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Abstract

In the first half of this Thesis, we present the numerical analysis of splitting methods for

stochastic differential equations (SDEs) using a novel path-based approach. The application

of splitting methods to SDEs can be viewed as replacing the driving Brownian-time path

with a piecewise linear path, producing a ‘controlled-differential-equation’ (CDE). By Taylor

expansion of the SDE and resulting CDE, we show that the global strong and weak errors of

splitting schemes can be obtained by comparison of the iterated integrals in each. Matching

all integrals up to order p+1 in expectation will produce a weak order p+0.5 scheme, and in

addition matching the integrals up to order p+0.5 strongly will produce a strong order p

scheme. In addition, we present new splitting methods utilising the ‘space-time’ Lévy area

of Brownian motion which obtain global strong Oph1.5q and Oph2q weak errors for a class

of SDEs satisfying a commutativity condition. We then present several numerical examples

including Multilevel Monte Carlo.

In the second half of this Thesis, we present a series of papers focusing on lifetime prognostics

for lithium-ion batteries. Lithium-ion batteries are fuelling the advancing renewable-energy

based world. At the core of transformational developments in battery design, modelling and

management is data. We start with a comprehensive review of publicly available datasets.

This is followed by a study which explores the evolution of internal resistance (IR) in cells,

introducing the original concept of ‘elbows’ for IR. The IR of cells increases as a cell degrades

and this often happens in a non-linear fashion: where early degradation is linear until an

inflection point (the elbow) is reached followed by increased rapid degradation. As a follow up

to the exploration of IR, we present a model able to predict the full IR and capacity evolution

of a cell from one charge/discharge cycle. At the time of publication, this represented a

significant reduction (100x) in the number of cycles required for prediction. The published

paper was the first to show that such results were possible. In the final paper, we consider

experimental design for battery testing. Where we focus on the important question of how

many cells are required to accurately capture statistical variation.

iv



Lay Summary

The first half of this thesis is dedicated to the study of numerical schemes for stochastic

differential equations. Stochastic differential equations are used to model many real world

phenomena and numerical schemes allow us to simulate them. We focus on a special class

of numerical schemes called ‘splitting schemes’ and present a new framework for their

understanding and analysis.

In the second half of this thesis, we investigate the ageing of lithium-ion batteries. As

anyone with a mobile phone will know, batteries do not last forever and their performance

degrades with time. This is a problem of great importance as governments look towards

electric vehicles and many parts of the economy move towards electrification. We look at

the available public data for batteries and propose several state of the art models for the

prediction of battery lifetime. As a key finding, we provide a model which is able to test

used batteries to aid their reuse, recycling and replacement.
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3.3 Space-time-time Lévy area corresponds to a cubic approximation of the Brownian

arch (which is a Brownian motion conditioned on having zero increment and
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Chapter 1

Introduction

In this chapter, we give a brief introduction to the numerical analysis of SDEs, focusing on

the necessary background material for this thesis.

A wide range of processes (such as in Finance, Biology and Physics [56]) can be modelled

by the following class of Itô SDEs:

dyt “ fpytqdt` gpytqdWt , y0 “ y , (1.1)

with initial value y P Re, where W “ pW 1, ¨ ¨ ¨ ,W dq “ tWtutPr0,T s denotes a d-dimensional

Brownian motion, and f : Re Ñ Re and g : Re Ñ Reˆd. For many choices of f and g

there is no explicit solution available. It is thus necessary to develop and analyse numerical

schemes for approximating the solution. There exists a vast body of research dedicated to

this topic, for a wide range of applications and assumptions (see e.g. [57] and [59]).

In many applications, one is interested in calculating the expected value of some functional

ψ of the SDE (1.1)

E
”

ψpytq
ˇ

ˇ

ˇ
y0 “ y

ı

.

For example, in the pricing of financial derivatives, ψ would be the payoff function. The

usual approach to estimating this expected value is the Monte Carlo estimator:

Definition 1.0.1 (Monte Carlo estimator). To approximate the expected value of some

functional ψ : Re Ñ Rl, as is usual in numerics, we adopt the standard Monte Carlo estimator.

Given M independent samples pyiqMi“1 of a random variable y, define the estimator

ψM :“
1

M

M
ÿ

i“1

ψpyiq . (1.2)

Remark 1.0.2. If ψpyiq has finite second moment then by the central limit theorem

?
MpψM ´ Erψpyqsq

d
Ñ N

`

0,Varpψpyqq
˘

,

2
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that is, ψM converges to its expectation with a rate of O
´

1?
M

¯

. Where
d

Ñ denotes

convergence in distribution (see e.g. [59]). Where by N pµ, σ2q we denote the normal

distribution with mean µ and variance σ2.

Of course, we do not always have the ability to draw independent samples of a random variable.

For us, the random variable in question is the value of the SDE (2.1) at some time T ą 0.

Our approach (when an explicit solution is not available) is then to construct a numerical

approximation pYkqNk“1 of the solution. Loosely speaking, we construct this numerical scheme

iteratively as a function of its previous value. Over a grid πN “ tt0, t1, . . . , tNu with timestep

h “ tk`1´tk and some random variables ωk`1 (usually approximating the Brownian motion).

That is

Yk`1 :“ F pYk, h, ωk`1q , with Y0 :“ y0 .

Each step Yk provides our approximation for ytk . If ψ depends only on the final value yT ,

we then replace ψM by

ψ̄M :“
1

M

M
ÿ

i“1

ψpY i
N q ,

where each Y i
N is an independent realisation of our numerical approximation. We are

interested in the error of this estimation, and in particular the speed at which this error

decreases. This error can be broken into multiple components:

›

›ErψpyT qs ´ ψ̄M
›

› “
›

›ErψpyT qs ´ ErψpYN qs
›

›

loooooooooooooomoooooooooooooon

‘Weak error’

`
›

›ErψpYN qs ´ ψ̄M
›

›

loooooooooomoooooooooon

Monte Carlo error

.

As in Remark 1.0.2, the Monte Carlo error is controlled by the sample size M and is of

size Op1{
?
Mq. This error can be improved by taking more samples, or by using a different

estimator than the Monte Carlo estimator. Examples of such alternative approaches are

various variance reduction techniques (see e.g. [34] for an overview) and Multi-level Monte

Carlo (see [24] and Section 1.3 below). The main focus of this thesis will be on the error

which we incur by our choice of numerical scheme (in the above example we would interested

in the ‘weak error’), and in constructing numerical schemes which minimise this error.
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1.1 Convergence of numerical schemes

We concern ourselves with two types of convergence: ‘strong’ convergence and ‘weak’

convergence. ‘Strong’ means convergence in an L2 sense and ‘weak’ means convergence

with respect to certain test statistics. Concretely, for an approximation Y and a true solution

y, we define

‘Strong error’ :“ E
”

›

›y ´ Y
›

›

2
ı

1
2
,

‘Weak error’ :“
›

›E
“

ψpyq ´ ψpY q
‰›

› ,

where ψ : Re Ñ Rl is some test function. Our interest is then how quickly these errors

converge as a function of the step size h with which we run our numerical schemes.

Definition 1.1.1. A numerical scheme is said to ‘converge with global strong order p’ if

E
”

›

›ykˆh ´ Yk
›

›

2
ı

1
2

“ Ophpq , (1.3)

for every k P t1, . . . , Nu.

Definition 1.1.2. A numerical scheme is said to ‘converge with global weak order p’ if, for

some smooth test function ψ P C8pRe,Rlq,

›

›E
“

ψpykˆhq ´ ψpYkq
‰
›

› “ Ophpq ,

for every k P t1, . . . , Nu.

The above error rates are defined globally; However, it is usually much easier to prove ‘local’

error rates. Local errors are the error made over a single step of the numerical scheme and

are smaller than the global error. The global error rates can then be inferred from the local

rates. To obtain the global strong error rate we appeal to the following classical result of

Milstein and Tretyakov [48]:

Theorem 1.1.3 (Fundamental Theorem on the mean-square order of convergence [48,

Theorem 1.1.1]). Let Y1 denote a one-step approximation of yh, both from initial value

y P Re with time step h. Suppose that the following inequalities hold

E
“

}yh ´ Y1}2
‰
1
2 ď K

b

1 `
›

›y
›

›

2
ˆ hp and

›

›E
“

yh ´ Y1
‰›

› ď K

b

1 `
›

›y
›

›

2
ˆ hq ,

for

p ě
1

2
and q ě p`

1

2
.
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Then, for any N and for any k P t1, . . . , Nu

E
“

}ykh ´ Yk}2
‰
1
2 ď K

b

1 ` E
›

›y0
›

›

2
ˆ hp´ 1

2 .

Remark 1.1.4. As we will show later in the text (see Section 4.3) the global weak error can

easily be obtained from the local weak error, by a telescoping sum argument. With a local

weak error of Ophpq implying a global weak error of Ophp´1q.

1.2 Numerical schemes

The number and variety of numerical schemes designed for SDEs is vast, and a full review

of such methods is beyond the scope of this thesis. We instead point the reader to the

books [48, 57, 59] and mention a few basic schemes to provide motivation or for later use

in numerical examples. We will also introduce ‘splitting schemes’ which will be the main

focus of this work.

1.2.1 Basic schemes for Itô SDEs

Perhaps the most basic and widely used scheme is the Euler-Maruyama (or ‘Euler’) method.

This method achieves a strong order of Oph1{2q and a weak order of Ophq. While it is often

the first choice of numerical scheme, in many applications it is a poor one, performing far

worse than more informed schemes (See e.g. our numerical examples in Chapter 6).

Definition 1.2.1 (The Euler-Maruyama method). We can construct a numerical approxim-

ation of (1.1) by setting Yk “ y0 and for time step h iterating

Yk`1 :“ Yk ` fpYkqh` gpYkqWtk,tk`1
, (1.4)

where Ws,t :“ Wt ´Ws denotes the Brownian increment.

The Milstein scheme is an improvement on the Euler scheme. It achieves this improvement

by including an additional term from the Taylor expansion of the stochastic integral. This

method achieves a strong order of Ophq and a weak order of Ophq. In fact, no ‘increment

only’ scheme (one using only the Brownian increment Ws,t) can achieve a strong rate of

convergence higher than Oph1{2q [7].

Definition 1.2.2 (The Milstein scheme). We can construct a numerical approximation of

(1.1) by setting Yk “ y0 and for time step h iterating

Yk`1 :“ Yk ` fpYkqh` gpYkqWtk,tk`1
`

1

2
g1pYkqgpYkq

´

Wb2
tk,tk`1

`Atk,tk`1
´ hD2

d

¯

,
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where D2
d (defined in (3.14)) denotes the dˆd identity matrix, b denotes the tensor product

(see Definition 1.4.7) which for two vectors x, y P Rd is given by xby “ xyJ “ txiyju1ďi,jďd,

and As,t denotes the Lévy area of Brownian motion (here defined with Itô integrals, see

Definition 3.2.1 for the equivalent definition with Stratonovich integrals), which is defined as

As,t “

ż t

s
Ws,r b dWr ´

ˆ
ż t

s
Ws,r b dWr

˙J

.

When d “ 1 the Lévy area is zero and so the Milstein method becomes

Yk`1 :“ Yk ` fpYkqh` gpYkqWtk,tk`1
`

1

2
g1pYkqgpYkq

´

W 2
tk,tk`1

´ h
¯

. (1.5)

The Euler-Maruyama scheme (1.4) and the 1D Milstein method (1.5) are both easy to

implement. Since Brownian motion has independent increments and is independent in its

coordinate processes, at each step we simply need to generate

Wtk,tk`1
„ N

`

0, h1d
˘

,

(where by 1d we denote the vector of length d containing only 1’s) and to propagate forward

the schemes as defined.

However, in multidimensions the Milstein method also requires the simulation of the Lévy

area As,t. Exact generation of As,t has only been proposed for d “ 2 [22] and this is known

to be a difficult problem in general [9]. However, as we will show in Section 3.6, when the

diffusion matrix g of the SDE satisfies the commutativity condition (2.2) the Lévy area does

not need to be generated due to cancellations in the Taylor expansion.

The explicit schemes above are designed for Itô SDEs; However, it is actually easier to

develop high order schemes for Stratonovich SDEs. So, we instead write the Itô SDE (1.1)

in Stratonovich form:

dyt “ f̃pytqdt` gpytq ˝ dWt , y0 “ y (1.6)

where f̃pyq :“ fpyq ´ 1
2g

1pyqgpyq is the drift after applying the Itô-Stratonovich correction.

The main benefit to working with Stratonovich SDEs is algebraic in nature and will be

explained throughout the text.
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1.2.2 Splitting schemes

In this thesis, we will focus on ‘splitting schemes’ as an approach to discretize the Stratonovich

SDE (1.6). Spitting schemes for SDEs are inspired by an idea originating in ODE numerics

(often referred to as ‘operator splitting’ see e.g. [45]). Consider the following ODE

dxt “ pA`Bqxtdt , x0 “ x

where x P Rd, and A and B are time independent dˆ d matrices. Which has exact solution

xt “ exp
´

pA`Bqt
¯

x0 .

The observation of operator splitting is that, if A and B commute, we can instead write

xt “ exp
`

At
˘

exp
`

Bt
˘

x0 . And we may then solve the sub problems

exp
´

At
¯

and exp
´

Bt
¯

,

sequentially. In fact, this splitting can be justified (using the Baker-Campbell-Hausdorff

formula) in general and has proven to be an effective approach to numerically solving ODEs.

For example, a Strang splitting scheme of the above ODE over the interval h :“ tk`1 ´ tk is

Xk`1 “ exp
´h

2
A
¯

exp
´

hB
¯

exp
´h

2
A
¯

Xk ,

where exppV qx denotes the solution z1 at time u “ 1 of the ODE z1 “ V pzq, zp0q “ x.

Splitting schemes for SDEs are also defined through composition of subsystems. For example,

we could separate the drift and diffusion part of the SDE. And in this way, higher order

convergence can be obtained. A Lie-Trotter splitting solves either the drift or diffusion first,

followed by the diffusion of drift respectively. At each stage, the solution to the previous

step is used as the initial value for the next. This gives the following splitting

Definition 1.2.3 (The Lie-Trotter splitting scheme). We may construct a numerical

approximation for the SDE (1.6) by setting Y0 “ y0 and for timestep h iterating

Yk`1 :“ exp
´

gp¨qWtk,tk`1

¯

exp
´

fp¨qh
¯

Yk .

An improvement upon the Lie-Trotter splitting is a Strang splitting which symmetrises the

approach. The Strang splitting solves the drift part up to time h{2, then solves the diffusion

part up to time h, before again solving the drift part up to time h{2. Which gives the

following splitting:
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Definition 1.2.4 (The Strang splitting scheme). We may construct a numerical approxima-

tion for the SDE (1.6) by setting Y0 “ y0 and for timestep h iterating

Yk`1 :“ exp

ˆ

fp¨q
h

2

˙

exp

ˆ

gp¨qWtk,tk`1

˙

exp

ˆ

fp¨q
h

2

˙

Yk .

In the commutative case, both the Lie-Trotter and the Strang splitting achieve a strong

order of Ophq. But the Strang splitting achieves a weak order of Oph2q compared with the

Lie-Trotter’s weak order of Ophq (see Table 5.1).

An extension of the SDE Strang splitting is the Ninomiya-Victoir splitting, which solves each

column of the diffusion matrix in turn. Concretely:

Definition 1.2.5 (The Ninomiya-Victoir scheme [55]). We may construct a numerical

approximation for the SDE (1.6) by setting Y0 “ y0 and for timestep h iterating

Yk`1 :“

$

&

%

pYk`1, if nk “ 1,

qYk`1, if nk “ ´1,

where nk is an independent Rademacher random variable and pYk`1, qYk`1 are given by

pYk`1 :“ exp

ˆ

fp¨q
h

2

˙

exp
´

g1p¨qW
p1q

tk,tk`1

¯

¨ ¨ ¨ exp
´

gdp¨qW
pdq

tk,tk`1

¯

exp

ˆ

fp¨q
h

2

˙

Yk ,

qYk`1 :“ exp

ˆ

fp¨q
h

2

˙

exp
´

gdp¨qW
pdq

tk,tk`1

¯

¨ ¨ ¨ exp
´

g1p¨qW
p1q

tk,tk`1

¯

exp

ˆ

fp¨q
h

2

˙

Yk ,

where gi denotes the i’th column of g.

1.3 Multilevel Monte Carlo

As noted in Remark 1.0.2, the error of the standard Monte Carlo estimator is governed

by the variance. One well established and popular approach to improving upon this and

reducing the variance of the resulting estimator is Multilevel Monte Carlo (MLMC). We

point the reader to [24] for a general overview of the topic, and this section is largely based

on the description therein. In Section 6.3 we will show how some of the high order splitting

paths presented in this thesis can be incorporated with MLMC. The idea works as follows.

Let Pℓ denote an estimate of ErψpyT qs generated with timestep

hℓ “
T

2ℓ
, ℓ “ 0, 1, ¨ ¨ ¨ , L .
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By a telescoping sum argument we have that

ErPLs “ ErP0s `

L
ÿ

ℓ“1

ErPℓ ´ Pℓ´1s ,

and each expected value on the RHS can then be replaced by its own coupled Monte Carlo

estimate. Introducing the following independent Monte Carlo estimators

Z0 :“
1

N0

N0
ÿ

i“1

P
p0,iq
0 and Zℓ :“

1

Nℓ

Nℓ
ÿ

i“1

´

P
pℓ,iq
ℓ ´ P

pℓ,iq
ℓ´1

¯

, (1.7)

where, for each i, P
pℓ,iq
ℓ is an independent sample of Pℓ at level ℓ. To calculate the difference

P
pℓ,iq
ℓ ´ P

pℓ,iq
ℓ´1 it is typical to simulate both P

pℓ,iq
ℓ and P

pℓ,iq
ℓ´1 with the same Brownian path.

The superscript ℓ is included to indicate that each correction term uses a different Brownian

path. The MLMC estimator is then defined by

ψ̄MLMCpN0, . . . , NLq :“
L
ÿ

ℓ“0

Zℓ . (1.8)

The key freedom here is the choice of values for N0 ą N1 ą ¨ ¨ ¨ ą NL. A smaller step size

means taking more steps to reach the final time T and thus an increase in computation cost,

but this comes with the benefit of improved accuracy. A larger step size will take less time to

compute, meaning many more (less accurate) samples can be generated in the same length

of time. MLMC exploits this fact by calculating a large number of less accurate estimates

and a smaller number of more accurate estimates. By a careful balancing of the different

levels involved, a higher accuracy can be achieved for a fixed computational cost than could

have been achieved with a standard Monte Carlo estimator.

Theorem 1.3.1 (MLMC complexity (Theorem 1 of [24])). Let P denote a random variable,

and let Pℓ denote the corresponding ℓ level approximation.

If there exists independent estimators Yℓ based on Nℓ Monte Carlo samples (as defined in

(1.7)), and positive constants α, β, γ, c1, c2, c3 such that α ě 1
2 minpβ, γq and

1. |ErPℓ ´ P s| ď c12
αℓ ,

2. ErZℓs “

$

&

%

ErP0s , ℓ “ 0

ErPℓ ´ Pℓ´1s , ℓ ą 0

3. VarpZℓq ď c2N
´1
ℓ 2´βℓ

4. ErCℓs ď c3Nℓ2
γℓ
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where Cℓ is the computational cost of Yℓ. Then there exists a positive constant c4 such that

for any ε ă e´1 there are values L and Nℓ for which the MLMC estimator (1.8) has a mean

square error with bound

E
”´

ψ̄MLMCpN0, . . . , NLq ´ ErP s

¯2ı

ă ϵ2 ,

with a computational complexity C with bound

ErCs ď

$

’

’

’

&

’

’

’

%

c4ε
´2 , β ą γ ,

c4ε
´2plogpεqq2 β “ γ ,

c4ε
´2´pγ´βq{α , β ă γ .

Let Vℓ denote the variance of Pℓ ´ Pℓ´1 (which we estimate) and Cℓ the cost to produce a

single sample of Pℓ To achieve a total variance of ε2{2, the optimal choice of Lℓ is given by

Nℓ “

S

2ϵ´2
a

Vℓ{Cℓ

˜

L
ÿ

ℓ“0

a

VℓCℓ

¸W

, (1.9)

and the total computational cost is therefore

C “ ε´2

˜

L
ÿ

ℓ“0

a

VℓCℓ

¸2

. (1.10)

The constants α and β appearing in the MLMC complexity theorem (Theorem 1.3.1) are

related to the ’weak’ and ’strong’ error rates of the numerical scheme used to generate the

samples P
pℓ,iq
ℓ . For P

pℓ,iq
ℓ :“ ψpY

pℓ,iq
N q, where Y

pℓ,iq
N is a sample generated by our chosen

numerical scheme with time step hℓ, α is the weak error rate of the numerical scheme. And

when the functional ψ is assumed to be Lipschitz with Lipschitz constant L we have that

VarpZℓq ď N´1
ℓ E

”

›

›ψpY
pℓ,iq
N q ´ ψpY

pℓ´1,iq
N q

›

›

2
ı

ď LN´1
ℓ E

”

›

›Y
pℓ,iq
N ´ Y

pℓ´1,iq
N

›

›

2
ı

,

by the triangular inequality (adding and subtracting y) we can then link the right hand side

of this to the strong error as defined in (1.3). A numerical scheme with a high strong order

will thus reduce the variance at each level in the MLMC. This will reduce the number of

samples needed at each level and reduce the number of levels required. We demonstrate this

in Section 6.3 using one of the high order splitting schemes presented in this thesis. The

parameter γ is related to how the computational cost Cℓ increases with ℓ.
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1.4 A brief introduction to tensors

The central object of our study will be the iterated integrals of the time-Brownian path

tpt,Wtqut. These integrals are ‘tensors’. For our purposes (working in Re) it is sufficient

(and perhaps more enlightening) to adopt the following interpretation of ‘tensor’ common

in the context of machine learning:

Definition 1.4.1. A tensor is a multidimensional array (or matrix).

With this perspective, we can easily isolate scalar components of the tensor by indexing. We

refer to a tensor which requires m indices to isolate a scalar component as an ‘m-tensor’.

Example 1.4.2. As an example, for the 3-tensor

A :“

¨

˚

˝

¨

˚

˝

a111 a121

a211 a221

a311 a321

˛

‹

‚

,

¨

˚

˝

a112 a122

a212 a222

a312 a322

˛

‹

‚

˛

‹

‚

,

A111 “ a111, A112 “ a112 , A321 “ a321 and A122 “ a122. A, here, is in R3 b R2 b R2.

At times it will also useful to refer to the columns of a tensor, in which case we drop the

first index. So, when indexing an m-tensor by m´ 1 indices we are referring to the columns

of the tensor (one could extend this convention to refer to matrices, lists of matrices etc.).

For the above example, we would write

A11 “

¨

˚

˝

a111

a211

a311

˛

‹

‚

, A21 “

¨

˚

˝

a121

a221

a321

˛

‹

‚

, A12 “

¨

˚

˝

a112

a212

a312

˛

‹

‚

and A12 “

¨

˚

˝

a122

a222

a322

˛

‹

‚

.

Remark 1.4.3. Anm-tensor A is Rd1 bRd2 b¨ ¨ ¨bRdm-valued. As the spaces are isomorphic,

we will often instead write that A P Rd1ˆd2ˆ¨¨¨ˆdm .

We will now define two different notions of multiplication for tensors. The first of these is a

generalisation of matrix multiplication:

Definition 1.4.4 (Matrix multiplication of tensors). Let A P Rd1ˆd2ˆ¨¨¨ˆdm be an m-tensor

and B P Rp1ˆp2ˆ¨¨¨ˆpn be an n-tensor. If pdm, . . . , dm´k`1q “ pp1, . . . , pkq for k ă m and

k ď n, then AB is an pm` n´ 2kq-tensor and

`

AB
˘

αβ
“

dm´k`1
ÿ

im´k`1“1

¨ ¨ ¨

dm
ÿ

im“1

Aαim´k`1¨¨¨imBim¨¨¨im´k`1β ,

where α :“ i1 ¨ ¨ ¨ im´k`2 and β :“ jk`1 ¨ ¨ ¨ jn. If n “ k, then β :“ tu (the empty index).
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In the above definition, it should be emphasised that the matrix multiplication of tensors is

only defined for compatible tensors. So, for A P R2ˆ3 , B P R3ˆ2 and C P Rdˆ2ˆ3, we have

that AB P R2ˆ2, BA P R3ˆ3, CB P Rd and CA is not defined. The multiplications AC and

BC are defined if d “ 3 or d “ 2, respectively. One can also encode ‘vector’ multiplication

in this way by ‘re-indexing’: where we understand that column vectors are Rdˆ1-valued

and row vectors are R1ˆd valued. To demonstrate the matrix multiplication of compatible

tensors we give the following example:

Example 1.4.5. Taking A as defined in Example 1.4.2 and

B :“

˜

b11 b12

b21 b22

¸

, we have AB “

¨

˚

˝

a111b11 ` a121b12 ` a112b21 ` a122b22

a211b11 ` a221b12 ` a212b21 ` a222b22

a311b11 ` a321b12 ` a312b21 ` a322b22

˛

‹

‚

.

Remark 1.4.6. With the notion of multiplication as defined in Definition 1.4.4, we may

view a tensor A P Rd1ˆ¨¨¨ˆdm as a mulilinear map from Rdkˆ¨¨¨ˆdm to Rd1ˆ¨¨¨ˆdk´1 (for any

2 ď k ď m). When this understanding is useful, we write A P L
`

Rdkˆ¨¨¨ˆdm ,Rd1ˆ¨¨¨ˆdk´1
˘

,

where LpE,F q is the space of multilinear maps from E to F .

The second notion of multiplication we are interested in is the ‘tensor product’ between two

tensors, which can be defined as follows:

Definition 1.4.7. For two tensors A P Rd1ˆ¨¨¨ˆdm and B P Rp1ˆ¨¨¨ˆpn we define the tensor

product b : Rd1ˆ¨¨¨ˆdm ˆ Rp1ˆ¨¨¨ˆpn Ñ Rd1ˆ¨¨¨ˆdmˆp1ˆ¨¨¨ˆpn component wise by

`

AbB
˘

i1¨¨¨imj1¨¨¨jn
:“ Ai1¨¨¨imBj1¨¨¨jn .

For an m-tensor A and an n-tensor B, AbB is an pm`nq-tensor. Multiplication by scalars

is understood component wise.

Writing explicit examples for the tensors product could quickly become cumbersome, so we

will only provide the following two simple illustrations:

Example 1.4.8. Let

x :“

˜

x1

x2

¸

, y :“

˜

y1

y2

¸

and z :“

˜

z1

z2

¸

,

then we have that

xb y “

˜

x1y1 x1y2

x2y1 x2y2

¸

and

xb y b z “

˜˜

x1y1z1 x1y2z1

x2y1z1 x2y2z1

¸

,

˜

x1y1z2 x1y2z2

x2y1z2 x2y2z2

¸¸

.
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For two tensors of the same dimension (living in the same space) we understand addition in

the direct element wise sense. One can see that these two operations endow the space of

tensors with an associative algebra.

Proposition 1.4.9. The tensor product b is right and left distributive, and associative.

That is, for tensors A,B,C P pReqbm,

pA`Bq b C “ Ab C `B b C , (1.11)

Ab pB ` Cq “ AbB `Ab C , (1.12)

pAbBq b C “ Ab pB b Cq . (1.13)

The tensor product is not commutative.

Proof. These properties are clear from the definition of the tensor sum as component wise

scalar addition, and the tensor product as a component wise scalar multiplication. That the

tensor product is not commutative should be clear from Example 1.4.8.

Properties (1.11) and (1.12) hold separately so long as the addition is defined (i.e. when

A,B P pReqbm or B,C P pReqbm). The associative property (1.13) holds in general.

Remark 1.4.10. When we write iterated integrals in tensor form it should be understood in

an element wise sense. So, formally, for

dX :“

˜

dx1

dx2

¸

and dY :“

˜

dy1

dy2

¸

,

ż ż

dX b dY “

ż ż

`

dX b dY
˘

“

˜

ş ş

dx1dy1
ş ş

dx1dy2
ş ş

dx2dy1
ş ş

dx2dy2

¸

.

1.5 Notation and spaces

Here we introduce some notation and spaces that will be used throughout the text.

Let CkpRe,Rdq denote the space of k-times continuously differentiable functions from

Re to Rd, and let CkLippRe,Rdq Ď CkpRe,Rdq denote its subspace of Lipschitz functions.

Throughout, } ¨ } will denote the standard Euclidean norm on Rn, and by LppReq we

denote the space of Re-valued p-integrable random variables (i.e. E
“

}X}p
‰

ă 8). Given a

continuous path γ : r0, 1s Ñ Rn, we will denote its length using the notation,

}γ}1-var,r0,1s “

ż 1

0
|dγprq| :“ sup

0“r0ăr1ă¨¨¨ărN “1,

Ně0.

ˆN´1
ÿ

i“0

}γpri`1q ´ γpriq}

˙

.



Chapter 2

Splitting methods

as piecewise linear paths

2.1 Introduction

We present a study of high order path-based splitting methods for Stratonovich SDEs of the

form

dyt “ fpytqdt` gpytq ˝ dWt , y0 P L2pReq, (2.1)

where W “ pW 1, ¨ ¨ ¨ ,W dq “ tWtutPr0,T s denotes a d-dimensional Brownian motion, and

the vector fields are given by f P C2pRe,Req and g “ pg1, ¨ ¨ ¨ , gdq P C3pRe,Reˆdq where we

understand gpytq ˝ dWt “
řd
i“1 gipytq ˝ dW i

t . We focus on Stratonovich SDEs for algebraic

reasons: as we will make clear later the text, Stratonovich integrals yield the ‘same’ chain

rule and integration by parts formula as Riemann-Stieltjes integrals, aiding our analysis.

The schemes we propose are of course still applicable to Itô SDEs, after the appropriate

correction term is added to convert the SDE to Stratonovich form.

We are particularly interested in SDEs satisfying the following commutativity condition, as

this will help us obtain higher order convergence,

g 1
ipyqgjpyq “ g 1

jpyqgipyq , @y P Re . (2.2)

Where the columns tgiu1ďiďd of g can each be viewed as a vector field on Re. We also

assume gi are globally Lipschitz continuous with globally Lipschitz derivatives.

Without the condition (2.2), high order numerical methods for SDEs require the use, or

approximation, of second iterated integrals of the Brownian motion [61]. Generating both

the increments and iterated integrals, or equivalently Lévy areas, of Brownian motion is a

difficult problem [7, 9] and beyond the scope of this study. We refer the reader to [8, 14, 15,

22, 52, 68] for studies on Lévy area approximation. Nevertheless, there is a large variety of

14
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SDEs used in applications that satisfy (2.2), such as SDEs with scalar, diagonal or additive

noise. While we focus on schemes for SDEs satisfying the commutativity condition (2.2),

the error analysis that we introduce for establishing convergence is generic and does not rely

on this condition.

  

 

(Discretized) SDE Solution (Discretized) Brownian motion 

Numerical 

Method 

Fig. 2.1: In the Monte Carlo paradigm, information about the Brownian motion is generated and
then mapped to a numerical solution of the SDE. Typically, only Brownian increments are sampled.

2.1.1 Overview of part I

Our aim (in the first part of this thesis) is to present a unified framework for the design

and error analysis of splitting schemes. This analysis is built on a novel perspective which

views splitting schemes as replacing the driving time-Brownian path tpt,WtqutPr0,T s of the

SDE (2.1) with a piecewise linear path with random coefficients (see Section 2.2). With this

perspective we can compare the solutions of the SDE and the differential equation driven

by this ‘splitting path’ by Taylor expanding both. As we show in Section 2.4, these Taylor

expansions are remarkably similar. And, it turns out that the key difference between these

two Taylor expansions is the iterated integrals which appear in them. By constructing a

‘splitting path’ whose iterated integrals (path integrals) ‘match’ the iterated time-Brownian

integrals we can obtain a high order of numerical convergence. In Section 2.3 we introduce

assumptions on the splitting paths needed to enable our analysis.

In Chapter 3 we focus our attention on these iterated integrals. In Section 3.1 we look at

the algebraic properties of the iterated integrals, where we see that both types of iterated

integrals share the same integration by parts formula. This enables us to isolate the symmetric

and anti-symmetric components of the iterated integrals which will ultimately allow us to

prove the importance of the commutativity condition (2.2) in Theorem 3.6.2. In Section 3.2

we introduce Lévy Area’s of the Brownian motion, these can be viewed as components of the

iterated integrals and will be used to construct the high order splitting schemes we propose.

In Section 3.3 we calculate the values of the iterated Brownian integrals, showing us the

values which the path integrals need to match. In Section 3.4 we present an algorithmic

approach to automate the calculation of the iterated path integrals, this will speed up our

comparisons. In Section 3.5 we obtain L2 estimates for the iterated path integrals, these

will be used for our strong error analysis. We conclude the chapter in Section 3.6 where

we show that the commutativity condition (2.2) simplifies the Taylor expansions making it

easier to obtain high order convergence.
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In Chapter 4 we present our error analysis of path-based splitting schemes. Section 4.1

presents our local error analysis which will be used in Sections 4.2 and 4.3 to obtain global

strong and weak error rates. Our main convergence results are given in Theorems 4.2.1 and

4.3.1.

In Chapter 5 we present new high order path-based splitting using the Lévy areas of Section

3.2. We apply our error analysis to these paths in Section 5.2 and in Section 5.3 we show

how these paths were derived.

We conclude our study in Chapter 6, applying the path-based splitting schemes to several

numerical examples.

2.2 The path perspective

Inspired by rough path theory [20], which views SDEs as functions that map Brownian

motion to continuous paths (see Figure 2.1), we propose an approximation yγ “ tyγr urPr0,1s

for (2.1) that comes from the controlled differential equation (CDE),

dyγr “ fpyγr q dγτ prq ` gpyγr q dγωprq, yγ0 “ y0 , (2.3)

or equivalently

yγr “ yγ0 `

ż r

0
fpyγuq dγτ puq `

ż r

0
gpyγuq dγωpuq,

where γ “ pγτ , γωqJ : r0, 1s Ñ R1`d is a parameterised (continuous) piecewise linear

path designed to match certain iterated integrals of the ‘space-time’ Brownian motion

tpt,WtqutPr0,T s . Since the path γ is piecewise linear, it immediately follows that

dγprq “
1

ri`1 ´ ri
γri,ri`1 dr ,

for r P rri, ri`1s. Where ri P r0, 1s is the parameter value at the start of the i’th piece of

γ, and γri,ri`1 is the increment of the linear piece. Therefore the CDE (2.3) reduces to a

sequence of ODEs, corresponding to each piece of γ. These ODEs can then be discretized

by a suitable ODE solver, such a Runge-Kutta method. Furthermore, we will see that this

approach can be interpreted as a splitting method. We thus refer to these paths as ‘splitting

paths’. We refer the reader to [4, Section 3] for an overview of splitting methods for SDEs.
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Example 2.2.1. Let γ “ pγτ , γωqJ : r0, 1s Ñ R1`d denote a piecewise linear path where

the vertices between pieces are at ri :“
i
3 for 0 ď i ď 3 and the increments are

γri,ri`1 “

$

’

’

’

’

’

&

’

’

’

’

’

%

pA, 0q, if i “ 0

p0, Bq, if i “ 1

pC, 0q, if i “ 2 .

Replacing the driving Brownian path t Ñ pt,Wtq in the SDE (2.1) with the parametrisation

r Ñ γr, the approximating CDE (2.3) reduces to the sequence of ODEs

dyγr “ fpyγr q ˆ 3Adr , for r P

„

0 ,
1

3

ȷ

dyγr “ gpyγr q ˆ 3Bdr , for r P

„

1

3
,
2

3

ȷ

, with yγ0 “ y0 .

dyγr “ fpyγr q ˆ 3Cdr , for r P

„

2

3
, 1

ȷ

Practically, it makes more sense to solve the sequence of ODEs each over the interval r0, 1s.

Thus removing the artificial scaling factor of 3 (corresponding to the number pieces in the

path). In which case, we may formulate the CDE driven by path γ as the splitting

yγ1 “ exp
´

fp¨qA
¯

exp
´

gp¨qB
¯

exp
´

fp¨qC
¯

yγ0 ,

where exppV qx denotes the solution z1 at time u “ 1 of the ODE z1 “ V pzq, zp0q “ x.

More generally, CDEs are one of the key objects in rough path theory [20, 21, 43] (often

referred to as ‘rough’ differential equations). However, we emphasise that while our approach

takes inspiration from rough paths we are not working with rough paths – and no p-variation

or lift maps are used. Instead, we will heavily draw upon ideas and interpretations from

rough path theory. Similarly, we point towards [5, 17, 30, 32, 50, 51, 58] as works presenting

results for stochastic processes or continuous data streams, without ‘rough path’ statements,

but making use of the machinery and insights that are provided by rough path theory.
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In terms of proof methodologies for the error analysis, it is worth noting that ours differs

from previous works on splitting methods for SDEs [4, 16, 29, 38, 49, 53, 55, 65], which are

either extensions of the Strang splitting [64] or use the Baker-Campbell-Hausdorff formula

for expanding the compositions of ODEs (see [49] for the latter). For some perspective, we

present an informal version of our main result, Theorem 4.2.1, which describes our approach

to high order splitting methods for commutative SDEs.

Theorem 2.2.2 (Convergence of path-based splitting for SDEs (informal version)). Given a

fixed number of steps N , we will define a numerical solution Y “ tYku0ďkďN for the SDE

(2.1) over the finite time horizon r0, T s as follows,

Yk`1 :“
`

Solution at time r “ 1 of CDE (2.3) driven by γk : r0, 1s Ñ R1`d
˘`

Yk
˘

,

where each piecewise linear path γk is constructed from
␣

Wt : t P
“

kT
N ,

pk`1qT
N

‰(

, is

sufficiently regular (see Assumption 2.3.1), and for some fixed p P tm2 umPN satisfies

1. the iterated integrals of γk and pt,Wtq with order1 less than p´ 1
2 coincide,

2. the iterated integrals of γk and pt,Wtq with order p match in expectation.

Then, there exists a constant C ą 0, such that for sufficiently small h “ T
N , we have

E
”

}Yk ´ ykh}2
ı

1
2

ď Chp´ 1
2 . (2.4)

for k P t1, ¨ ¨ ¨ , Nu. If p “ 2, and the SDE satisfies the commutativity condition (2.2), then

the estimate (2.4) holds under the assumption that each γk is sufficiently regular and has

coordinate processes tγω,ik u1ďiďd that are independent, symmetric and satisfy

γω,ik p1q ´ γω,ik p0q “ W i
kh,pk`1qh , γτk p1q ´ γτk p0q “ h, (2.5)

ż 1

0

`

γω,ik prq ´ γω,ik p0q
˘

dγτk prq “

ż pk`1qh

kh
W i
kh,u du, (2.6)

E
„
ż 1

0

`

γω,ik prq ´ γω,ik p0q
˘2
dγτk prq

ȷ

“
1

2
h2. (2.7)

1. For iterated integrals of the Brownian motion or path γ we denote by ‘order’ the size of the integral with
respect to the interval t ´ s. Each dWt adds 1{2, and each dt adds 1 to the order. This is made precise in
Section 2.4.
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2.3 Assumptions on the splitting path and a preliminary result

Here we introduce our main assumption on the splitting path, namely that it scales like

Brownian motion. This assumption is easily justified as the splitting path is replacing and

estimating a Brownian motion.

Assumption 2.3.1 (Brownian-like scaling). Let γ “ pγτ , γωqJ : r0, 1s Ñ R1`d be a

piecewise linear path with m P N components that have, almost surely, finite length. For

i ě 0, we denote the increment of the i’th piece of γ by γri,ri`1 and assume that

1. γτri,ri`1
, the increment in the time component of γ, is deterministic.

2. γτri,ri`1
scales with the step size h and the increment in the space component, γωri,ri`1

,

has finite even moments scaling with h. Concretely, we have

γτri,ri`1
“ Ophq, and E

“

|pγωri,ri`1
qj |

2k
‰

“ Ophkq,

for every j P t1, . . . , du.

Remark 2.3.2 (Comment on Assumption 2.3.1). We impose that γτ is deterministic for

convenience and, inspecting the proof, one may be able to lift this constraint. Moreover, we

expect our methodology can accommodate for randomised algorithms (see [3, 27, 36, 37,

62] for examples of SDE solvers with a randomised time component).

We now present a moment bound for the CDE, which will be used to control remainder

terms of the Taylor expansion discussed later. Following the approach of [20, Theorem 3.7],

we obtain the following result, Theorem 2.3.3.

Theorem 2.3.3 (Fourth moment bound for CDEs). Let γ satisfy Assumption 2.3.1 and let

yγ denote the solution to (2.3) with yγ0 P L4pReq. Suppose that f and g satisfy

}fpyq} ď Cp1 ` }y}q, and }gpyq} ď Cp1 ` }y}q, (2.8)

with E
“

exp
`

16C
ş1
0 |dγpuq|

˘‰

ă 8. Then there exists a positive constant rC ą 0, depending

only the path γ and the growth constant C in (2.8), such that for r P r0, 1s,

E
“

}yγr ´ yγ0 }4
‰

ď rCh2
`

1 ` E
“

}y0}4
‰˘

. (2.9)

Proof. Let G : Re Ñ Reˆpd`1q have first column given by f : Re Ñ Re and the rest

of the matrix given by g : Re Ñ Reˆd. Then the growth assumption (2.8) implies that

}Gpyq} ď Cp1 ` }y}q. Thus, by direct application of [20, Theorem 3.7], we have

}yγr ´ yγ0 } ď Cp1 ` }yγ0 }q exp

ˆ

2C

ż r

0
|dγpuq|

˙
ż r

0
|dγpuq|,
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for r P r0, 1s. Consequently,

E
“

}yγr ´ yγ0 }4
‰

ď C4E

«

`

1 ` }yγ0 }
˘4

exp

ˆ

8C

ż r

0
|dγpuq|

˙ˆ
ż r

0
|dγpuq|

˙4
ff

ď C4
`

1 ` E
“

}yγ0 }4
‰˘

E
„

exp

ˆ

16C

ż r

0
|dγpuq|

˙ȷ
1
2

E

«

ˆ
ż r

0
|dγpuq|

˙8
ff

1
2

ď rCh2
`

1 ` E
“

}y0}4
‰˘

,

where we used the independence of y0 and γ, the Cauchy-Schwarz inequality and

E

«

ˆ
ż r

0
|dγpuq|

˙8
ff

ď E

«

ˆ
ż 1

0
|dγpuq|

˙8
ff

“ E

«

ˆm´1
ÿ

i“0

›

›γri ,ri`1

›

›

˙8
ff

ď m7
m´1
ÿ

i“0

E
”

}γri ,ri`1

›

›

8
ı

“ Oph4q,

which follows by Jensen’s inequality and Assumption 2.3.1.

Remark 2.3.4. The assumptions we make on the functions f and g are more relaxed than

the assumptions of [17] (which assumes C8 and bounded), where the optimal estimates of

Brownian integrals used in this work were originally derived.

2.4 Stochastic Taylor expansions

Our approach to the error analysis of splitting schemes is to Taylor expand both the SDE

(2.1) and the CDE (2.3) (driven by a splitting path γ), and to compare the corresponding

iterated integrals from each. In this section we present these Taylor expansions. By matching

the lower order terms in the Taylor expansions and showing that the remainder terms are

higher order, we can bound local errors for our splitting schemes. We then apply Milstein

and Tretyakov’s framework for mean-square error analysis [48] to obtain a global strong

convergence rate – which is our main result in Theorem 4.2.1. Similarly, by a telescoping

sum argument, we obtain the global weak error – presented in Theorem 4.3.1.

First, let us introduce some short hand notation to aid presentation. We encode the order of

integration (dW vs dt) by the multi-index (word) α “ pα1, ¨ ¨ ¨ , αnq P tτ, ωun, and define

the iterated integrals of W and γ : r0, 1s Ñ R1`d as

IαpF q :“

ż h

0

ż r1

0
¨ ¨ ¨

ż rn´1

0
F pyrnq dBα1

rn dB
α2
rn´1

¨ ¨ ¨ dBαn´1
r2 dBαn

r1 , (2.10)

IγαpF q :“

ż 1

0

ż r1

0
¨ ¨ ¨

ż rn´1

0
F pyγrnq dγα1prnq ¨ ¨ ¨ dγαnpr1q, (2.11)
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where y and yγ are the solutions of the SDE (2.1) and its CDE approximation (2.3),

F : Re Ñ Re, dBτ
r “ dr, dBω

r “ b ˝ dWr and, if γprq “ pγτ prq, γωprqqJ, then we write

dγprqτ “ dγτ prq and dγprqω “ b dγωprq. We denote the set of words by A “ Yně0tτ, ωun.

We also define the integrals,

JαpF q :“ IαpF q ´ F py0qIαp1q, JγαpF q :“ IγαpF q ´ F pyγ0 qIγαp1q, (2.12)

where we understand Iαp1q and Iγαp1q as defined in (2.10) and (2.11), but with F pyq

replaced by the scalar 1. For a given word α “ pαiq1ďiďn , we will define its order by

ordpαq :“ |α|τ ` 1
2 |α|ω , where |α|τ :“

řn
i“1 1αi“τ and |α|ω :“

řn
i“1 1αi“ω . We denote

the length of a word by |α|.

2.4.1 Stratonovich Taylor expansion

Letting y denote the solution to (2.1), we have the following chain rule (see [20, Exercise

3.17]) for any function F P C1pReq,

F pyrq “ F py0q `

ż r

0
F 1pysq ˝ dys , r ě 0 . (2.13)

By expanding ‘dys’ and iteratively applying (2.13), we obtain the Taylor expansion.

Proposition 2.4.1 (Stochastic Taylor expansion of the Stratonovich SDE (2.1) [2, Proposi-

tion 1.1], [35, Theorem 5.6.1]). Let p P tk2ukPN, f P Crp´1s

Lip pRe,Req, g P C2p´1
Lip pRe,Reˆdq

and ψ P C2p
LippRe,Rlq. The Stratonovich Taylor expansion of (2.1), up to order p, is

ψpyhq “ ψpy0q `
ÿ

αPA ,

ordpαqď p

Vψpαqpy0qIαp1q `Rp,ψph, y0q, (2.14)

where, we recall the definition of ordpαq :“ |α|τ ` 1
2 |α|ω after equation (2.12), and

Rp,ψph, y0q :“
ÿ

αPA ,

ordpαq“p

JαpVψpαqq, (2.15)

with the vector field derivatives Vψpαq : Re Ñ LppRdqb|α|ω ,Rlq defined for multi-indices

recursively by Vψpτqpyq :“ ψ1pyqfpyq, Vψpωqpyq :“ ψ1pyqgpyq and

Vψplβqpyq “ Vψpβq1V plqpyq, (2.16)

where l P tτ, ωu, V pτqpyq :“ fpyq, V pωqpyq :“ gpyq and lβ :“ pl, β1, ¨ ¨ ¨ , βnq denotes

concatenation. Moreover, we have

E
“

}Rp,ψph, y0q}2
‰1{2

“ Ophp` 1
2 q. (2.17)
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Informal derivation of Proposition 2.4.1. Applying the chain rule (2.13) to ψ and substitut-

ing in the SDE (2.1), we have that

ψpyhq “ ψpy0q `

ż r

0
ψ1pyr1qfpyr1qdr1 `

ż r

0
ψ1pyr1qgpyr1q ˝ dWr1 ,

which we may equivalently write as

ψpyhq “ ψpy0q ` ψ1py0qfpy0qIτ p1q `

ż r

0

´

ψ1pyr1qfpyr1q ´ ψ1py0qfpy0q

¯

dr1

` ψ1py0qgpy0qIωp1q `

ż r

0

´

ψ1pyr1qgpyr1q ´ ψ1py0qgpy0q

¯

˝ dWr1 .

Applying the chain rule (2.13) to the differences contained in the integrals, we obtain

ψpyhq “ ψpy0q ` ψ1py0qfpy0qIτ p1q ` ψ1py0qgpy0qIωp1q

`

ż r

0

ż r1

0

`

ψ1pyr2qfpyr2q
˘1

˝ dyr2dr1 `

ż r

0

ż r1

0

`

ψ1pyr2qgpyr2q
˘1

˝ dyr2dWr1 .

Proceeding in this way we can obtain the Taylor expansion (2.14) up to arbitrary order p. As

ordpτq “ 1 and ordpωq “ 1{2, we will not need to expand every integral at each stage. We

thus require more differentiability in the diffusion matrix g than the drift vector field f .

2.4.2 Controlled Taylor expansion

We now present a CDE Taylor expansion. Just as with the Stratonovich SDE, we have the

following chain rule for F P C1pReq,

F pyγr q “ F pyγ0 q `

ż r

0
F 1pyγs q dyγs , r P r0, 1s, (2.18)

where yγ denotes the solution to the CDE (2.3). Again, just as in the SDE setting, by

expanding ‘dyγs ’ and iteratively applying (2.18), we can obtain a Taylor expansion.

Proposition 2.4.2. Let p P tk2ukPN, f P Crp´1s

Lip pRe,Req, g P C2p´1
Lip pRe,Reˆdq and ψ P

C2p
LippRe,Rlq. The Taylor expansion of (2.3), up to order p, is

ψpyγ1 q “ ψpyγ0 q `
ÿ

αPA ,

ordpαqď p

Vψpαqpyγ0 qIγαp1q `Rγp,ψph, yγ0 q, (2.19)

where

Rγp,ψph, yγ0 q :“
ÿ

αPA ,

ordpαq“p

JγαpVψpαqq, (2.20)

with Vψ defined as in Proposition 2.4.1
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Remark 2.4.3. We note the proof of Proposition 2.4.2 is essentially identical to that

of the Stratonovich Taylor expansion (but with t ÞÑ pt,Wtq replaced by r ÞÑ pγτr , γ
ω
r q).

Moreover, the Taylor expansions are of the same form. The only difference between the

Taylor expansions is that the Stratonovich Taylor expansion involves the integrals Iαp1q and

the CDE Taylor expansion contains the integrals Iγαp1q. Thus, we are able to focus largely

on comparing these iterated integrals. By matching all of the iterated integrals up to a given

level, we will in turn match the Taylor expansion up to that level.



Chapter 3

Iterated integrals of Brownian

motion and Piecewise linear paths

Central to our analysis of splitting methods are the iterated integrals with respect to the

Brownian path driving the SDE (2.1) and the splitting path driving the CDE (2.3). These

objects appear in the Taylor expansions of the SDE and CDE (Section 2.4) which, as

discussed previously, will be key to our error analysis in Chapter 4. We thus dedicate this

chapter to their study. We begin by considering the algebraic properties of the iterated

integrals. These properties will allow us to prove several representations for iterated Brownian

integrals in terms of the Lévy areas introduced in Section 3.2 (see Section 3.3 below), and to

show how the commutativity condition (2.2) simplifies certain terms in the Taylor expansions

(see Section 3.6), unlocking higher order convergence (see Theorem 4.2.3).

3.1 Algebraic properties of iterated integrals

When considering the algebraic properties of iterated integrals, it is more convenient to work

with 1-D integrals than the tensor integrals we use for the Taylor expansion. So we introduce

here an element-wise notation for the iterated integrals. For an element-wise representation,

we must know against which component of the Brownian motion we are integrating. We

will encode this by denoting dW τ
t :“ dt and letting dW i

t denote integration against the i’th

dimension of the Brownian motion W “ pW 1, ¨ ¨ ¨ ,W dq. Similarly, we write dγτr to denote

integration with respect to the time component of γ, and dγir, the i’th dimension of the

space component of γ. Let us denote the set of letters for this encoding by

Ad “ tτ, 1, . . . , du ,

and let A˚
d denote the space of words with letters from Ad, where e is the empty word.

This should not be confused with the notation introduced above in Section 2.4 where A
denotes the space of words with letters from tτ, ωu. We then define the following short hand

notation:

24
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Definition 3.1.1. For m ě 0 and i1 , i2 , ¨ ¨ ¨ , im P Ad , we denote the (1-D) iterated

Brownian integrals and iterated integrals against the components of the path γ by

Ii1¨¨¨im :“

ż t

s

ż r1

s
. . .

ż rm´1

s
˝ dW i1

rm ˝ dW i2
rm´1

¨ ¨ ¨ ˝ dW im´1
r2 ˝ dW im

r1 ,

Iγi1¨¨¨im
:“

ż t

s

ż r1

s
. . .

ż rm´1

s
dγi1rm dγ

i2
rm´1

¨ ¨ ¨ dγim´1
r2 dγimr1 , for 0 ď s ď t ă 8

where we understand Ie “ Iγe “ 1. To encode the additive property of integrals, for words

u, v P A˚
d and scalars λ1, λ2 P R, let

Iλ1u`λ2v :“ λ1Iu ` λ2Iv .

We now introduce the shuffle product, which is commonly used in rough path theory [43].

Definition 3.1.2. Let RxAdy be the space of non-commutative polynomials in Ad with

real coefficients (note that RxAdy contains A˚
d ). Then the shuffle product \\ : RxAdy ˆ

RxAdy Ñ RxAdy is the unique bilinear map such that

ua\\ vb “ pu\\ vbqa` pua\\ vqb ,

u\\ e “ e\\ u “ u ,

for all u, v P RxAdy and a, b P Ad , where we understand ua to denote concatenation.

The shuffle product of two words u and v can be viewed as the sum over all possible words

constructed from the letters of u and v such that the ordering of u and v remains intact.

That is, for any word w found in the summation u\\ v, removing the letters which came

from v leaves us with u and vice versa. Or symbolically wzv “ u . For two words with

length m and n, the shuffle produces a sum of pm`nq!
m!n! terms. To further demonstrate our

interpretation of the shuffle product we give the following examples:

Example 3.1.3. For a letter a P Ad we have that

aaa\\ a “ 4aaaa “ a\\ aaa and aa\\ aa “ 6aaaa .

Example 3.1.4. For letters a, b, c, d P Ad we have that

ab\\ cd “ pa\\ cdqb` pab\\ cqd

“
`

pe\\ cdqa` pa\\ cqd
˘

b`
`

pa\\ cqb` pab\\ eqc
˘

d

“ cdab` pac` caqdb` pac` caqbd` abcd

“ cdab` acdb` cadb` acbd` cabd` abcd .



3.1. Algebraic properties of iterated integrals 26

With this notation, we can link the shuffle product to the integration by parts formula. As a

result, the shuffle product will allow us to expand products of iterated integrals. Similarly to

[14, Theorem 3.2.30] we obtain Theorem 3.1.5, but crucially we observe here that the result

holds for both the Brownian integrals and the path integrals.

Theorem 3.1.5 (Integration by parts formula for integrals). For all words u, v P A˚
d , we

have

Iu ¨ Iv “ Iu\\v (3.1)

Proof. We prove this result by induction over the length of the words in A˚
d .

Base case. It is clear that the identity (3.1) holds when u “ e or v “ e since Ie “ 1.

Induction step. Suppose that (3.1) holds for all words u, v P A˚
d with a combined length less

than m. Then for words u, v P A˚
d and letters a, b P Ad such that |ua| ` |vb| “ m, we have

Iua ¨ Ivb “

ż t

s
Iuprq ˝ dW a

r

ż t

s
Ivprq ˝ dW b

r

“

ż t

s

ˆ
ż r1

s
Iupr2q ˝ dW a

r2

˙

˝ d

ˆ
ż r1

s
Ivpr2q ˝ dW b

r2

˙

`

ż t

s

ˆ
ż r1

s
Ivpr2q ˝ dW b

r2

˙

˝ d

ˆ
ż r1

s
Iupr2q ˝ dW a

r2

˙

“

ż t

s
Iuapr1qIvpr1q ˝ dW b

r1 `

ż t

s
Ivbpr1qIupr1q ˝ dW a

r1

“ Ipua\\vqb`pu\\vbqa ,

where the second line uses integration by parts (which holds for Stratonovich integrals) and

the last line uses the induction hypothesis. The result now follows by linearity and induction.

The same argument gives (3.1) for iterated integrals with respect to the path γ .

Using Theorem 3.1.5, it will be straightforward to rewrite products of integrals as linear com-

binations of (high order) integrals. In addition, it shall enable us to establish decompositions

of iterated integrals into symmetric (where swapping two indices gives the same value) and

antisymmetric (where swapping two indices gives negative the same value) components. The

following result presents these decompositions and is key to proving that the commutativity

condition (2.2) simplifies certain terms in the Taylor expansions (see Section 3.6).
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Theorem 3.1.6 (Symmetric and antisymmetric components of iterated integrals). Let the

Lie bracket r ¨, ¨s : RxAdy ˆ RxAdy Ñ RxAdy be the unique bilinear map satisfying

ru, vs “ uv ´ vu, (3.2)

for words u, v P A˚
d . Then, adopting the notation of Definition 3.1.1 and Theorem 3.1.5, we

have the following identities

Iij “
1

2
Ii ¨ Ij `

1

2
Iri,js , (3.3)

Iijk “
1

6
Ii ¨ Ij ¨ Ik `

1

4
Ii ¨ Irj,ks `

1

4
Iri,js ¨ Ik `

1

6
Irri,js,ks `

1

6
Iri,rj,kss , (3.4)

Iijkl “
1

24
Ii ¨ Ij ¨ Ik ¨ Il `

1

12
Ii ¨ Irj,rk,lss `

1

12
Ii ¨ Irrj,ks,ls `

1

12
Iri,rj,kss ¨ Il (3.5)

`
1

12
Irri,js,ks ¨ Il `

1

12
Ii ¨ Ij ¨ Irk,ls `

1

12
Ii ¨ Irj,ks ¨ Il `

1

12
Iri,js ¨ Ik ¨ Il

`
1

8
Iri,js ¨ Irk,ls `

1

12
Iri,rj,rk,lsss `

1

12
Irri,rj,kss,ls `

1

12
Irrri,js,ks,ls

`
1

12

`

Ikjli ´ Ikjil ` Ilijk ´ Iiljk
˘

`
1

12

`

Ijilk ´ Ikilj ` Ijlik ´ Iklij
˘

,

for i, j, k, l P Ad and where we understand (for any i, j P Ad)

Iri,js :“ Iij ´ Iji .

Proof. The results follow by expanding the Lie brackets r ¨, ¨s in the right hand sides using

(3.2), applying the integration by parts formula (3.1) and the linear operation of Definition

3.1.6. For example,

1

2
Ii ¨ Ij `

1

2
Iri,js “

1

2
Ii\\j `

1

2
pIij ´ Ijiq “

1

2
pIij ` Ijiq `

1

2
pIij ´ Ijiq “ Iij ,

proving (3.3). Equations (3.4) and (3.5) are proven in the same manner.

Remark 3.1.7. Results for higher order integrals in terms of symmetric and anti-symmetric

components will also exist; However, to prove a high order convergence strong of Oph1.5q

(and weak order Oph2q) we only need to consider words of at most length 4 (which includes

the integral Iωωωωp1q). It is thus sufficient for our purposes to only have explicit formula for

these first three levels.

We do, however, have use of the following result (Theorem 3.1.8) coming from rough path

theory. As the focus of this Thesis is not rough paths (and to avoid introducing a large

number of definitions) we will not provide a full proof of this result and point the reader to

the citations contained in the proof for further clarification.
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Theorem 3.1.8. Let Iαp1q and Iγαp1q be defined as in (2.10) and (2.10), for a path γ

satisfying Assumption 2.3.1. Let the word α P A consist of only ω’s (i.e. |α| “ |α|ω) with

length |α| “ m. The symmetric components of the integrals Iαp1q and Iγαp1q are given,

respectively, by

1

m!

`

Iωp1q
˘bm and

1

m!

`

Iγωp1q
˘bm

.

Proof. This result follows by [43, Exercise 3.15] which shows that the above result holds

for all ‘weakly-geometric rough paths’ [43, Definition 3.14]. The ‘Stratonovich enhanced

Brownian path’ is a geometric rough path (see e.g. [21, Chapter 3]) and thus also a weakly-

geometric rough path. Since γ has finite length (i.e. finite 1-variation), it can be directly

viewed as a geometric p-rough path and thus the result holds.

Remark 3.1.9. The reader may note that these symmetric components look like they come

from the expansion of an exponential function. And indeed the ‘Signature’ of a path (which

is the infinite series of iterated integrals) can be described as its full non-commutative

exponential [43, Chapter 2].

3.2 Lévy areas of Brownian motion

Here we define several different Lévy areas, describing the shape of the time-Brownian path

pt,Wtq, which will be used in our construction of splitting paths in Chapter 5. As we will

show in Section 3.3, these Lévy areas can be thought of as components of the Brownian

integrals, and indeed we can write many iterated integrals in terms of Ws,t and the Lévy

areas introduced here.

Firstly we introduce the Brownian Lévy area, which encodes the distance between the

Brownian motion in its different dimensions.

Definition 3.2.1. The space-space (or Brownian) Lévy area of Brownian motion over

the interval rs, ts is defined as

As,t :“ Iωωp1q ´ pIωωp1qqJ ,

or equivalently, for i, j P t1, . . . , du, component wise by

pAs,tqij :“ Iij ´ Iji “

ż t

s

ż r1

s
˝dW i

r2 ˝ dW j
r1 ´

ż t

s

ż r1

s
˝dW j

r2 ˝ dW i
r1 .

As we will show in Section 3.6 the commutativity condition (2.2) means that As,t will not

appear in the Taylor expansion of the SDE and CDE. Thus, we do not need to simulate the

Brownian Lévy area for our numerical schemes. This is a benefit as the simulation of As,t is

computationally expensive [9].
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The most important of the Lévy areas for our construction of high order splitting paths is

the ‘space-time’ Lévy area. And in fact its inclusion is already enough to construct a high

order scheme (see path HS1 in Section 5.1 and the paper [61]). In Theorem 3.3.1 we see

that the space-time Lévy area appears as a component of the integrals Iτωp1q and Iωτ p1q,

which we must match to achieve a high order of convergence.

Definition 3.2.2. The rescaled space-time Lévy area of a Brownian motion W over an

interval rs, ts corresponds to the signed area of the associated bridge process.

Hs,t :“
1

h

ż t

s

´

Ws,u ´
u´ s

h
Ws,t

¯

du,

where h :“ t´ s and Ws,u :“ Wu ´Ws for u P rs, ts.

The space-time Lévy area encodes how far on average the Brownian path was from the

shortest path between Ws and Wt (a straight line). In Figure 3.1 the Brownian motion is

above this shortest path for most of the period rs, ts and thus has Hs,t ą 0.

𝑊𝑡 

𝑊𝑠 

𝑠 𝑡 

= ℎ𝐻𝑠,𝑡 

 

 

Fig. 3.1: Space-time Lévy area gives the area between a Brownian path and its linear approximant.

While we can construct a high order splitting scheme with Ws,t and Hs,t alone, it is possible

to produce more accurate schemes (of the same order) through the inclusion or estimation

of the following additional quantities (see Section 5.3 for details). The first of these is the

‘space-time Lévy swing’ which gives finer detail on the distribution Hs,t (see Figure 3.2).

Definition 3.2.3. The space-time Lévy swing1 of Brownian motion over rs, ts is defined

as

ns,t :“ sgn
`

Hs,u ´Hu,t

˘

,

where u :“ 1
2ps` tq is the interval’s midpoint.

1. Side With INtegral Greater
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𝑊𝑡 

𝑊𝑠 

𝑛𝑠,𝑡 = sgn ቀ
 

             
     ቁ = 1 − 

𝑠 𝑢 𝑡 

Fig. 3.2: Space-time Lévy swing gives the side where the path has greater space-time Lévy area.

In Section 5.3 the ‘optimal’ splitting schemes are derived in such a way as to approximate

the ‘space-space-time’ Lévy area. Which is defined as follows.

Definition 3.2.4. Over an interval rs, ts, the space-space-time Lévy area Ls,t of a standard

Brownian motion is defined, for i, j P t1, . . . , du, component wise by

pLs,tqij :“
1

6

`

Irri,js,τ s ` Iri,rj,τ ss

˘

“
1

6

˜

2

ż t

s

ż r1

s

ż r2

s
˝dW i

r3 ˝ dW j
r2dr1 ´

ż t

s

ż r1

s

ż r2

s
˝dW j

r3 ˝ dW i
r2dr1

´

ż t

s

ż r1

s

ż r2

s
˝dW i

r3dr2 ˝ dW j
r1 ´

ż t

s

ż r1

s

ż r2

s
˝dW j

r3dr2 ˝ dW i
r1

` 2

ż t

s

ż r1

s

ż r2

s
dr3 ˝ dW j

r2 ˝ dW i
r1 ´

ż t

s

ż r1

s

ż r2

s
dr3 ˝ dW i

r2 ˝ dW j
r1

¸

.

While this area is more difficult to visualise, by inspecting the definition the reader should

note that it corresponds to the last two terms of the expansion (3.4). And, in Theorem

3.3.3 we see that it is a component of the integrals corresponding to the words ωωτ , ωτω

and τωω. As these integrals are of order 2, we do not need to match Ls,t in an almost sure

sense to achieve high order strong convergence of Oph1.5q.

Remark 3.2.5. Along with the path increment Ws,t , the Lévy areas Hs,t and Ls,t are

sufficient to construct the iterated integrals appearing in the stochastic Taylor expansion

(2.14), up to order 2 for SDEs satisfying the commutativity condition (2.2).

The final Lévy area used in the definition and derivation of the splitting paths we present is

the ‘space-time-time’ Lévy area. Which is defined as follows and described in Figure 3.3.
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Definition 3.2.6. The rescaled space-time-time Lévy area of Brownian motion over an

interval rs, ts is defined as

Ks,t :“
1

h2

ż t

s

ˆ

Ws,u ´
u´ s

h
Ws,t

˙ˆ

1

2
h´ pu´ sq

˙

du.

 

Fig. 3.3: Space-time-time Lévy area corresponds to a cubic approximation of the Brownian arch
(which is a Brownian motion conditioned on having zero increment and space-time Lévy area [17]).

3.2.1 Relational properties between Lévy areas

In Section 5.1 we will introduce piecewise linear splitting paths defined using the Lévy areas

defined above. We note their distributions and relationships in the following few results. As

these results were originally shown in [14] we point the reader to the relevant proofs therein.

Further details are also contained in Section 5.3 of this thesis.

Lemma 3.2.7. For Hs,t and Ks,t defined as above

Hs,t „ N
ˆ

0,
h

12
1d

˙

and Ks,t „ N
ˆ

0,
h

720
1d

˙

.

Proof. See the remarks in [14, Definitions 4.2.1 and 4.2.3].

Lemma 3.2.8. For ns,t defined as in Definition 3.2.3, for every i P t1, . . . , du

P
`

pns,tqi “ 1
˘

“ P
`

pns,tqi “ ´1
˘

“ 0.5 .

Proof. This follows by the symmetry of the Brownian motion.

With lemmas 3.2.7 and 3.2.8 it is clear how to generate each Lévy area separately. In the

following results we note the independence between terms.

Lemma 3.2.9. The space-time Lévy area Hs,t is independent of Ws,t.

Proof. It was shown in [17, Remark 3.6] that Hs,t „ N
`

0, 1
12h

˘

is independent of Ws,t when

d “ 1. Since the coordinate processes of a Brownian motion are independent, it therefore

follows that Ws,t „ N
`

0, h1d
˘

and Hs,t „ N
`

0, 1
12h1d

˘

are independent.
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Lemma 3.2.10. The space-time Lévy swing ns,t is independent of Ws,t and Hs,t.

Proof. This is a direct result of [14, Theorem 5.0.6] again noting that the coordinate

processes of Brownian motion are independent.

Lemma 3.2.11. The space-time-time Lévy area Ks,t is independent of Ws,t and Hs,t.

Proof. See [14, Definition 4.2.3].

3.3 Computation of Brownian integrals

In this section, we use Theorems 3.1.5 and 3.1.6 to prove several representations of iterated

Brownian integrals in terms of the Lévy areas introduced in Section 3.2. These representations

will be useful later for checking the convergence rates of the proposed splitting schemes.

Throughout, we set 0 ď s ă t and h “ t´ s ą 0.

The results presented here are largely drawn from or inspired by results in [14, Chapter 4.2]

(there presented in the 1-D case); Theorem 3.3.1 and Lemma 3.3.2 both follow directly

from results therein (we include here proofs to aid understanding), whereas Theorem 3.3.3

is an extension of a previous result and the proof is new: based on our Theorem 3.1.6.

Theorem 3.3.1. Let Hs,t denote the space-time Lévy area of Brownian motion as defined

in Definition 3.2.2, then

Iωτ p1q “
1

2
hWs,t ` hHs,t , (3.6)

Iτωp1q “
1

2
hWs,t ´ hHs,t . (3.7)

Proof. Recalling Definition 3.2.2, we have

Hs,t “
1

h

ż t

s

ˆ

Ws,u ´
u´ s

h
Ws,t

˙

du

“
1

h
Iωτ p1q ´

1

2
Ws,t ,

which proves equation (3.6).

To prove (3.7) we note that by Theorem 3.1.5 (we have one Brownian motion here, so we

may view this as performing integration by parts component wise)

hWs,t “ Iτ p1qIωp1q “ Iτ\\ωp1q “ Iτωp1q ` Iωτ p1q ,

which, in combination with (3.6), provides (3.7).

We present next a version of [14, Theorem 4.2.7].
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Lemma 3.3.2. Let Hs,t, Ls,t and Ks,t denote the Lévy areas of Brownian motion as defined

in Definitions 3.2.2, 3.2.4 and 3.2.6 respectively. Then

hHs,t “
1

2
Irω,τ sp1q, (3.8)

h2Ks,t “
1

6
Irrω,τ s,τ sp1q . (3.9)

Proof. Equation (3.8) follows as a direct result of Theorem 3.3.1. To prove (3.9) we start

from the definition of Ks,t (Definition 3.2.6), expand and apply integration by parts, which

(with some abuse of notation) gives the following:

h2Ks,t “
1

2
h

ż t

s
Ws,udu´

ż t

s
Ws,upu´ sqdu

´
1

2

ż t

s
pu´ sqdsˆWs,t `

ż t

s

pu´ sq2

h
duˆWs,t

“
1

2
Iτ ¨ Iωτ ´ pIωττ ` Iτωτ q ´

1

2
Iττ ¨ Iω `

1

3
Iτ ¨ Iτ ¨ Iω

“
1

6
Iωττ ´

1

3
Iτωτ `

1

6
Iττω ,

which, applying (3.2), gives us (3.9).

Based on Theorem 3.1.6 and Lemma 3.3.2, we obtain the following extension of [14, Lemma

4.2.5] to multi-dimensions. In contrast with the result presented there, we see how the cross

terms pAs,tqij , pLs,tqij and pLs,tqji appear in the multidimensional case.

Theorem 3.3.3. Let As,t, Hs,t and Ls,t denote the Lévy areas of Brownian motion as

defined in Definitions 3.2.1, 3.2.2 and 3.2.4 respectively for 0 ă s ă t, with h :“ t ´ s.

Then we have the following identities for all i, j P t1, . . . , du

pIωωτ p1qqij “
1

6
hpWs,tqipWs,tqj `

1

2
hpWs,tqipHs,tqj `

1

4
hpAs,tqij ` pLs,tqij , (3.10)

pIωτωp1qqij “
1

6
hpWs,tqipWs,tqj ´

1

2
hpWs,tqipHs,tqj `

1

2
hpWs,tqjpHs,tqi (3.11)

´ pLs,tqij ´ pLs,tqji ,

pIτωωp1qqij “
1

6
hpWs,tqipWs,tqj ´

1

2
hpWs,tqjpHs,tqi `

1

4
hpAs,tqij ` pLs,tqji . (3.12)

Proof. For all i, j P t1, . . . , du, by Theorem 3.1.6 and applying Lemma 3.3.2 we have that

Iijτ “
1

6
Ii ¨ Ij ¨ Iτ `

1

4
Ii ¨ Irj,τ s `

1

4
Iri,js ¨ Iτ `

1

6
Irri,js,τ s `

1

6
Iri,rj,τ ss

“
1

6
hpWs,tqipWs,tqj `

1

2
hpWs,tqipHs,tqj `

1

4
hpIij ´ Ijiq

`
1

6
Irri,js,τ s `

1

6
Iri,rj,τ ss ,
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Iiτj “
1

6
Ii ¨ Iτ ¨ Ij `

1

4
Ii ¨ Irτ,js `

1

4
Iri,τ s ¨ Ij `

1

6
Irri,τ s,js `

1

6
Iri,rτ,jss

“
1

6
hpWs,tqipWs,tqj ´

1

2
hpWs,tqipHs,tqj `

1

2
hpHs,tqipWs,tqj

`
1

6
Irri,τ s,js `

1

6
Iri,rτ,jss ,

Iτij “
1

6
Iτ ¨ Ii ¨ Ij `

1

4
Iτ ¨ Iri,js `

1

4
Irτ,is ¨ Ij `

1

6
Irrτ,is,js `

1

6
Irτ,ri,jss

“
1

6
hpWs,tqipWs,tqj ´

1

2
hpWs,tqipHs,tqj `

1

4
hpIij ´ Ijiq

`
1

6
Irrτ,is,js `

1

6
Irτ,ri,jss ,

comparing with the definition of Ls,t (Definition 3.2.4), we conclude by noting that

Irri,js,τ s ` Iri,rj,τ ss “ Irrτ,js,is ` Irτ,rj,iss , and

Irri,js,τ s`Iri,rj,τ ss ` Irrτ,is,js ` Irτ,ri,jss “ ´pIrri,τ s,js ` Iri,rτ,jssq .

3.3.1 Expected value of Brownian integrals

As we will prove in Chapter 4, to obtain a certain global error we must match higher order

terms from the Taylor expansion (2.14) in expectation. For the Stratonovich integrals Iαp1q

(here written in tensor form) the expected value is easily obtained using the following result.

Theorem 3.3.4. Let the word α P A have order ordpαq “ p P tk2ukPN (recall ordpαq “

|α|τ ` |α|ω{2). Let Sωpαq denote the set of subwords of α formed by all consecutive ω’s

(e.g. Sωpωτωωωq “ tω, ωωωu). If there is at least one word β P Sωpαq with odd length (i.e.

|β| “ 2k ` 1 for k P N0) then ErIαp1qs “ 0, otherwise

ErIαp1qs “
hp

?
2|α|ωp!

D
|α|ω

d . (3.13)

Where, for i “ 2m with m, d P N`, Di
d denotes the i-tensor defined component wise by

pDi
dqα “

$

&

%

1 if α P Ai
2 ,

0 otherwise
(3.14)

and Ai
2 denotes the set of pair-wise equal multi-indices α “ α1α2 . . . αi{2´1αi{2, where each

αj “ pk, kq for some k P t1, . . . , du. D2
d corresponds to the dˆ d identity matrix.

Proof. This follows as a direct result of [23, Lemma 3]. Alternatively, one can obtain (3.13)

from the expected signature of the Brownian path see [44, Proposition 4.10].
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3.4 Algorithmic computation of path integrals

Our error analysis hinges on the computation of the path integrals Iγαp1q (α P A “

Yně0tτ, ωun) appearing in the CDE Taylor expansion (2.19). However, this quickly becomes

tedious: involving many terms and multiplications. We thus propose an algorithmic approach

to computing these integrals that is applicable to strong and weak error analysis. This

algorithmic approach is made possible by the piecewise nature of the paths and the additive

property of the integrals. A Python implementation of the methodology presented next is

available at github.com/calum-strange/auto splitting integrals.

3.4.1 Generating all words of a given order

Before dealing with the path integrals, we first consider the generation of all words α P A
with ordpαq “ p P tk2ukPN, which we denote by Appq – see notation introduced in Section

2.4.

Lemma 3.4.1. Set ordpτq “ 1 and ordpωq “ 1{2. Then the following simple recursion

holds for p ě 1

Appq “ τApp´ 1q Y ωApp´ 0.5q ,

with Ap0.5q “ tωu and Ap0q “ tu ,

where“ tu” is the empty set, and we understand ltα1, . . . , αju :“ tlα1, . . . , lαju to denote

elementwise concatenation for l P tτ, ωu with ltu :“ tlu.

Proof. This result is proven by induction over the order of the words p P tk2ukPN.

Base case. The list of all words with order 1 is given by tτ, ωωu and we have that

Ap1q “ tτ, ωωu “ τtu Y ωtωu “ τAp0q Y ωAp0.5q .

In addition Ap1.5q “ tτω, ωτ, ωωωu, so we have

Ap1.5q “ tτω, ωτ, ωωωu “ τtωu Y ωtτ, ωωu “ τAp0.5q Y ωAp1q ,

proving the base case.

Induction step: p “ k ` 1. Assume the recursion holds for p “ k and p “ k ` 0.5. Note

that all words in Apk ` 1q must start with τ or ω, thus splitting the set based on this and

removing the first letter from each word we are left with: a set of words of order p “ k (for

the words that started with τ), and a set of words of order p “ k ` 0.5 (for those starting

with ω). These two sets are Apkq and Apk ` 0.5q respectively.

We conclude by induction.

https://github.com/calum-strange/Auto_splitting_integrals
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3.4.2 Expansion of iterated integrals

In order to calculate the integral Iγαp1q we first expand it into a finite sum of iterated

integrals over which the derivatives of γ are constant. We then use the fact that dγτ prq “

1
ri`1´ri

γτri,ri`1
dr and dγωprq “ 1

ri`1´ri
γωri,ri`1

dr for r P rri, ri`1s. These derivatives of γ

are independent of the integration and thus for each iterated integral we obtain the tensor

product of the γ derivatives multiplied by a constant coming from the integrals. The exact

form of this expansion depends on |α| (the number of integrals) and m, the number of pieces

in the path γ. For example, integrating a double integral against a three-piece path (e.g. γ

of Example 2.2.1) we first expand the integral as follows (with some abuse of notation)

ż 1

0

ż r1

0
“

ż 1

2
3

ż r1

0
`

ż 2
3

1
3

ż r1

0
`

ż 1
3

0

ż r1

0

“

ż 1

2
3

ż r1

2
3

`

ż 1

2
3

ż 2
3

1
3

`

ż 1

2
3

ż 1
3

0
`

ż 2
3

1
3

ż r1

1
3

`

ż 2
3

1
3

ż 1
3

0
`

ż 1
3

0

ż r1

0
. (3.15)

As we display in Figure 3.4, we can view (3.15) as subdividing the area of a triangle. Where

we see (corresponding sequentially to the terms in (3.15)) that (a) “ (b) “ (c) . In higher

dimensions we can imagine subdividing the volume of a simplex.

(a) (b) (c)

Fig. 3.4: Subdividing integration over a triangle.

For our algorithmic approach, we instead adopt the following perspective: In Fig 3.5 (for

a triple integral against a three piece path) we view the expansion of integrals against

piecewise linear paths as finding all non-increasing routes through a series of connected

layers. Where the layers contain nodes equal to the number of pieces in the path, and the

number of layers is equal to the number of integrals. A route passing through the ith node

(numbered bottom up) in the jth layer (numbered left to right) then represents an iterated

integral where the jth integral (outside to inside) is against the ith piece of the path. The

integrals in (3.15) would correspond to the routes in the first two layers of Figure 3.5.
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Fig. 3.5: All non-increasing routes.

002

Fig. 3.6: Specific routes.

We can encode such a route by adding an additional ‘dummy’ node (connected to each

node in the first layer and at the height of the top node) and then considering the size of

the downward movement between each layer: a drop. For example, in Fig 3.6

002 “

ż 1

2
3

ż r1

2
3

ż 1
3

0
, 010 “

ż 1

2
3

ż 2
3

1
3

ż r2

1
3

and 200 “

ż 1
3

0

ż r1

0

ż r2

0
, (3.16)

and we can label the integrals in (3.15) sequentially as 00, 01, 02, 10, 11, 20. For a given

number of pieces m P N and number of layers (integrals) l P N, we denote the set of all

such non-increasing routes by Rpm, lq.

Lemma 3.4.2. For a fixed path with m P N pieces and an integral with l P N layers, the

set of all non-increasing routes Rpm, lq can be generated by the following recursive formula

Rpm, lq “

m´1
ď

i“0

iRpm´ i, l ´ 1q with Rpm, 0q “ tu ,

where iRpm´ i, l ´ 1q denotes element wise concatenation as in Lemma 3.4.1.

Proof. This proof is an induction on l P N.

First, note that no route can go below the bottom (1st) node, and thus the drops on a

route can sum to at most m´ 1.

Base case. l “ 1. The possible routes with a single layer are to drop to any node or stay at

the top node, i.e. Rpm, 1q “ t0, 1, . . . ,m´ 1u. And, we have

Rpm, 1q “ t0, 1, . . . ,m´ 1u “

m´1
ď

i“0

itu “

m´1
ď

i“0

iRpm´ i, 0q ,

so, the base case is proven.
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Induction step. Assume that the recursion holds for l “ k. All routes in Rpm, k ` 1q start

with i P t0, 1, . . . ,m´ 1u. A drop of i places us on the pm´ iq’th node, and we can view

removing i from the start of the route as removing the first layer of nodes and setting our

’dummy’ node at height m´ i. As the route is non-increasing, the set of all possible routes

from this position is Rpm´ i, kq.

We conclude by induction.

Remark 3.4.3. We can easily obtain the constant produced by the integrals (without

evaluating them), by counting the number of consecutive flat parts in the corresponding

route. Ignoring the first number in any route, each 0 adds one to a factorial (starting at 1
2!),

and each non-zero element restarts a factorial count. For example

|1000| “ |0000| “
1

4!
and |001001000| “

1

2!

1

3!

1

4!
“

1

288
,

where for |001001000| we obtain 1
2! from the first 00, 1

3! from the 100 and 1
4! from the 1000.

Again, considering Figure 3.6 and comparing with (3.16) we have

|002| “
1

2!
, |010| “

1

2!
and |200| “

1

3!
.

3.4.3 Computing path integrals

To calculate a given iterated integral Iγα for an m-piece path γ we first proceed by calculating

Rpm, |α|q. This, in combination with the word α, tells us against which piece of the path to

evaluate the integral. We combine each route with the word as follows: matching left-to-right

on the route with right-to-left on the word. For example, for route 011 and word τωω (when

m “ 3) we visit:

i) the space component of the 3rd piece of γ,

ii) the space component of the 2nd piece, and

iii) the time component of the 1st piece.

If any visited (time or space) components are equal to zero (e.g. the space component in

the 1st and 3rd piece of the Strang splitting, and time component in the 2nd) then we call

the route a ‘zero route’ for that combination of γ and α.

Comparing all routes with the word α, we collect the non-zero routes, multiply the components

of γ along these routes and calculate the constant coming from the integral. If we consider

the Strang splitting path γ “ γS (see (5.3) below), we obtain (see (3.15) corresponding

sequentially to 00, 01, 02, 10, 11, 20)
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Iγωωp1q “ 32
ż 2

3

1
3

ż r1

1
3

dr2dr1 ˆWs,t bWs,t

“ |10| ˆWs,t bWs,t “
1

2
Wb2
s,t ,

Iγτωp1q “ |11| ˆ
1

2
hWs,t “

1

2
hWs,t ,

Iγωτ p1q “ |01| ˆ
1

2
hWs,t “

1

2
hWs,t ,

Iγττ p1q “ p|00| ` |02| ` |20|q ˆ
1

4
h2 “

1

2
h2 .

Paths with more (and more complex) pieces will result in slightly more involved computations.

For example taking the high order Strang path γ “ γHS1 (see (5.4) below) we obtain

Iγωωp1q “ |10| ˆ pWs,t{2 ´
?
3Hs,tq b pWs,t{2 ´

?
3Hs,tq

` |30| ˆ pWs,t{2 `
?
3Hs,tq b pWs,t{2 `

?
3Hs,tq

` |12| ˆ pWs,t{2 `
?
3Hs,tq b pWs,t{2 ´

?
3Hs,tq

“
1

2
Wb2
s,t ´

?
3

2
Ws,t bHs,t `

?
3

2
Hs,t bWs,t .

Expanding brackets and collecting terms in this fashion can quickly become burdensome.

In order to automate this task we may encode each derivative of γ as a list of tuples:

(‘constant’, ‘random variable’). So that Ws,t{2 ´
?
3Hs,t becomes tp12 , ‘W’q, p´

?
3, ‘H’qu.

We then understand the multiplication of two tuples

pa, ‘X’q ˆ pb, ‘Y’q “ paˆ b, ‘XY’q ,

where we append ‘Y’ to the end of string ‘X’. We multiply two lists of tuples by multiplying

each tuple in the first list by all tuples in the second and writing the resultant tuples to a

new list. This can be performed sequentially as we traverse each route. To collect like terms,

at the end of all non-zero routes we may then update a dictionary with keys given by the

‘random variable’ (e.g. ‘hhWH’ “ h2Ws,t bHs,t) adding the ‘constant’ to a running total.

In our Python implementation, this addition of constants was performed using the package

SymPy [47] and the built-in module fractions. If the time components of γ are assumed

scalar, then their multiplication may be performed separately from the space components.
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Remark 3.4.4. An alternative approach, inspired by rough paths, would be to instead

consider the signature of the splitting paths. By Chen’s identity [6, Theorem 2] the signature

of our piece-wise linear paths can be written as the tensor product of the signature of each

linear piece. This is the approach taken in the ‘signatory’ python package, which can be

found at https://github.com/patrick-kidger/signatory. Our approach, being symbolic in

nature, allows us to compare the exact form of the Brownian and path integrals.

3.5 L2 estimates of iterated path integrals

As described previously, our error analysis involves Taylor expanding both the SDE and CDE,

and then comparing the resulting terms. The Stratonovich Taylor expansion (2.14) and

the Controlled Taylor expansion (2.19) differ by involving Iαp1q and JαpVψpαqq or Iγαp1q

and JγαpVψpαqq. For the strong error analysis (the L2 difference) it is useful to have L2

estimates on the iterated path integrals Iγαp1q and JγαpVψpαqq. Under Assumption 2.3.1 and

the assumptions of Theorem 2.3.3 on the path γ we obtain the following two results.

Lemma 3.5.1. Suppose the path γ satisfies Assumption 2.3.1 and let α P A. Then

E
“

}Iγαp1q}2
‰

“ O
`

h2ordpαq
˘

.

Proof. Since γ is piecewise linear, we may split the iterated integral of γ into a finite sum

of iterated integrals as described in Section 3.4.2. This directly follows by the standard

additive property of Riemann-Stieltjes integrals. We may convert these path integrals

into regular (deterministic) integrals over these routes as dγτ prq “ 1
ri`1´ri

γτri,ri`1
dr and

dγωprq “ 1
ri`1´ri

γωri,ri`1
dr for r P rri, ri`1s. By Assumption 2.3.1, γτri,ri`1

“ Ophq is a

deterministic constant and we therefore have

E
“

}Iγαp1q}2
‰

ď Ch2|α|τ
ÿ

Rpm,|α|q

E
„

›

›

›

|α|ω
â

j“1

γω
rji ,r

j
i`1

›

›

›

2
ȷ

,

“ Ch2|α|τ
ÿ

Rpm,|α|q

E
„ d
ÿ

i1“1

. . .
d
ÿ

i|α|ω“1

`

γωr1i ,r1i`1

˘2

i1
ˆ ¨ ¨ ¨ ˆ

`

γω
r

|α|ω
i ,r

|α|ω
i`1

˘2

i|α|ω

ȷ

,

where Rpm, |α|q denotes the set of routes as defined in lemma 3.4.2. We can then estimate

the γωri,ri`1
terms by iteratively applying Hölder’s inequality to the expectation and applying

the assumption that E
“

|pγωri,ri`1
qj |

2k
‰

“ Ophkq for k P N. This implies that

E
“

}Iγαp1q}2
‰

ď Cd,m,|α|h
2ordpαq.

We now consider the Jγα terms, which will follow in much the same way as for Iγα.

https://github.com/patrick-kidger/signatory
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Lemma 3.5.2. Suppose that the assumptions of Theorem 2.3.3 hold. Let α P A and

F : Re Ñ L
`

pRdqbb,Re
˘

be a globally Lipschitz continuous map for some b P N, then

E
“

}JγαpF q}2
‰

“ O
`

h2ordpαq`1
˘

.

Proof. Just as in the previous proof, we may split the iterated integral of the piecewise

linear path γ into a finite sum of iterated integrals over the intervals where both dγτ prq “

1
ri`1´ri

γτri,ri`1
dr and dγωprq “ 1

ri`1´ri
γωri,ri`1

dr for all r P rri, ri`1s. Applying Jensen’s and

Hölder’s inequalities to the finite sum in E
“

}JγαpF q}2
‰

yields

E
“

}JγαpF q}2
‰

ď Ch2|α|τ
ÿ

Rpm,|α|q

E

«

›

›

›

›

ż

¨ ¨ ¨

ż

0ăr|α| ă¨¨¨ăr1ă1

F pyγr|α|
q ´ F pyγ0 qdr|α| ¨ ¨ ¨ dr1

›

›

›

›

4
ff

1
2

ˆ E

«

›

›

›

›

|α|ω
â

j“1

γω
rji ,r

j
i`1

›

›

›

›

4
ff

1
2

.

By applying Jensen’s inequality to the uniform distribution on rs, ts, we have that

›

›

›

›

ż t

s
zrdr

›

›

›

›

4

“ pt´ sq4
›

›

›

›

ż t

s

zr
t´ s

dr

›

›

›

›

4

ď pt´ sq4
ż t

s

}zr}
4

t´ s
dr “ pt´ sq3

ż t

s
}zr}

4 dr ,

for any continuous integrable process zr . Therefore,

E
“

}JγαpF q}2
‰

ď C1h
2|α|τ

ÿ

Rpm,|α|q

E

«

ż

¨ ¨ ¨

ż

0ăr|α| ă¨¨¨ăr1ă1

›

›F pyγr|α|
q ´ F pyγ0 q

›

›

4
dr|α| ¨ ¨ ¨ dr1

ff
1
2

ˆ E

«

›

›

›

›

|α|ω
â

j“1

γω
rji ,r

j
i`1

›

›

›

›

4
ff

1
2

.

By repeatedly applying Hölder’s inequality, we can estimate the last term as Oph|α|ωq. Since

ordpαq “ |α|τ ` 1
2 |α|ω, it follows from the global Lipschitz continuity of F that

E
“

}JγαpF q}2
‰

ď C2}F }2Lip-1h
2ordpαq

ˆ
ÿ

Rpm,|α|q

˜

ż

¨ ¨ ¨

ż

0ăr|α| ă¨¨¨ăr1ă1

E
”

›

›yγr|α|
´ yγ0

›

›

4
ı

dr|α| ¨ ¨ ¨ dr1

¸
1
2

.

By Theorem 2.3.3, we have E
“
›

›yγr|α|
´ yγ0

›

›

4‰
“ Oph2q and thus the result follows.
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3.6 Commutativity simplifies Taylor expansions

In this section we show how the commutativity condition (2.2) simplifies certain terms

in the Taylor expansions of the SDE (2.1) and CDE (2.3). In particular, for the integrals

corresponding to words α P A containing only ω’s the commutativity condition implies that

only the symmetric part of the integrals appear in the Taylor expansion. This is made clear

in Theorem 3.6.2. In the following lemma we show why this simplification occurs.

Lemma 3.6.1. Suppose that the following commutativity condition holds

g 1
ipyqgjpyq “ g 1

jpyqgipyq, @y P Re, (3.17)

for i, j P t1, ¨ ¨ ¨ , du. Then for all words α P A containing only ω’s (i.e. |α| “ |α|ω)

Vψpαq : Re Ñ LppRdqb|α|ω ,Rlq is symmetric in all but its first index. Where Vψpαq, as

defined in (2.16), are the tensors multiplying the iterated integrals in the Taylor expansion.

Proof. We will argue by induction on α.

We consider the case where ψpyq :“ y, and so the recursion (2.16) becomes

V plβqpyq “ V pβq1V plqpyq , (3.18)

where l P tτ, ωu, V pτqpyq :“ fpyq, V pωqpyq :“ gpyq and β P A . Here we have that

V pαq : Re Ñ LppRdqb|α|ω ,Req. The reader should note that the derivatives of ψ will always

be multiplying on the left hand side in Vψpαqpyq and so its inclusion would not change the

method of this proof.

Base case. α “ ω and α “ ωω. V pωqpyq “ gpyq is a 2-tensor, it is thus trivially symmetric

in its last index. For α “ ωω, we have that

V pωωqpyq “ g1pyqgpyq ,

thus (3.17) implies that pV pωωqqij “ pV pωωqqji.

Induction step: α “ ωωβ. Let β P A consist of only ω’s and assume that V pβqpyq is

symmetric in all but its first index. By recursion on (3.18) and using the product rule

V pωωβqpyq “ V pωβq1V pωqpyq

“
`

V pβq1V pωq
˘1
V pωqpyq

“ V pβq2
`

gpyq, gpyq
˘

` V pβq1g1pyqgpyq . (3.19)
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By our induction hypothesis, V pβqpyq is symmetric and, therefore, its derivatives are

symmetric in the same indices. We see that V pβq2 is symmetric and bilinear. Thus the left

term in (3.19) is symmetric in all indices but the first. And, by our commutativity assumption

(3.17), the right term is the multiplication of two symmetric tensors which is symmetric.

We conclude by induction.

This symmetry then tells us that the Taylor expansions simplify: leaving us with only the

symmetric path of the integrals for all words α containing only ω’s.

Theorem 3.6.2. Suppose that the commutativity condition (3.17) holds, then for all words

α P A containing only ω’s (i.e. |α| “ |α|ω) the following relations hold for y P Re

VψpαqpyqIαp1q “
1

|α|!
Vψpαqpyq

`

Iωp1q
˘b|α|

,

VψpαqpyqIγαp1q “
1

|α|!
Vψpαqpyq

`

Iγωp1q
˘b|α|

,

where Vψpαq is defined as in Proposition 2.4.1.

Proof. The result follows by Theorem 3.1.8 as, in Lemma 3.6.1, we have proven that V pαqpyq

is symmetric for all α containing only ω’s. For example, by the symmetric-antisymmetric

decomposition of the iterated integral Iij (3.3), we have that

V pωωqIωωp1q “

d
ÿ

i,j“1

`

V pωωq
˘

ij
Iji “

1

2

d
ÿ

i,j“1

`

V pωωq
˘

ij

`

Ij ¨ Ii ` Irj,is

˘

.

And since, by Lemma 3.6.1,
`

V pωωq
˘

ij
“
`

V pωωq
˘

ji
the antisymmetric component Irj,is “

´Iri,js will cancel out in the above sum. Thus, we see that

V pωωqIωωp1q “
1

2

d
ÿ

i,j“1

`

V pωωq
˘

ij

`

Ii ¨ Ij
˘

“
1

2
V pωωq

`

Iωp1q
˘b2

.

In a similar way, for the higher order ‘ω only’ integrals, we are left with the symmetric

component as given by Theorem 3.1.8.

Remark 3.6.3. Theorem 3.6.2 tells us that, when the commutativity condition is satisfied,

the Taylor expansions of the SDE and CDE both simplify for words α containing only

ω’s. Thus, in order to match these terms in the Taylor expansions, we require only that

Iγωp1q “ Iωp1q. This will be made explicit in Sections 4.2.1 and 4.3.1.



Chapter 4

Error analysis of path-based

splitting schemes

Now that we have Taylor expansions for both the CDE and the Stratonovich SDE, along

with a control over the size of the remainder terms in each, we can establish the strong

and weak convergence properties of path-based splitting schemes. We first obtain local

strong and weak error estimates using a direct application of Lemmas 3.5.1 and 3.5.2 before

applying the framework of Milstein and Tretyakov (recall Theorem 1.1.3), which allows us

to prove a global strong convergence rate for the approximating CDE. Similarly, we obtain

the global weak error by a telescoping sum argument.

4.1 Local estimates

Theorem 4.1.1 (Local error estimates). Suppose that the path γ : r0, 1s Ñ R1`d satisfies

Assumption 2.3.1 and for a fixed p P tk2ukPN , let f P Crp´1s

Lip pRe,Req and g P C2p´1
Lip pRe,Reˆdq.

Suppose also that the assumptions of Theorem 2.3.3 hold and the integrals Iγαp1q and Iαp1q

agree almost surely for α P A with ordpαq ď p´ 1
2 and in expectation for all α P A with

ordpαq “ p. Let Y1 denote an approximation (e.g. using an ODE solver) of the CDE solution

tyγr urPr0,1s driven by γ, such that yγ0 “ y0 and

E
“

}yγ1 ´ Y1}2
‰
1
2 “ Ophpq, and

›

›Eryγ1 s ´ ErY1s
›

› “ O
`

hp` 1
2

˘

,

where y “ tytutPr0,hs is the solution of the SDE (2.1) and h ą 0 is the step size. Then

E
“

}yh ´ Y1}2
‰
1
2 “ Ophpq , and

›

›Eryhs ´ ErY1s
›

› “ O
`

hp` 1
2

˘

.

Where we remind the reader that, due to our parametrization, yγ1 approximates yh.

Proof. We start by proving the local strong error. By the triangle inequality,

E
“

}yh ´ Y1}2
‰
1
2 ď E

“

}yh ´ yγ1 }2
‰
1
2 ` E

“

}yγ1 ´ Y1}2
‰
1
2 “ E

“

}yh ´ yγ1 }2
‰
1
2 `Ophpq,

44
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as the second term is the difference between the CDE solution and its approximation.

Recall the remainder terms Rpph, y0q and Rγpph, y0q in Propositions 2.4.1 and 2.4.2. Then,

by another two applications of the triangle inequality, it directly follows that

E
“

}yh ´ Y1}2
‰
1
2 ď E

“

}pyh ´Rpph, y0qq ´ pyγ1 ´Rγpph, y0qq}2
‰
1
2

` E
“

}Rpph, y0q}2
‰
1
2 ` E

“

}Rγpph, y0q}2
‰
1
2 `Ophpq,

where the first term is simply the difference in the Taylor expansions, up to order p, of the

SDE solution yh and the CDE solution yγ1 . Therefore, by the assumption that all integrals

of the form Iγαp1q are matched almost surely for ordpαq ď p´ 1
2 , we have

E
“

}yh ´ Y1}2
‰
1
2 ď E

“

}Rpph, y0q}2
‰
1
2 ` E

“

}Rγpph, y0q}2
‰
1
2 `Ophpq.

By Proposition 2.4.1, the SDE remainder term will satisfy E
“

}Rpph, y0q}2
‰
1
2 “ Ophp` 1

2 q.

On the other hand, Rγpph, y0q is given by (2.20) and therefore, by Lemma 3.5.2, we have

E
“

}Rγpph, y0q}2
‰
1
2 “ O

`

hp` 1
2

˘

.

This gives the desired result for the local strong error, that E
“

}yh ´ Y1}2
‰
1
2 “ Ophpq.

We now turn our attention to the local weak error. Using the triangle inequality and the

same Taylor expansions as in the proof of local strong error, it follows that

›

›Eryhs ´ ErY1s
›

› ď
›

›E
“

yh ´Rpph, y0q
‰

´ E
“

yγ1 ´Rγpph, y0q
‰
›

›

`
›

›Eryγ1 s ´ ErY1s
›

› `
›

›ErRpph, y0qs
›

› `
›

›ErRγpph, y0qs
›

›.

From our assumption, the Iγαp1q terms in the SDE and CDE Taylor expansions are matched

in expectation for ordpαq ď p and, therefore, the first term disappears. Moreover, we assume

}Eryhs ´ ErY1s} “ O
`

hp` 1
2

˘

and, by Jensen’s inequality, we have

}ErRpph, y0qs} ď E
“

}Rpph, y0q}2
‰
1
2 , and }ErRγpph, y0qs} ď E

“

}Rγpph, y0q}2
‰
1
2 .

Since the above terms were previously shown to be Ophp` 1
2 q, the result follows.

As a simple extension of the above result we have the following estimate on the local weak

error when including a test function ψ : Re Ñ Rl.
Theorem 4.1.2 (Local weak error estimate.). Suppose that the path γ : r0, 1s Ñ R1`d

satisfies Assumption 2.3.1 and for a fixed p P tk2ukPN , let f P Crp´1s

Lip pRe,Req, g P

C2p´1
Lip pRe,Reˆdq and ψ P C2p

b pRe,Rq. Suppose also that the assumptions of Theorem

2.3.3 hold and the integrals Iγαp1q and Iαp1q agree in expectation for all α P A with
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ordpαq ď p. Let Y1 denote an approximation (e.g. using an ODE solver) of the CDE solution

tyγr urPr0,1s driven by γ, such that yγ0 “ y0 and

}Erψpyγ1 qs ´ ErψpY1qs} “ O
`

hp` 1
2

˘

,

where y “ tytutPr0,hs is the solution of the SDE (2.1) and h ą 0 is the step size. Then

}Erψpyhqs ´ ErψpY1qs} “ O
`

hp` 1
2

˘

. (4.1)

4.2 Global strong error

As a consequence of the local estimates given by Theorem 4.1.1 and following the framework

of Milstein and Tretyakov (recall Theorem 1.1.3), we obtain the global strong error rate:

Theorem 4.2.1 (Global strong error estimate). Given a fixed number of steps N , we define

a numerical solution tYku0ďkďN for the SDE (2.1) over r0, T s as follows,

Yk`1 :“
`

Solution at r “ 1 of CDE (2.3) driven by γk : r0, 1s Ñ R1`d
˘`

Yk
˘

` Ek ,

where Y0 :“ y0. We assume that a suitable numerical scheme for the CDE (2.3) exists, and

denote by tEku the numerical errors (‘CDE errors’) made approximating its solution. Which

we assume, for a fixed p P tk2ukPN , uniformly satisfy

E
“

}Ek}2
‰
1
2 “ Ophpq ,

›

›ErEks
›

› “ O
`

hp` 1
2

˘

.

In addition, we assume that each path γk : r0, 1s Ñ R1`d is expressible as γk “ φ
`␣

pt,Wtq :

t P
“

kT
N , pk`1qT

N

‰(˘

for some fixed path-valued function φ. We will assume that the paths tγku

uniformly satisfy Assumption 2.3.1 and that f P Crp´1s

Lip pRe,Req and g P C2p´1
Lip pRe,Reˆdq.

Suppose also that the assumptions of Theorem 2.3.3 hold and that the integrals Iγkα p1q

and Iαp1q agree almost surely for all α P A with ordpαq ď p´ 1
2 and in expectation for all

α P A with ordpαq “ p. Then over the finite interval r0, T s, for k P t1, 2, ¨ ¨ ¨ , Nu, we have

E
“

}ykh ´ Yk}2
‰1{2

“ O
`

hp´ 1
2

˘

.

Remark 4.2.2 (Infinite time horizon). The convergence results in this paper are established

over a finite time horizon T . However, our framework could be employed to deal with

the infinite time horizon setting under suitable conditions on the SDE. For instance, if

the SDE is ergodic with an exponential contraction property then contributions of local
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errors to the global error are reduced (exponentially in time). An extension of the classical

Milstein-Tretyakov mean-square error analysis [48] to the infinite time horizon case for such

contractive SDEs is given by [41, Theorem 3.3.]. See also [12, Section 3] for similar, but

employing Multilevel Monte Carlo (MLMC).

4.2.1 Global strong error for commutative SDEs

Although Theorem 4.2.1 identifies conditions on the splitting path γ to achieve a given

strong convergence rate, it can be difficult to generate the required integrals (as discussed

in the introduction). Fortunately, as shown in Section 3.6, the commutativity condition (2.2)

leads to certain simplifications in the Taylor expansions of the Stratonovich SDE (2.1) and

its CDE approximation (2.3). As a consequence, we have the following theorem.

Theorem 4.2.3 (Global strong error estimate for commutative SDEs). Assume that the

SDE (2.1) satisfies the commutativity condition (2.2), and suppose that the assumptions of

Theorem 4.2.1 hold for p “ 2, but with the exception that each path γk is only assumed to

satisfy the following equalities:

Iγkω p1q “ Wkh,pk`1qh , Iγkτ p1q “ h ,

Iγkωτ p1q “
1

2
hWkh,pk`1qh ` hHkh,pk`1qh

and E rIγkωωτ p1qs “
1

4
h2D2

d .

And for i, j P t1, ¨ ¨ ¨ , du with i ‰ j, we have that

E
„
ż 1

0

ż r1

0

ż r2

0
d
`

γωk
˘i

pr3q dγτk pr2q d
`

γωk
˘j

pr1q

ȷ

“ 0,

E
„
ż 1

0

ż r1

0

ż r2

0
dγτk pr3q d

`

γωk
˘i

pr2q d
`

γωk
˘j

pr1q

ȷ

“ 0.

Then on the interval r0, T s, for k P t1, 2, ¨ ¨ ¨ , Nu, the numerical solution tYku satisfies

E
“

}ykh ´ Yk}2
‰1{2

“ O
`

h
3
2

˘

.
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Proof. By Theorem 3.6.2, we see that the CDE Taylor expansion can match all the ‘noise

only’ terms simply by the path γk having the increment γωk p1q ´ γωk p0q “ Wkh,pk`1qh .

Adopting the element wise notation introduced in Definition 3.1.1, we recall Theorem 3.1.6,

which gives the following decompositions of iterated integrals:

Iij “
1

2
Ii ¨ Ij `

1

2
Iri,js , (4.2)

Iijk “
1

6
Ii ¨ Ij ¨ Ik `

1

4
Ii ¨ Irj,ks `

1

4
Iri,js ¨ Ik `

1

6

`

Irri,js,ks ` Iri,rj,kssq , (4.3)

for indices i, j, k P t1, ¨ ¨ ¨ , du. However, by identifying a coordinate of the Brownian motion

with time, we see that the above would still hold when i, j, k P tτ, 1, ¨ ¨ ¨ , du. We note also

that these expansions hold for both the Stratonovich integrals I¨ and the path integrals

Iγk¨ . (In the following paragraph, the verb ‘match’ refers to when r ÞÑ pγτk , γ
ω
k qprq and

t ÞÑ pt,Wtq give the same iterated integral – either almost surely or in expectation).

Rearranging (4.2) we see that

Iτω “ Iτ ¨ Iω ´ Iωτ ,

thus, by virtue of matching Iω, Iτ and Iωτ (recall Theorem 3.3.1), γk matches Iτω .

By assumption, γk matches Iωωτ in expectation (recall (3.13)) and the lower order terms

exactly, by (4.3) and the fact that Irτ,ri,iss “ 0, we see that

E
”

Iiiτ ´ Iγkiiτ

ı

“ E
”

Iri,ri,τ ss ´ Iγk
ri,ri,τ ss

ı

“ 0 .

By the antisymmetry of r ¨, ¨s (recall ri, js “ ´rj, is), this implies that

E
”

Irri,τ s,is ´ Iγk
rri,τ s,is

ı

“ E
”

Irrτ,is,is ´ Iγk
rrτ,is,is

ı

“ E
”

Iri,rτ,iss ´ Iγk
ri,rτ,iss

ı

“ 0 . (4.4)

Consulting (4.3) and again noting that lower order terms are matched, we thus see that γ

matches the diagonals of Iωτω and Iτωω in expectation. By assumption, the off diagonals

tIiτj , Iτiju are matched in expectation and thus Iωτω and Iτωω are matched in expectation.

From the above, we see the Taylor expansions of the SDE (2.1) and CDE (2.3) coincide up

to order p “ 2, as required by Theorem 4.2.1. The result now follows.

Remark 4.2.4. In Theorem 4.2.1, we have accounted for the fact that the CDE (2.3), or

rather the resulting sequence of ODEs, may be approximated using an ODE solver. However,

obtaining the required estimates for these additional ‘CDE errors’ tEku may be non-trivial

and thus, we leave such an error analysis as a topic of future work. That said, to achieve

strong order 3{2 convergence, we expect that a single step of a second order ODE solver
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would be sufficient to discretize ODEs depending on just f and a single step of a fourth order

solver (such as RK4) to suffice for the other ODEs. The intuition is that γ has Brownian-like

scaling and so vector fields are either Ophq or O
`

h
1
2

˘

. Hence, we expect the local errors to

be Oph3q or O
`

h
5
2

˘

in these two cases.

Remark 4.2.5. When the commutativity condition (2.2) is satisfied, to achieve a global

strong convergence of Ophq the splitting path need only match the integrals

Iγωp1q “ Ws,t , Iγτ p1q “ h and ErIγωτ p1qs “ 0 .

4.3 Global weak error

Inspired by the approach in the Thesis [23], we see that the global weak error can be obtained

from the local weak error.

Given some functional ψ : Re Ñ Rl, we introduce the notation

Ptψpyq :“ Erψpytq|y0 “ ys and Qrψpyq :“ Erψpyγr q|yγ0 “ ys , (4.5)

where yt is the solution to the SDE (2.1) at time t ą 0 and yγr is the solution to the CDE

(2.3) at r P r0, 1s, both with initial value y P Rd.

Over an interval of time T “ N ˆ h, for h ą 0 and N P N, we can view our CDE

approximation of PTψpyq as an iterative application of Q. That is, starting at yγ0 “ y0,

we solve for yγ1 N times, consecutively, each time starting from the previous solution. As

pyγr qrPr0,1s approximates yt over the interval r0, hs, this process produces an approximation

for yT . We are then interested in the order of the weak error

ϵN :“
›

›PTψpyq ´Q1 . . . Q1
loooomoooon

N times

ψpyq
›

› . (4.6)

Theorem 4.3.1. Suppose that the path γ : r0, 1s Ñ R1`d satisfies Assumption 2.3.1 and

for a fixed p P tk2ukPN , let f P Crp´1s

Lip pRe,Req, g P C2p´1
Lip pRe,Reˆdq and ψ P C2p

b pRe,Rq.

Suppose also that the assumptions of Theorem 2.3.3 hold and the integrals Iγαp1q and Iαp1q

agree in expectation for all α P A with ordpαq ď p, then

ϵN “ Ophp´ 1
2 q .
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Proof. We start by writing the left hand side as a telescoping sum

›

›PTψpyq ´Q1 . . . Q1
loooomoooon

N times

ψpyq
›

› ď
›

›PhN pPT´hNψq ´Q1pPT´hNψq
›

›

`

N´1
ÿ

j“1

›

›Q1 . . . Q1
loooomoooon

N´j times

pPhj pPtj´1ψq ´Q1pPtj´1ψqq
›

› .

As Q is a markov operator and P is a semigroup, we have that [10, Theorem 13.2]

›

›Q1 . . . Q1
loooomoooon

N´j times

pPhj pPtj´1ψq ´Q1pPtj´1ψqq
›

› ď
›

›Phj pPtj´1ψq ´Q1pPtj´1ψq
›

› ,

and

›

›Q1 . . . Q1
loooomoooon

N´1 times

pPhψ ´Q1ψq
›

› ď
›

›Phψ ´Q1ψ
›

› .

Thus, we see that

ϵN ď
›

›Ph1ψpyq ´Q1ψpyq
›

› `

N
ÿ

j“2

›

›Phj pPtj´1ψpyqq ´Q1pPtj´1ψpyqq
›

› ,

which is a sum of local errors. By Theorem 4.1.2, we know that the local errors are of order

Ophp` 1
2 q. Thus we have that

ϵN “
T

h
Ophp` 1

2 q “ Ophp´ 1
2 q .

Remark 4.3.2. As for with the Strong error result, if we can discretize the CDE approximation

with enough accuracy then the discretization will converge to the true solution with the rate

of the path γ. Concretely, Let Y1 denote an approximation (e.g. using an ODE solver) of

the CDE solution tyγr urPr0,1s driven by γ, such that yγ0 “ y0 and for p ě 1
2

›

›Erψpyγ1 qs ´ ErψpY1qs
›

› “ O
`

hp` 1
2

˘

,

where h ą 0 is the step size. If γ satisfies the assumptions of Theorem 4.3.1 for the same p

and q ě p` 1
2 , then

›

›ErψpyT qs ´ ErψpYN qs
›

› “ Ophp´ 1
2 q .
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4.3.1 Global weak error for commutative SDEs

Again, as a result of Theorem 3.6.2, the commutativity condition (2.2) makes it easier to

obtain high order weak convergence. Here we present a version of Theorem 4.3.1, simplified

slightly by the commutativity condition. Unfortunately, as we do not match the term Iωωτ

in an a.s. sense, we must check the expected value for all permutations of the word ωωωτ

(see Remark 4.3.4). Given our path meets the conditions of Theorem 4.2.3 we must check

that six integrals have expectation zero in order to prove a global weak order of 2.

Theorem 4.3.3 (Global weak error estimate for commutative SDEs). Suppose that the

assumptions of Theorem 4.3.1 hold for p “ 2.5, but with the exception that each path γk

will now match only the following iterated integrals of the Brownian motion:

Iγkω p1q “ Wkh,pk`1qh , Iγkτ p1q “ h ,

Iγkωτ p1q “
1

2
hWkh,pk`1qh ` hHkh,pk`1qh ,

E rIγkωωτ p1qs “
1

4
h2D2

d , E rIγkωττ p1qs “ 0 , and ,

E rIγkτωωωp1qs “ E rIγkωτωωp1qs “ E rIγkωωτωp1qs “ E rIγkωωωτ p1qs “ 0 ,

where 0 denotes the appropriate tensor of zeros. And that the ‘off-diagonal’ terms have

expectation zero, that is (recalling the element wise notation of Definition 3.1.1) for

i, j P t1, ¨ ¨ ¨ , du with i ‰ j

E
”

Iγkiτj

ı

“ E
”

Iγkτij

ı

“ 0 .

Then on the interval r0, T s, for k P t1, 2, ¨ ¨ ¨ , Nu, the numerical solution tYku satisfies

ϵk “ O
`

h2
˘

.

Proof. As with the proof of Theorem 4.2.3, we note that matching the integrals Iτ and Iω

implies that we match all of the ‘time only’ integrals, and by Theorem 3.6.2 we match all

of the ‘noise only’ integrals. We also recall that, by Theorem 3.3.4 for a word α P A with

ordpαq “ p R N

ErIαp1qs “ 0 .
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That we match the integrals Iτω almost surely, and Iωτω and Iτωω in expectation was already

shown in the proof of Theorem 4.2.3. In a similar way as to how we obtained (4.4) in the

strong order proof, we see that matching Iωττ in expectation implies that

E
”

Irri,τ s,τ s ´ Iγk
rri,τ s,τ s

ı

“ E
”

Irrτ,is,τ s ´ Iγk
rrτ,is,τ s

ı

“ E
”

Irτ,rτ,iss ´ Iγk
rτ,rτ,iss

ı

“ 0 ,

which (again consulting the expansion (4.3)) implies that we match the integrals Iτωτ and

Iττω in expectation. The other order 2.5 terms are matched in expectation by assumption.

We thus match all terms up to order 2.5 in expectation and Theorem 4.3.1 then gives the

claimed convergence rate.

Remark 4.3.4. In Theorem 4.3.3 we must check the expected value of the integrals for all

permutations of the word ωωωτ . This is in contrast to Theorem 4.2.3 where we saw that it

was enough to check that we match a single permutation of ωωτ in expectation; This was

possible as we assumed that Iωτ p1q is matched almost surely. As we do not aim to match

the term Iωωτ p1q in an a.s. sense, this symmetry is not present in Theorem 4.3.3. Here we

demonstrate this fact: Recalling (3.5) and expanding for iiiτ , we see that

ErIiiiτ ´ Iγiiiτ s “
1

12
E
”

`

Ii ¨ Iri,ri,τ ss ´ Iγi ¨ Iγ
ri,ri,τ ss

˘

`
`

Iri,ri,ri,τ sss ´ Iγ
ri,ri,ri,τ sss

˘

(4.7)

`

´

`

Iiiτi ´ Iiiiτ ` Iτiii ´ Iiτii
˘

´
`

Iγiiτi ´ Iγiiiτ ` Iγτiii ´ Iγiτii
˘

¯ı

.

Expanding instead for τiii we find

ErIτiii ´ Iγτiiis “
1

12
E
”

`

Irrτ,is,is ¨ Ii ´ Iγ
rrτ,is,is ¨ Iγi

˘

`
`

Irrrτ,is,is,is ´ Iγ
rrrτ,is,is,is

˘

´

´

`

Iiiτi ´ Iiiiτ ` Iτiii ´ Iiτii
˘

´
`

Iγiiτi ´ Iγiiiτ ` Iγτiii ´ Iγiτii
˘

¯ı

.

Let B :“ E
“

Ii ¨ Iri,ri,τ ss ´ Iγi ¨ Iγ
ri,ri,τ ss

‰

and C denote the expected value of the remaining

two differences in (4.7). Inspecting the terms in each of the above equations we see that

ErIiiiτ ´ Iγiiiτ s “ B ` C and ErIτiii ´ Iγτiiis “ B ´ C .

It should thus be clear that, unless B “ 0 (e.g. if Iωωτ p1q “ Iγωωτ p1q), matching Iωωωτ does

not imply that we match Iτωωω. Similar arguments can be made for Iωτωω and Iωτωω.
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4.4 A brief comparison with cubature on Wiener space

As they were an inspiration for this work, it is worth briefly pausing to discuss Cubature

methods for SDEs [25, 26, 44]. Cubature methods provide weak approximations to SDEs,

where stochastic integrals are replaced with collections of deterministic points and weights.

For example, a Brownian increment Ws,t may be replaced by the points ˘
a

pt´ sq with

weights 0.5 (which we may interpret as replacing the Brownian motion with two paths

with increments ˘
a

pt´ sq). This approximation matches the first three moments of the

Brownian increment. In practice, this replaces the SDE with a number of parallel ODEs which

represent the distribution of the SDE solution. However, this approximation is only accurate

for small time steps (and small noise). This means that the scheme must be iterated, and

this takes the form of branching, which results in an exponential increase in the number of

particles required to represent the SDE’s solution (see for example Figure 1 in [26]). Thus,

in order for Cubature methods to be practical, either the number of steps must be small or

the number of particles must eventually be reduced [42]. This exponential growth limitation

is not present with splitting methods as explored in this thesis: instead we are limited by

Monte Carlo error (which is of Op1{
?
Mq for M samples).

This thesis also takes the perspective of replacing the driving Brownian path with other

paths; However, the paths we choose are still allowed to be random, and our numerical

approximations thus fall within the Monte Carlo paradigm. Moreover, Cubature is a weak

approximation scheme and the splitting schemes we focus on provide strong approximations.

Therefore, our analysis differs in this regard.

For comparison with our methodology we recall the definition of Cubature on Wiener space

[44, Definition 2.2], adopting our notation of Definition 3.1.1:

Definition 4.4.1. Let m be a natural number. The n continuous paths with initial value 0

and bounded variation

ω1, . . . , ωn P C0
0,bvpr0, ts,Rdq ,

and the positive weights λ1, . . . , λn define a cubature formula on Wiener space of degree

m at time t, if and only if, for all pi1, . . . , ikq P Am,

E rIi1,...,iks “

n
ÿ

j“1

λjI
ωj

i1,...,ik
. (4.8)
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We emphasise the involvement of the iterated integrals in (4.8) and its similarity to our

requirement that integrals are matched in expectation in Theorem 4.1.2. Indeed, much of

the approach and algebraic structure exploited in the analysis of Cubature schemes is of a

similar flavour to that employed in this thesis. We may also rewrite (4.8) as

E rIi1,...,iks “ EQt rIi1,...,iks ,

where the measure Qt is associated to the paths ω1, . . . , ωn. We point the reader to [44,

Section 3] for details, but the above should make the comparison with Theorem 4.1.2 clear.

More generally, Cubature can be viewed as replacing random variables with a collection

of random points and weights. And, with this perspective, it is worth noting that splitting

methods and Cubature can be combined. For example, in the Strang splitting (see (5.3)),

we may replace Wk with a degree 5 Cubature formula such as

"

ω1 “
?
3h, λ1 “

1

6

*

Y

"

ω2 “ ´
?
3h, λ2 “

1

6

*

Y

"

ω3 “ 0, λ3 “
2

3

*

.

A“Strang splitting + Cubature”methodology was considered in Theorem 2 of [54].



Chapter 5

Examples of path-based splitting

schemes

5.1 Piecewise linear splitting paths

In this section, we present a variety of piecewise linear paths which fall into the proposed

framework for developing SDE splitting methods (Theorem 4.2.1). These ‘splitting paths’

correspond to both well-known numerical methods (such as Lie-Trotter and Strang splitting)

as well as the new high order splitting methods, which can exploit the optimal integral

estimators that are derived in Section 5.3. Furthermore, we illustrate both the Strang and

high order splitting paths in Figure 5.1. Throughout, we use the notation in Example 2.2.1

and define paths by their increments.

Example 5.1.1 (Lie-Trotter). A Lie-Trotter splitting can be defined by one of two possible

two-piece paths γLT1, γLT2 : r0, 1s Ñ R1`d given by γLT pzq “ pγτ , γωqpzq with

γLT1ri,ri`1
:“

$

’

&

’

%

ph, 0q, if i “ 0

p0,Ws,tq, if i “ 1,

(5.1)

γLT2ri,ri`1
:“

$

’

&

’

%

p0,Ws,tq , if i “ 0

ph, 0q , if i “ 1.

(5.2)

Example 5.1.2 (Strang splitting). The Strang splitting, see Figure 5.1, can be defined as a

three-piece path γS : r0, 1s Ñ R1`d given by γSpzq “ pγτ , γωqpzq with the pieces:

γSri,ri`1
:“

$

’

’

’

’

’

&

’

’

’

’

’

%

`

1
2h, 0

˘

, if i “ 0

p0,Ws,tq, if i “ 1

`

1
2h, 0

˘

, if i “ 2.

(5.3)

55
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We now proceed to ‘higher order’ piecewise linear paths that are constructed to match the

increment Ws,t and space-time Lévy area Hs,t of the Brownian motion. For these paths to

match higher order iterated integrals in expectation (for example, to achieve 3/2 strong

convergence), then we necessarily require at least three pieces. The inability of paths with

two pieces to match the conditions (2.6) and (2.7) required for high order strong convergence

was explicitly shown in [14, p97 and Appendix A]. We begin by presenting paths (5.4) and

(5.5), which each have a total of five pieces (vertical and horizontal), and can thus be seen

as extensions of the Strang splitting.

Example 5.1.3 (High order Strang splitting (linear version)). A high order Strang splitting,

see Figure 5.1, can be defined using a five-piece path γHS1 : r0, 1s Ñ R1`d, which is linear

in the Brownian motion and has the pieces:

γHS1ri,ri`1
:“

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

`

3´
?
3

6 h, 0
˘

, if i “ 0

`

0, 12Ws,t `
?
3Hs,t

˘

, if i “ 1

`

?
3
3 h, 0

˘

, if i “ 2

`

0, 12Ws,t ´
?
3Hs,t

˘

, if i “ 3

`

3´
?
3

6 h, 0
˘

, if i “ 4.

(5.4)

Example 5.1.4 (High order Strang splitting (non-linear version)). A high order Strang

splitting, see Figure 5.1, can be defined as a five-piece path γHS2 : r0, 1s Ñ R1`d, which is

based on an optimal estimator for a certain Brownian integral and has pieces:

γHS2ri,ri`1
:“

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

`

0, 12Ws,t `Hs,t ´ 1
2Cs,t

˘

, if i “ 0

`

1
2h, 0

˘

, if i “ 1

`

0, Cs,t
˘

, if i “ 2

`

1
2h, 0

˘

, if i “ 3

`

0, 12Ws,t ´Hs,t ´ 1
2Cs,t

˘

, if i “ 4.

(5.5)

where the random vector Cs,t is defined component-wise by

Cjs,t :“ ϵjs,t

ˆ

1

3

`

W j
s,t

˘2
`

4

5

`

Hj
s,t

˘2
`

4

15
h´

1
?
6π
h

1
2njs,tW

j
s,t

˙
1
2

, (5.6)

ϵjs,t :“ sgn

ˆ

W j
s,t ´

3
?
24π

h
1
2njs,t

˙

, (5.7)

where njs,t :“ sgn
`

Hj

s,s` 1
2
h

´Hj

s` 1
2
h,t

˘

are independent Rademacher random variables.
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Remark 5.1.5. The formula for Cs,t is derived such that
ş1
0

``

γωr
˘j

´
`

γω0
˘j ˘2

dγτr matches

the optimal estimator E
“ şt
s

`

W j
s,u

˘2
du

ˇ

ˇWs,t , Hs,t , ns,t
‰

(see Theorem 5.3.3).

For paths with three pieces, two of which are vertical and only relate to diffusion vector

field, we refer to the resulting approximation as the ‘Shifted ODE’ approach. We use this

terminology as, in the additive noise setting, the vertical pieces correspond to additive shifts

for the numerical solution and so there is only one non-trivial ODE. As before, paths can be

linear or non-linear functions of the input random variables.

Example 5.1.6 (Shifted ODE splitting (high order and linear)). We can define a high order

splitting by a three-piece path γSO1 : r0, 1s Ñ R1`d with the following pieces:

γSO1
ri,ri`1

:“

$

’

’

’

’

&

’

’

’

’

%

`

0, Hs,t ` 1
2

?
hns,t

˘

, if i “ 0

`

h,Ws,t ´
?
hns,t

˘

, if i “ 1

`

0,´Hs,t ` 1
2

?
hns,t

˘

, if i “ 2.

(5.8)

Example 5.1.7 (Shifted ODE splitting (high order and non-linear)). We can define a high

order splitting, see Figure 5.1, using a three-piece path γSO2 : r0, 1s Ñ R1`d, which is based

on an optimal estimator for a certain Brownian integral and has pieces:

γSO2
ri,ri`1

:“

$

’

’

’

’

&

’

’

’

’

%

`

0, 12Ws,t `Hs,t ´ 1
2Cs,t

˘

, if i “ 0

`

h,Cs,t
˘

, if i “ 1

`

0, 12Ws,t ´Hs,t ´ 1
2Cs,t

˘

, if i “ 2.

(5.9)

where the random vector Cs,t is defined component-wise by

Cjs,t :“ ϵjs,t

ˆ

`

W j
s,t

˘2
`

12

5

`

Hj
s,t

˘2
`

4

5
h´

3
?
6π
h

1
2njs,tW

j
s,t

˙
1
2

,

ϵjs,t :“ sgn

ˆ

W j
s,t ´

3
?
24π

h
1
2njs,t

˙

,

where njs,t :“ sgn
`

Hj

s,s` 1
2
h

´Hj

s` 1
2
h,t

˘

are independent Rademacher random variables.

Remark 5.1.8. Just like Example 5.1.4, Cs,t is derived so that
ş1
0

``

γωr
˘j

´
`

γω0
˘j ˘2

dγτr

matches the optimal estimator E
“ şt
s

`

W j
s,u

˘2
du

ˇ

ˇWs,t , Hs,t , ns,t
‰

(see Theorem 5.3.3).

The following paths do not generally result in high order approximations for SDEs satisfying

the commutativity condition (2.2). However, the piecewise linear path given by (5.10) results

in the ‘Shifted Euler’ method for SDEs with additive noise, which we demonstrate can

outperform the standard Euler-Maruyama method in [19, Section 5.2].



5.1. Piecewise linear splitting paths 58

Example 5.1.9 (Shifted ODE splitting (low order; suitable for Euler’s method)). We can

define a low order splitting by a three-piece path γSO3 : r0, 1s Ñ R1`d with

γSO3
ri,ri`1

:“

$

’

’

’

’

’

&

’

’

’

’

’

%

`

0, 12Ws,t `Hs,t

˘

, if i “ 0

`

h, 0
˘

, if i “ 1

`

0, 12Ws,t ´Hs,t

˘

, if i “ 2.

(5.10)

The path (5.11) is also not usually high order, but gives a third order approximation when

applied to underdamped Langevin dynamics (see [18] for details).

Example 5.1.10 (Shifted ODE splitting for the underdamped Langevin diffusion [18]). We

can define a splitting by a three-piece path γSO4 : r0, 1s Ñ R1`d with pieces:

γSO4
ri,ri`1

:“

$

’

’

’

’

’

&

’

’

’

’

’

%

`

0, Hs,t ` 6Ks,t

˘

, if i “ 0

`

h,Ws,t ´ 12Ks,t

˘

, if i “ 1

`

0,´Hs,t ` 6Ks,t

˘

, if i “ 2.

(5.11)

where Ks,t „ N
`

0, 1
720h1d

˘

(defined in Definition 3.2.6) is independent of
`

Ws,t , Hs,t

˘

.
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Fig. 5.1: Illustration of piecewise linear paths associated with various splitting methods for SDEs.
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5.2 Theoretical convergence rates

We present here the application of the error analysis developed in Chapter 4 to the piecewise

linear paths proposed in Section 5.1. We start by showing how our analysis applies to the

Strang splitting path, recovering the expected error rates. We then consider the paths

proposed in this thesis. For the sake of brevity, we will only explicit the results for our paths

γHS1 (5.4) and γSO2 (5.9). From the working for these two paths it should be clear how to

go about checking the terms for the remaining paths. The theoretical error rates for all the

proposed paths can be found in Table 5.1 and a comparison with the conditions of Theorem

4.2.3 (global strong error for SDEs under the commutativity condition (2.2)) in Table 5.2.

Strong error Weak error
Commutative Non-Commutative Commutative Non-Commutative

γLT1 Ophq Oph
1
2 q Ophq Ophq

γLT2 Ophq Oph
1
2 q Ophq Ophq

γS Ophq Oph
1
2 q Oph2q Ophq

γHS1 Oph
3
2 q Oph

1
2 q Oph2q Ophq

γHS2 Oph
3
2 q Oph

1
2 q Oph2q Ophq

γSO1 Oph
3
2 q Oph

1
2 q Oph2q Ophq

γSO2 Oph
3
2 q Oph

1
2 q Oph2q Ophq

γSO3 Ophq Oph
1
2 q Ophq Ophq

γSO4 Ophq Oph
1
2 q Ophq Ophq

Table 5.1: Theoretical convergence rates of splitting paths. Without the commutativity condition
the higher order schemes fail to match the word ωω a.s. and the word ωωωω in expectation. Strang
splitting is a high order weak scheme as it matches the integral ωωτ in expectation, which both SO3
and SO4 fail to do. However, while the paths SO3 and SO4 only obtain a global strong error of
Ophq, we note that they have a local strong error of Oph2q compared with a local strong error of
Oph1.5q for the Strang splitting (see Table 5.2). Green text marks high order convergence.

5.2.1 Strang splitting path

As a first example, we apply our analysis to the Strang splitting path (5.3). We show that

our analysis recovers the expected global strong convergence rates of Ophq for commutative

SDEs and Oph
1
2 q for non-commutative SDEs, and the expected global weak convergence

rates of Oph2q for commutative SDEs and Ophq for non-commutative SDEs (see e.g. [13]

and [4]). As our methodology describes, to obtain the error rates we calculate the iterated

integrals for the Strang splitting path. We emphasise that applying the implemented algorithm

of Section 3.4 automatically returns the final results of these calculations, but we will present

here some intermediary steps for clarity. Proceeding as described in Section 3.4 and taking
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γ “ γS (5.4), we obtain

ISω p1q “ 3

ż 2
3

1
3

dr ˆWs,t “ Ws,t and ISτ p1q “ 3

ż 1

2
3

dr ˆ
h

2
` 3

ż 1
3

0
dr ˆ

h

2
“ h .

The Strang splitting matches Iωp1q, and thus, by Theorem 3.6.2, for commutative SDEs it

matches all Iαp1q with ‘ω only’ words α. In general, we see that

ISωωp1q “ 32
ż 2

3

1
3

ż r1

1
3

dr2dr1 ˆWs,t bWs,t “
1

2
Wb2
s,t and E

”

ISωωp1q

ı

“
1

2
hD2

d ,

so, the Strang spitting does not match Iωωp1q “ 1
2W

b2
s,t `As,t (3.3) (which is expected as

we do not include As,t), but it does match the integral in expectation. Now, checking the

Oph1.5q terms, we have that

ISωτ p1q “ 32
ż 2

3

1
3

ż 1
3

0
dr2dr1 ˆWs,t ˆ

h

2
“ |11| ˆ

1

2
hWs,t “

1

2
hWs,t ,

which (comparing with (3.6)) does not match the required value of Iωτ p1q “ 1
2hWs,t`hHs,t.

Thus, we see that the Strang splitting has a local strong error of Oph1.5q for SDEs satisfying

the commutativity condition, and a local strong error of Ophq in general.

Local weak error

As the splitting matches Iτ p1q, it matches all integrals Iαp1q for ‘τ only’ words α. We thus

only need to check the local weak error for words containing at least one ω. In fact, as the

Strang path is constructed from Ws,t „ N p0, h1dq all integrals containing and odd number

of ω’s have expectation zero. We thus check the Oph2q terms

ISωωτ p1q “ 33
ż 1

2
3

ż 2
3

1
3

ż r2

1
3

dr3dr2dr1 ˆWs,t bWs,t ˆ
1

2
h “ |010| ˆ

1

2
hWb2

s,t “
1

4
hWb2

s,t ,

ISωτωp1q “ 0 and ISτωωp1q “ |101| ˆ
1

2
hWb2

s,t “
1

4
hWb2

s,t ,

which, comparing with Theorem 3.3.4, all have the correct expected values. We now come

to the term which causes issues for the weak error of the Strang splitting (and all other

splittings we present) when commutativity is not assumed. For the Strang splitting, we have

ISωωωωp1q “ |1000| ˆWb4 “
1

12
Wb4 ,
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and (as E
“

pW i
s,tq

4
‰

“ 3h2 and E
“

pW i
s,tq

2
‰

“ h) we see that

E
”

`

ISωωωωp1q
˘

iiii

ı

“
1

4
h2 and E

”

`

ISωωωωp1q
˘

iijj

ı

“
1

12
h2 ,

for i, j P t1, . . . , du with i ‰ j. For similar reasons the Strang splitting fails to match the

integral ωωωωτ . Thus we see that the Strang splitting achieves a local weak error of Oph3q

when the commutativity condition is satisfied, and Oph2q in general. By Theorems 4.2.1

and 4.3.1, these local weak and strong error rates imply the global error rates of Table 5.1.

5.2.2 HS1 path

Strong error for HS1 path

For comparison with Theorem 4.2.3 we must calculate the integrals with words ω, τ, ωτ

and ωωτ . Proceeding as described in Section 3.4 and taking γ “ γHS1 (5.4), we obtain

IHS1ω p1q “ 5

ż 4
5

3
5

dr ˆ

ˆ

1

2
Ws,t ´

?
3Hs,t

˙

` 5

ż 2
5

1
5

dr ˆ

ˆ

1

2
Ws,t `

?
3Hs,t

˙

“ |1| ˆ

ˆ

1

2
Ws,t ´

?
3Hs,t

˙

` |3| ˆ

ˆ

1

2
Ws,t `

?
3Hs,t

˙

“ Ws,t ,

where we recalled Remark 3.4.3 to calculate |1| “ |3| “ 1, and (now omitting the first step)

IHS1τ p1q “ |0| ˆ
3 ´

?
3

6
h` |2| ˆ

?
3

3
h` |4| ˆ

3 ´
?
3

6
h “ h .

After this level the benefit of the algorithm should become clear. Likewise we see that,

IHS1ωτ p1q “ |01| ˆ

ˆ

1

2
Ws,t ´

?
3Hs,t

˙

ˆ
3 ´

?
3

6
h

` |03| ˆ

ˆ

1

2
Ws,t `

?
3Hs,t

˙

ˆ
3 ´

?
3

6
h

` |21| ˆ

ˆ

1

2
Ws,t `

?
3Hs,t

˙

ˆ

?
3

3
h

“
1

2
hWs,t ` hHs,t ,



5.2. Theoretical convergence rates 62

and, leaving the most involved calculation to last,

IHS1ωωτ p1q “ |010| ˆ

ˆ

1

2
Ws,t ´

?
3Hs,t

˙

b

ˆ

1

2
Ws,t ´

?
3Hs,t

˙

ˆ
3 ´

?
3

6
h

` |012| ˆ

ˆ

1

2
Ws,t ´

?
3Hs,t

˙

b

ˆ

1

2
Ws,t `

?
3Hs,t

˙

ˆ
3 ´

?
3

6
h

` |030| ˆ

ˆ

1

2
Ws,t `

?
3Hs,t

˙

b

ˆ

1

2
Ws,t `

?
3Hs,t

˙

ˆ
3 ´

?
3

6
h

` |210| ˆ

ˆ

1

2
Ws,t `

?
3Hs,t

˙

b

ˆ

1

2
Ws,t `

?
3Hs,t

˙

ˆ

?
3

3
h

“
6 ´

?
3

24
hWb2

s,t `
3 ´ 2

?
3

4
hWs,t bHs,t `

?
3

4
hHs,t bWs,t `

?
3

2
hHb2

s,t .

As Ws,t „ N
`

0, h1d
˘

and Hs,t „ N
`

0, 1
12h1d

˘

are independent, we easily see that

ErIHS1ωωτ p1qs “

ˆ

6 ´
?
3

24
`

?
3

12 ˆ 2

˙

h2D2
d “

1

4
h2D2

d . (5.12)

It can also be reasoned from the independence of Ws,t and Hs,t, and the construction of

the path that the off-diagonal terms will have expectation zero. Alternatively, we can check

explicitly as follows

IHS1τωω p1q “
6 ´

?
3

24
hWb2

s,t ´

?
3

4
hWs,t bHs,t `

?
3 ´ 2

4
hHs,t bWs,t `

?
3

2
hHb2

s,t ,

IHS1ωτω p1q “

?
3

12
hWb2

s,t ´
1

2
hWs,t bHs,t `

1

2
hHs,t bWs,t ´

?
3hHb2

s,t ,

clearly these terms have zero expectation off the diagonal. And, comparing with Theorem

3.3.4 we obtain the correct expected value (as predicted by Theorem 4.2.3 and (5.12)).

Therefore by Theorem 4.2.3, the HS1 splitting path obtains a theoretical global strong

convergence rate of Oph
3
2 q for SDEs satisfying the commutativity condition (2.2).

Weak error for HS1 path

From the above strong error analysis, we can see that the path γHS1 already satisfies the

first three condition of Theorem 4.3.3, and clearly E
“

IHS1ωτ p1q
‰

“ E
“

IHS1τω p1q
‰

“ 0. Thus all

we require to obtain global weak order 2 is that

E
”

IHS1α p1q

ı

“ 0 ,
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for all words α with ordpαq “ 2.5 . We note that a word α with ordpαq “ 2.5 must

contain an odd number of ω. That is |α|ω P t1, 3, 5u, and, since γHS1 is constructed from

Ws,t „ N p0, h1dq and Hs,t „ N p0, 1
12h1dq which are independent, it is easy to conclude

that every component in the expansion of IHS1α will thus have expectation zero. We make

this conclusion by observing that each term in this expansion must contain an odd number

of either Ws,t or Hs,t. Therefore, the path γHS1 achieves a global weak error rate of 2, for

SDEs satisfying the commutativity condition (2.2).

Remark 5.2.1. Extending this analysis to terms of Oph3q we would see that the path fails to

match the expected value of all the terms, and thus the path does not (in general) achieve a

weak order of 3. In particular, the path γHS1 fails to match the integrals with words ωωωωτ ,

ωωωτω, ωωτωω, ωτωωω and τωωωω in expectation.

5.2.3 SO2 path

Strong error for SO2 path

Firstly, recall that the path SO2 involves the r.v. Cs,t defined component-wise by

Cjs,t :“ ϵjs,t

ˆ

`

W j
s,t

˘2
`

12

5

`

Hj
s,t

˘2
`

4

5
h´

3
?
6π
h

1
2njs,tW

j
s,t

˙
1
2

, (5.13)

ϵjs,t :“ sgn

ˆ

W j
s,t ´

3
?
24π

h
1
2njs,t

˙

,

where njs,t :“ sgn
`

Hj

s,s` 1
2
h

´ Hj

s` 1
2
h,t

˘

are independent Rademacher random variables.

Observe that by flipping the sign of Ws,t we in turn flip the sign of ns,t and thus also the sign

of ϵs,t. As Ws,t and ´Ws,t have the same distribution, we thus find that ErCjs,ts “ ´ErCjs,ts.

This then implies that

ErCjs,ts “ 0 . (5.14)

Now we will calculate the required terms for comparison with Theorem 4.2.3. In particular,

the integrals corresponding to the words ω, τ, ωτ and ωωτ . Taking γ “ γSO2 (5.9) we have

ISO2
ω p1q “ |0| ˆ

ˆ

1

2
Ws,t ´Hs,t ´

1

2
Cs,t

˙

` |1| ˆ Cs,t ` |2| ˆ

ˆ

1

2
Ws,t `Hs,t ´

1

2
Cs,t

˙

“ Ws,t ,

IS02τ p1q “ |1| ˆ h “ h ,
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ISO2
ωτ “ |10| ˆ Cs,t ˆ h` |11| ˆ

ˆ

1

2
Ws,t `Hs,t ´

1

2
Cs,t

˙

ˆ h

“
1

2
Ws,t `Hs,t ,

recalling that |10| “ 1
2 . And we find that

ISO2
ωωτ p1q “ |100| ˆ Cs,t b Cs,t ˆ h

` |101| ˆ

ˆ

1

2
Ws,t `Hs,t ´

1

2
Cs,t

˙

b Cs,t ˆ h

` |110| ˆ

ˆ

1

2
Ws,t `Hs,t ´

1

2
Cs,t

˙

b

ˆ

1

2
Ws,t `Hs,t ´

1

2
Cs,t

˙

ˆ h

“
1

8
hWb2

s,t `
1

2
hHb2

s,t `
1

24
hCb2

s,t `
1

4
h
´

Ws,t bHs,t `Hs,t bWs,t

¯

`
1

8
h
´

Ws,t b Cs,t ´ Cs,t bWs,t

¯

`
1

4
h
´

Hs,t b Cs,t ´ Cs,t bHs,t

¯

. (5.15)

As shown in (5.14) ErCj
s,ts “ 0. Thus, consulting the definition of Cs,t (5.13), it is clear

from (5.15) that off the diagonal every term is the multiplication of two independent terms

with expectation zero. Hence, for i, j P r1, . . . , ds with i ‰ j

E
”

`

ISO2
ωωτ

˘

ij

ı

“ 0 .

On the diagonal, the last two grouped terms in (5.15) cancel out and by the independence

of Ws,t and Hs,t we see that

E
”

`

ISO2
ωωτ

˘

ii

ı

“ E

«

1

8
hpW i

s,tq
2 `

1

2
hpH i

s,tq
2

`
1

24
h

ˆ

`

W i
s,t

˘2
`

12

5

`

H i
s,t

˘2
`

4

5
h´

3
?
6π
h

1
2nis,tW

i
s,t

˙

ff

“ h2
ˆ

1

8
`

1

24
`

1

24
`

1

120
`

1

30

˙

“
1

4
h2

where we used that ns,t and Ws,t are independent (see Lemma 3.2.10). It is also clear from

(5.15) and from the independence of the terms that off the diagonal the expected value

will be zero. It is also obvious that off the diagonal will have expectation zero for ISO2
ωτω and

ISO2
τωω .
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Weak error for SO2 path

The weak error for the SO2 path is slightly more involved than for the HS1 path: as here

we cannot simply appeal to the independence of Ws,t and Hs,t. We must thus check the

conditions of Theorem 4.3.3 more carefully. In this section, we will skip straight to the

integral calculations obtained by applying the algorithm of Section 3.4. Taking γ “ γS02 we

have that

ISO2
ωττ p1q “

1

4
h2Ws,t `

1

2
h2Hs,t ´

1

12
h2Cs,t ,

and, as noted in (5.14), Ws,t, Hs,t and Cs,t all have expectation zero. Thus we see that

ErISO2
ωττ p1qs “ 0. And, now onto the terms involving more ω’s. Which are more involved:

ISO2
τωωω “

1

48
hWb3

s,t ´
1

6
Hb3
s,t (5.16)

`
1

12
h
`

Hb2
s,t bWs,t `Hs,t bWs,t bHs,t `Ws,t bHb2

s,t

˘

(5.17)

´
1

24
h
`

Hs,t bWb2
s,t `Ws,t bHs,t bWs,t `Wb2

s,t bHs,t

˘

(5.18)

`
1

48
h
`

2Cs,t bWb2
s,t ´Ws,t b Cs,t bWs,t ´Wb2

s,t b Cs,t
˘

(5.19)

`
1

12
h
`

2Cs,t bHb2
s,t ´Hs,t b Cs,t bHs,t ´Hb2

s,t b Cs,t
˘

(5.20)

`
1

24
h
`

Cb2
s,t bWs,t ´ Cs,t bWs,t b Cs,t `

1

2
Ws,t b Cb2

s,t

˘

(5.21)

´
1

12
h
`

Cb2
s,t bHs,t ´ Cs,t bHs,t b Cs,t `

1

2
Hs,t b Cb2

s,t

˘

(5.22)

`
1

24
h
´

Hs,t b Cs,t bWs,t `Hs,t bWs,t b Cs,t `Ws,t b Cs,t bHs,t (5.23)

`Ws,t bHs,t b Cs,t ´ 2Cs,t bWs,t bHs,t ´ 2Cs,t bHs,t bWs,t

¯

,

lines (5.16), (5.17) and (5.18) have expectation zero as Ws,t „ N p0, hq and Hs,t „

N p0, h{12q are independent. For the other lines ‘off the diagonal’ we have expectation zero

by independence and as ErCj
s,ts “ 0. For lines (5.19), (5.20) and (5.23) ‘on the diagonal’

we have zero a.s. as terms cancel out. For lines (5.21) and (5.22) ‘on the diagonal’ note that

W i
s,tpC

i
s,tq

2 “ W i
s,t ˆ

ˆ

`

W i
s,t

˘2
`

12

5

`

H i
s,t

˘2
`

4

5
h´

3
?
6π
h

1
2nis,tW

i
s,t

˙

,

which has expectation zero as nis,t and W
i
s,t are independent and Erns,ts “ 0, and similarly

we observe that ErH i
s,tpC

i
s,tq

2s “ 0. Thus we see that (5.21) and (5.22) have expectation

zero, and so

E
“

ISO2
τωωωp1q

‰

“ 0 .
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The same reasoning can be used to show that

E
“

ISO2
ωτωωp1q

‰

“ E
“

ISO2
ωωτωp1q

‰

“ E
“

ISO2
ωωωτ p1q

‰

“ 0 ,

where ISO2
ωτωωp1q, ISO2

ωωτωp1q and ISO2
ωωωτ p1q are given as follows:

ISO2
ωτωω “

1

16
hWb3

s,t `
1

2
Hb3
s,t

`
1

4
h
`

Ws,t bHb2
s,t `Hs,t bWs,t bHs,t ´Hb2

s,t bWs,t

˘

`
1

8
h
`

Hs,t bWb2
s,t ´Ws,t bHs,t bWs,t ´Wb2

s,t bHs,t

˘

`
1

48
h
`

Ws,t b Cb2
s,t ´ 2Cb2

s,t bWs,t

˘

`
1

24
h
`

Hs,t b Cb2
s,t ` 2Cb2

s,t bHs,t

˘

`
1

16
h
`

Ws,t b Cs,t bWs,t ´Wb2
s,t b Cs,t

˘

`
1

4
h
`

Hb2
s,t b Cs,t ´Hs,t b Cs,t bHs,t

˘

`
1

8
h
´

Hs,t b Cs,t bWs,t `Ws,t bHs,t b Cs,t

´Ws,t b Cs,t bHs,t ´Hs,t bWs,t b Cs,t

¯

,

ISO2
ωωτω “

1

16
hWb3

s,t ´
1

2
Hb3
s,t

`
1

4
h
`

Hb2
s,t bWs,t ´Hs,t bWs,t bHs,t ´Ws,t bHb2

s,t

˘

`
1

8
h
`

Hs,t bWb2
s,t `Ws,t bHs,t bWs,t ´Wb2

s,t bHs,t

˘

`
1

48
h
`

Cb2
s,t bWs,t ´ 2Ws,t b Cb2

s,t

˘

´
1

24
h
`

2Hs,t b Cb2
s,t ` Cb2

s,t bHs,t

˘

`
1

16
h
`

Ws,t b Cs,t bWs,t ´ Cs,t bWb2
s,t

˘

`
1

4
h
`

Cs,t bHb2
s,t ´Hs,t b Cs,t bHs,t

˘

`
1

8
h
´

Hs,t b Cs,t bWs,t ` Cs,t bWs,t bHs,t

´Ws,t b Cs,t bHs,t ´ Cs,t bHs,t bWs,t

¯

,
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ISO2
ωωωτ “

1

48
hWb3

s,t `
1

6
Hb3
s,t

`
1

12
h
`

Hb2
s,t bWs,t `Hs,t bWs,t bHs,t `Ws,t bHb2

s,t

˘

`
1

24
h
`

Hs,t bWb2
s,t `Ws,t bHs,t bWs,t `Wb2

s,t bHs,t

˘

`
1

24
h
`

Ws,t b Cb2
s,t ´ Cs,t bWs,t b Cs,t `

1

2
Cb2
s,t bWs,t

˘

`
1

12
h
`

Hs,t b Cb2
s,t ´ Cs,t bHs,t b Cs,t `

1

2
Cb2
s,t bHs,t

˘

`
1

48
h
`

2Wb2
s,t b Cs,t ´Ws,t b Cs,t bWs,t ´ Cs,t bWb2

s,t

˘

`
1

12
h
`

2Hb2
s,t b Cs,t ´Hs,t b Cs,t bHs,t ´ Cs,t bHb2

s,t

˘

`
1

24
h
´

2Ws,t bHs,t b Cs,t ` 2Hs,t bWs,t b Cs,t ´Ws,t b Cs,t bHs,t

´Hs,t b Cs,t bWs,t ´ Cs,t bWs,t bHs,t ´ Cs,t bHs,t bWs,t

¯

.

By Theorem 4.3.3, we thus conclude that the path γSO2 achieves a global weak rate of

convergence of Oph2q for SDEs satifying the commutativity condition (2.2).
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α “ ω τ ωτ ωωτ

γLT1
Iαp1q Ws,t h 0 0

ErIαp1qs 0 h 0 0

γLT2
Iαp1q Ws,t h hWs,t

1
2hW

b2
s,t

ErIαp1qs 0 h 0 1
2h

2D2
d

γS
Iαp1q Ws,t h 1

2hWs,t
1
4hW

b2
s,t

ErIαp1qs 0 h 0 1
4h

2D2
d

γHS1
Iαp1q Ws,t h 1

2hWs,t ` hHs,t

6´
?
3

24 hWb2
s,t ` 3´2

?
3

4 hWs,t bHs,t

`
?
3
4 hHs,t bWs,t `

?
3
2 hH

b2
s,t

ErIαp1qs 0 h 0 1
4h

2D2
d

γHS2
Iαp1q Ws,t h 1

2hWs,t ` hHs,t

1
8hW

b2
s,t ` 1

2hH
b2
s,t ` 1

8hC
b2
s,t

`1
4hpWs,t bHs,t `Hs,t bWs,tq

`1
8hpWs,t b Cs,t ´ Cs,t bWs,tq

`1
4hpHs,t b Cs,t ´ Cs,t bHs,tq

ErIαp1qs 0 h 0 1
4h

2D2
d

γSO1 Iαp1q Ws,t h 1
2hWs,t ` hHs,t

1
6hW

b2
s,t ` 1

2hH
b2
s,t ` 1

24h
2nb2

s,t

` 1
12h

3{2pns,t bWs,t ´ 2Ws,t b ns,tq

`1
4h

3{2pns,t bHs,t ´Hs,t b ns,tq
`1

2hHs,t bWs,t

ErIαp1qs 0 h 0 1
4h

2D2
d

γSO2 Iαp1q Ws,t h 1
2hWs,t ` hHs,t

1
8hW

b2
s,t ` 1

2hH
b2
s,t ` 1

24hC
b2
s,t

`1
4hpWs,t bHs,t `Hs,t bWs,tq

`1
8hpWs,t b Cs,t ´ Cs,t bWs,tq

`1
4hpHs,t b Cs,t ´ Cs,t bHs,tq

ErIαp1qs 0 h 0 1
4h

2D2
d

γSO3 Iαp1q Ws,t h 1
2hWs,t ` hHs,t

1
8hW

b2
s,t ` 1

2hH
b2
s,t

`1
4hpWs,t bHs,t `Hs,t bWs,tq

ErIαp1qs 0 h 0 1
6h

2D2
d

γSO4 Iαp1q Ws,t h 1
2hWs,t ` hHs,t

1
6hW

b2
s,t ` 1

2hH
b2
s,t ` 6hKb2

s,t

`hpKs,t bWs,t ´ 2Ws,t bKs,tq

`3hpKs,t bHs,t ´Hs,t bKs,tq

`1
2hHs,t bWs,t

ErIαp1qs 0 h 0 13
60h

2D2
d

Table 5.2: Checking the conditions of Theorem 4.2.3 for example paths. Highlighted in red are
where the paths fail to satisfy the conditions in the theorem. D2

d, as defined in (3.14), represents the
dˆ d identity matrix.
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5.3 Derivation and optimality of splittings

Declaration of authorship The following section should be credited to Dr. James Foster1.

We include it here for completeness.

In this section, we derive estimators for certain iterated stochastic integrals using a polynomial

expansion of Brownian motion [17]. We use this expansion since its first two coefficients

give the path’s increment and space-time Lévy area (Definition 3.2.2). Just as in [17], the

integral that we would primarily like to approximate is the so-called ‘space-space-time’ Lévy

area, which we defined above (Definition 3.2.4). We note that a preliminary version of the

results in this section were first presented in the doctoral thesis [14].

The key difference between the integral estimators defined in this section and those derived

in [17], is that we shall additionally make use of the ‘space-time Lévy swing’ (Definition

3.2.3). Similar to [17], we propose approximating Ls,t using its conditional expectation. That

is, we would like to derive a closed-form expression for E
“

Ls,t |Ws,t , Hs,t , ns,t
‰

. In addition,

we shall derive the conditional variance of Ls,t as this gives the L
2pPq error.

In this section, we focus on the case where Brownian motion is one-dimensional and leave

the general case, a matrix of space-space-time Lévy areas, as future work. However, the

off-diagonal terms in this matrix will have zero expectation due to the independence and

symmetry of the d coordinate processes of the Brownian motion. Therefore, we may construct

a high order multidimensional splitting path simply by taking independent copies of the

paths detailed in Section 5.1.

Theorem 5.3.1 (An optimal unbiased estimator of space-space-time Lévy area). Let

Hs,t and Ls,t be the previously defined Lévy areas of Brownian motion and time. Let

ns,t :“ sgnpHs,u ´Hu,tq denote the space-time Lévy swing given by definition 3.2.3. Then

the conditional mean and variance of Ls,t given the information pW,H, nqs,t is

E
“

Ls,t |Ws,t , Hs,t , ns,t
‰

“
1

30
h2 `

3

5
hH2

s,t ´
1

8
?
6π
ns,th

3
2Ws,t , (5.24)

Var
`

Ls,t |Ws,t , Hs,t , ns,t
˘

“
11

25200
h4 `

´ 1

720
´

1

384π

¯

h3W 2
s,t `

1

700
h3H2

s,t (5.25)

´
1

320
?
6π
ns,th

7
2Ws,t .

1. University of Bath, Department of Mathematical Sciences. jmf68@bath.ac.uk
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Proof. We first note by applying [17, Theorem 3.10] on rs, us and ru, ts, we have

E
“

Ls,u |Ws,u , Hs,u

‰

“
1

120
h2 `

3

10
hH2

s,u ,

Var
`

Ls,u |Ws,u , Hs,u

˘

“
11

403200
h4 ` h3

´ 1

5760
W 2
s,u `

1

5600
H2
s,u

¯

,

E
“

Lu,t |Wu,t , Hu,t

‰

“
1

120
h2 `

3

10
hH2

u,t ,

Var
`

Lu,t |Wu,t , Hu,t

˘

“
11

403200
h4 ` h3

´ 1

5760
W 2
u,t `

1

5600
H2
u,t

¯

.

To utilise the above expectations, we will ‘expand’ the following integrals over rs, ts.

ż t

s
Ws,r dr “

ż u

s
Ws,r dr `

ż t

u
Ws,r dr (5.26)

“

ż u

s
Ws,r dr `

1

2
hWs,u `

ż t

u
Wu,r dr,

ż t

s
W 2
s,r dr “

ż u

s
W 2
s,r dr `

ż t

u
W 2
s,r dr (5.27)

“

ż u

s
W 2
s,r dr `

1

2
hW 2

s,u ` 2Ws,u

ż t

u
Wu,r dr `

ż t

u
W 2
u,r dr.

By [17, Theorem 3.9], which follows from integration by parts, we have that, for u ď v,

ż v

u
Wv,r dr “

1

2
pv ´ uqWu,v ` pv ´ uqHu,v , (5.28)

ż v

u
W 2
u,r dr “

1

3
pv ´ uqW 2

u,v ` pv ´ uqWu,vHu,v ` 2Lu,v . (5.29)

From the decomposition (5.26) and identity (5.28) on rs, us and ru, ts, it follows that

Hs,t “
1

4

`

Ws,u ´Wu,t

˘

`
1

2

`

Hs,u `Hu,t

˘

. (5.30)

We now define the following random variables:

Zs,u :“
1

8

`

Ws,u ´Wu,t

˘

´
3

4

`

Hs,u `Hu,t

˘

, (5.31)

Ns,t :“ Hs,u ´Hu,t . (5.32)
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Since Wa,b „ N p0, pb ´ aqq and Ha,b „ N
`

0, 1
12pb ´ aq

˘

are independent, we see that

Ws,t , Hs,t , Zs,u , Ns,t are jointly normal, uncorrelated and therefore also independent. From

(5.31) and (5.32), it directly follows that Zs,u „ N
`

0, 1
16h

˘

and Ns,t „ N
`

0, 1
12h

˘

. In

addition, by rearranging the above expressions for these random variables, we have

Ws,u “
1

2
Ws,t `

3

2
Hs,t ` Zs,u , (5.33)

Wu,t “
1

2
Ws,t ´

3

2
Hs,t ´ Zs,u , (5.34)

Hs,u “
1

4
Hs,t ´

1

2
Zs,u `

1

2
Ns,t , (5.35)

Hu,t “
1

4
Hs,t ´

1

2
Zs,u ´

1

2
Ns,t . (5.36)

Putting all of this together, and using the independence of Brownian increments, gives

E
„
ż t

s
W 2
s,r dr

ˇ

ˇ

ˇ
Ws,u , Hs,u ,Wu,t , Hu,t

ȷ

“ E
„
ż u

s
W 2
s,r dr

ˇ

ˇ

ˇ
Ws,u , Hs,u

ȷ

`
1

2
hW 2

s,u ` 2Ws,u

ż t

u
Wu,r dr

` E
„
ż t

u
W 2
u,r dr

ˇ

ˇ

ˇ
Wu,t , Hu,t

ȷ

“
1

6
hW 2

s,u `
1

2
hWs,uHs,u ` 2E

“

Ls,u |Ws,u , Hs,u

‰

`
1

2
hW 2

s,u `
1

2
hWs,uWu,t

` hWs,uHu,t `
1

6
hW 2

u,t `
1

2
hWu,tHu,t ` 2E

“

Lu,t |Wu,t , Hu,t

‰

“
1

6
hW 2

s,u `
1

2
hWs,uHs,u `

3

5
hH2

s,u `
1

60
h2 `

1

2
hW 2

s,u `
1

2
hWs,uWu,t

` hWs,uHu,t `
1

6
hW 2

u,t `
1

2
hWu,tHu,t `

3

5
hH2

u,t `
1

60
h2

“
1

3
hW 2

s,t ` hWs,tHs,t `
6

5
hH2

s,t `
1

30
h2

`
1

5
hHs,tZs,u ´

1

4
hWs,tNs,t `

2

15
hZ2

s,u `
3

10
hN2

s,t ,

where the last line was obtained by substituting (5.33) – (5.36) into the previous line. Since

ns,t :“ sgnpNs,tq and Ns,t „ N
`

0, 1
12h

˘

, it follows that |Ns,t| has a half-normal distribution

and is independent of ns,t . Moreover, this implies that its moments are

E
“

Ns,t

ˇ

ˇns,t
‰

“
1

?
6π
ns,th

1
2 , E

“

N3
s,t

ˇ

ˇns,t
‰

“
1

6
?
6π
ns,th

3
2 , (5.37)

E
“

N2
s,t

ˇ

ˇns,t
‰

“
1

12
h, E

“

N4
s,t

ˇ

ˇns,t
‰

“
1

48
h2. (5.38)
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Explicit formulae for the first four central moments of the half-normal distribution are given

in [11, Equation (16)]. Since Ws,t , Hs,t , Zs,u , Ns,t are independent, we have

E
„
ż t

s
W 2
s,r dr

ˇ

ˇ

ˇ
Ws,t , Hs,t , ns,t

ȷ

“ E
„

E
„
ż t

s
W 2
s,r dr

ˇ

ˇ

ˇ
Ws,t , Hs,t , Zs,u , Ns,t

ȷ ˇ

ˇ

ˇ

ˇ

Ws,t , Hs,t , ns,t

ȷ

.

As
`

Ws,t ,Hs,t , Zs,u , Ns,t

˘

and
`

Ws,u ,Hs,u ,Wu,t ,Hu,t

˘

encode the same information, we

have

E
„
ż t

s
W 2
s,r dr

ˇ

ˇ

ˇ
Ws,t , Hs,t , ns,t

ȷ

“
1

3
hW 2

s,t ` hWs,tHs,t `
6

5
hH2

s,t `
1

30
h2

`
1

5
hHs,tE

“

Zs,u
‰

´
1

4
hWs,tE

“

Ns,t |ns,t
‰

`
2

15
hE

“

Z2
s,u

‰

`
3

10
hE

“

N2
s,t |ns,t

‰

“
1

3
hW 2

s,t ` hWs,tHs,t `
1

15
h2 `

6

5
hH2

s,t ´
1

4
?
6π
ns,th

3
2Ws,t ,

where we used the moments E
“

Zs,u
‰

“ 0, E
“

Z2
s,u

‰

“ 1
16h as well as (5.37) and (5.38). The

condition expectation (5.24) now follows by applying equation (5.29) to the above.

We employ a similar strategy to compute the conditional variance (5.25) of Ls,t . Using the

decomposition (5.27) and independence of
`

Ws,u , Hs,u ,Wu,t , Hu,t

˘

, we have

Var

ˆ
ż t

s
W 2
s,rdr

ˇ

ˇ

ˇ
Ws,u ,Wu,t , Hs,u , Hu,t

˙

“ Var

ˆ
ż u

s
W 2
s,r dr `

1

2
hW 2

s,u

` 2Ws,u

ż t

u
Wu,r dr `

ż t

u
W 2
u,r dr

ˇ

ˇ

ˇ
Ws,u ,Wu,t , Hs,u , Hu,t

˙

“ Var

ˆ
ż u

s
W 2
s,rdr

ˇ

ˇ

ˇ
Ws,u , Hs,u

˙

` Var

ˆ
ż t

u
W 2
u,rdr

ˇ

ˇ

ˇ
Wu,t , Hu,t

˙

.

Therefore, by (5.29) and the formulae for the condition variances of Ls,u and Lu,t ,

Var

ˆ
ż t

s
W 2
s,rdr

ˇ

ˇ

ˇ
Ws,u ,Wu,t , Hs,u , Hu,t

˙

“
11

50400
h4 ` h3

´ 1

1440
W 2
s,u `

1

1440
W 2
u,t `

1

1400
H2
s,u `

1

1400
H2
u,t

¯

.
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By plugging in (5.33) – (5.36), we can rewrite this in terms of Ws,t , Hs,t , Zs,u , Ns,t .

Var

ˆ
ż t

s
W 2
s,rdr

ˇ

ˇ

ˇ
Ws,u ,Wu,t , Hs,u , Hu,t

˙

“
11

50400
h4 ` h3

´ 1

1440
W 2
s,u `

1

1440
W 2
u,t `

1

1400
H2
s,u `

1

1400
H2
u,t

¯

“
11

50400
h4 ` h3

ˆ

1

2880
W 2
s,t `

9

2800
H2
s,t `

2

525
Hs,tZs,u `

11

6300
Z2
s,u `

1

2800
N2
s,t

˙

.

The second conditional moment of the iterated integral can be directly calculated as

E
„ˆ

ż t

s
W 2
s,r dr

˙2 ˇ
ˇ

ˇ
Ws,u ,Wu,t , Hs,u , Hu,t

ȷ

“ E
„
ż t

s
W 2
s,r dr

ˇ

ˇ

ˇ
Ws,u ,Wu,t , Hs,u , Hu,t

ȷ2

` Var

ˆ
ż t

s
W 2
s,rdr

ˇ

ˇ

ˇ
Ws,u ,Wu,t , Hs,u , Hu,t

˙

.

Therefore, by substituting the expressions for the above conditional moments, we have

E
„ˆ

ż t

s
W 2
s,r dr

˙2 ˇ
ˇ

ˇ
Ws,u ,Wu,t , Hs,u , Hu,t

ȷ

“

´1

3
hW 2

s,t ` hWs,tHs,t `
6

5
hH2

s,t `
1

30
h2

`
1

5
hHs,tZs,u ´

1

4
hWs,tNs,t `

2

15
hZ2

s,u `
3

10
hN2

s,t

¯2
`

11

50400
h4

` h3
ˆ

1

2880
W 2
s,t `

9

2800
H2
s,t `

2

525
Hs,tZs,u `

11

6300
Z2
s,u `

1

2800
N2
s,t

˙

.

Expanding the bracket and collecting terms yields

E
„ˆ

ż t

s
W 2
s,r dr

˙2 ˇ
ˇ

ˇ
Ws,u ,Wu,t , Hs,u , Hu,t

ȷ

“
67

50400
h4 `

1

9
h2W 4

s,t `
36

25
h2H4

s,t `
4

225
h2Z4

s,u `
9

100
h2N4

s,t `
9

5
h2W 2

s,tH
2
s,t

`
4

45
h2W 2

s,tZ
2
s,u `

21

80
h2W 2

s,tN
2
s,t `

9

25
h2H2

s,tZ
2
s,u `

18

25
h2H2

s,tN
2
s,t `

2

25
h2Z2

s,uN
2
s,t

`
13

576
h3W 2

s,t `
233

2800
h3H2

s,t `
67

6300
h3Z2

s,u `
57

2800
h3N2

s,t `
1

15
h3Ws,tHs,t

´
1

60
h3Ws,tNs,t `

3

175
h3Hs,tZs,u `

2

3
h2W 3

s,tHs,t ´
1

10
h2Ws,tHs,tZs,uNs,t

´
1

6
h2W 3

s,tNs,t `
12

5
h2Ws,tH

3
s,t ´

3

20
h2Ws,tN

3
s,t `

12

25
h2H3

s,tZs,u `
4

75
h2Hs,tZ

3
s,u

`
2

15
h2W 2

s,tHs,tZs,u ´
1

2
h2W 2

s,tHs,tNs,t `
2

5
h2Ws,tH

2
s,tZs,u `

4

15
h2Ws,tHs,tZ

2
s,u

`
3

5
h2Ws,tHs,tN

2
s,t ´

3

5
h2Ws,tH

2
s,tNs,t ´

1

15
h2Ws,tZ

2
s,uNs,t `

3

25
h2Hs,tZs,uN

2
s,t .
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By taking the expectation of the above terms conditional on
`

Ws,t ,Hs,t , ns,t
˘

and substi-

tuting in the moments of Ns,t |ns,t given by (5.37) and (5.38), it follows that

E
„ˆ

ż t

s
W 2
s,r dr

˙2 ˇ
ˇ

ˇ
Ws,t , Hs,t , ns,t

ȷ

“ E
„

E
„ˆ

ż t

s
W 2
s,r dr

˙2 ˇ
ˇ

ˇ
Ws,u ,Wu,t , Hs,u , Hu,t

ȷ ˇ

ˇ

ˇ

ˇ

Ws,t , Hs,t , ns,t

ȷ

“
13

2100
h4 `

1

9
h2W 4

s,t `
36

25
h2H4

s,t `
9

5
h2W 2

s,tH
2
s,t `

1

20
h3W 2

s,t `
29

175
h3H2

s,t

`
2

15
h3Ws,tHs,t `

12

5
h2Ws,tH

3
s,t `

2

3
h2W 3

s,tHs,t

´
1

?
6π
ns,th

5
2

ˆ

1

6
W 3
s,t `

11

240
hWs,t `

1

2
W 2
s,tHs,t `

3

5
Ws,tH

2
s,t

˙

.

Thus, we can compute the required conditional variance using the following identity:

Var

ˆ
ż t

s
W 2
s,r dr

ˇ

ˇ

ˇ
Ws,t , Hs,t , ns,t

˙

“ E
„ˆ

ż t

s
W 2
s,r dr

˙2 ˇ
ˇ

ˇ
Ws,t , Hs,t , ns,t

ȷ

´

ˆ

E
„
ż t

s
W 2
s,r dr

ˇ

ˇ

ˇ
Ws,t , Hs,t , ns,t

ȷ˙2

.

Plugging in the expressions for these conditional moments and simplifying terms gives

Var

ˆ
ż t

s
W 2
s,r dr

ˇ

ˇ

ˇ
Ws,t , Hs,t , ns,t

˙

“
13

2100
h4 `

1

9
h2W 4

s,t `
36

25
h2H4

s,t `
9

5
h2W 2

s,tH
2
s,t `

1

20
h3W 2

s,t `
29

175
h3H2

s,t

`
2

15
h3Ws,tHs,t `

12

5
h2Ws,tH

3
s,t `

2

3
h2W 3

s,tHs,t

´
1

?
6π
ns,th

5
2

ˆ

1

6
W 3
s,t `

11

240
hWs,t `

1

2
W 2
s,tHs,t `

3

5
Ws,tH

2
s,t

˙

´

ˆ

1

3
hWs,t ` hWs,tHs,t `

1

15
h2 `

6

5
hH2

s,t ´
1

4
?
6π
ns,th

3
2Ws,t

˙2

“
11

6300
h4 `

´ 1

180
´

1

96π

¯

h3W 2
s,t `

1

175
h3H2

s,t ´
1

80
?
6π
ns,th

7
2Ws,t .

The result now follows as, by (5.29), the above is the conditional variance of 2Ls,t.

In the construction of the piecewise linear paths defined by (5.5) and (5.9), there are two

distinct solutions which result in paths with the required iterated integrals. To decide on the

solution, we consider the ‘space-time-time’ Lévy area of the path. Whilst this quantity is

Gaussian for Brownian motion and can be exactly generated, it is asymptotically smaller

than space-space-time Lévy area, and so less impactful. Therefore, we propose using the

expectation of space-time-time Lévy area conditional on
`

Ws,t , Hs,t , ns,t
˘

and choosing the

path γ which best matches this approximation.
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Since Ws,t , Hs,t and Ks,t can be identified with coefficients from a polynomial expansion of

Brownian motion, it is straightforward to establish their independence. However, Ks,t is not

independent of ns,t and we can compute the following moments:

Theorem 5.3.2. The space-time-time Lévy area Ks,t is independent of pWs,t ,Hs,tq and

has the following distribution and conditional moments,

Ks,t „ N
´

0,
1

720
h
¯

, (5.39)

E
“

Ks,t |ns,t
‰

“
1

8
?
6π
ns,th

1
2 , (5.40)

E
“

K2
s,t |ns,t

‰

“
1

720
h. (5.41)

Proof. It was shown in [17, Theorem 2.2], that for a Brownian bridge B on r0, 1s and certain

orthogonal polynomials e1 and e2 , we have

I1 :“

ż 1

0
Bt ¨

e1ptq

tp1 ´ tq
dt and I2 :“

ż 1

0
Bt ¨

e2ptq

tp1 ´ tq
dt

are independent random variables with I1 „ N
`

0, 12
˘

and I1 „ N
`

0, 16
˘

. Moreover, by

Theorems 2.7 and 2.8 in [17], the orthogonal polynomials e1 and e2 are given by

e1ptq “
?
6tpt´ 1q,

e2ptq “
?
30tpt´ 1qp2t´ 1q.

Thus I1 “
?
6
ş1
0 Btdt and I2 “ 2

?
30

ş1
0 Btpt´ 1

2qdt. It therefore follows that

ż 1

0
Btdt „ N

´

0,
1

12

¯

and

ż 1

0
Bt

´1

2
´ t

¯

dt „ N
´

0,
1

720

¯
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are independent. By the standard Brownian scaling, this implies Hs,t „ N
`

0, 1
12h

˘

and

Ks,t „ N
`

0, 1
720h

˘

are independent. Moreover, since Hs,t and Ks,t are functions of the

Brownian bridge
␣

Ws,u ´ u´s
h Ws,t

(

uPrs,ts
, they are also independent of Ws,t. We will now

compute the expectation of Ks,t conditional on pWs,u ,Wu,t , Hs,u , Hu,tq.

h2E
”

Ks,t

ˇ

ˇWs,u ,Wu,t , Hs,u , Hu,t

ı

“ E
„
ż t

s

ˆ

Ws,r ´
r ´ s

h
Ws,t

˙ˆ

1

2
h´ pr ´ sq

˙

dr
ˇ

ˇ

ˇ
Ws,u ,Wu,t , Hs,u , Hu,t

ȷ

“
1

2
h

ż t

s
Ws,r dr ´ E

„
ż t

s
Ws,rpr ´ sqdr

ˇ

ˇ

ˇ
Ws,u ,Wu,t , Hs,u , Hu,t

ȷ

`
1

12
h2Ws,t

“
1

3
h2Ws,t `

1

2
h2Hs,t ´ E

„
ż u

s
Ws,rpr ´ sqdr

ˇ

ˇ

ˇ
Ws,u , Hs,u

ȷ

´Ws,u

ż t

u
pr ´ sqdr

´ E
„
ż t

u
Wu,rpr ´ sqdr

ˇ

ˇ

ˇ
Wu,t , Hu,t

ȷ

“
1

3
h2Ws,t `

1

2
h2Hs,t ´

ż u

s
E
“

Ws,r

ˇ

ˇWs,u , Hs,u

‰

pr ´ sqdr ´
3

8
h2Ws,u

´

ż t

u
E
“

Wu,r

ˇ

ˇWu,t , Hu,t

‰

pr ´ uqdr ´

ż t

u
Wu,rpu´ sqdr.

In [17], it was shown that E
“

Ws,r |Ws,t ,Hs,t

‰

“ r´s
t´sWs,t `

6pr´sqpt´rq

pt´sq2
Hs,t for r P rs, ts.

Therefore, plugging this into the previous equation gives

h2E
”

Ks,t

ˇ

ˇWs,u ,Wu,t , Hs,u , Hu,t

ı

“
1

3
h2Ws,t `

1

2
h2Hs,t ´

1

12
h2Ws,u ´

1

8
h2Hs,u ´

3

8
h2Ws,u

´
1

12
h2Wu,t ´

1

8
h2Hu,t ´

1

2
h

ˆ

1

4
hWu,t `

1

2
hHu,t

˙

“
1

2
h2Hs,t ´

´1

4
h2Hs,u `

1

4
h2Hu,t `

1

8
h2Wu,t ´

1

8
h2Ws,u

¯

`
1

8
h2Hs,u ´

1

8
h2Hu,t .

By equation (5.30) in the previous proof, we see that the first two terms cancel. Thus

E
“

Ks,t

ˇ

ˇWs,u ,Wu,t , Hs,u , Hu,t

‰

“
1

8
Ns,t ,

and so the desired result (5.40) now follows as

E
“

Ks,t |Ws,t , Hs,t , ns,t
‰

“ E
“

E
“

Ks,t

ˇ

ˇWs,u ,Wu,t , Hs,u , Hu,t

‰

|Ws,t , Hs,t , ns,t
‰

“
1

8
E
“

Ns,t |Ws,t , Hs,t , ns,t
‰

“
1

8
?
6π
ns,th

1
2 ,
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by the independence of
`

Ws,t ,Hs,t , Ns,t

˘

and equation (5.37), which were established in

the proof of Theorem 5.3.1. Finally, we note that K2
s,t does not change if W is replaced by

´W , whereas ns,t changes sign when the Brownian motion is ‘flipped’. So by the symmetry

of W , the random variables K2
s,t and ns,t are uncorrelated. Thus

E
“

K2
s,tns,t

‰

looooomooooon

“ 0

“
1

2
E
“

K2
s,t |ns,t “ 1

‰

`
1

2
E
“

´K2
s,t |ns,t “ ´1

‰

,

E
“

K2
s,t

‰

loomoon

“ 1
720

h

“
1

2
E
“

K2
s,t |ns,t “ 1

‰

`
1

2
E
“

K2
s,t |ns,t “ ´1

‰

,

gives the desired conditional moment (5.41).

Finally, using these optimal estimators for Ls,t and Ks,t , we give the theoretical justification

for the choices of piecewise linear paths previously used in (5.5) and (5.9). These paths

match E
“

Ls,t |Ws,t , Hs,t , ns,t
‰

and correlate with E
“

Ks,t |Ws,t , Hs,t , ns,t
‰

.

Theorem 5.3.3. Consider the pWs,t ,Hs,t , ns,tq-measurable piecewise linear paths γ “

pγτ , γωq : r0, 1s Ñ R2 , rγ “ prγτ , rγωq : r0, 1s Ñ R2 given by γ0 “ rγ0 “ ps,Wsq and

γri,ri`1 :“

$

’

’

’

’

’

&

’

’

’

’

’

%

`

0, As,t
˘

, if i “ 0

`

h,Bs,t
˘

, if i “ 1

`

0,Ws,t ´As,t ´Bs,t
˘

, if i “ 2,

(5.42)

rγri,ri`1 :“

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

`

0, Cs,t
˘

, if i “ 0

`

1
2h, 0

˘

, if i “ 1

`

0, Ds,t

˘

, if i “ 2

`

1
2h, 0

˘

, if i “ 3

`

0,Ws,t ´ Cs,t ´Ds,t

˘

, if i “ 4,

(5.43)
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where h “ t´ s and

`

As,t , Bs,t
˘

“ argmin
pA,BqPR2 s.t. constraints

p5.44q, p5.45q, p5.46q hold

ˇ

ˇ

ˇ

ˇ

ż 1

0
γτ0,rγ

ω
0,r dγ

τ
r ´ E

„
ż t

s
pu´ sqWs,udu

ˇ

ˇ

ˇ
Ws,t, Hs,t, ns,t

ȷˇ

ˇ

ˇ

ˇ

,

`

Cs,t , Ds,t

˘

“ argmin
pC,DqPR2 s.t. constraints

p5.44q, p5.45q, p5.46q hold

ˇ

ˇ

ˇ

ˇ

ż 1

0
rγτ0,rrγ

ω
0,r drγ

τ
r ´ E

„
ż t

s
pu´ sqWs,udu

ˇ

ˇ

ˇ
Ws,t, Hs,t, ns,t

ȷˇ

ˇ

ˇ

ˇ

.

with the constraints (5.44), (5.45) and (5.46) for the paths γ and rγ given by

γω1 ´ γω0 “ rγω1 ´ rγω0 “ Ws,t , (5.44)

ż 1

0

`

γωr ´ γω0
˘

dγτr “

ż 1

0

`

rγωr ´ rγω0
˘

drγτr “

ż t

s
Ws,udu, (5.45)

ż 1

0

`

γωr ´ γω0
˘2
dγτr “

ż 1

0

`

rγωr ´ rγω0
˘2
drγτr “ E

„
ż t

s
W 2
s,udu

ˇ

ˇ

ˇ
Ws,t , Hs,t , ns,t

ȷ

. (5.46)

Then the first increments, As,t and Cs,t , of the piecewise linear paths γ and rγ are

As,t :“
1

2
Ws,t `Hs,t ´

1

2
Bs,t ,

Cs,t :“
1

2
Ws,t `Hs,t ´

1

2
Ds,t ,

where the second increments, Bs,t and Ds,t , of the paths are given by the formulae

Bs,t :“ ϵs,t

ˆ

W 2
s,t `

12

5
H2
s,t `

4

5
h´

3
?
6π
h

1
2ns,tWs,t

˙
1
2

,

Ds,t :“ ϵs,t

ˆ

1

3
W 2
s,t `

4

5
H2
s,t `

4

15
h´

1
?
6π
ns,th

1
2Ws,t

˙
1
2

,

ϵs,t :“ sgn

ˆ

Ws,t ´
3

?
24π

h
1
2ns,t

˙

.
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Proof. Since γ and rγ are piecewise linear, it is simple to compute the integrals

ż 1

0
pγωr ´ γω0 qdγτr “ h

´

As,t `
1

2
Bs,t

¯

,

ż 1

0
pγωr ´ γω0 q2dγτr “ h

´

A2
s,t `As,tBs,t `

1

3
B2
s,t

¯

,

ż 1

0
prγωr ´ rγω0 qdrγτr “ h

´

Cs,t `
1

2
Ds,t

¯

,

ż 1

0
prγωr ´ rγω0 q2drγτr “ h

´

C2
s,t ` Cs,tDs,t `

1

2
D2
s,t

¯

.

It follows from the constraints (5.45) and (5.46) with equations (5.28) and (5.29) that

h
´

As,t `
1

2
Bs,t

¯

“
1

2
hWs,t ` hHs,t ,

h
´

A2
s,t `As,tBs,t `

1

3
B2
s,t

¯

“
1

3
hW 2

s,t ` hWs,tHs,t ` 2E
“

Ls,t
ˇ

ˇWs,t , Hs,t , ns,t
‰

,

h
´

Cs,t `
1

2
Ds,t

¯

“
1

2
hWs,t ` hHs,t ,

h
´

C2
s,t ` Cs,tDs,t `

1

2
D2
s,t

¯

“
1

3
hW 2

s,t ` hWs,tHs,t ` 2E
“

Ls,t
ˇ

ˇWs,t , Hs,t , ns,t
‰

,

So by Theorem 5.3.1, substituting in the formula for the conditional expectation yields

As,t `
1

2
Bs,t “

1

2
Ws,t `Hs,t ,

A2
s,t `As,tBs,t `

1

3
B2
s,t “

1

3
W 2
s,t `Ws,tHs,t `

1

15
h`

6

5
H2
s,t ´

1

4
?
6π
ns,th

1
2Ws,t ,

Cs,t `
1

2
Ds,t “

1

2
Ws,t `Hs,t ,

C2
s,t ` Cs,tDs,t `

1

2
D2
s,t “

1

3
W 2
s,t `Ws,tHs,t `

1

15
h`

6

5
H2
s,t ´

1

4
?
6π
ns,th

1
2Ws,t ,

Since a2 ` ab` 1
3b

2 “
`

a` 1
2b
˘2

` 1
12b

2 and c2 ` cd` 1
3d

2 “
`

c` 1
2d
˘2

` 1
4d

2, this gives

1

12
B2
s,t “

1

3
W 2
s,t `Ws,tHs,t `

1

15
h`

6

5
H2
s,t ´

1

4
?
6π
ns,th

1
2Ws,t ´

´1

2
Ws,t `Hs,t

¯2
,

1

4
D2
s,t “

1

3
W 2
s,t `Ws,tHs,t `

1

15
h`

6

5
H2
s,t ´

1

4
?
6π
ns,th

1
2Ws,t ´

´1

2
Ws,t `Hs,t

¯2
,
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and so there are two possible values of Bs,t and Ds,t where (5.45) and (5.46) hold,

Bs,t “ ˘

d

W 2
s,t `

12

5
H2
s,t `

4

5
h´

3
?
6π
ns,th

1
2Ws,t ,

Ds,t “ ˘

d

1

3
W 2
s,t `

4

5
H2
s,t `

4

15
h´

1
?
6π
ns,th

1
2Ws,t .

Thus, if equations (5.45) and (5.46) are satisfied, we have

ż 1

0
pγτr ´ γτ0 qpγωr ´ γω0 qdγτr “

1

2
h2As,t `

1

3
h2Bs,t

“
1

4
h2Ws,t `

1

2
h2Hs,t ˘

1

12
h2

d

W 2
s,t `

12

5
H2
s,t `

4

5
h´

3
?
6π
ns,th

1
2Ws,t ,

ż 1

0
prγτr ´ rγτ0 qprγωr ´ rγω0 qdrγτr “

1

2
h2Cs,t `

3

8
h2Ds,t

“
1

4
h2Ws,t `

1

2
h2Hs,t ˘

1

8
h2

d

1

3
W 2
s,t `

4

5
H2
s,t `

4

15
h´

1
?
6π
ns,th

1
2Ws,t .

Using Theorem 5.3.2, we can estimate the corresponding integral of Brownian motion.

E
„
ż t

s
pu´ sqWs,udu

ˇ

ˇ

ˇ
Ws,t , Hs,t , ns,t

ȷ

“ E
„

1

2
h

ż t

s
Ws,u du´

ż t

s

u´ s

h
Ws,t

ˆ

1

2
h´ pu´ sq

˙

du
ˇ

ˇ

ˇ
Ws,t , Hs,t , ns,t

ȷ

´ E
„
ż t

s

ˆ

Ws,u ´
u´ s

h
Ws,t

˙ˆ

1

2
h´ pu´ sq

˙

du
ˇ

ˇ

ˇ
Ws,t , Hs,t , ns,t

ȷ

“
1

3
h2Ws,t `

1

2
h2Hs,t ´ h2E

“

Ks,t |ns,t
‰

“
1

3
h2Ws,t `

1

2
h2Hs,t ´

1

8
?
6π
ns,th

5
2 .

Taking the difference between these integrals gives

ˇ

ˇ

ˇ

ˇ

ˇ

ż 1

0
pγτr ´ γτ0 qpγωr ´ γω0 qdγτr ´ E

„
ż t

s
pu´ sqWs,udu

ˇ

ˇ

ˇ
Ws,t , Hs,t , ns,t

ȷ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

´
1

12
h2Ws,t `

1

8
?
6π
ns,th

5
2 ˘

1

12
h2

d

W 2
s,t `

12

5
H2
s,t `

4

5
h´

3
?
6π
ns,th

1
2Ws,t

ˇ

ˇ

ˇ

ˇ

ˇ

,
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and

ˇ

ˇ

ˇ

ˇ

ˇ

ż 1

0
prγτr ´ rγτ0 qprγωr ´ rγω0 qdrγτr ´ E

„
ż t

s
pu´ sqWs,udu

ˇ

ˇ

ˇ
Ws,t , Hs,t , ns,t

ȷ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

´
1

12
h2Ws,t `

1

8
?
6π
ns,th

5
2 ˘

1

8
h2

d

1

3
W 2
s,t `

4

5
H2
s,t `

4

15
h´

1
?
6π
ns,th

1
2Ws,t

ˇ

ˇ

ˇ

ˇ

ˇ

.

Since we would like the path γ to minimise this quantity, the optimal choice of sign for the

square root term is ϵs,t :“ sgn
`

Ws,t ´ 3?
24π

h
1
2ns,t

˘

, and the result follows.



Chapter 6

Numerical examples

We present here numerical examples deploying the splitting paths presented in Section

5.1, including derivations of the resulting numerical schemes. We consider the stochastic

FitzHugh-Nagumo (additive noise) and the stochastic Lotka-Volterra (multiplicative noise)

models, and as an example of higher order schemes applied to Multi-level Monte Carlo

we consider the problem of pricing a basket option for a model of interacting assets. As a

small experiment, we also consider the long time behaviour of splittings for the stochastic

anharmonic oscillator, for comparison with results in [39]. More examples can be found

in our paper [19]. For the majority of these examples, the ‘non-diffusion’ ODEs coming

from the SDE splitting will not admit a closed-formed solution and thus must be further

discretized. We will show how such ODEs can be resolved.

Throughout, we shall compare methods using the following strong error estimator:

Definition 6.0.1 (Strong error estimator for SDEs). For N ě 1, let YN denote a numerical

solution to the SDE (2.1) computed at time T with a fixed step size h “ T
N . Then we define

the following estimator for quantifying the strong convergence of YN :

SN :“

c

E
”

›

›YN ´ Y fine
T

›

›

2
ı

, (6.1)

where Y fine
T denotes a numerical solution to (2.1) computed with a finer step size, hfine ď 1

10 h,

but using the same Brownian motion (so that YN and Y fine
T are close). In our examples, the

expectation in (6.1) will be estimated by standard Monte Carlo.

When defining numerical methods, we sometimes use Wk as shorthand for Wtk ,tk`1
, (and

similarly Hk and nk instead of Htk ,tk`1
and ntk ,tk`1

).

82
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6.1 FitzHugh-Nagumo model

We consider a stochastic FitzHugh-Nagumo (FHN) model which has been used for describing

the spike activity of neurons [4, 40]. The stochastic FHN model follows the two-dimensional

additive noise SDE (where Itô and Stratonovich coincide) is given by

d

˜

vt

ut

¸

“

˜

1
ϵ

`

vt ´ v3t ´ ut
˘

θvt ´ ut ` β

¸

dt`

˜

σ1 0

0 σ2

¸

dWt . (6.2)

To discretize the stochastic FHN model, we apply the splitting path (5.5) and, similar to [4],

apply a Strang splitting to approximate the resulting drift ODE. This leads to the splitting

method:

¨

˝

V
p1q

k

U
p1q

k

˛

‚:“

˜

Vk

Uk

¸

`

˜

σ1 0

0 σ2

¸˜

1
2W

1
k `H1

k ´ 1
2C

1
k

1
2W

2
k `H2

k ´ 1
2C

2
k

¸

,

¨

˝

V
p2q

k

U
p2q

k

˛

‚:“ φStrang
1
2
h

¨

˝

V
p1q

k

U
p1q

k

˛

‚`

˜

σ1 0

0 σ2

¸˜

C1
k

C2
k

¸

,

˜

Vk`1

Uk`1

¸

:“ φStrang
1
2
h

¨

˝

V
p2q

k

U
p2q

k

˛

‚`

˜

σ1 0

0 σ2

¸˜

1
2W

1
k ´H1

k ´ 1
2C

1
k

1
2W

2
k ´H2

k ´ 1
2C

2
k

¸

, (6.3)

where the Strang splitting steps are given by

φStrang
1
2
h

˜

v

u

¸

:“

¨

˝

rv
´

e´ h
2ϵ ` rv2

`

1 ´ e´ h
2ϵ

˘

¯´ 1
2

ru` 1
4βh

˛

‚, (6.4)

with rv and ru defined by

˜

rv

ru

¸

:“ exp

˜

1

2
h

˜

0 ´1
ϵ

θ ´1

¸¸

¨

˝

v
´

e´ h
2ϵ ` v2

`

1 ´ e´ h
2ϵ

˘

¯´ 1
2

u` 1
4βh

˛

‚ .

and the explicit formula for the above matrix exponential is given in [4, Section 6.2]. We

note that, similar to the CIR model, the stochastic FHN model is challenging to accurately

simulate due to the vector field not being globally Lipschitz continuous. That said, as the

drift does have polynomial growth and satisfies a one-sided Lipschitz condition, there are

numerical methods for (6.2) with strong convergence guarantees. We will compare our

scheme (6.3) against two such methods; the Strang splitting scheme proposed in [4] and

the Tamed Euler-Maruyama method introduced in [28].



6.1. FitzHugh-Nagumo model 84

6.1.1 Derivation of FitzHugh-Nagumo splitting

The derivation of the splitting scheme (6.3) is as follows. Proceeding as described in Example

2.2.1, the splitting path (5.5) applied to (6.2) gives the following series of ODEs:

d

˜

v
p0q
r

u
p0q
r

¸

“

˜

σ1 0

0 σ2

¸

ˆ

1

2
Ws,t `Hs,t ´

1

2
Cs,t

˙

dr ,

˜

v
p0q

0

u
p0q

0

¸

“

˜

v0

u0

¸

, (6.5)

d

˜

v
p1q
r

u
p1q
r

¸

“
1

2
h

¨

˝

1
ϵ

`

v
p1q
r ´ pv

p1q
r q3 ´ u

p1q
r

˘

θv
p1q
r ´ u

p1q
r ` β

˛

‚dr ,

˜

v
p1q

0

u10

¸

“

˜

v
p0q

1

u
p0q

1

¸

, (6.6)

d

˜

v
p2q
r

u
p2q
r

¸

“

˜

σ1 0

0 σ2

¸

Cs,t dr ,

˜

v
p2q

0

u
p2q

0

¸

“

˜

v
p1q

1

u
p1q

1

¸

, (6.7)

d

˜

v
p3q
r

u
p3q
r

¸

“
1

2
h

¨

˝

1
ϵ

`

v
p3q
r ´ pv

p3q
r q3 ´ u

p3q
r

˘

θv
p3q
r ´ u

p3q
r ` β

˛

‚dr ,

˜

v
p3q

0

u
p3q

0

¸

“

˜

v
p2q

1

u
p2q

1

¸

, (6.8)

d

˜

v
p4q
r

u
p4q
r

¸

“

˜

σ1 0

0 σ2

¸

ˆ

1

2
Ws,t ´Hs,t ´

1

2
Cs,t

˙

dr ,

˜

v
p4q

0

u
p4q

0

¸

“

˜

v
p3q

1

u
p3q

1

¸

, (6.9)

where Cs,t is defined as in Example 5.1.4. Solving to find pv
p4q

1 , u
p4q

1 qJ produces our estimate

of a solution to (6.2) at time h. The ODEs (6.5), (6.7) and (6.9) are exactly solvable. The

terms (6.6) and (6.8) require further analysis, proving the source of discretization error in

our spitting scheme. Following [4], we note that we may rewrite these terms in the form

d

˜

vr

ur

¸

“
1

2
h

˜˜

0 ´1
ϵ

θ ´1

¸˜

vr

ur

¸

`

˜

1
ϵ pvr ´ v3r q

β

¸¸

dr . (6.10)

To maintain the potential order of the splitting scheme (global Oph1.5q in the commutative

case), we require that our discretisation of the resulting sequence of ODEs has at least

local strong error smaller than Oph2q. A Strang splitting of (6.10) provides this as the two

separate components in (6.10) admit closed form solutions. An ODE Strang splitting of

(6.10) gives:

d

˜

ṽ
p0q
r

ũ
p0q
r

¸

“
1

2
h

˜

1
ϵ pṽ

p0q
r ´ pṽ

p0q
r q3q

β

¸

dr ,

˜

ṽ
p0q

0

ũ
p0q

0

¸

“

˜

v

u

¸

,

d

˜

ṽ
p1q
r

ũ
p1q
r

¸

“
1

2
h

˜

0 ´1
ϵ

θ ´1

¸˜

ṽ
p1q
r

ũ
p1q
r

¸

dr ,

˜

ṽ
p1q

0

ũ
p1q

0

¸

“

˜

ṽ
p0q

0.5

ũ
p0q

0.5

¸

,

d

˜

ṽ
p2q
r

ũ
p2q
r

¸

“
1

2
h

˜

1
ϵ pṽ

p2q
r ´ pṽ

p2q
r q3q

β

¸

dr ,

˜

ṽ
p2q

0

ũ
p2q

0

¸

“

˜

ṽ
p1q

1

ũ
p1q

1

¸

.
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The value of pṽ
p2q

0.5, ũ
p2q

0.5qJ is the Strang splitting estimate. As v1 “ pv ´ v3q admits a

closed form solution, solving the ODEs for initial values u, v P R leads to (6.4). Combining

everything, we obtain (6.3).

6.1.2 Numerical results

For our numerical experiments, we select the following parameters for the FHN model

ϵ “ 1 , θ “ 1 , β “ 1 , σ1 “ 1 , σ2 “ 1 , pv0, u0q “ p0, 0q , T “ 2 .

We compare our proposed splitting with the Strang splitting presented in [4] and the Tamed

Euler method of [28]. We see in Figure 6.1 that our proposed splitting exhibits a 3{2 strong

convergence rate and is significantly more accurate than the other schemes (for a fixed h).

6 7 8 9 10 11 12

− log2(step size)

0

5

10

15

20

25

−
lo

g 2
(S

N
)

y=1.51x + 2.8

y=1.03x + 0.64

y=1.13x + -2.9

HS2 splitting
Strang splitting (Buckwar et al. (2022))
Tamed Euler (Hutzenthaler et al. (2012))

Fig. 6.1: SN estimated for (6.2) using 1,000 sample paths as a function of step size h “ T
N .

The higher order scheme will be more computationally expensive than the lower order

schemes, this is quantified in Table 6.1: Where we see that, for the same value of h, to

simulate 1000 sample paths the HS2 splitting takes approximately 3 times as long as the

Strang splitting, and just under 5 times as long as the Tamed Euler scheme.

HS2 splitting (6.3) Strang splitting [4] Tamed Euler [28]

8.22 2.74 1.75

Table 6.1: Compute time to simulate 1000 sample paths of (6.2) with 100 steps (seconds)

While the high order splitting takes longer to run, as observed in Figure 6.1, it is significantly
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more accurate. We quantify this in Table 6.2, where we see that the HS2 splitting is an order

of magnitude faster than the other two methods – to achieve the same level of precision. We

thus conclude that the proposed high order splitting method (6.3) gives the best performance

for the FHN model.

HS2 splitting (6.3) Strang splitting [4] Tamed Euler [28]

4.42 29.67 85.39

Table 6.2: Estimated compute time to produce 1000 sample paths of (6.2) with an error of
SN “ 10´3 (seconds)

6.2 Lotka-Volterra model

As an example of an SDE with multiplicative noise, we consider the stochastic Lotka-Volterra

(LV) model, which is a classical model of predator-prey population dynamics [1, 66]. The

stochastic LV model follows the two-dimensional additive noise SDE given by

d

˜

xt

yt

¸

“

˜

xtpb1 ´ a11xt ´ a12ytq

ytpb2 ´ a21xt ´ a22ytq

¸

dt`

˜

G1xt 0

0 G2yt

¸

˝ dWt , (6.11)

with x0, y0 “ x, y ą 0. Where y denotes the predator population and x the prey. Depending

on the choice of coefficients, this system can cover three standard classifications [66]:

Predator-prey: b1 ą 0 , b2 ă 0 , a12 ą 0 , a21 ă 0

Cooperation: b1 ą 0 , b2 ą 0 , a12 ă 0 , a21 ă 0

Competition: b1 ą 0 , b2 ą 0 , a12 ą 0 , a21 ą 0

Assuming that G1, G2 ą 0 then the solution is guaranteed positive [46, Theorem 2.1]. Under

the ‘predator-prey’ classification we observe dynamics like those displayed in Figure 6.2: a

growth in the population of the prey is followed by an increase in the predator population,

followed by a subsequent drop in both before the cycle repeats. For positive values of a11

and a22 the dynamics will spiral towards a stationary point. The observed cycles are also

quite sensitive to the initial condition.
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Fig. 6.2: Example dynamics for the LV model, with parameter values a11 “ a22 “ 0.0005 ,
a12 “ ´a21 “ 0.003 , b1 “ ´b2 “ 1 and G1 “ G2 “ 0.2 . The left plot displays the dynamics in
phase space, and the right plot shows how the populations evolve through time.

To discretize the stochastic LV model we choose the path γHS1 (5.4) and an ODE Strang

splitting to deal with several of the resulting ODEs. This leads to the following splitting

method:

˜

X
p1q

k

Y
p1q

k

¸

“ ϕStrang
3´

?
3

6
h

˜

Xk

Yk

¸

,

˜

X
p2q

k

Y
p2q

k

¸

“

¨

˝

X
p1q

k exp
´

G1pW 1
k {2 `

?
3H1

kq

¯

Y
p1q

k exp
´

G2pW 2
k {2 `

?
3H2

kq

¯

˛

‚ ,

˜

X
p3q

k

Y
p3q

k

¸

“ ϕStrang
?
3
3
h

˜

X
p2q

k

Y
p2q

k

¸

,

˜

X
p4q

k

Y
p4q

k

¸

“

¨

˝

X
p3q

k exp
´

G1pW 1
k {2 ´

?
3H1

kq

¯

Y
p3q

k exp
´

G2pW 2
k {2 ´

?
3H2

kq

¯

˛

‚ ,

˜

Xk`1

Yk`1

¸

“ ϕStrang
3´

?
3

6
h

˜

X
p4q

k

Y
p4q

k

¸

, (6.12)

where ϕStrang
ch is defined as in (6.13) below. The Strang splitting steps enforce an additional

restriction that a12 ą 0, restricting us to ‘predator-prey’ and ‘competition’ classifications.

The Strang splitting also assumes that xt and yt are strictly positive, thus additional care

should be taken when this may break down.
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Remark 6.2.1. For the sake of numerical comparison with schemes designed for Itô SDEs,

we note that the SDE (6.11) may equivalently be written in Itô form as

d

˜

xt

yt

¸

“

˜

xt
`

b1 `G2
1{2 ´ a11xt ´ a12yt

˘

yt
`

b2 `G2
2{2 ´ a21xt ´ a22yt

˘

¸

dt`

˜

G1xt 0

0 G2yt

¸

dWt .

6.2.1 Derivation of Lotka-Volterra splitting

Applying the splitting path (5.4) we obtain the following series of ODEs

d

˜

x
p0q
r

y
p0q
r

¸

“
3 ´

?
3

6
h

˜

x
p0q
r pb1 ´ a11x

p0q
r ´ a12y

p0q
r q

y
p0q
r pb2 ´ a21x

p0q
r ´ a22y

p0q
r q

¸

dr ,

˜

x
p0q

0

y
p0q

0

¸

“

˜

x0

y0

¸

d

˜

x
p1q
r

y
p1q
r

¸

“

˜

G1p12W
1
s,t `

?
3H1

s,tqx
p1q
r

G2p12W
2
s,t `

?
3H2

s,tqy
p1q
r

¸

dr ,

˜

x
p1q

0

y
p1q

0

¸

“

˜

x
p0q

1

y
p0q

1

¸

d

˜

x
p2q
r

y
p2q
r

¸

“

?
3

3
h

˜

x
p2q
r pb1 ´ a11x

p2q
r ´ a12y

p2q
r q

y
p2q
r pb2 ´ a21x

p2q
r ´ a22y

p2q
r q

¸

dr ,

˜

x
p2q

0

y
p2q

0

¸

“

˜

x
p1q

1

y
p1q

1

¸

d

˜

x
p3q
r

y
p3q
r

¸

“

˜

G1p12W
1
s,t ´

?
3H1

s,tqx
p3q
r

G2p12W
2
s,t ´

?
3H2

s,tqy
p3q
r

¸

dr ,

˜

x
p3q

0

y
p3q

0

¸

“

˜

x
p2q

1

y
p2q

1

¸

d

˜

x
p4q
r

y
p4q
r

¸

“
3 ´

?
3

6
h

˜

x
p4q
r pb1 ´ a11x

p4q
r ´ a12y

p4q
r q

y
p4q
r pb2 ´ a21x

p4q
r ´ a22y

p4q
r q

¸

dr .

˜

x
p4q

0

y
p4q

0

¸

“

˜

x
p3q

1

y
p3q

1

¸

The second and fourth ODEs are relatively simple to deal with resulting in exponentials. To

deal with the first, third and fifth ODEs we again propose an ODE Strang splitting. We

note that these ODEs may equivalently be written in the following form:

d

˜

xr

yr

¸

“ ch

˜˜

xrpb1 ´ a11xrq

yrpb2 ´ a22yrq

¸

`

˜

´a12xryr

´a21xryr

¸¸

dr .

A Strang splitting applied to this then produces the following sequence of ODEs

d

˜

x̃
p0q
r

ỹ
p0q
r

¸

“ ch

˜

x̃
p0q
r pb1 ´ a11x̃

p0q
r q

ỹ
p0q
r pb2 ´ a22ỹ

p0q
r q

¸

dr ,

˜

x̃
p0q

0

ỹ
p0q

0

¸

“

˜

x

y

¸

,

d

˜

x̃
p1q
r

ỹ
p1q
r

¸

“ ch

˜

´a12x̃
p1q
r ỹ

p1q
r

´a21x̃
p1q
r ỹ

p1q
r

¸

dr ,

˜

x̃
p1q

0

ỹ
p1q

0

¸

“

˜

x̃
p0q

0.5

ỹ
p0q

0.5

¸

,

d

˜

x̃
p2q
r

ỹ
p2q
r

¸

“ ch

˜

x̃
p2q
r pb1 ´ a11x̃

p2q
r q

ỹ
p2q
r pb2 ´ a22ỹ

p2q
r q

¸

dr ,

˜

x̃
p2q

0

ỹ
p2q

0

¸

“

˜

x̃
p1q

1

ỹ
p1q

1

¸

,
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with the last ODE being solved for time r “ 0.5. These three ODEs are each solvable

explicitly, yielding the following solutions (we will not comment on the existence/uniqueness

of the ODE solutions here)

˜

x̃
p0q

0.5

ỹ
p0q

0.5

¸

“

ˆ

b1x exppchb1{2q

b1 ´ a11x` a11x exp pchb1{2q
,

b2y exppchb2{2q

b2 ´ a22y ` a22y exppchb2{2q

˙J

,

˜

x̃
p1q

1

ỹ
p1q

1

¸

“

ˆ

´ ã12c1 exppã12c1c2q

ã21 exppã12c1c2q ´ exppã12c1q
, c1 ´

ã21c1 exppã12c1c2q

ã21 exppã12c1c2q ´ exppã12c1q

˙J

,

˜

x̃
p2q

0.5

ỹ
p2q

0.5

¸

“

˜

b1x̃
p1q

1 exppchb1{2q

b1 ´ a11x̃
p1q

1 ` a11x̃
p1q

1 exppchb1{2q
,

b2ỹ
p1q

1 exppchb2{2q

b2 ´ a22ỹ
p1q

1 ` a22 ỹ
p1q

1 exppchb2{2q

¸J

,

where ã12 “ chˆ a12, ã21 “ chˆ a21,

c1 :“ ỹ
p0q

0.5 ´
a21
a12

x̃
p0q

0.5 , and ã12c1c2 :“ log
´

x̃
p0q

0.5

¯

´ log
´

ã12 ỹ
p0q

0.5

¯

.

We then define

ϕStrang
ch

˜

x

y

¸

:“

˜

x̃
p2q

0.5

ỹ
p2q

0.5

¸

. (6.13)

Combining everything we obtain the splitting method given above.

6.2.2 Numerical results

For our numerical experiments, we select the following parameters for the LV model

˜

b1

b2

¸

“

˜

0.5

´0.5

¸

,

˜

a11 a12

a21 a22

¸

“

˜

0.0001 0.01

´0.01 0.0001

¸

and

˜

G1

G2

¸

“

˜

0.5

0.5

¸

,

with initial value x0 “ y0 “ 10 . The model was simulated out to time T “ 1 (in part as

blow up was observed for the Euler scheme for times larger than T “ 5). These parameters

fall under the ‘predator-prey’ classification. We compare the splitting derived above with a

Strang splitting (5.3), a Lie Trotter splitting (5.1) and an Euler scheme. For the Strang and

Lie Trotter splitting, we again used the ODE Strang splitting (6.13). The observed strong

error rates are presented in Figure 6.3, where we observe that the proposed splitting achieves

a 3{2 strong order convergence rate and is more accurate than the other methods.

The timings for the compared numerical schemes, for a fixed h, are given in Table 6.3.

In Table 6.4 we compare the times required by each of the schemes to reach an accuracy of

SN “ 10´3, again we see that the proposed high order splitting performs the best out of

the compared schemes. The HS1 splitting is an order of magnitude faster than the other
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Fig. 6.3: Strong errors for (6.11), estimated from 1000 sample paths.

HS1 splitting (6.12) Strang splitting LT1 splitting Euler

12.26 6.83 3.66 0.87

Table 6.3: Compute time to simulate 1000 sample paths of (6.11) with 100 steps (seconds)

splitting schemes and we note the relative inadequacy of Euler scheme for the LV model.

Interestingly, here the LT1 splitting requires roughly 2 times the number of time steps to

achieve the same accuracy as the Strang splitting, but takes half as long to run. Making the

LT1 and Strang splittings comparable in terms of strong error performance for this example.

HS1 splitting (6.12) Strang splitting LT1 splitting Euler

1.26 21.11 21.29 „ 146, 000˚

Table 6.4: Estimated compute time to produce 1000 sample paths of (6.11) with an error of
SN “ 10´3 (seconds). p˚q based on Figure 6.3 the Euler method would require „ 224 steps to
achieve an accuracy of SN “ 10´3, in combination with Table 6.3 this gives an approximate time to
run of 40.5 hours.

Remark 6.2.2. It is worth noting the instability of the Euler scheme with the Lotka-Volterra

model, which was observed to quickly lead to numerical blowups. The choice of model

parameters was in part made to avoid this instability.
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6.3 Multilevel Monte Carlo

As described in Section 1.3, MLMC is a variance reduction technique often used to replace

the standard Monte Carlo estimator. The ‘multilevel’ part of the MLMC estimator involves

coupled ‘coarse’ and ‘fine’ estimates. For an increment only numerical scheme it is clear

how to couple the levels as Ws,t “ Ws,u ` Wu,t. In order to use the high order paths we

have introduced we note the following relation for the space-time Lévy area which allows us

to use the same Brownian paths across step sizes.

Hs,t “
1

4

`

Ws,u ´Wu,t

˘

`
1

2

`

Hs,u `Hu,t

˘

,

which follows by (5.26). Thus, we are able to generate a Brownian path for hl “ 2´l and

subsample to hl´1 “ 2´pl´1q. The space-time Lévy swing can also easily be coupled by

simply using the definition ns,t :“ sgnpHs,u ´Hu,tq. We also note that the space-time Lévy

swings over the sub intervals ns,u and nu,t are independent of ns,t.

6.3.1 Example: Interacting stock model

As noted in the introduction, the variance of the correction terms in the MLMC are controlled

by the strong error. In the following example, we compare the HS1 splitting with the Strang

splitting. As shown in Table 5.1 both these splittings achieve a weak order of Oph2q, but

the HS1 splitting achieves a strong order of Oph1.5q compared with the Strang splitting’s

Ophq. We are thus interested to explore what benefit can be gained using a higher order

(strong) scheme with MLMC.

For demonstration, we consider the following toy model. Let us consider a financial market

of M assets, with (risk-neutral) prices tSpiquMi“1 each obeying the following dynamics

dS
piq
t “

˜

rS
piq
t ´ βi

˜

S
piq
t ´

M
ÿ

j“1

c
piq
j S

pjq

t

¸¸

dt` σiS
piq
t dW

piq
t , (6.14)

with initial value S
piq
0 , where r is the risk free rate, βi ě 0 controls the reversion speed,

c
piq
j ě 0 and σi ě 0. The idea behind this model is that different assets may derive their

prices from each other. For example, you could have a two asset model of a commodity and

a manufactured good using that commodity. In which case the commodity may be assumed

to follow a geometric Brownian motion (GBM) and the manufactured good is expected to

cost some multiple of the commodity. We are then interested in pricing some derivative

whose price depends on the price of the M assets. For example, we may wish to price the
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equal-weighted basket call option with strike price K and payoff

˜

M
ÿ

i“1

S
piq
T ´K

¸

Ř

. (6.15)

Remark 6.3.1. As the model we introduce in (6.14) is linear, it would also be possible to

derive an exact solution. However, the resulting integrals would likely be difficult to couple

within the MLMC framework.

Numerical experiments

For our numerical experiments, we consider a three asset model. We label the assets X,Y

and Z. Assuming common reversion speed β, the system has the following dynamics

d

¨

˚

˝

Xt

Yt

Zt

˛

‹

‚

“

$

’

&

’

%

r

¨

˚

˝

Xt

Yt

Zt

˛

‹

‚

´ β

¨

˚

˝

¨

˚

˝

Xt

Yt

Zt

˛

‹

‚

´ Θ

¨

˚

˝

Xt

Yt

Zt

˛

‹

‚

˛

‹

‚

,

/

.

/

-

dt`

¨

˚

˝

σXXt 0 0

0 σY Yt 0

0 0 σY Yt

˛

‹

‚

dWt ,

where Θ denotes the interaction matrix defined by

Θ :“

¨

˚

˝

1 0 0

cyx 0 0

czx czy 0

˛

‹

‚

,

The solvability of the resulting ODEs is quite dependent on the choice of coefficients in our

interaction matrix. So, for simplicity, we set many values to zero and assume that cyx, czx

and czy are positive constants. This system then models a primary good X (following GBM),

a secondary good Y and some product derived from both: Z. Applying the splitting path

γHS2 (5.5) we arrive at the following splitting scheme:

¨

˚

˝

X
p1q

k

Y
p1q

k

Z
p1q

k

˛

‹

‚

“

¨

˚

˚

˚

˝

Xk exp
´

σX
`

W 1
k {2 `H1

k ´ C1
k{2

˘

¯

Yk exp
´

σY
`

W 2
k {2 `H2

k ´ C2
k{2

˘

¯

Zk exp
´

σZ
`

W 3
k {2 `H3

k ´ C3
k{2

˘

¯

˛

‹

‹

‹

‚

,

¨

˚

˝

X
p2q

k

Y
p2q

k

Z
p2q

k

˛

‹

‚

“ ϕ

¨

˚

˝

X
p1q

k

Y
p1q

k

Z
p1q

k

˛

‹

‚

,

¨

˚

˝

X
p3q

k

Y
p3q

k

Z
p3q

k

˛

‹

‚

“

¨

˚

˚

˚

˝

X
p2q

k exp
´

σXC
1
k

¯

Y
p2q

k exp
´

σY C
2
k

¯

Z
p2q

k exp
´

σZC
3
k

¯

˛

‹

‹

‹

‚

,

¨

˚

˝

X
p4q

k

Y
p4q

k

Z
p4q

k

˛

‹

‚

“ ϕ

¨

˚

˝

X
p3q

k

Y
p3q

k

Z
p3q

k

˛

‹

‚

,

¨

˚

˝

Xk`1

Yk`1

Zk`1

˛

‹

‚

“

¨

˚

˚

˚

˝

X
p4q

k exp
´

σX
`

W 1
k {2 ´H1

k ´ C1
k{2

˘

¯

Y
p4q

k exp
´

σY
`

W 2
k {2 ´H2

k ´ C2
k{2

˘

¯

Z
p4q

k exp
´

σZ
`

W 3
k {2 ´H3

k ´ C3
k{2

˘

¯

˛

‹

‹

‹

‚

,
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where, for β̃ :“ βh{2,

ϕ

¨

˚

˝

x

y

z

˛

‹

‚

:“ erh{2

¨

˚

˝

x

e´β̃y ` cyxp1 ´ e´β̃qx

e´β̃z ` β̃czye
´β̃y `

␣

czxp1 ´ e´β̃q ` cyxczx
`

1 ´ p1 ` β̃qe´β̃
˘(

x

˛

‹

‚

,

which may not be the most aesthetically pleasing splitting scheme we have presented, but

has the benefit that each ODE term from the splitting path is exactly solvable. As the

splitting scheme above is not difficult to derive, we will not present its derivation and instead

proceed straight to our numerical experiments.

We choose the following set of parameter values

r “ 0.05 , β “ 1 , cyx “ 1.5 czx “ czy “ 1 , σX “ σY “ σZ “ 0.2 ,

with initial values X0 “ $100, Y0 “ $150 and Z0 “ $250. With these parameters, Y is

expected to cost 1.5X and Z is expected to cost Y ` X. An example realisation of the

model is shown in Figure 6.4.

0 1 2 3 4 5

Time (years)

100

150

200

250

300

P
ric

e
($

)

Asset Z
Asset Y
Asset X

Fig. 6.4: Example price path for three interacting assets.

We price the ’out of the money’ basket option (6.15) with strike K “ 550 and expiry T “ 1.

We compare the results using a standard Monte Carlo estimator and the MLMC estimator.

To assess the impact of using a higher order strong scheme, we compare with the Strang

splitting. Both the Strang and the HS2 splitting are weak order Oph2q. For our numerical

experiments, we estimate the computational cost of each level Cℓ using the computational

time and apply the MLMC algorithm as described in [24, Algorithm 1].
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(c) Nl and number of levels for different levels of precision of ε. Left plot shows the Strang
splitting, and right plot the HS2.
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Fig. 6.5: Plots comparing MLMC performance for Strang splitting and HS2 splitting.

In Figure 6.5 we plot the results of applying the MLMC algorithm with the HS2 splitting and

a Strang splitting. From plot 6.5a we see that the HS2 splitting achieves a lower variance

and a faster rate of decrease across the different levels, when compared with the Strang

slitting. From plot 6.5b we see that the correction terms are smaller at each level for the

HS2 splitting. In Figure 6.5c, we see that the HS2 splitting requires fewer levels and fewer
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samples per level than the Strang splitting to achieve a set accuracy of ε. As displayed in

plot 6.5d, to achieve a given level of accuracy, the total computational cost (as defined in

(1.10)) of the HS2 splitting is thus lower than the Strang splitting. We thus see a clear

benefit from using the higher order splitting HS2.

6.4 Testing Long-time integration

As a small experiment, we consider here the example of the scalar anharmonic oscillator

dyt “ sinpytqdt` dWt . (6.16)

The motivation for this experiment is the paper [39] where it was shown that a non-Markovian

Euler scheme achieves a high order of convergence in the long time horizon, transitioning

from a 1st order weak scheme to a second order weak scheme (see their Figure 2). We are

thus interested if such behaviour can be observed for our splitting schemes.

Using either of the paths γSO1 (5.8) or γSO2 (5.9), we propose the following splitting

method for the anharmonic oscillator:

rY SR
k :“ Y SR

k ` C1 ,

rY SR
k` 2

3

:“ rY SR
k `

2

3

´

f
`

rY SR
k

˘

h` C2

¯

,

Y SR
k`1 :“ Y SR

k `
1

4
f
`

rY SR
k

˘

h`
3

4
f
`

rY SR
k` 2

3

˘

h`Wk , (6.17)

where C1 , C2 P Rd are the first two increments of the driving piecewise linear path γ. Both

paths γSO1 and γSO2 will achieve a strong order convergence of 3{2. For our numerical

experiments we use the path γSO2. This splitting method uses Ralston’s method [60] to

discretize the ODEs resulting from the splitting path. The derivation of (6.17) is presented

in our paper [19, Section 5.2]. The non-Markovian Euler scheme used in [39], follows a

simple modification of the Euler method (Definition 1.4):

Yk`1 :“ Yk ` fpYkqh`
1

2

`

Wtk´1,tk `Wtk,tk`1

˘

.

In Figure 6.6 we present the result of our experiment. The ‘L2 distribution error’ used to

compare the scheme is as described in [39], where a histogram describing the distribution

is constructed at each point in time. This estimated distribution is then compared using

an L2 distance with a histogram estimated with a finer time step. We see a similar trend

between the splitting and the non-Markovian Euler, where the error for both decreases with

time. However, in contrast to our previous numerical experiments, we do not see a benefit
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from using the splitting, and it in fact performs worse than the non-Markovian Euler. An

interesting question for future research is to see if the non-Markovian Euler can be improved

upon by including additional random variables such as the space-time Lévy area Hs,t we

have used here.
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Fig. 6.6: Comparison of splitting (6.17) with the non-Markovian Euler scheme, based on 106 samples.



Chapter 7

Conclusions and future work

In this thesis, we have presented a new simple methodology for designing and analysing

splitting methods for SDE simulation. The key idea is to replace the system’s Brownian motion

with a piecewise linear path. Moreover, for SDEs satisfying a commutativity condition, we

developed several high order splitting methods which displayed state-of-the-art convergence

in experiments. As part of this investigation, we also detailed how recently developed

estimators for iterated integrals of Brownian motion can be directly incorporated into such

methods. Since these estimators were simply obtained as the expectation of iterated integrals,

conditional on the generatable random variables, they are optimal in an L2pPq sense.

Furthermore, the results in this thesis may lead to several areas of future research:

• Development and analysis of methods inspired by splitting paths

For example, in the additive noise setting, the following Strong 1.5 Stochastic Runge-

Kutta method is based on the splitting path (5.11), but with Ks,t “ 0.

rY SRK
k :“ Y SRK

k ` σHk ,

rY SRK
k` 5

6

:“ rY SRK
k `

5

6

´

f
`

rY SRK
k

˘

h` σWk

¯

,

Y SRK
k`1 :“ Y SRK

k `
2

5
f
`

rY SRK
k

˘

h`
3

5
f
`

rY SRK
k` 5

6

˘

h` σWk . (7.1)

As (7.1) does not follow a high order splitting path or use Ralston’s method, it was

not included in Section 6.4 and thus we leave its analysis as future work. Similarly,

conducting error analyses and further numerical investigations for the Shifted Euler

and Runge-Kutta methods described in our paper [19, Section 5] is a future topic.

• Development of high order splitting methods for general SDEs

For example, the below method is a combination of the Strang splitting (5.3) and the

log-ODE method from rough path theory [50, Appendices A and B].

Yk`1 :“ exp

ˆ

1

2
fp¨qh

˙

exp

ˆ

gp¨qWk `
ÿ

iăj

“

gi , gj
‰

p¨qAijk

˙

exp

ˆ

1

2
fp¨qh

˙

Yk ,
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where rgi , gjsp¨q “ g1
jp¨qgip¨q ´ g1

ip¨qgjp¨q is the standard vector field Lie bracket and

Ak “ tAijk u1ďi,jďd is the Lévy area of the Brownian motion over rtk , tk`1s. If Ak is

replaced by a random matrix rAk , with the same mean and covariance, we expect

the resulting splitting method to achieve Oph2q weak convergence. Similarly, we

expect that the Ninomiya-Ninomiya [53] and Ninomiya-Victoir [55] weak second order

schemes can be reinterpreted as path-based splittings.

• Incorporating adaptive step sizes into pppWk ,Hk , nkqqq-based methods

Since it is possible to generate both pWs,u ,Hs,u , ns,uq and pWu,t ,Hu,t , nu,tq condi-

tional on pWs,t ,Hs,t , ns,tq, where u “ s` 1
2h is the midpoint of rs, ts, the proposed

splitting methods can be applied using an adaptive step size. Such a methodology

was detailed and initially investigated in [14, Chapter 6].

• Application to high-dimensional SDEs in physics and data science

High-dimensional SDEs have seen a variety of real-world applications, ranging from

molecular dynamics [38, 48] to machine learning [31, 33, 41, 63, 67, 69]. Therefore, it

would be interesting to investigate whether the splitting methods developed in this

paper could improve algorithms used in these applications.

• Systematic comparison with cubature methods on Wiener space for weak

approximations of SDEs

As discussed briefly in Section 4.4 our analysis draws inspiration from previous work on

Cubature on Wiener space [26, 44]. Indeed, the path based perspective and emphasis

on the algebraic structure of the iterated integrals is shared with our work; However,

a systematic methodological and numerical comparison with Cubature is outside the

scope of this thesis and so is left as a topic for future research. One would expect

Cubature to outperform Monte Carlo methods given a smooth payoff and a limited

number of steps, but (multilevel) Monte Carlo is much easier to use in practice.
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Rough Paths. Vol. 1908 of Lecture Notes in Mathematics. Springer, 2007.

[44] Terry Lyons and Nicolas Victoir. ‘Cubature on Wiener space’. In: Proceedings of the

Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences

460.2041 (2004), pp. 169–198.

[45] Shev MacNamara and Gilbert Strang. ‘Operator splitting’. In: Splitting methods in

communication, imaging, science, and engineering (2016), pp. 95–114.

[46] Xuerong Mao, Glenn Marion and Eric Renshaw. ‘Environmental Brownian noise

suppresses explosions in population dynamics’. In: Stochastic Processes and their

Applications 97.1 (2002), pp. 95–110.

[47] Aaron Meurer et al. ‘SymPy: symbolic computing in Python’. In: PeerJ Computer

Science 3 (Jan. 2017), e103. ISSN: 2376-5992. DOI: 10.7717/peerj-cs.103. URL:

https://doi.org/10.7717/peerj-cs.103.

[48] Grigori N. Milstein and Michael V. Tretyakov. Stochastic Numerics for Mathematical

Physics. Springer, 2004.

[49] Tetsuya Misawa. ‘Numerical integration of stochastic differential equations by

composition methods’. In: Dynamical systems and differential geometry (Japanese).

1180. 2000, pp. 166–190.

[50] James Morrill et al. ‘Neural Rough Differential Equations for Long Time Series’. In:

Proceedings of the 38th International Conference on Machine Learning (2021).

[51] James Morrill et al. ‘On the Choice of Interpolation Scheme for Neural CDEs’. In:

Transactions on Machine Learning Research (2022).
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Nomenclature

BMS Battery management system

CALCE Centre for Advanced Life Cycle Engineering

CC Constant-current

CC-CV Constant-current constant-voltage

CV Constant-voltage

DOD Depth of discharge

DOE OE U.S. Department of Energy’s Office of Electricity

DST Dynamic stress test

ECM Equivalent circuit model

EIS Electrochemical impedance spectroscopy

EOL End of life

EV Electric vehicle

eVTOL Electric vertical takeoff and landing

FUDS Federal Urban Driving Schedule

HEV Hybrid electric vehicles

HPPC Hybrid power pulse characterisation

HWFET Highway Fuel Economy Driving Schedule

IR Internal resistance

LCO Lithium cobalt oxide (LiCoO2)

LFP Lithium iron phosphate (LiFePO4)

LMO Lithium ion manganese oxide (LiMn2O4)

NASA National Aeronautics and Space Administration

NCA Lithium nickel cobalt aluminium oxide (LiNiCoAlO2)

NMC Lithium nickel manganese cobalt oxide (LiNiMnCoO2)

OCV Open-circuit voltage

RPT Reference performance tests

RUL Remaining useful life

SOC State of charge

SOH State of health

UDDS Urban Dynamometer Driving Schedule

105



Chapter 8

A brief outline of part II

As a complete departure from the first part of this thesis, we now turn our attention to the data-driven

analysis of Lithium-ion batteries. The work contained here comes from a series of papers published in

the area. As each paper contains its own introduction, we point the reader to these for a description

of relevant advances and background knowledge for this study.

Chapter 9 presents an extensive review of battery datasets in the public domain.

In Chapter 10, we begin our efforts to understand the degradation of batteries: introducing the novel

concept of ‘elbows’ to describe a key inflection point for the internal resistance (IR) of cells and

presenting a machine learning model for their prediction. We also present here a model to estimate

the IR of cells from cycling data, this has the additional output of completing an existing dataset

which did not contain IR data.

In Chapter 11, we continue our investigation into the degradation of batteries. We show that the full

lifetime capacity and IR curves can be described by a few key points. We then present a model which

can predict these key values from any single individual cycle of data. From this prediction, we can

then predict the full degradation of a battery over its lifetime. Prediction from one cycle as presented

here was a novel idea and has a distinct advantage over previous approaches: which require multiple

cycles of data and are largely restricted to early life prediction. The results we present here have

particular application to the assessment of ‘second life’ batteries, which is a growing area of interest

because of the necessity to reduce the waste associated with replacing used cells. At the time of

publication our results represented an improvement over past results both in terms of required input

data, versatility and accuracy.

In Chapter 12, we return to the question of data with a particular emphasis on experimental design.

We answer the question of how many cells need to be tested to accurately capture cell-to-cell

variability, up to specified levels of accuracy and confidence. This analysis is intended to assist the

rigorous design of experiments while reducing operational costs and maximising informational gain.

We supplement our analysis by presenting its application to several disparate datasets, and proposing

two different approaches to experimental design which leverage our results.
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Chapter 9

Review of publicly available data for

Li-ion batteries.

The work in this chapter is taken from our paper [58], which was a joint work with Dr. Shawn Li, my

supervisor Prof. Gonçalo dos Reis and Mohit Yadav MSc.

Abstract

Lithium-ion batteries are fuelling the advancing renewable-energy based world. At the core of

transformational developments in battery design, modelling and management is data. In this work,

the datasets associated with lithium batteries in the public domain are summarised. We review the

data by mode of experimental testing, giving particular attention to test variables and data provided.

Alongside highlighted tools and platforms, over 30 datasets are reviewed.

9.1 Introduction

Lithium batteries currently dominate the battery market and the associated research environment.

They display favourable properties when compared to other existing battery types: high energy

efficiency, low memory effects and proper energy density for large scale energy storage systems and

for battery/hybrid electric vehicles (HEV) [136]. Given these facts, lithium production has been

expanding rapidly and the use of lithium batteries is wide spread and increasing [56].

From design and sale to deployment and management, and across the value chain [105], data

plays a key role informing decisions at all stages of a battery’s life. During design, data-informed

approaches have been used to accelerate slower discovery processes such as component development

and production optimisation (for electrodes, electrolytes, additives and formation) [128, 129]. At

sale, they can classify batteries based on expected lifetime [78, 197]. At deployment, data on the

expected lifetime and performance of batteries – for a range of chemistries, geometries, capacities

and manufacturers – can help to determine the best battery for a given application: under different

ageing stresses such as various charge/discharge currents [23, 197, 205], operating temperatures [54,

161, 185], depth of discharges (DODs) [29, 193] and periods of disuse [111, 171]. In use, the battery

management system (BMS), controlling the battery’s operation, relies heavily on data both for its

own design and for the training and calibration of the models it uses.
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Data driven approaches are showing great promise and proof of this is the growing body of literature

exploring the interplay between data-driven techniques and battery applications [7, 106, 144, 233].

The approach has been deployed in the design of new models for the estimation of state of health

(SOH) [112, 166, 179, 183], state of charge (SOC) [36, 39] and internal resistance (IR) [123, 172];

the prediction of remaining useful life (RUL) under cycling degradation [78, 197, 214], calendar

ageing [130] and from electrochemical impedance spectroscopy (EIS) data [246]; the identification

and prediction of phase change-points in capacity fade curves (knees) [78] and IR rise curves (elbows)

[210]; new general online estimation methods for advanced BMSs [150]. Moreover, the data-driven

paradigm has been used to improve fault detection [40, 151, 238], charge management [127, 135],

thermal management [198] and so much more: from materials development based on atomistic

principles [50] to techno-economic analysis [175–177, 215] and approaches to recycling [250].

Batteries are subjected to a wide range of operating conditions in turn influencing their performance,

and thus, data covering these conditions is fundamental to the design and validation of accurate

models. Physics-based and empirical models, often used in the BMS or ‘in the cloud’ with new

‘digital twin’ approaches [121, 233], require careful calibration of model parameters; and, machine

learning and statistical based approaches require large amounts of data for training and perform

poorly when predicting ‘out of distribution’ (in circumstances which differ greatly from those present

in the data used to train the models). Within their vast scope of deployment, batteries undergo

application specific degradation: the demands placed on an electric vehicle (EV) battery – periods of

high, varying, load followed by extended rest – are quite different from those placed on powertools,

laptops, cellphones, stationary energy storage, aeroplanes or satellites. For this reason, application

specific data is needed and we bring attention to this in our discussion.

Well formatted and easily accessible public datasets will bring ‘fresh eyes’ to problems. Not everyone

has access to a Lab to run experiments or the funds required to purchase data. Data that remains

local to its generating lab can be leveraged only by a tiny fraction of a wide community of experts.

The benefits of public data are numerous: researchers performing experiments gain a reference for

their design and new insights into their data as other researchers with cross-domain expertise employ

it; modellers and industry profit greatly from the ability to validate results and speed up discovery on

public data; and, the barrier to entry is lowered for those new to an area. More data means more

research and research is essential for economic growth, job creation and societal progress [76].

The main contribution of this work is to provide an actionable summary of publicly available

lithium-ion battery data, giving particular attention to explored test variables and provided data.

With this information, we hope to inform future research and experimental design, and encourage

the sharing of new, accessible and well formatted datasets. To assist the reader, at the end of the

main sections we provide tables summarising the presented datasets by cell, test variables, given data

and number of cells with hyperlinks.

This work is organised as follows. The accessible testing data is categorised in Section 9.2 according

to type and includes datasets available on request. Tools, libraries, platforms and a perspective on

current limitations are covered in Section 9.3. Section 9.4 contains the conclusion of this review work

and is followed by a nomenclature listing.

Links to data: All web links have been verified (at final submission). The links are given with

bibliographical number and direct hyperlinks attached to the word ‘URL’.
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License: Datasets are provided under certain license attributions mainly according to Creative

Commons [46, URL], the Open Database License [149, URL] and the Database Contents License

[148, URL]. We refer to the supplementary material Section 1 for a summary description of the

shorthand nomenclature.

Reference for 18650 type cells: Where full cell descriptions for a dataset were not given by the

generating authors we refer to the resource [147, URL] which provides an extensive reference for the

identification of 18650 type batteries.

9.2 Where is the Data?

Historically, interest in different cell chemistries, testing conditions and procedures evolved reflecting

the technological improvements batteries underwent. The first significant public battery dataset can

be traced back to 2008 published by NASA [47]. As new battery chemistries appeared, the interest

shifted from lithium iron phosphate (LFP) to lithium nickel manganese cobalt oxide (NMC) and

lithium nickel cobalt aluminium oxide (NCA) batteries. Both NMC and NCA chemistries are better

suited for power tools, e-bikes and other electric powertrains as they offer higher specific energy,

reasonably good specific power and long lifespan. In Fig.9.1, a hierarchical architecture of existing

battery datasets across time is given. The number of cells tested and the variety of testing variables

explored has increased with growing interest in data-driven techniques and a desire to understand

more complex interactions.
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Fig. 9.1: Hierarchical architecture of the existing battery datasets from an historical point of view.

Cell chemistry, number of tested cells and testing conditions are key to determine the usefulness

of a specific battery dataset. We provide a comprehensive examination of the available datasets, in

particular, highlighting these three elements.

https://creativecommons.org/licenses
https://opendatacommons.org/licenses/odbl/
http://opendatacommons.org/licenses/dbcl/1.0/
https://docs.google.com/spreadsheets/u/1/d/1fYjDxxCJXfm2wdpGWCaOUGq8V8TOEgsnplHQa4YQpRQ
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9.2.1 Cycle ageing data

The generation of cycling data from the beginning to the end of a battery’s life requires a significant

investment of time and resources spanning many months or years. Experiments are run to investigate

the influence of in-cycle factors (charging current, discharging current, temperature and DOD) on

the capacity retention and (sometimes) rise in the internal resistance of batteries. Typically, cycle

ageing datasets include in-cycle measurements of current, voltage and temperature, and per-cycle

measurements of capacity and IR or impedance.

Models are then developed according to the recorded cycling dataset to, among other things, predict

future capacity retention, internal resistance growth and other health metrics. An overview of the

typical recorded data and modelling pipeline for cycling (in particular, high-throughput) degradation

datasets is illustrated in Fig.9.2.

Cell housing 
temperature

Terminal voltage 
measurements

Terminal current 
measurements

Incremental capacity analysis Resistance rise path Capacity drop path

High throughput cycling data

Related ageing analysis

Fig. 9.2: The typical plots of a high-throughput cycling dataset encompassing measured terminal
current, voltage and temperature variations. Capacity, IR, voltage and temperature can then be used
for the ageing analysis.

We prioritise in this section datasets with multiple cells, frequent in-cycle measurements and labs

with multiple datasets. Smaller datasets (with only a few cells) and datasets without any in-cycle

measurements are left to the end of this section (section 9.2.1). The reader is invited to consult

Table 9.2, at the end of the section, for an overview of the datasets discussed here.
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National Aeronautics and Space Administration

NASA hosts two high-throughput battery datasets on their website [163, URL] totalling 62 cells. We

provide here a brief description of the datasets, for a full cell-by-cell experimental description see the

‘ReadMe’ file accompanying the datasets.

The first of these datasets ‘Battery Data Set’ [185] contains data for 34 Li-ion 18650 cells with

a nominal capacity of 2Ah (we were unable to confirm the chemistry of these cells). This dataset

was also the first publicly available battery dataset and has had a profound impact on the field;

Table 9.1 summarises representative research work drawing on this dataset, giving a glimpse at its

influence. Cells were cycled in a range of ambient temperatures (4 °C, 24°C, 43°C), charged with

a common CC-CV protocol and with different discharging regimes. The dataset includes in-cycle

measurements of terminal current, voltage and cell temperature, and cycle-to-cycle measurements of

discharge capacity and EIS impedance readings. The dataset is provided in ‘.mat’ format under a

double-attribution license1. The experiments were ended when cell capacity fell below 30% or 20%

of nominal capacity.

The second dataset hosted by NASA, the ‘Randomised Battery Usage Data Set’ [23], contains data

for 28 lithium cobalt oxide (LCO) 18650 cells with a nominal capacity of „2.2Ah. The cells in this

dataset were continuously operated. The dataset consists of 7 groups of 4 cells each group cycled at

a set ambient temperature (room temp, 40°C); for 5 of these groups the cells were CC-charged to

a fixed voltage and then discharged with currents selected at random from the group’s discharge

distribution table (7 different regimes). The other two groups were randomly charged and discharged.

The dataset includes in-cycle measurements of terminal current, voltage and cell temperature, and

measurements of discharging capacity and EIS impedance readings at 50 cycle intervals. The dataset

is provided in a ‘.mat’ format and measurements appear to have been taken until the cells reached

between 80% to 50% SOH.

Category SOH estimation and RUL

prediction

Health prognostics and fault

diagnostics

Battery modelling Algorithms introduction

and comparison

Ref [24, 101, 146, 159, 186, 187,

249]

[73, 124, 213] [132, 234] [192]

Table 9.1: NASA dataset repository: Related papers and the corresponding research conducted. (See
additionally Supplementary material Table 3 for full details.)

Centre for Advanced Life Cycle Engineering

The Centre for Advanced Life Cycle Engineering (CALCE) battery group has carried out

substantive cycling tests for a diverse range of LCO/graphite cells. These datasets are hosted

on their website [31, URL] – publications using the data should cite the corresponding CALCE

article(s). Data is grouped by cell specification and not all data for a given specification

comes from the same publication. We provide here a brief description of the datasets, for a

full experimental description see the description on the website and the associated papers.

1. As per the NASA description: ‘Publications making use of databases obtained from this [the NASA]
repository are requested to acknowledge both the assistance received by using this repository and the donors
of the data.’

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://web.calce.umd.edu/batteries/data.htm
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CALCE hosts data for 15 LCO prismatic CS2 cells grouped by experimental conditions (and

publication) into ‘Type-1’ to ‘Type-6’. ‘Type-1’ and ‘Type-2’ accompany one paper [94]

and ‘Type-3’ to ‘Type-6’ another [232]. Type-1’ consists of four 0.9Ah cells, ‘Type-2’ of

four 1.1Ah cells and ‘Type-3’ to ‘Type-6’ each contain between one and two 1.1Ah cells.

The cells appear to have been cycled at room temperature (23°C) and the experiments

investigate different depths and ranges of partial charge and discharging, with a variety

of C-rates. The dataset provides the cell cycler logs in Excel or ‘.txt’ format containing

measurements of current, voltage, discharge/charge capacity and energy, internal resistance

and impedance. For each cell there are multiple files each containing the data for multiple

cycles; the files are named according to the date at which they were recorded and, in our

opinion, a significant amount of pre-processing is required to use this dataset. The data was

recorded until batteries had (at least) passed their end of life (EOL), 80% SOH, with less

than 200 cycles of data for the ‘Type-1’ batteries and approximately 800 cycles for the other

cells.

The second set of cells tested by CALCE are 12 LCO prismatic CX2 cells with a rated

capacity of 1.35Ah. Which, similarly to the CS2 cells, are grouped into ‘Type-1’ to ‘Type-6’.

‘Type-1’ and ‘Type-2’ (four cells each) were cycled in the same way as ‘Type-1’ of the

CS2 cells [235]. The other four groups each have a single cell cycled with a variety of

charge/discharge protocols; one of the cells was cycled at a range of temperatures (25°C,
35°C, 45°C, 55°C). The datasets are provided in the same format as the CS2 data with the

same measurements.

In subsequent battery experiments [193], the group examined the influence of different depths

of discharge (DOD) and discharging current stresses on the ageing of pouch cells: testing 16

LCO 1.5Ah pouch cells in a ‘semi-temperature controlled’ room (25˘2°C) [193]. The dataset
is grouped by DOD and discharging protocol, provided in ‘.mat’ format, containing cycler

voltage, current and charge/discharge capacity data for between 400 and 800 ‘equivalent

cycles’.

Toyota Research Institute in partnership with MIT and Stanford

In partnership with MIT and Stanford, the Toyota Research Institute (TRI) has published

two substantial and easy to use high-throughput cycling datasets. Combined, these datasets

contain data for 357 p“ 124 ` 233q commercial LFP/graphite cells manufactured by A123

Systems (APR18650M1A) with a rated capacity of 1.1Ah. These two datasets are hosted

online [216, URL], with accompanying experimental descriptions, under ‘CC BY 4.0’2. The

2. To avoid confusion with Constant Current (CC), we add quotation marks when referring to a Creative
Commons License.

https://data.matr.io/1
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datasets are provided in ‘.csv’, MATLAB struct and (second dataset only) JSON struct

formats and a link to a GitHub repository with initial scripts is provided with the data. We

point to the file structure of these datasets as a reference for future work: organised by cell

Ñ cycle Ñ recorded data. Papers utilising the data should cite the appropriate publication.

The first of these datasets [197] (124 cells) was designed to explore the influence of fast

charging protocols on cell ageing. Each cell was cycled with one from a range (72 different

profiles) of one or two step fast charging protocols and a common CC-discharge protocol.

The cells were cycled in a temperature controlled environment (30°C). Data was logged from

cycle 2 until a cell reached its EOL (80% SOH) – between 150 to 2300 cycles. The dataset

contains in-cycle measurements of temperature, current, voltage, charge and discharge

capacity, as well as per-cycle measurements of capacity, internal resistance and charge time.

The data is split into three batches corresponding to three blocks of experiments carried out

separately. In the accompanying paper [197] a feature based model is built on data from the

first 100 cycles to predict the EOL. Since the dataset’s release, numerous other papers have

been published working with this data.

The second of these datasets [6] (233 cells) builds on the first: designing an approach to

quickly optimise fast charging protocols. Again, cells were cycled in a temperature controlled

environment (30°C) with a common discharging protocol. The dataset is split into five

batches of between 45 and 48 cells each; these batches were tested sequentially: for the first

batch one of 224 different six-step charging protocols was chosen at random for each cell,

the cells were tested for 100 cycles and then a model (trained on previously collected data)

was used to predict the EOL based on this data. This prediction was used to inform the

selection of charging protocols for the next batch of cells. This was repeated with the first

four batches; the final batch was then tested until past the EOL comparing the selected

optimal charging protocols with several other protocols. The dataset contains the same

readings as the first dataset of 124 cells [197] except for the exclusion of IR readings. An

attempt has been made to recover this missing data [210] where the IR has been predicted

with a CNN model trained on the first dataset; this predicted IR data can be found online

[211, URL].

Sandia National Lab

The Sandia National Lab has performed testing for three chemistries of 18650 form cells:

‘LFP from A123 Systems (APR18650M1A, 1.1Ah), NCA from Panasonic (NCR18650B,

3.2Ah), and NMC from LG Chem (18650HG2, 3Ah)’ [161]. In total there are 86 cells (30 LFP,

24 NCA and 32 NMC). The data from this study has been made available on the Battery

Archive website [189, URL] – see Section 9.3.1 below. The data is shared under a double

attribution license and on the website is denoted by the ‘SNL’ keyword. The experimental

description is available on the Battery Archive page and in the relevant publication [161].

https://doi.org/10.7488/ds/2957
https://www.batteryarchive.org/snl_study.html
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The cells were cycled at a range of temperatures (15°C, 25°C and 35°C) with different

DODs (0-100%, 20-80% and 40-60%) and discharge currents (0.5C, 1C, 2C and 3C); at

least 2 cells from each chemistry were cycled in each combination of temperature, DOD

and discharge current (12 groups) apart from the 3C discharge for the NCA cells. All cells

were charged with a fixed rate of 0.5C. The cells were cycled until reaching their EOL

(80% SOH) – at the time of publication cycling was still ongoing. The dataset contains

in-cycle measurements of current, voltage, temperature and energy (Wh), and per-cycle

measurements of charged/discharged capacity (bottom to top of DOD range) and other

summary statistics. Periodically (roughly every 3% capacity loss), EIS measurements were

taken measuring the full capacity of the cell. The data is provided in ‘.csv’ format

Battery Intelligence Lab at the University of Oxford

The Battery Intelligence Lab at the University of Oxford hosts several battery degradation

datasets on their homepage [104, URL]. We review here the ‘Path dependence battery

degradation dataset’ [171] which is made of three parts. The files are provided under ‘.mat’

format and all are licensed under Open Data Commons’ ODbL v1.0 & DbCL v1.0 license.

The dataset parts can be found as follows: Part 1 [104, URL] or [168, URL]; Part 2 [169,

URL]; and Part 3 [170, URL].

The 3-year long project [171], spanning 2017-2020, studied ageing ‘path dependence’ of

Li-ion cells by subjecting them to combined load profiles comprising fixed periods of calendar

and cyclic ageing. The path dependence phenomena reflects the ageing sensitivity of cells

to the order and periodicity of calendar ageing and cyclic ageing. The study analysed 28

commercial 3Ah 18650 NCA/graphite cells (NCR18650BD). The dataset is provided in 3

parts (Part 1, 2 & 3) with the 28 cells split among ten groups (9 groups of 3 cells; 1 group

of 1 cell), all tested at 24°C. We provide a small breakdown for reference and point to the

informative ‘ReadMe’ files. The data provided includes time, current, voltage, capacity and

temperature, and the RPT and EIS testing data.

Group 1-4, 3 cells per group, were aged through cycling at a low C rate (C/2 and C/4)

followed by 5 or 10 days of calendar ageing with RPTs run every 48 cycles. The first

18-months of experimental data is presented in ‘Part 1’ with months 19-36 presented in ‘Part

2’. Additional to cell Groups 1-4, in Part 2 one finds Group 5 & 6 as control experiments.

The cells of Group 5 are exposed to continuous C/2 cycling while Group 6 is exposed only

to calendar ageing (at 90% SOC). Group 7-10 are presented in the dataset’s ‘Part 3’ and

parallels Group 1-4. Here, each group is cycled with CC-CV profiles then 5 or 10 days of

calendar ageing. Reference performance tests (RPT) and EIS tests are used periodically to

characterise the cells to differentiate the influence of different storage times and C-rates on

battery degradation.

http://howey.eng.ox.ac.uk/data-and-code/
http://howey.eng.ox.ac.uk/data-and-code/
https://doi.org/10.5287/bodleian:v0ervBv6p
https://doi.org/10.5287/bodleian:2zvyknyRg
https://ora.ox.ac.uk/objects/uuid:78f66fa8-deb9-468a-86f3-63983a7391a9
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Hawaii Natural Energy Institute

Researchers from the Hawaii Natural Energy Institute (HNEI) investigated the variability

of cell degradation across 51 cells through cycling [51]. Data for 15 of these cells is shared

on the Battery Archive website [10, URL] (denoted by ‘HNEI’ dataset). These 15 cells are

commercial 2.8Ah NMC-LCO/graphite 18650 cells (LG Chem, model ‘ICR18650 C2’). The

cells were cycled with fixed 1.5C discharge and C/2 charge protocols at 25°C for „1000 cycles.

The dataset contains in-cycle measurements of current, voltage and charged/discharged

capacity and energy, and per cycle measurements of charge/discharge capacity. Roughly

every 100 cycles RPTs were run which are also present in the data. Files are in ‘.csv’ format

and shared under ‘CC BY 4.0’ plus ‘source attribution’ to Battery Archive. Additional

experimental details and cell summary statistics (e.g. initial cell weight and received SOC)

can be found in the accompanying paper [51].

EVERLASTING project

The recent European Commission funded project ‘Electric Vehicle Enhanced Range, Lifetime

And Safety Through INGenious battery management’ (EVERLASTING) [77, URL] has

published several battery related datasets on the ‘4TU.ResearchData’ website [102, URL].

Of particular interest are the three datasets connected with the technical report produced

by the project [218]. The report explores ageing from three different angles: drive cycle,

calendar and CC-CV ageing at a range of temperatures; the datasets are described in the

relevant sections of our paper.

Of these datasets, one experiment ‘Lifecycle ageing’ was carried out to investigate the

interactions between temperature, charge/discharge C-rates and capacity loss. These

experiments were performed on 28 Li-ion 18650 3.5Ah commercial cells for a range of

temperatures (0°C, 10°C, 25°C and 45°C), discharge C-rates (0.5C, 3C) and charge C-

rates (0.5C, 1C). Two cells were tested at each possible pairing of temperature/charge-

rate and temperature/discharge rate (except for 0°C discharge). All ‘charge’ (‘discharge’)

experiments had a common discharge (charge) profile. The data is hosted separately grouped

by temperature (0°C and 10°C) [90, URL] and (25°C and 45°C) [219, URL]. The provided

data is in ‘.csv’ format with cycler logs (including voltage, current, charge/discharge capacity

and energy) from characteristic cycles run roughly every two months – it is unclear if the

data is complete.

https://www.batteryarchive.org/study_summaries.html
https://everlasting-project.eu/
https://data.4tu.nl/
https://dx.doi.org/10.4121/14377295
http://dx.doi.org/10.4121/13739296.v1
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Others

The Karlsruhe Institute of Technology (KIT) provides cycling data for 4 battery packs each

consisting of 11 NMC/graphite 40Ah cells on their website [206, URL] (under ‘CC BY 4.0’).

The batteries were cycled, at room temperature, in series with a range of charge/discharge

profiles (detailed in the relevant paper [205]). The dataset provides high frequency (cell-by-

cell and battery wise) measurements of voltage, temperature and inverter current/voltage

for each of the tested charge/discharge profiles. The dataset is provided in well structured

folders with ‘.csv’ files and a starter MATLAB script.

Provided on the University College London (UCL) data website [96, URL] is cycling data

for a single 3.5Ah LG Chem NCA INR18650 MJ1 cell, given under ‘CC0 1.0’. The cell was

cycled according to the manufacturers recommendations in a fixed ambient temperature

(24°C) for 400 cycles [97]. The dataset provides in-cycle measurements of temperature,

voltage and capacity, and per-cycle measurements of charge/discharge capacity, given in

‘.csv’ format.

Berkeley provides data from a single Sanyo 18650 3.7V 2.6Ah LCO/graphite cell on the

Dryad Data website [92, URL] (under ‘CC BY 4.0’). The cell was cycled with a variety

of non-standard fast charging protocols. The dataset contains in-cycle measurements of

voltage, current, temperature and charge/discharge capacity for 46 consecutive cycles and is

provided in ‘.csv’ format.

Researchers from Xi’an Jiaotong University [244, 245] deploy the Coulomb counting method

in combination with data-driven techniques to propose methods for SOC calibration and

estimation. Both works use the same cycling data for battery cells under a regime of fast

capacity degradation. The cells full physical description is found in the relevant paper [245,

Table 1]. To summarise, two lithium-ion pouch cells with chemistry NMC/graphite and

nominal capacity of 27Ah were cycled from new until reaching 80% capacity. The cells were

cycled with a CC-CV charge and CC discharge followed by a 30min relaxation period between

cycles; the chamber’s temperature was fixed at 40°C and a total of about 400 cycles is

recorded. The full cycling data and description file can be found in the paper’s supplementary

material [245] and it is unclear under which sharing license it is offered. However, provided

separately [243, URL] under ‘CC0 1.0’ are the first 100 cycles of data (in ‘.xlsx’ format).

The experimental data recorded is: battery voltage, current, charging/discharging capacity

and energy.

Diao et al. [54] provide a dataset considering the influence of ambient temperature,

discharging current stress and cut-off points of charging current for CC-CV cell ageing. This

dataset is hosted on the Mendeley data platform [52, URL] and shared under ‘CC BY-NC

3.0’. In the experiment, 192 LCO/graphite pouch-type 3.36Ah cells were tested using the

above three stress factors. The dataset contains capacity measurements taken at 50 cycle

intervals, is given in ‘.mat’ format and only 182 of the 192 cells appear to be listed.

https://dx.doi.org/10.5445/IR/1000094469
https://dx.doi.org/10.5522/04/12159462.v1
https://datadryad.org/stash/dataset/doi:10.6078/D1MS3X
http://dx.doi.org/10.17632/c5dxwn6w92.1
http://dx.doi.org/10.17632/c35zbmn7j8.1
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Researchers at Poznan University of Technology provide data for 28 Samsung NMC/carbon

2.6Ah 18650 cells on the Mendeley data platform [30, URL] (under ‘CC BY 4.0’). The cells

were cycled at a variety of temperatures, DODs and charging/discharging currents until

reaching 80% SOH. The dataset consists of ‘learning data’ from 28 cells containing summary

measurements of ambient temperature, discharging current, DOD, average charging current

and number of equivalent cycles for cells at a range of SOH values (9 measurements from

100% to 80% SOH), given in ‘.xlsx’ format. This data was used in the paper [29] to train

several models to predict the cell’s current SOH.

Lastly, we mention data, shared by researchers at the University of Oviedo under ‘CC

BY 4.0’, for two LFP pouch cells [68, URL]. The cells were tested at room temperature

(23°C) for a single full charge/discharge cycle at a constant current rate of C/25 [67]. The

dataset contains voltage, current and temperature readings, from the charge/discharge cycle,

sampled every 2s for a total experimental time of 60 hours (details can be found in the

associated paper [67, Section 5]).

https://dx.doi.org/10.17632/k6v83s2xdm.1
http://dx.doi.org/10.17632/r4n22f4jfk.1
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Location Paper Cell Test variables Data given No. of
with weblink Ref (form size chemistry) cells

NASA [163, URL]
[185] 18650 2Ah (?) Dhrg, T Q, IR, V, I, T 34
[23] 18650 2.2Ah LCO Chrg, Dhrg, T Q, IR, V, I, T 28

CALCE [31, URL]
[94, 235] prismatic 1.1Ah LCO Chrg, Dhrg Q, IR, E, V, I, T 15
[94, 235] prismatic 1.35Ah LCO Chrg, Dhrg, T Q, IR, E, V, I, T 12
[193] pouch 1.5Ah LCO Chrg, DOD Q, V, I 16

TRI [216, URL]
[197]

18650 1.1Ah LFP/gr
Chrg Q, IR, V, I, T 124

[6] Chrg Q, V, I, T 233

Sandia [189, URL] [161] 18650 multiple Dhrg, DOD, T Q, E, V, I, T 86

Oxford [104, URL] [171] 18650 3Ah NCA/gr Chrg, Cal Q, E, V, I, T 28

HNEI [10, URL] [51] 18650 2.8Ah NMC-LCO/gr – Q, E, V, I 15

EVERLASTING
[218] 18650 3.5Ah NCA/gr Chrg, Dhrg, T Q, E, V, I 28

[90, URL] [219, URL]

KIT [206, URL] [205] — 40Ah NMC/gr Chrg, Dhrg V, I, T 44
UCL [96, URL] [97] 18650 3.5Ah NCA/gr – Q, V, T 1

Berkeley [92, URL] – 18650 2.6Ah LCO/gr Chrg Q, V, I, T 1
Xi’an Jiaotong [243, URL] [244, 245] pouch 27Ah NMC/gr – Q, E, V, I 2

Diao et al.[52, URL] [54] pouch 3.36Ah LCO/gr Chrg, Dhrg, T Q 192
Poznan [30, URL] [29] 18650 2.6Ah NMC/carbon Chrg, Dhrg, DOD, T Q, I, T 28

Table 9.2: Overview of cycle ageing datasets. ‘gr’ stands for ‘graphite’, ‘Cal’ denotes calendar ageing, ‘Chrg’ charge protocol and ‘Dhrg’ discharge, ‘E’
denotes ‘energy’. Here, we use ‘IR’ to denote both internal resistance and impedance. No ‘test variables’ indicates that all cells in the experiment were cycled
in the same way.

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://web.calce.umd.edu/batteries/data.htm
https://data.matr.io/1/
https://www.batteryarchive.org/snl_study.html
http://howey.eng.ox.ac.uk/data-and-code/
https://www.batteryarchive.org/study_summaries.html
https://dx.doi.org/10.4121/14377295
http://dx.doi.org/10.4121/13739296.v1
https://dx.doi.org/10.5445/IR/1000094469
https://dx.doi.org/10.5522/04/12159462.v1
https://datadryad.org/stash/dataset/doi:10.6078/D1MS3X
http://dx.doi.org/10.17632/c5dxwn6w92.1
http://dx.doi.org/10.17632/c35zbmn7j8.1
https://dx.doi.org/10.17632/k6v83s2xdm.1
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9.2.2 Drive cycle data

Energy is required to propel an automobile. With a conventional internal combustion engine

the combustion of fossil fuels, converted to mechanical energy, drives the vehicle forward.

However, with global concern surrounding greenhouse gas levels there is an urgent push for

the automobile industry to reduce carbon emissions. For this reason, standardised testing

procedures capturing the dynamic power demands of driving are indispensable: allowing

the relative efficiency and performance of engines to be compared. These standard test

procedures are referred to as driving cycles.

A driving cycle is a standardised dynamic vehicle drive schedule encoded by a velocity-time

table/profile. The velocity and acceleration are pre-scheduled per time step, and thus the

required mechanical power is a function of time. The integral of mechanical power over the

duration of the driving schedule represents the total energy required for a specific driving

cycle. For electric vehicles the battery system generates this required mechanical energy.

Datasets collected by cycling batteries according to the drive schedules can be used to

compare the efficiency of EVs with traditional vehicles and to test the performance of derived

battery models and SOC estimation algorithms under realistic conditions.

The globally recognised driving cycle tables can be divided into three groups: European

driving cycles, US driving cycles and Asian (Japanese, Chinese -Beijing) driving cycles [27,

74]. For example, the Urban Dynamometer Driving Schedule (UDDS) [44] is commonly

used for ‘city-based EV driving cycle tests’ representing light-duty city driving conditions.

US06 represents an aggressive driving cycle with high engine loads. The european drive

cycle ARTEMIS [3] contains 12 driving cycles that range across several driving conditions:

congested urban, free-flow urban, secondary roads, main roads and motorways. The Highway

Fuel Economy Driving Schedule (HWFET) is used to describe cars cruising under 60mph on

a highway. And, the Air Resources Board LA92 dynamometer driving profile was developed

to depict a driving cycle with higher top and average speed, lower idle time, fewer stops per

mile and a higher maximum rate of acceleration when compared with UDDS.

An overview of driving cycle data reviewed in this section can be found in Table 9.5.

University of Wisconsin-Madison & McMaster University

The battery research group at the University of Wisconsin-Madison offers a battery testing

dataset covering four typical driving cycles: US06, HWFET, UDDS and LA92. The dataset,

published on the Mendeley data website [116, URL] (under ‘CC BY 4.0’), contains data

from a single 2.9Ah NCA Panasonic 18650PF cell. The cell was cycled according to

the above driving cycles and an additional ‘neural network driving cycle’ systematically

through a range of temperatures (25°C, 10°C, 0°C, -10°C, and -20°C, in that order). A full

experimental description can be found in the accompanying ‘ReadMe’ file. The dataset

http://dx.doi.org/10.17632/wykht8y7tg.1
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includes characterisation data from Hybrid Power Pulse Characterisation (HPPC) and EIS

tests, and in-cycle measurements from the driving cycles including voltage, current, capacity,

energy and temperature. The data is presented in ‘.mat’ and ‘.csv’ files with a well structured

format sorted by temperature, test type and drive cycle.

The same group, but operating at McMaster University, provides another driving schedule

test dataset for a series of battery tests carried out for a single 3Ah LG Chem INR18650HG2

NMC cell [114, URL]. The cell was cycled at six different ambient temperatures (40°C, 25°C,
10°C, 0°C, -10°C, and -20°C) according to the same mix of drive cycles as the Panasonic cell.

The dataset contains the same data as for the Panasonic cell (in a similar format) with the

addition of ‘prepared data’ which has been processed in order to train and test a provided

SOC estimator.

The above two driving cycle datasets, hosted by University of Wisconsin-Madison and

McMaster University, provide a benchmark for driving cycle tests and are at the heart of

crucial contributions in the development of SOC estimation algorithms and battery models;

some of these works are reviewed in Table 9.3 and Table 9.4.

Category Ref Detail

SOC estimation
[38] This paper introduces a data-driven approach for State of Charge (SOC) estimation of Li-ion

batteries using a Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM).

[15] This paper proposed a stacked bidirectional LSTM neural network for SOC estimation of

lithium-ion batteries.

Battery modelling
[247] In this paper, the potential of applying advanced machine learning techniques to model lithium-

ion batteries is explored. Rather than using the more common ECM and physics-based models,

a data-driven approach is used to build battery models.

[115] In this paper, ECMs of lithium-ion batteries are built to capture various the electrochemical

properties of the battery. The ECMs are validated by a series of five automotive drive cycles

performed at temperatures ranging from -20°C to 25°C.

Table 9.3: Panasonic 18650PF Li-ion Battery Data: Related paper and the corresponding research
conducted.

Category Ref Detail

SOC estimation
[225] This paper introduces a data-driven approach for State of Charge (SOC) estimation of Li-ion

batteries using a Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM).

[224] This paper proposed a stacked bidirectional LSTM neural network for SOC estimation of

lithium-ion batteries.

Table 9.4: LG 18650HG2 Li-ion Battery Data: Related paper and the corresponding research
conducted.

Others

Researchers from the University of Science and Technology of China (USTC) have explored

the co-estimation of model parameters and SOC for batteries and ultra-capacitors [230].

The data accompanying this research has been shared in the journal ‘Data in Brief’ [229,

URL] along with an experimental description, under ‘CC BY 4.0’. A lithium battery pack

(LFP-1665130-10Ah, produced by Fujian Brother Electric CO., LTD of China – 4 prismatic

cells in series) and an ultra-capacitor (BCAP3000 P270 2.7V/3.0Wh, produced by Maxwell

http://dx.doi.org/10.17632/cp3473x7xv.3
https://doi.org/10.1016/j.dib.2017.01.019
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Technologies, Inc.) were each cycled once according to two different driving cycles (DST and

UDDS) at room temperature. The dataset, provided in ‘.xlsx’ format, contains per second

measurements of current and voltage for the battery and ultracapacitor during the two drive

cycle profiles.

The EVERLASTING project provides two drive cycling datasets both shared under ‘CC

BY-NC 4.0’. The first of these datasets [48, URL] contains data for two battery modules

each built from 16 NCA/graphite 3.5Ah LG Chem INR18650 MJ1 cells. The modules were

cycled at a variety of temperatures according to an ‘adapted real driving profile’. The

dataset contains in-cycle measurements of pack voltage, current, charge/discharge capacity,

ambient temperature and per-cell temperature. The second of these datasets, described

in the EVERLASTING report [218], contains data for 16 NCA 3.5Ah LG Chem INR18650

MJ1 cells cycled according to a recorded city drive profile for two DOD ranges (70-90%

and 10-90%) and at a variety of temperatures (0°C, 10°C, 25°C and 45°C) – 2 cells per

combination. In addition, 2 cells were cycled according to a recorded highway drive profile

at 25°C (10-90% DOD). This dataset is stored in two locations according to temperature:

(10°C and 0°C) [90, URL] and (45°C and 25°C) [219, URL]. The datasets are both in ‘.csv’

format but with different information depending on the temperature. The cells cycled at

25°C and 45°C include measurements of voltage, current and charge/discharge capacity and

energy; whereas, the data for the cells at 0°C and 10°C has a different file structure and

additionally includes temperature readings.

The Oxford Battery Intelligence Laboratory provides the ‘Battery Degradation Dataset 1’

[18] on their website [104, URL], licensed under Open Data Commons’ ODbL & DbCL. This

dataset contains data for eight 740mAh lithium-ion pouch cells manufactured by Kokam

(part number SLPB533459H4). The cells were cycled at a constant ambient temperature

(40°C) using a CC-CV charging regime and the ARTEMIS [3] driving cycle discharging

profiles until their EOL (80% SOH). The dataset is provided in ‘.mat’ format containing

voltage, temperature and discharge capacity (mAh) measurements. These measurements

(taken at 10 minute intervals) were recorded during characterisation tests performed every

100 cycles. A full experimental description can be found in the PhD thesis of C. Birkl [18,

Chapter 5.2].

The Institute for Power Electronics and Electrical Drives at Aachen University hosts drive

cycling data for 28 Samsung 18650 NCA/carbon+silicon cells with a nominal capacity

of 3.4Ah on their website [110, URL] (under ‘CC-BY-4.0’). The cells were cycled at a

fixed ambient temperature (25°C) with a CC-CV charging regime and a recorded drive

cycling discharge profile. The dataset contains in-cycle measurements of voltage, current

and temperature, and checkup tests every 30 cycles with capacity, quasi open-circuit voltage

(OCV) and pulse tests (at 80%, 50% and 20% SOC). The dataset is provided in ‘.csv’ format

and a detailed experimental description can be found in the accompanying ‘MetaData’ file.

https://doi.org/10.4121/14096567
https://dx.doi.org/10.4121/14377295
http://dx.doi.org/10.4121/13739296.v1
http://howey.eng.ox.ac.uk/data-and-code/
https://publications.rwth-aachen.de/record/815749


9.2. Where is the Data? 122

For completeness, we mention a dataset available to ‘IEEE DataPort’3 subscribers [133,

URL], under ‘CC BY 4.0’, containing data from simulated driving cycles composed according

to the Federal Test Procedure repository. We point the reader to the data description given

on their website.

Location Cell Test variables Data recorded No. of
with URL (form size chemistry) cells

Madison [116, URL] 18650 2.9Ah NCA cycle, T Q,V, I, E, T, EIS 1
McMaster [114, URL] 18650 3Ah NMC cycle, T Q,V, I, E, T, EIS 1

USTC [229, URL] prismatic 10Ah LFP cycle V, I 1

EVERLASTING 18650 3.5Ah NCA/gr
[48, URL] 16 cell modules T Q,V, I, T 2
[90, URL] [219, URL] 18650 3.5Ah NCA/gr cycle, DOD, T Q,V, I, E, T 18

Oxford [104, URL] pouch 0.74Ah — – Q,V, T 8
Aachen [110, URL] 18650 3.4Ah NCA/C+Si – Q,OCV, V, I, T 28

Table 9.5: Overview of Driving cycle data. ‘cycle’ here denotes the use of different drive cycle
profiles, ‘E’ denotes ‘energy’. No ‘test variables’ indicates that all cells in the experiment were cycled
in the same way.

9.2.3 Characterisation data for cell modelling

The cycling performance of different lithium battery chemistries is varying and highly

dependent on operating conditions (temperature, current load, age). To evaluate the viability

of lithium batteries to a given application, features of battery performance such as the

OCV-SOC table, impedance and IR are necessary. These cycling features can then be used to

model the electrical dynamics and cycling performance of a battery. The experimental data

collected for this purpose mainly targets the short-term responses of current and voltage,

and focuses on the impedance variance at different battery SOC levels and temperatures.

In-cycle battery data

The CALCE battery group has piloted the research in terms of battery modelling and internal

state estimation providing a series of baseline in-cycle datasets for cells from different

types of lithium batteries [31, URL] (under ‘attribution’ license). Two experiments, namely,

low-current OCV and incremental-current OCV, have been deployed to collect OCV for

commercial INR 18650-20R 2Ah NMC/graphite cells. The OCV dataset includes different

OCV-SOC tables achieved at three ambient temperatures (0°C, 25°C and 45°C). Voltage
responses under different dynamic current profiles, such as, the Dynamic Stress Test (DST),

Federal Urban Driving Schedule (FUDS), US06 Highway Driving Schedule and Beijing

3. This dataset is not ‘public’ but we are aware that many readers may have IEEE memberships. We have
not verified the contents of this dataset.

http://dx.doi.org/10.21227/ce9q-jr19
http://dx.doi.org/10.17632/wykht8y7tg.1
http://dx.doi.org/10.17632/cp3473x7xv.3
https://doi.org/10.1016/j.dib.2017.01.019
https://doi.org/10.4121/14096567
https://dx.doi.org/10.4121/14377295
http://dx.doi.org/10.4121/13739296.v1
http://howey.eng.ox.ac.uk/data-and-code/
https://publications.rwth-aachen.de/record/815749
https://web.calce.umd.edu/batteries/data.htm
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Dynamic Stress Test, are provided to test the accuracy of the proposed SOC estimation

algorithms [95, 236] and analyse the dependence of SOC estimation on OCV variations due to

temperature [248]. Since the OCV-SOC table is temperature-sensitive, further investigation

has been conducted by CALCE battery group providing a temperature-dependent OCV-SOC

dataset for 2.23Ah A123 LFP/graphite cells. The temperature-dependent OCV-SOC dataset

is collected from low current OCV tests for a wide range of temperatures spanning from

-10°C to 50°C with an interval of 10°C. Additionally, the experimental data of DST and

FUDS tests performed in the corresponding ambient temperatures is available. All data is

given in ‘.xlsx’ format and provided is the data from the OCV tests and in-cycle data from

the drive cycles (including voltage, current, charge/discharge capacity and energy, IR and

impedance).

In order to develop an advanced model which reproduces the thermal and electrical dynamics

of the battery, Planella et al. [160] at Warwick University tested the cycling behaviours of

commercial 5Ah LG INR21700 M50 NMC cells with a range of ambient temperatures (0°C,
10°C and 25°C) and C-rates (0.1C, 0.5C, 1C and 2C). In their experiments, four cells are

tested per specific C-rate and temperature. The dataset, along with experimental description

and additional scripts, is hosted on Github [79, URL] (under BSD 3-Clause License). The

data is the cycler logs given in ‘.csv’ format containing voltage, current, capacity, energy

and temperature readings from cycles run to compare the derived model with real data.

Few works have been conducted to test the discharging power behaviour of cells. One publicly

available dataset [141, URL], under ‘CC BY-NC 3.0’, has investigated the behaviour of 4

types of 18650 Li-ion cells, produced by 4 different cell manufacturers (LG 18650-HB6 1.5Ah

NMC, Panasonic NCR18650B 3.35Ah NCA , Shenzhen IFR18650 1.5Ah LFP and Efest

IMR18650 3.1Ah LMO – between 8 and 13 cells per manufacturer), at different constant

power discharge rates [142] and a constant ambient temperature (25°C). In particular,

the experiments were designed to capture the available power response of cells at high

(out of specification) current loads. The provided data, given in ‘.csv’ and ‘.mat’ format,

appears to contain cycler logs for each cell (spanning „6 hours) with voltage, current,

temperature, charge/discharge capacity and power measurements, however, no column

headings or ‘ReadMe’ file are given.

Impedance Spectroscopy data

Applying electrochemical impedance spectroscopy (EIS) to measure the impedance of lithium

batteries is widely accepted in battery research [223]. EIS can separate the dependence

of different components by varying the frequency of applied AC currents. Allowing the

contribution of the solution resistance, charge transfer/polarisation resistance, double layer

capacity, wire inductance etc., to be interpreted from the measured responses. The EIS

provides a tool to understand and model the complicated non-linear electrochemical process

https://github.com/brosaplanella/TEC-reduced-model
http://dx.doi.org/10.17632/ptxpzt876r.1
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occurring inside a battery. A typical characterisation process for a lithium battery, using EIS

measurements according to the frequency domain analysis and modelling, can be found [80];

the frequency setting of EIS inputs are standard for most systems: ranging from 20mHz

to 10kHz. In general, high-frequency EIS responses are considered indicative of inductive

behaviour and low-frequency responses indicative of capacitive behaviour.

Fig. 9.3: A typical Nyquist plot: Battery characterisation using EIS measurements

As given in Fig. 9.3, the Nyquist representation of an impedance spectrum (acquired from

the lithium battery test) is used to fit an equivalent circuit model (ECM) – an ECM provides

a simplified battery model as a circuit of standard components whose parameters are fitted to

approximately replicate the measured response. The lithium Nyquist plot can, in general, be

divided into three parts based on the frequency responses. In the high-frequency segment the

inductive behaviour of wires is dominant, contributed to by the cables impedance, fittings,

connectors, cell tabs and current collectors. Over the middle-frequency segment the shape

of the Nyquist plot behaves like a depressed semi-circle, representing the charge transfer

resistance and double-layer capacitance, its shape affected by the temperature. For the

low-frequency segment the slower ion-diffusion process dominates the cell dynamics and

measuring the resistance response here takes longer to perform. In addition, this process can

be influenced by many factors, such as electrode material, porosity, operating temperatures,

SOC and voltages. Typically, cell capacitance has a very steep slope (around 90 degrees).

As illustrated in Fig.9.3, at points the frequency responses behave closely to those of a

capacitor.

One of the largest broad-scale datasets of EIS measurements has been shared on the ‘zenodo’

platform [246, URL] (under ‘CC BY 4.0’) containing over 20,000 EIS readings collected from

12 Eunicell LR2032 45mAh LCO/graphite cells. The cells were cycled at a range of different

temperatures (25°C, 35°C and 45°C) with multiple frequencies of EIS measurements taken

at different SOC levels. The experiment was stopped when cells reached their EOL (80%

SOH). The dataset was recorded to accompany research exploring the prediction of RUL and

SOH from EIS data [246]. The provided data contains the EIS measurements (resistance,

impedance and phase at a range of frequencies) and, separately, measurements of capacity

in ‘.txt’ format.

https://doi.org/10.5281/zenodo.3633835
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In Section 9.2.7 below, we refer to another EIS dataset [156] available upon request.

9.2.4 Calendar ageing

Calendar ageing ‘comprises all ageing processes that lead to the degradation of a battery

cell independent of charge-discharge cycling’ [111]. Such ageing is most pronounced in

applications where periods of idleness are longer than operation, such as with electric vehicles.

It is argued that calendar ageing may also play a role in cycle ageing studies where cycle

depths and current rates are low [200]. In this section we overview datasets dedicated to

calendar ageing see Table 9.6 for an overview of the datasets.

Outside the battery cycling data, the CALCE group has also studied calendar ageing and a

dataset appears on their website [31, URL] (‘Pouch Cells: Storage Data and Test Description’):

144 LCO/graphite 1.5Ah pouch-type cells with three different initial SOC values (0%, 50%

and 100%) were calendar aged at four different storage temperatures (-40°C, -5°C, 25°C
and 50°C). There are three testing groups, 48 cells per group, with capacity and impedance

measurements taken every 3 weeks, 3 months and 6 months, respectively. The dataset is

provided in ‘.xls’ format and contains the cycler data (current, voltage, charge/discharge

capacity and energy, internal resistance and impedance) from the periodic characterisation

cycles.

Group 6 in ‘Part 2’ [212, URL] of the Oxford ‘Path dependence battery degradation dataset’

[171] contains the data of one single cell exposed to continuous calendar ageing at 90%

SOC. We do not provide further details here and refer the reader to the description given

already in Section 9.2.1.

As part of the EVERLASTING project [77] (see Section 9.2.1) calendar ageing was performed

on several NCA/graphite 18650 3.5Ah LG Chem cells (model INR18650 MJ1). The testing

was carried out for a range of temperatures (0°C, 10°C, 25°C and 45°C) and the cells were

stored at OCV with different initial SOC levels (10%, 70% and 90%). The data shared

online does not appear to be complete; however, data for 2 cells stored at 25°C [217, URL],

3 cells stored at 0°C and 3 cells stored at 10°C [89, URL] is available. The provided data is

in ‘.csv’ format, shared under license ‘CC BY-NC 4.0’, and contains cycler data (voltage,

current, capacity and energy) from characterisation tests performed periodically.

Lastly, we refer the reader to Section 9.2.7 regarding ‘Data on demand’. We mention

the dataset made available by Dr Dhammika Widanalage (Warwick Manufacturing Group,

Warwick University (UK)) which contains many cells tested under calendar ageing.

https://web.calce.umd.edu/batteries/data.htm
https://doi.org/10.5287/bodleian:2zvyknyRg
https://dx.doi.org/10.4121/13804304.v1
https://dx.doi.org/10.4121/14377184.v1
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Location Cell Test variables Data recorded No. of
with URL (form size chemistry) cells

CALCE [31, URL] pouch 1.5Ah LCO/gr SOC, T, time Q, IR, E, V, I 144

Oxford [212, URL] 18650 3Ah NCA/gr – Q, E, V, I, T 1

EVERLASTING
18650 3.5Ah NCA/gr SOC, T Q, E, V, I 8

[217, URL] [89, URL]

Table 9.6: Overview of Calendar Ageing degradation data. Here, ‘time’ denotes the frequency at
which ageing was interrupted to take measurements.

9.2.5 Aeroplanes, satellites and energy storage

Beyond traditional cycling, calendar and drive cycle ageing, there are a few public datasets

containing battery cycle data from more specialist applications. We review here four datasets

relating to usage in aeroplanes, satellites and energy storage.

Aeroplane usage battery data

Another NASA Ames Prognostics Data Repository [163, URL] dataset is the ‘HIRF Battery

DataSet’ [118]. It contains usage data from one single battery powering a small electric

unmanned aerial vehicle [101]. The data in provided in ‘.mat’ format under a double

attribution license (see Section 9.2.1) a ‘reference document’ is provided on the NASA

website explaining the file structure and experimental details.

Researchers from Carnegie Mellon University provide the ‘eVTOL Battery Dataset’ [16,

URL] (shared under ‘CC BY-NC-SA 4.0’). The dataset consists of discharge data from 22

Sony-Murata 18650 3Ah VTC-6 cells cycled with simulated Electric Vertical Takeoff and

Landing (eVTOL) duties [17]. The data is provided in ‘.csv’ format and includes voltage,

temperature, current and charge/discharge capacity and energy measurements. The provided

‘ReadMe’ file and corresponding paper [17] give a full experimental description. This dataset

is the first of its kind: providing public eVTOL data.

Simulated satellite operation profile battery data

The last dataset hosted by NASA [163, URL] that we report on is the ‘Small Satellite

Power Simulation Data Set’ [117]. The dataset is provided in ‘.mat’ format under a double

attribution license (see Section 9.2.1). It contains data for two BP930 batteries (off-the-shelf

18650 Li-ion cells rated at 2.1Ah) run ‘continuously with a simulated satellite operation

profile completion for a single cycle’ – experimental description in the corresponding paper

[32, Section IV]. Additional details and data descriptions can be found by consulting the

‘reference document’ provided on the NASA website.

https://web.calce.umd.edu/batteries/data.htm
https://doi.org/10.5287/bodleian:2zvyknyRg
https://dx.doi.org/10.4121/13804304.v1
https://dx.doi.org/10.4121/14377184.v1
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://doi.org/10.1184/R1/14226830
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
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Stationary energy storage

Researchers from the University of Oxford and ‘EnergyVill’, with data provided on the Oxford

Research Archive [174, URL], built a battery ageing model to serve a techno-economic

analysis for grid-connected batteries [175–177]. Six Kokam 16Ah lithium polymer cells

(model SLPB-78205130H) were aged following profiles corresponding to optimal trading

strategies for stationary batteries in the Belgian day-ahead market of 2014. Experimental

details can be found in the mentioned references and the PhD thesis of J. Reniers [177].

The cycling ageing tests were performed for up to one year to record the entire battery

degradation process from the beginning of life to EOL. This dataset contains measured

current, voltage and operating temperatures at „200 second intervals, and monthly capacity

measurements (details provided in ‘ReadMe’ file). Files are given in ‘.csv’ format and the

database is shared under both the ODbL v1.0 and DbCL v1.0 license.

9.2.6 Synthetic data

Data driven approaches require data; thus, a lack of data is a significant barrier to their

use. The obvious solution of collecting more data, covering a wide range of operating

conditions, is expensive and time-consuming. Another approach is to use the available data

to generate more data. This can be achieved by perturbing the data (data augmentation)

or by generating artificial data. In this subsection we will review examples of the latter:

producing so-called synthetic data for battery cells. Synthetic data can enhance existing

datasets improving the performance of trained models and allowing for interpolation between

cycling conditions not included in the experimental data. This interpolation step may be

particularly important to data driven approaches enabling prediction ‘outside the distribution’

of the experimental data.

Here, we briefly describe one approach [165] to generate synthetic current and voltage

data. For the generation of current curves a Markov chain approach can be used: transition

probability matrices are constructed from real EV cycling data and then by iterating through

the matrices (Markov chain propagation) synthetic current data can be obtained. From the

generated current profile ‘voltage cluster centroids’ (the average value of temporally local

voltage clusters obtained via k-means clustering) can then be predicted by a neural network

trained on real data. These clusters have been shown to provide an effective feature for the

prediction of SOC [164].

A comprehensive synthetic diagnostic dataset containing more than 500,000 individual

voltage vs. capacity curves has been generated alongside a prognostic dataset with more

than 130,000 individual degradation paths for a commercial graphite based LFP battery [64].

The diagnostic datasets [60, URL] and the prognostic dataset [61, URL] are both available

on the Mendeley data website under a ‘CC BY 4.0’ license. The data is given in ‘.mat’

format.

https://doi.org/10.5287/bodleian:gJPdDzvP4
http://dx.doi.org/10.17632/bs2j56pn7y.1
http://dx.doi.org/10.17632/6s6ph9n8zg.1
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9.2.7 Data by request

Research projects are often subject to restrictions on the public release of generated datasets,

however, upon publication some authors make their data ‘available upon request’. This

section briefs on such works and the corresponding datasets.

We mention here research carried out at the University of Warwick (UK). Dr Dhammika

Widanalage, the principal investigator for the project, has provided us with the following

description: ‘Warwick University (UK) has been conducting thorough ageing tests on a

batch of commercial LG M50 21700 cells (graphite/Si-NMC811). These tests consider two

types of cell ageing: calendar and cycling. The calendar ageing tests cover four different

ambient temperatures (0°C, 25°C, 45°C, and 60°C) and thirteen different initial SOC settings.

Three cells were tested for each combination of ambient temperature and initial SOC. The

cycling ageing tests consist of cells cycled at a variety of current C-rates for two low ambient

temperatures (0°C and 10°C); the cells were immersed in an oil bath for thermal management.

For all experiments (calendar and cycling) RPT were performed periodically to measure

capacity losses, IR growth, and to log the pseudo-OCV values. In detail, first the discharge

capacity was measured by the CC discharging protocol then the resistance at five different

SOC levels (100%, 80%, 50%, 20%, 5%) was measured using pulse charge/discharge HPPC

tests. The RPT procedures were run every four weeks for the calendar ageing tests and

approximately every two weeks for the cycling ageing tests.’ The above described experiments

provide a comprehensive ageing dataset and set a benchmark for future data collection.

The ageing data can be used for the analysis, modelling, prediction and tracing of ageing

trajectories. Unfortunately, an external link to freely access the data cannot be offered.

However, the datasets and on-going research progress (corresponding experimental cell

data) are available for academic use, on request. If interested, please contact Dr Dhammika

Widanalage via email Dhammika.Widanalage@warwick.ac.uk.

Other researchers at the University of Warwick have performed an ageing investigation

based on EIS measurements for four NCA 18650 cells [155, 156]. Their EIS dataset has

been deposited onto the university data repository [154, URL] and is accessible by request.

Additional research manuscripts making use of datasets that remain private but whose

authors point that the research datasets are available by request are listed in Table 9.7. A

fuller description of their data and experimental work is detailed in the works themselves

and summarised in Supplementary material Section 3 (expanding Table 9.7).

Applications Ref Data features

SOC/SOH estimation
[202] real-word EV data; bulk datasets (300 EV & 400 HEV); battery pack health; NMC batteries;

long-term test (over 12 months);used for big data analysis and machine learning method

[203] single cell tests (3 cells); SOC/SOH; statistical data-driven model fusion; 18650 LCO; DST

and capacity tests

Battery modelling
[181] a small batch of cells tested (51 cells/20 cells); cylindrical and pouch cells; NMC and NMC-LMO

batteries; varied temperatures and accelerated ageing tests; electrical/thermal/ageing modelling

[126] a few cells tested (27 cells); calendar ageing test; long-term tests (over one year); NCA batteries;

varied temperatures and initial SOC; calendar ageing modelling

Dhammika.Widanalage@warwick.ac.uk
http://wrap.warwick.ac.uk/87247
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Fault identification
[40] 31 NMC cells; charge profiles (rate ranged from 4C-9C); data driven method; Li-Plating; 450

cycles; 30°C test temperature; capacity, end-of-charge rest voltage (EOCV), open circuit voltage

(OCV), and Coulombic efficiency (CE) were recorded

Capacity related early heath

prognostics/ RUL prediction

[53] a small batch of cells tested (35 cells); NMC batteries; early fault detection; real data collected

on production lot samples; data-driven methods

[158] a few of cells tested; varied temperatures; incremental capacity analysis; LFP, NCM capacity

data

Table 9.7: Non-publicly available Battery Data: Related paper and the corresponding research
conducted. (See additionally Supplementary material Section 3.)

9.3 Data governance, repositories, tools and future outlook

Lithium batteries have been widely deployed and a vast quantity of battery data is generated

daily from end-users, battery manufacturers, BMS providers and other original equipment

manufacturers. Two elements are key in enabling the value of data: accessibility and ease of

use. If no one can find or understand a public dataset it has no value. And, much of the time

spent pre-processing data could be saved given a widely used standard publication format.

In this section, we review data platforms and online repositories that can be used to host

data; tools for data validation and processing; and community maintained living reviews

9.3.1 Data repositories and platforms

Data storage platforms provide a common and easily navigable location to find and (possibly)

share data. They also promote standardisation in data format and descriptions. We point

here to several repositories hosting public battery data.

• Scholarly usable, citable and freely accessible

1. Battery Archive [10, URL]: Battery archive, developed at the City University

of New York Energy Institute, provides a free repository of battery testing data

which is easily searchable by cell chemistry, form, capacity and test variables.

Different datasets, shared by various institutions, have common file formats

and the website provides easy access to the data. We highlight their ‘rules for

metadata’ section proposing a common nomenclature to use for descriptions of

cells and cycling conditions.

2. DOE OE [57, URL]: The U.S. Department of Energy’s Office of Electricity (DOE

OE) has collaborated with two national labs, Sandia National Laboratories and

Pacific Northwest National Lab, to carry out battery research addressing energy

storage risk assessment and mitigation. Their website provides free access to the

resulting research data including abuse tests, cycling tests and EIS measurements.

3. NREL [145, URL]: The National Renewable Energy Laboratory is a national

laboratory of the U.S. Department of Energy’s Office of Energy Efficiency and

Renewable Energy, operated by the Alliance for Sustainable Energy, providing

free battery datasets to aid in the development of cell models and tools to

https://www.batteryarchive.org/study_summaries.html
https://www.sandia.gov/energystoragesafety-ssl/research-development/research-data-repository/
https://www.nrel.gov/research/data-tools.html
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facilitate the deployment of renewable energy. Regarding their battery research,

well-rounded testing data encompassing the failure data collected from hundreds

of abuse tests (nail penetration, thermal abusing, and internal short-circuiting),

ageing cycling data, driving cycle data and other commercial oriented battery

operating data (collected from EV operation) has been provided.

• Public Digital data repositories

There are several curated data platforms that make research data discoverable, freely

reusable and citable. A non-exhaustive list of the publicly accessible data repositories

where battery data has been deposited is outlined as follows.

1. Dryad [59, URL]

2. Zenodo [240, URL]

3. European federation of data driven innovation hubs [75, URL]

4. Mendeley data centre [140, URL]

5. 4TU.ResearchData [102, URL]

6. Google Database [88, URL]

9.3.2 Community maintained reviews and standards

There are a few community maintained online resources listing publicly available battery

datasets. The approaches taken to curate such lists differ but represent a critical initial

step from the community to make public datasets more accessible and understandable.

This review includes, at the time of publication, the datasets in these referred community

maintained resources and several other datasets with corresponding descriptions. Researchers

with knowledge on where to find battery datasets are heartily invited to contribute to the

living reviews listed below.

• Community databases of publicly available battery datasets maintained by

1. Dr. Valentin Sulzer (University of Michigan): [222, URL]

(by way of private communication, this resource is no longer maintained)

2. Dr. Bolfazl Shahrooei (Iranian Space Research Center): [8, URL]

(community maintained and active)

• Standards and identification references

1. BatteryStandards.info [12, URL]: Website containing information on around

400 standards for rechargeable batteries including: battery test standards across

categories such as characterisation tests, safety tests, performance tests and

requirements.

2. An extensive identification reference for lithium-ion Battery of size-type 18650

covering brand, model, capacity, chemistry, max charge/discharge and link to

product specification datasheet is presented in: [147, URL].

https://datadryad.org/stash
https://zenodo.org/
https://euhubs4data.eu/datasets
https://data.mendeley.com/
https://data.4tu.nl/
https://blog.google/products/search/discovering-millions-datasets-web/
https://docs.google.com/spreadsheets/d/183uKKd0JTV46tGFsfvM-OetvHHSELlL26Cetm6bJDDw
https://docs.google.com/spreadsheets/d/10w5yXdQtlQjTTS3BxPP233CiiBScIXecUp2OQuvJ_JI
https://www.batterystandards.info/intro
https://docs.google.com/spreadsheets/u/1/d/1fYjDxxCJXfm2wdpGWCaOUGq8V8TOEgsnplHQa4YQpRQ
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9.3.3 Data processing and validation tools

Battery cycling data is highly complex. Different cycling protocols, cycler manufacturers

and experimental configurations make it difficult to compare datasets and validate models.

As a result, several high quality open source packages have been created to perform data

processing, parsing and validation. We provide a non-exhaustive summary of available tools.

• Tools for data management and validation4

1. BEEP (Battery Evaluation and Early Prediction) [14, URL]: a package for

parsing and featurizing battery cycling data specifically geared towards cycle life

prediction [100].

2. cellpy [34, URL]: a package which parses Arbin cycler data and enables manipu-

lation of cycling data using pandas dataframes. In addition, it enables incremental

capacity (dQ/dV) analysis and the extraction of open circuit relaxation points.

3. impedance.py [108, URL]: a package for the analysis of electrochemical

impedance spectroscopy (EIS) data. Core functionality includes plotting experi-

mental impedance spectra, fitting impedance spectra to equivalent circuit models,

computing and plotting the impedance spectra of equivalent circuit models and

validation of impedance spectra using the Kramers-Kronig relations.

4. Bayesian Hilbert transform [87, URL]: Python implementation of [125]

providing validation of EIS data via the Kramers-Kronig relation recast under a

Bayesian framework.

Lastly, we point to means of extracting numerical data from data visualisations, for instance,

the open-source software WebPlotDigitizer [182, URL]. Given an image of a plot the raw

data points are identified in a semi-automated manner. Numerical data is extracted based

on the identified data points and user-defined calibration points marked on the plot. Such

an approach has been used in [179] (with MATLAB’s GRABIT tool) to extract capacity

fade curve data from published work.

9.3.4 Current limitations

Effective energy storage is critical. Improvements in safety, density and longevity mean more

reliable devices, vehicles requiring less frequent charging and replacement, and efficient

and long lasting stationary energy solutions. Currently, the communication of data between

end-users, manufacturers, distributors and providers is weak. Greater transparency in this

aspect would accelerate scientific progress in all areas. Fig.9.4 illustrates the wide ranging

deployment of batteries across industries.

4. The authors kindly thank J. Koeller [11] for his assistance in developing this list.

https://github.com/tri-amdd/beep
https://github.com/jepegit/cellpy
https://github.com/ECSHackWeek/impedance.py
https://github.com/ciuccislab/BHT
https://automeris.io/WebPlotDigitizer/
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Fig. 9.4: Lithium battery sample applications.

Regarding the data reviewed in the manuscript, we failed to find many examples of ‘on field

data’ where the varying conditions of battery usage can be seen. Examples of such data

would be: data regarding aerospace applications either from the perspective of aeroplane

electrification or simply from satellite usage where batteries are a mission critical element;

battery usage data for energy storage systems (either at home-owner level or at the electric

grid level); data regarding electric heavy-duty vehicles (e.g., firetrucks or buses); data linking

material science data to cycling data or data connecting manufacturing to degradation;

data that can be used to optimise the cell selection process for the purpose of battery pack

formation. Moreover, all the data reviewed in this manuscript is from first life applications

where the battery was tested from new. We have not found any data on the so-called battery

2nd life where the battery, say, was redeployed from a EV into a stationary application like

grid energy storage. Lastly, left out of this study was a review of data relating to abuse

testing and data containing mechanical measurements. A representative of the latter would

be datasets that include mechanical measurements, e.g., cell dilation or weight.

Battery testing is costly and lengthy, and this is unlikely to change: how can one understand

the life-cycle of a battery that lives for 10 years without carrying out 10 years of testing? A

sub-problem in this context is the sparsity of recorded data, for example, cells are usually

tested within a (dotted) range of fixed temperatures and with fixed cycling conditions. These
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conditions do not reflect the variability of real use. And, many approaches fall short when

interpolating between recorded data: how does one predict cell degradation at 25°C from

data recorded at 40°C and 10°C. Methodologies addressing this problem are beginning to

emerge [167, 214].

From a holistic point of view, the publicly available datasets come in all shapes and sizes.

Files appear in ‘.mat’, ‘.txt’, ‘.csv’ or ‘Excel’ format (‘.mat’ and ‘.csv’ being the more

common) with wildly varying file structures: from raw cycler data – split by cycle, week,

month or not at all – to structured data with explanatory scripts and text to assist the

user. From our understanding, there is a general lack of consensus on the way to present

data. For instance, different brands of cell cycling machines output data in different ways

including varying nomenclature for the same quantities. In this regard, we highlight again

the open-source Python-based framework BEEP (Battery Evaluation and Early Prediction)

[14] for the management and processing of high-throughput battery cycling data and the

Battery Archive’s ‘Rules for Metadata’ section [10] proposing a common nomenclature for

the descriptions of cells and cycling conditions. In the Author’s opinion, exemplary datasets

for file format and description are those provided by P. Kollmeyer in Section 9.2.2 and the

Toyota Research Institute data in Section 9.2.1. We leave a suggestion for any group sharing

data: to provide a basic accompanying script (MATLAB or Python) that plots the uploaded

data (time series/EIS or capacity/resistance change) and text explaining file structure. This,

on its own, would expedite the understanding of datasets; however, there is a clear and

greater benefit which could be gained from researchers adopting a uniform file format.

9.4 Conclusions

Comprehensive battery datasets play a critical role for battery research both in academia

and industry. However, publicly available datasets are distributed sporadically as battery

testing is costly and lengthy. In this work, a review of the existing battery datasets in the

public domain is provided with a category-type break-down covering the testing regimes,

cell specifications and provided data. This informs a long view on the available datasets

hinting at gaps in the experimental space which in itself presents an opportunity for further

work. Lastly, high-quality open source packages for a variety of battery-related tools are also

reviewed.

With this work we wish to convey two further messages,
1. the academic community is starved for research data, and

2. we strongly encourage any person or group (academic or industrial) to share their

data.



Chapter 10

Elbows of Internal resistance rise

curves

The work presented in this chapter is taken from our paper [210], which was a joint work

with Prof. Gonçalo dos Reis, Dr. Shawn Li, and Richard Gilchrist MSc.

Abstract

The degradation of lithium-ion cells with respect to increases of internal resistance (IR) has

negative implications for rapid charging protocols, thermal management and power output

of cells. Despite this, IR receives much less attention than capacity degradation in Li-ion cell

research. Building on recent developments on ‘knee’ identification for capacity degradation

curves, we propose the new concepts of ‘elbow-point’ and ‘elbow-onset’ for IR rise curves,

and a robust identification algorithm for those variables. We report on the relations between

capacity’s knees, IR’s elbows and end of life for the large dataset of the study. We enhance

our discussion with two applications. We use neural network techniques to build independent

state of health capacity and IR predictor models achieving a mean absolute percentage error

(MAPE) of 0.4% and 1.6%, respectively, and an overall root mean squared error below

0.0061. A relevance vector machine, using the first 50 cycles of life data, is employed for the

early prediction of elbow-points and elbow-onsets achieving a MAPE of 11.5% and 14.0%,

respectively.

10.1 Introduction

Sales of electric vehicles (EVs) and energy storage systems are undergoing a marked growth

as battery costs continue to fall and with the introduction of increasingly strict regulations

on CO2 and NOx emissions, deadlines on the decommissioning of fossil fuel power stations

and bans on the sale of internal combustion engines. Lithium-ion (Li-ion) batteries are widely

deployed in EVs and energy storage systems due to their outstanding characteristics, such

as low maintenance requirements, high Coulombic efficiency and market-leading energy

134



10.1. Introduction 135

density; however, in operation, Li-ion batteries are sensitive to over-charging/discharging, high

current stresses, over-temperature and under-temperature. Even when cycled under moderate

operating conditions, solid-electrolyte interphase (SEI) layer growth on anodes gradually

consumes active material, leading to poor cyclability. Extreme operating conditions will

further accelerate ageing processes, potentially resulting in high-risk failure scenarios such as

gassing, mechanical cracking of electrodes, internal short circuits and thermal runaway [19,

33, 85, 120, 131, 137, 152, 221, 228]. Furthermore, the degradation rates of identical

chemistry cells differ due to disparities in manufacturing quality and operating conditions [63,

84, 201, 228]. The accurate prognosis of cell degradation is therefore imperative. This is

referred to as the State of Health (SOH) of the cell and can be defined with respect to its

capacity or its internal resistance (IR). A cell’s capacity fades as its calendar and cycle age

increase, and degradation mechanisms take place within the cell that reduce the available

lithium inventory and accessible active material in the electrodes [82, 98]. Conversely, as the

cell is cycled, IR increases due to the thickening formation of the SEI, and the consumption

of electrolyte and lithium in this process [85, 228].

Given the importance of driving range, capacity is the primary SOH measurement for pure

EVs; naturally, capacity-based SOH measurement is less important for hybrid electric vehicles

(HEVs), instead, importance is placed on a cell’s ability to supply high operating currents.

With the increase of IR, the current deliverability of a cell is diminished, making IR a key SOH

measurement for hybrid vehicles. For a given current, increased IR can raise the terminal

voltage during the charging phase. As a result, the imposed charging current must be taped

down to avoid the battery voltage from exceeding its maximum limit; thus, leading to longer

charging times and poor rapid charging ability [1, 131, 180, 239]. In addition, the growth of

IR values will incur more heat generation for a given load creating more work for the thermal

management system. To the best of our knowledge, the majority of EV manufacturers only

provide a battery warranty securing that the capacity shall remain above 70% of its initial

value, but ignore a battery warranty based on IR. With a greater understanding of expected

IR growth such warranties could be provided. There is thus significant value to be gained

from the prognosis of IR growth trends; however, the prediction of IR degradation using

data from early cycles remains largely unexplored. There is substantive research e.g. [78,

197] conducted for early prediction of capacity but not for IR.

As discussed in-depth in [78], a cell’s capacity does not degrade linearly throughout its

lifetime: degradation is path-dependent [171], and a strong association exists between

capacity and internal resistance [9]. While the cell’s capacity typically starts to degrade in

a linear manner, there eventually comes a point, called the ‘knee-point’, after which the

rate of capacity degradation increases considerably [55, 69, 93, 143, 191, 196, 241]. In [78]

one can find a review of knee-point identification methods [55, 191, 241], and, crucially,

the additional variable ‘knee-onset’ is introduced (along with an alternative identification

mechanism) to provide a useful indication of the beginning of a sharp increase in the capacity
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degradation trend. However, the corresponding notion of ‘knee-point’ and ‘knee-onset’ in IR

degradation curves is absent from the current literature. In this paper, we bridge this gap

by addressing the IR rise curve and the corresponding change points: the ‘elbow-onset’ for

when the IR curve becomes nonlinear and the midpoint of the accelerated IR increase which

we call the ‘elbow-point’.

There are three main contributions of this work. Firstly, at a data pre-processing level,

we create an accurate IR predictor utilising machine learning convolutional neural network

(CNN) techniques. This predictor is then used to complete the dataset of [6] (for which no

IR readings were logged). Secondly, underpinned by the completed dataset, the concepts of

elbow-point and elbow-onset points for IR rise curves are proposed along with corresponding

identification methods. Thirdly, we showcase a working example of using the predicted and

real IR data for the early prediction of elbow-point and elbow-onset using only the first

50-cycles of the cell’s lifespan data.

The rest of this paper is organised as follows. Section 10.2 introduces the data pool and the

data pre-processing approach addressing a missing IR data problem. In Section 10.3, we

propose the elbow-onset and -point concepts and identification algorithms, concluded by

a study of the numerous relationships between these quantities. Section 10.4 presents the

relevance vector machine (RVM)-based machine learning approach for the early prediction

of elbows. Results, contributions and future work are summarised in Section 10.5.

10.2 Battery Data Framework and Data Pre-Processing Pro-

cedures

In this Chapter we work with the TRI dataset [6, 197] (see Section 9.2.1). We recall that

the TRI dataset contains 8 batches of cells, which we refer to sequential as batches 1–8. To

distinguish individual cells within the dataset, we refer to cell Y of batch X as bXcY.

10.2.1 Data Pre-Processing via a Machine Learning Approach: Completing

the Missing IR Data

Our first goal, to increase the scope of our analysis, is to address the missing IR data of

batch 8. We draw on machine learning techniques and build an IR prediction model (on

the data from batches 1–3) to predict the missing IR data of batches 4–8. Increasing the

number of matched capacity-IR curves from 124 pairs to 357 (= 124 + 233). Of these 357

pairs 169 (= 124 + 45) contain measurements up to or past the EOL. This will enhance

our later analysis comparing elbows, knees and the EOL, as well as the early prediction of

elbows. For statistical reasons, we build a simple yet accurate capacity predictor to test for

distributional dissimilarity between batches 1–3 and batches 4–8.
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Pre-Processing and Modelling Pipeline

We split the cells of the dataset into training and test sets: grouping by batch so that our

test set contains an equal percentage of cells from each batch. As input our capacity and

IR prediction models take one charge/discharge cycle of voltage, current and SOC data

(the integral of the current from one full cycle). This data was cleaned, standardised to

have values between 0 and 1, interpolated using the ‘SciPy’ [109] function ‘interp1d’ to

one measurement every four seconds and zero-extended so that the data for each cycle of

each cell was of equal length and consistent time step. The median filter, averaging five

nearest time instants, was applied to smooth the measurements of capacity and IR prior to

prediction.

To design our models for IR and capacity prediction we utilised K-fold cross validation. A

validation set of cells was chosen at random from the training set, our models fitted to

the remaining training set and evaluated on the validation set throughout training. This

step was then repeated K-times with a new validation set and corresponding model. The

average performance of the validation sets was used to optimise model design and choice

of hyper-parameters. K-fold cross validation is particularly useful when working with small

datasets: mitigating the risk of over-fitting a particular validation set [113]. After settling on

the model’s architecture and hyper-parameters (described next), a copy of the model was

fitted to the whole training set and then evaluated on the test set to calculate performance

metrics.

Model for IR Prediction

We propose a model consisting of a convolutional ‘feature extraction’ block followed by two

densely connected layers displayed in Figure 10.1 and described in Table 10.1. Our model

was implemented in Python using TensorFlow via the Keras API [43]. All layer names given

in Table 10.1 refer to the corresponding Keras layers. The model was trained on the data

from batches b1–b3 using the adam optimiser for 50 epochs with a batch size of 526 and

the mean absolute error – Equation (10.1) – as its loss function.
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...
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Fig. 10.1: Schematic of machine learning model for internal resistance (IR) prediction.
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Table 10.1: Proposed architecture of convolutional neural network (CNN) model for prediction of
IR. Hyper-parameters are given in the format: filters, kernel size, activation for conv1d layers; pool
size for max pooling; dropout rate for dropout; nodes, activation for dense layers.

Layer Name Input Size Hyper-
Parameters

Output Size

conv1d 1 926 ˆ 3 12, 3, ReLU 924 ˆ 12
max pooling 1 924 ˆ 12 2 462 ˆ 12
conv1d 2 462 ˆ 12 32, 3, ReLU 460 ˆ 32
conv1d 3 460 ˆ 32 32, 3, ReLU 458 ˆ 32
max pooling 2 458 ˆ 32 2 229 ˆ 32
conv1d 4 229 ˆ 32 32, 3, ReLU 227 ˆ 32
conv1d 5 227 ˆ 32 32, 3, ReLU 225 ˆ 32
max pooling 3 225 ˆ 32 2 112 ˆ 32
flatten 1 112 ˆ 32 - 3584
dropout 1 3584 0.5 3584
dense 1 3584 64, ReLU 64
dropout 2 64 0.3 64
dense 2 64 1, linear 1

The machine learning performance scores selected for this work are the mean absolute

error (MAE), mean absolute percentage error (MAPE) and root mean square error (RMSE)

defined as follows. For y the vector of true values and ŷ the vector of predicted values

MAEpy, ŷq “
1

nsamples

nsamples
ÿ

i“1

|ŷi ´ yi| , MAPEpy, ŷq “
100%

nsamples

nsamples
ÿ

i“1

|ŷi ´ yi|

yi
,

(10.1)

and RMSEpy, ŷq “

g

f

f

e

1

nsamples

nsamples
ÿ

i“1

pŷi ´ yiq2 . (10.2)

Our model’s performance metrics for IR prediction can be found in Table 10.2. We are

unaware of works using the A123 dataset for IR estimation. Nonetheless, the estimation of

IR has been addressed for other datasets [86, 91, 123, 172, 188, 220, 242]. We obtain an

RMSE of 0.00035 and an MAPE of 1.6% which is low (if nominally compared with capacity

estimation accuracy in the literature).
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Table 10.2: Average performance of model to predict IR with 95% prediction intervals.

RMSE MAPE (%)
Train Test Train Test

IR 0.00029 ˘

6.2 ˆ 10´5
0.00035 ˘

5.0 ˆ 10´5
1.19 ˘ 0.22 1.60 ˘ 0.24

Validation Step via a Model for Capacity Prediction

We have shown that our model for IR prediction is effective on batches 1–3. To see if we

can trust the predictions that this model makes on batches 4–8 we check for non-similarity

between the datasets. We do this by extrapolating on capacity – a variable present for all

batches. This is a standard process in imputation (simple or multiple). To this end, we utilise

a simple feed-forward neural network consisting of three densely-connected layers: the first

two layers containing 32 neurons with the rectified linear unit (ReLU) activation function

and the final layer consisting of a single neuron with a linear activation. The model was

trained for 100 epochs with a batch size of 512 using the adam optimiser and the mean

squared error as its loss function. During training, a dropout of 0.2 was used between the

middle and last layer. Trained on all of the data from batches 1–3 and tested on batches

4–8, the model obtained the performance metrics displayed in Table 10.3 with an MAPE of

0.51%. This test gives us confidence that both datasets [6, 197] are indeed not dissimilar.

Table 10.3: Average performance of capacity model trained on batches 1–3 tested on batches 4–8,
with 95% prediction intervals.

RMSE MAPE (%)
Train Test Train Test

Capacity 0.0053 ˘

4.2 ˆ 10´3
0.0095 ˘

4.6 ˆ 10´3
0.37 ˘ 0.30 0.51 ˘ 0.26

The prediction of capacity (and SOH) is of wider interest than our discussion of elbows, so

we briefly compare these results with those found in the literature. We point to Table 1

in [166] (MAPE and RMSE error given) and Table 2 in [144] (error type not given) for a

review/comparative work on capacity estimation. We cannot directly compare our results, as

the data is different. However, from a strictly numerical point of view, our RMSE of 0.0095

and MAPE 0.51% errors for capacity (Table 10.3) are lower than the values of [166] (Table

1)—for a fair comparison, one would need to test the varying approaches on a common

dataset.
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Predicting the missing IR data

In order to address the missing data issue, we trained the IR model on batches 1–3 multiple

times and an ensemble of these models was used to predict on batches 4–8. This predicted

IR data is available at https://doi.org/10.7488/ds/2957 (accessed on 21/02/2021)

. Figure 10.2 shows the IR for sample cell b8c4 and we strongly emphasise to the reader

that the extrapolation of the IR data past EOL (80% capacity) is, as fully expected, not

reliable; this stems from the limitation of the training dataset (batches 1–3) with data

only up to the EOL. Prediction outside that range of input data is not reliable as can be

seen in Figure 10.2 where we observe a strong widening in the prediction intervals past the

EOL. The prediction intervals provided throughout the text are calculated in a frequentist

manner. A given model is fitted to data multiple times and performance metrics/predictions

recorded. The empirical average and variance-value of predictions are calculated and under

the assumption of normality one uses those values to produce prediction intervals (at any

given probability quantile level q, e.g. in Figure 10.2 we have q “ 95% and q “ 80%).
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Fig. 10.2: The predicted IR data for cell b8c4 are given by the black continuous line and is formed
from the average of 20 predictions. We display 80% and 95% prediction intervals. Beyond the intuition
of extrapolation, these intervals show that predictions past the EOL (capacity) should not be trusted.

https://doi.org/10.7488/ds/2957
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Algorithmic Framework

The proposed algorithmic framework takes full advantage of machine learning-based ap-

proaches to solve the missing IR data problem in the raw data pool allowing the generation

of artificial IR data to complete the life cycle data. The predicted IR data can be used

for elbow-point and -onset identification and is able to assist the early prediction of the

elbow-point and elbow-onset in IR curves.

The schematic framework of the algorithms is illustrated in Figure 10.3. Section 10.2

introduces the data pre-processing procedure, where a CNN-based predictor has been trained

on the data from batches 1–3 to predict the missing IR of batches 4–8. For validation,

a capacity estimator was trained to test for dissimilarity between the two datasets. In

Section 10.3, using the completed data we confirm significant linear relationships between

knee/elbow-points, -onsets and EOL. Further tests are carried out in Section 10.4 relating to

the early prediction of elbow-points and -onsets. In particular, the straightforward RVM-based

quantitative method is applied for the early prediction of elbows.

Full life cycle data 
(missing IR data)

CNN model to predict 
missing IR 

ANN model to predict 
capacity for validation 

Completed life cycle data 
with capacities and IR  

Data pre-processing procedure

Completed life 
cycle data Bacon-Watts 

models 

Double Bacon-
Watts models 

IR curve fitting
Elbow-points

Elbow-onsets
Linear regression 

model (elbow, 
onsets, EoL)

Identification of elbows-points and –onsets, and their relations

Completed first 
50 life cycle data

RVM method for 
quantitative prediction of 
elbow-points and -onsets

Early prediction of elbow-points and -onsets

Elbow-points, elbow-onsets, temperature 
(T), capacity (Q), voltage (V), current (I), IR

Fig. 10.3: Graphical abstract for the proposed algorithmic framework.
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10.3 Identification of Elbows, Knees and Their Relations

10.3.1 Methodology

Ferḿın et. al. [78] proposed the use of the Bacon–Watts (Equation (10.5)) and the double

Bacon–Watts model (Equation (10.6)) for the identification of knee-point and knee-onset,

respectively. We will use the same basic methodology, with the addition of several steps to

account for noise in the data and potential sigmoid behaviour. The high level of noise present

in the IR data, see Figures 10.4a and 10.5a, prevents the Bacon–Watts model from neatly

fitting the data, and this is overcome via a smoothing step as described in Algorithm 1 (block

1) below. We report that this noise also causes issues for the alternative knee identification

methods proposed in [55, 78, 191], see Figure 10.5. In addition, we observed sigmoid-type

capacity fade curves for some cells in batch 8, and hence, we employ a subroutine to isolate

the knee/elbow identification from the right-most plateau. We present first the algorithm

and afterwards reason its several steps.

Algorithm 1 ’Smoothed Bacon–Watts’: Identification of knee/elbow-point and -onset

Block 1: Data smoothing.
1. Fit isotonic regression to (capacity/IR degradation) lifespan data (across the full curve).

2. Determine data-truncation cycle-point n˚:
(a) Fit (10.3) (Asymmetrical sigmoidal) to isotonic regression curve,
(b) Find cycle-number n˚: cycle at which 2nd derivative of fitted (10.3) changes

sign, else last cycle in series.
3. Fit (10.4) (line-plus-exponential) to isotonic regression curve up to cycle n˚.
Block 2: Identification.
4. Fit Bacon–Watts model (10.5) to (10.4). Identify knee/elbow-point.
5. Fit double Bacon–Watts model (10.6) to (10.4). Identify knee/elbow-onset.

The isotonic regression step, Step 1, solves several issues: it annuls the behaviour of capacity

increase or IR decrease across the first few cycles and removes the influence of sharp

movements where the IR decreases or increases due to measurement errors. From first

principles, our choice reflects the fact that the electrochemical degradation mechanisms

within the cell are irreversible. For a given load and set of ambient conditions, IR increase may

be caused by the thickening of the SEI on the anode which irreversibly consumes lithium and

electrolyte. Additionally, IR increase can be caused by a loss of anode and cathode material

which can result from many factors, such as electrode particle cracking and loss of electrical

contact as a result of mechanical expansion/contraction during cycling, corrosion of current

collectors at low cell voltage and binder decomposition at high cell voltage. These same

mechanisms also lead to an irreversible reduction in capacity and, as such, the monotonicity

of the model is reflective of the real-world evolution of a cell’s capacity over its lifespan.

The isotonic regression is performed using the Scikit-learn Python package [157] and the

procedure is described in [35].
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Throughout the manuscript, and the following equations, the generic ε variable denotes the

errors/residuals of its associated model, indicated as a superscript, and is a normal random

variable with zero mean and finite (unknown) variance.

The asymmetrical sigmoidal fitting step, Step 2. The asymmetrical sigmoidal (‘as’) model is

described by Equation (10.3)

Y as “ d`
a´ d

”

1 `
`

x
c

˘b
ım ` εas, (10.3)

where a and d associate to the top and bottom plateau of the curve respectively, b controls

the slope between plateaus, m the level of asymmetry and c determines the inflexion point.

For given data, the constants are estimated by straightforward least-squares estimation

(similarly for subsequent parametric models).

In several cells from batch 8, we observe a sigmoid-type capacity fade curve where, after

passing the knee and then degrading linearly for some time, the degradation approaches a

plateau (e.g. cell b8c4). To isolate the detection of knees/elbows from this behaviour, we

propose the fitting of the asymmetrical sigmoidal model to then truncate the data before

said plateau (point n˚) via the 2nd derivative truncation rule.

The final smoothing step, Step 3, involves fitting the parametric line-plus-exponential (‘le’)

model of Equation (10.4) to the isotonic data (from Step 2) up to cycle n˚. This idea can

be traced back to [106] (Section 2.2.1) under the name of ‘Exponential/linear hybrid model’

– [214, 220] discuss other parametric models. The line-plus-exponential is described by the

following model:

Y le “ β0 ` β1x` β2 exppλx´ θq ` εle, (10.4)

where β0, β1 and β2 control the intersection point and slope of the line, and the size of

the exponential, respectively. The quantity λ controls the ‘speed’ of the exponential and θ

controls where the impact of the exponential starts. The main motivation for model (10.4) is

that for many cells, the degradation of IR is very close to linear until close to the elbow-onset

followed by a sharp elbow-point.

For the identification of the knee/elbow-point, Step 4, we use the Bacon–Watts model.

Ferḿın et al. [78] (Equation (1)) describe the Bacon–Watts (‘bw’) model (10.5) as a two

straight-line relationships around the transition point x1:

Y bw “ α0 ` α1px´ x1q ` α2px´ x1q tanhtpx´ x1q{γu ` εbw, (10.5)
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where α0, α1 and α2 control the slopes of the intersecting lines and the intercept-weigh of

the leftmost segment respectively and γ controls the abruptness of the transition. We fix γ

as a small value to obtain an abrupt transition. After optimisation, the fitted value of x1 is

defined as the knee/elbow-point.

The identification of the knee/elbow-onset, Step 5, is performed by the double Bacon–Watts

model (‘dbw’) (10.6) (also [78] Equation (2)) modifying Bacon–Watts to identify two

transition points, concretely:

Y dbw “ α̂0 ` α̂1px´ x0q ` α̂2px´ x0q tanhtpx´ x0q{γ̂u ` α̂3px´ x2q tanhtpx´ x2q{γ̂u ` εdbw,

(10.6)

as in Equation (10.5), the parameters α̂i and xj are estimated and γ̂ is chosen as a small

value to produce abrupt transitions at x0 and x2. The knee/elbow-onset is defined as the

change point x0.

Figure 10.4 displays the output of Algorithm 1 applied to the IR curve of cell b1c29 (non-

predicted data). Elbow-point and its onset are identified, and the smoothing steps are

illustrated showing the fitted isotonic regression and line-plus-exponential model against

the input data (for this cell, Step 2 yields n˚ as the final cycle number). Figure 10.5

displays the performance of other known algorithms for knee identification applied to the

elbow identification problem. We find that [55, 78, 191]’s algorithms are too sensitive to

noise to provide consistent identification results. Our approach addresses the noise issue

allowing for coherent elbow identification. From a statistical point of view, any identification

approach will be affected by the noise in the data; thus, the identified elbows will be less

exact than the identified knees, for which the data is much smoother. For comparison, the

non-parametric bootstrap procedure was used to calculate 95% confidence intervals (CI) for

the knee/elbow-points and -onsets identified by Algorithm 1. The average CI’s width was 24

cycles for the elbow-point, 4 cycles for the knee-point, 35 cycles for the elbow-onset and 5

cycles for the knee-onset; this difference is a direct consequence of the noise present in the

IR data. Finally, Algorithm 1 applied to knee identification recovers fully the results of [78]

(we omit these results).
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Fig. 10.4: Steps of Algorithm 1 applied to the internal resistance degradation curve of cell b1c29
(non-predicted data). (a), step 1. (b), step 3. (c), step 4. (d), step 5. Step 2 is omitted as it has
no impact here: n˚ is chosen as the final cycle number. The width of the 95% confidence interval
(computed by the non-parametric bootstrapping procedure) for the elbow-point of this curve is 23
cycles, and for the elbow-onset it is 38 cycles.
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Fig. 10.5: (a), Comparison of elbow-points obtained with Algorithm 1, [78]’s Bacon–Watts, maximum
curvature and slope changing ratio methods on a sample of cells from the A123 dataset (from left to
right b2c34, b1c30, b3c15, b3c1, b1c3). (b), Comparison of elbow-points for all cells in the A123
dataset. One expects to see a linear relationship between EOL and elbow-point; of the methods
compared only Algorithm 1 and the algorithm of Satopaa et al. [2011] recover a linear relationship
reliably, however, by examining plot (a), we see that Satopaa’s algorithm selects the end point as
the elbow.
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Zhang et al. [241] report for a dataset of nickel-manganese-cobalt cells that the knee-point

appeared at between 90–95% nominal capacity; in [78], it was reported that the knee-point,

for batches 1–3 of the A123 dataset, appeared on average at 95% nominal capacity and the

knee-onset at 97.1% nominal capacity, with an average gap of 108 cycles between the knee

and its onset. We report that, for the A123 dataset batches 1, 2, 3 and 8, on average, the

elbow-onset appears at 103.0% initial IR (93.6% nominal capacity) and the elbow-point at

104.7% initial IR (91.3% nominal capacity), with the elbow-onset and its point on average

52 cycles apart; on average, both elbows appear after the knee-point. These reported figures

are calculated from the smoothed exponential curve as described in Algorithm 1.

10.3.2 Linear Relations

Figure 10.6 illustrates the strong linear relationships observed between the calculated

knee/elbow-points and the EOL, making it possible to estimate each point given a measure-

ment or prediction of another point(s). These linear relations are obtained using a standard

linear regression model y “ c0 ` c1x ` ε, where y denotes the dependent variable, x the

independent variable, ε represents the residuals, and c0 and c1 control the intercept and

slope of the linear model, respectively. The obtained coefficient values along with their

confidence intervals are presented in Table 10.4, where the knee relations agree with those

found in [78] (Table 1).

We present the linear relationships obtained when including the predicted IR data. From

viewing Figure 10.6, comparing the green squares and black circles, the reader will appreciate

that their inclusion did not significantly influence the linear relationship obtained. This

observation lends a second layer of credibility to the predicted IR data: the elbows displayed

in the predicted IR match closely with what one would expect given the linear relationships

observed on batches 1–3.
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Fig. 10.6: (a), Linear regression model linking the knee-point to end of life. (b), elbow-point to
end of life. (c), knee-point to elbow-point. (d), knee-onset to elbow-onset. Every linear model is
presented with a 95% confidence band on the plotted regression line; all linear relations here are
calculated from the A123 dataset enriched with the predicted IR data for batch 8. Elbow points
derived from the predicted IR data are highlighted as open black circles; the reader will appreciate
that their inclusion did not significantly influence the linear regression results obtained.
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Table 10.4: Coefficients of four linear regression models relating the knee-point (a) and the
elbow-point (b) to the end of life, the knee-point to the elbow-point (c) and the knee-onset to
elbow-onset (d), respectively. The p-values for β1 were computed using the Wald test, and the small
values allow the rejection of the null hypothesis that a linear relationship does not exist. The 95%
confidence intervals for the estimated coefficients are calculated via bootstrapping. The coefficient of
determination, R2, of these linear regression models is (a) 0.9822, (b) 0.9896, (c) 0.9818 and (d)
0.9520; all close to 1, showing that the fitted models explain the observed data well.

(a) Knee-Point to EOL (b) Elbow-Point to EOL

Coefficient Estimate p-value Coefficient Estimate p-value

Intercept
(β0)

17 ˘ 21 Intercept
(β0)

121 ˘ 11

Slope (β1) 1.26 ˘ 0.04
4.0ˆ10´148

Slope (β1) 0.97 ˘ 0.02
4.5ˆ10´162

EOL “ 1.26 ˆ knee-point ` 17 EOL “ 0.97 ˆ elbow-point ` 121

(c) Knee-Point to Elbow-Point (d) Knee-Onset to Elbow-Onset

Coefficient Estimate p-value Coefficient Estimate p-value

Intercept
(β0)

´103 ˘ 28 Intercept
(β0)

´143 ˘ 42

Slope (β1) 1.30 ˘ 0.05
3.6ˆ10´147

Slope (β1) 1.51 ˘ 0.08
4.5ˆ10´112

elbow-point = 1.30 ˆ knee-point ´ 103 elbow-onset = 1.51 ˆ knee-onset ´ 143

10.4 Early Prediction of Elbows

A real-word challenge is how to predict the trajectory of IR growth, e.g. the elbow points

in IR curves as to detect early signs of unacceptable degradation. For example, to filter

out cell production lots that will exhibit faster increases in IR or to schedule HEV battery

replacement/maintenance. We complement the previous section in scope of the findings

of [78] (Section 3). We apply the quantitative knee prediction algorithm developed there to

the early prediction of elbows without any additional optimisation, i.e. ‘as is’. A full description

of the model and feature extraction process can be found in [78] and supplementary material;

however, we provide a brief overview. It is outside the scope of this paper to revisit the early

prediction of knees.

The quantitative prediction of the elbows is performed by a RVM [20], a type of linear

regression mechanism, taking features extracted from the early life of the cells. The feature

extraction process takes as input the first 50-cycles of the available per-cycle and in-cycle

measurements (capacity, IR, charging-times, voltage, current, temperature) and draws on

time-series analysis to calculate a vast collection of summary statistics without input from

domain expertise (see [78] Supplementary Figure 5). Then, a sequential feature selection



10.4. Early Prediction of Elbows 149

funnel is deployed to select around 100 features to train the RVM [78] (Supplementary

Figures 6 and 7). When using batch 8 the input IR is the predicted IR from Section 10.2.1 –

the cases with/without batch 8 are distinguished. The model is trained on data from all

but one cell and tested on the remaining cells (leave-one-out framework); this process is

independently repeated such that each cell is used for testing once. The performance metrics

displayed in Table 10.5 are the average of the test performances.

The resultant early predictions are reported in Table 10.5, where two points should be made

salient. Firstly, on elbows vs. knees prediction, when compared to [78], the model performs

worse predicting elbows than when predicting knees: MAPE 13.8% vs. 12.0%, elbow-onset

vs. knee-onset, and MAPE 10.7% vs. 9.4%, elbow-point vs. knee-point – overall, the elbow

prediction is up to 2% worse when compared with knee prediction. This lower accuracy in

elbow (vs. knee) prediction was expected as the input IR measurements are much noisier

than the capacity measurements, and hence, the identification of elbows is inherently less

exact, which in turn affects the predictive performance – as argued in Section 10.3.1, the

confidence intervals for the elbow identification are significantly wider than those for the

knees. Due to this higher noise in the elbows, when predicting elbows from input data, the

relationship between input data and elbows will be weaker/noisier than when predicting the

knees.

Secondly, the inclusion of the predicted IR data leads to a marginally worse average

performance of our model: the MAPE worsens by 0.2% for the elbow-onset prediction and

by less than 0.8% for the elbow-point prediction, see Table 10.5. This critically showcases

that the generated IR data may be used for the prediction of elbows – which we emphasise

was an input feature to the RVM.

Table 10.5: Result of RVM regressor for elbow-onset (a) and elbow-point (b) when predictions are
made from the first 50 cycles. The 90% confidence intervals (CI) were calculated via bootstrapping.
The entry ‘With b8?’ refers to results computed with (‘Yes’) and without (‘No’) the inclusion of the
artificially predicted IR data of batch 8.

(a) Elbow-Onset Prediction (b) Elbow-Point Prediction

With
b8?

Metric Score CI (α “

0.1q

With
b8?

Metric Score CI (α “

0.1q

No
MAE

(cycles)
89.1 [77.0,

101.8]
No

MAE
(cycles)

76.3 [64.5,
88.6]

MAPE
(%)

13.8 [12.4,
15.3]

MAPE
(%)

10.7 [9.5,
12.0]

Yes
MAE

(cycles)
91.3 [79.4,

104.0]
Yes

MAE
(cycles)

83.4 [72.8,
94.6]

MAPE
(%)

14.0 [12.6,
15.5]

MAPE
(%)

11.5 [10.4,
12.8]
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From a methodological point of view, we employed the simple RVM algorithm of [78] in

a direct manner: without any additional optimisation to take into account the noisier IR

data or the predicted IR data. This was a choice to prove that the generated IR data can

be used for early prediction. There is indeed room for future improvements in the early

prediction of IR elbows and such is left for future research. Lastly, increasing the number of

cells displaying elbows by prediction to 169 (= 124 + 45) will benefit approaches that are

highly dependent on the size of a dataset.

10.5 Conclusions and Future Work

In this original work, the IR rise curve of Li-ion cells is characterised by the novel concept

of ‘elbow-point’ and ‘elbow-onset’; a generalist identification algorithm is then proposed.

The proposed approach is able to handle not only measurement noises but also sigmoid-

type patterns in capacity fade and IR rise curves. The findings highlight significant linear

relationships between EOL, capacity knee-point/IR elbow-point and capacity knee-onset/IR

elbow-onset for the data under study.

Two machine learning-related goals were achieved. The first, part of the data pre-processing

step, draws on neural network techniques to build independent IR and capacity SOH

predictors achieving a small MAPE of 1.6% and 0.4% respectively – these results are of

wider general interest. The proposed IR estimator has been deployed to complete an existing

cell cycling dataset with missing IR measurements resulting in a well-rounded life cycle

dataset encompassing both capacity and IR data. The generated data is publicly available.

Such datasets can be used for both identification and the early prediction of elbows in IR

curves. We then provided an illustrative example for such an early predictor of IR elbows.

Furthermore, the cells with predicted IR are shown to be usable for the early prediction of

elbows: resulting in only slightly worse average performance than when they are excluded

(the MAPE worsens by less than 0.8%).

The methods of elbow identification and prediction, in this work, have commercial value

to battery manufacturers as well as end users such as fleet managers and energy storage

utility operators. Accurate early forecasting of the IR elbows will allow manufacturers to

set appropriate performance and lifetime warranties for their products. Additionally, elbow

forecasting allows battery users to accurately and conveniently schedule battery maintenance

and replacement, or adjust the duty cycle to accommodate the reduced performance of the

battery pack as it degrades.
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In the future, the accuracy of the early prediction will be enhanced. Multiple dimensions of

inputs encompassing the predicted IR data and other measurements will be used to train the

model with an improved tolerance for noisy data. Overall, elbow identification and elbow

early prediction can be used to influence the design of the thermal management system:

accounting for the additional heat dissipated by cells as they approach their EOL. A study

comparing the relations between knee/elbow-onset and -point across more datasets is left

to future work.



Chapter 11

One cycle prediction

The work presented in this chapter is taken from our paper [208]. We work with the datasets

of Seversion [197] and Attia [6] (from the TRI see Section 9.2.1 of Chapter 9). In addition,

we make use of the synthetic IR data developed in Chapter 10.

Abstract

There is a large demand for models able to predict the future capacity retention and internal

resistance (IR) of Lithium-ion battery cells with as little testing as possible. We provide a

data-centric model accurately predicting a cell’s entire capacity and IR trajectory from one

single cycle of input data. This represents a significant reduction in the amount of input

data needed over previous works. Our approach characterises the capacity and IR curve

through a small number of key points, which, once predicted and interpolated, describe

the full curve. With this approach the remaining useful life is predicted with an 8.6% mean

absolute percentage error when the input-cycle is within the first 100 cycles.

11.1 Introduction

Sales of electric vehicles and energy storage systems are undergoing a marked growth as

battery costs continue to fall and governments around the world introduce increasingly strict

emissions regulations.

Of importance to all applications is a cell’s state-of-health (SOH). In many applications the

key metric for cell health is capacity retention. In this regard, SOH is often interpreted as the

current capacity of a cell as a percentage of its rated capacity. As the capacity degrades over

time so does the cell’s usefulness eventually reaching a point at which the cell is no longer

deemed useful for its current application. This point, called the end-of-life (EOL), is often a

predefined capacity level. Another key health indicator is the internal resistance (IR) of the

cell: as the cell degrades its IR increases, impairing the cell’s ability to provide and receive

charge. Capacity degradation and IR rise of a Li- ion cell are often not linear throughout its

lifetime [78, 210]. Cell capacity typically starts to degrade in a linear manner until reaching a

152
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critical point, called the ‘knee’ (referred to henceforth as the knee-point), at which the rate

of capacity degradation increases considerably [55, 69, 143]. In [78] the additional variable

‘knee-onset’ is introduced (along with an alternative identification mechanism) to provide a

useful indication of the start of this rate of increased degradation. Building on this idea, [210]

introduced the variables ‘elbow-onset’ and ‘elbow-point’ describing the same phenomena as

the knee-onset and -point but for the IR rise curve. Accurate identification and prediction

of the occurrence of knee-onset and -point can provide essential guidance for scheduling

of replacements and cell maintenance to prolong service life. However, knee-points (and

knee-onset) may appear before or after the EOL is reached and their occurrences are also cell

chemistry dependent [45]. The same holds for elbow-onsets and points. Other degradation

metrics, such as the remaining-useful-life (RUL) or the whole capacity trajectory, thus have

to be considered collaboratively for a comprehensive view.

Much research has been dedicated to the modelling of Li-ion cells and, in particular, lifetime

prediction such as EOL and RUL. Broadly, there are two approaches to this problem either

model-based or data-centric. The model-based approach encapsulates empirical models,

Equivalent circuit models and physics-based models. It includes electrochemical type models

where the cell’s internal physical degradation mechanisms are simulated (see [226] for a

review), and parametric/semi-parametric type models where empirical models are fitted to

realised capacity fade curves and combined with advanced filtering techniques to predict

future degradation [37, 179]. The data-centric approach consists of machine learning and

statistical models trained on in-cycle and cycle-to-cycle measurement data such as voltage,

current, capacity, temperature and internal resistance. Feature based approaches allow for

expert input on essential features [66, 173, 178, 197] but may also take a purely data-driven

feature selection approach. Feature free approaches use deep learning techniques such as

Convolutional neural networks (CNN) to process ‘raw’ cycle data. The data-centric approach

typically requires larger data sets for training than model-based approaches, nonetheless,

this approach is showing great potential [42, 144, 233]. Physics-informed models need to

be calibrated to cell data (a non-trivial problem) and if too simplified lose the inherent

conservation laws. The computational requirements of semi-parametric type modelling are

much lower than those of electrochemical-models or the data-centric approach. For both

data-centric and semi-parametric modelling, the available data for training/calibration is a

methodological limitation in itself, be it on the quality of fitting, extrapolation or simply the

method one can use.

Research on data-driven modelling to address lifetime modelling of Li-ion cells has mainly

focused on the prediction of EOL or RUL [78, 197] in contrast the literature on the prediction

of the complete capacity trajectory is sparse. We point notably to [214] who make use

of a simple feed forward neural network to enhance the slope and bias correction model

migration technique. At its base, this approach uses a parametric model for the capacity
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fade curve then a neural network is trained to migrate this fitted model from the first 30%

(50-150 cycles depending on cell) of data into a prediction at a given future cycle. With this

approach, they are able to accurately describe the full capacity fade curve of their 4 test

cells.

Our study aims to determine the smallest number of cycles needed to accurately predict

the whole capacity/IR trajectory of a cell. We found that the information contained in any

one cycle of charge/discharge data suffices. This speaks directly to cell manufacturers who

need to grade batteries and buyers of cells who need to test samples of purchased batches

of cells for quality control.

This aim stems from several gaps in the current literature. Firstly, we address a gap that

electrochemical/physics-based modelling is yet to close. Concretely, the prediction of the

lifespan of a cell from a single cycle of input data. Take for instance the well-known Doyle-

Fuller-Newman (DFN) model for lithium-ion batteries and its variants (see [28] for a review).

Parameterising a DFN model from cycling data is impossible (much less from one single cycle)

without many material assumptions: one would need stoichiometries of the two electrodes

which cannot be obtained from cycle data [41]; one would need to dissemble the cell to carry

specific measurements which may take around 3 months [71, 72]. Without disassembling the

cell, one needs to rely on current-voltage response, for which case many of the parameters

are not well identifiable – we point that work on sensitivity analysis and optimal excitation

for parameter identification can be found in [153]. Secondly, to the best of our knowledge,

the machine learning prediction models developed so far require gradient information for

prediction. This implies longitudinal data spanning a large number of cycles, e.g., 50 to 100

cycles to predict EOL are needed [78, 197] and usually via a feature generation step. In

terms of the amount of input data, the current best art for quantitative early prediction

of RUL is using only 4 cycles of data achieving a 10.6 % mean absolute percentage error

(MAPE) [103], and this result marks a non-trivial improvement over early work. However,

reducing this number further would represent a further reduction in testing times and costs.

Thirdly, the majority of the literature deals solely with the prediction of EOL or RUL. RUL

is a key indicator of cell health and the EOL of cell quality but neither is a complete picture,

both fail to capture non-linear dynamics in the capacity fade trajectory. And lastly, the vast

majority of work focuses on capacity retention and ignores questions on IR degradation,

both are important SOH indicators and neither is a complete picture on its own.

In fact, the 80%-capacity level for EOL is an industry postulation while the knee/elbow-point

(and knee/elbow-onset) [78, 210] reflect better traceable physics/eletrochemical causal

changes.

There is thus space for new approaches to predict the full capacity and IR trajectory, and to

do so from a reduced number of measurements.
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The main contribution of this work addresses the above four limitations from the data-driven

modelling point of view. It avoids lengthy testing, the disassembling of cells and populates a

space for which physics-based modelling is yet to provide an answer. The model proposed

uses a CNN which jointly predicts, from a single cycle of data, the full capacity fade trajectory

and the full IR rise trajectory.

The rest of this study is organised as follows. Section 2 describes this study’s datasets and

Section 11.2 contains a full description of the proposed modelling approaches and insights

leading to it. An account of the model’s performance is given in Section 11.3 including

a comparison with existing art: methods and approaches used, presented results, used

features, mode of feature selection and the number of cycles used for prediction. Section

11.4 concludes this work.

11.2 Predicting future capacity and internal resistance

A question present in all battery applications is: what does the future degradation of a

particular cell look like, when will a cell no longer be suitable for its current application and

at what speed will this degradation occur? When solely considering cycle-ageing, ideally one

would know the future capacity and internal resistance of a cell any number of cycles into

the future, up to (and perhaps beyond) the EOL.

Following on from previous work [78, 210], we describe the capacity degradation by use of the

knee-onset, knee-point and EOL, and the IR rise curve by the elbow-onset and elbow-point.

Fermin et al. [78] proposed the use of the Bacon-Watts and double Bacon-Watts model

to identify the cycle at which the knee-point and knee-onset occur, respectively. Strange

et al. [210] proposed an additional smoothing process prior to deploying the Bacon-Watts

models – this process involves fitting an empirical line-plus-exponential model to an isotonic

regression of the data. The linear relationships between these points are also explored in

the cited papers. Here, we use the second approach (with smoothing). Additionally, as we

are interested in describing the full curves, we must select the capacity and IR values at

the knees and elbows. Since the recorded data (in particular the IR) is noisy, we take these

capacity/IR values from the smoothed (line-plus-exponential) curves and not the raw data.

We now propose a simple empirical model with which we can describe the full capacity

and IR curves. In addition to the knees (for the capacity) and elbows (for the IR) we need

the first and last points of both curves. As described previously, data was recorded until

the cells reached 80% of their nominal capacity („ 0.88Ah). So, we describe the capacity

curve by four points: the current cycle (measured capacity), knee-onset (empirical capacity),

knee-point (empirical capacity) and EOL (0.88Ah). And, we describe the IR curve by the

current cycle (measured IR), elbow-onset (empirical IR), elbow-point (empirical IR) and

capacity-EOL (empirical IR). Our proposed approach, assuming the current cycle is sampled
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ahead of the knee/elbow-onset and -point is as follows, shown in Fig. 11.1: 1) fit a cubic

spline between the four points; 2) take the cubic spline as the approximation between the

last three points; 3) approximate between the first two points by a straight line. Applied to

the measured capacity fade curves of batches 1, 2, 3 and 8 (up to EOL), and taking cycles 1

to 100 as the ‘current cycle’, this model obtains a root mean square error (RMSE) of 0.0039

and a coefficient of determination (R2) value of 0.9931, and applied to the measured IR

curves it obtains a RMSE of 0.00015 and an R2 value of 0.9838 showing a strong agreement

with the measured values. Up to the onset points the degradation is linear, and thus the

straight line approximation (step 3) performs well. Comparing after the knee-onset the

model obtains a RMSE of 0.0046 and an R2 value of 0.9902, and restricted to after the

elbow-onset the model obtains a RMSE of 0.00017 and an R2 value of 0.9832. So, our

simple interpolation accurately describes the true curves. An example of the approximated

capacity and IR curves is given in Fig. 11.1.
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Fig. 11.1: Empirical model fitted to the capacity and IR curves of cell b3c12.

Then, in order to predict the entire capacity fade and IR rise curves, it is enough to have

a measurement (or prediction) of the current capacity/IR value and predictions of the

number of cycles until (and the remaining capacity/IR values at) the knee-onset, knee-point,

EOL, elbow-onset and elbow-point. To illustrate these quantities, we predict the ‘time to

knee-onset’ (ttk-o), ‘time to knee-point’ (ttk-p), RUL, ‘time to elbow-onset’ (tte-o) and

‘time to elbow-point’ (tte-p). In addition, we predict the remaining capacities at knee-onset

(Q@k-o) and knee-point (Q@k-p), and the IR values at elbow-onset (IR@e-o), elbow-point

(IR@e-p) and the IR at (capacity) EOL (IR@EOL). The retained capacity at EOL is known

and thus does not need prediction. The empirical model described above can then be fitted

through the predicted points giving a prediction of the entire capacity degradation and IR

rise curves. It should be pointed out that the characteristic points we select are stylistic
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in nature and that not all cells display knees or elbows. However, the authors believe that

the basic idea of identifying and predicting key points before fitting an empirical model

should be applicable to a wide range of ageing modes. Different ageing modes may require

a different stylised model (this is left to future research).

We restrict most of our discussion to ‘early’ prediction, here defined as the first 100 cycles

of data (initial setting). This is a more difficult setting than prediction at later points (full

setting) and allows for a direct comparison with previous works in the literature. Indeed,

as expected, our model performs better as the cycle from which predictions are made

approaches the actual cycle of the predicted quantity. For illustrative purposes, our model’s

performance predicting the RUL versus the distance from the EOL is presented in Fig. 11.5.

11.2.1 Modelling approach

Ideally, the testing required to make a prediction should be limited in time, making prediction

fast and convenient. Thus, we restrict to the prediction from a single cycle of data. This

removes the need for past knowledge of a cell, a problem faced in so-called ‘second-life’

applications, where the historical cycling profiles of most cells are unknown. In addition, this

restriction massively multiplies the available data for training. For each cell (when restricting

to the first n-cycles of data) we have n-cycles of data and n corresponding distinct values

for each item we are predicting. Predicting from one cycle of data, we thus have n examples

from each train/test cell. This multiplication of the training set allows us to use deep learning

techniques.

We will now describe our proposed model. We take a data-driven and feature-free approach.

We propose a model consisting of a convolutional ‘feature extraction’ block followed by

two densely connected layers, displayed in Fig. 11.2 and described in Table 11.1. As output,

this model can be trained to predict values jointly (joint prediction) or separately. As

input our model takes a single cycle of voltage, current and SOC data (obtained by the

coulomb counting method, from one full cycle). Our model was implemented in Python

using TensorFlow via the Keras API [43]. All layer names given in Fig. 11.2 refer to the

corresponding Keras layers. To assist training, batch normalisation was used before each

MaxPooling1D layer. The model was trained using the adam optimiser for 100 epochs with

a batch size of 512. And the mean absolute error was set as the loss function. A learning

rate scheduler (described in Eq. (11.1)) was used during training with a ‘decay rate’ of 0.9

and a ‘decay step’ of 5 epochs.

Since the in-cycle data was not recorded at consistent time intervals or for the same number

of time-steps, after cleaning, the data was interpolated and nan-extended to a consistent

length and time-step. The interpolation was performed with the SciPy [109] function interp1d

and interpolated to one measurement every four seconds. The data was then allocated at

random (by cell) into an 80-20 train-test split. The training and testing sets were then
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Fig. 11.2: Representation of the CNN architecture. The ‘ˆ3’ notation denotes three repeated blocks
with the displayed configuration.

layer name input size hyper-parameters output size

conv1d 1 926 ˆ 3 24, 6, ReLU 921 ˆ 24
batch normalization 1 921 ˆ 24 - 921 ˆ 24
max pooling 1 921 ˆ 24 2 460 ˆ 24
conv1d 2 460 ˆ 24 32, 3, ReLU 458 ˆ 32
conv1d 3 458 ˆ 32 32, 3, ReLU 456 ˆ 32
batch normalization 2 456 ˆ 32 - 456 ˆ 32
max pooling 2 456 ˆ 32 2 228 ˆ 32
conv1d 4 228 ˆ 32 32, 3, ReLU 226 ˆ 64
conv1d 5 226 ˆ 64 32, 3, ReLU 224 ˆ 64
batch normalization 3 224 ˆ 64 - 224 ˆ 64
max pooling 3 224 ˆ 64 2 112 ˆ 64
conv1d 6 112 ˆ 64 32, 3, ReLU 110 ˆ 64
conv1d 7 110 ˆ 64 32, 3, ReLU 108 ˆ 64
batch normalization 4 108 ˆ 64 - 108 ˆ 64
max pooling 4 108 ˆ 64 2 54 ˆ 64
flatten 1 54 ˆ 64 - 3456
dense 1 3456 64, ReLU 64
dropout 1 64 0.4 64
dense 2 64 n outputs, linear n outputs

Table 11.1: Proposed architecture of the CNN model for the prediction of ttk-o, Q@k-o, ttk-p,
Q@k-p, and RUL. The model can be trained to predict multiple points at once (joint prediction) or
separately. Hyper-parameters are given in the format: filters, kernel size, activation for conv1d layers;
pool size for max pooling; dropout for dropout; nodes, activation for dense layers.

restricted to the first 100 cycles of data before being standard scaled (when the model

was trained in the full setting, the restriction step was dropped). Hyper parameters were

optimised prior to testing using randomly selected validation subsets of cells from the training

set.
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When using the model to predict future capacity (Q@k-o and Q@k-p) and IR (IR@e-o,

IR@e-p and IR@EOL) the model was trained to predict the loss in capacity and rise in IR,

respectively. Given a measurement (or prediction) of current capacity and current IR, these

can then easily be converted into predictions of future capacity and IR. The loss in capacity

from the start to EOL is of the order of 0.1. Similarly, the loss in capacity to knee-onset and

knee-point is quantitatively small. The IR rises are even smaller, of order 0.001. Small target

values can mean small values in a model’s loss function which can negatively impact training.

Thus to improve performance, our model was trained to predict 10000ˆ(loss in capacity)

and 2000000ˆ(rise in IR). These multiplications were accounted for when converting to a

prediction of future capacity and IR. The multiplicative constants selected here are largely

arbitrary (chosen to roughly match the range of RUL values) and their exact specification

did not significantly impact model performance.

11.2.2 Prediction intervals via the forward-dropout method

Here we briefly describe the approach taken to provide prediction intervals. A simple approach

is to train and predict with multiple independent copies of a model calculating prediction

intervals from the independent predictions. Here by ‘independent’ we mean models trained

separately: due to the stochastic nature of the training each trained model will provide

different predictions. This approach is often referred to as an ‘ensemble’ approach, and this

is the approach taken to produce the performance metrics displayed in this paper. However,

there are notable issues which may make such an approach unattractive or unfeasible. Firstly,

there is the computational cost and time associated with training a model repeatedly and

independently. And secondly, there is the cost of storing multiple models in memory, which

poses a particular barrier in storage limited applications such as integrated chipsets.

Another approach, superior to the ensemble approach in both aspects described (although

not necessarily in terms of accuracy), is to deploy dropout during the forward pass of a

network (forward dropout). That is, predicting with a trained model multiple times each

time with a random dropout (of a pre-specified rate) applied and calculating prediction

intervals from these predictions. This approach can be viewed as a Bayesian approximation of

a Gaussian process [83]. The rate at which dropout is applied during prediction is optimised

such that the distribution of ‘residuals’, from dropout prediction to the median dropout

prediction, matches the distribution of residuals from the model without dropout’s prediction

to the true value. This optimisation can be performed prior to deployment (on a validation

set), or ‘on the fly’ after deployment as predictions are made and then compared with realised

results. This is our preferred approach when using the model to predict the full capacity

fade and IR rise curves. When this approach was applied to our model the dropout layer

present in Table 11.1 and Fig 11.2 was used to apply dropout in training with our selected

training dropout and then in prediction with a separately optimised prediction dropout rate.
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11.3 Model performance

11.3.1 Performance metrics

We now present our model’s performance metrics when predicting each quantity in isolation.

The figures for the prediction of ttk-o, ttk-p, RUL, IR@e-o and IR@e-p are presented in

Table 11.2. For the capacity related predictions, the cycle error (MAE and RMSE) is lower

for the points which are temporarily closer to the cycle from which the prediction is made:

the knee-onset and knee-point. However, in percentage terms, the model performs better

predicting the RUL than the ttk-o or ttk-p. This is explained by the larger target value

and thus smaller percentage error for a given cycle error. The larger percentage error for

the knee-onset prediction is explained by the smaller target value. The prediction of the IR

related quantities is quantitatively worse than the capacity related ones; this is explained by

the (much) noisier IR measurements which in turn effect the elbow identification [210, page

8]. A more granular view of the errors can be found in Fig. 11.4b (for the RUL) and Fig.

11.3.

RMSE (cycles) MAE (cycles) MAPE (%)
Train Test Train Test Train Test

ttk-o 38 ˘ 5.0 84 ˘ 12.0 21 ˘ 2.7 55 ˘ 6.5 4.9 ˘ 0.72 12.6 ˘ 1.44
ttk-p 41 ˘ 4.8 83 ˘ 14.4 26 ˘ 3.4 55 ˘ 6.1 4.2 ˘ 0.48 9.7 ˘ 0.94
RUL 50 ˘ 4.7 100 ˘ 19.3 32 ˘ 3.1 66 ˘ 7.8 3.8 ˘ 0.33 8.6 ˘ 0.95

tte-o 51 ˘ 3.7 112 ˘ 23.8 30 ˘ 2.6 71 ˘ 10.2 4.6 ˘ 0.37 11.9 ˘ 1.87
tte-p 50 ˘ 4.5 105 ˘ 28.3 31 ˘ 3.1 68 ˘ 11.7 4.2 ˘ 0.40 10.1 ˘ 1.54

Table 11.2: Performance of proposed model to predict Capacity’s: ttk-o, ttk-p and RUL; and IR’s:
tte-o and tte-p.

The results of comparing the predicted Q@k-o, Q@k-p, IR@e-o, IR@e-p and IR@EOL with

the values from the empirical fitted curve are presented in Table 11.3 where it is shown that

our model can accurately predict these values from a single cycle of data.

RMSE MAE MAPE (%)
Train Test Train Test Train Test

Q@k-o 0.0018 ˘ 2.4e´4 0.0082 ˘ 6.7e´4 0.0013 ˘ 1.9e´4 0.0041 ˘ 2.6e´4 0.13 ˘ 0.02 0.40 ˘ 0.03
Q@k-p 0.0022 ˘ 2.8e´4 0.0075 ˘ 4.6e´4 0.0017 ˘ 2.5e´4 0.0040 ˘ 2.1e´4 0.17 ˘ 0.02 0.41 ˘ 0.02

IR@e-o 5.4e´5 ˘ 6.2e´6 0.00019 ˘ 2.1e´5 3.3e´5 ˘ 3.8e´6 0.00014 ˘ 1.6e´5 0.20 ˘ 0.02 0.84 ˘ 0.10
IR@e-p 6.7e´5 ˘ 6.7e´6 0.00021 ˘ 2.5e´5 4.4e´5 ˘ 5.0e´6 0.00015 ˘ 2.1e´5 0.26 ˘ 0.03 0.85 ˘ 0.12
IR@EOL 0.00020 ˘ 4.9e´5 0.00041 ˘ 5.5e´5 0.00014 ˘ 2.0e´5 0.00032 ˘ 4.0e´5 0.72 ˘ 0.10 1.71 ˘ 0.21

Table 11.3: Performance of model to predict future capacity and IR, when current capacity/IR is
known.
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11.3.2 Full curve prediction

We now inspect the performance of the model to predict the full capacity and IR curves. For

this we trained three models to predict jointly related quantities. These three models were a

‘time to’ model (predicting ttk-o, ttk-p, RUL, tte-o and tte-p), a ‘capacity’ model (Q@k-o

and Q@k-p) and an ‘IR’ model (IR@e-o, IR@e-p and IR@EOL). In this way we can recover

the performance metrics of individual prediction and avoid issues such as the knee-point

being predicted before the knee-onset. For each of these models forward dropout rates for

each of their outputs were optimised by training and testing on subsets of the training data.

For the ‘time to’ model the selected dropout rates were 0.45, 0.325, 0.35, 0.35 and 0.30

for the ttk-o, ttk-p, RUL, tte-o and tte-p, respectively; for the ‘capacity’ model 0.3 and

0.15, Q@k-e and Q@k-p; and, for the ‘IR’ model 0.75, 0.7 and 0.5, IR@e-o, IR@e-p and

IR@EOL. Final models were then trained on the full training set and multiple predictions

made with the selected dropout rates. Example plots of the predictions produced by this

model are presented in Fig 11.3, where we present plots for 9 randomly chosen cells from

the 35 test cells at random cycles from between cycle 1 and 10. The full curve prediction

intervals presented in this plot were calculated by fitting our empirical model (Fig. 11.1b) to

the prediction intervals calculated from the dropout predictions of knee/elbow -onsets and

points, and the EOL. We do not address the impact of measurement noise on our input

data. A simple approach to address this issue would be to allow a normal distribution around

the measured capacity/IR with variance calibrated to the training data, or to take capacity

values from several cycles as input.

It is clear from Fig. 11.3 and Fig. 11.4b that, on average, our model performs worse on cells

with longer cycle lives and Fig. 11.4c shows the reason why: a significantly lower amount of

training data is available for cells with an EOL above 1200 cycles.

A related problem to the prediction of RUL is the classification of cells by expected lifetime.

For example, manufacturers may wish to select only the best performing cells to place in a

battery pack. In the context of the Severson dataset we point to [197] who report a 4.9% test

error classifying cells by ‘long-lived’ (EOL ą 550 cycles) and ‘short lived’ (EOL ă 550 cycles)

from 5 cycles of data, and [78] who achieve an accuracy of 88% classifying the batteries

into ‘short’ (knee-point ă 500 cycles), ‘medium’ (knee-point between 500–1100 cycles) and

‘long-range’ (knee-point ą 1100 cycles) from 5 cycles of data. For comparison with these

results Fig. 11.4a displays a confusion matrix obtained from converting our model’s cycle

predictions into three classes ‘short’ (EOL ă 550 cycles), ‘medium’ (550-1200 cycles) and

‘long’ lived (ą 1200 cycles). We see that our model achieves a comparable level of accuracy,

while performing the classification from a single cycle of data. This shows that, while not

performing well on long-lived cells (in the regression problem), the prediction is competitive

for the classification problem. The barrier of 550 matches that used in [197], and the barrier

of 1200 is in line with that used in [78] (as the EOL occurs somewhat after the knee-point).
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Fig. 11.3: Plots of model predictions for nine randomly chosen test cells at randomly selected input
cycles. Model predictions are produced from data of a single cycle, given the measured capacity/IR
at that cycle. The prediction intervals (95% and 80%) are calculated under a normality assumption
from 100 predictions with forward dropout applied. Moving from left to right, and then down a row
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especially for longer lived cells. c. Distribution of training data for EOL showing a significantly lower
amount of training data for long lived cells.

In Fig. 11.5 we note that the model performance improves in a largely linear manner as the

cycle from which the prediction was made approaches the EOL.
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Fig. 11.5: Plot of model’s performance to predict RUL in the full setting, showing a mostly linear
improvement in performance as the prediction point approaches the EOL.

11.3.3 Comparison with prior art

We report a comparative study of our work to existing art utilising the Severson dataset. A

review of works presenting models for prediction of EOL and RUL utilising different datasets

can be found in the introduction (and references therein). Model performance may vary due

to different employed datasets. In this regards, we can only meaningfully compare our results

to these in terms of methodology. However, we choose to provide a quantitative comparison

against literature drawing on the the same dataset analysed in this work (Severson dataset).

In particular, we discuss [103, 134, 197, 199, 237] to review methods and approaches used,

results presented, features selected, mode of feature selection and the number of cycles

required for prediction. A summary of this comparison can be found in Table 11.4. We

separate EOL and RUL prediction as these problems are quantitatively distinct.

Prediction of RUL (summarized in Table 11.4 (a))

Hong et al. [103] propose a Dilated CNN to predict the RUL. Their approach is feature

free. As input their model takes 4 cycles of voltage, current and temperature data. They

introduce two settings: the ‘initial’ setting where they restrict to data from the first 100

cycles, and the ‘full’ setting, where they restrict to data before EOL. They obtain a reported

MAPE of 10.6% and 19.7% in the initial and full settings respectively.
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In order to compare our model’s performance with that of [103] in Table 11.5 we present

our model’s performance in the initial and full setting. Where we obtain an MAPE of 9.6%

and 12.8% respectively. Outperforming the model of [103] in both settings using fewer

cycles of data. We emphasise the methodological difference here to [103]: their use of 4

cycles is explicitly to capture inter-cycle cross-data correlations and temporal patterns; our

results need only 1 cycle worth of information which does not contain any type of gradient

information.

Prediction of EOL (summarised in Table 11.4 (b))

Severson et al. [197] predict the EOL using a Regularised Linear Model (RLM) trained

on features extracted from the first 100 cycles of data. They emphasise the importance

of including voltage data in their regression models, in particular capacity as a function

of voltage (Q(V)); proposing three candidate models to predict EOL, all utilising features

extracted from the gradients of voltage discharge curves. The best performing of these

models (utilising the most features) obtains a reported MAPE of 9.1%

Ma et al. [134] propose a new ‘Broad Learning-Extreme Learning Machine’, this model is

tested to predict the capacity and EOL on three data sets. For the Severson dataset they

present results only for the prediction of EOL. Like Severson their model takes as input

features extracted from the first 100 cycles of data. With this model they obtain a reported

MAPE of 9%.

Shen et al. [199] predict EOL using a Relevance Vector Machine (RVM) to enhance the

dataset by generating ‘artificial cells’ with long cycle-lives then the enhanced dataset is used

to train a CNN. As input the CNN takes ∆Q100´10pV q, thus we consider it a ‘feature based’

CNN. Evaluating their model on a primary and secondary test set, they report an average

MAPE of 11.7%.

In contrast to the approaches described above we take a feature extraction free approach,

utilising a convolutional neural network to learn the ‘optimal’ features. As input our model

takes a single cycle of voltage and current data, thus our model sees no gradient information.

Predicting from a single cycle of data we then greatly increase the available training and

testing data, enabling us to utilise deep learning techniques. The performance of our model

to predict the EOL and RUL when restricted to batches 1,2 and 3 is presented in Table 11.5.

Prediction of the IR rise curve

To the authors’ knowledge the only other work predicting the IR rise curve for the Severson

dataset is [210]. Where a RVM was used to predict the elbow-onset and -point from the

first 50 cycles of data. For the prediction of elbow-onset they achieved a MAPE of 14.0%

and a MAE of 91.3, and for the elbow-point a MAPE of 11.5% and a MAE of 83.4. So we

have improved on this previous work in terms of accuracy and number of input cycles.

Prediction of the entire capacity fade curve
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Paper Inputs
Cycles

MAPE
What is

used predicted

This
V, I 1

8.8 % EOL
work 9.6 % RUL

[103] V, I, T 4 10.6 % RUL

[134] SOH, Q(V), IR, ttc 100 9.0 %

EOL
[197] SOH, Q(V), IR, ttc, T 100 9.1 %
[199] Q(V) 100 11.7 %
[237] SOH, Q(V), V, T 250 7.0 %

Table 11.4: Comparison of results from works using the Severson dataset. For comparison purposes,
reported results exclude data from batch 8. Ordered by number of cycles used and reported MAPE.
Inputs listed are in-cycle measurements of voltage (V), current (I), temperature (T), capacity as a
function of voltage (Q(V)); and cycle-to-cycle measurements of capacity (SOH), internal resistance
(IR) and time to charge (ttc).

RMSE (cycles) MAE (cycles) MAPE (%)
Train Test Train Test Train Test

EOL 55.0 ˘ 5.8 110 ˘ 24.4 33 ˘ 3.4 73 ˘ 12.4 3.5 ˘ 0.35 8.8 ˘ 1.43
RUL (initial) 55.0 ˘ 5.8 110 ˘ 24.4 33 ˘ 3.4 73 ˘ 12.4 3.7 ˘ 0.43 9.6 ˘ 1.47
RUL (full) 38 ˘ 2.7 99 ˘ 34.8 23 ˘ 2.5 59 ˘ 12.6 5.3 ˘ 0.47 12.8 ˘ 1.26

Table 11.5: Performance of proposed model to predict EOL and RUL when restricted to batches 1,
2 and 3. We report performance both in the initial setting (input cycle ă 100 cycles) and the full
setting.

To the authors’ knowledge the only other work predicting the entire capacity fade curve

for the Severson dataset can be found in Herring et al. [100]. Presenting a python library

for the prognosis and cycle life prediction of Li-ion cells. As an example of their libraries

performance, they predict the evolution of cell capacity for the Severson dataset. They train

a multi-task linear model to predict the number of cycles until a cell reaches a range of

SOH levels. This model takes as input the features in [197] covering 100 cycles of data. No

performance metrics were provided.



11.4. Conclusions 166

11.4 Conclusions

The prediction of future capacity loss and IR rise is a problem of great importance. Current

capacity prediction algorithms demand input data across many tens of full charge-discharge

cycles to work and IR rise prediction has received little attention in the literature. In our

framework, the remaining-useful-life and the entire capacity/IR trajectory are accurately

predicted from a single input data cycle. This reduction entails a significant increase in

prognostics procedures’ affordability through reduced testing times, and stands to benefit

academics and industry.

Differentiating from existing methods, we use key quantities as a dimension reduced

description of the capacity fade and IR rise curve, which combined with an empirical

model describe the full curves. Regarding model selection and simplification, we effectively

demonstrate that gradient information is not required for the prediction of future capacity

degradation. To the best of our knowledge this is in stark contrast to all previous work in

this domain, which explicitly or implicitly require gradient information for prediction. Lastly,

our model shows competitive performance compared with prior art, demonstrating the power

of deep learning unlocked by considering each data cycle individually.

In terms of future work, the methodology we present can be deployed to electrochemical

impedance spectroscopy (EIS) data which, a priori, is easier to gather.

Methods

Learning rate scheduler starting from the default Keras learning rate, the learning rate

scheduler updates the learning every ‘decay step’ number of epochs as described in Eq. (11.1)

new learning rate “ previous learning rate ˆ decay rate . (11.1)



Chapter 12

Sample sizes required to understand

cell-to-cell variability

The work contained in this section is from our paper [209], which was a joint work with Dr.

Michael Allerhand, Dr. Philipp Dechent and Prof. Gonçalo dos Reis.

Abstract

The testing of battery cells is an expensive and long process, and hence understanding how

large a test set needs to be is very useful. This work proposes an automated methodology

to estimate the smallest sample size of cells required to capture the cell-to-cell variability

seen in a larger population. We define cell-to-cell variation based on the slopes of a linear

regression model applied to capacity fade curves. Our methodology determines a sample

size which estimates this variability within user specified requirements on precision and

confidence. The sample size is found using the distributional properties of the slopes under

a normality assumption. The implementation is available on GitHub.

For the five datasets in the study, we find that a sample size of 8-10 cells (at a prespecified

precision and confidence) captures the cell-to-cell variability of the larger datasets. We show

that prior testing knowledge can be leveraged with machine learning models to operationally

optimise the design of new cell-testing leading up to a 75% reduction in experimental costs.

167
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12.1 Introduction

Current lithium-ion cells do not yet meet some applications’ required power and energy

densities. Therefore, research on new materials is dynamic, and ageing behaviour is an

essential part of the evaluation. Furthermore, new applications for batteries with particular

requirements - such as the electrification of ships, trucks [81], aircraft [204], tractors and

construction machinery - often bring new load profiles, which will most likely induce a

different ageing behaviour. Therefore, adapted test and evaluation methods are necessary for

a reliable lifetime prediction. Batteries are highly complex systems with physical, chemical

and electrical effects taking place simultaneously requiring a lot more effort to accurately

model these effects themselves. And thus, in the short and medium term data-driven and

empirical models will be used. These methods include diagnostic methods such as deep

learning or neural networks based on systematically generated data from accelerated ageing

tests in the laboratory [122].

The ageing of lithium-ion batteries depends on the complex interaction of numerous stress

factors such as current rate and temperature, which necessitates an extensive test matrix. In

addition, the transfer of test results to new batteries with varying materials and dimensions

to create models for new cells is very limited. Currently, complex testing is carried out on a

small scale on random samples due to the lack of testing resources. This limits the scope of

a test regarding the number of different stress factors, the resolution of the influence, and

the statistical aspects of cell-to-cell variation.

The ageing is primarily noticeable to the user as lower capacity and thus shorter operating

time [19]. Many different stress factors need to be considered for ageing prediction and

testing. These factors are, e.g. temperature, storage voltages for calendar ageing as well

as cycle depth, state of charge (SoC) range, mechanical pressure, current rate and charge

throughput for (charge/discharge) cycle ageing [70, 195].

Ageing takes place in all components of a battery, not only in the electrodes and electrolyte,

but also in the casing and separator [4]. The mentioned stress factors influence ageing in

electrodes and electrolytes. For example, the dissolution of electrolyte and binder as well

as the reduction of the active surface in anodes are accelerated by high temperature and

high state-of-charge. These ageing effects lead to capacity and power losses. In contrast,

low temperature and high current accelerate the deposition of metallic lithium on the

anode surface [227]. Fast development cycles only allow short testing periods, but the

longevity under multiple scenarios must also be guaranteed. Therefore, ageing prediction

with accelerated ageing is possible and necessary [65]. For a meaningful acceleration of

the lifetime tests, the intensified ageing conditions should not trigger additional ageing

mechanisms (e.g. lithium deposition) and the share of irreversible ageing and reversible

capacity effects from the inhomogeneity of the lithium distribution and the anode overhang
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must be separated [119]. Studies combining ageing tests, cell-to-cell variation and post-

mortem analyses to investigate the effects of ageing in the material over time require a high

number of cells to be aged under comparable conditions and investigated in post-mortem

analyses.

The fundamental patterns of how these factors influence ageing are known, and there are

already investigations on this subject [19]. The challenge, however, is that each cell type is

different, and thus the impact of those factors varies. This means that every new cell has to

be investigated in extensive tests to be able to estimate the long-term behaviour. All these

measures require very large test capacities. Furthermore, massive parallel tests are necessary

to obtain results in a shorter time compared to sequential tests. Naturally, the goal is to

test as efficiently and as little as possible and still achieve solid predictability. To uphold

high utilisation, channels should be used in succession, testing new stress factors on a new

cell when channels become available. In addition, batteries already start to age at the time

of production [21]. Therefore, cells that enter a test at different times may already behave

differently. Cells, therefore, need to be stored with minimal degradation at low temperatures

and medium-low state-of-charge levels.

Furthermore, there are variations between individual cells of the same cell type [13]. They

can be attributed to the tolerances in the production and cannot be avoided. Thus, it

is not sufficient to test one cell, but all tests must be repeated with multiple cells. In a

recent study by the 3rd author, it was shown that more cells should be tested to accurately

capture variability than what is typically done today [49]. So far, publications of Design-of-

Experiment include only either stress factors [162, 194] or cell-to-cell variation [51, 190].

And, feedback-based experiments include only a minimal design space of stress factors

and extremely accelerated ageing (around 30 days of testing per cell) [6]. Therefore, the

published posterior methods cannot be used on ageing tests aimed at predicting lifetime at

up to 10-15 years of operation.

12.2 Design of a sequential analysis

All of the above discussed aspects render the testing of batteries very costly. Therefore,

it is crucial to consider which stress factors of the measuring matrix and what number of

cells are necessary for the intended purpose and how to adjust the design of the experiment

during the test phase to incorporate knowledge gained on the fly and in a feedback loop for

additional tests.

Battery degradation prediction is also limited by the amount of data available for either

creating empirical models or parameterising physics based or data-based models. Furthermore,

due to the vast parameter space of stress factors influencing battery degradation, tests can

only provide meaningful data when those stress factors are consistently considered.
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When a test is finished, and the end-of-life of the cell is reached, the testing equipment

is freed for further use, and a question arises: Should you do more of the same testing or

consider different stress factors, in order to get the maximum information in a given time?

While conducting an ageing study, the result of the study can change with additional tests.

Probing phase
boundaries of stress factor 

design space

A priori test plan
Based on prior knowledge 

and probing phase 

Each dot 
represents a test 
condi�on

20 channels
4 weeks

1000 channels
2 years

Uphold high u�lisa�on
of 1000 channels

Ongoing test enhancement
Feedback loop based on evalua�on 

and incremental usefulness

Phase of 
high-throughput 
tes�ng

Resource
demand

Fig. 12.1: Sketch of high-throughput test example using 1000 channels and different phases of the
design of experiment and continuous test enhancement.

Figure 12.1 shows the idea of the underlying testing concept as an example in this work.

Each dot represents a test condition with the stress factors as the axis of the design space.

First, within a probing phase, only a few cells (20 in this example) are tested to identify the

boundaries of the stress factors under investigation for the given cell. The aim is to collect

this data within a short time – for example 4 weeks. Then, based on this data and additional

prior knowledge transfer from previous ageing tests, an a priori test plan is created and rolled

out on a massive test infrastructure. In this second phase, individual stress factors are tested

on 1000 channels parallel. Finally, in the last phase, channels become available due to cells

degrading faster with some stress factors, additional cells are tested to increase the data

available at areas of interest with the most amount of information gained at those conditions.

The second and third stages overlap and will continue for as long as the equipment is

available or a sufficiently high accuracy and diversity of the measuring data is reached. This

can be up to 2-3 years of testing.

Figure 12.2 shows a number of channels and their usage over time. Images a) and b) show

example decisions made after one year based on an automatic usefulness calculation: in a)

different testing is given priority, while in b) the calculation showed more tests were necessary

for the same testing condition since the desired level of confidence was not yet reached.
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Fig. 12.2: Example for an ageing test plan for 2 years with 24 channels available. Each row represents
a channel and a) and b) describe two scenarios with a change of the test plan after one year
depending of having tested“enough” to capture variability. Yellow denotes channels used to capture
the cell-to-cell variability, green shows the initial run of other stress factors, and blue and red show
sequential tests on the same channels. In a) after 1 year enough cells have been tested under the
same conditions, so additional test conditions can be tested with the available channels. In b) the
amount of data collected is not yet enough and additional tests are started with the same ageing
conditions.

12.3 Datasets overview

In terms of data for this work, we use the same data as [49, Section 2.1] but with novel

techniques. For ease of comparison we adopt their nomenclatures. The description next

follows closely that in [49, Section 2.1]. For a general overview of publicly available battery

data, see [58]. The datasets were chosen for study based on the necessity of testing as many

cells as possible within each dataset. All datasets are open source. Each dataset features a

single type of commercially available Li-ion cells, however the manufacturers, chemistries,

and cell sizes vary from one dataset to the next. Although the methods outlined below can

be applied to different form factors, all datasets used 18650 cylindrical cells. Some datasets

had identical experimental settings, meaning that each cell was tested in the same manner,

whereas others changed the stress factors somewhat beyond the expected uncontrollable

experimental variability. The datasets are as follows, and notation-wise we reserve the letter

N to denote the total amount of cells in a dataset.

Baumhöfer 2014 48 cells, Sanyo/Panasonic UR18650E, NMC/graphite, 1.85 Ah
Dechent-2020 22 cells, Samsung INR18650-35E, NCA/graphite, 3.5 Ah
Dechent-2017 21 cells, Samsung NR18650-15 L1, NMC/graphite, 1.5 Ah
Severson-2019 67 out of 124 cells, A123 APR18650 M1 A, LFP/graphite, 1.1 Ah
Attia-2020 45 cells, A123 APR18650 M1 A, LFP/graphite, 1.1 Ah
Attia-predicted 45 cells, Predicted data for Attia-2020 using model proposed in [208].



12.3. Datasets overview 172

The capacity fade curves in Baumhöfer-2014, Severson-2019 and Attia-2020 (also Attia-

predicted) exhibit the so-called Knee phenomena of rapid non-linear degradation [5, 78].

The Dechent-2017 and Dechent-2020 contain linear capacity fade trajectories over time.

The capacity fade trajectories (y-axis) plotted against time (x-axis) can be found in Figure

12.3 below. For all the datasets, the capacity is normalised to the nominal capacity, and

hence, expressed as a percentage – we work with state of health (SOH).

The Attia-predicted dataset is data generated considering the first 20 cycles of the Attia-2020

dataset and using the one-cycle predictor model proposed in [208].
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Fig. 12.3: Capacity fade trajectories (y-axis) over time (x-axis) for the six datasets mentioned in
Section 12.3

A critical remark on cell-to-cell variability across datasets.

It should be noted that the datasets considered do not all share the same driving factor

of variability. For Baumhöfer-2014 and Dechent-2020 (within each dataset), the cells were

cycled identically in the same environment. Therefore, the variability observed in the data is

essentially the intrinsic manufacturing variability of the cells. In contrast, Severson-2019 and

Attia-2020 consider a wide range of charge protocols, and this is an additional driving factor

for cell-to-cell variability in the datasets. Thus, the variability observed in these datasets is

driven by intrinsic and extrinsic factors. However, as in [49], this paper works with a restricted

subset of these datasets where the variability of extrinsic factors is lower – in practise, this

translated into selecting only cells with a life cycle of between 23 and 40 days, and excluding

Batch 2 of Severson’s [197] original dataset. Dechent-2017 also shows extrinsic and intrinsic

factors, but with small differences (ă 15% difference of charge current) between the tested

cells. The ability to observe solely intrinsic cell-to-cell variability is, of course, experimentally

dependent.
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It should be emphasised that the methodology proposed in this paper is built on a certain

assumption of normality (see next section). Thus it is best suited for experiments whose

main source of variability is intrinsic or where the extrinsic variability is lesser. Experiments

designed with large levels of extrinsic variability (as with Batch 2 of Severson’s [197] dataset

compared to Batches 1 and 3) may be multi-modal in nature (e.g., 50 cells tested at

´10˝C and 50 cells at 40˝C). In such cases, for the purpose of estimating variability, one

would either require a multidimensional methodology accounting for extrinsic factors or to

cluster the experiment into distinct datasets where this in less of a factor. The methodology

proposed in this manuscript follows this latter framework. At the end of the next section we

discuss the current difficulty with the multidimensional methodology.

12.4 Methodology and estimation

The measure of cell variation for a dataset

Following Dechent et al. [49], we measure variation between cells as variation in the slopes

of straight lines (12.1) fitted through the cell’s repeated capacity measures,

Model Linear-2: yptq “ α ` βt` ε, (12.1)

where t is time, y is capacity, ε is a normal random variable with zero mean and finite

(unknown) variance denoting the errors/residuals. The slope β and intercept α are fitted to

the data (via standard least squares). Each slope β represents a cell’s rate of capacity fade

over successive cycles (the parameter α is discarded).

This manuscript focuses on a one-parameter model for variability and it will be shown below

that the number of cells necessary to capture variability suggested by this method is already

high (e.g., half the total number of cells of the Dechent datasets). More complex models

could be explored with a greater availability of data. In general, our methodology can be

applied to other normally distributed summary statistics. For clarification, this work improves

the statistical methodology deployed by [49] for this problem and does not propose a new

measure of variability. This is left for future research.

For a sample of n slopes tβiu
n
i“1 we define the sample mean (denoted β̄n) and the sample

standard deviation (denoted σ̂n) as

β̄n “
1

n

n
ÿ

i“1

βi and σ̂n “

g

f

f

e

1

n´ 1

n
ÿ

i“1

`

βi ´ β̄n
˘2
. (12.2)

The sample standard deviation of the slopes β is the measure of cell-to-cell variation chosen

for this work.
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We make the following working assumption.

Assumption: For each given dataset, the population of slopes β is normally distributed, i.e.,

slopes β „ N pµβ, σ
2
βq, where both the population mean µβ and the population standard

deviation σβ are unknown parameters (that differ dataset to dataset).

Under this assumption, σ̂n follows a Chi-distribution with n´ 1 degrees of freedom ([2]),

namely

?
n´ 1

σβ
σ̂n „ χn´1 .

In order to specify a confidence level that σ̂n is close to σβ as a function of n, working

with the χn´1 distribution is inconvenient. Nonetheless, it turns out that as n increases

the chi-distribution is well approximated by a normal distribution ([2], [139], [26]). We

thus further assume that the distribution of σ̂n in (12.2) can be approximated by a normal

distribution with mean σβ and standard error sn. That is, we assume σ̂n „ N pσβ, snq.

Capturing representative cell-to-cell variation for a dataset

The closeness of the estimate σ̂n to the true value σβ is quantified by the standard error sn.

The number of cells required to capture cell-to-cell variation is thus given by the value of n

for which sn is small enough to ensure a given precision with a given level of confidence.

However, the standard error is scale dependent, so it is instead more convenient to work

with the relative standard error (RSE) defined as the percentage ratio of the standard error

to the standard deviation

RSE :“100
sn
σβ
. (12.3)

For a concrete prospective: with a normal distribution, roughly 68% of samples are expected

to fall within one standard deviation of the mean. Assuming that the sampling distribution

of standard deviations is approximately normal, the RSE can thus be viewed as an upper

bound on how far the sample standard deviation σ̂n is expected to differ from the population

standard deviation σβ, with a confidence of 68% that the bound will not be exceeded.

As the RSE is defined in relation to sn, it is quite easy to obtain confidence levels that our

estimate σ̂n will differ from σβ by no more than any percentage level k%. Simply dividing k

by the measured RSE will give the number of standard errors that a deviation of k% would

correspond to. And then, the number q :“ ´k{RSE can be compared with the CDF of a

standard normal to yield the confidence level that it will not be exceeded.



12.4. Methodology and estimation 175

For a given sample size n the RSE can be obtained in two ways: theoretically and empirically.

From the theoretical perspective, under the asymptotic regime of n ą 10 ([2], [26]) the RSE

is given by a deterministic expression:

RSE “100
1

a

2pn´ 1q
ñ n “ 1 `

1

2

1

RSE2
. (12.4)

The inversion shown above gives a sample size n which (for the reasons given above)

corresponds to a confidence level of approximately 68%. The reader can compare the results

this equation gives with Table 12.1.

To measure the RSE empirically, the quantities in formula (12.3) must be replaced with

estimates: σβ can be approximated by taking the empirical standard deviation of the

largest available sample (the whole dataset), and, sn by using a bootstrapping procedure to

construct a distribution of sample standard deviations and then taking its standard deviation.

Concretely, for a given sample size n and a number of bootstrap samples b (say b “ 1000),

sample (with replacement) b sets of n slopes. Taking the standard deviation for each set of

slopes produces a distribution of b standard deviations; taking the standard deviation of this

distribution gives an estimate for sn.

Making use of these results in practice

We can now describe concretely our approach to calculate the required number of cells to

maintain an accurate picture of cell-to-cell variability. Two elements must be prespecified: a

maximum acceptable deviation k% for the estimate σ̂n of σβ and the level of confidence

required that this k will not be exceeded. Firstly, the linear regression (12.1) is fitted to

the capacity data giving a list of slopes. Then, using this list of slopes, for sample sizes

from n “ 2 up to the full size N of the dataset the RSE is calculated as described above -

examples of the resulting values can be seen in Figure 12.4. For the acceptable deviation

level pk%q the probability that it will not be exceeded is then calculated for each sample size

- this is presented in Figure 12.5 for k “ 25%. The required sample size is then the smallest

sample size providing the required confidence level. The theoretical and empirical results

will not always agree and (after checking for outliers and normality as described below in

relation to Table 12.4) we recommend selecting the larger of the two sample sizes.

In Section 12.5 we compare the empirical and theoretical sample sizes our methodology

recommends for the datasets selected for this work. In Table 12.1 we present the theoretical

required number of samples for a range of maximum acceptable deviations (relative to σβ)

and confidence levels that this maximum will not be exceeded.

For example, to obtain an estimate of standard deviation sn that deviates from σβ by not

more than 25% at a confidence level of 68%, Table 12.1 indicates a sample of at least n “ 9

cells (see also [26, p120] or [25, p103]).
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Maximum acceptable deviation p%q

5 10 15 20 25 30 35 40 50

C
on

fi
d
en
ce

p%
q

50 92 24 12 7 5 4 3 3 2
60 143 37 17 10 7 5 4 4 3

68 199 51 23 14 9 7 6 5 3
75 266 68 31 18 12 9 7 6 4
80 330 84 38 22 15 11 8 7 5
85 416 105 48 27 18 13 10 8 6
90 543 137 62 35 23 17 13 10 7
95 770 194 87 50 32 23 17 14 9
99.7 1763 442 197 112 72 50 37 29 19

Table 12.1: Theoretical number of samples required to estimate the population standard deviation for
a range of maximum acceptable deviations (relative to σβ) and confidence levels that this maximum
will not be exceeded. The 68% confidence row corresponds to the asymptotic RSE result of Equation
(12.4) with the boxed n “ 9 stands for RSE “ 0.25.

Comparison to prior art

The main contribution of this work, in comparison to [49], is a statistically quantified choice

of the required sample size n. While the definitions chosen for variability are of the same

form as there, the methodology developed for choosing the sample size is different. The

methodology1 of [49] requires the selection of a manual threshold limit for each dataset and

the exact statistical meaning of this is unclear. In contrast, the parameters of maximum

acceptable deviation and level of confidence used by our approach have clear statistical

interpretations.

The methodology here focuses solely on a standard linear regression model and models

capturing non-linear degradation are not included (e.g., the line-exponential model highlighted

in [49] or the Bacon-Watts model [78]). The three parameters of the line-exponential model in

[49] are not easily interpretable and the model suffers from a lack of robustness. Additionally,

the line-exponential model requires the full longitudinal data to work well (see [5, 210])

which limits its usability in online applications as is discussed below (see Section 12.6.2).

1.
From a bird’s eye perspective, both here and in [49], the starting point are models like (12.1) and a variation
metric is build from their parameters. To work with the subsampled distributions, we use bootstrapping while
[49] uses a hierarchical Bayesian approach. The final aspect, and the main difference of approach, requires
a technical explanation. The method explained in the final paragraph of [49, Section 3] is to linearise the
relationship between variation and sample size by taking logs – this tacitly assumes an unstated power curve
relationship between variation and sample size – then identify a“stable region”of the linearised relationship
by extrapolation from manually chosen points. It is not clear how this could be automated or which statistical
interpretation it has. Finally they threshold deviations from the line to find the smallest sample size n. We
compare sampling distributions using the RSE (12.3) as a general scale-invariant measure. The user then
specifies a statistically interpretable and justified threshold on the percentage of RSE at a confidence level
and the sample size is found without any further (manual) choice.
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This project’s implementation under CC BY 4.0 copyright license is publicly available on

GitHub (see Additional Information section) as an open invitation for further testing and

experimenting.

12.5 Results

For sake of exposition, this section is presented under the choice of a maximum acceptable

deviation of at most 25% and a confidence level of 68%. Figure 12.4 shows the relative

standard error of sample standard deviation as a function of the cell sample size, (starting

with the smallest sample with any variation n “ 2 until the total number N of samples

available). The empirical estimates (shown as open circles) and the theoretical estimates

(shown as lines) are obtained as described in Section 12.4.
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Fig. 12.4: Relative standard error (RSE) of sample standard deviation as a function of sample size.
Black continuous line given by deterministic RSE asymptotic approximation of (12.4).

Figure 12.5 shows the corresponding confidence levels for a threshold on maximum acceptable

deviation specified at k “ 25%. These confidence levels are obtained by comparison with

a normal distribution as described in Section 12.4. The figure shows that the theoretical

estimates are generally a close fit to the empirical estimates. Comparison with empirical

data, such as the Severson-2019 data shown in Figure 12.5, shows a good agreement in

that sample size n “ 9 is the smallest sample where the percentage RSE is not more than

25% with a confidence level of 68%.

Table 12.2 shows empirical estimates of the sample size needed to estimate standard deviation

that deviates from σβ by not more than k “ 25% with a confidence of 68%. The theoretical

estimate is n “ 9. Where there are differences between the theoretical and empirical results,

(for example the Dechent-2017 dataset), it is most probably because the assumption of

normal sampling was not met.

https://creativecommons.org/licenses/by/4.0/


12.5. Results 178

0 20 40 60
Sample size

0

25

50

75

100

Pr
ob

ab
ilit

y 
(%

)

Severson-2019

0 20 40 60
Sample size

0

25

50

75

100

Pr
ob

ab
ilit

y 
(%

)

Baumhofer-2014

0 20 40 60
Sample size

0

25

50

75

100

Pr
ob

ab
ilit

y 
(%

)

Attia-2020

0 20 40 60
Sample size

0

25

50

75

100

Pr
ob

ab
ilit

y 
(%

)
Dechent-2017

0 20 40 60
Sample size

0

25

50

75

100

Pr
ob

ab
ilit

y 
(%

)

Dechent-2020

0 20 40 60
Sample size

0

25

50

75

100

Pr
ob

ab
ilit

y 
(%

)

Attia-predicted

Fig. 12.5: Probability of a random sample estimate with relative error not more than 25%.

Required Sample Size
N Empirical Theoretical

Baumhöfer-2014 48 8

9
Severson-2019 67 9
Attia-2020 45 9
Dechent-2017 21 10
Dechent-2020 21 10

Table 12.2: Sample sizes for the datasets of this study (at 25% maximum acceptable deviation and
68% confidence) per dataset, and theoretical sample size estimate (see Table 12.1). N is the total
number of cells tested.

Figure 12.6 shows a Q-Q-plot graphical assessment of distribution normality of cells with

Linear-2 (12.1) slopes in each dataset. There could be several reasons for departures from

normality in the Dechent-2017 dataset. One possibility is simply that the dataset has too

few cells, for example, both Dechent-2017 and Dechent-2020 have just 21 cells. As a

general evaluation, for Severson-2019, Baumhöfer-2014 and Attia-2020, there is a very

good agreement of the quantiles (large majority of samples) but there is evident left- and

right-skew hinting at a non-symmetric distribution. Figure 12.3 shows that the Dechent

datasets do not display capacity fade curves with knee-points.



12.5. Results 179

Theoretical Quantiles
3

2

1

0

1

2

Sa
m

pl
e 

Qu
an

til
es

Severson-2019

0.6 0.4
0

5

Theoretical Quantiles

Sa
m

pl
e 

Qu
an

til
es

Baumhofer-2014

0.65 0.60 0.55
0

5

Theoretical Quantiles

Sa
m

pl
e 

Qu
an

til
es

Attia-2020

0.6 0.4
0

5

2 1 0 1 2
Theoretical Quantiles

3

2

1

0

1

2

Sa
m

pl
e 

Qu
an

til
es

Dechent-2017

0.18 0.16
0

2

2 1 0 1 2
Theoretical Quantiles

Sa
m

pl
e 

Qu
an

til
es

Dechent-2020

0.035 0.030
0.0

2.5

2 1 0 1 2
Theoretical Quantiles

Sa
m

pl
e 

Qu
an

til
es

Attia-predicted

0.6 0.4
0

5

Fig. 12.6: Q-Q plots for the standardised distribution of cell slopes β. The inset histogram plots
show the true (non-standardised) distribution of slopes for each dataset.

12.6 Two applied examples

12.6.1 Using prior knowledge to inform new testing

From an historical perspective, Attia-2020 [6] appears in the literature one-year after Severson-

2019 [197]. Both datasets report cycling data from similar battery cells, and we argue that

knowledge gleaned from Severson-2019 could have been used to inform testing for Attia-2020.

This example explores this idea.

Imagine an experiment as follows: take from the public sphere the existing Severson-2019

[197] dataset and train on it the machine learning one-cycle predictor model of [208] (the

one-cycle model is a model designed to predict the remaining capacity degradation trajectory

of a Li-ion cell from any single input cycle). Then, start the cycling experiment on the cells

of Attia-2020 over a short amount of time (the first 20-cycles) and, on that information,

apply the [197] trained one-cycle model to build predicted trajectories for all the cells of

Attia-2020. Finally, let the rest of the Attia-2020 experiment take its course. The paths of

the capacity fade curves for the three datasets can be found in Figure 12.3. The methodology

of the previous section is then used.
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To the obtained linear model slopes of the Attia-predicted dataset apply the sample size

methodology developed in Section 12.4. Table 12.3 reports the estimated sample sizes for a

25% maximum acceptable deviation and a confidence level of 68% at which a theoretical

sample size is computed to be n “ 9 (see Table 12.1). The sample size estimate for the

Attia-2020 experiment is n “ 9 while for the Attia-predicted, computed using only very early

life data, is n “ 11.

Required Sample Size
N Empirical Theoretical

Severson-2019 67 9
9Attia-2020 45 9

Attia-predicted 45 11

Table 12.3: Sample size for Attia-predicted (at 25% maximum acceptable deviation and 68%
confidence) per dataset, and sample size theoretical estimate (see Table 12.1). Information on
Severson-2019 and Attia-2020 kept for comparison.

We argue that this example validates the idea of using prior information to inform the design

of a future experiment. From the calculations, having used n « 10 cells in the Attia-2020

experiment instead of 45 cells would have sufficed to create a representative sample of

cells to capture cell-to-cell variability for that dataset. This reduction in sample size for the

testing equates to a « 75% reduction in experimental costs and, in view of Figure 12.2,

would free about 35 cell-cycler channels after just 20-cycles (time-equivalent) of testing (see

the concept of Figure 12.2).

12.6.2 Generating test cases in an online format to inform larger and longer

experiments

In this example, we employ the estimation procedure of Section 12.4 under a segmentation

of input longitudinally across time (recall Figure 12.1 and 12.3).

Imagine an experiment as follows: a cell cycling experiment having N cells is allocated to a

cell-cycler and it is to last a T amount of time (say 10 weeks). All cycling data is collected2.

Once the experiment runs through 20% of its allocated time (two weeks), the procedure

described in Section 12.4 is applied to the data available and the representative sample size,

say n20%, is determined. Once the experiment runs through 40% of its allocated time the

procedure is applied again (to all data since the beginning of the experiment) and n40% is

estimated. This is then repeated at increments of 20% time until the end of the experiment

is reached yielding the estimates n60%, n80% and n100%.

2. We ignore the possibility of having prior knowledge of the cells, otherwise one can easily leverage the
ideas of Section 12.6.1 by applying, e.g., the one-cycle model at further judiciously chosen time points.
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The estimated samples sizes nx% per dataset can be seen in Table 12.4 and these values need

to be understood in partnership with a verification of the normality assumption underlying

our methodology. This latter element is given in Figure 12.7 in the form of Q-Q plots at

each stage of our theoretical experiment.

Sample size for percentage of input
Dataset N 20% 40% 60% 80% 100%

Baumhöfer-2014 48 7 12 7 7 8
Severson-2019 67 45 17 16 6 9
Attia-2020 45 11 27 6 10 9
Dechent-2017 21 - 7 11 8 10
Dechent-2020 21 9 7 7 9 10

Severson-2019* 66 7 12 18 6 10

Table 12.4: Required sample size given the first 20, 40, . . . , 100% of input data (at 25% maximum
acceptable deviation and 68% confidence). It should be noted that the theoretical number of required
cells is 9 regardless of input size (see Table 12.1). Severson-2019* denotes the results after an outlier
cell is removed from the Severson-2019 dataset (as justified below).

For both Dechent-datasets, which exhibit linear degradation fade curves (Figure 12.3), the

estimated sample sizes nx% are stable across the longitudinal increments in time of the

curves and deviate slightly from the theoretical estimate (n “ 9). The empty n20%-entry for

Dechent-2017 is due to insufficient datapoints on the capacity fade curve over that time

interval (see also Figure12.7). We thus suggest that data is recorded at a higher frequency.

For Attia-2020 and Severson-2019 (see Figure 12.7), there is a high variability of the data

across the 20% to 60% input marks and, prominent, are the few but heavy outliers (on

the left tail) that strongly influence the estimate for the sample size. Thus, the results in

Table 12.4 at 20%-60% percentages of input are not inline with the theoretical result. It is

also important to note the strong non-normal nature of the slope distributions around 60%

for Severson-2019 and 40% for Attia-2020. For this range, cells are transitioning through

the inflection point of their capacity fade curve, i.e., some cells have passed their knees

(experiencing rapid capacity loss) and others are still maintaining a linear decay. The data

thus display a left skew at these percent levels, violating the normality assumption. At the

80% and 100% marks, the data conforms to normality and this is reflected in the estimated

n in Table 12.4 being closer to the theoretical one.

For Severson-2019 there is a cell which decays notably faster during the early life (easily

identifiable in Figure 12.7 at the 20% mark on the left tail). This results in a large variability

in estimates of the standard deviation. For this reason, our methodology recommends keeping

a large percentage of the cells at this stage. In Table 12.4, the row Severson-2019* displays

the results of our methodology after removing altogether the outlier cell (hence N “ 66
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Fig. 12.7: Q-Q plots for the standardised distribution of cell slopes β across the percent input of time
data as according to Table 12.4. Datasets are left-to-right and percent input from top-to-bottom
starting at 20% until 100%. The inset histogram plots show the true (non-standardised) distribution
of slopes for each dataset and percentage of input data.

instead of N “ 67). The estimated sample sizes then conform to those observed for the

other datasets (Attia-2020 in particular). This removal can be justified in practice as one

cell degrading much faster than all others is likely to be faulty (accounting for significant

differences in testing protocol).

For Baumhöfer-2014, the results follow the trend of the two Dechent datasets even though

the capacity fade curves exhibit knees. This is explained by the less extreme (more gradual)

nature of the knees displayed in the Baumhöfer-2014 dataset: there is no abrupt cliff (as in

Severson-2019 and Attia-2020; Figure 12.3) and thus no large break from normality. We do

notice some effect at the 40% level (see Figure 12.7), where there is a noticeable left skew

in the data which accounts for the larger estimated value of n in Table 12.4. This effect is

small in comparison to that observed for Severson-2019 and Attia-2019.
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Recognisably, this example is not as conclusive as the previous one, nonetheless, it entails

the critical conclusion that the underlying modelling assumption need to be verified for

conclusions to be drawn. We strongly believe that this idea warrants further exploration

given its potential and hope to revisit it in future research. Lastly, it is very unclear if the

line-exponential model would yield better results (see discussion in Section 12.4) – improving

upon this is left for future research.

12.7 Conclusions and outlook

The goal of this work was to propose a methodology to determine the smallest sample size

that captures in a justified and automated way the cell-to-cell variation seen in a larger

population. This manuscript improves upon the contribution of [49] by studying anew and

re-thinking the underpinning statistical methodology. Under a normality assumption, that

needs to be validated as part of the usage, our automatic methodology recommends a choice

of n “ 9 for a maximum acceptable deviation of 25% with a confidence level of 68%.

In future work it would be helpful to model and better explain a representative sub-population

able to capture the cell-to-cell variation via the shape of the cell capacity fade trajectory. For

clarity of ideas, the manuscript’s focus was placed on a linear-regression method and not on

models able to capture the non-linear degradation (the reason for this is argued above). As

an outlook, with new larger datasets becoming available, this analysis could be performed

with more complex health indicators in mind for example derived from OCV, DVA or ICA

[62].

One idea for future exploration is that Internal Resistance profiles data can be included as

follows: find the βQ for the capacity (Q) curves according to the linear model (12.1); find

the βIR from the Internal Resistance (IR) curves; assume both sets βQ and βIR are normally

distributed. Then sum both. I.e., define β :“ βQ ` βIR; since the sum of Normal random

variables is a normal random variable then the analysis carries through. This is contingent

on Internal Resistance being included in the datasets which is often not the case [58].

Many laboratories have at their disposal large datasets across a rich test matrix where each

entry has at most 3 battery cells [58, Section 2.7]. How to incorporate the findings of this

work on such small datasets is still an open question – one possibility is to clump together

entries of the test matrix to increase the number of available cells. If one has several of these

datasets available (created at different timelines, institutions, testing machines), then how

to combine them is also unknown. Critically, the message of [231] needs to be emphasised

here: the metadata of test sets needs to be sufficiently complete (for instance, adding cell

weights be useful for variation analysis). Otherwise, it will be difficult to credibly state that

such datasets are sufficiently alike that they can be seen as an independent sample from the

same statistical distribution.
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Lastly and for perspective, the quantification of cell-to-cell variability is an open research

topic and this work joins hands with [49] as educated first steps towards a general solution.
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Chapter 13

Conclusions and future work

The key limitation of data driven approaches is the availability of data. Throughout this

thesis we have attempted to tackle that problem. In Chapter 9 we reviewed the battery

data available in the public domain, seeing that while there exists a substantial volume of

data it still remains somewhat limited in scope. Most available datasets focus on one cell

chemistry for a set and constant cycling profile, or for a limited range of cycling profiles.

Some datasets also contain data for varying temperatures, pressures, depth of discharge and

calendar ageing, but limited data exists covering an extensive range of variables (see the

“Test variables” column in Table 9.2). The main reason for this is cost and the fact that

datasets are created with a specific goal in mind. It should also be noted that the original

experimental design may not align with subsequent research. For example, the Severson

dataset [197] was designed to compare different fast charging protocols, but has been used

widely (including in the papers contained within this thesis) for the design of RUL models.

In the subsequent chapters we have also dealt with the issue of limited data. In Chapter

10 we introduced the novel concept of elbows in IR rise curves and dealt with the issue

of missing IR data for the Attia dataset [6]. In Chapter 11 we sought to improve on the

practicality of existing RUL models which required the collection of many sequential cycles

of data. This would rule out their use in many important applications such as the testing of

cells for second life usage. We proved that useful predictions can in fact be made from a

single cycle of data. And, in Chapter 12 we looked at experimental design and at specifying

how many cells should be tested in order to capture cell to cell variability.

Following the path of this thesis, we propose several areas for future research:

• Synthetic data and extrapolation across datasets

The available data is specific to certain applications with experiments designed towards

a specific end. As we displayed in Figure 10.2, data driven approaches may perform

poorly when predicting out of sample. For this reason, it is important that the data

used for training data driven models for deployment in commercial applications is

representative of the real world usage. This means that the use of many data driven

approaches is limited to those with access to a large quantity of high quality application

specific data. The collection of such data is naturally expensive and thus may prove

186
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prohibitive for many applications. Many users will thus gravitate towards more physics

based and simpler data driven approaches. One approach to solving this problem would

be the generation of realistic synthetic datasets which could potentially prove fruitful

for interpolating between, and supplementing, real experimental data [99, 138, 165].

• Developing interpretable one cycle models

Another issue with many data driven approaches is their lack of explainability and

interpretability. For example, the approach we took in Chapter 11 of using CNNs

provides competitive performance from a vastly reduced number of input cycles;

However, the CNN architecture means the model operates largely as a black box.

There is a large body of literature in the wider Machine learning community looking

at the problem of explaining black box models [22], but some would argue against

using deep models in the first place [184]. An interesting area of future research could

look at replicating the results we found using an interpretable model.

• Hybrid models

Hybrid approaches also seek to provide interpretable models while maintaining

predictive power. They do this by combining explainable models with less explainable

(but more predictive) models. The explainable model could be a physics based model

or an interpretable data driven model. For example, [199] combines an explainable

RVM with a CNN model. This is an interesting area for future research.

• Incorporating one cycle prediction in an online framework

As the one cycle model can predict from any single cycle during the lifetime of a

cell, it fits naturally within an online prediction framework. The paper [207] made

a start in this direction: combining a few different models in the online framework

and proposing an exponential smoothing of the one cycle prediction, but there is still

room for further research here.

• Prediction with inconsistent cell usage

In many applications, cells undergo unpredictable and inconsistent usage; However, it

is likely that some portion of the cell usage is somewhat consistent and predictable over

time. This portion could be during charging (for example with consumer electronics and

EVs) or discharging (for example in solid state energy storage). In such applications it

makes sense to perform prognostics during the most controlled stage of cell usage.

We refer to [107] as an example of a recent work predicting RUL from the consistent

discharge portion of cell usage. While the dataset explored in that work (the Severson

dataset [197]) contained data for cells with a range of different charging protocols

these protocols were held constant over time. Future work could look at predicting

cell lifetime where cells cycling is not held constant.

• Design of experiments for second life applications
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The one cycle model we developed is “historyless” in that it doesn’t see the history

of the cell usage when making its prediction; However, the dataset it was tested on

is not historyless, as all cells were cycled in a consistent manner from their BOL to

EOL. Future experiments could look at predicting the RUL for cells with unknown

history. One potential experiment could split cell usage into two phases: say with a

range of cycling profiles for the first phase and one common profile for all cells in

the second phase. This is designed to emulate something like second life applications

for EV batteries where past usage of cells differ but all cells are likely destined for a

similar second life.

• Verifying the one cycle approach on additional datasets

The one cycle model should be tested further on different datasets with different

experimental conditions. In [207] the one cycle approach was verified on a different

dataset than the Severson-Attia dataset and this should be expanded upon.

• Extrapolation of model prediction to different use cases

For a given cell with a known (or unknown) history it should be possible to predict its

expected lifetime for a range of potential use cases. One potential way to achieve this

would be to make a prediction using a data driven model (based on the assumption

of a certain future usage) and to adjust this prediction up or down using some

informed interpolation between different future use cases. This would help to address

the limitations with data driven methodologies being restricted to prediction within

sample.

• Prediction from reference performance tests

Predictions made from data driven models should be incorporated with periodic

reference performance testing of cells. To this end there is scope for research looking

at making predictions for existing datasets containing data from RPT cycles.

• Prediction from direct current pulse testing

It would be interesting to recast the one-cycle methodology taking as input the data

associated to direct current pulse testing. As this data can be gathered in less than a

minute, even predicting the EOL from pulse test data would represent a massive step

forward from the one-cycle model presented in this thesis.



Bibliography

[1] Shabbir Ahmed et al. ‘Enabling fast charging - A battery technology gap assessment’.

In: Journal of Power Sources 367 (2017), pp. 250–262.

[2] Sangtae Ahn and Jeffrey A Fessler. ‘Standard errors of mean, variance, and standard

deviation estimators’. In: EECS Department, The University of Michigan (2003).

https://web.eecs.umich.edu/~fessler/papers/files/tr/stderr.pdf,

pp. 1–2.
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[110] Dominik Jöst et al. Timeseries data of a drive cycle aging test of 28 high energy

NCA/C+Si round cells of type 18650. 2021. DOI: 10.18154/RWTH-2021-02814.

URL: https://publications.rwth-aachen.de/record/815749.

[111] Peter Keil et al. ‘Calendar aging of lithium-ion batteries’. In: Journal of The

Electrochemical Society 163.9 (2016), A1872.

[112] Jungsoo Kim et al. ‘Estimation of Li-ion Battery State of Health based on Multilayer

Perceptron: as an EV Application’. In: IFAC-PapersOnLine 51.28 (2018), pp. 392–397.

[113] Ron Kohavi et al. ‘A study of cross-validation and bootstrap for accuracy estimation

and model selection’. In: IJCAI’95: Proceedings of the 14th international joint

conference on Artificial intelligence. Vol. 2. Montreal, Canada. Aug. 1995, pp. 1137–

1143.

[114] P Kollmeyer et al. ‘LG 18650HG2 Li-ion Battery Data and Example Deep Neural

Network xEV SOC Estimator Script’. In: Mendeley Data 3 (2020). URL: http:

//dx.doi.org/10.17632/cp3473x7xv.3.

[115] P. Kollmeyer, A. Hackl and A. Emadi. ‘Li-ion battery model performance for

automotive drive cycles with current pulse and EIS parameterization’. In: 2017

IEEE Transportation Electrification Conference and Expo (ITEC). 2017, pp. 486–492.

DOI: 10.1109/ITEC.2017.7993319.

[116] Phillip Kollmeyer. Panasonic 18650PF Li-ion Battery Data. June 2018. URL: http:

//dx.doi.org/10.17632/wykht8y7tg.1.

[117] C. Kulkarni and A. Guarneros. ‘Small Satellite Power Simulation Data Set’. In: NASA

Ames Prognostics Research Center, (2015).

[118] C. Kulkarni et al. ‘HIRF Battery Data Set’. In: NASA Ames Prognostics Research

Center, (2015).

[119] Meinert Lewerenz et al. ‘Differential voltage analysis as a tool for analyzing inhomogen-

eous aging: A case study for LiFePO4|Graphite cylindrical cells’. In: Journal of Power

Sources 368 (Nov. 2017), pp. 57–67. DOI: 10.1016/j.jpowsour.2017.09.059.

URL: https://doi.org/10.1016/j.jpowsour.2017.09.059.

[120] Jing Li et al. ‘Study of the failure mechanisms of LiNi0. 8Mn0. 1Co0. 1O2 cathode

material for lithium ion batteries’. In: Journal of The Electrochemical Society 162.7

(2015), A1401–A1408.

[121] Weihan Li et al. ‘Digital twin for battery systems: Cloud battery management system

with online state-of-charge and state-of-health estimation’. In: Journal of Energy

Storage 30 (2020), p. 101557.

https://github.com/ECSHackWeek/impedance.py
https://github.com/ECSHackWeek/impedance.py
http://www.scipy.org/
https://doi.org/10.18154/RWTH-2021-02814
https://publications.rwth-aachen.de/record/815749
http://dx.doi.org/10.17632/cp3473x7xv.3
http://dx.doi.org/10.17632/cp3473x7xv.3
https://doi.org/10.1109/ITEC.2017.7993319
http://dx.doi.org/10.17632/wykht8y7tg.1
http://dx.doi.org/10.17632/wykht8y7tg.1
https://doi.org/10.1016/j.jpowsour.2017.09.059
https://doi.org/10.1016/j.jpowsour.2017.09.059


BIBLIOGRAPHY 198

[122] Weihan Li et al. ‘One-shot battery degradation trajectory prediction with deep

learning’. In: Journal of Power Sources 506 (Sept. 2021), p. 230024. DOI: 10.1016/

j.jpowsour.2021.230024. URL: https://doi.org/10.1016/j.jpowsour.

2021.230024.

[123] Kaizhi Liang et al. ‘Data-driven Ohmic resistance estimation of battery packs for

electric vehicles’. In: Energies 12.24 (2019), p. 4772.

[124] Datong Liu et al. ‘Data-driven prognostics for lithium-ion battery based on Gaussian

Process Regression’. In: Proceedings of the IEEE 2012 Prognostics and System

Health Management Conference (PHM-2012 Beijing). IEEE. 2012, pp. 1–5.

[125] Jiapeng Liu, Ting Hei Wan and Francesco Ciucci. ‘A Bayesian view on the Hilbert

transform and the Kramers-Kronig transform of electrochemical impedance data:

Probabilistic estimates and quality scores’. In: Electrochimica Acta 357 (2020),

p. 136864.

[126] Kailong Liu et al. ‘An evaluation study of different modelling techniques for calendar

ageing prediction of lithium-ion batteries’. In: Renewable and Sustainable Energy

Reviews 131 (2020), p. 110017.

[127] Kailong Liu et al. ‘Charging pattern optimization for lithium-ion batteries with an

electrothermal-aging model’. In: IEEE Transactions on Industrial Informatics 14.12

(2018), pp. 5463–5474.

[128] Kailong Liu et al. ‘Feature analyses and modelling of lithium-ion batteries manu-

facturing based on random forest classification’. In: IEEE/ASME Transactions on

Mechatronics (2021).

[129] Kailong Liu et al. ‘Mass load prediction for lithium-ion battery electrode clean

production: a machine learning approach’. In: Journal of Cleaner Production 289

(2021), p. 125159.

[130] Kailong Liu et al. ‘Modified Gaussian process regression models for cyclic capa-

city prediction of lithium-ion batteries’. In: IEEE Transactions on Transportation

Electrification 5.4 (2019), pp. 1225–1236.

[131] Qianqian Liu et al. ‘Understanding undesirable anode lithium plating issues in lithium-

ion batteries’. In: RSC Advances 6 (2016), pp. 88683–88700.

[132] Weilin Luo et al. ‘Study on impedance model of Li-ion battery’. In: 2011 6th IEEE

Conference on Industrial Electronics and Applications. IEEE. 2011, pp. 1943–1947.

[133] Massimiliano Luzi. Automotive Li-ion Cell Usage Data Set. 2018. DOI: 10.21227/

ce9q-jr19. URL: http://dx.doi.org/10.21227/ce9q-jr19.

[134] Yanying Ma et al. ‘The capacity estimation and cycle life prediction of lithium-ion

batteries using a new broad extreme learning machine approach’. In: Journal of Power

Sources 476 (2020), p. 228581.

[135] Leonardo KK Maia et al. ‘Expanding the lifetime of Li-ion batteries through optimiza-

tion of charging profiles’. In: Journal of Cleaner Production 225 (2019), pp. 928–938.

https://doi.org/10.1016/j.jpowsour.2021.230024
https://doi.org/10.1016/j.jpowsour.2021.230024
https://doi.org/10.1016/j.jpowsour.2021.230024
https://doi.org/10.1016/j.jpowsour.2021.230024
https://doi.org/10.21227/ce9q-jr19
https://doi.org/10.21227/ce9q-jr19
http://dx.doi.org/10.21227/ce9q-jr19


BIBLIOGRAPHY 199

[136] Mario Marinaro et al. ‘Bringing forward the development of battery cells for auto-

motive applications: Perspective of R&D activities in China, Japan, the EU and

the USA’. In: Journal of Power Sources 459 (2020), p. 228073. ISSN: 0378-7753.

DOI: https://doi.org/10.1016/j.jpowsour.2020.228073. URL: https:

//www.sciencedirect.com/science/article/pii/S0378775320303761.

[137] Tomoyuki Matsuda et al. ‘Investigation of the influence of temperature on the

degradation mechanism of commercial nickel manganese cobalt oxide-type lithium-

ion cells during long-term cycle tests’. In: Journal of Energy Storage 21 (2019),

pp. 665–671.

[138] Karthik S Mayilvahanan et al. ‘Supervised learning of synthetic big data for Li-ion

battery degradation diagnosis’. In: Batteries & Supercaps 5.1 (2022), e202100166.

[139] I. McLeod. Sampling Distribution of the Mean and Standard Deviation in Vari-

ous Populations. Demonstration-WebPage-Link, Wolfram Demonstrations Project,

published: March 7 2011, Accessed: 2010-09-30.

[140] mendeley. Homepage of Mendeley. URL: https://data.mendeley.com/.

[141] Christoph Nebl et al. Data for: Prediction of Constant Power Delivery of Lithium-Ion

Cells at High Loads. Version V1. 2020. DOI: 10.17632/ptxpzt876r.1. URL:

https://dx.doi.org/10.17632/ptxpzt876r.1.

[142] Christoph Nebl et al. ‘Prediction of constant power delivery of lithium-ion cells at

high loads’. In: Journal of Energy Storage 30 (2020), p. 101552.

[143] Jeremy Neubauer and Ahmad Pesaran. ‘The ability of battery second use strategies

to impact plug-in electric vehicle prices and serve utility energy storage applications’.

In: Lancet 196 (Dec. 2011), pp. 10351–10358.

[144] Man-Fai Ng et al. ‘Predicting the state of charge and health of batteries using

data-driven machine learning’. In: Nature Machine Intelligence (2020), pp. 1–10.

[145] NREL. Homepage of the National Renewable Energy Laboratory of the U.S. De-

partment of Energy. Aug. 2020. URL: https://www.nrel.gov/research/data-

tools.html.
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