponds to 1.19x10-7. Genes 

significantly associated with transferrin/IgG glycan traits are indicated with a 

triangle and labelled, while genes not passing the significance threshold are 

indicated with dots.
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Table 2: Gene-based rare variants associations of transferrin and IgG glycosylation. 

Lead glycan Gene MAF Variants 
N 

variants 
Discovery 

cohort 
Discovery 

P 
Assoc. 

test 
Discovery 

MAF 
Discovery 

AC 
Repl. 

cohort 
Repl. P 

Repl. 
MAF 

Repl. 
AC 

No. of 
glycans 

Transferrin 

TfGP20 FUT8 <0.05 
pLoF and 

deleterious 
(1/5)* 

6 
CROATIA-

Korcula 
6.29x10-20 Burden 0.0111 124 VIKING 

1.73x10-

3 
0.0042 8 3 

TfGP32 FUT6 <0.05 
pLoF and 

deleterious 
(1/5)* 

5 
CROATIA-

Korcula 
4.31x10-18 SKAT 0.0097 90 VIKING 

1.56x10-

14 
0.0072 96 8 

TfGP35 MSR1 <0.05 pLoF 3 
CROATIA-

Korcula 
6.93x10-17 Burden 0.0083 46 VIKING 

8.64x10-

4 
0.01 38 2 

TfGP17 TIRAP <0.05 
pLoF and 

deleterious 
(1/5)* 

3 VIKING 2.17x10-10 SKAT-O 0.0077 44 
CROATIA-

Korcula 
8.12x10-

9 
0.0076 98 2 

TfGP23 FOXI1 <0.05 
pLoF and 
missense 

3 VIKING 1.37x10-8 SKAT-O 0.0074 42 
CROATIA-

Korcula 
1.56x10-

2 
0.0014 8 1 

IgG 

FG2S1/ 
(FG2+FG2S1+FG2S2) 

ST6GAL1 <0.01 
pLoF and 
missense 

2 ORCADES 9.82x10-22 Burden 0.0019 15 - - - - 9 

Fn/(Bn+FBn) MGAT3 <0.01 
pLoF and 

deleterious 
(1/5)* 

4 ORCADES 2.31x10-10 
SMMAT-

E 
0.0021 33 

CROATIA-
Korcula 

6.57x10-

9 
0.0012 29 17 
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FG1n total/G1n FUT8 <0.05 
pLoF and 
missense 

7 
CROATIA-

Korcula 
6.74x10-8 Burden 0.0072 177 ORCADES 

3.04x10-

6 
0.0037 43 5 

GP21 RFXAP <0.01 
pLoF and 
missense 

2 ORCADES 1.04x10-7 
SMMAT-

E 
0.0033 26 VIKING 

6.29x10-

2 
0.0009 2 1 

Lead glycan - glycan trait reporting the strongest rare-variants association at the gene. Gene – gene for which rare variants are grouped. MAF - the highest allele frequency 
of variants aggregated for the mask. Variants - functional consequence of variants in the mask, aggregated in the given gene (pLoF – predicted loss of function: * denotes 
the number of algorithms predicting the missense variant to be deleterious). N variants - number of variants included in the mask. Discovery cohort - cohort reporting the 
lower p-value for the glycan-gene association. Discovery/Repl. P - p-value of the gene-based association with the lead glycan trait in the discovery/replication cohort. Assoc. 
test – gene-based association test for which p-value is reported. Discovery/repl. MAF - mean minor allele frequency of variants from the mask in the discovery/replication 
cohort. Discovery/repl. AC - sum of allele counts of variants from the mask in the discovery/replication cohort. Repl. Cohort - cohort reporting the higher p-value for the 
glycan-gene association. No. of glycans - number of other glycan traits associated with variants from the same mask. Results for transferrin glycome are reported at the top 
of the table, while results for IgG glycome are reported at the bottom of the table. Discovery significance threshold is 8.06x10-8 for transferrin and 1.19x10-7 for IgG glycans. 
Replication significance threshold is 3.23x10-4 for transferrin and 5.95x10-4 for IgG glycans. 
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IgG glycans gene-based aggregation meta-analysis 

To further increase statistical power, we performed gene-based aggregation 

meta-analysis of IgG glycan traits for ORCADES and VIKING cohorts. In addition 

to two genes already found to be associated with IgG in the cohort-specific 

analysis (MGAT3 and ST6GAL1), the combined analysis of VIKING and 

ORCADES cohort added FUT6 to the list of genes whose rare variants are 

significantly (p-value<1.19x10-7) associated with IgG glycan traits 

(Supplementary Table 5). FUT6 is another gene known to be involved in 

glycosylation135–138, encoding a glycosyltransferase enzyme that catalyses the 

transfer of fucose moieties to a growing glycan chain.  

 

Genetic architecture of aggregated effects of rare-variants 

To better understand the genetic architecture of identified associations, we next 

assessed whether our findings could be discoverable within a GWAS framework 

and whether they are driven by single variants or multiple rare variants working 

in concert to affect levels of transferrin/IgG glycosylation. 

We first performed GWAS on imputed genotypes for each glycan trait and then 

repeated the rare variant association tests incorporating the dosages of GWAS 

sentinel SNPs as additional covariates. Genome-wide significant (transferrin p-

value<1.61x10-9, IgG p-value<2.38x10-9) associations reported in this study 

(Supplementary Table 6 for transferrin glycans and Supplementary Table 7 for 

IgG glycans) have been described in further details in Landini et al.215 and Klarić 

et al.135. Overall, aggregated associations with variants from 3 out of 8 genes, 

FUT8, ST6GAL1 and MGAT3, remained significant (p-value <8.06x10-8 for 

transferrin and p-value<1.19x10-7 for IgG) after conditioning on sentinel GWAS 

associations (Table 3). For one gene, RFXAP, there were no significant 

associations in the GWAS analysis, while the remaining four gene-based 

associations (FUT6, MSR1, FOXI1 and TIRAP) were explained by sentinel 

GWAS variants. For three of these genes, FUT6, MSR1 and FOXI1, the GWAS 



 

86 

sentinel variants are low frequency (0.02<MAF<0.05; Supplementary Table 8). 

More specifically, for transferrin glycans, 14 out of the 16 glycome-gene 

aggregate pairs fail to reach genome-wide significance (p-value <8.06x10-8) after 

conditioning on GWAS sentinel SNPs (Supplementary Table 9), meaning that a 

considerable part of the rare variant signal was being tagged by variants 

identifiable by GWAS. In contrast, for IgG glycans, 24 of the 32 glycome-gene 

aggregate pairs remained significant (p-value<1.19x10-7), even after adjusting for 

GWAS sentinel SNPs (Supplementary Table 10).  

Next, we performed single-point exome-wide association analysis (ExWAS) and 

repeated the aggregated rare variant association tests while conditioning on the 

sentinel ExWAS associations. In this way we tested whether the rare-variants 

associations with glycosylation were driven by a single variant (i.e. showed an 

attenuated signal after conditioning on the sentinel ExWAS variant) or were 

actually affected by multiple rare variants in concert (i.e. associations remain 

significant after the conditioning). Two of the associations, between variants in 

the FUT8 gene and IgG glycans, and variants in the MGAT3 gene and transferrin 

glycans, remain significant after conditioning on the sentinel ExWAS variant 

(Table 3). Upon closer inspection, for both of these genes, the sentinel ExWAS 

variant was a common variant that is also an eQTL for the gene in blood 

(eQTLGen228: rs35949016, FUT8 eQTL, p-value = 6.510-159; rs6001566, 

MGAT3 eQTL p-value = 3.910-230) (Supplementary Table 8). Hence, it appears 

that glycosylation is affected by common variants and independently by 

aggregates of rare variants in these two genes. Indeed, by looking at the single-

point effects of each rare variant from the mask, we can see that multiple 

independent rare variants contribute to the effect on glycosylation levels 

(Supplementary Table 11). 

In summary, four of the identified associations, three with low-frequency variants 

from FUT6, MSR1 and FOXI1 and one with a common variant from the TIRAP 

gene, could have been discovered using a GWAS of imputed genotype data. On 

the other hand, the rare variant association at ST6GAL1 gene could only have 
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been discovered using an ExWAS, as it is too rare to be imputed well. Finally, 

associations with variants from two genes, FUT8 and MGAT3, are driven by 

multiple rare variants simultaneously contributing to glycosylation of IgG and 

transferrin. Also the rare variant association at RFXAP gene could not have been 

discovered by either GWAS or ExWAS as there were no significant single-point 

associations. However, it is important to note that we could not replicate this 

association because the variants from its mask are depleted in the other studied 

cohorts (Supplementary Table 4).
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Table 3: Genetic architecture of aggregated effect of rare variant associations when conditioning on sentinel variants 

from GWAS or ExWAS analysis. Two associations, those with variants from the FUT8 and MGAT3 regions remain significant 

after conditioning on GWAS/ExWAS sentinel variants. Associations with variants from the MSR1 gene are dependent on both 

GWAS and ExWAS sentinel variants. The association with variants from the ST6GAL1 gene is driven by the sentinel ExWAS 

variant, which was not present in the imputed GWAS. 

 

Lead glycan Gene MAF Variants 
Association 

test 
cohort Discovery P GWAS adj p ExWAS adj p 

Transferrin 

TfGP20 FUT8 <0.05 
pLoF and 

deleterious 
(1/5)* 

Burden 
CROATIA-

Korcula 
6.29x10-20 2.75x10-12 2.70 x10-15 

TfGP32 FUT6 <0.05 
pLoF and 

deleterious 
(1/5)* 

SKAT 
CROATIA-

Korcula 
4.31x10-18 3.07x10-1 2.94 x10-1 

TfGP35 MSR1 <0.05 pLoF Burden 
CROATIA-

Korcula 
6.93x10-17 6.62x10-7 3.70 x10-3 

TfGP17 TIRAP <0.05 
pLoF and 

deleterious 
(1/5)* 

SKAT-O VIKING 2.17x10-10 8.61x10-1 1.38 x10-1 

TfGP23 FOXI1 <0.05 
pLoF and 
missense 

SKAT-O VIKING 1.37x10-08 6.85x10-1 6.38 x10-1 
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IgG 

FG2S1/(FG2+F
G2S1+FG2S2) 

ST6GAL1 <0.01 
pLoF and 
missense 

Burden ORCADES 9.82x10-22 6.99x10-19 1.44 x10-2 

Fn/(Bn+FBn) MGAT3 <0.01 
pLoF and 

deleterious 
(1/5)* 

SMMAT-E ORCADES 2.31x10-10 5.47x10-10 5.68 x10-10 

FG1n total/G1n FUT8 <0.05 
pLoF and 
missense 

Burden 
CROATIA-

Korcula 
6.74x10-8 2.31x10-6 8.4x10-6 

GP21 RFXAP <0.01 
pLoF and 
missense 

SMMAT-E ORCADES 1.04x10-7 1.04x10-7** 1.04x10-7** 

Lead glycan - glycan trait reporting the strongest rare-variants association at the gene. Gene – gene for which rare variants are grouped. MAF - the highest allele 
frequency of variants aggregated for the mask. Variants - functional consequence of variants in the mask, aggregated in the given gene (pLoF – predicted loss of 
function: * denotes the number of algorithms predicting the missense variant to be deleterious). Association test – gene-based association test for which p-value is 
reported. Cohort - cohort reporting the lower p-value for the glycan-gene association. Discovery P - p-value of the gene-based association test with the lead glycan 
trait in the cohort. GWAS adj p – p-value of association test when conditioning on the significant variants from the GWAS analysis; ** no significant GWAS variants 
were found. ExWAS adj p – p-value of association test when conditioning on the significant variants from the ExWAS analysis; ** no significant ExWAS variants 
were found. Results for transferrin glycome are reported at the top of the table, while results for IgG glycome are reported at the bottom of the table. P-value 
significance threshold is 8.06x10-8 for transferrin and 1.19x10-7 for IgG glycans. 
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Links to health-related traits  

We next wanted to assess the potential impact of rare protein glycosylation 

variants on health. Since some of the gene-glycan associations are population-

specific, stemming from the genetic drift in isolated populations, we first 

performed “gene-level PheWAS” with quantitative health-related traits measured 

in studied cohorts. At the same time, since these cohorts, because of their sample 

size, might be underpowered to detect associations with common diseases, we 

queried public repositories of aggregated rare-variants associations for these 

genes. 

We performed “gene-level PheWAS” with 116 quantitative health-related traits 

measured in the ORCADES, CROATIA-Korcula and VIKING cohorts, limited to 

the genes containing exonic pLoF and missense variants that were associated 

with transferrin or IgG glycome variation (Table 2). When possible, we sought to 

perform the analysis in the same cohort where the glycan-gene association was 

discovered. The only significant (p-value<5.410-5) association was with 

transferrin glycosylation-associated rare variants from the MSR1 gene and blood 

levels of HbA1c in the VIKING cohort (Supplementary Table 12). However, the 

association with HbA1c levels is not significant in CROATIA-Korcula, the cohort 

where we discovered the connection between MSR1 and transferrin 

glycosylation, and it also does not replicate in ORCADES, suggesting that it might 

be a false positive association. We next checked whether any of the glycome-

associated genes were significantly associated with health-related traits in UK 

Biobank. We used two repositories of aggregated rare-variants associations: 

Genebass229 and the AstraZeneca PheWAS portal230. Missense variants from the 

MSR1 gene were significantly associated with insulin-like growth factor 1 levels 

(IGF1) in both Genebass (SKAT-O p-value = 4.6x10-10) and the PheWAS portal 

(p-value = 1.6x10-24, for the “ptv5pcnt” collapsing model).   
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Discussion 

Statistical power to detect associations with rare genetic variants can be 

increased by aggregating the association signals across multiple rare variants in 

a gene231, or by using genetically isolated populations where, due to genetic drift, 

some variants are increased in frequency compared to a general population219. 

Further, intermediate phenotypes, more proximal to the genes and consequently 

more strongly influenced by them, can be used as “proxies’ of complex diseases 

to boost power. Glycosylation, one of the most common post-translational 

modifications, is one such intermediate phenotype and has been implicated in 

many diseases222,224,225. Here, we utilised the power of genetic isolates, 

aggregation of multiple rare variants and intermediate phenotypes to study the 

effect of rare variants on glycosylation of two proteins and their effect on disease. 

We performed multiple gene-based aggregation tests to assess associations with 

transferrin (N = 1907) and IgG (N = 4912) glycan traits in three isolated cohorts 

of European descent, testing rare (MAF<5%) pLoF and missense variants from 

whole exome sequencing. We found rare variants from 8 genes contributing to 

glycan levels of either IgG or transferrin. As previously observed in GWAS using 

imputed genotypes, transferrin and IgG glycans showed mostly protein-specific 

gene-based associations215, including genes encoding known glycosylation 

enzymes (transferrin - TIRAP, a gene in the proximity of ST3GAL4; IgG - 

ST6GAL1 and MGAT3), transcription factors (transferrin - FOXI1), as well as 

other genes (transferrin - MSR1; IgG - RFXAP). On the other hand, rare variants 

in FUT8 and FUT6, genes encoding fucosyltransferase enzymes adding core and 

antennary fucose structures to the synthesised glycan, were associated with 

glycosylation of both proteins. Previously we showed that, while glycosylation of 

both transferrin and IgG proteins is associated with genes encoding FUT6 and 

FUT8 fucosylation enzymes, these associations are driven by independent, 

protein-specific variants mapped to the regulatory region of the two genes215. 

Accordingly, here we identified rare variants in the exonic portions of FUT8 and 

FUT6, acting independently or in concert with GWAS-identifiable variants.  
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We successfully replicated 4 gene-glycan associations (FUT6, FUT8, TIRAP and 

MGAT3); however, noting variants in certain genes were lower in frequency 

(MSR1 and FOXI1) or completely absent (ST6GAL1 and RFXAP) in replication 

cohorts, we were underpowered to replicate the glycan associations with the 

remaining four genes. Two of the 8 identified associations, the ones with variants 

from the FUT8 and MGAT3 genes, were driven by multiple rare variants 

simultaneously contributing to protein glycosylation. The association with variants 

from the ST6GAL1 gene would have been discovered using single-point ExWAS 

(but not GWAS). Interestingly, for all three of these genes, we have also detected 

common variants independently affecting IgG and transferrin glycans. While four 

associations (TIRAP, FUT6, MSR1 and FOXI1) could have been discovered 

using a GWAS of imputed genotype data, three of them (FUT6, MSR1 and 

FOXI1) were with low frequency variants (0.02 < MAF < 0.05). The associations 

with the RFXAP gene could not have been discovered by either GWAS or ExWAS 

single-point analysis. 

Except for RFXAP and TIRAP, all of 8 identified genes have already been 

associated with IgG and transferrin glycosylation in previous GWAS studies135–

138,215. The novel gene TIRAP is located in close proximity to ST3GAL4, another 

glycosyltransferase-coding gene known to be associated with transferrin 

glycosylation. TIRAP has a function in the innate immune system, where it is 

involved in cytokine secretion and the inflammatory response232,233. The lead rare 

variant in the mask, rs8177399 (Supplementary Table 3), in addition to being an 

expression QTL (eQTL) for TIRAP and several other genes, is also a splicing 

QTL (sQTL) for ST3GAL4 in whole blood (GTEx234, p-value = 1.9x10-8). The 

regulatory factor X-associated protein encoded by RFXAP gene, whose variants 

are associated with IgG glycans, is part of a multimeric complex, called the RFX 

DNA-binding complex, that binds to certain major histocompatibility (MHC) class 

II gene promoters and activates their transcription. MHC-II molecules are 

transmembrane proteins, found on the surface of professional antigen-presenting 

cells (including B cells)235, which have a central role in development and control 

of the immune response. While the mechanism of TIRAP’s influence on the 
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glycome could be through controlling the splicing of the known 

glycosyltransferase enzyme ST3GAL4, the precise role of RFXAP in protein 

glycosylation still needs to be established. 

Changes in the glycosylation patterns are often observed in a wide range of 

pathological states, such as cancer, inflammatory, autoimmune, 

neurodegenerative and cardiovascular diseases236–239. We thus assessed the 

potential involvement of glycome-associated genes in health, by performing, in 

the same three cohorts, gene-based association tests of 116 quantitative health-

related traits, limited to genes whose rare variants we found associated with the 

protein glycomes. However, given the likely small effect-size of variants on 

complex diseases, we did not find any significant associations. On the other hand, 

using publicly available repositories of gene-based associations in the UK 

Biobank data, we found that the low-frequency,   stop-gained variant rs41341748 

from MSR1 (associated with transferrin glycosylation)  is also associated with 

blood levels of insulin-like growth factor 1 (IGF1). IGF1 is a hormone with 

significant structural and functional similarities to insulin: lower levels of IGF1 are 

associated with higher risk of Type 1 and 2 diabetes mellitus240,241. Recently, a 

rare deleterious missense variant in IGF1 receptor (IGF1R) was found to be 

significantly associated with Type 2 diabetes in UK Biobank, further corroborating 

the link between IGF1 and diabetes242. In addition, genetic variants in MSR1 have 

been previously associated with plasma levels of the galectin-3-binding protein81. 

Similarly to IGF1, galectin-3 has been identified as a marker and a pathogenic 

factor in type 2 diabetes, with the serum protein levels increased in type 2 

diabetes patients243–247. An important part of iron delivery depends on recycling 

transferrin via clathrin-mediated endocytosis. Interestingly, binding of galectin-3 

to transferrin can affect its intracellular trafficking248,249. Based on the 

glycosylation profile, galectin-3 was found bound only to a select, minor fraction 

(~5%) of transferrin, while interestingly none or little was bound to IgG249. Overall, 

variants from the MSR1 gene seem to have a pleiotropic effect on transferrin 

glycosylation, and, based on literature, on galectin-3 and IGF1. In turn, both 

galectin-3 and IGF1 are reported to be associated with type 2 diabetes. The 
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potential role of glycosylation of transferrin in these processes still needs to be 

established. 

In conclusion, we identified rare pLoF and missense variants associated with 

transferrin and IgG N-glycome, in both known and not previously reported genes 

(TIRAP, RFXAP). By utilising the power of genetic isolates and aggregated 

effects of rare variants, we discovered biologically relevant associations with a 

300-fold up-drifted variant in the ORCADES cohort (in the sialyltransferase gene, 

ST6GAL1, affecting levels of sialylation of IgG) and associations independent of 

single-point GWAS and ExWAS analyses (in glycosyltransferase genes FUT8 

and MGAT3). Interestingly, many of glycan traits are influenced both by common 

and rare variants, revealing a complex genetic architecture of these intermediate 

phenotypes. While we did not find any robust links between glycome-associated 

genes and diseases in studied cohorts, we discover a potential link between 

transferrin glycosylation, galectin-3, IGF1 and diabetes. The exact mechanism 

behind these connections still needs to be confirmed and further explored. This 

study shows that, utilising the power of genetic isolates, gene-based aggregation 

tests and intermediate phenotypes such as glycosylation, rare variant 

associations are detectable even in relatively small sample sizes (low thousands). 

However, larger cohorts would be required to identify the contribution of rare 

variants to multifactorial, complex diseases.
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Methods 

Ethics 

All studies were approved by local research ethics committees and all participants 

have given written informed consent. The ORCADES study was approved by the 

NHS Orkney Research Ethics Committee and the North of Scotland REC. The 

CROATIA-Korcula study was approved by the Ethics Committee of the Medical 

School, University of Split (approval ID: 2181-198-03-04/10-11-0008). The 

VIKING study was approved by the South East Scotland Research Ethics 

Committee, NHS Lothian (reference: 12/SS/0151). 

 

Genotypic data 

Exome sequencing 

The “Goldilocks” exome sequence data for ORCADES, CROATIA-Korcula and 

VIKING cohorts was prepared at the Regeneron Genetics Center, following the 

protocol detailed in Van Hout et al.217 for the UK Biobank whole-exome 

sequencing project. In summary, the multiplexed samples were sequenced on 

the Illumina NovaSeq 6000 platform using S2 flow cells. The raw sequencing data 

was processed by automated analysis using the DNAnexus platform250, where 

files were converted to FASTQ format, and then aligned to GRCh38 genome 

reference using the BWA-mem251. Duplicated reads were identified and flagged 

by the Picard tool252. Genotypes for each individual sample were called using the 

WeCall variant caller253. During quality control, samples genetically identified as 

duplicates, showing disagreement between genetically determined and reported 

sex, high rates of heterozygosity or contamination, low sequence coverage (less 

than 80% of targeted bases achieving 20X coverage) or discordant with 

genotyping chip were excluded. The number of samples removed after quality 

control are listed in Supplementary Table 13 for each cohort. Finally, the 

“Goldilocks” dataset was generated by (i) filtering out genotypes with read depth 
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lower than 7 reads, (ii) keeping variants having at least one heterozygous variant 

genotype with allele balance ratio greater than or equal to 15% (AB ≥ 0.15) or at 

least one homozygous variant genotype, and (iii) filtering out variants with more 

than 10% of missingness and HWE p<10-6. Overall, a total of 2,090 ORCADES 

(820 male and 1,270 female), 2,872 CROATIA-Korcula (1,065 male and 1,807 

female) and 2,108 VIKING (843 male and 1,265 female) participants passed all 

exome sequence and genotype quality control thresholds. A pVCF file containing 

all samples passing quality control was then created using the GLnexus joint 

genotyping tool.254 

Variant annotation 

Exome sequencing variants were annotated as described in Van Hout, et al.217 

In brief, each variant was labelled with the most severe consequence across all 

protein-coding transcripts, implemented using SnpEff255. Gene regions were 

defined according to Ensembl release 85. Variants annotated as stop gained, 

start lost, splice donor, splice acceptor, stop lost and frameshift were considered 

as predicted LOF variants. The deleteriousness of missense variants was 

assessed using the following algorithms and classifications (based on dbNSFP 

3.2): (1) SIFT: “D” (Damaging), (2) Polyphen2_HDIV: “D” (Damaging) or “P” 

(Possibly damaging), (3) Polyphen2_HVAR: “D” (Damaging) or “P” (Possibly 

damaging), (4) LRT256: “D” (Deleterious) and (5) MutationTaster257: “A” (Disease 

causing automatic) or “D” (Disease causing). Missense variants were considered 

“likely deleterious” if predicted as deleterious by all five algorithms, “possibly 

deleterious” if predicted as deleterious by at least one of the algorithms and “likely 

benign” if not predicted as deleterious by any of the algorithms. 

Generation of gene burden masks 

For each gene, we grouped the variants in the gene in four categories (masks), 

based on severity of their functional consequence. Mask 1 included only 

predicted loss-of-function (pLoFs) variants, mask 2 consisted of pLoF variants 

and all missense variants, and masks 3 and 4 contained pLoF and predicted 
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deleterious missense variants (“possibly deleterious” and “likely deleterious” for 

mask 3 and mask 4, respectively). We considered two separate variations of each 

mask based on the frequency of the minor allele of the variants that were 

screened in that group: MAF ≤ 5% and MAF ≤ 1%. Overall, up to 8 burden tests 

were performed for each gene (Supplementary Table 14). Consequently, the 

masks are not independent - certain masks will include the variants listed in a 

different mask and additional, less severe or more frequent variants. 

 

Phenotypic data 

Transferrin and IgG N-glycome quantification 

Transferrin and total IgG N-glycome quantification for ORCADES, VIKING and 

CROATIA-Korcula samples was performed at Genos Glycobiology Laboratory, 

following the protocol described in Trbojević-Akmačić et al.191 for transferrin, in 

Pučić et al.258 for IgG in ORCADES cohort and batch 1 of CROATIA-Korcula 

cohort, in Trbojević-Akmačić et al.259 for IgG in VIKING cohort and batch 2 of 

CROATIA-Korcula cohort. In summary, proteins of interest were first isolated from 

blood plasma (IgG depleted blood plasma, in the case of transferrin) using affinity 

chromatography binding to anti-transferrin antibodies plates for transferrin and 

protein G plates for IgG. The protein isolation step was followed by release and 

labelling of N-glycans and clean-up procedure. IgG N-glycans have been 

released from total IgG (all subclasses). N-glycans were then separated and 

quantified by hydrophilic interaction ultra-high-performance liquid 

chromatography (HILIC-UHPLC). As a result, transferrin and total IgG samples 

were separated into 35 (transferrin: TfGP1 − TfGP35) and 24 (IgG: GP1 − GP24) 

chromatographic peaks. It is worth noting that there is no correspondence 

structure-wise between transferrin TfGP and IgG GP traits labelled with the same 

number. 
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Normalisation and batch correction 

Prior to genetic analysis, raw N-glycan UHPLC data was normalised and batch 

corrected to reduce the experimental variation in measurements. Total area 

normalisation was performed by dividing the area of each chromatographic peak 

(35 for transferrin, 24 for IgG) by the total area of the corresponding 

chromatogram. Due to the multiplicative nature of measurement error and right-

skewness of glycan data, normalised glycan measurements were log10-

transformed. Batch correction was then performed using the empirical Bayes 

approach implemented in the “ComBat” function of the “sva” R package193, 

modelling the technical source of variation (96-well plate number) as batch 

covariate. Batch corrected measurements were then exponentiated back to the 

original scale. Prior to further analysis, each glycan trait was rank transformed to 

normal distribution using the “rntransform” function from the “GenABEL” R 

package194. 

Derived glycan traits 

IgG derived traits analysed included those defined by Huffman et al.141, and were 

calculated using the glycanr R package. In addition, new derived traits were 

calculated for both transferrin and IgG, representing the overall presence of a 

certain sugar structure on the totality of transferrin/IgG N-glycan traits measured 

(e.g. percentage of fucosylation). These newly generated traits are expected to 

give a direct insight in the biological pathway involved in the addition of the sugar 

moiety to glycan structures. Exact formulas used for defining transferrin and IgG 

newly derived traits can be found in Supplementary Tables 15 and 16 

respectively. 

Health-related quantitative traits 

To evaluate the potential effect of rare variants affecting glycome on health-

related phenotypes, in the same cohorts we collected 148 health-related, 

quantitative traits (e.g. anthropological measurements, blood levels of proteins, 

metabolites and biomarkers). Excluding traits with fewer than 800 samples, a total 
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of 116 traits were considered for analysis (75 traits for ORCADES, 79 for VIKING 

and 47 for CROATIA-Korcula cohort). Each health-related trait was rank 

transformed to normal distribution using the “rntransform” function from the 

“GenABEL” R package194, followed by applying the rare-variants association 

pipeline described below. 

 

Gene-based aggregation analysis 

We performed variant Set Mixed Model Association Tests (SMMAT)48 on rank-

transformed glycan traits, fitting a generalised linear mixed model (GLMM) 

adjusting for age, sex, sampling batch in the case of CROATIA-Korcula IgG 

glycan traits, and familial or cryptic relatedness by kinship matrix. The kinship 

matrix was estimated from the genotyped data using the ‘ibs’ function from 

GenABEL R package194. The SMMAT framework includes 4 variant aggregate 

tests: burden test, sequence kernel association test (SKAT), SKAT-O and 

SMMAT-E, a hybrid test combining the burden test and SKAT. The 4 variant 

aggregate tests were performed on 8 different pools of genetic variants, called 

“masks”, described above (Supplementary Table 14). 

Discovery significance threshold was Bonferroni corrected for the approximate 

number of genes in the human genome, 20,000, and the number of independent 

glycan traits, 21 for IgG and 31 for transferrin (0.05/20000/31 = 8.06x10-8 for 

transferrin, 0.05/20000/21 = 1.19x10-7 for IgG). The number of independent 

glycan traits was estimated as the number of principal components that jointly 

explained 99% of the total variance of transferrin/IgG glycan traits in each cohort 

(Supplementary Tables 17 and 18). PCA was calculated on rank-transformed 

glycan traits, separately for each cohort, using the “prcomp” function from 

“factoextra” R package260. A gene association was considered significant if it 

passed the above-described Bonferroni corrected significance threshold in at 

least one of the 4 performed variant aggregate tests and if the cumulative allele 

count of the variants included in the gene was equal or higher than 10. Replication 

significance threshold was defined as P = 0.05 divided by the number of genes 
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and independent glycans to be replicated. For IgG glycans, this threshold was P 

= 5.95x10-4 (P = 0.05/4 genes/21 glycans) and for transferrin glycans, this 

threshold was P = 3.23x10-4 (P = 0.05/5 genes/31 glycans). 

A similar analysis plan was applied to the health-related phenotypes analysed. 

Variant Set Mixed Model Association Tests (SMMAT)48 was performed on rank-

transformed traits, fitting a GLMM adjusting for age, sex, first 20 ancestral 

principal components (PCs), batch covariates when available (e.g. season, time 

of the day and batch/subcohort) and familial or cryptic relatedness.  

 

IgG glycome gene-based aggregation meta-analysis 

Gene-based aggregation analysis of IgG glycan traits for ORCADES and VIKING 

cohorts was repeated following the same approach as previously described, 

except for the restriction that masks included only variants present in both 

cohorts. Since IgG GP3 was not quantified in ORCADES cohort, this glycan was 

excluded from the meta-analysis, bringing the total number of IgG glycan traits 

considered to 93. We then used the “SMMAT.meta” function of “SMMAT” R 

package48 to meta-analyse, for each trait, the two studies. To identify significant 

results we filter results by the previously described Bonferroni-corrected 

significance threshold of 1.19x10-7 and by the cumulative allele count of variants 

included in the gene equal or higher than 10. 

 

Genome-wide association analysis 

Genome-wide association analyses (GWAS) between HRC-imputed genotypes 

and 51 transferrin N-glycan traits were performed in 948 samples from CROATIA-

Korcula and 959 samples from VIKING. GWAS with 94 IgG N-glycan traits were 

performed in 1960 samples from ORCADES, 1866 samples from CROATIA-

Korcula and 1086 samples from VIKING. The sample size of the same cohort 

differs between transferrin and IgG due to the different number of samples 

successfully measured for glycosylation of each protein. Transferrin N-glycan 
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measurements were not available in ORCADES. Rank-transformed glycan traits 

were adjusted for age and sex, as fixed effects, and relatedness (estimated as 

the kinship matrix calculated from genotyped data) as random effect in a linear 

mixed model, calculated using the “polygenic” function from the “GenABEL” R 

package194. Since IgG N-glycan traits for the CROATIA-Korcula cohort were 

measured at two separate occasions, the two were considered as separate 

cohorts. Therefore, for CROATIA-Korcula, rank transformation was performed 

separately in each subcohort. Samples were then merged together for GWAS but 

adding batch (subcohort number - 1 or 2) as fixed effect covariate. Residuals of 

covariate and relatedness correction were tested for association with Haplotype 

Reference Consortium (HRC) r1.1-imputed SNP dosages using the RegScan v. 

0.5 software, applying an additive genetic model of association.  

The genomic control inflation factor (λGC) was calculated for each glycan and 

health-related trait. The mean genomic control inflation factor (λGC) for IgG glycan 

traits was 1.002 (0.982-1.026) in ORCADES, 1 in CROATIA-Korcula (0.971-

1.031) and 0.993 in VIKING cohort (0.972-1.017) cohort; for transferrin glycan 

traits λGC was 1.002 in CROATIA-Korcula (0.982-1.026) and 0.998 in VIKING 

(0.974-1.021) cohort. Overall, the confounding effects of the family structure were 

correctly accounted for in our analyses. 

 

Identification of rare variant associations independent of GWAS and ExWAS 

signals 

To ensure that the rare variant associations identified were independent of 

associations with variants discoverable by a GWAS or single-point exome-wide 

(ExWAS) analysis, we repeated the aggregate analysis while conditioning on the 

sentinel SNPs from the single-variant genome-wide or exome-wide analysis. 

First, we performed GWAS of glycan traits using the same individuals as in the 

analysis of the exome-sequencing data, but using as genotypes SNP dosages 

imputed from the HRC imputation panel, as described above. For each glycan 

trait we defined the sentinel SNPs as the variants having the lowest significant p-
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value (p < 5x10-8) in a 1Mb window, and MAF > 1%. Then we also performed the 

exome-wide association analysis (ExWAS), following exactly the same protocol, 

but with exome sequencing data used for genotypes. We then re-run variant 

aggregate analysis as previously described, but with adjusting the glycan traits 

for the genotype of the sentinel SNPs from the GWAS/ExWAS significant loci, in 

addition to the other covariates listed above. The statistical significance level was 

determined in the same way as outlined in the main analysis above. 

 

Replication of glycome rare associations in different cohorts and associations 

with health-related traits 

To investigate whether glycome rare-variants associations were cohort specific, 

each significant gene-glycan trait pair from the cohort-level discovery analysis 

was tested for associations in the remaining cohorts. The p-value threshold for 

replication was set to 3.23x10-4 for transferrin (0.05/31/5) and 5.95x10-4 for IgG 

(0.05/21/4) glycans, correcting for the number of independent glycan traits (i.e. 

31 for transferrin and 21 for IgG) and the number of discovered glycome-gene 

pairs (i.e. 5 for transferrin and 4 for IgG in gene-based aggregation analysis). 

To investigate whether the glycome associated rare-variants may also affect 

health-related phenotypes, we tested for association each glycome-associated 

gene and 116 health-related traits The significance threshold was set to 5.43x10-

5, correcting for the number of health-related traits (116), and the number of 

discovered glycome-gene pairs and number of glycome-associated genes (8). 

 

3.3 Conclusion 

 

As described in the above pre-print submission, I used gene-based aggregation 

tests to identify rare pLoF and missense variants associated with the transferrin 

(N = 1907) and IgG (N = 4912) N-glycome, in both known (transferrin - FUT8, 

FUT6, MSR1 and FOXI1, as reported in Chapter 2; IgG - ST6GAL1, MGAT3 and 

FUT8) and not previously reported genes (IgG - RFXAP). The synergy of genetic 

isolates and aggregating effects of multiple rare variants enabled identification of 
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genetic associations with protein glycome that would otherwise hardly be 

detectable in the general population, especially given our sample size (low 

thousands). For example, ST6GAL1 rs750567016, affecting IgG glycosylation, is 

a 300-fold up-drifted variant in the ORCADES cohort and much larger sample 

sizes would be needed to detect this association with a biologically relevant gene 

in the general population. Further, multiple rare variants in FUT8, MGAT3 and 

RFXAP, were associated with the transferrin/IgG glycome, independently of 

single-variant GWAS and ExWAS associations. Interestingly, several glycan 

traits are influenced by common and rare variants, suggesting that, at the current 

sample sizes, a mixed discovery strategy aimed at identifying the contribution of 

both common and rare variants, with both small and large effect sizes, should be 

adopted to elucidate the genetic architecture of protein glycome. I did not identify 

any robust links between glycome-associated rare variants and health related 

traits in our cohorts. However, consultation of repositories for aggregated rare-

variants associations suggests a pleiotropic effect of the MSR1, stop gained 

rs41341748 variant on transferrin glycome and blood levels of IGF-1, which have 

been linked to risk of diabetes240,241.. Nevertheless, the underlying mechanism 

behind a potential connection between the transferrin glycome, IGF1 and 

diabetes  is currently speculative and requires to be further explored. Although 

gene-based aggregation tests, combined with intermediate phenotypes, such as 

protein glycome, and genetically isolated populations have demonstrated the 

ability to detect rare variant associations even in relatively small sample sizes 

(low thousands), it would still be beneficial to perform similar analyses in larger 

cohorts to understand the contribution of rare variants in multifactorial, complex 

diseases via protein glycome. I discuss further the topic of statistical power and 

sample size in Chapter 5. Finally, variant annotation in this study was performed 

using several bioinformatics tools, such as SnpEff, SIFT and PolyPhen, which 

allow for rapid classification and prioritisation of candidate variants, reducing the 

need for expensive and labour-intensive functional assays. Nevertheless, these 

in silico methods have inherent caveats and limitations, which I discuss in further 

details in Chapter 5. 
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While Chapter 2 and 3 discussed the genetic architecture of protein glycome, 

genetic variation contributing to another understudied omic trait, the lipidome of 

bile acids, is the focus of the next chapter.
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Chapter 4: Genetic architecture of bile acid lipidome 

4.1 Introduction 

 

After focusing on genetic regulation of protein glycomics, in this chapter I 

investigate the genetic architecture of the bile acid lipidome, another 

understudied omic trait. Primary bile acids are synthesised from cholesterol in the 

liver and, after food ingestion, are secreted into the small intestine, where they 

emulsify lipid-soluble nutrients, promoting their absorption142. Once secreted in 

the gastrointestinal tract, primary bile acids are heavily modified by the gut 

microbiota to generate secondary bile acids. Then, the majority of bile acids are 

returned to the liver143. Therefore, the levels of bile acid in blood serum reflect the 

amount that has escaped extraction from the portal blood and, instead of being 

transported back to the liver, entered the systemic circulation. Bile acids are 

known to be influenced by environmental factors such as sex, with female sex 

and oestrogen playing roles in regulating bile acids production and 

composition261. High oestrogen levels in pregnancy can lead to increased serum 

bile acids, potentially by reducing expression of bile acid receptors and transport 

proteins262. Age-related hormone changes also contribute to differing bile acids 

production in women. This dimorphism is evident in both mice and humans, 

influencing aspects such as the rate of bile acid synthesis and the composition of 

the bile acid pool. Female mice show a larger total bile acid pool than males, 

excrete fewer bile acids in faeces, and have lower cholesterol catabolism via bile 

acid production compared to males263. 

 

Similarly to glycans, bile acids have been involved in both key physiological 

processes, such as lipid and glucose homeostasis, vitamin absorption and 

immunity149,264, and diseases, such as hepatobiliary diseases, inflammatory 

bowel disease and cancer152,265,266. Nevertheless, research focusing on bile acid 

metabolites in a large sample from a general human population, as opposed to a 

disease cohort, is currently lacking267,268. A number of LC–MS/MS methods have 

been developed allowing analysis of free and conjugated BAs without 
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derivatization, however showing disadvantages with time consuming extraction 

procedures, long analysis times or lack of baseline separation of isobaric species. 

Bile acids molecules analysed in the current study have been measured by a LC–

MS/MS method for simultaneous determination of free and conjugated BAs in 

plasma and serum with a runtime of 6.5 min269. 

 

In this chapter, I explore the genetic contributions to plasma bile acid lipidome, 

reporting associations with both common and low-frequency/rare variants and 

also sex-specific association signals. Further, I investigate whether the bile acid-

associated variants have an effect on complex traits or diseases or vice-versa, 

that is whether the complex traits and diseases influence bile acid variability.  
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4.2 Manuscript pre-print 

 

What follows is a manuscript submitted to a preprint server. A copy of the 

manuscript is included below, with permission from the co-authors. 

Supplementary Figures and Tables can be found at: 

https://www.medrxiv.org/content/10.1101/2022.12.16.22283452v1. 

For this work, I pre-processed and performed imputation of bile acid data for all 

cohorts and conducted single-cohort GWAS for the ORCADES and CROATIA-

Vis cohorts, both for the full sample and sex-specific analysis. Single-cohort 

GWAS of bile acids for the NSPHS, MICROS and ERF cohorts was performed 

by Åsa Johansson, Dariush Ghasemi-Semeskandeh and Shahzad Ahmad, 

respectively. I conducted meta-analysis of both full sample and sex-stratified 

sample. I also carried out all down-stream analyses. I performed gene-based 

aggregation analysis of bile acids using clean exome sequence data provided by 

Regeneron. Finally, I wrote the first draft of the manuscript, with the support of 

Gerhard Liebisch and Carsten Gnewuch regarding methods on bile acids 

quantification. The full list of author contributions can be found in the “Author 

contributions” section of this article. 

 

  

https://www.medrxiv.org/content/10.1101/2022.12.16.22283452v1
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Introduction 

Bile acids (BAs) are synthesised from cholesterol in the liver and subsequently 

stored in the gallbladder. After ingestion of food, BAs are secreted into the small 

intestine, where they contribute to the digestion of lipid-soluble nutrients142. 

Approximately 95% of BAs are then re-absorbed by the intestinal epithelium and 

transported back to the liver via the portal vein - a process termed “enterohepatic 

circulation”143. Primary bile acids in humans consists of cholic acid (CA), 

chenodeoxycholic acid (CDCA), and their taurine- or glycine-bound derivatives 

(TCA and TCDCA, GCA and GCDCA). Once secreted in the lower 

gastrointestinal tract, primary BAs are heavily modified by the gut microbiota to 

produce a broad range of secondary BAs, with deoxycholic acid (DCA), a CA 

derivative, and lithocholic acid (LCA), a CDCA derivative, being the most 

prevalent143. Bile acids also act as hormone-like signalling molecules, serving as 

ligands to nuclear (hormone) receptors. Through activation of these diverse 

signalling pathways, BAs control not only their own transport and metabolism, but 

also lipid and glucose metabolism, and innate and adaptive immunity149. Bile 

acids are thus involved in regulating several physiological systems, such as fat 

digestion, cholesterol metabolism, vitamin absorption, and liver function264. In 

addition, given their role in coordinating bile homeostasis, biliary physiology and 

gastrointestinal functions, impaired signalling of BAs is associated with 

development of hepatobiliary diseases, such as cholestatic liver disorders, 

cholesterol gallstone disease and other gallbladder-related conditions147, and of 

inflammatory bowel disease152. Further, bile acids have been implicated in 

carcinogenesis - specifically oesophageal, gastric, hepatocellular, pancreatic, 

colorectal, breast, prostate and ovarian cancer - both as pro-carcinogenic agents 

and tumour suppressors156. Thanks to their role as signalling molecules, BAs 

have been considered as possible targets for the treatment of metabolic 

syndrome and various metabolic diseases270. Further, BAs are able to facilitate 

and promote drug permeation through biological membranes, making them of 

general interest for drug formulation and delivery271. 
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While many studies have focused on the genetic determinants of blood 

metabolites77,157–160,162, research focusing specifically on bile acids in a large 

sample from the general population is currently lacking. Here we investigate the 

genetic architecture of primary and secondary BAs, reporting associations with 

both common and low-frequency/rare variants. First, we performed a genome-

wide association meta-analysis (GWAMA) of plasma blood levels of 18 BA traits 

(N=4923). For a subset of this sample (female N=1088, male N=820), we perform 

sex-stratified GWAMA, to describe sex-specific genetic contributions to BA 

variability. We then explore whether complex traits or diseases have a role in 

influencing BA variability by using Mendelian Randomisation. We finally employ 

multiple gene-based aggregation tests to investigate rare (MAF < 5%) predicted 

loss of function (pLoF) and missense variants from whole exome sequencing 

affecting the 18 BA traits in a subset of our cohorts (N=1006). 

 

 

 

Results 

Loci associated with plasma levels of bile acids 

To investigate the genetic control of bile acids, we performed a GWAS meta-

analysis on five cohorts of European descent (N = 4923), studying the 

associations of blood plasma levels of 18 primary and secondary bile acid traits 

with HRC-imputed genotypes/whole exome sequence data. Based on the 

number of below limit-of-detection (LOD) measurements, BAs were analysed 

either as quantitative or binary traits (Supplementary Table 1). In addition, two 

analysis approaches were carried out in parallel for quantitative traits: in one 

case, <LOD values were considered as missing, in the other case, they were 

imputed (Methods). An additive linear model was assumed for each bile acid trait, 

followed by fixed-effect inverse-variance meta-analysis. Overall, we identified 2 

loci that passed the significance threshold (p-value < 3.57 x 10-9, Bonferroni 

adjusted for the number of independent bile acid traits) (Figure1), near the 
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SLCO1B1 and PRKG1 genes. The most strongly associated locus (p=1.14 x 10-

16), on chromosome 12 near SLCO1B1, showed consistent directionality across 

4 of the 5 populations (Table 1), with the effect allele T of the sentinel SNP, 

rs4149056, associated with decreased serum levels of GDCA (quantitative). In 

the same locus, we found GLCA and the imputed GDCA trait to be significantly 

associated with the rs73079476 variant (Supplementary Table 2), in high linkage 

disequilibrium with the sentinel SNP, rs4149056 (r2 = 0.97). On the other hand, 

rs146800892, the sentinel SNP on chromosome 10 near PRKG1, has a minor 

allele frequency (MAF) lower than 1% in any cohort but CROATIA-Vis and might 

thus represent a cohort-specific association with GCA (Supplementary Table 2). 

Figure 1. Summary Manhattan plot pooling together meta-analysis results 

obtained across 18 bile acid traits. The pooling was performed by selecting the 

lowest p value (y-axis) from the 18 bile acids for every genomic position (x-axis). 

The Bonferroni-corrected genome-wide significance threshold (horizontal red 

line) corresponds to 3.57 × 10−9. For simplicity, SNPs with p value > 1 × 10−3 are 

not plotted. P values are derived from the two-sided Wald test with one degree of 

freedom. 
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Table 1: Loci genome-wide significantly associated with at least one of the 18 bile acid traits in all samples and sex-

stratified GWAMA 

All samples           

Locus Gene SNP EA OA EAF Beta P SE N Lead BA 

12:20994540-21463812 SLCO1B1 rs4149056 T C 0.839 -0.25 1.10x10-16 0.03 4547 GDCA 

10:53832549-53832549 PRKG1 rs146800892 T C 0.988 -0.96 3.30x10-09 0.16 900 GCA 

           

Sex-stratified           

Locus Gene SNP EA OA Beta M Beta F P M P F N (M/F) Lead BA 

12:20994540-21463812 SLCO1B1 rs73079476 A C -0.51 -0.31 2.30x10-13 9.90x10-07 820/1088 GDCA 

10:53832549-53832549 PRKG1 rs117834398 T G -0.18 -0.79 1.80x10-01 8.30x10-11 820/1088 GCA 

Each locus is represented by the SNP with the strongest association in the region, according to the p-value rejecting the null hypothesis of no association 

with at least one of 18 bile acid traits. In all samples analysis, an association was considered significant if the p-value was lower than 3.57 × 10−9, the 

genome-wide significance threshold Bonferroni-corrected for the number of independent bile acid traits. In sex-stratified analysis, an association was 

considered significant if the p-value was lower than 5 × 10−9, the genome-wide significance threshold Bonferroni-corrected for the number of independent 

bile acid quantitative traits. The two SNPs in the SLCO1B1 locus are in high LD (LD r2 = 0.97), while the two SNPs in the PRKG1 locus represent two 

distinct signals (LD r2 < 0.001). Locus - coded as 'chromosome: locus start–locus end' (GRCh37 human genome build); Gene - suggested candidate gene; 

SNP - variant with the strongest association in the locus; EA - SNP allele for which the effect estimate is reported; OA - other allele; EAF - frequency of 

the effect allele; Beta - effect estimate for the SNP and bile acid with the strongest association in the locus; SE - standard error of the effect estimate, P - 

p-value of the effect estimate (two-sided Wald test with one degree of freedom); N - sample size; Lead BA - bile acid with the strongest association to the 

reported SNP; M - male specific analysis; F - female specific analysis. 
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Sex-specific associations of bile acid plasma levels 

To investigate whether the genetic component influencing bile acid variation may 

differ between men and women, we performed sex-specific GWAS meta-analysis 

of the 14 quantitative (imputed) bile acid traits for ORCADES and CROATIA-Vis 

cohorts (female N=1088, male N=820) and discovered two sex-specific 

associations. The association of GDCA with rs73079476 from the SLCO1B1 

locus was significant in male-only GWAS (beta = -0.51, p-value = 2.28 x 10-13) 

(Table 1, Figure 2A). The signal for the same locus in female-only GWAS, while 

consistent in terms of directionality, has a smaller effect size than in male-only 

analysis (beta = -0.31) and does not reach the significance threshold (p-value = 

9.86 x 10-7), despite the slightly higher sample size (Figure 2). This suggests that 

the genetic effect of SLCO1B1 locus on the plasma levels of GDCA is larger in 

men than women. We also identified a sex-specific association of GCA at the 

PRKG1 locus. In contrast to SLCO1B1, the sentinel SNP in PRKG1, 

rs117834398, has a larger effect in females than in males (female beta = -0.79, 

male beta = -0.18), and passed the significant threshold only in the female-

specific analysis (female p-value = 8.26x10-11, male p-value = 1.81x10-1) (Table 

1, Figure 2B). Interestingly, the sentinel SNPs at the PRKG1 locus for the full 

meta-analysis and for the female-specific analysis are in linkage equilibrium 

(r2<0.01) and represent two independent associations in that locus. Overall, none 

of the significant association identified in one sex was replicated in the other, 

suggesting that the genetic contribution to plasma BA levels is likely to be 

different in males and females. We have identified 13 additional associations (p-

value < 5 x 10-9, Bonferroni adjusted for the number of independent quantitative 

bile acid traits) that might have sex-specific effects (Supplementary Table 3, 

Supplementary Figure 1). However, given the low allele frequencies and allele 

counts in the two analysed cohorts, further analyses are required to replicate 

these associations.  
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Figure 2. Sex-specific associations. The effect of rs73079476 on chromosome 

12 on GDCA bile acid is almost as twice strong in males compared to the effect 

in females (Panel A). The effect of rs117834398 on GCA bile acid is stronger in 

females than in males (Panel B). N – sample size, MAF – minor allele frequency, 

MAC – minor allele count, CI – confidence interval. 

 

Link with complex traits and diseases 

Next, we assessed whether variants associated with BA levels have been 

previously associated with any other biochemical traits and diseases. Using 

Phenoscanner183,272 we found that rs4149056, sentinel SNP in SLCO1B1 locus, 

and its proxies (r2 > 0.8), were also associated with concentration of bilirubin, 

non-bile acid metabolites, mean corpuscular haemoglobin, sex hormone binding 

globulin and estrone conjugates, and various responses to drugs (i.e., statin-

induced myopathy, LDL-cholesterol response to simvastatin and methotrexate 

clearance in acute lymphoblastic leukaemia) (Supplementary Table 4). To obtain 
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deeper insight into the causal relationship between BAs and diseases, we 

conducted bi-directional Mendelian Randomisation (MR) analysis. Using the 

sentinel SNPs associated with GLCA, GDCA and GCA (Table 1) as instrumental 

variables we tested whether genetically increased levels of BA influence levels or 

risk for 548 biochemical traits and diseases available in the IEU Open GWAS 

database209 (Supplementary Table 5). Levels of GLCA and GDCA were 

significantly (p-value < 0.05/(548x3) = 3.04×10−5) associated with different 

biochemical measurements, such as levels of sex hormone-binding globulin, 

testosterone, triglycerides, vitamin D, alanine transaminase and galectin-3; with 

blood traits, such as mean corpuscular haemoglobin and mean corpuscular 

volume; and with diseases and their risk factors, such as daytime dozing and 

stroke (Supplementary Table 6). These MR tests were performed using the Wald 

ratio test utilising only a single instrument, thus the results of causal relationship 

between BAs and traits/diseases should be interpreted with caution. Yet our 

results suggest a possible overlap in genetic regulation, involving the SLCO1B1 

locus. Next, to assess whether complex traits and disease could have an effect 

on bile acid levels, we performed reverse MR using 548 traits/diseases as 

exposure and bile acids as outcomes. We found no significant associations, 

suggesting that none of the tested diseases or complex traits have an effect on 

BA levels (Supplementary Table 7).  

 

Exome-wide rare variant analysis of bile acids 

To assess the contribution of low frequency and rare variants to the bile acid 

genetic architecture, we performed exome-wide gene-based tests across 18 bile 

acid traits in the ORCADES cohort (N = 1006) by testing the aggregated effect of 

rare (MAF <5%) predicted loss-of-function (pLoF) and non-synonymous 

missense variants. We identified significant association (p-value <1.79 x 10-7) of 

rare variants from 3 genes with 2 bile acid traits (quantitative CA and binary 

THDCA). For these associations, a significant p-value was reported by at least 2 

of the 4 aggregation tests used. Rare variants significantly associated with 
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quantitative bile acid trait CA are located in the OR1G1 gene, while those 

associated with binary bile acid trait THDCA are located in SART1 and SORCS2 

genes (Table 2, Supplementary Table 8). We further identified significant 

association of rare variants from EPS8L1 gene with quantitative bile acid trait 

DCA and from EEF2K with binary bile acid trait THDCA (Supplementary Table 

8). However, a significant p-value was reported by only one of the 4 aggregation 

tests used. Due to the lack of replication across aggregations tests, we 

considered these associations as not robust. 

 

 

Table 2. Gene-based aggregation analysis results for bile acid traits in 

ORCADES cohort 

BA Trait type Gene MAF 
Functional 

consequence 

N 

variants 

Aggregation 

test 
P AC 

CA Quantitative OR1G1 <0.01 Missense variants 2 SKAT-O 1.67x10-8 17 

THDCA Binary SORCS2 <0.05 
pLoF and 

missense variants 
10 SMMAT-E 1.44x10-8 174 

THDCA Binary SART1 <0.01 
pLoF and 

missense variants 
4 SKAT 1.19x10-7 25 

BA- bile acid trait tested for rare variants association; Trait type – whether BA was analysed as a quantitative or 

binary trait; Gene - gene for which variants were aggregated; MAF - upper bound for minor allele frequency of 

tested variants; Functional consequence - predicted functional consequence for aggregated variants; N variants 

- number of variants in the mask; Aggregation test - rare-variants aggregation test reporting the lowest p-value 

out of 4 aggregation tests; P - p-value for the aggregation test; AC - cumulative allele count of all the variants in 

a mask. Bonferroni-corrected discovery p-value threshold was set to 1.79x10-7 (0.05/20,000 estimate of number 

of genes in the human genome/14 number of independent bile acids). 
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Discussion 

Bile acids (BAs) are synthesised from cholesterol in the liver and then secreted 

into the small intestine to emulsify and promote absorption of lipid-soluble 

nutrients. BAs also act as hormone-like signalling molecules and have been 

linked to regulation of lipid and glucose metabolism, immunity, vitamin absorption, 

hepatobiliary diseases, inflammatory bowel disease and cancer. Despite the 

crucial role of BAs on whole-body physiology, their genetic architecture has not 

been extensively investigated in a large sample from the general population. In 

this study, we performed both pooled and sex-stratified genome-wide association 

meta-analysis of plasma levels of 18 bile acid compounds, including both primary 

and secondary forms, in 4923 European individuals.  

We identified two secondary bile acids (GDCA and GLCA) significantly 

associated with a locus encompassing the SLCO1B1 gene. The encoded protein, 

OATP1B1 (organic anion transporting polypeptide 1B1), is a well-known human 

hepatocyte transporter mediating the uptake of various endogenous compounds 

such as bile salts, bilirubin glucuronides, thyroid hormones and steroid hormone 

metabolites, and also clinically frequently used drugs like statins, HIV protease 

inhibitors, and the anti-cancer agents irinotecan or methotrexate273–277. The 

sentinel SNP of the SLCO1B1 locus, rs4149056, is a missense variant 

(p.Val174Ala) which has been linked by previous GWA studies to blood 

concentration of several metabolites, including vitamin D278, triglycerides20 and 

bilirubin279, a compound resulting from the breakdown of haem catabolism and 

excreted as a major component of bile. This same variant has also been 

associated with levels of sex hormone-binding globulin and testosterone280. The 

knock-out of the gene in mice results in abnormal liver physiology and abnormal 

xenobiotic pharmacokinetic phenotypes (Open Targets281). A rare variant from 

the PRKG1 locus was significantly associated with levels of glycocholic acid 

(GCA). PRKG1 encodes a Protein Kinase CGMP-Dependent 1, a protein 

involved in signal transduction and a key mediator of the nitric oxide/cGMP. The 

sentinel variant in the region, rs146800892, only passes the MAF threshold (MAF 
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> 0.01) in the CROATIA-Vis cohort, which is therefore the only cohort contributing 

to this association. Due to its demographic history and geographic position, 

CROATIA-Vis is a genetic isolate282 so it is possible that this variant has 

increased in frequency compared to a general population219.The mechanism of 

how the variation within this gene could relate to bile acid levels is unclear and 

would need to be further investigated. 

In the sex-stratified GWAS meta-analysis, we observed sex-specific associations 

for the two identified loci. Levels of glycodeoxycholic acid (GDCA) are more 

strongly associated with the variant in SLCO1B1 in men than in women, while 

female levels of GCA are more strongly affected by the variant in PRKG1 than 

male levels. Later, our Mendelian randomization analysis did not provide 

evidence that testosterone, oestradiol, sex hormone-binding globulin or other 

sex-related traits have causal effects on plasma BA levels. While this could be 

due to a lack of statistical power of our BA meta-analysis, we currently have no 

evidence to suggest an effect of sex-related hormones on BA levels mediated by 

genetics. We also detected associations with variants from the same gene, 

PRKG1, in the main, non-stratified analysis. However, the two associations (sex-

specific and pooled) appear to be independent (LD r2 <0.001). While the 

association from the pooled analysis might be either false positive or population-

specific, the independent association from the sex-stratified analysis replicates 

well between two analysed cohorts (CROATIA-Vis and ORCADES). 

After assaying common variants through GWAS, we performed exome-wide 

gene-based association tests in a subset of our samples (N = 1006), to 

investigate the genetic contribution of rare and low frequency (MAF <5%) coding 

variants (pLoF and missense) to bile acid levels. Overall, we identified 

associations with rare variants from 3 genes, OR1G1, SART1 and SORCS2. 

OR1G1 is an olfactory receptor gene, whose coded protein receptor interacts with 

odorant molecules in the nose to initiate a neuronal response triggering the 

perception of smell283,284. In addition to the nasal level, the olfactory receptor 

coded by OR1G1 is expressed also by enterochromaffin cells, specialised 
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enteroendocrine cells of the gastrointestinal tract. Braun et al285. determined that 

certain olfactory cues from spices and odorants, such as thymol, present in the 

luminal environment of the gut may stimulate serotonin release via olfactory 

receptors present in enterochromaffin cells. Between 90% and 95% of total body 

serotonin is in fact synthesised by enterochromaffin cells286: serotonin controls 

gut motility and secretion and is implicated in pathologic conditions such as 

vomiting, diarrhoea, and irritable bowel syndrome285. In mice, gut serotonin was 

shown to stimulate bile acid synthesis and secretion by the liver and gallbladder. 

Thus, release of serotonin in response to odorant cues increases bile acid 

turnover287. The hypoxia-associated factor (HAF), encoded by SART1 gene and 

also known as SART1(800), is involved in proliferation and hypoxia-related 

signalling. The protein encoded by SORCS2 is a receptor for the precursor of 

nerve growth factor, up-regulation of which has been reported for several liver 

pathologies, such as hepatotoxin- induced fibrosis288, ischemia-reperfusion 

injury289, oxidative injury290, cholestatic injury291 and hepatocellular 

carcinoma288,292,293. However, due to unavailability of exome sequencing data in 

other cohorts these associations were not replicated. 

Recently, Chen et al.268 have performed an association analysis on plasma and 

faecal levels of bile acids in 297 obese individuals. Their study revealed 27 

associated loci, including genes involved in transport of GDP-fucose and 

zinc/manganese and zinc-finger-protein-related genes, mostly associated with 

bile acid levels in stool. In our study we analysed blood plasma in a much larger 

sample from a general population and discovered only two associated loci. 

Neither of genes identified in our study were reported in Chen et al, suggesting 

that genetic regulation of bile acids between stool and blood plasma or between 

obese and general populations might differ significantly. 

We acknowledge several limitations in the present study. We found only a small 

percentage of BA variability to be affected by genetics, suggesting that a larger 

sample size is required to further describe BA genetic architecture. BAs are 

known to be largely influenced by environmental factors, such as sex and gut 
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microbiota. Female sex and oestrogens are considered relevant regulators of BA 

production and composition261,263. In pregnant women, high levels of circulating 

oestrogen are associated with development of cholestasis, characterised by 

increased plasma bile acids, likely via oestrogen reducing the expression of BA 

receptor and transport proteins262. Similarly, age-related differences in hormone 

levels influence the differential production of BAs in women294. The relevant 

impact of sex on plasma BA levels was confirmed by the sex-stratified analysis, 

where the two significantly associated loci showed to be sex-specific. Similarly, 

species-composition of gut microbiota has a great impact on BAs levels, 

especially for secondary BAs that are a direct result of microbiome activity. A 

recent study describing the effect of gut microbiota on the human plasma 

metabolome reported that both primary BA cholic acid (CA) and secondary BA 

deoxycholic acid (DCA) show a high percentage of variance explained by the 

microbiota (R2 = 30% and 36%, respectively), indicating a strong impact on BAs 

of the variation in microbiota composition295. It is important to interpret our 

findings in the context of the tissue in which BA levels were measured, blood 

plasma. Bile acids are synthesised in the liver and secreted into the intestine, to 

be then reabsorbed into portal circulation and returned to the liver: plasma BA 

levels thus reflect the amount of BAs escaping extraction from the portal blood. 

Therefore, levels of BAs in plasma are likely to be influenced by genes other than 

those encoding the particular anabolic and catabolic enzymes, including those 

involved in hepatic function and dysfunction. In line with this, the major genetic 

contributor to blood BA levels in our study are variants from the SLCO1B1 gene, 

encoding the hepatocyte transporter OATP1B1 and important for flux of bile salts, 

bilirubin glucuronides and various hormone metabolites, rather than genes 

encoding key enzymes of primary BA synthesis, such as CYP7A1 and 

CYP7B1296. Similarly, some of the genes with rare variants associations have 

been linked to liver diseases, such as liver cancer297, and intrahepatic cholestasis 

of pregnancy298. 
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In conclusion, we explored the genetic architecture of plasma bile acid levels, 

including both common and rare variants. By performing GWAS meta-analysis 

(N = 4923), we identified 2 significantly associated loci, mapping to the SLCO1B1 

and PRKG1 genes. In the sex-specific GWAS meta-analysis we observed that 

variants in these genes have different impact on bile acid levels in men and 

women. To assess relationships between genetically increased levels of bile 

acids and risk for diseases we performed Mendelian randomisation, but did not 

find any bile acids affecting disease risk, nor the reverse, which however might 

be affected by the lack of statistical power. Using the gene-based aggregated 

tests and whole exome sequencing, we further identified rare pLoF and missense 

variants in 3 genes associated with BAs, OR1G1, SART1 and SORCS2, some of 

which are known to be involved in liver disease. Additional studies with larger 

sample sizes and of more diverse ancestry will be necessary to validate our 

findings, further unravel the genetic architecture of bile acid levels, and to 

understand their relationship with human diseases and complex traits.



 

122 

Materials and methods 

Ethics 

All studies were approved by local research ethics committees and all participants 

have given written informed consent. The ORCADES study was approved by the 

NHS Orkney Research Ethics Committee and the North of Scotland REC. The 

CROATIA-Vis study was approved by the ethics committee of the medical faculty 

in Zagreb and the Multi-Centre Research Ethics Committee for Scotland. The 

Northern Swedish Population Health Study (NSPHS) was approved by the local 

ethics committee at the University of Uppsala (Regionala Etikprövningsnämnden, 

Uppsala). The MICROS study was approved by the ethical committee of the 

Autonomous Province of Bolzano, Italy. The ERF study was approved by the 

Erasmus institutional medical-ethics committee in Rotterdam, The Netherlands. 

 

Phenotypic data 

Bile acids quantification 

Bile acid (BA) analysis was performed from plasma or serum (MICROS cohort) 

samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS) as 

previously described269. The HPLC equipment consisted of a 1200 series binary 

pump (G1312B), a 1200 series isocratic pump (G1310A) and a degasser 

(G1379B) (Agilent, Waldbronn, Germany) connected to an HTC Pal autosampler 

(CTC Analytics, Zwingen, CH). A hybrid triple quadrupole linear ion trap mass 

spectrometer API 4000 Q-Trap equipped with a Turbo V source ion spray 

operating in negative ESI mode was used for detection (Applied Biosystems, 

Darmstadt, Germany). High purity nitrogen was produced by a nitrogen generator 

NGM 22-LC/MS (cmc Instruments, Eschborn, Germany). Gradient 

chromatographic separation of BAs was performed on a 50 mm × 2.1 mm (i.d.) 

Macherey-Nagel NUCLEODUR C18 Gravity HPLC column, packed with 1.8 µm 

particles equipped with a 0.5 µm pre-filter (Upchurch Scientific, Oak Harbor, WA, 
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USA). The injection volume was 5 µL and the column oven temperature was set 

to 50 °C. Mobile phase A was methanol/water (1/1, v/v), mobile phase B was 

100% methanol, both containing 0.1% ammonium hydroxide (25%) and 10 

mmol/L ammonium acetate (pH 9). A gradient elution was performed with 100% 

A for 0.5 min, a linear increase to 50% A until 4.5 min, followed by 0% A from 4.6 

until 5.5 min and re-equilibration from 5.6 to 6.5 min with 100% A. The flow rate 

was set to 500 µL/min. To minimize contamination of the mass spectrometer, the 

column flow was directed only from 1.0 to 5.0 min into the mass spectrometer 

using a diverter valve. Otherwise, methanol with a flowrate of 250 µL/min was 

delivered into the mass spectrometer. The turbo ion spray source was operated 

in the negative ion mode using the following settings: Ion spray voltage = −4500 

V, ion source heater temperature = 450 °C, source gas 1 = 40 psi, source gas 2 

= 35 psi and curtain gas setting = 20 psi. Analytes were monitored in the multiple 

reaction monitoring (MRM). Quadrupoles Q1 and Q3 were working at unit 

resolution. Calibration was achieved by the addition of BAs to EDTA-

plasma/serum. A combined BA standard solution containing the indicated 

amounts (0.5 - 70.5 µmol/L) was placed in a 1.5 ml tube and excess solvent was 

evaporated under reduced pressure before adding EDTA-plasma/serum. 

Calibration curves were calculated by linear regression without weighting. Data 

analysis was performed with Analyst Software 1.4.2. (Applied Biosystems, 

Darmstadt, Germany). The data were exported to Excel spreadsheets and further 

processed by self-programmed Excel macros which sort the results, calculate the 

analyte/internal standard peak area ratios, generate calibration lines and 

calculate sample concentrations. For the calculation we selected the internal 

standard with analogous fragmentation and closest retention time to the 

respective BA species. 

Pre-processing of bile acid traits 

Prior to genetic analysis, bile acid traits were grouped into three groups based on 

the percentage of samples with below the limit of detection (<LOD) 

measurements: high <LOD group (> ~30% of all samples below LOD) and low 
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<LOD group (< ~7% of all samples below LOD) (Supplementary Table 1 and 

Supplementary Table 10 for further details). Accordingly, different phenotypic 

pre-processing and different analysis strategies were applied to the groups. Bile 

acids within a high <LOD were considered as binary traits: individuals were 

categorised based on whether their bile acid levels were effectively measured 

(category 1) or were below the LOD (category 0). Bile acid traits belonging to this 

group were THDCA, TUDCA, TCA and GHDCA. All other bile acids were 

considered as quantitative traits and were log10-transformed. However, to 

increase the sample size, in addition to a complete-case analysis (considering as 

missing all samples with <LOD), we also imputed <LOD measurements. For each 

bile acid, imputation of <LOD measurements was performed by fitting a truncated 

normal distribution, with mean and standard deviation of the effectively measured 

raw data, truncated (as an upper bound) to the lowest measured value for the 

given bile acid. To do so, we used the “rtnorm” function from the MCMCglmm R 

package299. After imputation, measurements were log10-transformed. 

 

Genome-wide association analysis 

Genome-wide association studies (GWAS) were performed in 5 cohorts of 

European descent, CROATIA-Vis (N=971), ORCADES (Orkney Complex 

Disease Study) (N=1019), NSPHS (Northern Sweden Population Health Study) 

(N=718), MICROS (Micro-Isolates in South Tyrol) (N=1336) and ERF (Erasmus 

Rucphen Family Study) (N=879), for a combined sample size of 4923. Specific 

sample size for each bile acid molecule, in both meta-analysis and single cohort 

GWAS, can be found in Supplementary Table 10. Bile acid traits were adjusted 

for age, sex, batch, population structure/cryptic relatedness by including 

population principal components or applying linear mixed models and using a 

kinship matrix estimated from genotyped data. Within each cohort, residuals of 

covariate and population structure/relatedness correction were tested for 

association with Haplotype Reference Consortium (HRC)28 imputed SNP 

dosages or SNP genotypes from whole genome sequencing, applying an additive 
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genetic model of association. Details of cohorts, individual-level pre-imputation 

QC, GWAS software and parameters specific for each cohort can be seen in 

Supplementary Table 11 Single-cohort summary statistics were filtered for minor 

allele frequency (MAF) > 0.01. The genomic control inflation factor (λGC) was 

calculated for each bile acid trait. Cohort-level λGC overall ranged from 0.9 to 1.1 

for quantitative bile acid traits, both imputed and not, suggesting little residual 

influence of population stratification and family structure (Supplementary Table 

12). In a few cases, ERF cohort reported somewhat deflated λGC (GCDCA at 

0.884 and GLCA at 0.899). On the other hand, there was considerable inflation 

for binary bile acid in the case of NSPHS (Supplementary Table 12), with values 

of λGC above 1.1, suggesting that population structure/cryptic relatedness was not 

fully controlled for these traits in the NSPHS cohort. 

 

Meta-analysis 

Prior to meta-analysis, cohort-level GWAS were quality controlled using the 

EasyQC software package, following the protocol described in Winkler et al.300 

Cohort-level results were corrected for the genomic control inflation factor, then 

pooled and analysed with METAL v2011-03-25 software196, applying the fixed-

effect inverse-variance method. The mean genomic control inflation factor after 

the meta-analysis was 0.991 (range 0.938 – 1.009), suggesting that the 

confounding effects of the family structure were correctly accounted for 

(Supplementary Table 12). The standard genome-wide significance threshold 

was Bonferroni corrected for the number of independent bile acid traits, 

calculated as 14 (5x10-8/14 = 3.57x10-9). The number of independent bile acid 

traits was estimated as the sum of the number of binary traits (4) and the number 

of principal components that jointly explained 99% of the total variance of log10-

transformed quantitative traits in each cohort (10) (Supplementary Table 13). 
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Sex-stratified GWAS meta-analysis 

To identify possible differences in the genetic contribution to bile acid variability 

between men and women, we performed sex-specific GWAS of the 14 

quantitative bile acid traits for ORCADES and CROATIA-Vis cohorts. Given that 

for the sex-stratified GWAS we implicitly halve our sample size, we performed 

these analyses only on the imputed bile acid traits. The same analysis steps and 

procedures already described for the full meta-analysis were applied. Bile acid 

traits were adjusted for age, sex and batch as fixed effects, and relatedness 

(estimated as the kinship matrix calculated from genotyped data) as a random 

effect in a linear mixed model, calculated using the ‘polygenic’ function from the 

GenABEL R package194. Residuals of covariate and relatedness correction were 

tested for association with HRC-imputed28 SNP dosages using the RegScan v0.5 

software195, applying an additive genetic model of association. Prior to meta-

analysis, SNPs having a difference in allele frequency between the two cohorts 

higher than ±0.3 or a minor allele count (MAC) lower or equal to 6 were filtered 

out. Cohort-level GWAS were corrected for genomic control inflation factor and 

then meta-analysed (N =820 for male and N =1088 for female individuals) using 

METAL v2011-03-25 software196, applying the fixed-effect inverse-variance 

method. The mean λGC was 0.993 (range 0.978–1.011) for male-specific meta-

analysis and 0.996 (range 0.984–1.003) for female-specific meta-analysis. The 

Bonferroni-corrected significance threshold applied is 5 × 10−9. 

 

Phenoscanner and Mendelian Randomisation 

To assess link between bile acids and diseases we explored the overlap of SNPs 

associated with BAs with complex human traits by using PhenoScanner v1.1 

database183,272, taking into account significant genetic association (p < 5 × 10–9) 

at the same or strongly (LD r2 > 0.8) linked SNPs in populations of European 

ancestry. We then performed bi-directional Mendelian Randomisation (MR) to 

investigate the effect of 548 complex traits and diseases available in the IEU 

Open GWAS database209 (manually curated list of studies from identifiers ebi-a, 
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ieu-a, ieu-b and ukb-a; the complete list reported in the Supplementary Table 5) 

on BA levels, and vice-versa. The set of genome-wide significant, LD clumped 

SNPs used as instruments for complex traits/diseases was extracted from the 

selected studies by using the “extract_instruments” function from the 

TwoSampleMR 0.5.6 R package208. Similarly, sentinel SNPs from BAs meta-

analysis (Supplementary Table 2) were selected as instruments. MR tests were 

performed by using fixed effects inverse variance-weighted (IVW) in case of 

multiple instruments or Wald Ratio method in case of a single instrument, as 

implemented in the TwoSampleMR 0.5.6 R package208. Multiple testing 

correction was controlled for using either the Bonferroni correction or false 

discovery rate (FDR). 

 

Whole-exome sequencing data 

Exome sequencing 

The “Goldilocks” exome sequence data for ORCADES cohort was prepared at 

the Regeneron Genetics Center, following the protocol detailed in Van Hout et 

al.217 for the UK Biobank whole-exome sequencing project. In summary, 

sequencing was performed using S2 flow cells on the Illumina NovaSeq 6000 

platform with multiplexed samples. DNAnexus platform250 was used for 

processing raw sequencing data. The files were converted to FASTQ format and 

aligned using the BWA-mem251 to GRCh38 genome reference. The Picard tool252 

was used for identifying and flagging duplicated reads, followed by calling the 

genotypes for each individual sample using the WeCall variant caller253. During 

quality control, 33 samples genetically identified as duplicates, 3 samples 

showing disagreement between genetically determined and reported sex, 4 

samples with high rates of heterozygosity or contamination, 2 samples having 

low sequence coverage (less than 80% of targeted bases achieving 20X 

coverage) and 1 being discordant with genotyping chip were excluded. Finally, 

the “Goldilocks” dataset was generated by (i) filtering out genotypes with read 

https://mrcieu.github.io/TwoSampleMR/reference/extract_instruments.html
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depth lower than 7 reads, (ii) keeping variants having at least one heterozygous 

variant genotype with allele balance ratio greater than or equal to 15% (AB ≥ 

0.15) or at least one homozygous variant genotype, and (iii) filtering out variants 

with more than 10% of missingness and HWE p<10-6. Overall, a total of 2,090 

ORCADES (820 male and 1,270 female) participants passed all exome sequence 

and genotype quality control thresholds. A pVCF file containing all samples 

passing quality control was then created using the GLnexus joint genotyping 

tool254. 

Variant annotation 

Exome sequencing variants were annotated as described in Van Hout, et al.217 

Briefly, they were annotated with the most severe consequence across all 

protein-coding transcripts using SnpEff255. Gene regions were defined based on 

Ensembl release 85301. Predicted loss-of function (pLoF) variants were defined 

as variants annotated as start lost, stop gained/lost, splice donor/acceptor and 

frameshift. The deleteriousness of missense variants was based on dbNSFP 

3.2302,303 and assessed using the following algorithms: (1) SIFT304: “D” 

(Damaging), (2) Polyphen2_HDIV: “D” (Damaging) or “P” (Possibly damaging), 

(3) Polyphen2_HVAR305: “D” (Damaging) or “P” (Possibly damaging), (4) LRT256: 

“D” (Deleterious) and (5) MutationTaster257: “A” (Disease causing automatic) or 

“D” (Disease causing). If not predicted as deleterious by any of the algorithms the 

missense variants were considered “likely benign”, “possibly deleterious” if 

predicted as deleterious by at least one of the algorithms and “likely deleterious” 

if predicted as deleterious by all five algorithms. 
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Exome-wide gene-based aggregation analysis of rare variants 

Generation of gene masks 

For each gene, the variants were grouped into four categories (masks), based on 

severity of their functional consequence. The first mask (mask 1) included only 

pLoF variants. Masks 3 and 4 included both pLoF and variants predicted to be 

deleterious, by 5/5 algorithms (mask 3) or by at least one algorithm (mask 4). The 

most permissive mask (mask 2) included pLoF and all missense variants. These 

masks were then further split by the frequencies of the minor allele (MAF ≤ 5%, 

e.g. mask1_maf5; and MAF ≤ 1%, e.g. mask1_maf1), resulting in up to 8 burden 

tests for each gene (Supplementary Table 9). 

ORCADES gene-based aggregation analysis 

We performed variant Set Mixed Model Association Tests (SMMAT)48 on the 18 

bile acid traits from ORCADES cohort, quantified and pre-processed as 

previously described, fitting a GLMM adjusting for age, sex, batch, and familial or 

cryptic relatedness by kinship matrix. The kinship matrix was estimated from the 

genotyped data using the ‘ibs’ function from GenABEL R package194. The 

SMMAT framework includes 4 variant aggregate tests: burden test, sequence 

kernel association test (SKAT), SKAT-O and SMMAT-E, a hybrid test combining 

the burden test and SKAT. The 4 variant aggregate tests were performed on 8 

different pools of genetic variants, called “masks”, each one including a different 

set of variants based on both MAF and predicted consequence of variants (e.g., 

loss of function and missense) (Supplementary Table 9), as described above. 

Discovery significance threshold was Bonferroni corrected for the rough estimate 

of the number of genes in the human genome, 20,000, and the number of 

independent bile acid traits, 14, calculated as previously described 

(0.05/20000/14 = 1.79x10-7). A gene association was considered significant if it 

passed the above reported Bonferroni corrected significance threshold in at least 

two of the 4 performed variant aggregate tests and if the cumulative allele count 

of the variants included in the gene was equal or higher than 10.  
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4.3 Conclusion 

 

As described in the above pre-print submission, I explored the genetic 

architecture of plasma bile acid levels, including both rare and common genetic 

variants. Using GWAS meta-analysis (N = 4923), I identified 2 significantly 

associated loci, near the SLCO1B1 and PRKG1 genes. I observed that variants 

in these genes have different impacts on bile acid levels in men and women. 

Performing gene-based aggregated tests on whole exome sequencing data (N = 

1006), I identified rare and low frequency (MAF<5%) predicted loss-of-function 

(pLoF) and missense variants associated with bile acids, mapping to OR1G1, 

SART1 and SORCS2. Based on the literature, I suggest possible biological 

mechanisms how these genes could influence bile acid levels. Finally, I tested for 

relationships between genetically increased levels of bile acids and complex 

traits/diseases risk and vice-versa, but found no significant associations. Since 

the sentinel SNP of the SLCO1B1 locus has been identified by previous studies 

as associated with multiple traits (e.g. concentration of bilirubin, non-bile acid 

metabolites, mean corpuscular haemoglobin, sex hormone binding globulin, 

estrone conjugates, responses to various drugs), the current study may have 

insufficient statistical power to detect the effect of complex traits or diseases on 

bile acid levels. I discuss further the topic of statistical power and sample size in 

the next Chapter.  
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Chapter 5: Discussion 

 

A deeper understanding of the genetic factors that contribute to complex traits 

and diseases is of great relevance for overall improvement of human health. In 

this thesis I explored the genetic architecture of protein glycomics and bile acid 

lipidomics, two types of omics that have been implicated in various complex 

diseases but have not been extensively researched. I successfully identified both 

common and rare association signals, which, for the most part, are located in 

genes with a clear biological link to the phenotypes of interests. Genetically 

isolated populations studied offered higher statistical power for discovery of rare 

and low frequency association signals, thanks to the increased allele frequency 

of certain variants compared to the general population. The statistical power was 

however not enough to assess the impact of glycans- and bile acids-associated 

variants on health-related traits and diseases, given their effect sizes, for which 

increased sample size is likely required. 

 

 

5.1 Genetic regulation of transferrin and IgG glycome 

 

In Chapter 2 I investigated genes and genetic variants influencing the transferrin 

glycome, and then compared those with the ones contributing to IgG 

glycosylation. Using the genome-wide association meta-analysis (N = 1890) for 

35 transferrin glycan traits, I identified ten loci significantly associated with 

transferrin glycosylation, two of which (near FOXI1 and MSR1 genes) have not 

previously been associated with the glycosylation of any protein. The other eight 

loci (MGAT5, TF, NXPE1/NXPE4, ST3GAL4, B3GAT1, HNF1A, FUT8 and FUT6) 

have been previously linked with the glycosylation of total plasma proteins and/or 

IgG131–138 or to the prevalence of carbohydrate-deficient transferrin (CDT)188, a 

measure that provides partial information on the sialylation status of transferrin. 

Several of the above-mentioned loci contain genes encoding glycotransferases, 

the enzymes catalysing the transfer of sugar molecules from donor molecules to 

acceptor proteins, resulting in the formation of glycosidic bonds. 
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I described rs6785596 as a “cis-glyQTL”, a genomic locus that explains variation 

in glycosylation levels and is local to the gene (TF) encoding the protein being 

glycosylated (transferrin). In this study, glycan traits were quantified as the 

percentage of the total transferrin N-glycome, in order to detect changes in 

glycosylation (relative abundance of individual glycan species in relation to the 

whole transferrin glycome), rather than the absolute amounts of specific glycans, 

which would be affected by changes in protein levels. Nevertheless, we assessed 

that variance of transferrin glycan traits associated at TF locus is partially (for 

TfGP3 and TfGP8 traits) or completely (for TfGP9 trait) explained by rs8177240, 

the strongest association with transferrin protein levels reported in GWAS catalog 

(p-value = 8x10-610)178, which I used as a proxy for transferrin protein abundance 

(see Chapter 2 Supplementary Results, Supplementary Table 6 and 9 for further 

details). Interestingly, rs8177240 is a splicing QTL for the TF gene in liver (p-

value = 5.9x10-25, GTEx v8306). Alternative splicing of the TF gene can generate 

isoforms of the transferrin protein, which may differ in the presence or location of 

glycosite motifs307,308. Composition and abundance of glycans on the transferrin 

molecule may thus vary between protein isoforms by the effect of rs8177240, a 

variant in control transferrin splicing, in addition to the glyQTL rs6785596. 

 

Transferrin has two N‐linked disialylated biantennary oligosaccharide chains, 

followed by other minor isoforms which vary depending on the number of 

oligosaccharide chains309. Hyposialylation or desialylation of transferrin produces 

altered isoform patterns, which are used as diagnostic marker for alcohol 

abuse310,311 and glycosylation defects like congenital disorders of 

glycosylation312. Transferrin isoforms thus differ in their glycosylation patterns, 

meaning that the composition and abundance of glycans on the transferrin 

molecule can vary between isoforms. Unfortunately, HILIC-UHPLC, the 

glycosylation measuring approach used in this study, separates all glycan 

structures from the carrying proteins, losing the information about which glycan 

structures were attached to which transferrin molecule or isoform. The analysis 

of intact glycoprotein would enable in this case the characterisation of transferrin 

isoforms and their glycosylation patters; however, this technique currently faces 
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limitations in sensitivity and glycoform resolution and is thus not routinely used to 

characterise large cohorts108. 

 

I also performed genome-wide association meta-analysis (N = 2020) for 24 IgG 

N-glycan traits and compared the results to transferrin glycan-associated loci. Of 

the 7 genomic regions associated with transferrin or IgG glycome and containing 

glycosyltransferase coding genes, 3 are unique for transferrin glycosylation 

(MGAT5, ST3GAL4, B3GAT1), 2 are IgG glycan-specific (ST6GAL1, MGAT3), 

while other 2 are associated with the glycosylation of both IgG and transferrin 

(FUT8 and FUT6). Therefore, while some glycotransferase enzymes seem to be 

protein-specific, other instead are able to glycosylate both transferrin and IgG. To 

investigate how the same glycosyltransferase enzymes are genetically regulated 

in different proteins, I focused on the shared associations at FUT8 and FUT6 

genes. Colocalisation analysis suggests that association patterns of transferrin 

and IgG glycan traits at FUT8 and FUT6 loci are driven by independent causal 

variants, at both genomic regions. Therefore, while the same glycosyltransferase 

enzymes are involved in glycosylation of both transferrin and IgG, the process is 

independently regulated by protein-specific causal variants. 

 

Next, I propose a biological mechanism by which independent genetic variants in 

the FUT8 region could have a protein-specific effect on the transferrin and IgG 

glycomes. Since these protein-specific variants are located in the regulatory 

region of the genes, and are not in strong LD with coding variants from the 

enzymes’ active site, I suggest that they could affect the expression of other 

enzymes, such as transcription factors, in different tissues. The majority of the 

IgG found in blood plasma is produced by bone marrow plasma cells, the fully 

differentiated form of B-cells186. On the other hand, transferrin protein found in 

blood plasma is mostly produced by liver hepatocytes185. The GWAS meta-

analyses performed in this study showed that the glycomes of transferrin and IgG 

are associated with variants from genetic regions coding for two different 

transcription factors, HNF1A and IKZF1. The gene encoding transcription factor 

HNF1A is mainly expressed in the liver hepatocytes, while the gene coding for 
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IKZF1 is mainly expressed in plasma cells. Similarly, TF, the gene coding for 

transferrin protein, is most highly expressed in the liver hepatocytes, while 

IGHG1, gene encoding the constant region of immunoglobulin heavy chains, is 

most highly expressed in plasma cells. IKZF1 has been functionally validated as 

a key regulator of IgG glycosylation by Klarić and colleagues135: knock-down of 

IKZF1 resulted in change in expression of the FUT8 gene and further on in 

change in levels of fucosylation of IgG. On the other hand, using the Regulatory 

Sequence Analysis Tool (RSAT)182, I identified a potential binding site for the 

HNF1A transcription factor, spanning the sentinel SNP of the transferrin-glycome 

association in the FUT8 locus. While HNF1A’s role in transferrin glycosylation 

has yet to be experimentally determined, this transcription factor was shown to 

regulate the expression of the FUT8 and FUT6 genes in the HepG2 hepatocyte 

cell line, with HNF1A knockdown resulting in downregulation of FUT6 and 

upregulation of FUT8132. Overall, I suggest that the two different causal variants 

may affect the binding of different transcription factors, HNF1A and IKZF1, in 

different tissues, liver hepatocytes and B-cells, and therefore have independent 

effects on the glycosylation of transferrin and IgG proteins. However, the effect 

of specific SNPs on the binding of the two transcription factors and their 

downstream impact on the expression of fucosyltransferase enzymes in a tissue-

specific fashion still needs to be functionally validated, using for example 

Chromatin immunoprecipitation (ChIP) assay or CRISPR-Cas9 genome editing. 

The ChIP assay allows for the identification and quantification of protein-DNA 

interactions in vivo. It involves the cross-linking of DNA and proteins in cells, 

followed by the isolation of the protein-DNA complex, the amplification and 

sequencing of the DNA fragment containing the binding site313. This process can 

be used to determine whether variants in the FUT8 gene may affect the putative 

binding of the HNF1A transcription factor. Similarly, it was employed by Klarić 

and collegues135 to confirm the binding of IKZF1 transcription factor at a FUT8 

binding site in an IgG-secreting human B cell. Another way to test the effect of 

FUT8 genetic variant(s) on the binding of HNF1A transcription binding is by 

causing the disruption or alteration of the transcription binding site using CRISPR-

Cas9 genome editing, and then comparing the transcriptional activity of the edited 
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cells to cells with the wild-type sequence314.In addition to HNF1A, FUT8 variants 

associated with transferrin glycosylation might also be affecting the binding of the 

FOXI1 transcription factor. According to RSAT, I also identified a potential binding 

site for the FOX1 transcription factor in the FUT8 region. Unlike HNF1A, FOXI1’s 

involvement in regulating gene expression of fucosylation genes is to date 

undocumented and requires functional validation. 

 

Finally, using a framework incorporating Mendelian randomisation and 

colocalisation analysis, I assessed the effect of transferrin glycosylation on 

biochemical measurements and diseases, and the reverse. I found no evidence 

of complex traits/diseases influencing transferrin glycome, while I identified an 

effect of transferrin glycans on levels of C-reactive protein, LDL and total 

cholesterol at the HNF1A locus. However, these MR results rely on a single 

instrumental variable (or two maximum) and were driven by associations in a 

single locus, so should be interpreted with caution. 

 

 

5.2 Rare and low frequency variants contributing to variation of protein 

glycome 

 

Building on the work carried out in Chapter 2, where I described similarities and 

differences in the genes and variants contributing to the glycome of transferrin 

and IgG proteins, in chapter 3 I further investigated the genetic architecture of 

protein glycome by focusing on rare and low frequency variants affecting the 

transferrin and IgG glycosylation. By performing exome-wide gene-based tests 

across 51 transferrin traits (CROATIA-Korcula N = 948, VIKING N = 959) and 94 

IgG glycan traits (ORCADES N = 1960, CROATIA-Korcula N = 1866, VIKING N 

= 1086), testing low frequency and rare (MAF <5%) predicted loss-of-function 

(pLoF) and missense variants, I identified 16 significant associations for the 

transferrin glycome (p-value < 8.06x10-8) and 32 for the IgG glycome (p-value < 

1.19x10-7). Meta-analysis of IgG glycans for the ORCADES and VIKING cohorts 

added FUT6 to the list of genes whose rare variants are significantly associated 
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with the IgG glycome. Similarly to my previous work (Chapter 2), most of the 

identified genes are associated with protein-specific glycans (transferrin - TIRAP, 

MSR1 and FOXI1; IgG - MGAT3, ST6GAL1 and RFXAP), while FUT8 and FUT6 

are associated with glycosylation of both proteins. Almost all associated genes 

encode key enzymes of protein glycosylation (MGAT3, ST6GAL1, FUT6, FUT8) 

or have been previously associated with transferrin and IgG glycan traits in 

GWAS analysis (MSR1, FOXI1)135,215, as seen in Chapter 2, with the exception 

of TIRAP and RFXAP, which have no previously known link to the glycome. The 

novel gene TIRAP is located in close proximity to ST3GAL4, a 

glycosyltransferase-coding gene which has been associated with the transferrin 

glycosylation215. The TIRAP rare variant rs8177399 is a splicing QTL for 

ST3GAL4 in whole blood and may thus influence the transferrin glycome by 

controlling the splicing of the gene encoding ST3GAL4 sialyltransferase, an 

enzyme catalysing the transfer of sialic acid to a glycan structure. This proposed 

mechanism for TIRAP’s influence on transferrin glycome is further corroborated 

by the fact the glycan associated with TIRAP rare variants is a derived trait 

expressing the percentage of trisialylated structures on the total glycome 

(Chapter 3 - Supplementary Table 15). RFXAP encodes the regulatory factor X-

associated protein, part of the RFX DNA-binding complex, that binds to certain 

major histocompatibility (MHC) class II gene promoters and activates their 

transcription. MHC-II molecules are transmembrane proteins found on the 

surface of professional antigen-presenting cells, such as B cells235. B cells 

produce IgG antibodies and play a crucial role in the regulation and development 

of the immune response. The HLA super-locus, a gene-rich region counting at 

least 132 genes encoding MHC molecules, has been previously associated with 

IgG glycosylation137. Nevertheless, the precise role of RFXAP in IgG 

glycosylation still needs to be investigated, identifying for example signaling 

pathways or molecular networks associated with this gene to predict potential 

interactions and downstream effects, or performing a gene expression analysis, 

to profile gene expression changes upon overexpression of RFXAP. 

Coupling gene-based strategies, aggregating the contribution of multiple rare 

variants, with genetically isolated populations, having otherwise rare variants at 
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higher frequency due to genetic drift, I identified rare variant associations with the 

protein glycome independent from single-variant GWAS or ExWAS association 

signals. After conditioning the aggregated rare variant association tests on 

sentinel SNPs from GWAS on imputed genotypes, 24 of the 32 IgG glycome-

gene aggregate pairs remained significant. Conversely, 14 out of the 16 

transferrin glycome-gene aggregate pairs failed to reach genome-wide 

significance after adjusting for GWAS sentinel SNPs, suggesting that a 

considerable part of the rare variant signal for transferrin glycosylation was 

dependent on variants identifiable by GWAS. More specifically, gene-based 

associations with rare variants from FUT8, ST6GAL1 and MGAT3 remained 

significant following the conditioning on the GWAS sentinel variants and no 

significant associations were found for the RFXAP locus in the GWAS analysis. 

On the other hand, gene-based associations at FUT6, MSR1, FOXI1 and TIRAP 

genes were explained by sentinel GWAS variants. It is worth noting that the 

GWAS sentinels of FUT6, MSR1 and FOXI1 are low frequency (0.02<MAF<0.05) 

variants. Next, to test whether the rare variant glycome associations were driven 

by a single variant detectable by a single-point ExWAS, or rather by a group of 

multiple rare variants, I conditioned the aggregated rare variant association tests 

on sentinel ExWAS associations. Compared to the GWAS, ExWAS analysis can 

uncover single-variant associations with variants that are too rare to be imputed 

accurately and therefore could not be detected using a GWAS of imputed data. 

With this analysis I discovered that aggregated association of variants with IgG 

glycosylation in the ST6GAL1 gene was driven by a single variant that is 

sufficiently rare to not be available in the imputed data. On the other hand, 

associations at FUT8 and MGAT3 genes remained significant after conditioning 

on the sentinel ExWAS variants. In the case of these two genes, the sentinel 

ExWAS variants were common, suggesting that both common and aggregates of 

multiple rare variants in these two genes independently contribute to protein 

glycosylation. 

 

Finally, I assessed the effect of glycome-associated rare variants on diseases by 

performing gene-based association tests of 116 quantitative health-related traits 
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available in our cohorts. While I did not find any significant associations with 

health-related traits, by querying public repositories of gene-based tests229,230 and 

Open Targets Genetics portal315,316, I discovered a potential pleiotropic effect of 

the stop gained rs41341748 variant from MSR1 on transferrin glycosylation, 

galectin-3 and insulin-like growth factor 1 levels. In turn, both galectin-3-binding 

protein measurement243–247 and insulin-like growth factor 1 levels81,241,242 have 

been associated with type 2 diabetes. Nevertheless, the underlying mechanism 

behind a potential connection between transferrin glycome, IGF1, galectin-3 and 

diabetes is currently speculative and requires to be further explored, likely with a 

larger sample size. By searching on Phenoscanner database183, I did not find any 

overlap between loci associated with transferrin glycosylation and those 

associated with diabetes, insulin resistance or HbA1c levels (Supplementary 

Table 11a of Chapter 2). Further, including HbA1c levels as an additional 

covariate in the transferrin glycome GWAS did not influenced the results of 

VIKING cohort, since the association effect sizes and p-values obtained for the 

HbA1c-adjusted GWAS are very similar to those obtained in the original GWAS. 

Accordingly, I could not find any evidence suggesting that prediabetes, insulin 

resistance or HbA1c levels might have an effect on transferrin levels mediated by 

common genetic variation. Although the use of isolate cohort samples allowed for 

the identification of genetic associations with intermediate phenotypes like 

glycomics, statistical power was not enough to detect associations with complex 

traits and diseases, especially for variants of low frequency. While this analysis, 

at the current sample size and given the effect size of associated variants, lacked 

statistical power to assess the impact of glycome-associated rare variants on 

health-related traits, the combined use of intermediate phenotypes, rare-variants 

aggregating tests and isolated populations is still a strategy worth exploring to 

achieve this goal. Drastically larger sample sizes from the general population may 

in fact still lack power for discovery of rare variants contributing to complex 

diseases. A recent study36 performed exome-wide gene-based analyses in UK 

Biobank to evaluate the contributions of ultra-rare (MAF<0.1%) damaging 

variants to several health-related traits and diseases. Despite the 100-fold higher 

sample size compared to our study, the authors noted that rare variant discovery 
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power was still limited. For example, only three associations for type 2 diabetes 

and one for atrial fibrillation were significant, despite both phenotypes counting 

over 12,000 cases. A previous exome sequencing study of type 2 diabetes 

argued that rare variant gene-level signals are likely distributed across numerous 

genes, with the vast majority of them having extremely small effects on the 

disease317. Accordingly, authors estimated that 75,000–185,000 sequenced 

cases, or 600,000-1,275,000 samples from population-based biobanks, would be 

necessary to identify known diabetes drug targets at 80% statistical power. An 

alternative to such large sample sizes is the use of genetic isolates, which are 

advantageously characterised by different allele frequency and disease 

prevalence than the general population. For example, in this study I detected two 

instances of isolate-specific glycome associations that are driven by variants 

increased in frequency compared to the general population. The rs750567016 

variant in ST6GAL1, affecting IgG glycosylation, is over 300 times more common 

in ORCADES (MAF=3.3x10-3) than in UK Biobank (MAF=1.0x10-5) or gnomAD 

(MAF=9.0x10-6), and is absent from the CROATIA-Korcula and VIKING cohorts. 

The rs115399307 variant in FOXI1, associated with transferrin glycosylation, is 

seven times more common in VIKING (MAF=2.1x10-2) than in the CROATIA-

Korcula cohort (MAF=2.7x10-3), UK Biobank (MAF=8.5x10-3) and gnomAD 

(MAF=7.1x10-3). These findings suggest that, for some specific variants, genetic 

isolates may retain higher statistical power to identify rare variant associations 

than large population-based biobanks, despite the limited sample size. The 

increased statistical power offered by health-related, quantitative traits compared 

to binary disease endpoint traits can be noted also in a recent exome sequencing 

study exploring the impact of rare protein-altering variants on health in 454,787 

UK Biobank participants39. Eighty gene-based associations were significantly 

identified by testing 3702 binary traits, while 484 gene-based associations were 

observed by testing only 292 quantitative traits. Accordingly, carefully selected 

intermediate quantitative phenotypes represent a viable option to increase 

statistical power for detecting rare variant associations with complex diseases 

even in UK biobank, one of the largest WES cohorts currently available 

worldwide. Viking Genes, a family-based cohort including individuals from the 
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ORCADES and VIKING cohorts here studied, has now reached over 9000 

participants from the Scottish Isles. We may therefore have the opportunity in the 

future to test, in a genetic isolate of a larger size, the efficacy of intermediate 

phenotypes and rare variant aggregating tests in identifying rare variants 

affecting impacting health and complex diseases. 

 

While WES rare variant studies are a powerful tool for identifying genetic variant 

associations, they may be prone to false positives and errors due to several 

factors inherent to the WES technology and analysis process. To obtain whole 

exome sequences, genomic DNA extracted from participant samples is 

fragmented into smaller segments, to which adapters are attached to facilitate the 

subsequent steps. The exonic regions of interest are selectively enriched using 

capture probes and amplificated by polymerase chain reaction (PCR)318. The 

WES design used in Chapter 3 and Chapter 4 studies is set to target 

approximately 39 Mb of the human genome and an additional 100 bp flanking 

region upstream and downstream of each capture target are also included217. The 

amplified DNA libraries are then loaded onto a high-throughput sequencing 

platform, such as the Illumina platform. Sequencing is followed by variant calling, 

aimed at identifying differences between an individual's sequenced DNA and a 

reference genome. It is important to note that certain rare variants, especially 

singletons, raise concerns about potential sequencing errors. To mitigate this, 

variants were called using joint calling with multiple cohorts (ORCADES, VIKING 

and CROATIA-Korcula), thereby increasing confidence in their accuracy. To limit 

the possibility of false positives in gene-based aggregation tests of Chapters 3 

and 4, I considered as not reliable, and thus discarded from the presented 

significant results, genes whose tested variants have a cumulative allele count 

lower than 10. 

 

To further increase statistical power and to facilitate biological interpretation, the 

current studies have been limited to the analysis of variants impacting the gene 

product, namely variants which were annotated in silico as pLoF or missense. 

While detailed molecular studies are considered the gold standard for confirming 
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variant function, several bioinformatics tools, as SnpEff255, SIFT319, PolyPhen320, 

which were used in this study, and VEP180, employed in the previous chapter, 

have been developed for rapidly classifying and prioritizing candidate variants, 

reducing the need for expensive and labour-intensive functional assays. 

However, these methods have inherent limitations due to differences in 

assumptions, reference/training datasets and alignment algorithms, which may 

lead to incorrect conclusions. 

 

It has been observed that pLoF variants, given their rarity, often result to be 

sequencing errors rather than true genetic variants, thus not actually resulting in 

a loss of protein function321. A common example of this phenomenon are 

nonsense variants in the final exon of a gene, causing a premature termination 

codon. The impact of most of these end truncations, due to their position in the 

aminoacidic chain, is however not as deleterious as complete LoF, where the 

protein is not produced altogether. In other cases, LoF variants are unexpectedly 

observed in apparently healthy individuals. One proposed explanation for this 

paradox involves alternative splicing of mRNA, which allows exons of a gene to 

be expressed at varying levels across different cell types322. pLoF variants in 

weakly expressed regions have been observed to have similar effect sizes to 

those of synonymous variants, whereas pLoF variants in highly expressed exons 

are most strongly enriched among cases. The great majority of annotation tools 

do not systematically incorporate information about exon expression into the 

interpretation of variants and, in case of multiple protein-coding transcripts, 

variants are usually labelled with the most severe consequence217. Finally, 

variant impact scores, as SIFT, PolyPhen etc, are generated using algorithms 

considering multiple variant features to predict their impact or deleteriousness. 

These classifiers require training sets that identify the precise set and 

combination of input features associated with "deleterious" alleles. The choice of 

data used as the training set is thus crucial, as it determines the type of 

deleterious variants that can be accurately predicted. Accordingly, each 

algorithm, based on the feature set used, has its own strengths, weaknesses, 

and caveats323,324. 
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While the study presented in Chapters 3 and 4 of this thesis serves as a first 

exploratory analysis of rare, protein-coding variants affecting the levels of 

transferrin/IgG glycans and bile acids, additional statistical tools can be applied 

in the future to confirm the annotation of associated variants and gain deeper 

insight in their functional role. Common types of LoF annotation errors can be 

identified for example by the Loss-Of-Function Transcript Effect Estimator, or 

LOFTEE, which applies a conservative filtering strategy to distinguishes high-

confidence pLoF variants from annotation artefacts325. For genes where 

transcript expression differs between exons, the “proportion expressed across 

transcripts”, or pext, metric can be used to differentiate between weakly and 

highly expressed exons, and thus flag variants which may be less likely to be 

pathogenic322. Finally, experimental methods, such as measuring the effect of the 

variant on protein function in vitro or in vivo, or population-based methods, such 

as comparing the frequency of the variant in cases versus controls to determine 

its association with disease, can be applied to confirm the impact of glycan-

associated variants on complex traits or disease326. 

 

 

5.3 Genetic architecture of bile acid lipidome 

 

After focusing on the genetic architecture of the protein glycome, in Chapter 4 I 

performed similar analyses for a different “ome”, the bile acid lipidome. By 

performing GWAS meta-analysis of blood plasma levels for 18 primary and 

secondary bile acids in five cohorts of European descent (CROATIA-Vis N = 971, 

ORCADES N = 1019, NSPHS N = 718, MICROS N = 1336, ERF N = 879), I 

identified 2 significantly associated loci, near the SLCO1B1 and PRKG1 genes. 

While direction of the effect for the SLCO1B1 locus is consistent across 4 of the 

5 cohorts tested, the sentinel SNP of PRKG1 locus passed the MAF threshold 

(MAF > 1%) only in the CROATIA-Vis cohort, which is therefore the only cohort 

contributing to this association. 
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Since the rate of bile acids synthesis and their pool composition are known to be 

sexually dimorphic261, I performed sex-specific GWAS meta-analysis of bile acid 

traits in two of the available cohorts (female N = 1088, male N = 820), observing 

sex-specific associations for the 2 loci identified in the pooled analysis containing 

all samples. The bile acid association signal at the SLCO1B1 locus, significant in 

the male-only analysis, has a smaller effect size and does not reach the 

significance threshold in the female-only analysis, despite the slightly larger 

sample size. On the contrary, the association signal at the PRKG1 locus has a 

larger effect in females than in males and passes the significance threshold only 

in the female-specific analysis. Interestingly, the PRKG1 sentinel SNPs from the 

pooled-analysis and for the female-specific analysis are in linkage equilibrium 

and thus represent two independent associations at the locus. Nevertheless, 

Mendelian randomisation analysis did not provide evidence that testosterone, 

oestradiol, sex hormone-binding globulin or other sex-related traits have causal 

effects on levels of plasma bile acids. While this could be due to a lack of 

statistical power of the bile acids meta-analysis, there is currently no evidence to 

suggest an effect of sex-related hormones on bile acid levels mediated by 

genetics. In addition to SLCO1B1 and PRKG1, I identified another 13 sex-specific 

association signals, suggesting that the genetic effect on the plasma levels of bile 

acids at these loci is different in men and women. These, however, need to be 

further validated in other cohorts, also testing a genotype x sex interaction model 

(G x S), which is a statistical model helpful to investigate whether the effect of 

genetic variation on a trait is influenced by the sex of the individual. The 

interaction term that combines genotype and sex can capture whether the effect 

of the genotype on the trait differs between males and females, providing thus 

insights into the complex interplay between genetics and biology in the context of 

sexual dimorphism327. 

 

I next performed exome-wide gene-based association tests in one of the cohorts 

with available exome sequencing data (N = 1006), and identified associations of 

bile acids with rare pLOF and missense variants in the OR1G1, SART1 and 

SORCS2 genes. The literature suggests that olfactory cues, recognised by 
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olfactory receptors such as the one encoded by OR1G1, can stimulate the 

release of serotonin by specialised enteroendocrine gastrointestinal cells285, 

which has been shown to increase bile acid synthesis and secretion in mice287, 

offering a potential link between the OR1G1 and bile acid levels. The hypoxia-

associated factor (HAF), encoded by SART1, has been shown to promote the 

transcription of HIF-2α283, a hypoxia-inducible factor (HIF) transcription factor 

involved in proliferation and hypoxia-related signalling. Increased expression of 

HIF-2α has been reported in several liver diseases, such as non-alcoholic 

steatohepatitis328 and hepatocellular carcinoma329, characterised by impaired 

levels of plasma bile acids330,331. SORCS2 encodes a receptor for the precursor 

of nerve growth factor, up-regulation of which has been reported for several liver 

pathologies288–293. As observed for the protein glycome and described in Chapter 

3, several rare variants found associated with bile acid lipidome have increased 

frequency in the tested isolate cohort (ORCADES) compared to the general 

population. For example, OR1G1 rs777878604 is ~75-fold more common in 

ORCADES (MAF=6.23x10-3) than in gnomAD (MAF=1.47x10-5), and SORCS2 

rs777878604 is over 400-fold increased in frequency in ORCADES 

(MAF=4.5x10-3) compared to gnomAD (MAF=5.88x10-5). Once again, the 

increase in allele frequency of certain genetic variants in isolated populations can 

increase power for discovery of rare variant associations. 

 

Finally, I used Mendelian randomisation to assess relationships between 

genetically increased levels of bile acids and biochemical measurements/risk for 

diseases, but did not find any bile acids affecting these traits, nor the reverse. All 

of these results, however, might be affected by the lack of statistical power. 
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5.4 Similarities and differences in genetic regulation of protein glycome and 

bile acid lipidome 

 

By performing similar genetic analyses on two different omics datasets I am able 

to compare the genetic architecture of the two intermediate phenotypes. First, 

despite the bile acid lipidome analyses having double the sample size compared 

to the glycosylation-based analyses, using GWAS I discovered only 2 genes 

significantly associated with bile acid levels, compared to 10 and 11 genes 

associated with transferrin and IgG glycosylation. In contrast to the GWAS 

analyses, for the gene-based aggregation of rare-variant analyses the sample 

size of glycosylation analysis was at least double that of the bile acid analyses. 

However, I have detected a similar number of associations across all phenotypes 

- aggregated rare variants from 5 genes were associated with transferrin and 4 

with IgG glycosylation levels, and 3 genes with bile acid levels. 

 

For both omics, the majority of associated loci contain genes with a clear 

biological function in the context of the studied phenotype. However, there are 

some differences between two phenotypes. In particular, the majority of glycome-

associated loci contain genes encoding glycotransferases, key enzymes in 

protein glycosylation, namely, the acetylglucosaminyltransferases MGAT5 and 

MGAT3, glucuronyltransferases B3GAT1, sialyltransferases ST3GAL4 and 

ST6GAL1, and the fucosyltransferases FUT6 and FUT8. Another example of a 

glycome-associated gene having a clear biological link to the phenotype of 

interest is the TF gene, associated with transferrin glycosylation and encoding 

transferrin protein. The observation for IgG glycosylation was similar, with 

variants in the gene coding for the heavy chain of immunoglobulin G were also 

associated with glycosylation of this protein135,137. In addition to 

glycosyltransferases and transferrin protein coding genes, another “class” of 

genes found associated with the protein glycome are transcription factor-coding 

genes, namely HNF1A and FOXI1 for transferrin, IKZF1 and RUNX3 for the IgG 

glycome. In Chapter 2, I showed that the binding of both FOXI1 and HNF1A 

transcription factors might be affected by transferrin glycome-associated variants 
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in the FUT8 locus. Lauc et al.132 have shown that HNF1A knockdown results in 

downregulation of FUT6 and upregulation of FUT8 in HepG2 hepatocyte cell line. 

While it might be expected that a change in levels of fucosyltransferase enzymes 

FUT6 and FUT8 would impact levels of antennary and core fucosylation, this link, 

especially in the context of transferrin glycosylation, has yet to be experimentally 

proven. Similarly, a possible involvement of FOXI1 in the regulation of the 

transferrin fucosylation is to date unknown and would require functional 

validation. In the GWAS of IgG glycosylation, Klarić et al.135 suggest that IgG 

glycome-associated SNPs from the MGAT3 locus disrupt the binding site for 

RUNX3 transcription factor and are pleiotropic with MGAT3 expression in 

lymphoblastoid cells. Further, Klarić et al.135 provided experimental evidence that 

IKZF1 transcriptionally regulates FUT8, showing, first, that IKZF1 binds to 

regulatory regions of FUT8 and, second, that IKZF1 knockdown results in 

increased FUT8 expression and increased IgG fucosylation. 

 

Overall, genetic analysis of protein glycome identified association at genes 

encoding key enzymes of glycan synthesis and transcription factors (potentially) 

regulating them. On the contrary, no association signals in genes encoding key 

enzymes of bile acid synthesis, such as CYP7A1 and CYP7B148, were identified 

in Chapter 4 analyses. The strongest GWAS association with bile acid lipidome 

is in SLCO1B1, whose encoded protein is a well-known hepatocyte transporter 

mediating the uptake of various endogenous compounds, such as bile salts, 

bilirubin glucuronides, thyroid hormones and steroid hormone metabolites, and 

drugs, like statins, HIV protease inhibitors, and the anti-cancer agents irinotecan 

or methotrexate. Accordingly, the knock-out of the SLCO1B1 gene in mice results 

in abnormal liver physiology, abnormal xenobiotic pharmacokinetic phenotypes 

and altered blood chemistry (e.g. abnormal level of circulating serum albumin, 

decreased circulating serum amylase, increased serum alanine transaminase, 

bilirubin and cholesterol)332. Furthermore, the SLCO1B1 sentinel SNP 

rs4149056, for which I observed a sex-specific effect on plasma bile acid levels, 

has been reported to impact the pharmacokinetics of pravastatin differently in 

men and women333. PRKG1, another gene whose variants I found associated 

https://identifiers.org/MP:0000199
https://identifiers.org/MP:0008805
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with the bile acid lipidome, encodes the protein kinase cGKI, which Franko et 

al.334 reported to regulate the activation of hepatic stellate cells, liver-specific 

mesenchymal cells that play vital roles in liver physiology and fibrogenesis. 

Activation of hepatic stellate cells is characteristic of hepatic fibrogenesis, a 

process occurring during chronic liver injury and that is primarily involved in the 

progression of chronic liver diseases, irrespective of their specific aetiology335. 

Nevertheless, the mechanism of how the variation within the PRKG1 gene relates 

to bile acid levels requires further investigation. Finally, also the products of 

SART1 and SORCS2, whose rare variants I found associated with bile acid 

lipidome, have been linked indirectly to several liver pathologies, e.g. non-

alcoholic steatohepatitis328, hepatocellular carcinoma329, cirrhosis291 and 

hepatocellular carcinoma292. 

 

Overall, genetic analysis of the bile acid lipidome identified association signals at 

genes involved in hepatic function and dysfunction, rather than genes encoding 

key anabolic or catabolic enzymes of the pathway, as observed instead for 

protein glycome. It is important to interpret these findings in the context of the 

tissue in which bile acid levels were measured, blood plasma. Bile acids are 

synthesised in the liver and secreted into the intestine, to be then reabsorbed into 

the bloodstream and returned to the liver. Bile acid levels in plasma thus reflect 

the amount of bile acid escaping extraction from the bloodstream and returning 

to the liver. In healthy subjects, the fasting total serum bile acid concentration is 

relatively low (2-10 μmol/L), thanks to the efficiency of the liver in removing bile 

acids from the portal-hepatic circulation. Increase in serum total bile acids could 

be mostly related to a dysfunction in the hepatocellular uptake of bile acid, 

impairment of transport of bile acids in hepatocytes, or dysfunction of bile acid 

efflux336. The exploration of BAs’ genetic regulation could thus potentially benefit 

from examining tissues beyond blood plasma. Alternative tissues, such as the 

liver, offering insights into BAs synthesis and metabolism, along with the 

gallbladder and small intestine, where BAs significantly contribute to digestion 

and nutrient absorption, might yield more pertinent information. Regrettably, 
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obtaining samples on a large scale from these human tissues poses practical 

challenges, which is not the case for blood samples. 

 

 

 

5.5 Future work 

 

Since the first GWAS of the protein glycome132, several methodological 

improvements have been applied in order to increase statistical power for 

discovery of genetic associations. First, the use of glycome profiling technologies 

specifically tailored for large scale population studies (e.g. ultra-performance 

liquid chromatography), characterised by high sensitivity, resolution and speed, 

and also able to provide branch-specific information of glycan structures337. Then, 

by employing new imputation panels, like 1000 Genomes338 and Haplotype 

Refence Consortium (HRC)28, or exome sequence data to increase the resolution 

and power of genetic mapping. Finally, in the most recent GWAS of IgG 

glycosylation, Frkatović-Hodžić et al.339 increased the available sample size by 

developing a protocol for harmonisation of glycan data generated using different 

analytical platforms, ultra-performance liquid chromatography (UPLC) and liquid 

chromatography–mass spectrometry (LC-MS). IgG is composed of four 

subclasses (IgG1, IgG2, IgG3, and IgG4), which have distinct structural and 

functional characteristics340; LC-MS provides IgG subclass-specific glycan 

information, while UPLC measures the total IgG glycosylation. Glycan information 

obtained from these analytical platforms has not been previously combined, 

increasing the sample size to over 13,000 individuals in the discovery phase and 

more than 7,000 participants in the replication phase, the highest GWAS sample 

size to date for IgG glycosylation (in particular, the focus of this study is 

galactosylation, a trait measuring the presence of zero, one, or two galactose 

moieties in IgG glycan structures). Zaytseva et al.341 recently performed large-

scale investigation of possible causal relationships between IgG glycosylation 

traits and risk of 12 autoimmune, inflammatory, neurodegenerative, 

cardiovascular and cancer diseases, whose aberrant glycosylation profile is well 
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characterised. The authors were unable to detect any significant effects of IgG 

glycan traits on the risk of the diseases, due to the generally lower power of the 

IgG glycome GWAS (N=9000) compared with diseases GWAS (mean 

N=144,760, min N=8477, max N=462,013). The selected instrumental variables 

on average explained 5.3% of variance in IgG glycosylation traits, ranging from a 

minimum value of 0.67% to a maximum value of 20.06% variance explained. The 

authors estimated that a median required sample size of 25,500 for the IgG 

glycosylation GWAS would be needed to detect significant MR associations, if 

any exist. For example, the required sample size for the IgG glycome ranges from 

9500 for effect on hypertension to 101,500 for effect on Parkinson’s disease. 

They thus suggest to re-assay the effect of IgG glycome on diseases when an 

IgG glycome GWAS of N ~ 25,500/2 = 12,750 will be available, assuming that, in 

the future, available GWAS for diseases will count twice the sample size as that 

used in the current study342. While no similar calculations have been performed 

for glycome of non-IgG proteins, these data suggest that a reasonable increase 

in sample size will improve our chances of identifying the effect of protein glycome 

on complex diseases. As discussed in section 5.5, the protein glycome potentially 

represents a great example of intermediate phenotype to facilitate the discovery 

of biological mechanisms underlying complex diseases. Glycans are sufficiently 

close to their genetic substrate to allow the identification of biologically relevant 

genes even in cohorts of limited sample size, and changes in their pattern have 

been observed in several pathological states. 

 

Similarly, identification of the genetic contribution to the bile acid lipidome and its 

effect on complex diseases has been limited by the available sample size. Bile 

acids are known to be largely influenced by environmental factors, such as sex, 

diet and gut microbiota, which can confound the genetic signal. Female sex and 

oestrogens are considered relevant regulators of bile acid production and 

composition, as seen for example in pregnancy262 and menopause294. Also, 

species-composition of gut microbiota has a great impact on the bile acid 

lipidome, especially for secondary bile acids that are a direct result of microbial 

activity295. In a recent study on genetic and dietary determinants of bile acids, Li 
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et al.267 used a genetically diverse population of ∼360 mice to gain insight into 

the determinants of bile acid homeostasis, reducing the impact of confounding 

environmental factors typical of human studies. The authors found most bile acids 

to have a high heritability (h2>0.5), indicating a strong genetic influence. However 

heritability of bile acids significantly dropped when ignoring dietary environmental 

factors. Since exhaustively controlling for the confounding effect of diet is a 

difficult task in large population-based cohorts, an increased sample size is 

necessary to further describe the genetic architecture of bile acid lipidome and its 

effect on complex diseases. 

 

Research into the genetic determinants of the protein glycome has largely been 

limited to samples of European ancestry, as, to the best of my knowledge, all 

currently available population-based GWAS of the protein glycome have been 

performed in European cohorts. A study aimed at describing the inter-ethnic 

differences in serum glycome among US origin, South Indian, Japanese, and 

Ethiopian populations, found the Ethiopian ethnic group to exhibit a peculiar 

glycome pattern, with exclusive glycoforms, and greatly increased levels of both 

specific glycan structures and total serum glycome343. Interestingly, some of the 

glycoforms observed to be exclusive or elevated in healthy Ethiopian participants 

have previously been proposed as serum biomarkers of hepatocellular carcinoma 

in Japanese individuals344 or as prognostic biomarkers in renal cell carcinoma345, 

while some have been significantly associated with castration-resistant status in 

prostate cancer346. These findings highlight the importance of considering ethnic 

differences in variations of serum glycome, as ignoring these differences may 

lead to inaccurate and misleading conclusions when using glycans as disease 

biomarkers. A similar study347, comparing IgG glycosylation patterns in 

individuals from 14 different countries and 25 different ethnic groups, found that 

indices describing a country's development level, expected lifespan and 

numerous health related indicators were positively correlated with levels of 

galactosylated IgG glycan structures. An MR study identified an effect of levels 

of IgG glycan traits on susceptibility of rheumatoid arthritis in a Chinese cohort348, 

while a previous study in a large, well-powered cohort of European-descendent 
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concluded that loci associated with IgG glycosylation do not affect the risk of 

rheumatoid arthritis349. Authors suggest that this discrepancy in findings among 

the two studies might be due to ancestry-specific genetic effects. Therefore, more 

efforts need to be invested to expand the current analyses to more diverse 

cohorts. 

 

Significant differences among different ethnic groups have been noted also for 

concentration of individual bile acid traits, with subjects of Asian descent 

displaying significantly higher concentrations of serum CDCA, TCDCA, GCDCA 

and GCA than subjects of other ethnic backgrounds331. Similarly, faecal 

concentrations of total bile acid have been reported to be significantly higher in 

Asian vegetarians than European-heritage vegetarians350. Accordingly, these 

different bile acid concentrations may be due to genetic differences in bile acid 

synthesis/metabolism or possibly different dietary patterns, noting also that 

individuals of Asian ancestry are more susceptible to certain liver diseases351.  

 

Protein glycome and the bile acid lipidome are influenced both by genetics and 

environmental factors. It is therefore important to establish which of the two is the 

main cause of observed differences in the glycan and bile acid profiles of different 

populations. Understanding to which extent genetics of glycome and bile acid 

lipidome possibly contribute to disease risk in an ethnic-specific manner is 

important both from the perspective of unravelling the underlying mechanisms 

and pathologies and for the discovery of new drugs and better treatments. 

Additionally, rather than searching for differences among populations, individuals 

from multiple ancestries can be analysed together in a trans-ethnic GWAS, which 

has increased power to detect true associations with the trait of interest, as 

shared genetic effects across ethnicities tend to be directionally consistent352. 

 

As discussed in Chapter 2 and 3, genes and variants regulating transferrin and 

IgG glycosylation are, for the most part, protein-specific. The current knowledge 

of genetic architecture of glycome is however limited to the IgG and transferrin 

proteins or to total plasma protein, quantifying the glycome of all proteins in 
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plasma, but without information on which glycan was bound to which protein. 

While genetic studies of the glycome of proteins other than IgG and transferrin 

would allow for identification of protein-specific glycosylation pathways, these are 

currently hampered by technical challenges in isolating the glycoproteins of 

interest in large cohorts. As N-glycome profiling technologies develop, the study 

of individual N-glycosylation profiles across a wider range of proteins will 

hopefully become possible in the close future. For example, fast, efficient, and 

robust high-throughput procedures have been developed for isolation of 

haptoglobin353 and alpha-1-acid glycoprotein354, acute phase proteins whose 

altered glycosylation has been described in different types of diseases. 

Additionally, high-throughput technologies for N-glycome profiling in human 

tissues other than blood are likely to emerge, allowing to assess how 

glycosylation is genetically regulated in tissue of primary interest for the protein 

studied (e.g. liver for transferrin). For example, site-specific glycosylation analysis 

of immunoglobulin A and G antibodies was reported for the first time in human 

saliva355. Finally, compared with studies of other complex traits, the sample sizes 

employed in genetic analyses of human N-glycomics remain relatively modest, 

causing limitations on the utilization of quantitative genetics methodologies. 

Anticipated future progress includes increased GWAS statistical power thanks to 

larger sample sizes, allowing more precise estimations of genetic impact and 

enhancing the reliability of quantitative genetics analyses such as MR, 

colocalisation and genetic correlation. These advancements are expected to 

enhance our understanding of N-glycosylation regulation in human proteins and 

shed light on the role of glycosylation in the development of glycome-associated 

diseases. This, in turn, could lead to the creation of new methods for predicting, 

preventing, diagnosing, and managing such diseases356. 
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5.6 Conclusion 

 

The main goal of this thesis was to expand the current knowledge about the 

genetic architecture of two under-studied omic traits, protein glycomics and bile 

acid lipidomics, and to explore their contribution to complex diseases. I first 

described the genetic regulation of the transferrin glycome and then compared it 

to that of IgG glycosylation, noting both protein-specific and shared associations. 

I found these shared associations to be likely regulated by independent causal 

variants, suggesting that glycosylation of transferrin and IgG is genetically 

regulated by both shared and protein-specific mechanisms. Next, I investigated 

rare pLOF and missense variants associated with the glycome of transferrin and 

IgG, increasing statistical power for discovery by using multiple gene-based 

aggregation tests in isolated populations. Overall, the protein glycome appeared 

to be mainly associated with genes encoding key enzymes of the glycosylation 

process. Finally, I applied a similar approach to bile acid lipidomics, exploring the 

genetic contribution of both common and rare variants and identifying also sex-

specific association signals. Associated genes reflect hepatic function and 

dysfunction, rather than core enzymes for the synthesis of bile acids. 

Unfortunately, both the protein glycome and the bile acid lipidome analysis did 

not have enough statistical power to identify an effect on complex disease. 

Additional studies with larger sample sizes and of more diverse ancestries will be 

necessary to validate findings, to further unravel the genetic architecture of 

protein glycome and bile acid lipidome, and to understand their relationship with 

human diseases and complex traits. This in turn could contribute to 

understanding biological mechanisms underlying complex diseases, developing 

informed disease screening tests, improving disease diagnosis and prognosis, 

and finally designing innovative and more customised treatment strategies to 

enhance human health.  
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Appendix 

 

 

 

 

Supplementary Figure 1. Summary of cohorts and sample sizes for all 

transferrin and IgG glycan traits assayed in Chapters 2 and 3. Transferrin 

glycan traits overall assayed in this thesis are 35 directly measured traits, whose 

structural characterization is reported by Trbojević-Akmačić et al.140 and 16 

derived traits, calculated as detailed in the Supplementary Table 15 of Chapter 

3, from VIKING (N=952) and batch 2 of CROATIA-Korcula (N=938) cohorts. IgG 

glycan traits overall assayed in this thesis are 24 directly measured traits, whose 

structural characterization is detailed in Huffman et al.141, 54 derived traits as 

defined by Huffman et al.141 and 16 newly derived traits, calculated as detailed in 

the Supplementary Table 16 of Chapter 3, from ORCADES (N=1959), VIKING 

(N=1079), batch 1 (N=849) and 2 (N=941) of CROATIA-Korcula cohorts. While 

all of the above described measured and derived glycan traits are included in the 

analyses of Chapter 3, only the actually measured glycan traits (35 for transferrin 

and 24 for IgG) of VIKING and batch 2 of CROATIA-Korcula, marked in the bar 

chart by a “*”, are analysed in Chapter 2.  
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Supplementary Figure 2. Correlation of transferrin glycan measurements in 

VIKING cohort. Prior to correlation analysis, transferrin glycan measurements 

were normalised, batch corrected, rank-transformed and adjusted for age, sex 

and cryptic relatedness. The structural characterization of measured glycan traits, 

called by the number of their glycan peak (TfGP), are available at Supplementary 

Table 2 of Trbojević-Akmačić et al.140 The description and computing formulas of 

newly derived glycan traits are available at Supplementary Table 15 of the 

Chapter 3 of this thesis. The blue colour indicates a positive Pearson correlation, 

while the red colour indicates a negative Pearson correlation. The areas of circles 

show the absolute value of corresponding correlation coefficients.  
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Supplementary Figure 3. Correlation of IgG glycan measurements in 

VIKING cohort. Prior to correlation analysis, IgG glycan measurements were 

normalised, batch corrected, rank-transformed and adjusted for age, sex and 

cryptic relatedness. The structural characterization of measured IgG glycan traits, 

called by the number of their glycan peak (GP), and the description and 

computing formulas of derived glycan traits are available at Supplementary Table 

1 of Huffman et al.141 The description and computing formulas of newly derived 

IgG glycan traits are available at Supplementary Table 16 of the Chapter 3 of this 

thesis. The blue colour indicates a positive Pearson correlation, while the red 

colour indicates a negative Pearson correlation. The areas of circles show the 

absolute value of corresponding correlation coefficients.  
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Supplementary Figure 4: Effectiveness of normalisation and batch 

correction on correlation of duplicated samples in transferrin glycan traits. 

Plots show the correlation of duplicated samples in raw data (A) and normalised 

and batch corrected data (B). All the 35 transferrin glycan traits examined are 

shown. The correlation between duplicated samples is overall increased across 

glycan traits after batch correction and normalisation. However, while some traits 

are characterised by a dramatic increase in correlation (e.g. TfGP17 and 

TfGP20), some still contain considerable measurement error (e.g. TfGP2). In 

these latter cases, the pre-processing procedure has been less effective in 

removing experimental noise.  
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Supplementary Figure 5: Effectiveness of batch correction on transferrin 

glycan traits. Plots show the distribution of samples, divided by plates, before 

(A) and after batch correction (B). All the 35 glycan traits examined are shown. 

Batch effect has been remarkably reduced thanks to batch correction, even for 

strongly affected glycan traits (e.g. TfGP18 and TfGP2). 
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Chapter 2 - Supplementary Methods 

 

Transferrin isolation 

Flowthrough during IgG purification was collected for immediate subsequent Tf 

isolation using previously developed preconditioned CIMac-@Tf 96-well 

monolithic plate1. Unbound proteins during Tf isolation were washed away with 

1x PBS (0.25 mol L-1 NaCl), pH 7.4. Bound Tf was eluted with 0.7 mL of 0.1 mol 

L-1 formic acid pH 3.0 (pH adjusted with 25 % ammonia solution, Merck) and 

immediately neutralized with 1 mol L-1 ammonium hydrogencarbonate (Sigma-

Aldrich) to pH 7.0. Monolithic plate was regenerated and stored at 4 °C until the 

next isolation. Each elution fraction (300 μL) was dried in a vacuum centrifuge 

(Thermo Scientific) and stored at -20 °C until subsequent N-glycan release. To 

ensure quality of transferrin purification from isolation to isolation we randomly 

selected transferrin eluates (7.5x concentrated) per each plate and analysed 

them by SDS-PAGE to check for potential contaminants. As can be seen in the 

Supplementary Figure 11, the purification was successful and no other 

contaminants were detected. We next analysed transferrin eluate for transferrin 

purity by performing trypsin digestion and LC-MS analysis of obtained 

(glyco)peptides. Pooled isolated transferrin sample was reduced with 

dithiothreitol and alkylated with iodoacetamide prior to trypsin digestion. Tryptic 

glycopeptides and peptides were separated and analysed by nano liquid 

chromatography coupled to electrospray ionization quadrupole time of flight mass 

spectrometry (nanoLC-ESI-qTOF-MS). A search for specific tryptic peptides with 

a maximum of 2 miscleavages was done in MaxQuant software2 against Homo 

sapiens proteins sequences (UniProt fasta file) with the methionine oxidation and 

asparagine carrying N-acetylhexosamine as variable modifications and 

carbamidomethyl on cysteine as the fixed modification. Analysis was performed 

in triplicates and the average intensity extracted for serotransferrin (UniProt 

P02787) was 99.36%, which confirms high purity of the transferrin sample. 
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N-glycan release and fluorescent labelling 

Dried Tf eluates were denatured with 30 μl of 13.3 g L-1 sodium dodecyl sulfate 

(SDS, Invitrogen) and by incubation at 65 °C for 10 min. After cooling down to 

room temperature for 30 min, 10 μl of 4 % (v/v) Igepal CA-630 (Sigma-Aldrich) 

was added and the mixture was shaken for 15 min on a plate shaker. N-glycans 

were released after the addition of 10 μL of 5x PBS and 1.2 U of PNGase F 

(Promega) by incubation at 37 °C for 18 hours. Released N-glycans were labeled 

with 2-aminobenzamide (2-AB, Sigma-Aldrich). The labeling mixture was freshly 

prepared by dissolving 2-AB and 2-methylpyridine borane complex (2-PB, Sigma-

Aldrich) (final concentrations of 19.2 mg mL-1 and 44.8 mg mL-1, respectively) in 

the mixture of dimethyl sulfoxide (Sigma-Aldrich) and glacial acetic acid (Merck) 

(7:3). Labeling mixture (25 μL) was added to each sample and the plate was 

sealed using an adhesive seal. After 10 minutes of shaking, samples were 

incubated for 2 hours at 65 °C. Excess of reagents from previous steps was 

removed from the samples using hydrophilic interaction liquid chromatography 

solid phase extraction (HILIC-SPE). After free N-glycan labeling samples were 

cooled down to room temperature for 30 min and 700 μL of acetonitrile (previously 

cooled down to 4 °C) was added to each sample. The cleanup procedure was 

performed on a hydrophilic 0.2 μm AcroPrep GHP filter plate (Pall) using a 

vacuum manifold (Pall) at around 25 mm Hg. All wells of a GHP filter plate were 

prewashed with 200 μL of 70 % (v/v) ethanol in water, 200 μL of ultrapure water, 

and 200 μL of 96 % (v/v) acetonitrile in water (previously cooled down to 4 °C). 

Diluted samples were loaded to the GHP filter plate wells, and after short 

incubation subsequently washed with 5x 200 μL of 96 % (v/v) acetonitrile in water. 

The last washing step was followed by centrifugation at 164 g for 5 minutes. 

Glycans were eluted from the plate with 2x 90 μL of ultrapure water after 15 min 

shaking at room temperature and centrifugation at 164 g for 5 minutes in each 

step. Combined eluates of 2-AB labeled Tf N-glycans were stored at -20 °C until 

ultra-high-performance liquid chromatography (UHPLC) analysis. 
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Glycan analysis by ultra-high-performance liquid chromatography 

Fluorescently labelled and purified Tf N-glycans were analyzed by UHPLC based 

on hydrophilic interactions (HILIC-UHPLC) and detected using excitation and 

emission wavelengths of 250 and 428 nm, respectively. Acquity UHPLC 

instrument (Waters) was under the control of Empower 3 software, build 3471 

(Waters). Mobile phases were 100 mmol L-1 ammonium formate, pH 4.4 (solvent 

A) and acetonitrile (solvent B) and samples were maintained at 10 °C before 

injection. Tf 2-AB labeled N-glycans prepared in 75 % acetonitrile were separated 

on a Waters BEH Glycan column, 150 × 2.1 mm i.d., 1.7 μm BEH particles at 25 

°C in a linear gradient of 30-47 % solvent A at a flow rate of 0.56 mL min-1 during 

a 23 minute analytical run. The HILIC-UHPLC system was calibrated using a 

dextran ladder (external standard of hydrolysed and 2-AB labelled glucose 

oligomers) according to which the retention times for the individual 

chromatographic peaks (representing the 2-AB labeled glycan) were converted 

to glucose units (GU). Data processing was performed using an automatic 

processing method with a traditional integration algorithm. Each Tf N-glycans 

chromatogram integrated into 35 peaks was manually corrected to maintain the 

same intervals of integration for all the samples. The amount of glycans in each 

chromatographic peak was expressed as a percentage of the total integrated 

area (% Area). 

 

Replication of transferrin N-glycans loci 

 

To assess robustness of our findings we used the VIKING cohort as replication 

cohort and CROATIA-Korcula as discovery cohort. Each significant sentinel SNP-

top glycan trait pair from the discovery cohort was tested for associations in the 

replication cohort, with replication significance threshold set to the p-value ≤ 

0.00625 (0.05/8, number of discovery cohort genome-wide significant loci). 

Where the SNP of interest was not available in the replication cohort, a proxy 

SNP in high linkage disequilibrium (r2 ≥ 0.8) was used instead. In addition to 
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statistical significance, we also assessed if the direction of estimated effect was 

concordant between discovery and replication study.  
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Chapter 2 - Supplementary Results 

 

Transferrin N-glycans shared genetic associations with complex traits and 

diseases 

For the shared associations between transferrin glycosylation from the ST3GAL4 

locus and LDL, total cholesterol levels and platelet-related traits; HNF1A and 

coronary artery disease, levels of C-reactive protein and of gamma-glutamyl 

transferase; FUT6 and age-related macular degeneration (Supplementary Data 

11a); the SMR p-value was not significant (Supplementary Data 11b), so the 

inference on colocalisation could not be performed. 

 

Colocalisation analysis of transferrin and IgG glycan traits with multiple 

independent association signals at genomic region 

To investigate whether the same variant within the FUT8 and FUT6 loci is 

regulating glycosylation of both proteins, and, at the same time, account for the 

presence of multiple conditionally distinct association signals within the same 

locus, we applied the PwCoCo pipeline3, integrating Approximate Bayes Factor 

(ABF) colocalisation4 and conditional analyses (for details see Supplementary 

Figure 1). Briefly, to address the problem of multiple associations within a locus, 

this approach tests for colocalisation using not only the trait’s unconditioned 

GWAS association statistics, but also their conditioned ones, assessing if any of 

the independent associations colocalise3. We first tested for evidence of multiple 

SNPs independently contributing to IgG glycan levels at the FUT6 and FUT8 loci. 

While no secondary associated variants were observed in the FUT6 locus using 

GCTA-COJO stepwise analysis, two independent variants are likely to contribute 

to variation in transferrin and IgG glycan traits, namely transferrin TfGP32 and 

IgG GP20, in the FUT8 locus (Supplementary Data 5). In this case, colocalisation 

analyses were conducted between full unconditioned association statistics, 

association statistics conditioned by one association signal (i.e. transferrin 

TfGP20 conditioned on rs72716459 and IgG GP7 conditioned on rs8022094) and 

those conditioned by the other association signal (i.e. transferrin TfGP20 

conditioned on rs2411815 and IgG GP7 conditioned on rs8006608), for a total of 
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nine pairwise combinations. We obtained robust evidence against the 

colocalisation hypothesis for all tested traits, except for transferrin TfGP20 

conditioned on rs72716459 and IgG GP7 unconditioned association statistics. In 

this case in fact it was not possible to strongly support either the hypothesis of 

different causal variants at the locus or trait colocalisation (PP.H3 = 46.82%, 

PP.H4 = 53.18%) and therefore whether this glycans pair share genetic 

architecture at this locus remains unclear (Supplementary Data 15, 

Supplementary Figure 7-9). It is important to note that another transferrin 

glycosylation associated genetic region, harbouring NXEP1 and NXEP4 genes, 

was also associated with IgG glycosylation in Klaric et al.5 Since the role of these 

genes is unknown and therefore interpretation of their role in glycosylation is not 

straightforward, we did not proceed with colocalisation analysis for this region. 

 

Colocalisation of TfGP32 and plasma glycosylation traits containing 

antennary fucose 

Transferrin is one of the most abundant proteins in plasma and it can be expected 

it contributes to plasma glycosylation glycan peaks. To assess whether TfGP32 

is likely to have antennary fucose we performed colocalisation analysis of TfGP32 

and two plasma glycosylation traits containing antennary fucose (PGP32 - 

A4F1G3S[3,3+6,3+6]3 and PGP36 - A4F1G4S[3,3,3,6]4) from Sharapov et al6. 

and a plasma glycosylation trait reflecting total antennary fucosylation (A-FUC) 

from Huffman et al.7 By using the approximate Bayes factor colocalisation 

analysis implemented in coloc R package4 using the default priors (10-4 for p1 

and p2 and 10-5 for p12), we obtained robust evidence supporting the hypothesis 

that plasma-derived antennary fucosylation traits colocalise with the TfGP32 

(Supplementary Figure 4). 

 

Effect of protein levels on glycosylation 

Glycosylation was analysed by releasing total N-glycans from the isolated protein 

and each glycan structure was quantified as the percentage of the total IgG N-

glycome or total transferrin N-glycome. With this approach, only changes in 

glycosylation are detected (relative abundance of individual glycan species in 
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relation to the whole IgG or transferrin glycome) and not the absolute amounts of 

specific glycans, which would be affected by changes in protein levels. 

Unfortunately, abundance of transferrin and IgG was not measured in this study 

and, consequently, the relation between protein abundance and N-glycan 

measurements could not be directly investigated. In the case of IgG, we checked 

whether the specific protocols used for glycan analysis have a bias depending on 

the initial, already isolated, protein amount. The protocol we used was robust in 

measuring very similar levels of glycan traits for different IgG abundance 

(Supplementary Figure 12). In addition, Bermingham et al.8 reported that, while 

the IgG N-glycan profile varied with IgG levels, adjusting for IgG levels in the 

analyses made no meaningful difference to associations of glycans with markers 

of glycaemic control. 

To assess the potential impact of transferrin protein levels on transferrin glycome 

associations we used transferrin cis-protein QTL (pQTL) rs8177240 (LD R2= 0.02 

with the glyQTL rs6785596), the strongest association with transferrin protein 

levels reported in GWAS catalog (p-value = 8x10-610 )9, as a proxy for TF 

abundance. Interestingly, the pQTL is not an expression QTL (eQTL), but rather 

a splicing QTL for transferrin levels in liver (p=5.910-25, GTEx v8). We then 

tested its association with transferrin glycans and assessed whether the glycan 

associations with variants from the TF region are likely to be driven by this variant. 

We considered four models: 

M0: glycan ~ age + sex 

M1: glycan ~ age + sex + pQTL (rs8177240) 

M2: glycan ~ age + sex + glyQTL (rs6785596) 

M3: glycan ~ age + sex + pQTL (rs6785596) + glyQTL (rs8177240) 

 

and performed likelihood ratio test between: 

• M0 and M1 to assess associations of glycans and pQTL (rs8177240)  

• M1 and M3 to assess whether glyQTL contributes to glycan levels even 

when the pQTL is included in the model 
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• M2 and M3 to assess whether pQTL contributes to glycan levels even 

when the glyQTL is included in the model 

 

To control for increased levels of relatedness between subjects in our studies, 

the models were fitted using linear mixed models as implemented in the lme4qtl 

R package10, with age, sex, pQTL and glyQTL as fixed effects and kinship matrix 

as a random effect. The kinship matrix was estimated from the genotyped data 

using the “ibs” function from GenABEL11 R package. 

Two glycan traits were significantly (P 0.05/35=1.410-3) associated with the 

pQTL. For one of the two traits, TfGP3, the glyQTL contributes to glycan levels in 

addition to the pQTL, while for the TfGP9 no additional variation is explained by 

the glyQTL (Supplementary Data 6). To further corroborate these findings we 

also repeated the meta-analysis conditioning on the transferrin pQTL 

rs81772409, using the conditional approach implemented in the GCTA-COJO “–

cond”, and genotypes of 10,000 unrelated individuals of white British ancestry 

from UK Biobank12 as independent LD reference panel. The only glycan trait that 

showed a relevant change in effect size and significance of its association was 

TfGP9 (Supplementary Data 19), suggesting that its association was dependent 

on the transferrin protein levels. In case of two glycan traits, TfGP3 and TfGP8, 

the associations were somewhat less significant, but the effect sizes remained 

very similar. Accordingly, we consider that transferrin protein levels are likely not 

affecting associations with 2 out of 3 transferrin glycan traits associated with 

variants from the TF gene. This is in accordance with findings from Kutalik et al.13, 

who used the same approach to show that associations of a-/disialylated 

transferrin with the TF region were independent of associations with transferrin 

pQTL.  

The sentinel glycosylation variant, rs6785596, is a cis eQTL in adipose tissue 

(Supplementary Data 8a) and it colocalises with TfGP3, but it does not colocalise 

with expression of TF in blood (eQTLGen, Supplementary Figure 13). However, 

as outlined in the main text, transferrin is predominantly expressed in liver, for 

which there are no robust transferrin eQTLs (the strongest eQTL in GTEx v8 
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rs60770862, p=3.3x10-6, LD with glyQTL rs6785596 = 0.0001). The glyQTL 

variant rs6785596 is also in middling LD (0.57) with a missense variant 

rs1799899. Overall, further analyses are needed to unravel the complex 

mechanism behind the associations of transferrin glycans and variants from the 

TF region.  
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Chapter 2 - Supplementary Figures 

Transferrin N-glycome CROATIA-Korcula and VIKING cohorts GWAS 

summary Miami plot. Miami plot pooling together individual cohort GWAS 

results obtained across all 35 transferrin glycan traits, at the top in orange for 

CROATIA-Korcula cohort and at the bottom in blue for VIKING cohort. For each 

SNP, the lowest p-value across the 35 traits is reported. The y axis shows the 

strength of the association, and the x axis the genomic position of the SNP. P-

values are derived from two-sided Wald test with one degree of freedom. The 

horizontal red line corresponds to the multiple testing corrected genome-wide 

significance threshold of 1.43×10-9. The horizontal blue line corresponds to the 

multiple tests corrected genome-wide suggestive threshold of 2.86×10-7. For 

simplicity, SNPs with p-value > 1×10-3 are not reported. GWAS effect size, 

standard error and p-value of each sentinel SNP are available in Supplementary 

Data 1 for CROATIA-Korcula, and in Supplementary Data 2 for VIKING cohort.  
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Supplementary Figure 2. Replication of transferrin N-glycome discovery 

GWAS. Each locus is represented by the strongest SNP-transferrin glycan 

(reported in brackets) association in the region (y axis). The x axis shows the 

GWAS effect estimate, with lines representing 95% confidence intervals (CI). For 

each locus significantly associated with transferrin N-glycome in CROATIA-

Korcula cohort, effect size and CI of the sentinel SNP are reported in red when 

estimated in CROATIA-Korcula cohort (Discovery), and in blue when estimated 

in VIKING cohort (Replication). Gene names have been marked by different fonts 

based on overlap between confidence intervals of effect estimates. In bold: 

nominal replication (p < 0.05/8 = 6.3x10-3). In italics: CIs overlap and cover zero, 

and replication estimate is closer to zero than discovery. In roman: CIs do not 

overlap and replication estimate covers zero. Proxy SNP rs554715390 was used 

for replicating SNP rs183820095 (D’=1, r2=1). Effect sizes and their standard 

errors are derived from two-sided linear regression, P-values are derived from 

two-sided Wald’s test with one degree of freedom. GWAS effect size, standard 

error and p-value of each sentinel SNP are reported in Supplementary Data 1 for 

discovery, and in Supplementary Data 2 for replication cohort.



 

188 

Supplementary Figure 3. Difference in levels of (normalised and batch 

corrected) TfGP32 glycan trait by rs17855739 genotypes. We grouped 

CROATIA-Korcula (CC genotype N= 859, CT genotype N = 79, TT genotype N = 

0) and VIKING (CC genotype N= 890, CT genotype N = 65, TT genotype N = 0) 

samples based on their genotype at rs17855739 missense variant. rs17855739 

reported a genome-wide significant association with TfGP32 glycan trait levels in 

both CROATIA-Korcula (p-value=4.54x10-18) and VIKING (p-value = 2.00x10-16) 

cohorts. As showed in the boxplot, the mean level of TfGP32 were lower for 

individuals heterozygous at rs17855739, compared to those having two C alleles. 

These results support that rs17855739 missense mutation significantly decrease 

the levels of TfGP32, which we suggest as a potential proxy of the activity of 

alpha-(1,3)-fucosyltransferase 6 enzyme (see Supplementary Results). In the 

plot, the middle line represents the median, lower and upper limits of the box 
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represent 1st and 3rd quartile, whiskers represent 1.5 interquartile range, points 

represent individuals with TfGP32 levels that are more than 1.5 interquartile 

distance away from the 3rd quartile.
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Supplementary Figure 4. Local association patterns of transferrin N-glycan TfGP32 and plasma glycosylation traits 

related to antennary fucosylation. A) Colocalisation of TfGP32 and total plasma glycan PGP32 - A4F1G3S[3,3+6,3+6]3, 

PP.H4 = 99.9% B) Colocalisation of TfPG32 and total plasma glycan PGP36 - A4F1G4S[3,3,3,6]4, PP.H4 = 99.69% C) 

Colocalisation of TfGP32 and total plasma antennary fucosylation (A-FUC), PP.H4 = 100%. Plasma glycosylation traits 

containing antennary fucose (PGP32 and PGP36) were taken from Sharapov et al6. and plasma glycosylation trait reflecting 

total antennary fucosylation (A-FUC) from Huffman et al.7 For each pairwise colocalisation test, the hypothesis having the higher 

posterior probability is reported at the top right of the plot. PP.H4 – colocalisation: the two traits are regulated by the same 

underlying causal variant.  
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Supplementary Figure 5. Local association patterns of transferrin N-glycans tested for trait colocalisation with complex 

human traits. GWAS summary statistics of complex traits and diseases were taken from publicly available studies detailed at 

Supplementary Data 18. A) TfGP14 and Ulcerative colitis, in the NXEP1/NXEP4 locus. PP.H3 = 88.1% B) TfGP28 and CRP, in 

the HNF1A locus. PP.H4 = 99.7% C) TfGP28 and LDL cholesterol, in the FUT6 locus. PP.H1 = 83.0% D) TfGP28 and LDL, in 
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the HNF1A locus. PP.H4 = 97.7% E) TfGP28 and total cholesterol, in the FUT6 locus, PP.H1 = 93.9% F) TfGP28 and total 

cholesterol, in the HNF1A locus. PP.H4 = 93.7%. The full colocalisation analysis results can be found in Supplementary Data 

13. PP.H1 – association is observed only in one trait; PP.H3 – two traits are regulated by distinct underlying causal variants; 

PP.H4 – the traits are regulated by a shared underlying causal variant (colocalisation). 
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Supplementary Figure 6. Workflow applied for transferrin and IgG glycan 

traits colocalisation analysis. For each protein (i.e. transferrin and IgG) and 

each genomic region (i.e. FUT8 and FUT6), the group of glycan traits showing 

multiple independent signals of association and, separately, the group of glycans 

carrying only one independent association signal at locus were pair-tested for 

colocalisation. Pairs of glycan traits with an ABF posterior probability for 

hypothesis 4 (suggestive of colocalisation) > 80% were pooled in the same 

colocalisation group. For each colocalisation group identified, the glycan trait 

reporting the lowest p-value was selected as group representative and carried on 

to the next step, where traits with single and multiple independent associations 

for each protein were tested for colocalisation. Similar to previous steps, glycan 

traits were grouped together on the basis of their colocalisation analysis results 

and the lowest p-value representative was chosen for the next step, where finally 

representative transferrin and IgG glycans at each locus were tested for 

colocalisation.
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Supplementary Figure 7. Local association patterns of transferrin N-glycans tested for trait colocalisation at FUT8 

locus. Colocalisation analysis results for these glycan traits can be found in Supplementary Data 15 (A, B and C) and 16 (A, D 

and E). Since TfGP20 also has an independent secondary association signal (see Supplementary Data 5), local association 

patterns are reported also for conditioned summary statistics.



 

195 

Supplementary Figure 8. Local association patterns of IgG N-glycans tested for trait colocalisation at FUT8 locus. 

Colocalisation analysis results for these glycan traits can be found in Supplementary Data 15 (A, B, E, F, G and H) and 16 (B, 

C and D). Since GP7 also has an independent secondary association signal (see Supplementary Data 5), local association 

patterns are reported also for conditioned summary statistics.  
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Supplementary Figure 9. Local association patterns of transferrin N-glycans tested for trait colocalisation at FUT6 

locus. Colocalisation analysis results for these glycan traits can be found in Supplementary Data 15 (A, B, C, D and E). 
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Supplementary Figure 10. Example of the workflow applied for loci 

definition. To define genomic regions significantly associated with N-glycan 

traits, we first grouped, for each glycan trait, all genetic variants located within a 

500 kb window of the sentinel SNP (+/- 250 kb). With this 1st step we identified 

loci specific for each glycan trait. Then, to obtain a list of unique loci that are 

independent of the specific glycan trait, we grouped into a single locus all the 

glycan-sentinel SNP pairs that were overlapping within a 1Mb range. With this 2nd 

step we obtained a unique list of top glycan-sentinel SNP pairs, summarising the 

genomic regions most strongly associated with transferrin N-glycome across all 

traits.  
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Supplementary Figure 11. Elution fractions (7.5× concentrated) after 

transferrin isolation from IgG depleted plasma (lanes 1-3) analysed by SDS-

PAGE using 4–12 % Bis-Tris gradient gels (1.0 mm thickness) under 

reducing conditions according to the manufacturer’s instructions (Life 

Technologies). The gels were run at 200 V for 35 min using a MES SDS 

buffering system. Protein bands were visualized by GelCode Blue staining 

reagent. M – Precision Plus Protein Standards All Blue molecular mass standard 

(Bio-Rad). B – blank sample (10 × concentrated). The same experiment was 

repeated 32 times (once for each plate) with similar results.  
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Supplementary Figure 12. Levels of IgG glycan traits (GP1-24) measured for 

different initial amounts of isolated IgG protein. Data are presented as mean 

+/- standard deviation, n=8 technical replicates for each amount of IgG. 

Corresponding data points are overlayed as dots. 
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Supplementary Figure 13. Local association patterns of transferrin N-glycan TfGP3 and adipose tissue eQTLs (A) and 

blood (B) at TF gene locus. Adipose subcutaneous eQTLs were taken from GTEx v714, and gene expression data blood eQTLs 

were taken from eQTLGen consortium15. For each pairwise colocalisation test, the hypothesis having the higher posterior 

probability is reported at the top right of the plot. PP.H3 – two traits are regulated by distinct underlying causal variants; PP.H4 – the 

traits are regulated by a shared underlying causal variant (colocalisation). 
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Chapter 2 - Supplementary Tables 

 

The Supplementary Tables related to Chapter 2 “Genetic regulation of transferrin 

and IgG glycome” are available in the 

Chapter_2_Extended_Supplementary_Tables.xlsx file, downloadable at the 

following publicly available link: https://doi.org/10.7488/ds/7509. 
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Chapter 3 - Supplementary Tables 

 

The Supplementary Tables related to Chapter 3 “Rare and low frequency variants 

contributing to variation in the protein glycome” are available in the 

Chapter_3_Extended_Supplementary_Tables.xlsx file, downloadable at the 

following publicly available link: https://doi.org/10.7488/ds/7509. 

 

  

https://doi.org/10.7488/ds/7509
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Chapter 4 -Supplementary Figure 

Supplementary Figure 1. Miami plot pooling together sex-specific meta-

analysis results obtained across 14 bile acid traits (quantitative traits with 

imputed LOD values, as described in Methods), for male at the top in blue, 

and for female at the bottom in purple. The pooling was performed by selecting 

the lowest p value (y-axis) from the 14 bile acids for every genomic position (x 

axis). The Bonferroni-corrected genome-wide significance threshold (horizontal 

red lines) corresponds to 5 × 10−9. For simplicity, SNPs with p value > 1 × 10−3 are 

not plotted. P values are derived from the two-sided Wald test with one degree of 

freedom. 
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Chapter 4 - Supplementary Tables 

 

The Supplementary Tables related to Chapter 4 “Genetic architecture of bile acid 

lipidome” are available in the Chapter_4_Extended_Supplementary_Tables.xlsx 

file, downloadable at the following publicly available link: 

https://doi.org/10.7488/ds/7509. 
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