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Introduction

In this Thesis, we consider the numerical solution of stochastic partial differential equa-
tions with particular interest on the e—dependent Allen-Cahn equation, and the stochastic

time fractional partial differential equations in both subdiffusion and superdiffusion cases.

In Chapter one, we present some of the basic concepts of weak (variational) formula-
tions, and the finite elements approximation of weak solutions. We discuss in the context
of ordinary differential equations the two-point boundary value problem, and introduce
the definitions of strong and weak solutions. We then present how existence and unique-
ness of a weak solution is established by the application of Lax-Milgram Lemma. We
also present the finite elements formulation to spaces of finite dimensions. Moreover, by
using a Green’s function, we provide the analytical solution of the elliptic problem. We
then focus on partial differential equations and consider the finite element method for
the numerical approximation of parabolic equations. We show existence, uniqueness and
stability of a solution. We discuss the semidiscrete Galerkin method and the fully discrete

scheme.

In Chapter two, a discontinuous Galerkin method is presented. The purpose of this
method is to construct approximate solutions as piece-wise polynomial functions in the
time variable which are discontinuous at the nodal points of the time partition. We
consider existence and uniqueness of solutions. When the method is applied for the (linear)
parabolic equation, we present the stability of the scheme and some error estimates.
Moreover, we discuss the method when applied for the (nonlinear) Allen-Cahn equation
which stands as a model for the phase separation of a multi-component alloy including
order-disordered transitions. We review some of the results of [15] for the e—dependent
stochastic Allen-Cahn equation with mild noise, such as existence and uniqueness of
a solution and as well as stability for the nonlinear space-time discontinuous in time

Galerkin method introduced there.

Chapter three is devoted to the derivation of a posteriori error estimates of the space-

time discontinuous Galerkin finite element method for the e—dependent stochastic Allen-



il

Cahn equation with mild noise. The noise depends on ¢, it is once differentiable in time
and smooth in space, rapidly oscillating, and becomes white in time on the sharp interface
limit as ¢ — 0. The numerical solution is in general discontinuous at the nodal points of
the time partition. We describe analytically how the numerical scheme is implemented
in the special case of finite element spaces of piece-wise constant or piece-wise linear
functions in time. We then use a certain interpolant in order to derive, when general
finite element spaces are considered, a posteriori error estimates in the space-time H*'
norm and discuss the estimation of the time derivative of the error by the initial data,

the noise and the numerical solution which is transferred to the estimator.

In Chapters four and five, we discuss the Galerkin method for approximating the solu-
tion of semi-linear stochastic space-time fractional subdiffusion and superdiffusion prob-
lems with the Caputo fractional derivative of order a € (0,1) and « € (1, 2) respectively,
driven by fractionally integrated additive noise. After discussing the existence, unique-
ness and regularity results, we approximate the noise and obtain regularized stochastic
fractional subdiffusion and superdiffusion problems. The regularized problems are then
approximated by using the finite element method in spatial direction. The mean squared
errors proven are based on the sharp estimates of the various Mittag-Leffler functions in-
volved in the integrals. Numerical experiments are conducted to show that the numerical

results are consistent with the theoretical findings.

Chapter six includes some conclusive remarks, while an Appendix with the numerical

codes used for the simulations presented in this Thesis is provided in the end of the Thesis.



iii

Declaration
No part of the work referred to in this thesis has been submitted in support of an
application for another degree or qualification of this or any other institution of learning.

However some parts of the materials contained herein have been published previously.

Publications

e Antonopoulou, D.C., Egwu, B.A., & Yan, Y. (2023). A posteriori analysis of space-
time discontinuous Galerkin methods for the e—dependent Allen-Cahn equation

with mild noise. IMA J. Numer. Anal. 00, 1-41.

Chapter 3 of this thesis is derived from the content presented in this paper

e Kang, W., Egwu,B.A., Yan, Y., & Pani, K.A. (2022). Galerkin finite element
approximation of a stochastic semilinear fractional subdiffusion with fractionally

integrated additive noise, IMA J. Numer. Anal. 42, 2301-2335.

Chapter 4 of this thesis is derived from the content presented in this paper.

e Egwu,B.A., & Yan, Y. (2023). Galerkin finite element approximation of a stochas-
tic semilinear fractional superdiffusion with fractionally integrated additive noise.

Foundations 3, 290-322.

Chapter 5 of this thesis is derived from the content presented in this paper.

e Yan, Y., Egwu,B.A., Liang, Z., & Yan, Y. (2021). Error estimates of a continu-
ous Galerkin time stepping method for subdiffusion problem, Journal of Scientific

Computing 88(3) 68.

Conference Attended

e LMS Lecture Series May 2020, Brunel University London (Online).
Seminar

e Department of Physical, Mathematical and Engineering, University of Chester weekly
Seminar, 2022.



v

e One World Stochastic Numeric and Inverse Problem Seminar (Online) April, 2020-
present, organized by the University of Edinburgh, Scotland.

Presentation

e Title: Galerkin finite element approximation of a stochastic semilinear fractional
superdiffusion with fractionally integrated additive noise, 24th May, 2023 at the

mathematics seminar, University of Chester, UK.

e Title: Numerical methods for stochastic superdiffusion, 23rd June, 2023 at the
University of Chester Postgraduate Research Symposium, 2023. I won the overall

'best presentation’ of the symposium with certificate of awards.



Acknowledgement

I am eternally grateful to God for His all-round help these past years. I am forever
indebted to my supervisors Dr. Yubin Yan and Dr. D.C. Antonopoulou for their relentless
help and patience. No words can describe how I feel. You are both rare gems. Just to
let you know that your reassurances and encouragements are the ladder I have used to
be where I am now in this journey. To my siblings; Catherine, Joseph, Ene and Enenche
you are the best. Thank you for your support. Catherine is my co-labourer in prayer
God bless you. All my friends who have stood by me I appreciate you and thank you.
I want to express my gratitude to the Head of Physical, Mathematical and Engineering
Department and all the staff for your support. Thank you University of Chester I am
happy to be part of this family.



Contents

1 Basic definitions and some fundamental results 1
1.1 Basic definitions . . . . . . .. ..o 1
1.2 The two-point boundary value problem . . . . ... .. ... ... .... 3

1.2.1  Weak formulation . . . . . ... ... .. L 3
1.2.2  Analytic solutions . . . . . . . . ... 5
1.3 The parabolic equation . . . . . . . . .. ..o 7
1.3.1 The general framework . . . . . .. .. ... oL 7
1.3.2  The semidiscrete Galerkin Finite Element Method . . . . . . . . .. 12
1.3.3  Error estimates of the spatially semi-discrete scheme . . . . . . .. 14
1.3.4 Time discretization . . . . . . . . . ... Lo 17
1.4 Basic definitions from stochastic processes . . . . . . . . ... ... .. .. 22
1.5 Basic definitions from fractional calculus . . . . . .. ... ... ... ... 26
1.5.1 Riemann-Liouville (R-L) fractional integral . . . . . .. . ... ... 26
1.5.2  Riemann-Liouville fractional derivative . . . . . . . ... ... ... 27
1.5.3 Caputo fractional derivative . . . . . . . . ... ... ... .. ... 27

2 The Discontinuous in time Galerkin method 29

2.1 Approximation of the parabolic equation . . . . . . ... .. ... ... .. 30
2.1.1  The Discontinuous Galerkin Method . . . . . ... ... ... ... 31
2.1.2 Stability . . . ... 32
2.1.3 Error estimate . . . . . . ... 34

2.2 Approximation of the stochastic Allen-Cahn . . . . . . .. ... ... ... 37
2.2.1  The Allen-Cahn equation. . . . . . . .. .. ... ... ... .... 38
222 Theproblem. . . . . . . . ... 40

vi



vil

2.2.3 The Discontinuous Galerkin scheme . . . . . . . . . . .. ... ... 41
2.2.4 Existence-Uniqueness . . . . . . . . . ... 42
2.2.5 Error estimates . . . . . . ... 46

3 A posteriori analysis of space-time discontinuous Galerkin methods for

the e-dependent stochastic Allen-Cahn equation with mild noise 49
3.1 Theproblem . . . . . . . .. 49
3.2 Discontinuous Galerkin method . . . . . . . . ... ... 0. 51
3.3 A posteriori Error estimates . . . . . . ... o7

4 Galerkin finite element approximation of a stochastic semilinear space-

time fractional subdiffusion with fractionally integrated noise 73
4.1 Introduction . . . . . . . .. L 73
4.2 Physical model defined in whole R4, d =1,2,3 . . . . .. ... ... .... 74
4.3 Physical model defined on a bounded domain D C R? ,d =1,2,3 . .. .. 75
4.4 Approximation of the fractionally integrated noise . . . . . . . . . .. . .. 89
4.5 Finite element approximation . . . . . . . ... ... ... ... 98
4.6 Error estimates . . . . . ... 100
4.7 Numerical simulations . . . . . . .. ... . 00 105

5 GGalerkin finite element approximation of a stochastic semilinear frac-

tional superdiffusion with fractionally integrated additive noise 121
5.1 Imtroduction . . . . . . . .. 121
5.2 Notation and preliminaries . . . . . . . . . . . ... 123
5.3 Existence, uniqueness and regularity results . . . . . ... ... ... .. 124
5.4 Approximation of fractionally integrated noise . . . . . . . . .. ... ... 130
5.5 FError estimates . . . . .. ..o 132
5.6 Finite element approximation and error analysis . . . . . . . ... ... .. 139
5.7 Numerical simulations . . . . . .. .. ... L o 144

6 Conclusion 166



List of Figures

2.2.1 The solution of the one-dimensional Allen-Cahn equation with two transi-

tional layers. Then dash line denotes the two-layered initial condition. . . . 39

4.7.1 The experimentally determined orders of convergence with v = 0.6 and

a=0.51in Table 4.7.1 . . . . . . . 115
4.7.2 Approximate realisation of the solution with a = 0.9 and v = 0 for x €

(0,1) and t € (0,1) in Example 41 . . . . . .. ... ..o 115
4.7.3 Approximate realisation of the solution at time 7" = 1 with a = 0.9 and

v=01in Example 41 . . . . . . ..o 115
4.7.4 Approximate realisation of the solution with o = 0.9 and v = 0.9 for

rz € (0,1)and t € (0,1) in Example 41 . . . . ... ... ... ... 116
4.7.5 Approximate realisation of the solution at time 7" = 1 with a = 0.9 and

v=01in Example 41 . . . . . . ... 116
4.7.6 The experimentally determined orders of convergence with v = 0.8 and

a=051inTable 4.7.2 . . . . . . .. 117
4.7.7 The experimentally determined orders of convergence with v = 0.6 and

a=09inTable4.7.3 . . . . . . ..o 120

5.7.1 The experimentally determined orders of convergence with v = 0.6 and
a=11inTable 5.7.1. . . . . . . . . . 155
5.7.2 The experimentally determined orders of convergence with v = 0.6 and
a=111inTable 5.7.2 . . . . . . . .. 156
5.7.3 Approximate realisation of the solution with a = 1.5 and v = 0 for x €
(0,1) and t € (0,1) in Example 55 . . . . . . .. ... 156

viil



5.7.4 Approximate realisation of the solution at time 7" = 1 with a = 1.5 and
v=01in Example 55 . . . . . . ..o
5.7.5 Approximate realisation of the solution with @ = 1.5 and v = 0.9 for
x€(0,1)and t € (0,1) in Example 55 . . . . . . ... ...
5.7.6 Approximate realisation of the solution at time 7" = 1 with a = 1.5 and
v=0.9in Example 55 . . . . . ... o
5.7.7 The experimentally determined orders of convergence with v = 0.6 and
a=1.61in Table 5.7.3 . . . . . . . ..o
5.7.8 The experimentally determined orders of convergence with v = 0.6 and
a=161inTable 5.7.4 . . . . . . ...
5.7.9 The experimentally determined orders of convergence with v = 0.6 and
a=1.61in Table 5.7.5. . . . . . . ..
5.7.10C'he experimentally determined orders of convergence with v = 0.6 and

a=161n Table 5.7.6 . . . . . . . .

X



List of Tables

4.7.1 Time convergence orders in Example 41 at T" = 1 with trace class noise
Y =m 2 mo=1,2, ..

4.7.2 Time convergence orders in Example 42 at 7" = 1 with trace class noise
Y =M 2 m o =1,2, ..

4.7.3 Time convergence orders in Example 42 at T" = 1 with trace class noise

Y =m 2 mo=1,2, .

5.7.1 Time convergence orders in Example 55 at 7' = 1 with trace class noise
Y =m 2 mo=1,2, .

5.7.2 Time convergence orders in Example 55 at 7' = 0.1 with white noise 7, =

Y =m 2 mo= 1,2, .

5.7.4 Time convergence orders in Example 56 at 7' = 0.1 with white noise v, =

5.7.5 Time convergence orders in Example 57 at 7" = 1 with trace class noise
Y =M 2 mo=1,2, .

5.7.6 Time convergence orders in Example 57 at 7' = 0.1 with white noise 7, =



Chapter 1

Basic definitions and some

fundamental results

In this chapter, we shall introduce some basic definitions in functional analysis and discuss
the analytic solutions of the two-point boundary value problem and consider the finite
element approximation of the parabolic problem. We also introduce some basic notations

in stochastic processes and fractional calculus which we need in the subsequent chapters.

1.1 Basic definitions

Let us present some basic definitions, see for example in [99].
Definition 1.1.1. A norm || - || is a function from a real vector space X — R such that

(i) [Jul| >0, Vu € X, |lu|]| =0, if and only if u = 0.
(ii) [|au| = |a|||u]|, Vu € X, a € R.

(i) [Ju +v|| < ||ul| + ||v]|, Vu,v € X. (triangle inequality)

Definition 1.1.2. An inner product on a real vector space X is a function (-,-) : X x X

— R such that
1. (u,u)>0, Yu € X, and (u,u) = 0 if and only if u = 0 (positive definite).

2. (u,v) = (v,u), Vu,v € X. (symmetry)



3. (Au+pv,w) = Mu,w) +p{v,w), YA\, € R and Vu,v,w € X (linearity with respect
to the first argument).

Definition 1.1.3. A normed vector space (X, ||-||) is called Banach space if it is complete,
i.e., if every Cauchy sequence {v;}32, € X converges to some v € X, in the norm || - || of

the space.

Definition 1.1.4. A Hilbert space is a vector space equipped with an inner product (-, -)

which is a Banach space with respect to the norm ||v|| :=(v,v)z.

Definition 1.1.5. Let (X, || - ||) and (Y, || - ||«) be two normed spaces, then

(a) A: X — Y is a linear operator provided that A(Au + pv)=AAu + pAv, Vu,v € X,
VA, neR.

(b) A linear operator A : X — Y is called bounded if and only if there exists C' > 0
such that |Az|. < C||z|,V z € X.

Definition 1.1.6. A bilinear form a(, -) on a vector space V' is a function a : VxV — R

which is linear in each argument separately, i.e., V u,v,w € V and \,u € R

a(/\u + ,uv,w) = )\a(u, w) + ,ua(v, w),
a(w, A+ p) = Aa(w, u) + pa(w,v).

The bilinear form a(-,-) is said to be symmetric if a(w,v) = a(v,w), V¥V v,w € V and

positive definite if a(v,v) >0,V 0# v € V.

Definition 1.1.7. Let p € [1,00). The LP(a,b) space is defined as

b

LP(a,b) = {v: (a,b) > R: /|v($)|pd$ < 00}

a

The norm of LP(a,b) space is defined by

b

V][ 2o(ap) = (/!v(x)|pd:p)fﬂ.

a

We also recall some Sobolev spaces:

H'(a,b) :={v € L*(a,b) : V' € L*(a,b)},



Hy(a,b) :=={v e L*a,b): o' € L*(a,b), and v(a) = v(b) = 0},

and for any N> k > 2
H"(a,b) == {v e L*a,b): v " --- v € L*(a,b)},

where v(®) denotes the k-order derivative.

1.2 The two-point boundary value problem

We will discuss some basic results for the two-point boundary value problem from [85, 99,
60, 121]. We shall introduce the definitions of strong and weak solutions of the problem
[85, 99]. Existence and uniqueness of weak solutions is proven by using Lax-Milgram
Lemma [85, 100]. We also present the finite element formulation of approximate solutions
to the problem. Finally, we present the Green’s function of the relevant elliptic problem,

and its analytic solution, [85].

1.2.1 Weak formulation
We seek a function u € H?(a,b) N Hj(a,b) such that

— (p(2)'(2)) + q(x)u(z) = f(x) ¥z € (a,b),
u(a) = u(b) =0,

(1.2.1)

for some given functions:
f € L*(a,b), p € C'a,b], q€ Cla,b],

p(e) = B> 0, qla) 20, Vo€ a,b],

where [ is a positive constant. If such a u exists for almost every z € (a,b), then it is
called a strong solution of (1.2.1).
Multiplying (1.2.1) by v € Hj(a, b), integrating in (a, b), applying integration by parts

and using the boundary condition, we obtain

au,v) == (pu',v') + (qu, v) = (f, ),



where (-, ) is the L?(a, b) inner product and
a(w,v) = (puw',v") + (qu,v).

We then get the variational formulation of the problem whose solution v € H}(a,b) is

called a weak solution.

Remark 1. Obviously a strong solution of (1.2.1) is a weak solution. Moreover, if a weak

solution of (1.2.1) is in H?(a,b) N H}(a,b), then it satisfies (1.2.1).

By C in this thesis we denote a positive constant independent of the functions and

parameters concerned, but not necessarily the same at different occurrences.

Definition 1.2.1. Let H be a real Hilbert space. A bilinear form a : H x H — R is

called coercive if there exists a constant C' > 0 such that a(v,v) > C|jv||%}, Vv € H.

We shall present Lax-Milgram Lemma below which is a useful tool on establishing

weak solutions for initial and boundary value problems.

Lemma 1.2.1. [85] (Lax-Migram Lemma) Let H be a real Hilbert space and let L be a
bounded linear functional on H. Let a : H x H — R be a bilinear form that is bounded

and coercive, then there exists a unique v € H such that a(u,v) = L(v), Yv € H.

We denote for simplicity || - || := || - ||12(ap)- Let us consider the two-point boundary
value problem (1.2.1), with the bilinear form a and the linear operator L as defined

previously, and set H := H}(a,b), equipped with the H'(a,b) norm given by
0]l a1 @y == ([0ll* + [[0'1*)"2,

Let v € H. By using that v(a) = 0, and the Cauchy-Schwarz inequality, we have that

for all z € [a, D]

vl =| [ vwiw] < [[wwrd [ v <dee

for a constant ¢ > 0. Therefore, integrating in (a, b), we obtain that ||v|| < c[[¢/||, for all
veH.

Using the above, we have for any v € H

a(v,v) = (', 0') + (qv,0) = B2 = Cllolage: (1.22)



since p(xz) > > 0 and ¢(x) > 0 for all x € [a,b]. The inequality (1.2.2) expresses that
the bilinear form af(-,-) is coercive in Hj(a,b).

Further, for any u,v € H, we have, since p, ¢ are continuous in [a, b], that
|a(u,v)| = |(pu,v')+(qu,v)| < max p(m)HU’Illlv’||+rE85< g(@)lullllv]l < ellullm@pllvl m @b,

which yields the boundedness of the bilinear form with respect to the norm in H.

Moreover, for any v € H, it holds that

(L) = |(F o)l < WAL ol < elloll < effvll @,

since f € L?(a,b). This yields that the linear functional L is bounded in H.

Therefore, by Lax-Milgram Lemma, (1.2.1) has a unique weak solution.

Remark 2. The same Lemma can be applied to a finite dimensional Hilbert space H :=
Vi, where the test function and the solution will belong to V}, that could be defined as
a Finite Element Space by keeping the same definition for the bilinear form a and the
linear functional L. In such a case the weak formulation and the finite basis of H, (i.e.,
the specific selection of H), induces the so-called finite elements formulation. The unique
solution of the scheme stands as an approximate solution of the continuous problem.

In particular, the finite element formulation takes the form: find u, € V;, C H}(a,b)

where V}, such that
a(un, vp) == (puy,, vp) + (qua,vn) = (f,vn), YV up € Vi
It is sufficient for the above to be valid for all the elements of the basis which is the

simplest choice for the test functions vy,.

1.2.2 Analytic solutions

Denote

Au = —(pu') + qu,

then Problem (1.2.1) can be written as the following operator form:

Au=f.



We shall derive a representation of a solution in terms of a so called Green’s function
G(z,y).

Let Vj, Vi be two solutions of the homogeneous equation i.e.
AV =AV; =0 in (a,b),

with
and

The next theorem holds.

Theorem 3. [85] The solution of (1.2.1) is given by

b
ww:/"mawﬂw@,

where
PVo(@Valy), for a <y <ax<b
G(z,y) =
%V<>V0()a for a <x <y <b
for some fixed constant k := p(x ( —V{(z )Vl(x))

Proof. Let x, y € (a,b), we first observe that
1 1
Gla,y) = 1 Vi(@)Voly) = 0= Glb,y) = 1 o(B)Vily),

which implies that

Since (pV!) = ¢V;, 7 = 1,2, we have
7 J
K=Vo(pV]) = Vi(pVy)' = VogVr — Vighp =0,

and so k is a well defined constant. (Further one may show k > 0, see [85, Page 19])
Let x € (a,b). We write

M@=/QWwMU@+/CWwﬁ@@
= Vo) [ Vi) dy+ ) [ sy



Hence by differentiating, we get
1

L (v [ s s vieviee)

a

u'(z)

# 1 (v [ s Vi)

—+ (@ [ vwsea+ v [ ).

Multiplying by —p(z) and differentiating, we obtain
(o) @) == 1 (V@) [ Vi) ) dy — Vi)

b
— LGV [ Vo)) dy -+ VI )Vo() S (0)
Using once again that (ij’ )I = ¢qVj;, we arrive at

T b
(e @) =~ (a@Velo) [ Vi) f0)dy + a@lVilo) [ Volw)r ) dy) + @

a

) / G, ) f(y) dy + f(x)

= —q(z)u(z) + f(x).
This completes the proof of the theorem.

1.3 The parabolic equation

In this section, we discuss the finite element method for solving the parabolic equation,
[85, 100]. Firstly, we will show the existence and uniqueness, stability and energy estimates
of solution. Secondly, we shall discuss the semidiscrete Galerkin finite element method

for its numerical solution. Furthermore, we will consider time discretisation schemes.

1.3.1 The general framework

Let H be a Hilbert space. A sequence of vectors {ey, es, €3, ...} € H is called orthonormal
if and only if
L, 1=,
<6i7 €j> =

0,i#7j, Vi,j € N={1,2,3,..}.



An orthonormal basis for H is an orthonormal sequence such that each v € H admits a

unique representation as a convergent series v = Z;’il cje; with ¢; € R.
The eigenfunctions of certain differential operators may form orthonormal sequences
with respect to the L? inner product denoted by (-, -). In particular, we have the following

lemma.

Lemma 1.3.1. [85, 121] The negative Laplacian operator —A on a bounded domain
D c R d = 1,2,3 subject to Dirichlet or Neumann boundary conditions admits real
eigenvalues {)\;}, and there exists an orthonormal basis of L*(D) of corresponding eigen-
functions e; € C? (D) satisfying the same boundary conditions. Furthermore, Aj > 0in
the case of Dirichlet conditions, while A\; > 0 when Neumann conditions are posed along

the boundary.

Proof. We only consider the case with homogeneous Dirichlet boundary condition. Let a
sequence {e;} € C*(D) satisfy
—Aej = )‘jej in D7

with Dirichlet condition.
( The existence of such e; can be obtained by solving the corresponding boundary value
problem, for example, in one dimensional case, \; = j272, e; = /2sinjrz, v € (0,1) )
We then have
(Ae;, e;) = (e, Aej).

By the eigenvalue property, this reduces to

(N = Aj)(eirej) = 0.
When i = j, the inner product satisfies |le;|> > 0, as e; # 0 which implies that \; = \; €
R Vi If \; # Aj, then (e;,e;) = 0, which means that the eigenfunctions corresponding
to different eigenvalues are pairwise orthogonal. Dividing the eigenfunctions by their
measure the orthonormal basis of eigenfunctions is then derived.

The divergence theorem yields

Ai = (—Ae;,e) = / |Ve,-|2d:v,
D



implying that \; > 0. If \; = 0 then the equation also shows that Ve; = 0, and so e; is
constant. In the Dirichlet case the only constant solution is the trivial zero solution e; = 0
which is excluded since an eigenfunction can never be the zero function, and therefore

A; > 0 in the Dirichlet case. O

Now we turn to the following parabolic problem (heat equation)

ou(z,t)  O*u(x,t) _
% o2 0, in D xRy,

w(z,t) =0, in D x Ry, (1.3.1)

u(z,0) =v(z), in D,

where D is a bounded interval in R. Assume that

= Z@(t)ei(x), (1.3.2)

where u; : R, — R are coefficients to be determined. This approach is also called the
method of separation of variables.

Inserting (1.3.2) into the differential equation (1.3.1) we obtain

Z t) + it ( )) ei(z) =0,

i=1

forx € D, t € R,. Since e;(z) form an orthonormal basis, we have
w;(t) + Nui(t) = 0,
fort € Ry, 7=1,2,3,..., which has the solution
Ui(t) = 6 (0)e ™" = ve ™, (1.3.3)

where u(z,0) = > .2, u;(0)e;(z) = Y o2, Viei(x). We thus see that, at least formally, the

solution of the equation has the form,

E U’L ’L
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Theorem 4. [85] Let u(t) € H}(D) satisfy the heat equation (1.3.1). Then, there is a
constant C' > 0 such that for any t > 0,

lu(®)? + / fu(s)[2ds < ol + C / 1(s)1%ds, (1.3.4)

o + / (o) s < Joft + / I(5) P, (133

where for a function w € H'(D), |w|; := |[Vw|| (which is in general a seminorm).
Proof. Let a(u,v) := (Vu, Vv). The variational formulation of the heat equation is
(ur, ) + alu, @) = (f,¢), ¥ € Hy(D), t € Ry,

where u; denotes the derivative with respect to the time variable.

We first prove (1.3.4). Let ¢ = u, then
(wr ) + alu,w) = (f,u), t> 0.
But it holds that
() = [ wnde = [ 3 (o = 3 2l
Ug, U) = Dutux— 2 z=50
Note that by Poincaré inequality, i.e.,
[ull < Cluly,¥ u € Hy(D),

we get
(fsu) < [(fsw) <A fllull < Clifl[lul < 5 |u\?+%02||f||2,

while

a(u,u) = / VuVudz :/ \Vul?dz = |ul3,
D D

so we have, with some suitable constant C' > 0,
5 7 lull® + Juff < IUI1 + CHfH2 (1.3.6)
Multiplying (1.3.6) by 2, we get

d
Sl +2July < July + I,



which implies that
d
—lall® + [ult < IR,

Integrating over (0,t) we have

t

t t
d
[ Gl Pds+ [luts)zas <c [ 1P
0 0

0

which yields
t t
M®W+/m@@u<MW+0/www
0 0

Thus we proved (1.3.4).
Next we show (1.3.5). We choose

® = Uy, (Uta¢)+a(ua§0):(fa90)a SOGH(}a tERJﬂ
1d 1 1
el + 5 — luli < SIFIP A+ 5 [l
2 2
Multiplying (1.3.7) by 2, we have
d
2fuel® + —fult < I + ],

which implies

d
el < 1111

Integrating (1.3.8) over (0,t), we obtain

t t t
d
[ s+ [ upas < [ sas
0 0 0

and so
t t
O+ [ lids < i+ [ 1120
0 0

These estimates complete the proof of (1.3.5).

11

(1.3.7)

(1.3.8)
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1.3.2 The semidiscrete Galerkin Finite Element Method

Let D C R? be a bounded convex domain with smooth boundary 0D, and consider the

initial boundary value problem

u—Au=f,in D x Ry, (1.3.9)

u=0, ondD xR,,

u(0) =v, in D,
where u; = %—? is the partial derivative with respect to the time, and A = % + % is the
1 2

Laplacian operator.

Let 75, denote the triangle partitions of the domain D € R2?, where h denotes the
maximum diameter of the triangles. We shall approximate the solution u(x,t) by means
of a function wuy(x,t) which, for each fixed ¢, is a piecewise linear function of z over a
triangulation 7, of D, thus depending on a finite number of parameters.

Let S, C H3(D) denote the linear finite element space which consists of all the piece-
wise continuous linear functions defined on 7},.

The weak form of (1.3.9) is to find u € HJ (D) such that, with a(v,w) = (Vv, Vw), Yv,w €
H; (D),

(ur, ) + alu, ) = (f,¢), V€ Hy(D), t > 0.
The semidiscrete problem is to find u; € S, such that

(uh,t7X) + CL(’U/}“X) = (fa X)7 v X € Sh7 t> 07

uh(O) = Vp,

where v, € S}, is some approximation of v. Since we have discretised only the space
variable, this is referred to as a spatially semidiscrete problem.

Let {¢p; }jvzhl be the finite element basis functions and let

up(z,t) = Z a;(t)p;(z),

we then have
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Np

Z gpj?SOk +Za] gpj?SOk (f(t)790k)7 k:1727"'7Nh7

7j=1

a(0) = (u(0), pr).
In matrix notation, this may be expressed as
Bd/(t) + Aa(t) = b(t), for t >0,

where B = (by;) is the mass matrix with by; = (¢j, ¢x), j, bk =1,2,--- , Ny, and A = (ay;)

is the stiffness matrix with ax; = a(p;, px), and b = (by) is the vector with by = (f, px).
We recall that the stiffness matrix A is symmetric positive definite and this holds also

for the mass matrix B since (-, ) is an inner product and ¢; for j = 1,2,---, N}, belong

to the finite element basis. In particular, B is invertible and therefore
Bd/(t) + Aa(t) = b(t), t > 0,
may be written as the linear ordinary differential system
o (t) + B Aa(t) = B~ 'b(t), t >0, «0) is given,

which has a unique solution.

Since uy(t) € Sp, we may choose x = up(t) in the semidiscrete problem, to obtain
(Uhﬂg, uh) —+ a(uh, uh) = (f, uh), t > 0.

Note that the first term equals 1-%||u,||> and the second term is non-negative, so we get

2dt

d 1d

lenll = llunll = 5 2 llunll® < 1CFun)] < (1F 1 uall,

which implies that

d
_ < )
Sl < 1]

Integrating over (0,t), we arrive at

t
lun@®)ll < loall + / 1£ds.
0



To write
(uh,t7X) + a(ul“mX) = <f7 X>7 v X € Sha t> 07
up(0) = vn, v € S,

into an operator form, we shall introduce the discrete Laplacian
Ah : Sh — Sh,

defined by
(=Anp, x) = alw,x), Y ¢, X € Sh.

Assume that
Np,

App = djep;,

Jj=1
we then have

Np,
Zd](@],@k>:_a(@,@k), kzlv"')Nh-
j=1
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Since the matrix of this system is the positive definite mass matrix encountered above,

the operator A, is easily seen to be self adjoint and —A}, is positive definite in S, with

respect to the L? inner product, and well defined.

Let P, denote the L? projection onto S, satisfying

(f_th7X):Oa VXGSha

then we have

(une — ADpup, — Prf,x) =0, V x € Sh.

Note that the first factor is in Sy, so that y may be chosen equal to it. It follows that

Upt — Ahuh = th, for t > 0, with uh(O) = Vp.

1.3.3 Error estimates of the spatially semi-discrete scheme

In this section, we consider the error estimates of the semidiscrete problem.

Theorem 5. [85] Let uy, be the solution of

(uh,t)X) + G(U;UX) = (f: X)7 v X € Sh7 > 07

uh(O) = Vp,
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where vy, € Sy, is some approximation of v. Let u be the solution of

uy—Au=f, in D x R,
u=0, ondD xRy,

u(.,0) =v, in D.

Then it holds that
t
lun(t) = ()] < lon — o] +ch2(uvu2 - / ||ut||2ds), £>0.
0

Here, we require as usual, that the solution of the continuous problem has the regularity
assumed by the presence of the norms on the right of the previous error inequality.
Let v € H*(D) N HY(D). Let vy, = Iv, where I, : Cla,b] — S, is the interpolation

operator. Then there exists a constant C' > 0 such that [85]
lvw = vll < CR?|Jv]l2,

where || - || denotes the norm in H?(D), that is, [[v]|2 := ||v]| m2(p).-
The same holds true if v, = P,v, where P, is the orthogonal projection of L?(D) onto
Sy. Note that this choice is the best approximation of v in Sj, with respect to the L?

-norm and so
| Prv —v|| < |[Ipv — v < ChQHng,V v E HQ(D) N Hé(D).

Another choice of vy, is v, = Rjv, where R), is the elliptic (or Ritz) projection onto Sy
defined by
a(Rpyv—v,x) =0, Vx€Shve H(D).

Thus, Ryv is the finite element approximation of the solution of the elliptic problem whose
exact solution is v.

We finally recall the error estimates
|Rpv — v|| + h|Rpv — vy < ch’||v||s, for s =1,2. (1.3.10)
Proof of Theorem 5. We write

up, —u = (up — Rpu) + (Rpu — u) = 60 + p.
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The second term is easily bounded using
| Rpv — || + h|Ryv — v]y < ch?||v]]s,
so we have ,
o0l < ctluo)ll < (ol + [ s )
0
Observe that the operator R, commutes with time differentiation i.e
Rhut = (RhU)t.

Also
a(RhUJX) - (Z(’U,X), VX € Sh-

In order to bound €, we note that, Vy € Sy,

(0r, %) + a0, x) = (ung, X) + alun, X) — (Raue, X) — a(Rypu, X) (1.3.11)

= (f,x) — (Brug, x) — a(u, x) = (ug — Rpug, xX) = — (o1, X)-

Applying the stability estimate, we obtain

t
W@nswmm+/wmwa
0
where
100)]] = lfon — Ruwll < llon — oll + | Rav — vl < llon — vl] + c[jo]l.

These estimates together with the estimate [|p;|| < ch?|lus]]2 complete the proof of

Theorem 5. O

Theorem 6. [85] Under the assumptions of Theorem 5, and for u sufficiently smooth,

we have fort >0

[NIES

).

WMO—U®MShm—ﬂ1+%ﬂWM+HM®M+(/WMﬁ®)

Proof. As before, we write the error in the form

up, —u = (up — Rpu) + (Rpu — u) = 60 + p.



Recall that ||Rpv — v|| + h|Rpv — v|y < ch®||v||s, for s =1,2. Thus we have
[Py = [Ruu(t) — u(t)|y < chllut)]2.
In order to estimate V6 we set x = 6,, in

(9757X) + a((g?X) = _<:0t7X)7 v X € Sh-

and obtain
1d

9 2
6+ 5

(lpell* + 116[1%)-

N | —

1017 = —(p:,0:) <
So, we get

d

Z108 < Il

and by integration, noting 6(0) = u,(0) — Ryv = v, — Ryv,

t t
0105 < 6OV + [ ulPds < (o = ol + [Rao = ol + [ Il
0 0

Hence, since a® +0? < (|a| + [b])? and in view of
|Rpv — v|| + h|Rpv —v|1 < ch®||vlls, s=1,2,

and the estimate of ||p;||, we conclude that,

t
0t < on — vl1 + ch(llv]l2 + (/ |wi|[3ds)?).
0

The above estimates complete the proof of Theorem 6.

1.3.4 Time discretization
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In this section, we consider time discretization schemes. We shall turn our attention to

some simple schemes for discretization with respect to the time variable.

Let S}, be the space of piece-wise linear finite element functions as before. We begin

with the backward Euler-Galerkin method. Let k be the time step and u" € S, the

approximation of u(t) at ¢t = ¢, = nk. This method is defined by replacing the time

derivative in

(uh,t)X) + G(U;UX) - (fa X)7 v X € Sh > 07

uh(O) = Vp,
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by a backward difference quotient given as

and obtain

(Ou",x) + a(u", x) = (f(tn),x), Y X € Sh n>1, (1.3.12)

UO = Up.

Given ™! this defines ™ implicitly from the discrete elliptic problem
(u", x) +ka(u", x) = ("' + kf(ta),X), Vx € Sh.

Expressing «™ in terms of the basis {¢; ;-V:hl as

Np
j=1
we may write this equation in matrix notation as
Ba"™ + kAa™ = Ba™ ' + kb", for n > 1,

where b" denotes the vector with components (f(t,),¥;),7 = 1,2,..., N, and o™ is the

vector with components o} defined by
" = (B+kA) ' Ba" ' + k(B + kA)7'b", for n > 1, with o°, is given.

Here the existence of (B+kA)~! follows from the positivity of the matrices A and B [85].
We begin our analysis of the backward FEuler method by showing that it is uncondi-
tionally stable, i.e., that it is stable independently of the relation between h and k.

Choosing x = u" in (1.3.12), we have, since a(u”,u") > 0 that
(Qu",u") < /"I, where f* = f(tn),

or

1 = ("t ™) < KL

Since

(" u”) < u [l



this shows that

lu™] < |lu" | + k|| ™|, forn > 1,

and hence

lu | < Jull + &> Il (stability estimate)
j=1
Theorem 7. [85] Let u™ and u be the solutions of

(O™, x) + a(u", x) = (f(ta),X), ¥ X €S, n>1

UO = Up.

and

u—Au=f, inD xRy,
u=0, ondD xRy,

u(0) =v, in D,
respectively, where vy is chosen so that
low — vl < ch?|[v]l2.
Then for anyn =1,2,--- | it holds that

t t
o = u(ta)| < et (ol + [ ulads) + ek [ | ds.
0 0

Proof. We write

u" —u(t,) = (u" — Ruu(ts)) + (Ruu(t,) — u(t,)) = 6" + p".

As before, by the estimates for the Ritz projection in (1.3.10) we get

t
"Il < CR*u(ta)ll2 < Ch*([lvll2 + / [11e]l2dls).
0

For 6™, we have,

(aen’ X) + CL(en? X) = _(wn’ X)a

where

w" = RpOu(t,) — u(ty) = (Ry — Iou(ty,) + (u(ty) — u(ty)) = w? + wh.

19
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By the estimate of Riesz projection, we get
16°] = llvn — Rl < Jlvw — vll + [lo = Byl < ch®[Jv]]s.

Note now that
tj tj

w] = (R, — k™ / uyds = k! / (R, — Duds,

ti—1 tj—1

which implies that

t tn
n n
el £ S [ el fulads = cb? [ fufads.
Jj=1 jzltj71 0

Further, by Taylor’s formula, it follows that

and so
" 2] tn
eSSl <1 [ (s = touats)ds] < & [ uelas.
J=1 tj—1 0
These estimates complete the proof. O

Replacing the backward difference quotient with respect to time in (1.3.12), by the

forward difference quotient
(un—l—l _ un)
k‘ )

we arrive at the forward Euler-Galerkin method which, in matrix form, may be expressed

ou" =

as

Ba"tt = (B — kA)a™ + kb, for n > 0.

Using the discrete Laplacian defined by

(_Ahgpa X) = a(@a X),VQO, X € Sh7

the forward Euler method may also be given as

u" = (I 4+ kA U™ + kP, f(t,), for n > 0, with u” = vj,.
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This method is not unconditionally stable unlike the backward Euler method. Note that
because of the non-symmetric choice of the discretization in time, the method is only first
order accurate in time.

We therefore now turn to the Crank-Nicolson Galerkin method, in which the semidis-

crete equation is discretised in a symmetric manner around the point

which yields a method with second order of accuracy in time. More precisely, we define

u™ € Sy, recursively for n > 1, by

(@, x) + a5 W+, 3) = (f(tyy) ), Y XE S (13.13)

UO = Up.

In matrix notation, it takes the form
n 1 n n—1 1 n—1 n—i
Ba™ + ékAa = Ba""" — §k‘Aa + kb" 2 for n > 1,
with a® given, which yields
n 1 -1 1 n—1 1 —1pn—1
a :(B+§k;A) (B—ikA)oz +k(B+§kA) b 2,n > 1

This method is also unconditionally stable which may be shown by choosing

X — un + unfl
in (1.3.13)
Note that
k(Ou", u® +u™ ) = [Ju P = [ = (] = [l D Q"))+ a1,

The positivity of a(u", u™) yields

_ 1l 1l
Ju"|| < [~ | + k][ f772], where  f"72 = f(t, 1),

n—3
and after summation,
n
1
< Jlonll + &> 12
j=1

This shows the stability of the Crank-Nicolson scheme.
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1.4 Basic definitions from stochastic processes

Definition 1.4.1. A set ) containing all the simple events of a random experiment is

called sample space.
Definition 1.4.2. Let © # 0. A collection F of subsets of  satisfying
1. the empty set () belongs to F,
2. if A € F then its complement A° € F,
3. if Ay, Ay,--- € Fthen AjUAy--- € F,
is called o-algebra on (2.
Definition 1.4.3. A function P defined on a og-algebra F satisfying
1. P: F—[0,1],
2. for any collection Ay, A, --- of pairwise disjoint sets in F it holds that

P(AJUAyU---)=P(A) + P(Ay) + -+,

is called probability measure.

Definition 1.4.4. Let Q # () be a sample space, F a o-algebra on , and P : F — [0, 1]
a probability measure defined on F. The triple (2, F, P) is called probability space.

Definition 1.4.5. A collection of random variables with index set 7 is called stochastic

process and is denoted by
{€@): teT} or {&: teTh.

Definition 1.4.6. Let {{(¢) : t € T} be a stochastic process taking values in a set H.
For any fixed w € Q, a path or sample path of £ denotes the function {(t) = {(t;w), t € T,
[31], [99].

Remark 8. When the process & takes real values, and 7 C R, then the path can be

viewed as the graph of £ as a function of t.



23

Definition 1.4.7. A stochastic process {{(¢) : t € R} is called stationary if the mean
value of £(t) is independent of ¢, while for any s, ¢ € R the covariance of £(t), £(s) depends
only on t — s, [99].

Definition 1.4.8. Let {{(¢t) : t € T} be an H-valued stochastic process, where H is a
linear space, and let t,s € 7. The new random variable £(¢) — £(s) is called increment of

the process. Usually we consider ¢t > s when T C R.

Definition 1.4.9. We say that a stochastic process {£(¢) : t € T} with values in a linear
space H has stationary increments if for any s,¢ € T the probability distribution function
of the increment £(t + h) —&(s+ h) is independent of h for all h such that s+h,t+h €T,
[31]. Here, we need to consider index sets 7 where some addition is defined, for example

subsets of a linear space.

Definition 1.4.10. The smallest o-algebra containing all the intervals of R (of finite or
infinite length), is called a Borel o-algebra on R and is denoted by B(R), while any set
in B(R) is called a Borel set of R. Note that an analogous definition can be given on R",
where we define B(R™) as the smallest o-algebra containing all the Cartesian products in

R™ of all intervals of R. [99]

Definition 1.4.11. Let (2, F, P) be a probability space. A family {F; : ¢ > 0} of sub
o-algebras F; of F is called filtration of F, where a o-algebra F; on € satisfying F; C F
is called sub o-algebra of F, while a family is defined as increasing when it satisfies for
any s < t that F; C F;. The quadruple (2, F, F;, P) is called filtered probability space,
[99].

Definition 1.4.12. Let (2, F, F;, P) be a filtered probability space, a stochastic process
{&(t) : t €]0,T]} is called Fi-adapted if for any ¢ € [0,7] the random variable £(t) is
Fi-measurable, [99].

Remark 9. If the process is real valued, then ¢ : [0,7] — R and the F;-measurability
of £(t) of the above definition is considered in the measurable space (R, B(R)), i.e., for
any Borel set B of R in B(R) it holds that £7'(B) € F;. In case of an Fi-adapted
stochastic process &, it follows that the inverse image through ¢ for example of the Borel
set B := (a,b) given by HB) :== {w € Q: a < &(s;w) < b} that belongs to F, it

belongs also to F; for any ¢t > s as well, and is thus F;-measurable also.
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Definition 1.4.13. Let (2, F, P) be the probability space on which the process {{(z) :
z € 7} is realized and define for —oo < m <1 < oo the sub c-algebra F,,; := o{&(2) :

m < z <1} generated by £(z) for any z € Z with m < z <. If

lim ( sup sup |P(ANB) — P(A)P(B)|> =0,

1200 \m>—00 A€F_oo,m> BEFm 1,00
the process ¢ is called strongly mixing, see in [29], or in [28] for the case of index set

T :=N.

Remark 10. The previous definition can be extended for stochastic processes with index

set T :=Ror RT.

Let (€2, F, P) be the probability space on which the process {£(t) : t > 0} is realized

and define for 0 < s <t < oo the sub g-algebra Fy; := o{&(r) : s < r <t} generated

by &(r) for any r € [s,t]. If lim (sup sup |P(AN B) — P(A)P(B)]) = 0, the
t200 X620 A€Fo,s, BEFstt,00

process ¢ is called strongly mixing. Such a strongly mixing process appears in [57] in the

definition of a mild noise. We will return in next chapter for the detailed definition of all

the additional properties of this process and of the mild noise of [57].

Brownian motion has been introduced to describe the random movement of a particle
in the water in the absence of friction. Its mathematical definition as a Wiener stochastic

process is given in the sequel.

Definition 1.4.14. [31] A Wiener process (Brownian Motion) is defined as a real stochas-
tic process
{W(t): teT:=10,00)},

such that

1. W(0) = 0 almost surely (a.s.),
2. the sample paths t — W (¢; w) are almost surely (a.s.) continuous,

3. for any finite sequence of times 0 < t; < t, < --- < t, and any Borel sets of R
Ay, Ag, -+, A, it holds that

P{W(t;) € Ay and W (ty) € Ay --- and W(t,) € A,}) =

/ / / (11,0, 21)p(ta — t1, 21, 22) - - - p(tn — tno1, Tn—1, T )dT,da,_q - - - dq,
A J As



25

for p defined for any x,y € R and any ¢t > 0 by

1 _(a—p)?
e 2t

p(t,z,y) == Nore :

the so-called transition density, and P : B(R) — [0, 1] a probability measure defined

on the Borel g-algebra on R.

Remark 11. By the above definition it follows that the transition density p of the Brow-
nian Motion satisfies p(¢, xz,y) = f(x —y) for f the density function of the Normal distri-
bution N(0,¢) of mean value 0 and variance t. Also, the density function of W (t) is given
by f(z) = \/%me_%, [31], which coincides with the density function uniquely defining
the Normal distribution N(0,¢), and so W (t) follows N(0,t) and has thus variance ¢ and
mean 0.

Moreover, for any t,s > 0 the increment W (t) — W(s) follows the Normal distribution
N(0, |t —s|), while for any 0 < s <r < ¢ the increments W (t) — W (r), W(r) — W (s) have

zero covariance and being normally distributed they are stochastically independent, [31].

In stochastic equations, the stochastic quantities appearing in their differential equa-
tions statement may be smooth, or non smooth and noisy. These are stochastic processes,
or, in the noise case, may be defined through formal differentiation of a stochastic process
corresponding after integration of the equation to a well defined stochastic integral.

Let us give some examples of such processes.

As it is known, [31], the Brownian Motion W (¢) is almost surely (a.s.) nowhere differen-
tiable, in fact the values of its rate of change between s,t approach +oo as |t — s| — 0.
However, a basic choice for a noise term is W (t) denoting the formal derivative of W. A

main idea implemented in the numerical approximation of this noise term is the use of

the rate of change
w(tm) — W)

tn — ¢n—1 )

W(t) ~

for t € (t"1,t") where 0 = t° < t! < .- <" ! <" < ... <tV =T is a partition of
[0,T]. The increment property yields
W (" — ¢ 1) W(1)

tn — ¢n—1 N

where h := " —t""! and W (1) ~ N(0,1). Computational realizations of pseudo-random

W (t) ~ = B2 W (1),

numbers from the Standard Normal distribution N(0,1) are in frequent use.
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A classic definition of an infinite dimensional noise, cf. [45], is given by the formal dif-
ferentiation of a Fourier Brownian series. Let «; be the eigenvalues of a positive definite
symmetric operator @ taking values on a Hilbert space H := L?*(D), and a complete
orthonormal basis of H of eigenfunctions {e;}:2,. A @-Wiener process Wy : DxRT — H
is defined by

Wol(z,t) := Z 7;/262»@)61-(25),

for B;(t) stochastically independent Brownian Motions. An infinite dimensional noise is

given by
i=1

for - denoting the formal differentiation in £. In practice such a noise is numerically
approximated by cutting off first the series to the first N modes, for some N, and then
proceed to some approximation of the N modes involving the Brownian Motions formal
derivatives.

The concepts of mild noise and of mild noise approximation of a rough noise will be

discussed in more detail in a later chapter.

1.5 Basic definitions from fractional calculus

In this section we will introduce some of the fundamental definitions of fractional deriva-
tives and integrals, such as Riemann-Liouville integral, Riemann-Liouville fractional deriva-
tives, Caputo derivative, etc. We will also discuss some theorems and facts related to

fractional calculus that we will apply in our research.

1.5.1 Riemann-Liouville (R-L) fractional integral

Let n € Z". The operator J" defined on L'(a,b) by

1 t
JUft) = =— [ t—7)"""f(1)d 1.5.1
2I0) = e [ = (15.)

for a <t < b, is called the Riemann-Liouville fractional integral operator of order n.

For n = 0 we set J? := I, the identity operator and in this case the operator is quite

convenient for further manipulations. Moreover, for n > 1 it is obvious that the integral
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Jf(t) exists for every t € [a,b] because the integrand is the product of an integrable
function f and the continuous function (¢ — -)"~![50]. We may extend (1.5.1) for any

n € RT, one of the most important property of Riemman-Liouville integral is as follows

Theorem 12. [50] Let o, 3 > 0 and f € L*(a,b). Then
JeI0f =T f (1.5.2)

holds almost everywhere on [a,b]. If additionally f € Cla,b] or o+ 3 > 1, then the

identity holds everywhere on [a,b].

1.5.2 Riemann-Liouville fractional derivative

Suppose p > 0 we define the following Riemann-Liouville fractional derivative as [50]

GDYf(t) = D"[§DY " f(t)] = D" ! >/O(t—r)"_p_1f(7)dr, p>0 (15.3)

[(n—p

and n — 1 < p < n. Recall that D" = 4= is the derivative part while

n _ d7L
where D" = 4~ ¥

di
[EDY"f(t)] = Jy P f(t) is Riemann-Liouville integral part.

Example 13. Suppose f(t) = t2, find the value of é%Dt%f(t) ¢

Solution: Here p = % and lies on the interval 0 < p < 1 such that n = 1. Using (1.5.3)

grves

D2 110 = DD 0] = 5 [ [ (0 - i) (154

1.5.3 Caputo fractional derivative

Suppose n — 1 < p < n and p > 0 we define the following Caputo’s fractional derivative
as [50]

CDPF(t) = SDI (D" f(1)] = —— ) /O (t — )" P=L[D" f(r)] dr, (1.5.5)

Fin—p

1
Example 14. Suppose f(t) =t2, find the value of §{DZ f(t)?
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Solution: Here p = % and lies on the interval 0 < p < 1 such that n = 1. Using (1.5.5)

gives

N

CDEf(t) = SDF D (1) = % / (t—r)

2

[%f@)] dr (1.5.6)

Remark 15. Suppose p > 0 and n — 1 < p < n, then the relation between Riemman-

Liouville and Caputo fractional derivative can be expressed by the theorem [50] below.

Theorem 16. Let p > 0 and n — 1 < p < n, we have,

n—1
Y4 ‘4 ) -p
FDYf(t) =5 DYF(t) +Z£r p+k+ >tk (1.5.7)

Proof. We only consider the case forn=1and 0 <p <1

EDLA0 = DD 0] = |y [ = rrar]

d 1 (t —7)PH 7=t Lt —r) Pt

dt (m ) [_f(” —p+1 Lo +/0 1) m‘“)
d
dt

“a (o [0 fi‘l+/5wf’<f>df])

I S — )i
- T O p/o —p

:ﬁf@)t” 0 {8(t_71pf,<7)>}d7
= F O Uo o]
- Cfo(Zf)—i-ﬁf(o)t

Similarly, we can prove the case forn — 1 <p <n,n > 1, i.e,

n—1

Rl)pf( t) =C Dpf )+ th=p (1.5.8)
oMt
— I( p+ k‘ + 1)




Chapter 2

The Discontinuous in time Galerkin

method

The Discontinuous Galerkin method was first introduced in [113, 88]. Jamet, [68], ana-
lyzed a discontinuous in the time variable Galerkin method for parabolic equations when
posed in a variable domain. Later, Delfour et al. in 1981, [48], used the method for the dis-
cretization of ordinary differential equations. Such schemes construct approximate solu-
tions as piecewise polynomial functions of degree at most n—1 [6, 26, 27, 42, 5, 67, 41, 110].
For the combination of the method with refinement and adaptivity, see [26], [27]. In [20],
the scheme of [68] was applied on the linear Schrédinger equation of under-water acous-
tics on naval environments of variable topography. Considering Discontinuous Galerkin
methods on nonlinear problems, like compressible flows, and compressible Navier—Stokes
equations, see in [122, 123], or in [15] for the stochastic Allen-Cahn equation. We also
refer to the results of [119, 120] for equations from linear elasticity and Navier-Stokes
equations, and in [103] for scalar hyperbolic conservation laws. See also in [19] the a
posteriori error analysis of the scheme of [68].

In this chapter, we present the scheme of [68] for parabolic equations, the main arguments
for the existence and uniqueness of numerical solution, stability, and some error estimates.
In [15], the space-time discontinuous in time Galerkin method was introduced for the
e—dependent stochastic Allen-Cahn equation with mild noise. We will discuss briefly
the nonlinear scheme and some of the results proven there such as existence, uniqueness,

and the abstract error of the numerical solution. Such discontinuous in time schemes are

29
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fully discrete, and involve adaptive high order finite element methods with space-time
variational formulation and partition. So any Runge-Kutta method or finite difference
approximation in time is avoided. Improved temporal accuracy can be achieved by ele-
vating the order of the piecewise polynomial approximation over time. Within each time
subinterval, it is also possible to employ high-order piecewise polynomials across multiple
spatial variables to approximate the solution, resulting in enhanced spatial convergence.
Also, the initial condition of the continuous problem coincides with the initial condition

of the discrete scheme and therefore we do not need to approximate the initial value.

2.1 Approximation of the parabolic equation

Let D be a bounded domain in R?, and consider the parabolic equation,

%—Au:f, reD, 0<t<T, (2.1.1)

u=0, x € 0D,

u(0) =ug, x€ D,

for f € L*(Dx(0,T)), [68]. The term f is inserted so that the analysis will cover the more
general non-homogeneous problem which, among other, is useful for testing the efficiency
of the numerical scheme for exact solutions leaving a residual f to the linear homogeneous
problem. Let 7 < ¢, we denote by (-, -)(rnxp the L? inner product on (7,¢) x D and by
| |¢r.yxp the induced L? norm. In the same sense (-, ) p will denote the L? inner product
on D and || - ||p the induced L? norm.

We also consider a partition in time 0 =t5 <t; < --- <ty =T.

The variational form of (2.1.1) is given as follows: we seek u : (0,7) x D — R in H!

where
H' := H'((0,T) x D) = {u € L*((0,T) x D) : u, Vu € L*((0,T) x D)},

such that for allm =0,1,2,...., N — 1,

ou 1
(E’ 90) (tnstnt1)xD + (VU, V(‘O) (tnitni1)xD <f’ (p)(tn’th)XD’ VeoeH. (2'1'2)
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Integrating the first term of the variational form by parts with respect to time t, we have

ou . agp
(at#J (totrs1) X // wdtd:c—/(gou]t+ — / Eudt)dx

tn+1

- [ttt - [gtis - [ |

= (“(tnﬂ)aSD(th))D - (u(tn),ap(tn))D ( 815) tni1)xD"

Substituting (8t , %) into (2.1.2), we have,

Iy
( Ot ) (tnitns1)xD + (VU,, V¢)(tn,tn+1)xD + (u(tn-i-l)a @(tn-i-l))D

- (u(tn)v @(tn))D = (fa (p)(tn7tn+1)XD7 v e H1~ (2.1.3)

(tntns1) XD

We define now the bilinear form

Iy
Bn(ua 90) = (u, E)(tn,th)XD + (Vu, vw)(tmth)XD

+ (u(tni), @(tni1))p — (u(tn), @(tn +0))p,

where p(t, + 0) := lim._,0+ @(t, + €). Thus, in the variational formulation of (2.1.1) we
seek u € H' with u(0) = ug, such that for allm =0,1,2,..., N — 1,

Bu(u, 9) = (f,0) (tn tnsr)xn, Vo € H'. (2.1.4)

2.1.1 The Discontinuous Galerkin Method

The finite element space V}, will consist of continuous in space functions vy, (t, ) defined
on [0, 7] x D piece-wisely at each sub-interval of the time partition (for example as poly-
nomials) that may be discontinuous in time at the nodal points ¢,,.

Let v := lim, o+ vp(t, + €, 7), v)~ " = lim o+ v (t, — €, 7). We assume that vy (¢, 7) is
left continuous on each t,, n =1,2,--- , N i.e., vp(ty,z) =v) % n=1,2,---  N.

The discontinuous Galerkin method: we seek wuy, € V3, with u,(0) = ug, such that

Bn(Uh,X) - (f? X)(tn7tn+1)><D7 v X S Vh7 (215)

where

8)()
ot
4 ( n+1’ XnJrl) (UZ, Xn+O)D~

Bn(Uh, X) = (Uh, n+1 ><D + (V'U/h, VX)(tn,thrl)XD
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Let x = u,. We have
8uh
ot

() = (g, uf ).

By (un, un) = = (U~ ) (tn st )xD T (YU, VUL) (1 001)xD

Note that
9 a
Up Up,
(un, E)(tn,tnle)XD = / (un(tusr Jun(tosr) — wy™up ™) do — / / Uh_dtdﬂ’j
D
ou
= (uh<tn+1)v uh(thrl))D (UTO’ UZ+O)D (uha 3th> (tnstnt1)xD
3uh
= ™MD = ™1 = (s 57t
which implies
8uh
2(un, —,- ot 7 (tnstn1)xD ||uh+1||D ||uh+0||D
Thus, we arrive at
8uh
(U, 55 Ntatnsn) <D = Huh+1HD_ —H up I
Substituting this into the bilinear form to obtain:
1
By (up, up) = (HuhH”D Huh+0”D) (Vun, Vun) g, 1)< 0 + ||uh+1||D (um“TO)D‘
An application of
(uh, wi™)p = 5llukllb + —|| WD - || n = unllp
yields
1
By (unun) = = 5 [l Mo = 1y ™I5] + (Vun, vuh) (tnsta 1) XD (2.1.6)
+lup D - QHuZII% - —HUTOH% Hu"+0 —upllp

_H n+0

=(Vun, Vuh) (tntns1)xD T 3 ||Un+1||D - §||UZ||D uh”D'

2.1.2 Stability

Theorem 17. [68] Let uy, be the solution of (2.1.1). Then there exists a constant C > 0
such that for alln=1,2,--- | N

1 n
IVarlfoenyxn + 5lluils < C(1ID + 1/ osxn)-
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Proof. Note that forn < N —1

By (un; X) = (s X)(tnstns)xDs ¥ X € Vi (2.1.7)
Letting x = uy, we get

+1||2 Hu2“2 n+0

||U Uh||2 (f, Uh) (tntns1) XD+

(Vuh7 vuh) tn tn+1)XD + _Hu

Summing from n =0 to N — 1 we get

i
F

1 n
(Vuy, vuh)(tn,tn+1)><D + B <||U +1||2 ||Uh||2)
n=0 n=0
= N-1
F3 I =@ = Y () aen (218)
n=0 n=0

Thus we obtain

1
IVurllo ey + 5l I” < SRl + (£, wn) w0

By Cauchy-Schwarz inequality, we have, with some suitable chosen small € > 0,

(f7 Uh)(o,tN)xD < ||f||(0,tN)><D||uh||(0,tN)><D < C||f||(0,tN)xD||Vuh||(o,tN)xD

< Cell £ lfo.tnyxn + EIVURlfo £y x>

where we used the Poincaré inequality, i.e., ||[us||p < C||Vup||p. Thus, it follows that

1

1
||Vuh||(0 tv)xD T 5 ||uh I? < 5”“2”2 + Ca”f”%o,m)xD + 5||Vuh||%o,tw)xp~

The application of a kick-back argument (that is, moving the term 5||Vuh||%0 tn)xD
in the right side to the left side to get the estimates of HVUhH?QtN)XD) yields, e.g., with
e=1/2,

rll{0,tx)x D P < O(||Uh||2 + ||f|| (0,tn) ><D)
IV |7 + = ||U |

and the proof of theorem is then complete. ]
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2.1.3 Error estimate

Theorem 18. [68] Let u be the solution of (2.1.1), and w, the solution of (2.1.7). It
holds that

IIV(U—Uh)H(o,tN)xDJr\/—IIu —up |Ip

N 1
1
>+ OV (u—
TL:O Hat (tn thrl)XD) + H <u X)H(O,tN)XD
N-1
" nt0 . n
+C max [lu _X”D—l-QZlHX 'l YxE Vi

Remark 19. Theorem 18 establishes error bounds for |V (u — up)||(0x)xp and [Ju® —
u} || p. These error bounds depend on the choice of x € V},, where y represents an arbitrary
function. To derive a priori error estimates for ||V (u —up)||(0,5)xp and |[uy —uf||p, one
can opt for a specific y € V},. As an illustrative example, selecting x as the interpolation

function of u is a viable choice.

To prove Theorem 18, we need the following

lemma, see [68, Lemma 4.1].

Lemma 2.1.1. Let @ and b", 1 < n < N, be two sequences of nonnegative real numbers

which satisfy

n—1
(a™)? + (b")* < aa” + Bb" + Y 4", (2.1.9)

k=1

where, o, 8 and " for 1 < k < N — 1 are nonnegative real numbers. Then
n—1
a+b" < \/5(04—1—527”)
k=1
[68].

Proof. Let ¢ = ((a™)? + (b”)2)%. Then (2.1.9) yields

n—1

(")? < (a+ B)c* + ny"‘c”, for1 <n < N.

k=1
Let d*,1 <n < N, satisfy
n—1

(d")? < (a+B)d" + ) ", forl<n<N. (2.1.10)

k=1
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We have ¢! < d' = a+ 8 and d* > o + 3 for all n. By mathematical induction we prove
that ¢ < d" for all n: assume ¢® < d" for Kk = 1,2,--- ,n — 1; then g(c") < g(d") with
g(y) = y* — (a + B)y; since g(y) is increasing for y > o + 3, we deduce ¢* < d". On the
other hand, we have g(d") < g(d"™!) for all n, therefore d* < d"*! for all n and (2.1.10)

yields after replacing d* by d",
n—1
d"<a+ B+ 7" (2.1.11)
k=1

Finally, we have a” + b" < v/2¢* < v/2d", which completes the proof of the lemma. [
We now turn to the proof of Theorem 18.

Proof of Theorem 18. Note that u € H!, and satisfies

Bu(u,9) = (f, ) (tntus)xn: Vo € HY, (2.1.12)

while u;, € V},, and satisfies

Bn(“wa) - (f7 X)(tn7tn+1)><D7 V X S Vh7 (2]_].3)

where

Iy
Bn(u7 90) - (u7 E)(tn,tn_H)XD
+ (VU, v@)(tn,th)XD + (un+1v 90n+1)D - (un7 Qon+0)Da v pE Hl:
and
Ix
By (up, x) = — (un, E)un,tnﬂ)w
+ (Vn, VXt tniyxp + @ X" p — (uf, X" %) p, ¥V x € Vi
Subtracting (2.1.13) from (2.1.12), we arrive at
Bn(u—up,x) =0, Vx€V,
which is called the orthogonality of the discontinuous Galerkin Method. We then have
B(u—up,u—up) = By(u—up,u—x+xX—un) = Bn(u—up,u—x)+ Bn(u—up, x —up).

By orthogonality, it holds that

Bp(u—up,x —up) =0,V x € Vi, up € V.



By the definition of B,,, we have,

0
- (u Uhy, o7 ot (u — X>)(tn,tn+1)><D

+ (V(u— ), V(u— X))(

Bn(u—Uh,'LL—X) =

tn,tn+1)><D

(=)™ (=)™ = (= )", (w0 = )"

D’

and, noting that

1
(0,00t xp) = 5 (0" = 0" 0),

we get
By (u — up,u — up) (U uhv - uh))(tn,th)XD
(V u — uh u - Uh))(tn,tn+1)><D
( n+1 u o uh)nJrl)D _ ((u _ Uh)n7 (u _ uh)nJrO)D
n 1 n
— V(= )iy + = ||( wn)" G = 5w = )|
1

+ 5l =)™ = (u = w)"[[5,

Summing from n = 0 to N — 1 we get, using the kick-back inequality,
2 LN N n+0 n2
IV (= wn) [ eyxn + Gl = up (I = llu” = uill + Z lup™ — upllp
Z Uh, X tn tn+1)><D + Z U/ - uh

(u - X))(tnytn+l)XD

N-1

p = (¥ —up,u® = XO)p+ Y (W —up, X — X")p = A
n=0

+ (uN - uhN’ U’N XN)

and, using the inequality Z ) anb, < (Zg o a2) (Ziv o bz)%

N-1 1
2
As(}jm—uw@%mﬂg (}N%t N[
n=0

+ (V(u —up), V(u — X))(o,tn)xD + (U - Uiva u" — XN)D -0
N-1

+ (U - U’ha Xn+0 - Xn)Da
0

n

36
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where in the last inequality we used that u) = «° in (2.1.5). An application of Cauchy-
Schwarz inequality yields

N-1

0
R O - UER A
n=0

+ V(@ = un)ll 0. <0l V(@ = )03 x0
N-1
™ =l x ™ = x¥ o+ D lu” = uillplx™** = x"llp.

n=0

[N

A < lu = unl

We now define

" = [V (u— un)ll0.n)xD:

1
b = EHUN - U”D»

=

N-1 B
0 2
o = (T 0= 0o )+ 190~ Vllasnreo,
n=0

N _ N _ N
Y = V2 max [lu" = x"|p,

PN = V2N = xVp,

and obtain
N—1

(CLN)2+ (bN)2 < OzNCLN—I—ﬁNbN—l— Z,ynbn
n=0

An application of Lemma 4.1 in [68] yields
N-1
aV N < \/§(aN+ﬁN+ Z’y”)
n=0

This completes the rest of the proof. n

2.2 Approximation of the stochastic Allen-Cahn

The Allen-Cahn equation is a nonlinear reaction-diffusion equation that models the phase
separation of multi-component mixtures. This equation finds applications in diverse fields
such as materials science and, more recently, mathematical biology. It governs the tem-
poral evolution of scalar state variables, such as the concentration of one of the phases, as
documented in various references [10, 7, 9, 41, 59, 64, 110, 113, 24, 137, 25, 30, 8]. The in-

troduction of noise into the system can be attributed to sources like thermal fluctuations,
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the system’s free energy, or impurities within the mixture. Meanwhile, the nonlinearity
in the equation is characterized by the derivative of a double equal-well potential. In
this section, we delve into some of the findings presented in [15], focusing on the numer-
ical approximation of the stochastic e-Allen-Cahn equation. This equation exhibits mild
noise and involves nonlinearity in both the problem formulation and the discontinuous

time-stepping scheme.

2.2.1 The Allen-Cahn equation

The Allen-Cahn equation falls within the category of Ginzburg-Landau equations, which
are employed to describe phase transition phenomena in materials science. It captures
the dynamic evolution of phase concentrations within a binary alloy undergoing phase
separation. Imagine a two-phase mixture confined within a vessel D which, for instance,
could be a substance transitioning from a melted state to two well-separated phases due
to forced homogenization. As the alloy departs from equilibrium, phase evolution com-
mences. Rapidly, transitional layers form around the phases, thinning over time. The
parameter € > 0 characterizes the width of these layers. As e diminishes, signifying
increasingly thinner layers, the evolution decelerates. It’s at this juncture that the e-
dependent Allen-Cahn equation takes effect.

The ”sharp interface limit” emerges as ¢ — 0, marking the point where the layers
reduce to infinitely sharp interfaces with zero width, and the solution adopts a two-valued
step function. Here, our focus shifts to the shape and behavior of these interfaces over
extended periods, delineating the regions where concentration takes on distinct values. In
the context of the Allen-Cahn equation, the sharp interface limit problem pertains to the
evolution of the sharp interfaces’ velocity, influenced by their mean curvature.

The phases of the phase separation process can be summarized as follows:

Homogenization: During this phase, the concentration remains constant. Spinodal
Decomposition: As ¢ > 0, intricate snake-like patterns emerge. Coarsening: Sharp inter-
faces evolve, and as € approaches zero, this phase is reached. Equilibrium: The system
ultimately settles into an equilibrium state. The physical system is often open and may
incorporate additional factors such as thermal fluctuations, external fields, mass supply,

or impurities within the alloy. These factors are typically modeled in the equation through
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deterministic forcing or additive/multiplicative noise components, as described in [18, 64].

The Allen-Cahn equation, a third-order nonlinear equation, differs from the Cahn-
Hilliard equation, which is fourth-order, in its mass-preserving behavior. However, this
mass conservation property can be achieved by considering a modified version of the
Allen-Cahn equation that incorporates an average integral term. In scenarios involving
binary alloys where both phases exhibit a proclivity to separate, the nonlinearity —f in
the Allen-Cahn equation is defined as the derivative of a double equal-well potential F'.

A common choice for this potential is:

—f=F'(u), F(u):= i(l — w?)?.
The physical scale of this problem typically involves ¢ < 1. When we delve into numerical
methods, it’s imperative to incorporate this parameter into the formulation of the con-
tinuous problem and, consequently, into the numerical scheme. Ensuring a rigorous error
analysis that takes into account the influence of € on the numerical error is essential. This
allows us to steer clear of various schemes that are prone to significant rounding machine

errors when ¢ < 1 is a significant factor.

—

Figure 2.2.1: The solution of the one-dimensional Allen-Cahn equation with two transi-

tional layers. Then dash line denotes the two-layered initial condition.

Remark 20. We stress that the discontinuous in time Galerkin method has been success-
fully applied for the numerical approximation of the linear Heat and linear Schrodinger

equations [68, 20, 19], and more recently for the stochastic Allen-Cahn equation [15]. It
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admits a high order of accuracy and it is adaptive, and continuous in space. The solu-
tion of the e-Allen-Cahn equation is continuous in space, however on the sharp interface
limit as € — 0 the solution is discontinuous and ¢ enables the description of very steep
layers just before discontinuity in space occurs (near the sharp-interface limit). The dis-
continuity of the scheme in time permits adaptivity in case of new layers generation or

annihilation.

2.2.2 The problem

Let D be a bounded domain in R? and consider the following e-dependent stochastic

Allen-Cahn equation with additive noise and a Neumann boundary condition [15]

ow ) | Witaie)
E(t,x)—Aw— = + pa— te(0,7], x€ D, (2.2.1)
g_@: —0, z€dD, te (0,7,

w(x,0) = wy(x), x € D,

where f(w) = w — w?. The e-dependent noise W (t, ;) is mild, being smooth in space
and in time, but rapidly oscillating for ¢ < 1 and tending to a white noise in time at the
sharp interface when ¢ — 0. The small parameter ¢ > 0 gives the order of the width of
the transitional layers in D.

We summarize the properties of the smooth in space mild noise W¢(z,t) = W (x, t; ¢)

from [57, 87, 129, 15]. Let 0 < v < %, and define
We(x,t) == e 7¢(x,et), €D, t>0,

where £(x,t) denotes a stationary and strongly mixing stochastic process in ¢t on a
probability space (2, F, P), defined according to the Definitions 1.4.7, 1.4.13, and this
of Remark 10, [57, 87, 15]. We also assume that there exists a deterministic constant
M independent of e such that |{] < M, |§ | < M uniformly for any x € D, and any
t € [0, 7], almost surely (a.s.), where £ := %, while E[¢] = 0, [57, 87, 15]. Observe that
|We| < ce™ < ce 3, uniformly for any € D, and any ¢ € [0,7] almost surely (a.s.),
and that the noise Ws(x, t) is at least one-time differentiable in time a.s. Considering the

smoothness of the noise in space which can be as high as we wish, we shall assume that

the noise is in C*°(D).
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When the noise depends only on ¢, an alternative definition for We, see in [129],
is given by the differentiation of an approximated Brownian motion W€ in time. In
detail, let p : R — R, be compactly supported and symmetric around zero, satisfying
/00 p(x)dx = 1, and vanishing outside [—1,1]. Let W (t) ~ N(0,¢) for any t > 0 be a
B;gownian motion, and consider a stochastically independent to W (¢) Brownian motion
W(t) defined for any ¢ > 0. The domain of definition of W is extended to the negative
axes by setting W (t) := W(—t) for any t < 0, and so (W(t),R) is a Gaussian process,
[129]. Then W¢: R™ — R is defined as the convolution

WA= [ - W (s)as,

for p* :== e 7p,and 0 < 7y < % Then W¢ approximates the Brownian motion W (t) for
any t > 0, [129]. The time derivative ¢ admits higher regularity than the minimum
regularity assumed in [57].

5@y, for an arbitrarily large b(e) chosen to satisfy (b(g) —e~2 —cp) > 0 and

Let w=e
co is some constant obtained by the application of Young’s inequality on the integration
of the noise with respect to time. Then, it follows that 9% = b(e)e"©)u + €y, and the

equation (2.2.1) reduces to

b(e)e? Pty + Oy, = Auet®t 4 5 + :

Thus, the problem is transformed to

ou B glu,e;t)  mle, t)W(t,x;e)
o (t,x) — Au= —b(e)u + = + . , x€ D, (2.2.2)
ou
= D
7 0, ze€0dD,
u(z,0) = uo(x), = €D,
where

g(u, €; t) = — 62b(s)tu37 m(& t) — bt

2.2.3 The Discontinuous Galerkin scheme

Let 0 =ty < t; <ty <--- <ty =T be a partition of [0,7], and let, as in the previous
sections, V}, consist of continuous in space functions v, (¢, x) defined on [0,7] x D piece-

wisely at each sub-interval of the time partition that may be discontinuous in time at ¢,
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n > 1. The discontinuous Galerkin method for (2.2.2): we seek uy, € Vj, with u(0) = uy,
such that for 0 <n < N —1

By (un, x) = (f, X) (tntwt1)xDs ¥V X € Vi, (2.2.3)

where

ox

Bn(ufw X) = - (Uh, E + (VUm VX)(tn,tn+l)><D + 5(5)(%7 X)(tn,tn+1)xD

> (tnatn+1) xD

2b(e)t, 3

tuh’X)(t'mtn+1)><D + ( n+0)7

up ™t X" = (up, x

- 5_2(Uh7 X) (tn tnsr)xD + 6_2(6

and f:= e 'm(e, t)W.

We note that the scheme is nonlinear, cf. the term u} at the right hand-side.

2.2.4 Existence-Uniqueness

Lemma 2.2.1. Let u, € Vj, be the solution of (2.2.2), it holds that
for any ¢y > 0 as small as we wish

n—1

_ 1 n
(20,t")><D +¢€ 2 Z(e%(a)tu?w uh)(ti,ti+1)><D + §||uh||2D
i=0

(b(e) — &7 = co)llunllfo.1,)xp + V]

2

e~ .
< Hu0H2D+4_COHWH%O,tn)><D n=123,---,N.

N | =

Proof. Step 1: By (2.2.3), we have,

Bn(uwa) = (f7X)(tn,tn+1)><Da v X € Vh-

Set x = uy, and obtain

8uh
ot
— e (un, UR) (t tn+1)xD T e (e

() p = (uf ).

By, (up, up) = — (up, )(tn,th)XD + (Vup, vuh)(tn,tn+1)><D + b(e) (up, uh)(tn,th)XD

2b(e)t, 3

t
uh’ uh)(tnat7L+1)><D

Integrating by parts the first term, and using that

1 1 1
() = Sl + S sl + Sl =l

yields
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B ) = = 5 [ % = 1] + (Van, V)10
+ b(&) (U, Up) 4y 1) xD — €2 (Uhs Un) (6 i) D + e 2 (B3 UR) (1 1) x D
+ (up ™ uy ™) = (upy, upt)p
=- %[HU"HHD [N B] + (Vitns VUn) (t s )50+ () (Wny Un) (1 1) x D
— & (un, Uh)(tn,tnﬂ)w + e 2O up) 4, 10+ lun D
SLRA Loy, + ||U"+O—Uh||D,
and finally
By (un,un) = [Vunllfy, 10yxp + b(g)HuhHQtn,t,H_l)xD - 5_2Huh‘|2tn,tn+1)><D
+ 72O, un) (1t 1)x0 —||u b - —H D+ —|IU”+O — uplp,
where

Bn(uhv U’h) = (.fv uh)(tn,tn+1)><D = (5_1m(€’ t)W7uh)(tn,tn+1)><D‘

Step 2: Summing from n =0 to N — 1, we get,

N-1

(b(e) — = / lunlBdt + / [FunlBat + 2 3 (0, 1) 1y

n=0
||uh Ih < ||uO||D+€_1 IIW | p|un|[pdt.
2

By using that for any c¢o > 0 it holds that for arbitrary a,b € R, ab = 2( coa)(ﬁb) <
coa’® + ﬁba which is applied on the term ||up||pe~!||W||p of the above, for a := |lus|p,

b:= e 1|W||p, we obtain

b N N-1
(b(e) — & — co) / lunldt + / IVunldt + 72 S (@O )y
n=0

o1 < Sl + " / W%,
2 -2 460
0

This completes the proof of Lemma 2.2.1.
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Remark 21. When linear numerical schemes are considered, obviously uniqueness es-
tablishes existence as well. In contrast, this is not the case when the existence of the

nonlinear scheme is analyzed. [85]

In order to ease notation, let us denote the L?(D) inner product by (-,-) coinciding to
(+,)p of the notation used so far for the discontinuous Galerkinn (DG) schemes. We also

denote the L?*(D)-norm by || - || coinciding to || - ||p, used in the previous sections.
Theorem 22. There ezists a unique solution of the discontinuous Galerkin method (2.2.3).

Proof. Step 1: Uniqueness.
Let D and z be solutions of (2.2.3), then for any 0 < n < N — 1 and for any x € V}, it
holds that

tnt1 tnt1
- / (Dv X/>dt + / (VDv VX)dt + (Dn+1a Xn+1) - (Dna Xn+0)
tn tn
tny1 tny1 tny1 tni1
+b(e) / (D, x)dt — e / (D, x)dt + ¢ / (e D3, x)dt = / (f,x)dt,
tn tn tn fn
(2.2.4)
and
tnt1 tn+1
- / (Zv X/)dt + / (VZ, VX)dt + (Zn+1a Xn+1) - (Zn7 Xn—H))
tn tn
tny1 tny1 tny1 tni1
+ b(e) / (z,x)dt — 2 / (z,x)dt + &2 / (ezb(s)tz?’,x)dt = / (f, X)dt.
tn tn tn tn
(2.2.5)
Subtracting equation (2.2.5) from (2.2.4), it follows
tn+1 tn+1 tn+l
00 - [(D=zxdi+ [(UD=2.Vd+e? [ (@08 =),
tn tn tn

tn+l
4+ (D™ — gt ) (D — 2™ " T0) — / (D —z,x)dt = 0.

tn
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Setting x = D — z, we obtain

tnit tnt1 tni
(b(e) —e7?) / |D — z|*dt + / V(D — 2)|*dt + ¢ / (eQb(S)t(D?’ —2%),(D — 2))dt
t tn tn
tny1
(D — g k) (pr_n pn_ ne0y / (D —2,(D — 2))dt = 0.
tn
Thus we get,
tni tns tnt
(b(e) — £2) / 1D — =|dt + / V(D — 2)|[2dt + e / (PEHDS — 3 (D — 2))dt
tn tn tn
DT = 2 D" — R (DO — 2) — (D" — )P =

Summation for all n yields

o)) [ 1D —=pae+ [ 190 - =) P

N-1 tnil
= / (2O D? — ) (D — 2))dt
n=0 tn

N-1
1 1 1
oDV = SN = D0 = 0 4 2 3 (DO — ) — (D= O = 0. (2:26)
n=0

Since b(g) —e~2 > 0, the difference between the two solutions equals to zero, which implies
uniqueness of solution.

Step 2: Existence

In [15], an operator ¢ : V;, — V}, is defined, which satisfies for all 0 < i < N — 1 and all

X €Vy

tit1

[ 06020 = I =¥+ b =) [ P

t;
tit1

tit1
T / IVxPde + e / (O ()%, )t
t;

t;
[T et Loz L
et [ Ot ar + St - L.
t;

By summation for all ¢ < n — 1, it follows that for all n < N

tn

tn tn
~ 1 g2 :
[0t = 06) = = a) [Pt = Gl = - [ 107
0 0

0
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The right hand-side of the above inequality is strictly positive for these y € V), with
properly defined values in the L?((0,¢") x D)-norm depending only on n, the initial data
and the mild noise. Brouwer’s fixed point Theorem is then applied for the operator ¢ that

establishes existence of numerical solution; see in [15] the detailed proof of existence. [

2.2.5 Error estimates

We present briefly the error estimate holding true when the finite element space V}, is

generic, [15].

Theorem 23. Let u and uy, be the solutions of (2.2.2) and (2.2.3) respectively, then for

any x € Vi, we have

tN ty
1
(b(s)—5_2—co)/||u—uh||2dt+§/||V(u—uh)||2dt
0 0

1= 1
- n+0 _ _  nj2 - .2
3 2 IR = P+ G fu(e) — ]

ty N-1
< (=b(e) +e7%)? / lu = x[Pdt + O X" = x"[I*)?
0 n=0

_ tn+1 tN

N-1
+ s fulta) <3P+ S [ 100 lPde+ [ 19001
n=0 . 0

1<n<N

—2—y ()N [, (2
te OrgnnagT(e Mw = X124 (0,5 % ) -
Proof. Step 1: Error equation.
Let us denote the error as e := u — uy, and its time derivative d,e by €.

We have

_ 71(676’)dt+ 71(V6,Ve)dt+ (=b(e) +&72) 71(6, e)dt

tn tn ln

tnt1 tnt+1
+ (e"t et — (e, ") + B" = — / (e, (u—uy)")dt + / (Ve, V(u —up))dt
tn tn

tni1
— (=b(e) +£7?) / (e, (w—up))dt + (e" u™™ — Ty — (e, u" — upt?),

tn
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where
tnt1 tn+1
B == (@O~ )t == [ (@O (@)~ (), ()i
tn tn
(2.2.7)
In fact, u satisfies
tna1 tnt1 tn+1
- [wongde+ [(FuTde— (40 +=) [
tn tn tn
tnt1 tnt1
+ 872 / (€2b(s)tu3’ X)dt + (unJrl, Xn+1) o (un’ XnJrO) _ 671 / (mW,X)dt,
tn tn
while the same equation holds for wu, in place of u, i.e.,
tnt1 tnt1 tnt1
~ [ o+ [ (Funvdt - (b6 + ) [ (ar
tn tn tn
tni1 tnt1
+e7? / (€ (up)®, )t + (wp ™ X" = (upy, x"0) = 7! / (mW, x)dt.
tn tn
Thus we obtain by subtraction
tnt1 tnt1 tnt1
0=— / (e, Opx)dt + / (Ve, Vx)dt — (—b(e) +&72) / (e, x)dt
tn tn tn
tni1
+e? / (€O ((w)® = (un)®), x)dt + (" X" ) = (e, x"*0).
tn
Note that x = e+ (x — u) + uy, we arrive at
tn+1 tnt1 tnt1
0=— / (e, Oe)dt + / (Ve,Ve)dt — (—b(e) +e72) / (e,e)dt
tn tn tn
tn41
e [ (@O~ ) )t + () = (e e)
tn
tnt1 tnt1 tnt1
+ /(e,@t(u — x))dt — /(Ve,V(u —x))dt + (=b(e) +7?) /(e,u— X)dt
tn tn tn
tnt1

— g2 / (e%(e)t((u)g’ — (uh)g), u— x)dt — (e”“, untt — X"H) + (e",u" —x7) +0.

tn
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tn41
Step 2: Notice that [ (e, e/)dt = $[(e" T, e™™)+ ("0, e"10)]
tn

the time derivative 0;(u — x) by (u — x)’. We then obtain

. Let us denote for simplicity

tn+1 tn+1
o) - [ el [ [velPa
tn tn
4 L = Do 4 g — w2 + B
tn+1 tn+1
=— / (e, (u—x)")dt + / (Ve,V(u— x))dt
tn tn
tn+1
H0E) =) [ (e e+ (@ =y
tn
— (" u" = x") — (" u" — x") + (", u" — X"), (2.2.8)
where
tnt1 tnt1
B = (@O = )t — = [ (@O — () u =
tn tn
Summing for n =0,--- , N — 1, we get

b i 1 e
&)~ =) [lelPat+ [ [0elPde+ 31+ 5 3 i =
0 0 n=0

N-1 N1 tnt1 N—1 tnt1
+3 B ==Y [ (e (u—x))dt+ > / (Ve,V(u— x))dt
n=0 n=0 n n=0 .
N-1 tntl N-1
+(b(e) =) [ (e (u=x))dt + (¥, uN —xN) =D (e x" = x"0)
n=0 n n=0
1
< e+ ™ =XM1
Application of a kick-back argument yields the result. O]

In [15], the previous theorem is used in order to derive the error estimate of the
scheme by properly constructing V}, and selecting y. In particular, an optimal error is
proven when d = 2, and V}, is specified as a tensorial finite element space of piece-wise

polynomial functions in space and time of separated variables.



Chapter 3

A posteriori analysis of space-time
discontinuous Galerkin methods for
the =-dependent stochastic

Allen-Cahn equation with mild noise

In this chapter, we develop an a posteriori error analysis for the space-time, discontinuous
in time, Galerkin scheme proposed in [15] for the e-dependent stochastic Allen-Cahn

equation with mild noise [21, 75, 76, 83, 101, 110, 113, 124, 137, 130, 84, 36, 95, 98].

3.1 The problem

We consider the transformed problem (2.2.2), presented in the previous chapter, i.e.,

;T W (t, x;

@@J)_Au:_b(g)wg(u,a ), mlet) (,x,6)7 ve D,

ot g2 €
ou
— =0 oD
n , T E 3

u(z,0) = ug(x), =€ D,
where recall that g(u,e;t) = u — 23 m(e,t) = e PN,
The exponential transformation there was chosen so that
inf (b(e) —e2) > ¢ >0, (3.1.1)

€€(0,1)

49
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for some fixed positive constant ¢.
Let us recall the smooth in space and in time mild noise W properties stated in the
previous Section 2.2.2; for a more detailed presentation we refer to [57, 87, 129, 15].
Let 0 < v < %, then
W =Wt ze) = (e D, x),

where £(t, x) is a stationary and strongly mixing stochastic process in ¢ on a probability

space (), F, P), satisfying

0&(t,x
e al<n, 128 <y
for a constant M independent from the realization, and e.

The noise £(t, ) is smooth in space, while it is also sufficiently smooth in time, i.e.,

af(t,l’) 2
=o€ L2((0,7) x D),

which implies that £(-,z) € H'(0,T) for any fixed x € D. Thus, (-, x) is almost surely
(a.s.) continuous with respect to t € [0, 7. The smoothness of the noise, for a sufficiently
smooth initial condition, yields that the solution u is almost surely (a.s.) continuous in
time, which is essential for the application of the numerical scheme that we will consider
[119, 63]. The smoothness of u in space is induced from the smoothness of the noise in
space, which can be as high as we wish. For an alternative definition of W see for example
in [129]. This is given by the formal differentiation of an approximated Brownian motion
in time. Nevertheless, the solution w of the initial problem even if smooth in space or
continuous in time a.s., has bounds in various Sobolev norms of negative polynomial order
in e, and as ¢ — 07, it converges to the irregular step function +1; see for the case of
time-dependent noise in [57, 129] when the problem is posed in the unbounded domain

R?, and in [87] for mild noise depending on x as well.

Remark 24. The mild noise definitions from [57, 87, 129], obviously exclude the Gaussian
noise in ¢ as they require a minimum regularity in ¢ (one-time differentiability in ¢) which
is a property not holding true for Gaussians, as they are a.s. nowhere differentiable.
Considering the definition of [57, 87], such processes exist.

The alternative mild noise definition given in [129] is not comparable with the definition

of [57], and it is not a special case of [57]; we refer to Proposition 1.2. in [129] for its
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properties, which include that it is a stationary centred Gaussian process. This mild noise
admits a C'*° regularity in ¢ can be given by a specific example, for a compactly supported
p in its convolution definition as follows.

Let the compactly supported bump function r : R — R*, with

1

e =22 ge(—1,1)
0 otherwise.

We define

__1 L -1
e 12 [/ e l—dex] x € (—1,1),

0 otherwise.

Then p : R — R* is compactly supported and symmetric around zero, it satisfies

/ p(z)dx = 1, while it vanishes outside [—1,1]. We define for 0 < v < 2 as needed in

[129]

1 L -1
e e 1-e72a? [/ e 1-a? daz] ze 7 € (—1,1),
0 otherwise.

For any ¢ > 0 we consider W (), W(t) ~ N(0,t) two stochastically independent Brownian
Motions and set W (t) := W (—t) for any ¢ < 0, and so (W (t),R) is a Gaussian process.

We then define the convolution

We(t) = / pe(t — s)W (s)ds,
and the noise by

W) ::/ Oh(pF(t — 5))W (s)ds.
The above integral can be numerically approximated for all ¢t € [0, T'] by using for example

the composite trapezoidal rule.

3.2 Discontinuous Galerkin method

Let us give more details for the discontinuous in time Galerkin scheme which was presented

briefly at the previous chapter. As mentioned there, apart from the fact that this scheme
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by its construction is of high order of accuracy, it is also continuous in space and e-
dependent as the solution of the e-Allen-Cahn equation is. On the sharp interface limit
the solution becomes discontinuous in space admitting very steep layers when close to
the sharp interface limit. This scheme permits the approximation of solution up to just
before discontinuity in space occurs. By the other hand, the discontinuity in time makes
the scheme adaptive in ¢ so that new layers generation or annihilation can be captured
by the numerical solution.

Let T > 0, we define S := (0,7) x D, and consider 0 =ty <t; < --- <ty =T, a
partition of [0, T]. Let G™ := (tp, tny1) X D, Gn o= (tn,tni1]x D, whilefor 0 <79 <7 < T
let G(m9,7) := (79,71) X D. For each 0 < n < N — 1, let {V;"} be a family of finite
dimensional subspaces of H!(G"), parameterized by some 0 < h < 1. Vj, will denote the
space of all functions uy, defined on Sy such that their restriction to each G™ coincides with
the restriction to G™ of a function vy, € V;'; note that the functions of Vj, are in general
discontinuous at the interior nodes t", n = 1,--- , N — 1. We also define v}' := vp,(,t")
for any 0 <n < N, and v;" = lim,_,0+ vp (-, " + ) for any 0 < n < N — 1, and observe
that obviously v}’ = lim, o+ vp(-, " — ) for any 1 <n < N, see [15].

Let wy, € Vj,. For any fixed z, wy(-, z) is a piece-wise polynomial function defined on
[0,T]. On each (t,,tn41],n =0,1,2,--- | N—1, wy(+, ) is a polynomial, and wp,(t,+1,2) =
wp(tpyr —0,2), n=10,1,2,--- | N — 1, while wy,(tg, ) for t; = 0 is the starting value. In
general wy,(t, z) is not continuous at t =t,, n=1,2,--- N — 1.

We recall the discontinuous Galerkin method (2.2.3) written after replacing the integral

norms there: we seek u;, € Vj, with u?I = ugp, such that

tn+t1 tn+1 tnt1

— / /uh(‘?tvhdxdt+//Vuthhda:dt—l—b(s)//uhvhdxdt
tn D tn D

tn D
tn+1 tn+1

— g2 / /uhvhdxdt+€2 / /e2b(5)t(uh)3vhda¢dt
tn D tn D

tn+1

—i—/uﬁ“vﬁ“dm— /quZ’*de =¢! / /(m(a,t)W)vhdxdt, Voo, €V
tn D

D D
forn=0,1,2,--- ,N — 1.

We define now V;* as the space of all functions vy, : (t,, tni1] X D — R, such that for
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any fixed t € (t,,t,11], vn(t,-) is a piece-wise polynomial function defined on D, and it
is continuous with respect to z. Moreover, for any fixed x € D, v,(-,x) is a polynomial
function defined on (¢, t,11]-

Let us consider the algorithms when V}, is a space of piece-wise constant or piece-wise
linear functions with respect to time.

When V}, is a space of piece-wise constant functions with respect to time, we may use the
following steps to construct the approximate solutions.

Step 1: Use the initial value u(0) = up(x).

Step 2: Find uy, : (t, 1] x D — R. Since uy, is a piece-wise constant with respect to t,
we assume that uy,(t,x) = Ul € Sy, where S}, is the space of piece-wise linear continuous
functions with respect to = and independent of t. In other words, u,(¢, z) is independent
of t and takes values in S},

Now, the discontinuous Galerkin method is written as: find u(t,z) = U' € S}, for

t € (to, t1] with up(0,z) = ug(x), such that

//U 3txdxdt—//VU1Vdedt—i— )—¢e” //ledxdt
// dedt—l—/ledz—/uo(x)xdx

D D

// (e,t)W)xdzdt, ¥YxeV® n=01,2--- N—1. (3.2.1)
to D
Here, V) is the space of all functions v, : (f,t1] x D — R, such that for any fixed
t € (to,t1], vn(t,) is a piece-wise linear function defined on D and it is continuous with
respect to x. Moreover, for any fixed x € D, vy,(-,z) is a constant function defined on
(to, ta].
Note that, v, € V) is a constant function with respect to t € (fo,#;], and takes the
values in S,. Thus, we see that V)0 = Sj. Here, x € V; is independent of ¢.
It is important to note that in (3.2.1), 0;x denotes the time derivative of y, therefore,

Oy x = 0 since y is independent of ¢. Thus, the discontinuous Galerkin method takes the
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form: find uy(t, x) = Ut € Sy, t € (to, t1] such that

—k:/VUIVde—F(b(e) )/{:/ledx—i-a // ) xdxdt
D

+/ ledx—/uoxdx25_1//(m(5,t)W)dedt, YV x € Sh,
D D
to D

where k denotes time step size. We can solve this equation above by using the standard

(3.2.2)

finite element method.

Step 3: Use the same way as in Step 2 to find U%,U?,--- ,UV.

We next consider the algorithm when V}, is a space of piece-wise linear functions with
respect to time.

Let V4, be the space of functions wy, : [0, 7] x D — R such that for any fixed t € [0, 7],
wy(t,-) is a piece-wise linear continuous function defined on D. Moreover, for any fixed
x € D, wy(-,) is a piece-wise linear function defined on [0, 7] and it is left continuous
on (t,,t,41], forn=1,2,--- /N —1. The discontinuous Galerkin method takes the form:

find uy, € V}, with u,(0) = uo, such that

bttt tni1 tng1
//uh (Opvp,)dxdt + / / (Vup)(Vop)dzdt 4+ (b(e) — e~ //uhvhdxdt
tn+1
// 2b(e (up) vhda:dt—i—/ "Hv,fﬂdx—/quZ’%dx
D
tn+1

! / /(m(e,t)W)vhdxdt, Vo, eV, n=0,1,2,--- /N —1.

Here, V;* is the space of functions vy, : [t tny1] X D — R, such that for any fixed
t € [tn,tns1), vn(t,-) is a piece-wise linear function defined on D and it is continuous
with respect to . Moreover, for any fixed € D, vy,(+, ) is a linear function defined on
s o]

The algorithm is as follows.

Step 1: Use initial value up(0) := ug(z).
Step 2: Find the approximate solution uy, : (¢, 1] x D — R. Since uy, is a piece-wise

linear function with respect to ¢ on [0, 7], we may assume that uy, (¢, z) has the following
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form

t—t
- 0), UL, UL € S, t € (ty, ta].

un(t, ) = Uy + Uy (

Similarly, we have
t1 — 1o
k

Let us see now how to specify U}, U{. The discontinuous Galerkin method takes the form:

find up,(t, z) = U} + Ul (B22), t € (o, 11], such that

up(t,z) = Uy + Uy ( ) =U, +Uy.

t1

_ /tl/uh(atvh)dxdt—l— /tl/(Vuh)(Vvh)dxdt+ (b(e) — 52)//uhvhdacdt

to D

t1
+6_2//62b(5)t(uh)3vhdxdt+/uividm—/ugv;”rodx (3.2.3)
to D

D D

t1
= 5_1//(m(5,t)W)vhd:vdt, Vo, € V)P
to D

Here, V)0 is the space of functions vy, : [to, t;] x D — R, such that for any fixed t € [to, 1],
vn(t,-) is a piece-wise linear function defined on D and it is continuous with respect to .
Moreover, for any fixed € D, v, (-, ) is a linear function defined on [to,#].

Since vy, is a linear function with respect to ¢, we may choose two different test functions
vp = X € Sp and vy, = (t —1to)n , n € S, where S}, is the finite element space of piece-wise
linear continuous functions with respect to the space variable.

Choosing the test function v, = x € 5, we get

t1 ty
t1—1 t1 —1
_//(U5+U11( ! - 0))8txdxdt—//V(U01+Ull( - - 0))dexdt
to D to D

t1 t1
t1 — 1 t1 —t
+(b(5)—5‘2)//(U01+U11( ! - 0))dedt+s—2//e%<f>t(Ug+U11( ! - %)) xdadt
to D to D

t1
= 51//(m(5,t)W)dedt, Vx eU.
to D
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Choosing the test function v, = (t — to)n, n € S, we get

_ 7/ (U& + Ull(tl ; t0)> (O4(t — to)n) dadt

—j/v@%+WWEQOGW—mmmﬁ

t1
t1 —1
+w@—56//(%+UH1k00@—%WW“
to D
I t—t0,\°
+6_2//621)(5)15([]01+U11(%)) (t — to)ndxdt
to D

=¢! / /(m(a,t)W)((t — to)n)dzdt, ¥V n € Sy

Note that d;x = 0 for all x € Sy, and 9;((t — to)n) = n for all n € 5.
We then get the following two equations for U} and U}

t1 t1
t—t t—t
—//V(U&%—Uf( ? 0))dexdt—(b(e)—€2)//<U§+U11( ! ’ 0))xd:r;dt
to D to D
t1
t—to \°
+6—2//€2b(e)t(U&—|—U11( 2 )) xdxdt
to D

t1
= 5_1//(m(5,t)W)Xdasdt, V x € Sh,
to D

(3.2.4)
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and

t1 t1
_//(U&JrUll(tl;to))ndxdt—//V(U§+Uf(tl;to))(V(t—to)n)dxdt
to D to D

+ (b(e) — 52)]1/ (U(} + U}(t1 ;to))(t — to)ndxdt

t1 3
ty —t
+€—2//e2b(e)t <U01+U11( 1 - 0)> (t — to)ndxdt
to D

= 5_1/D/(m(5,t)W)(t —to)n)dzdt, Y n € Sy
(3.2.5)

From (3.2.4) and (3.2.5), we obtain U} € S, and U} € Sj,.

Then we get
t1 — 1o
k

After we obtain u; := uy(x, 1), we may go to the next step.

uh(x,tl):U()l+U11( ):U&+U11.

Step 3: Use the same way as in Step 2 and find the approximate solutions uy, :

(tn,tnsl] x D =R, n=1,2,...N — 1.

3.3 A posteriori Error estimates

In this section, completing the error analysis in the a posteriori sense, we derive the a
posteriort error estimation of the scheme, where the error will be bounded above by using
the discrete solution, the initial data and the mild noise.

In order to facilitate notation, we write the continuous problem as

u — Au+be)u —e Hu—e?OP) =g, zeD, t>0,

u(0, ) = ug(x), (3.3.1)
9u(0, ) =0, x€0D,
on

where a% denotes the normal derivative on 9D and ¢ is some function depending on ¢ and

z, and assume that uy € H*(D). We also return to the notation (-, -) for the L?(D) inner
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product.
The variational formulation is written as: find foralln =0,--- ,N—1,u € H*((tn, tns1) ¥

D) such that

a(u,v) = / (g,v)dt, Yv & H ((th,tny1) x D), (3.3.2)

ln

where the nonlinear form is defined by

a(u,v) = — /(u,vt)dt+ /(Vu,Vv)dt+ /((b(s)—z—:_Q)u,v)dt
e n t” (3.3.3)

tn+1
+ [ (72203 v)dt + (uT o™ — (ut, om0,
tn
Note that a is linear at the second argument.

The Discontinuous Galerkin finite element method is written as: find w; € V}* such

that
lni1
a(up,vp) = / (g,vp)dt, Yov, eV, n=0,---,N—1. (3.3.4)

tn
Let the error be defined by e = u — uy,.

We have the following lemma.

Lemma 3.3.1. Let ¢ = v — uj, where u and u;, are the solutions of (3.3.2) and (3.3.4)

respectively. Then it holds that

tn+1 tn+l tn+1

/ (Ve, Ve)dt + / ((b(e) — e e, e) dt + &2 / (eQb(E)t(u?’ — (up)?), e) dt
1
4 <<en+1’ en—i—l) o (en’ en—i—O)) - 5 ((671—5—1’ 6n—i—l) _ (en—i—O’ 6n+0))
tnt1 tnt1 tnt1

= [@e—vit— [ (Ve [ 4+ me -

tn tn tn

tni1 tn+1
—e? 2 (e — vy,)dt — (up*t, (e — vp)™™) + (up, (e — vp)"0) + / (un, Oy — vp))dt.
o tn

(3.3.5)



59

Proof. We observe that using the Neumann boundary condition for u the solution of

(3.3.1), it follows that

tn+1 tn+1 tnt1
— /(u,vht)dt—i- /(Vu,Vvh)dt—i- /((b(e) — e Hu, v )dt

tn tn tn

tnt1 tnit (336)
+ / (5_262b(8)tu37 Uh)dt + (un-l-l’ UZ—H) - (un’ U;LH—O) = / (gv Uh):

tn tn

ie.,
tn+1

o, vp) = / (g, 8).

But we have by (3.3.4) and replacing a

tna1 tnt1 tni1
— /(uh,vht)dt+ /(Vuh,Vvh)dt—l— /((b(s)—5_2)uh,vh)dt
tn tn tn
tn+1 tni1

b [ (2w o)t + () = () = aun ) = [ (g, )i

tn in

(3.3.7)
Substracting (3.3.6), (3.3.7), we obtain
tnt1 tnt1 tnt1
— / (u — up, vp)dt + / (V(u—up), Vo, )dt + / ((b(e) — e72)(u — up), vp)dt
tn in tn
tni1
+ [ (72O — (up)?), vp)dt + (u" — o) — (u =, o t0) (3.3.8)
tn
tn4+1 tnt1

- [tem~ [ -0

tn tn
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We have,
tna1 tny1 tnt1
— / (e, er)dt + / (Ve,Ve)dt + / ((b(a) —e e, e) dt
tn tn tn
ty
+/ <€262b(€)t(u3 — (up)?), e> dt + (e e" ) — (e, ")
to
tnt1 tny1 tnt1
= / (e, (e —vp)e)dt + / (Ve, V(e —uvy))dt + / ((b(a) —e e, e — vh) dt
tn tn tn
t1
+/ <€—262b(s)t(u3 . (Uh)g), e — Uh) dt + (en-i-l’ (6 . ’Uh)n+1) _ (en’ (6 _ Uh)n+0)
to
tnt1 tn+1 tn+1
— / (€, vpe)dt + / (Ve, Vup,)dt + / <(b(5) — e %)e, vh) dt
tn n n
t1
+/ (5_26%“”<u3 — (w)?), ) dt + (" o) = (e o)
to
tntl tnt1 tny1
=— / (e, (e —wp)e)dt + / (Ve, V(e —uvyp))dt + / <(b(5) —e He,e — Uh> dt
tn tn tn

tn+1
as a(u,vp) = [ (g,vp)dt = a(up, vy) (in detail the last zero term appears due to (3.3.8)).

tn
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So, we get
tna1 tnt1 tnt1
— / (e,er)dt + / (Ve,Ve)dt + / ((b(a) —e e, e) dt
tn tn tn
t1
+/ <€262b(€)t(u3 — (up)?), e> dt + (e e" ) — (e, ")
to
tnt1 tnt1 tni1
=— / (e, (e —wp)e)dt + / (Ve, V(e —uvy))dt + / <(b(8) —e He,e — vh> dt
tn tn tn
t1
+/ <€—262b(s)t(u3 . (Uh)s), e — Uh) dt + (en-i-l’ (6 . ’Uh)n+1) . (en’ (6 . Uh)n+0)
to
tn+1 tn+1 tn+1
= / (u, (e —vp)e)dt + / (Vu, V(e —vp))dt + / ((b(e) — e u, e — vh) dt
tn tn tn

+ / (5_262b(€)tu3, e— Uh) dt + (u" ™, (e — vp)" ™) — (u™, (e — vy)"T0)

+ 71(% (e — vh)e)dt — 71(Vuh, V(e — vp))dt — 71<(b(5) — e )uy, e — Uh) dt

to
tn+1
= <97 € — Uh)dt
tn
tntl tny1 tny1
+ / (un, (e — vp)r)dt — / (Vuy, V(e —vp))dt — / <(b(5) — e Hup, e — vh) dt
tn tn tn

t1
— / <5262b(5)t(uh)3, e— Uh) dt — (up™ (e — o)™ + (u}l, (e — vp)"t0).

to
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This gives
tna1 tnt1 tnt1
— /(e,et)dt+ /(Ve,Ve)dt—l— / ((b(a)—a_Q)e, e)dt
tn tn tn

+/ <€262b(€)t(u3 — (up)?), e> dt + (e e" ) — (e, ")

tnt1
= /(g,e — vp,)dt
tn
toii tns1 tni1
+ / (un, (e — vp))dt — / (Vuy, V(e —vp))dt — / <(b(5) — e Hup, e — vh) dt
tn tn tn

— / <5262b(5)t(uh)3, e — vh) dt — (up™, (e — o)™ + (u}l, (e — vp)"t0).

to

Replacing
tn+1 tnt1
1 d 1 n+1l _n+1 n+0 _n+0
(e,et)dt:§ E(e’e)dt:§ (", e — (" e .
tn tn
we obtain the result. O

Lemma 3.3.2. Let u and uy, be the solutions of (3.3.2) and (3.3.4), respectively.



63

Let e = u — uy,. It holds that

_q tita tn
Z/ e e dt+/(Ve,Ve)dt
=0 t; 0
n—1 tit1 1
Fet X [ (e gl + Z A
1= tz
tn n—1 bitl
= /(g, e —vp)dt + Z (un, Oy(e —vp))dt
0 =0 (3.3.9)
n—1 fifl n—1 fift
=Y [ (Vup, V(e —wp))dt — (b(e) =) > [ (up,e — vy)dt
=0 % 1=0 t
n—1 tita
— g2 Z <62b( (up)?, e — vh) dt + (u”, (e — vp)") — (up, (e — vp)")
=0 t
n—1
— Y (ul, (e —wvp)" — (e —wp)™Y).
i=0
Proof. Summation of (3.3.5) implies that
n—1 tit1 n—1 tita
/(Ve, Ve)dt + Z /(b(e) —e Y (e, e)dt
=0 t; 1=0 t;

-1 z+1

g2 Z / ( — (up)?), e) dt

+ Z {(ei—l—l’ €i+1) _ (;7 eH—O) _ %{(ei-‘rl’ ei-i—l) _ (6i+0, ei-i—O)]}‘

tit1 lit1 n—1 ti+1
Z / g,e —up) dt+z / up, Or(e — vp))dt — Z /(Vuh,V(e—vh))dt
s _ i=0 {
1 tir1 1 tit1

+Z/ ) ) (uns € — vp)dt — Z/( vh>dt

+ Z { z+17 h)i+1) + (u;” (e — Uh)HO}-



Note that
n—1 1
[(eH,61) — (¢, ) — 5[(61'“, ety — (¢, e)])
=0
n—1 1 1
- Z [§(€i+17 ei-i—l) B (ei’ 6i+0) i §(€i+0, €i+o)]
i=0

= i { [%(ezﬁrl’ ei+1) _ %(@7 €i+0)] o [%(ei’ €i+0) _ %(ei—&-o’ €i+o)} }

0
|:(en7 en) _ (enfl7 enflJrO) _ (enfl7 en71+0) + (ean»O’ en71+0>

61, €1+0) i (61, el+0) + <€1+07 61+0>
+ (61, 61) o (60,60+0) _ (60,€0+0) 4 (€0+0,€0+0)

1 1
— 5(6”,6”) + 5||6n—1 _ en—1+0||2 4o+ 5Hel . €1+0||2 + ||€O+||2

n—1
= Sl 5 S gt — P,
=0

where €97 = u%" — u)T = u® —u)T =) —u)t.

Note also that, for n := e — vy,

{ = (™) 4 (g, ™)} = =l n™) + (™0 = (w0 )

=0
+ (up 2 "0 = () A+ (up, )
n—1
= (up, ") = (up, ") = > _(uh, 7' = n"*)
1=0
n—1
= (W, n°") = (up, ™) =Y (up,n" —00) + (up,n” —n"F)
1=0
n—1
= (W n°) = (up,n™) = > (uj,n" — '),
1=0

Together these estimates complete the proof of the lemma.

en—l7 en—l) o (671—27 en—2+0) o (en—27 en—2+0) 4 (en—2+07 en—2+0) et (62, e

64

%)



Let us now derive a useful identity given by

tit1

n—1 n—1
Z /(Uh, atn)dt - - (8tuh7 U)dt + (UZ, 77”) - (u27 770)
=0 b =0
n—1 n—1
) (ot =0 Y (g, — w0 ).
i=0 1=0

We observe that n = e — vy, for arbitrary v, € V", satisfies

n—1 tit1 n—1 tit1

=1 £

Further, we have,

n—1

wptt =) = (" )] = (™) = (up )
=1

= ) — () ) = ()
+oeee (uilza 771) (u(})L+07 770+0)
= (up, ™) + [(uy ™" 0" ™) = (ujp, ™) = (a0, )] 4

+ (up, ') = (w0, ' 0) — (upt, n’h)

C=(up,n™) + (up ™ = O 4 (T — O )

+ o (et =00+ (= w0 = (™)

(™) + (™™ =) (™t = )
+o e ('t =) 4 (= w00 + (T =)

+ (up —up ™ ) = (up,n” = n°%) = (up —up ™, n°") = (upt, ")

n—1

= (ujp,n"™) = (up, ") + n= )+ (uf, — ),

=1

Thus, we get (3.3.10).

Let 7;" be a partition of G and

Vit ={zn € H'(G") 1 2|k € Ppor(K), VK € Ty},

Z/(um@m)dt: Z/ (Oyup,n dt+z it it (;‘l+o’ni+o)]

65

(3.3.10)

(3.3.11)
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where P,_; is the space of polynomials of total degree at most p —1 > 1 in the time and
space variables. We let h,, denote the maximum element diameter in the partition 7"

and define h := max,, h,. Further, if ¢ is an interior edge of 7,* we let
[Vuy, - n], := Vuy, -0l — Vuy, - n-

denote the jump of Vuy, - n across the edge ¢, where n is the normal direction. We also
denote by E}, Ey,;,, and Ef,, the set of all edges, the set of interior edges, and the set
of boundary edges of an element K of the partition 7," respectively.

It holds that

n—1 n—1
> (Vun, Vn))g: = — ((Aun, )k
i=0 i=0 KeT;i

n—1

I /gn[Vuh-n]zds (3.3.12)

=0 KTy teB,

—_

+ Z Z /nVuh -nds,
¢

=0 KeT/ teEi

3

[e=]

where we used the fact that 7 is continuous in space variables. Also note that v, and thus

1 are not vanishing at the boundary, this gives the trace term

S5 [

=0 KeT} teEi,,

in the above equation. This term would not exist in case of a Dirichlet initial and boundary
value problem, see for example in [19]; here, we treat the stochastic Allen-Cahn which
satisfies Neumann boundary conditions.

Let p > 2, we define as [,, the minimum diameter of elements in the partition 7,* and
| := min,, I,. Let dim(D) = m, then dim G = m+-1, the interior elements of the partition
are (m-+1)-simplices, and the boundary elements may posses a possibly curved boundary.
We shall assume that partition is regular, i.e., there exists a ¢y > 0 independent of n such
that h < ¢gl. We select in the definition of 7, vy, as follows: For n > 1, let vy|gn restricted
in every element K of 7, be the Clément’s interpolant jre [41] of the error e in P,_;(K).

We recall that there exists a constant C' > 0, depending only on ¢y, such that,

le — mhellzexy < Chllellmiaxy < Ch(llellzary + IVellLzar) + lledlzzaxy),

le — mhellr2@) < ChY2|lellmar) < ChV2(lellzar) + IVell ) + el r2ar))-
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(3.3.13)

In the above, ¢ is an edge of K, and AK denotes the set of elements having an edge or
vertex common with K. We note that the L?, H' norms, are space-time norms as K and

¢ are space-time elements. So for V = V,, we then have

/
lellmar) = (lelZaam + 1VellZam + ledZaam )
We present now the following theorem.
Theorem 3.3.3. Let u and u; be the solutions of (3.3.2) and (3.3.4), respectively, e =

u — up, and h small enough. Then for any given p, «, with p > 2, a > 0, there exists

positive constant C' > 0 independent of € and h, such that for any 1 <n < N,

[Z Z ||V6||L2 (K) +Z Z || ||L2 —|—€ Z GXp 2b ( )3)76))Gi

i=0 KeT}! =0 KeT}!

e )+Z e = )|

<s[on”

+CRGP=2 Z > lle e O — dun + Aup — (b(e) — & unlff

i=0 KeT}

Lon' ZZZ /|vuhn|pds)p

=0 KeT} teEY,,

fCR 1S Y Y /|vuh nlifPds

i=0 KeT teEL

-1
+Ch'v Z Z Z /]Vuh n\pds
=0 K

Ti LeBig,

+ChI—r= 12 Z Z /|Vuh n|Pds

i=0 KeT}i teEy,

O+ IS el +0]Z S (7 exp(2b()) (un)®, m)

n—1
Z > e e O — Dy + Ay, — (be) — & )unl| o (xc)

i=0 KeT}!

|

i=0 KeT}! =0 KeT}!
for n given through the Clément’s interpolant. Here, ((-,-))a, ((+,-))x denote the L*(G?)
n—1
and L*(K) inner products respectively, while note that e =2 ((e2*©*(u® — (up,)?), €)) g >
i=0

0.
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Proof. Let a function v : A — R, for A an arbitrary connected set with Lipschitz bound-

ary, and consider any p > 2. We have

‘/Aw’d‘s’ = </ |U|pd5>;</ nf71ds) v (3.3.14)

< Collsa) Vol (4) 7 +C||v|\Lp<A>Hm|Z’;<;,
where we use Holder’s inequality and, since p > 2 which yields that < 2, Young’s
inequality, i.e., ab < ‘;Lll bq—ll for any a,b > 0 and p;,q; > 1 with 2 o T q_1 =1
Note that if A is m + 1-dimensional with m > 1 with diameter of order h, then Vol(A) <
Ch? for all m > 1, recalling that the volume of a ball in R™*! with radius h < 1 is equal
to Ch™*t!1 < Ch% We obtain, by the above for A := K in (3.3.14) and bounding 7 by

using the error e

2p—2

p—1 2p—2
(o)l =| | onds| < Cllollasao Vol (K) T +Clollusao Il

2p—2
<Ch™ v vl ory + Cllvll o) [CR(llel| 22 (ak)

2p—2

+ Vel z2ary + lledllz2ary)] 7

2p—2 2p-2 e
<Ch v |[v|ler(ry + Ch™ 7 ||v]| Lo (k) ”eHL?pAK)
—2 2p—2

2p—2 Zp—<
+ ChF ol Vel fiary + Ch 7 Tolloao leel asy (3.3.15)

SChTHUHLp )+ ChP =20l 1) + CollelTzax
+ Cth_2||U||Lp(K) + CollVellZaar
# OBl + Cohs™ x| 72 ar
<on’ HUHLP +Ch<2-a)p—2‘|v|\§p(m+Coy|e\|%2(AK)
+ Col[ Vellzaam + Coh#™ lled] 22 ar).
for Cy > 0 as small enough we wish, and Co > 0, and for any a > 0. Here, we used

Young’s inequality since p 2 < 2. with 2’;—;2 + % = 1, for the bounds

—2

2p—2
HLP(K)HGHL2P(AK) < Ch?piQH”Hip(K) + CUHeH%Q(AK)a

p—2

2
e Vel fary < CR 20l + Coll Velliaar

and

22 A, 20p
lzriollecl Fiary < CRE= P20l ) + Coh®=2 |led|Eaak)




69

for any o > 0.
If the space-time partition element K is m + 1-dimensional with m > 1 then since ¢ is
an edge of K, it follows that ¢ is m-dimensional, and so Vol(¢) < Ch for all m > 1. The

same calculation as before, setting now A := ¢ in (3.3.14), yields

p—1 p—1 2p=2
’/vnds‘ <CR'F [olloge) + CRF 1ol oo llell Za e
14

2p—2

p=1 p=1 =
+ Ch v ol Vel 5iawy + Ch P [[vlle@lled 12 ax

2p—2

(3.3.16)
p—1 —a)p—
<CR'T [0ll ooy + CRO P o2, + Collel22(ar

AL op
+ COHVGH%Q(AK) + Coh v ||€t||%2(AK)~

Since any element of 7," has a bounded number of edges, independent of 7, this yields for

arbitrary z the equivalence condition

Cillzllrzey < D zlr2an) < Callzllzee. (3.3.17)
KeT}
Additionally, see in [19]

I ey <Ch 3 leliniar < Oh 3 Nelinao

KeT} KeT}

(3.3.18)
=Ch Z [HGH%Q(K) + ”V6H%2(K) + ||€t||%2(1<)]-
KeT}
So, by the above, we have
(uj, — w00 p < [l — w2y 17N 22y
< Colluj, - UZJFOH%Q(D) + CHUHOH%%D)
< Colluy, — uy,|72(py + Ch Z lellZzxy (3.3.19)
KeT!
+Ch Y IVelfage + Ch Y ez,
KeT} KeT}

for Cy > 0 as small as we wish.

Using (3.3.15), (3.3.16) in summation and then the equivalence condition (3.3.17) on the
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| - [[z2(ak) terms, and (3.3.19), we derive

n—1 n—1
(b(e) =) el 7z + IVelZaaomy +€ 2> ((exp(2b(e)t)(w® = (un)?), €))os
i=0 =0

1 .
+ 5l 220y + 5 ZIIU”O—UZII%Q(D)

<A+ A+ A3+ Ay + Ro+ Ri + Ra,

where
n—1
= e 1 —b&)t €_9 A N 2
Ay :=Ch v le” & — Opun + Aup — (b(e) — &7 )unl| Lo (i)
=0 KeT}!
n—1
Ay i= ChE=P2Y =N e e O — Dyup + Aup — (b(e) — e Junll?, 1
i=0 KeT}!

n

A?,;:(Jh”ple % (/g![Vuh-nMpds)l/p

' KeTg’ CEES,

+Ch<1w122 > /|Vuh n|,|"ds,

Z O KETZ ZEE}(IH

I
o

Aci=cn 7Y 3 Y ( |Vuh-n|pds>1/p
—1
+ Cpli-or Z Z /|Vuh n|Pds,

=0 KeT} teEi,

n—1

Ry : = CC Z lug, — upt®|| 22y + [Ch + CCO]Z“‘?H%Q(G”')
i=0 1=0
[Oh+CCQ]||v€||L2 Ot")

and

,_.

Y

Ry = ‘Z ZT £—2p2b(e un)?, 1)) i

1=0

n—I1
Ro = [Ch+ Che 1] 3 [10he3ase)-

=0 KT
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Since Cj is as small we wish, and for h small enough, then all the terms involving ||u} —
w720y €725 lell 2@y and [ Vel L2(g(o,m)) Will be hidden at the left, and the result

follows after taking expectation at both sides. O]

Remark 25. In view of right hand-side of the estimate of the previous theorem, we can
bound first 7, by using e, Ve, e;. Then, we can bound e; by using e, the initial data, the

mild noise, and arrive at the final a posteriori estimate. In particular,

leell 2y = lJue — Opunll L2y < [Juell L2y + || Ovun || L2 (k)

where the term || || £2(k) is bounded explicitly by a function F = F(ug, Vol(D), T, &5, b(¢), €),

while [|Qyup || r2(k) is transferred to the estimator.

Using the previous theorem, and the upper bound of ||7||12(k) in terms of e, Ve, e, we

derive the next estimate.

Theorem 3.3.4. Let u and uy, be the solutions of (3.3.2) and (3.3.4), respectively, e =
u — up, and h small enough. Then for any given p, o, with p > 2, o > 0, there exists

positive constant ¢ > 0 independent of € and h, such that

n—1 n—1 n—1
E[Z D IVeliag + 20 D lellizm +272D ((exp(2b(e)t) (u = (un)?), €))o
=0 KET}Z =0 KET;f =0

n—1
e Fap) + D Il = u%l!im)}
=0

< E[.Al +A2+A3+A4+A5],
for

n—1
Api=ch v Y > e mie, )6 —0uun+Aup—(b(g)—e > )up—e " exp(2b(2)t) (un)?|| Lo(xc)

i=0 KeT}!

n—1
Ay = chZ)r=2 Z Z lle™tm(e, )& —Ouup+Aup—(b(e)—e ) uy— 2 exp(2b(e)t)(uh)3\|’£p(K),

i=0 KeT}!
ot 1/p =
Ay=ch7 3 SY ( / |[Vuh-n]g|pds> HehTPTE Y NN / |[Vunn]|Pds,
i=0 KeTj teEi,, °° i=0 KeT} teBi, " "

n—1 n—1
A=ch7 3 5 Y (/£|Vuh-n|pds>1/p+ch(1_a)p_1Z >y /ZIVuh-nP’ds,

i=0 KeT) beBl, =0 KeTy LeEy,,
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and
n—1
As = [eh + b5 30 3 lael2:
=0 KeT}!
Remark 26. Considering the previous theorem, the terms A; for i = 1,--- , 4 involve the

approximate solution u; and normally depend on h, and consist thus parts of the a poste-
riori estimator, that as it is expected depends on uy. The term Ajs involves ||dsel|7, (k) for
which as mentioned, it holds that H@teH%Q(K) = ||wy —Opun || L2y < el 20re) + 1| Oun || 2k
which obviously depends on uy,. Moreover, cf. in [17], the u; term there is bounded with
bounds depending only on the initial data, the volume of the space domain, b(e), the
noise, T', and e which all consist defined from the start parameters of the continuous

problem and do not depend on h or u.

Various interesting numerical schemes have been applied so far for the stochastic Allen-
Cahn equation with noise rougher than the mild noise analyzed in this Thesis, see in
[30, 54, 101, 95, 127]. In [44] strong and weak error estimates have been established in
space for finite element approximation on stochastic equations with one-sided Lipschitz
coefficients with additive noise, including as a special case the stochastic Allen-Cahn
equation. We refer also to [96] for an optimal strong error analysis when the noise is
multiplicative. The possible advantages of our scheme are briefly summarized as follows:
It is adaptive in time and of high order of accuracy, it avoids any RK method or finite
differences approximation in time; in case of tensor finite elements, higher accuracy can
be reached by just elevating the order of the piece-wise polynomial approximations in
time. The initial condition of the continuous problem is used as the initial condition of
the discrete scheme without any approximation. The presence of £ permits the numerical
approximation near the sharp interface limit, while the time adaptivity can capture in
the numerical solution new layers generation and annihilation which occur in the physical

problem.



Chapter 4

Galerkin finite element approximation
of a stochastic semilinear space-time
fractional subdiffusion with

fractionally integrated noise

4.1 Introduction

This chapter discusses the Galerkin finite element method applied to approximate the
solution of a semilinear stochastic space-time fractional subdiffusion problem with the
Caputo fractional derivative of order o € (0, 1) driven by fractionally integrated additive
noise, [135, 138, 116, 115, 114, 56, 55, 52, 49, 72, 117]. After discussing the existence,
uniqueness and regularity of the solution, we approximate the noise with a piecewise
constant function in time in order to obtain a regularized stochastic fractional subdiffusion
problem. The regularized problem is then approximated by using the finite element
method in spatial direction. The mean squared errors are proved based on the sharp

estimates of the various Mittag-Leffler functions involved in the integrals.
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4.2 Physical model defined in whole R?,d = 1,2, 3

Consider the transport of particles in medium with memory (e.g, heat conduct) and let

—

u(t,x),e(t,z), F(t,r) denote the temperature of materials, internal energy and heat flow

(heat flux) respectively. Then we have, [40],

de(t,r) . =
—5 = —div(F),
e(t,z) = Pu(t, x),
F(t,x) = =AVu(t, z),

where 5, A > 0 are some positive constants. The temperature of the materials then

satisfies the classical heat equation

In the medium with memory, the internal energy satisfies

e(t,x) = Bu(t,z) + /0 n(t — s)u(s,z)ds,

here 3 > 0, n denotes the kernel function, with v, € (0, 1),
1

n(t) = pr ot

The convolution means the internal energy e(t, z) depends on the temperature u(s, z) of
the materials for the past time 0 < s < t.
In the real problem, the internal energy e(t,z) depends on the temperature in past

time randomly. We introduce the noise

e(t,x) = Bu(t,z) + /0 n(t — s)u(s,z)ds + /0 It — s)h(s,u(s,z))dW(s), (4.2.1)

where W denotes the random effect of the heat source, [ denotes a kernel function.

Choose, with v, € (0, 1),

l =2
) P —
) ['(2 =)
Assume that 3 = 0 and taking the derivative of (4.2.1), we get
. = Oe(t,x) 1 o [
Mu = — divF = 2200 L PR J
u iv 5 T (%/0 (t —s) Mu(s,z)ds
1 0

g | ks (s, a) W)
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Thus we have

SDPu(t,z) = Mu(t,z) — ¥D» /Ot h(s,u(s,z))dW(s).
That is, with v1,72 € (0,1),

CDu(t, ) = Mu(t,z) — EDP " h(s, u(s, z)) W (t, z),

which is the fractional model we are interested in. Here W(t,z) denotes the noise and
¢D"w and FD;*"'w denote the Caputo fractional derivative and Riemann-Liouville frac-

tional integral, respectively.

4.3 Physical model defined on a bounded domain D C

R d=1,2,3

In this chapter, we shall consider the finite element approximation of the following stochas-
tic semilinear space-time fractional subdiffusion problem driven by fractionally integrated
additive noise [40, 13, 94, 38] with 0 < a < 1, % <p<L,0<y<,
CDu(t, z) + (—=A)Pu(t,x) = f(t,u(t,z)) + ED; W (t,z), 0<t<T, z € D,
u(t,z) =0, 0<t<T, x€0D, (4.3.1)

u(0,z) = uo(x), z € D.

Here §'Dfw and D, w denote the Caputo fractional derivative and Riemann-Liouville

fractional integral, respectively. We assume that the noise takes the following form

Wit.z) = 3 oj(t)e; @)d(0) (4.32)

where 0;(t),7 = 1,2,... decay rapidly with respect to j. For example, if 0;(t) = 7;/2

and Tr(Q) = > 72, 7; < oo, then W (t) is called a trace class noise. If 0;(t) = 1, then
W (t) is called a white noise. Here, e;(z),j = 1,2,... are eigen functions of the elliptic
operator A = —A, D(A) = Hy(D)NH?*(D), and f;(t), j = 1,2, ..., denote the Brownian

motions.
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Limited literature addresses the numerical approximation of the stochastic subdiffusion
problem (4.3.1). Cao et al. [34] explored numerical methods for a stochastic semilinear
time fractional partial differential equation driven by fractional Brownian motion. Jin et
al. [73] developed and analyzed a numerical approach for the linear variant of (4.3.1),
specifically when f = 0 and 8 = 1, with noise of the form D, W (t),y € [0,1], where
W (t) denotes a Wiener process with covariance operator (). This method employed linear
finite element approximation in space and the classical Griinwald-Letnikov method in
time, along with L?-projection for handling the noise, see also Zou [139]. Wu et al. [131]
tackled the time discretization of a stochastic linear subdiffusion problem, presenting error
estimates for their proposed scheme. Li et al. [89] explored the finite element Galerkin
approximation for a stochastic space-time fractional linear wave equation in one space
dimension, driven by additive space-time noise, within the parameter range a € (1,2),
v =1, and f = 0. More recently, Li et al. [90] analyzed a numerical method for the
stochastic semilinear space fractional superdiffusion problem driven by fractional noise
with o € (1,2).

This study centers on the finite element approximation of (4.3.1) with a time fractional
derivative order o € (0,1). Unlike the case of stochastic superdiffusion with o € (1,2)
investigated by Li et al. (2017), (2019), the stochastic subdiffusion problem with o € (0, 1)
poses greater challenges due to the singularity of the solution near t = 0.

To the best of our knowledge, the work in this chapter represents the first attempt at
devising numerical techniques for approximating the solution of a stochastic semilinear
space-time fractional subdiffusion problem with o € (0, 1) driven by fractionally integrated
additive noise. The exact solution is explicitly expressed using Mittag-Leffler functions,
and the existence of a unique solution is established via the Banach contraction mapping
theorem. Following a method similar to recent articles by Li et al. (2017), (2019) for « €
(1,2), we approximate the noise using piecewise constant functions in time to regularize
the problem. Subsequently, we apply a finite element method to discretize the spatial
direction of the regularized problem, deriving mean squared error estimates. The final
error estimate encompasses contributions from errors due to regularization and the finite
element Galerkin approximation of the regularized problem.

Let H = L*(D) with norm || - || and the inner product (-,-). Let Hj = {v e H' : v =



7

0 on OD}. Let A= —A: D(A) = H*(D) N Hy(D) — H be a closed linear self-adjoint
positive definite operator with compact inverse and assume that (\g, e), k = 1,2,3,---
is a sequence of the eigenpairs of —A. The sequence {ej}72; forms an orthonormal basis
of H.

Set H *(D) or simply H? for any s € R, as a Hilbert space induced by the norm

[

— (ZA2(¢,ek)2) , (4.3.3)

k=1
For s = 0 we denote H° by H.

Let (Q, F. {Fi}i>o, P) be a complete filtered probability space with Fy containing all
P-null sets of F and let L?(£; H %) be a separable Hilbert space of all strongly measur-

able square-integrable random variables ¢ with values in H® such that | ¢|| LQTs) =

(E|¢|§)% < 00, where E denotes the expectation.

Lemma 4.3.1. [99, Theorem 10.16] (It6 isometry property) Let {i(s) : s € [0,T]}
be a real-valued predictable process such that fOTE]w(s)Pds < oo. Let B(t) denote a
real-valued standard Brownian motion. Then, the following isometry equality holds for

e (0,7,

E)/w )dB(s

Mittag-Leffler function plays a very important role in the error estimate of our problem.

/Ot By (s)[2ds. (4.3.4)

Now let us introduce the Mittag-Leffler function.

> k
z
Z)—kgzom, z2e€C,a>0.

A two parameter Mittag-Leffler function is defined by

R . 4.3.
];FOJHB a>0, feR,z€C (4.3.5)

Lemma 4.3.2. (Mittag-Leffler function property) [111]
Let 0 < @ < 1 and f € R. Let E, 5 be defined by (4.3.5). Suppose that p is an

t ma

5 < p < min(m,7a). Then there exists a constant

arbitrary real number such tha

= C(a, B, 1) > 0 such that

|Es5(2)] < , 1< Jarg(2)] < (4.3.6)

1+ |z|
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In particular,

Bap(2)| < O, i < arg(2)| < (43.7)
Moreover, for A >0, @ >0, 3>0, ¥> 0,7 # 1,

d (51 Bra y-2 Bia

dt(t Ear(—\Pt )) = 2 E, - (~NP19), t > 0. (4.3.8)

To show (4.3.8) we note that E, 5(,2) = 1o F(#:B)’ thus we have the following

ABtd) —ABtayk .
dt (15V LD PN F(akﬂ)) o2y, F kD For k =0,1,2,3,--- we have the following

expansion

a (tv—l [(_)‘5’5&)0 +

S o M o i O o W ) o)

N I G N S G L
L'(a+7) +F(207+7y) +F(3d+‘y) * D

T7—1) Tat7-1) TRati-1) T@atr-1)

i (t71 1 B /\ﬁta N )\QﬁtZa B )\Sﬁti’)a N :|>
dt rwy) T(a+7v) TRa+7y) TBa+7y)
1 )\Bta‘ )\QBth )\SBt?:a
ry—-1 TIa+y-1) T'(2a+y3-1) TBa+7y-1)

Removing the brackets on the right hand side yields

d /1 )\Bt‘j‘ﬂ_l )\25752@@—1 )\3Bt3oz+w—1
dt (F(ﬁ) Fa+y) T@Ra+75) TBa+7y) )
172 )\Btawfz )\25t2@”*2 )\3Bt3&+”yf2

ry—1 T(a+y-1) TRa+vy-1) T'Ba+vy-1)

Differentiating the left hand side with respect to ¢, we arrive at

( ) 2 ( ))\Btaw—z ( ))\28752114@—2
Y-l -(@@+7- )=+ R2a+7 - )5
I'() I'(a+7) r'(2a +7)
3B3a+7-2 -2 \Bpaty—2 \2B42a+7-2
—Ba+y—-1)=——+ - = — +
( 7 )P@d+w 'y-1) T@+y-1) TIRa+y-1)
A35t3a+fy—2

TTBatq-1)

Note that I'(y) = (y — 1)I'(y — 1). Therefore we show (4.3.8).
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Assumption 4.3.1. [125] There is a positive constant C such that the nonlinear function

f: Rt x H— H satisfies

[f(t1,u1) — f(ta,u)|| < Oty — tof + |lus — ua),

and

£t w)]l < CA+ Jlul).
For example, the following functions f all satisfy Assumption 4.3.1: f(t,u) = u, f(t,u) =
%, C > 0and f(t,u) = sin(u).
Assumption 4.3.2. [51] The sequence oy (t) with its derivative is uniformly bounded by
loe()| < g, |0, (8)] <k, Y te€]0,T], where > 77, py and > .| v are convergent.

Assumption 4.3.3. (Regularity of the noise) Let % <a<l, % <p<1,0<y<1. We

assume, with 0 < r < g,
o
Z HENTE < o0,
k=1

where k is defined by

206, 2v > 1,

KR = 9
(2_%)5_67 2’Y§17

and A\, k = 1,2,3,--- are eigenvalues of the operator A = —A with D(A) = H}(D) N
H?*(D).

Definition 4.3.1. (Lemma 2.4 in [89] or (4.1) in [69])
An adapted process u(t), is called a mild solution to (4.3.1) if it satisfies the following

integral equation

u(t) = Eq p(t)uo(z) + /0 Eo5(t — s)f(s,u(s))ds + /0 Eop,(t—s)dW(s), (4.3.9)

where dW (s) denotes

dW (s) = iak(s)ekdﬁk(s), (4.3.10)
k=1
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and

Ea s ZEal )\Bto‘ )(uo(x), ex)ex,
k=1

Eop(t)uo(r) = 127" Eoo(—Xet*) (uo (), ex)ex,

Eo . (D)uo(x) := 17771 By (=A%) (o), ex)er
k=1

The operators E, 5(t), Ea 5(t) and E, 5 (t) have smoothing properties. The solution
operator E, (t) satisfies the following smoothing properties for ¢ > 0, see e.g. Lemma

4.1 in [69] or Lemma 2.5 in [89],
|Eq s(t)uol, < C’t_a%|uo|q, 0<p—q<26,p>q. (4.3.11)
Next we consider the smoothing properties of the solution operator I_angﬁ (t).

Lemma 4.3.3. Let 0 < o < 1, %<6§1, 0<~y<1l.Foranyt>0and0<p—q <20,
there holds

[Ba (8], < Ot D=5 g (4.3.12)

Proof. From the definition of E, s (t), it follows that

[Ea s (t)uoly = Y NI B (=N (w0, 1)
k=1
< CtQ( 1+(at+y)—a ;5 io: )\Bt‘l |(u0 6k)|2
(14 Alte)2

< O IHar et

pP—aq
Note that, by the boundedness of the Mittage-Lefler function: sup, % < (Cfor0<
p —q < 23. This completes the rest of the proof. O

When « = 0, we obtain the estimate of E, s(t) as

= a(p—q)
[Bas(t)uoly < CH7 75 Jug| (4.3.13)

Theorem 27. (Existence and Uniqueness Theorem)

Let% <a<l, % < B <1and0 <~ < 1. Assume that the Assumptions 4.3.1, 4.8.2, 4.5.3
hold. Letv € L*(Q; H). Then, there exists a unique mild solution u € C([0,T]; L*(Q; H))
given by (4.3.9).
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Proof. Set C([0,T]; L*(Q; H))x, A > 0 as the set of functions in C([0,T]; L*(Q2; H)) with

the following weighted norm ||¢[|3 := sup,c/o 7 E(lle o (t)[?), ¥ ¢ € C([0, T]; L*(Q; H)).

Note that for any fixed A > 0 this norm is equivalent to the standard norm on C([0, T]; L*(Q; H)).
We now define a nonlinear map 7 : C'([0,T]; L*(; H))x — C([0,T]; L*(2; H))x by

Tu(t) =Eqp(t)ug + /0 Eo5(t — s)f(s,u(s))ds + /0 Eop,(t—8)dW(s). (4.3.14)

In order to apply the Banach fixed point theorem, it is sufficient to show that for an
appropriately chosen A > 0, 7 is a contraction.

We first show that Tu € C([0,T]; L*(2; H)) for any u € C([0,T]; L*(2; H)). By Cauchy-
Schwarz inequality we arrive with u € C([0,T]; L*(2; H)) at

t
E(Tu(t)|* < 3E||Eas(t)uol* + 3EH/O Eos(t — 5)f (s, u(s))ds|
¢
+ 3B [ Buglt = )W ()
0
t
< 3E|[Ea.s(t)uol* + 375/ E[Eqs(t — 5)f(s, u(s))|*ds
0
t
+ 3B [ Bagolt - AW ()"
0
Using the smoothing property (4.3.11) for E, s(t) and Assumption 4.3.1, it follows that
t
E[Tu(®)]* < CE[uo|* + Ct/ (t = )" (1 + Efu(s)]|?)ds
0
t
+ CE|| / Eop-(t — s)dW(s)|. (4.3.15)
0

For the stochastic integral, by Isometry property Lemma 4.3.1, Assumptions 4.3.2 and
4.3.3 and the smoothing property (4.3.12), there holds with 0 < r < k&,

EH/ Bt — 5)AW(S)] = EH/

= [ 1A Bt - AT eupas < o [ 1
t o

SC’(/O HA2E ‘ds)(Zluk)\r 5)<C’<Zﬂk)\r /@)/

- C(Zui Az_f/b) /0 R ) C(Z N2A2_5> < o0.

k=1

Eo,ps(t — 5) Zak JA'Z exdi ()|

9l d8)<ZuM )

*K;BTO‘)QdS
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Note that ug € L*(€; H) and v € C([0, T]; L*(Q2; H)), we then obtain sup,c (o 7 E|| Tul* <
oo. That is

t (o)
B Tu(t)* < CBlua) [+ Ct [ (¢ = 524 (14 Blu(s) ) ds + O3,
0 k=1

(4.3.16)

which implies that Tu € C([0,T]; L*(Q; H)). Next we consider the contraction property
of the mapping 7. For any given functions u; and uy in C([0,T]; L*(Q; H)), it follows
that

Blle ™ (Tur (1) = Tus ()]
=Bl [ Buplt =) (6D — S, ua(o)) |
<e( [ B, ot — ) (Fo.(5) = Fls,ua(s) ) )

0
< Ct / (t- XTI (f(s,u(5)) — F(s,ua(s)) ) s,
0

A use of s = ty with Lipschitz condition for the nonlinear term from Assumption 4.3.1

and o > % yields
1
Elle™(Tui(t) = Tua(t)|* < CAQ‘“/ (1= )" M dyflug — uy|}
0

1 _ o1 ! o3
<C sp (0= g he ) (D] [ty - wl
0

A>0,t€(0,T],y€[0,1]

a—j3 T 3
<CT s (((1-y)) e (D) /1—y>a—2dy||u1—u2||§

A>0,t€[0,T],y€[0,1]

< C(T)(%)a_éuul — a3

Taking maximum over ¢ € [0, 7] and choose A > 0 appropriately so that C(T") (%) -
d with 6 € (0,1), that is || Tur — Tus||x < 0]|lur — ual|x.

The proof of this Theorem 27 is now complete. O

In Theorem 27, we require that % < « < 1. This condition can be relaxed to 0 < o < 1

in the following theorem.

Theorem 28. Let 0 < a < 1, % <pB<1, a+vy> % and 0 < v < 1. Assume that the
Assumptions 4.8.1, 4.58.2, 4.5.8 hold. Let v € L*(Q; H). Then, there exists a unique mild
solution u € C([0,T); L*(Q; H)) given by (4.3.9).
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Proof. The proof is based on the Banach fixed point theorem.
Step 1: Introduce the following space, with A > 0 to be determined later,

C([0,T), L*(Q H))x = {u € C([0,T], L*( H)), [ull} := sup Efe™ u(t)||* < co}.

t€[0,T]

For any A > 0, the following two norms are equivalent, that is, |[ul/x = ||ulo-

Step 2: Define a nonlinear map 7T

Tu(t) =Eqp(t — s)ug + /0 Eo5(t — s)f(u(s))ds + /0 Eop-(t — ) dW(s).
Step 3: Show that
Tu e C([0,T], LX(Q H)), YueC(0,T], L2 H)),

which follows from Cauchy-Schwarz inequality, linear growth, Isometry property.
Step 4: Contraction property. We consider two cases.

Case 1. o € (1/2,1). In this case, we have

2

E[|e (T — Tuz)(t)
=B [ Baslt = ) (7 (6) — Funls)) s
=B [ [ Bt = )] [ (o)~ Faats)] s
(I (1 — )] [ (Flua(s)) — Funs)] | s

2

< CtE

0

t
<t [ e Bt~ 5)P ds] - Jua - wal
0
Note that

Ct/ ||e At— S)E (t—S ||2 ds < Ot/ —2X\(t— s) )Q(Q_l) ds
0

¢
Ct/ o—27 1 2(a—1) dT_Ct|:/ 020 ;202 dm] \l-2a
0 0

/ —2x 2a dei| )\1 2a < C( ))\1—2(1'
0

IN

Ct

[ —

Choose sufficiently large A\, we get

2
EHe-M(Tul - ’TuQ)(t)H < O(T)N"2|uy — s < 8llus — uslf?, for some 0 < § < 1.



Hence || T (u1) — T (u2)|[x < 0|lus — usl|x.

Case 2. a € (0,1/2), a+~ > 1/2. In this case, we have

2

| (Tus — Tua) (1)
~ g bewm—sxﬂm@»—fwxw»@W

= | [ [P Bl — )] [ () — Fuas)] s
= B( [ e Bantt = e (5D - Fus(o)) )

2

Thus we get
EHe’M(Tul ~ Tus)(t)
=B [ e Batt = 9l (o 6)) — Flaats) )

t
— ([ e Bt o
0

e IE ot — )2l (F s (5)) — Flua(s) | ds)

t
[ [ NNt — sl
0

E[/O He_)‘(t_s)I_EOc7,3<t_5)“||6_>‘5(f<u1(3)) —f(u2<s)))H2d$}’

which implies that

2

EH@’M(Tul ~ Tus)(t)

= [/Ot G*A(t*S)HEa,ﬁ(t— S)Hds]
E[/%Wf““”Emﬂt—sMHk‘“cﬂuﬂs»—aﬂuxs»nﬁdq

t 2
<cf [ = s tas] - el < OX s —
0

With « € (0,1/2), choose sufficiently large A, we get
2
EHe_’\t(Tul — T’UQ)(t)H < A2 uy — up]} < Ollug — usgl|3, for some 0 < 6 < 1.

Hence || T (u1) — T (u2)||x < d|Jus — uzl[x. The proof of Theorem 28 is complete.
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Theorem 29. (Regularity) Let % < a < 1, % < B <1, 0 < v < 1. Assume that

Assumptions 4.3.1, 4.3.2 and 4.3.3 hold. Let ug € L*(; HY) with q € [0,283]. Then, the
following reqularity result holds for the solution u of (4.3.9) with r € [0,k] and 0 < q <

r <28,

(r=g)a
7 Eluo|g + CE( sup_[Ju(s)[").
s€[0,T]

Elu®)|? < Ot~

Proof. From the definition of the mild solution (4.3.9) and ¢ € (0,7] with 0 < ¢ <r < 2p
it follows that, with 7 € [0, x],

Bju(1)? <8 (BlBa 02 + B [ Balt = 1o, uls))dsl

+ ] [ Busolt = )W OIE) <300+ o+ ).
For I a use of (4.3.11) with p =r and 0 < ¢ <r < 20 yields
BB s(t)uof? < OF (5 Efugl2

For I, we arrive from (4.3.3) and Assumption 4.3.1 that

I, = E| /Ot Eo 5(t — 8)f(s,u(s))ds|? < E(/Ot B st — s)f(s,u(s))ds|r>2
< B( [ (-9 T U rsuo)lis)’
<cf / - 9708 B[ sup s u(s)]” < CB( sup uls)P).

s€[0,T] s€[0,T]

(4.3.17)

For I3, by Isometry property Lemma 4.3.1, Assumptions 4.3.2 and 4.3.3 and the smoothing
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property of the operator in Lemma 4.3.3, we have with, 0 < r < k&,
t
h=B| [ A%, (t = )W ()
0
¢ 0o
—E|| [ AT (=) Y on(s) AT cudfi(o)
0 k=1
> t o r—K
=3 [ 1A Bt $ou(s) A" s
k=170
t (o)
<O [ 145 R0, o) Ps) (X i)
k=1
k—0)a \ 2
(i) [ ()
r—K )+2'y 2 r—K
<ZMM ) / ds < O(Z,uk)\ ) 0. (4.3.18)

Therefore we have

| /\

Elu(t)2 = Ct P Eluf? + CB( sup (o)) + 0(( 3w )

s€[0,T7] 1

This completes the proof of Theorem 29. O]

Assumption 4.3.4. There is a positive constant C' such that the nonlinear function

f:RT x H— H satisfies, Withul,UQEHq,0§q§2ﬁand%<ﬂ§1,

N80 (£t w) = Fltyu) )l < L6 = o] + 1(=2)F (w = wa)]]),

and

N

I=2)Ef(t )l < ¢ (1 + I(=a)Hull).

< p <1, 2 <~ < 1. Assume that Assumptions

Theorem 30. Let % < a < 1, 5

1
2

4.3.2, 4.3.3 and 4.8.4 hold. Let uy € L*(; HQ'B). Then there exists a unique mild solution
u e C([0,T); L*(; H*P)) given by (4.3.9).

Proof. We proceed in a similar fashion as in the proof of Theorem 27 and only indicate
the changes in the proof. Set C([0,T]; L*(Q; H*))x, A > 0 as the set of functions in
C([0,T); L*(Q; H?*?)) with the following weighted norm

16113 5 == sup E(leM(t)[35), ¥ ¢ € C([0,T]; L*(Q; H)). (4.3.19)

t€[0,T]
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For the proof, it is now enough to show that the map 7 : C([0,T]; L*(%; o%)), —
C([0,T); L*(Q; H?*P)), is a contraction. We first show that Tu € C([0, T]; L*(Q; H*?)) for
any u € C([0,T]; L*(Q; H?%)). By (4.3.12) and the Cauchy-Schwarz inequality we obtain
with u € C([0, T); L*(; H?*)),

BITu(t)3, < 3B Eas(t)ual}, + 8] [ Eaalt = o) fls.u(s)asls,
+ 3E| /Ot Eo5,(t — s)dW(s)@ﬁ
< BE[Eu(t)uol3, + 3t /Ot E|Eo s(t — 5)/ (s, u(s)) Bpds
+ 3E]| /t Eo st — s)dW (5)]35. (4.3.20)
0
By (4.3.11) and (4.3.12) with p = ¢, and using Assumption 4.3.1, it follows that
BITu(0)f < OB}, +Ct [ (151 4 Bluto))ds
0
+CEK/%%@At—sMWK@@ﬁ (4.3.21)
0

For the stochastic integral in (4.3.21) a use of the Isometry property, Assumptions 4.3.3
and 4.3.4, the smoothing property (4.3.12), yields, with, 0 < r < &,

t
E| / B o (f — 5)AW(s)[2,

t o0
_E| / AR, (= 5)Y 0u(s) AT erdBuls)
k=1

oo
=3 [ AT Bt - 9on() A s
k=10

t
< c(/ 1A
0
K—r+28 —

To make the integral [) A" 2 Eqps,(s)]?ds < co, we have to choose 7 = 23, which

K—r+28 — ° ek
2 Eaﬁ,w(s)’|2ds> (Z HEAT ) (4.3.22)
k=1

implies that kK = r = 3 since 0 < r < k. Hence, we need to restrict v > % in order to get

k = 23 by Assumption 4.3.3. With such choices of x and  and by noting that % <v <1,



88

we arrive at

Bl [ Buo(t = W), < O [ 147E0s )] ds)(zuw )
C(guz)\z—n) /Ot <Sa+v 1L 0>a> s

S .
SC(;;@)/{) 327_2d5§0<;ui><oo. (4.3.23)

Note that ug € L*(€; H*") and u € C([0, T]; L*(€; H*?)), we then obtain sup,( 11 E[Tul3; <
oo, which implies that Tu € C([0, T]; L*(€; H%’))'

IN

We next consider the contraction property of the mapping 7. For any given functions
uy and uy in C([0, T); L2(Q; H?)),, it follows from (4.3.12) and the estimate in (4.3.13)
with p = 2/ that

Ele (T us(t) — Tus(t))3; = Ele™ / Eas(t = )(f(s,us(s)) = f(s,us(s)))dsl3

SB[ Bl — ) 6)) — Sl

0

< CE(/Ot(t —5) B e A e (f(s,ui(s)) — (s, UQ(S)))|25d5)2
< OB [ (¢ = 9B N () — o) o)
< ([ 1 [it= 9B [l unls) — ua(o)e) )

t
< Ct/ (t . S)Q(Tgfl)e—QA(t—s)ds sup E|6—)\s(ul(5) — UQ(S))|36
0

$€[0,7T

t
< C’t/ 77 22 4r sup Ele ™ (u1(s) — ua(s)) |3
0

s€[0,T

t aq
< C’t/o (;)F—Qe—mdx/\—l[ sup E|u1(s) —UQ(S)lgg]

s€[0,T

t
< Ct[/ﬂ x%_ge’mdx} )\1_%[ sup Eluy(s) — ua(s)[35]

s€[0,T]

< C(T)N™F sup Elu(s) — ua(s)[25- (4.3.24)

s€[0,T]

By the contraction property of the Banach fixed point theorem, the fact that % -2>1
and following the same argument as in the proof of Theorem 27 and by (4.3.19) the rest
of the proof follows and this concludes the proof the theorem. m
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4.4 Approximation of the fractionally integrated noise

Let 0 =t <ty <tz <--- <ty <tyy1 =T be a partition of [0,7] and At = < the time

I
N

step size. We will approximate %S(S) by using Euler method

dpr(s) _ Pr(tiv1) — Be(tr)

ds At =: aﬁfc on [ti,tiﬂ], i=1,2,---,N.

Here, Bi(tit1) — Br(ti) = /At - N(0,1), where N (0,1) denotes the normally distributed
random variable.

Let 0}}(s) be some approximation of o (s). In order to obtain an approximation of

— Z gk(t)ﬁk(t)ek(x),
k=1

we replace it by
9] N
= 2_ ot Wer(@)(_08 )t
k=1 k=1
where ;(t) is the characteristic function on the i*" time interval [t;, t;41],i = 1,2,3,--+ | N
and o} is some approximation of o (¢) which will be specified below. Then, we derive the

following regularized stochastic space time fractional subdiffusion problem: Find u,, such

that

CDuy, (t,2) + (—A)Pun(t,2) = f(t, un(t,z)) + ED; W, (t, ), (t,x) € (0,T] x D,
up(t,x) =0, (t,z) € (0,7T)x 0D, 0 <t <T,
un(0,2) = up(z), x € D. (4.4.1)

As it is in the continuous case, that is (4.3.9), the solution of (4.4.1) takes the following

form

un(t) = Eu5(t)uo + /0 Eos(t — ) f(s,un(s))ds + /0 Eapn(t —s)dW,(s), (4.4.2)

where dW,,(s) denotes, with x(s) the characteristics function defined on [t;,t;11],7 =
1a2737"' aN7

= op(s)er( D _(0B)xi(s))ds. (4.4.3)

k=1 =1
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Assumption 4.4.1. Assume that the coefficients o}(¢) are constructed in such a way
that
o (t) — ox (O] < i, op ()] < g, (o) (O] < v, YV €0,T].

We also need the following assumption for the regularity of the regularized noise Wn(s)

Assumption 4.4.2. Let % <a<l, % < B <1, 0 <~y < 1. There holds for 0 < r < &,

Sore ((WM2AT" < oo, where & is defined by

28, 2y > 1,
(2_%>ﬁ_€7 QVSL

and A\p, k =1,2,3,--- , are the eigenvalues of the operator A = —A with D(A) = H&(D)ﬂ
H?(D).

Theorem 31. (Existence and Uniqueness) Let % <a< 1,% <p<1,0<y <1
Assume that Assumptions 4.3.1, 4.3.2, 4.4.1, and 4.4.2 hold. Let uy € L*(Q; H).

Then, there exists a unique mild solution u,, € C([0,T]; L*(Q%; H)) given by (4.4.2) to the
problem (4.4.1).

Proof. Since the proof is similar to that of Theorem 27 we omit the proof here. [

Theorem 32. (Regularity) Let % <a< 1,% < fB<1,0<~y< 1. Assume that Assump-
tions 4.3.1, 4.3.2, 4.4.1 and 4.4.2 hold. Let uy € L*(Q; HY) with ¢ € [0,20]. Then, the
following reqularity result for the solution u, of the equation (4.4.2) holds with r € [0, K]

and 0 < q <r < 20,

Efun (1)|2 < Ct 5" Elugl2 + CB( sup [Jua(s)|?).

s€0,T

Proof. From the definition of the mild solution (4.4.2) and for ¢ € (0,7] with 0 < ¢ <
r < 23, it follows with r € [0, k] that

Bl () < 3(BIEa o0} + Bl | Bas(t = 5) (5,10 (3)) s

t
4Bl [ B (t = )aWu(5)2)
0

— 3(]1 —f- ]2 + ]3)
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The terms I; and I, can be estimated as in the proof of Theorem 29.

It remains to estimate I53. From the definition of H”—norm it follows that

t
L =E| / Bt = 5)AW, ()]

- Z / T B (AL~ )

( i Ml)&t fm(te) €m, ek> exds|?

- ZX“ {r AtZ [ B st syasa o))

te

_C Z Y Z ! / - { /t tm(t S B (<At — g)a>ag(§)d55k(s>}2ds

o0

Mz

tz+1 2
{ / 8T B, 0 (Nt — g)a)gg(g)dg} ds.

k= E:

A use of the Cauchy-Schwarz inequality shows

fggo(ixzw;;)?)[ [e= 9B - s

00 t

=) [ [ A= e A - s
k=1 0
00 t L

= (DN ) [ 14T (=0
k=1

= () /( @t 1-al5) 2 s < C(ZX" () < oo (444)
k=1 0

Together with the above estimates we complete the rest of the proof. n

Theorem 33. Let <a<l,;<pB<1,0<y < 1. Assume that Assumptions 4.3.1,
4.8.2, 4.4.1, and 4.4.2 hold. Let u and u,, be solutions of (4.3.1) and (4.4.1) respectively.

Then we have for any e > 0,

1. for i <a+4+7vy<1,

Elu(t) — un(t)|]* < CEETITEY () 4 CETH ALY (3
k=1 k=1
+ O (ALY ()2, (4.4.5)

k=1
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2. for1§a+”y<§,

2B(aty—1) 1) © a+“/
E|u(t) — un(t ||2<(JZ/\ g 2+ At2z/\k A2
k=1
+ CE( ALY )2, (4.4.6)
k=1
3. for % <a+7vy<2,
28(aty—=1) & Qﬂ(a-H 1)
Efju(t) — un(t H2<CZA = ) PO Y A ")
k=1
+ OO (). (4.4.7)
k=1
Proof. Subtracting (4.4.2) from (4.3.9) we obtain
t —_—
) = uaft) = [ Baplt = 5) (F(s,u(s)) — Fs.un5) s
0
t p—
+ / Eos.(t—5) (dW(s) - de(s)> (4.4.8)
0

:G1+G2.

By definition of dW and dW,, given by (4.3.10) and (4.4.3) respectively, we now rewrite
Gy as

Gom [ 3= B (N = 91 (S omls) = oD e e0)n(5))
+{Z/t”1(t— oty 1ZE‘1°‘+V )\Bt—s (Za (€m, er)dBm(s ))ek
=17t
_ Z /tﬁl(t — g)otrl Z Eoaiy(—A t —s) (Z o (8)(em, ex) 85 )ds) ek}
=1Vt k=1
= Ga1 + Goo. (4.4.9)

We first estimate E||Gy||. From the form of G; and using (4.3.13) with p = ¢ = 0, and

the Assumption 4.3.2, we arrive with % < a <1 at,
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2

Bl = B( [ (¢ o) (s 0(s) — (o)
< B [ (1= 9" uls) — ws)]ds)
< C/Ot(t - s)”“gdsE/Ot(t — ) 2|Ju(s) — un(s)||?ds
< oo /0 "Ellu(s) — u (s)|ds. (4.4.10)

For the estimate of E||Ga1||?, using the Ito Isometry property and the Assumption
4.3.3, we obtain

Bl =E) | ét T By (AL 5)°)
(iwm(s) e x)5uls) )
- [ i(t PRI (At — 8))Pluls) — o () ds
< kf;(nz)z [ = B (ALl = s (1411)

Note that, for % < a+ v < 1, a use of the boundedness property of Mittag-Lefler

function (4.3.7) yields,

t t
/ (t— 820D B, (<At — 5)%)2ds < C / (t — 5)2H-Dgg — Cpatn-1,
0 0
(4.4.12)

For 1 < a++ < 2, by using the asymptotic property of Mittag-Lefler function (4.3.6), we

have,

t
/ (= 520D By o (“AX(E — 5)%)2ds
0

' —g)otr=l 2 t\B(4 _ Yoyl _Bladasl)
= / : BS) ds = / (A (t = s) )B A s
0 1T+ N (t—5)~ 0 1+ A (t —s)e
_28et-n) [t (0P (F — §)) T 2 _2B(atr=1)
=\, o / (Ae(t ,38) ) ‘ ds < C), o (4.4.13)
0 1+ )\k (t _ S)a
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Thus, we now arrive at,

Ct2laty=1) S (n)?, for % <a+vy<l1,

E[|Gxl* < (4.4.14)

Cy 2, N~ ()2, for 1 < a+v < 2.

We now estimate Gyy. We first denote %ﬁ"(m by f fer1 dBm(s) and replace the

variable s with s in the second term in (9. Using the orthogonality property of e, k =

1,2,3,--- we obtain

EHGzz\F:EHé [ ZE N )
(mfjlaﬁs)(em,ek)dﬁm(s))ek

—Z/twt—s“ﬂ— E:EM+7 St —3))

(S ons [ ek>dﬁm<s>) ceds?

- Z WA = gy fj Faain (=X (t = 5)) (s)exdBi(s)

—Z / U B (= 9 s )
- Z | Z [ s i Faian (=Xt — 9)%)07(5)d54(s)

(7S] 1 tl+1 a+’7 1 5 o s 9
oy 8T i (N — 5))0} (5)d5dB )]
=17l

-B3_| fﬁ / [ [ B = 5ok 6)5

s / [ /:% = )T B (AL~ s)“)az:(sﬂs] AB(5)I

(=1
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Thus, a use of the Cauchy—Schwarz inequality yields

BlCal? =3 [ U [ gy

k=1 (=1

Bty (=i (t = 5)*) (0} (s) — 0}(5))ds

v [ = (a0
(- s)aﬂ*lEa,m—Ai =9 a;z<§>ds)2ds

e e 2(at+y-1) B ay (2
< 22 (t=s) | Bty (= (t = 5)%)]

ty klt/z

ok (S) — 0} (5)|*dsds

s zz [ [ (e it )=

te

tot1 1

2
(t - st)aﬂ*lEa,m—Ai (t=5) lot(s)Pdsds
== 2[1 —+ 2]2

For Iy, using the mean value theorem and the Assumption 4.3.3, we arrive with ¢ lying

between s and s at

togpr
I < (A1) Z / D (1= 8 B (N = PR s

[e.9]

t
= (A2 () / (= 52O By oy (<Xt — 5)?)2ds,
k=1

Now following the same estimates as in (4.4.14), we find that

Ct2Om=H A2 Y2 ()2, for i <a+7y<1,

2B(aty—1)

CA*Y N o (), forl<a+y<2

I <

For I, we note by lemma 4.3.2 that
(= )™ By i (<AL = 8)%) = (= 5) By (<ALt = 5)°)
= [ 2l B (A= 7))
- / ~(t = 1) 2 Eg sy (Xt = 7))dr

< C’|/ )t 2dr| (4.4.15)
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and hence,
N tey1 1 X2 tot1 s )
peeX [ m S [ sy ass
(=1 k=1 L
Now we estimate [;(t — 7)™ ~2dr for the different o and . We shall show that with
0<e< %,
— —3)) T+ aty—g—e 1 3
‘/ FHI2gr| < C(t — max(s — 5)) = "(At) 2T s <aty <3

C(t —max(s — §))*M2At, 3 <a+vy<2.

Case 1. We first consider the case 3 L a4y < 2. If 5 < s, then with 0 < € < %, it follows
that,
| / P2 | = / (t— 7y be( — pyiegr
< (t—s)7E / (t — 1)y
1 1

= —(t—s)rT e~ (t— )=
(t—s) a+7_%_6( )

Since a’ — % < (a —b)?, for a >b>0and 0 <0 < 1, then for { <a+~vy <3
(t — 7—)‘3‘+’Y_*_€| =3 S (S _ S)OH-’Y *—6 < (At)oc—&-'y—f—e

and this implies that,
\/ ) 247 < Ot — 5)~ 2’L€(Azf)‘1+7_’_6
similarly, we may show that for s < s with 0 < € < %
| / P2 | < C(t — §)- (ARt
Therefore, we arrive for % <a+vy< % at
|/ )t 2dr| < O(t — max(s — 5))~ 2 6(Azﬁ)aﬂ_%_e.
Case 2. We next consider the case % <a+7vy <2 If §<sthen we obtain,
\/ ) 24r| < (t—8)*T 2 (s — 5) < (t — s)* T T2AL
Therefore, we arrive for % <a+vy<2at

|/ )24 < Ot — max(s — 5))*T7 At
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Thus, we derive the following estimate for I, for 3 < oo+~ <

N
I gCZ/
/=1

to4q 1 00 totq
>y / (t — max(s — 5))~ 2 (AL)HeA 1254
k=1 te

ty

00 ¢ 00
O(At) (a+7y)—1—2¢ (MZ)Z/ (t ) 1+26d8 < Ct2E(At (a+y)— 262
0

k=1 k=1

For%§a+’y<2,

12<CZ/

te

to4q 1 00 totq
)7 [ (¢ max(s - 5) A dsds
At — to
< O [0 )2 S < ORI A0S ()
0 ke

k=1 1

Together with the estimates we obtain the following results:

1. For % < a4+ < 1, there holds for ¢t > 0,

Eflu(t) — un (D] < CLH1 S ()2 4 e (A2 3 (47
k=1 k=1
o t
+ Ct2e(At)2(a+v)—1—2e Z(MZ)2 + Ot / EHU(S) _ un(s)||2ds.
k=1 0

2. For1<a—|—7<— it follows that for t > 0,

2B(at+y—1) o Qﬁ(aﬂ;)
E|[u(t) — un(t H2<CZA T )+ O( MZM ()
—1
+ Ot (At)2atr)-1-2 Z(uZ)Z + Ct?! / E||u(s) — u,(s)||*ds.
k=1 0

3. For§§a+fy<2, we arrive for ¢t > 0 at

26(aty—1) _ 2B(aty—1)

Elu(t) = un(t H2<CZA PO Y N (p)
k=1

[e.e]

t
+ OB (AN (u)? + Ot?e! / E||u(s) — u,(s)|]*ds.
k=1 0

An application of the Gronwall’s lemma completes the rest of the proof of theorem 33.

]
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4.5 Finite element approximation

Let 75, be a shape regular and quasi-uniform triangulation of the domain D with spatial
discretization parameter h = maxge7;, hix, where hyx denotes the diameter of K. Let

Vi, C HP ,% < B < 1 be the piecewise linear finite element space associated with the

triangulation 7Ty, that is
Vi :={vn € H*(D) : vp|x € PI(K), VK € Ty},

where P;(K) is the space of linear polynomials defined on K. On the space V}, we define
the following L projection Py, the fractional Ritz projection R, and the fractional discrete

Laplacian (—Ay)? respectively.

Definition 4.5.1. [121] The Ly projection Py, : Lo(D) — V}, is defined by

(PhU>X) = (U7X)a v X € Vh-
Definition 4.5.2. (Fractional Ritz projection) [121], [2] Let £ < 8 < 1. The fractional

Ritz projection Ry, : H? — Vj, is defined by, with v € H?,

(=2 (208 ) = (-2 X): Ve

Below, we discuss the approximation properties of P, and Ry,.

Lemma 4.5.1. ([121], [2]) The operators P, and Rj, satisfy

B
2

| P — v|| + hﬁH(—A) (Pv—v)|| < Ch"|v|,, YV € HT, r € [B,20],

and
8
2

1Rwo — ol + BP([(=A)2 (Ryw — v)|| < Ch"|ol,, Yv e H, r € [5,28].

Let —Ay, : Vi, = Vj, be the discrete Laplacian defined by see [1]

(A, x) = (99, Vx). ¥ x € Vi

Further, let (A}, eZ),iV:hl be the eigenpairs of the discrete Laplacian i.e.,

( - Ah>eZ(x) = Met(z), z € D,

eh(x) =0, r € 4D,
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such that (e!), forms an orthonormal basis of Vj, C H, i.e.,

- 1, k=¢
(ex. €¢)r2(p) = (4.5.1)
0, k#L.
Definition 4.5.3. (Fractional discrete Laplacian) Let % < B < 1. The fractional discrete
Laplacian (—Ap)? : V, — Vj, is defined by, with ¢ € V,

B

(=An)"%,x) = (=8)=¢, (-A)

ol

X), Vx €V

Definition 4.5.4. (Discrete norm) For x € V;, we may define the discrete norm by

Np,

X2h =D (AP er)’ pER,

k=1

where NN, is the dimension of the finite element space V},.

The semidiscrete finite element method approximation of the equation (4.4.1) is to

seek u”(t,-) € V;, for t € [0, 7] such that

CDgul (1) + (— An) ul(t) = Pof (8, ul () + Bu(D; dW, (1)), s2)

where v" = P,v is chosen as L? projection of the initial function v into Vj,.

As in the continuous case the solution of (4.5.2) takes the form

t
ul(t) = EL 5(t) Pov + /0 Bl 5(t — s)Pof(s, ul(s))ds + / Bl 5, (t — s)PudW,(s),
(4.5.3)
where for each ¢ € [0,T], the operators E? ;(¢) , E! ;(t) and E, s, (t) are defined from

Vh — Vh by

ZEM —A)E) (" e e,

E. 5(t)v Zta "B o (=AY (0", ef)el,
Et 5, ()" = ZtaJr%lEa,aJr'y(( NP (0, el )el.
k=1

For the discrete analogue of (4.3.11), the following Lemma shows the smoothing property

of the discrete solution operator I_EZ By
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Lemma 4.5.2. For any ¢t > 0 and 0 < p — ¢ < 28 there holds for v" € V},

(p—a)

’Eg,ﬁry(t)vh‘p,h < Ot~ et et ‘Uh’q,h'

Similar conclusion can be drawn for IEZ 5, that is for E"

op With v = 0.

Lemma 4.5.3. (Inverse estimate in V}, For any ¢ > s, there exists a constant C' indepen-
dent of A such that

|Uh|g7h S Ohs_z|vh|57h, \V/ Uh - Vh.

4.6 Error estimates

Write v — u! = (u — u,) + (u, — u?). Since estimate E||u(t) — u,(t)||* is known from

Theorem 30. It remains to show the estimate Elju,(t) — u”(¢)]]?.

Theorem 34. Let % <a<l, % < p <1, 0<vy<1. Assume that Assumptions 4.5.1,
4.8.2, 4.3.8 4.4.1, and 4.4.2 hold. Let u, and u® be the solutions of (4.4.1) and (4.5.2),
respectively. Let v € L*(Q; Hﬁ) with 0 < g < 28. Then, there exists a positive constant
C' such that, for any € > 0, with r € [0, k] and 0 < max(q, 5) <r < 20,

Ewn(t) — ub(8)|? + W7 B[ (—2)% (wn(t) - ul) |

< Ot [E[U!i +E( sup Hun(s)HQ)} + R T . (4.6.1)

s€[0,T]

Proof. Introducing @"(t) € Vj, as a solution of an intermediate discrete system,

6 Dty (t) + (=An)Pun(t) = Puf(t, @n(t) + Pu(Dy " dW,(t)), (46.2)

uh(()) = th.

n

We split the error u? — u,(t) := (ul(t) — al(t)) + (@ (t) — u,(t)) = C(t) + n(t). Again,
using Pyu, we split n(t) as

U(t) = (ﬁZ(t) - Phun) + (Phun - un) =:0 + p-
From Lemma 4.5.1 it follows that with r € [3, 2],

E|p(t)|? + h¥E|(=A)2 p(1)|> < Ch¥ Elun (1),



which implies that, by Theorem 32,

p(0)|I*

B
2

Elp(t)]* + h*El|(-A)

< C’hQ’"(C’t E|v|2+C’E[ sup || f(s,un(s ||] +C’Z,um/\r ”)

s€[0,T7]
< Cr* <Ct e E]v|2 +C’E< sup llun(s)]| ) + C’Zum)\’” ”)
We now estimate 6. Note that 6 satisfies the following equation,
6 DPo(t) + (—=AR)70(t) = (—=AR)’ (Rpuy — Puuy),
6(0) =0,
and hence the representation of solution 6 is written as

o(t) = / (1 — )(~ )7 (Ruta(s) — Prans(s) ) ds.

0
In fact,

DO+ (—A)%0

= (Dt —§ DY Pouy) + (—An)° (an — Pyuy)

= (=An) 1y — (—An)° Pouy,

=5 Dl —§ D Py, + (—AR) a0, —§ DE Pouy, — (—AR)° Pyu,
=§ Dyult —§ D§ Pyuy — (—A)% D Py,

= (Pof —=§ D{Pyuy) — (—AR)° Pyuy, = Po(—A)u, — (—Ay) Pyuy,
= (—Ah)ﬁRhu — (=Ap) Pyu, = (—Ah)B(Rhun — Pyuy,).
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(4.6.3)

(4.6.4)

(4.6.5)

Choose p = 0 and p = 3 separately, from Lemma 4.5.2 with v = 0 and Lemma 4.5.3, it

follows for ¢ = € — 26 + p for 0 < € < 2 that

E[0(t)],, < 6(/ S 5( = 8)(—=An)° (Ruun(s) — Phun(s))|p,hd5>2
< CE(/O (t— )2 (=An)" (Riun — Phun)(s)!ewmhdS)Q

2

t
< C’E(/ (t — )% |(Ryu, — Phun)(5)|e+p,hd3)
0

t t
< cnrmrn( [ oyias) [ (0Bl
0 0

t
< Cpz-w255 / (t — 5) 55 Efu, (s)2ds.
0

(4.6.6)
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Using Lemma 4.5.1 we have with p =0 and 3, and 0 < p <r < 20,

2

t
B0 < O 2B [ (0= 95 o))

t t
< Ch2T2p2€E(/ (t — s)%_lds) (/ (t— s)%_lfun(s)lzds>
0 0

t t
< Chzr%ze(/ (t — s)gg_lds> / (t — )25 u,(s)|2ds
0 0
t
< CR2r—2-%4% / (t — 5)2  'dsE|u,(s)|?ds. (4.6.7)
0

Now, an application of regularity Theorem 32 shows

¢ —q
E|0(t) 1237,1 < Chz”zpk/o (t — 3)373’1 [saﬁHvHQ

L2(Q;Ha)

+B( s (1765 (o)1) s

s€[0,T]

< Cp¥ w2 {EM? +E( sup Hun(s)H)Q}, (4.6.8)
se|0,

where we use the fact fot (t — s)%flsfa?ﬁﬂ%qu < oo and also by the assumptions that

0 < g5 <land0<a=3" <1 Wenow combine the estimates (4.6.3), (4.6.7) and (4.6.8)

to arrive at an estimate for n as, with p =0 and 3, and 0 < p <r < 20,

rT— —Z€E rT— —a24
ﬂﬂﬂhécm2MZIWMmm0+E(prM$W)+CW 2245 o] g

s€[0,T]
(4.6.9)
Now, it remains to estimate (. Note that ((t) € V}, satisfies,
6 DFC(t) + (= An)7¢(t) = Pu(f(up) — f(un)), (4.6.10)
and therefore, we now write ((¢) in the integral form as
t
¢(t) = / Eos(t = 8)Pu(f(un(s)) = f(ua(s)))ds. (4.6.11)
0

Again, choose p = 0, 8. From Lemma 4.5.2 with v = 0 and Lemma 4.5.3, it follows that
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forq:pandfor%<a<1,

i <B( [ Baslt— IRUOAS) ~ Tl hads)
<B( [0-oIne) - f(un(S))\p,hd8)2

< CE(/Ot(t ) un(s) — ug(s)|,,ds)2

<o [[=o ([ (6= o Blunte) — utio)30s)

< [(6= o Blunls) — i) s (16.12)

Combining (4.6.9) and (4.6.12) it follows for p = 0 and § and 0 < p < r < 2§ that

Elun(t) — ul(t)[2 < Ch2207)

Rl + E( s [ (9))|
se|0,

+ Op2r—p)yagt v]2 + C/ (t — )" "Elun(s) — ul(s)]2ds.
0
(4.6.13)

An application of Gronwall’s Lemma completes the rest of the proof. m

Now we state our main theorem in this chapter.

Theorem 35. Let % <a<l, % < p<1,0<vy< 1. Assume that Assumptions 4.3.1,
4.8.2, 4.8.8 4.4.1, and 4.4.2 hold. Let u,, and ul be the solutions of (4.4.1) and (4.5.2)
respectively. Let v € L*(£; Hq) with 0 < g < 28. Then, there exists a positive constant C'
such that, for any e > 0 and 0 < max(q, 8) < r < 28, the following hold.

1. For i <a+~v<1,

Ellu(t) — un(t)[* < CEET Y () + CLOTITHAD Y (97)?
k=1 k=1
+ CP(AL AT (1) + Ch* | Elu + B( sup ||un(s)||2)}
—1 s€[0,T7

+Ch¥t 7 Elu]?. (4.6.14)
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3
2. Forl<a+y<3

2B(aty—1) > _ 2B(aty—1)
E|u(t) — u, (®)[* < CZA TP OOy N T (p)
k=1
+ Ct2e(At)2(a+’Y)71726 Z(M ) + Cp 2t E|’U‘2 + E( sup Hun( )H2>
1 s€[0,T7]
+Ch¥t 7 Elv]?. (4.6.15)
3. For% <a+vy<2,
2B(a+y—1) _ 2B(atn—1)

Elu(t) — ul(t)]? < CZA )+ CA> N = ()

[y

Mg

n Ctz(a+w)—3(At)2 (MZ)Q + Ch =2t E|U|3 + E( sup ”Un(s)Hz)}

1 s€[0,T]

=
I

+CR¥ T B,

Remark 36. In particular, when the noise is the trace class noise i.e.,

x) = Zvéﬁ'k(t)ek(x), Tr(Q) = Z% < 00,

we obtain, with € > 0,
El|u(t) — up ()| = O~ + (A1) ™),
which is consistent with the results obtained in [133] for stochastic heat equation.

Remark 37. The primary importance of Theorem 35 lies in achieving the upper bounds
on the error in both spatial and temporal domains for the finite element approximation of
the regularized stochastic time-space fractional subdiffusion equation. This approximation
involves discretizing the temporal noise using piecewise constant functions. The outcomes
provide precise insights into the interplay between the convergence rates in time and the

specific parameters o € (0,1) and v € (0,1).



105

4.7 Numerical simulations

In this section, we shall consider the L1 scheme [71, 117, 72, 82] for solving the following
stochastic time fractional PDEs: with o € (0, 1),

SDou(t,x) — Au(t,z) = f(t,z) +g(t,z), 0<t<T,0<w<l, (4.7.1)
u(0, ) = up(x), (4.7.2)
u(t,0) = u(t,1) =0, (4.7.3)

where A = 88—;2 denotes the Laplacian and § D#u denotes the Caputo fractional derivative.

Here f(t,x),uo(z) are given data. Here, with v € [0, 1],

_ AW (t, i dpH(t
g(t,z) = ED; 7# = Ep 27},{267”(35)7(), (4.7.4)
m=1
where 82 (t), m = 1,2,--- are the fractional Brownian motions with Hurst number H &

[1/2,1]. In particular, when H = 1/2, B2 (t), m = 1,2,--- are reduced to the standard
Brownian motions. Here e,,(z) = V2sin mrz denote the eigenfunctions of the operator
A =2 with D(A) = H{(0,1) N H?(0,1). Further ~,,,m = 1,2, - are the eigenvalues

of the covariance operator ) of the stochastic process W (t), that is

Qem = Tm€Em-

We shall consider two cases in our numerical simulations.

Case 1: the white noise case, e.g., v, = m~? with 8 = 0 which implies that

tr(Q) = Z’ym = Zm’ﬁ = Zl = 0.
m=1 m=1 m=1

Case 2: The trace class case, e.g., ¥, = m~? with 8 > 1, which implies that

tr(Q) = i%” = im_ﬁ < 00.
m=1 m=1

The numerical methods for solving stochastic time fractional partial differential equations
are similar to the numerical methods for solving deterministic time fractional partial
differential equations. The only difference is that we have the extra term ¢ in stochastic

case and we need to consider how to approximate g (please refer to the numerical methods
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for solving time fractional partial differential equations). Let v = u — uy. Then (4.7.1)-

(4.7.3) can be written as the following

EDu(t, ) — Av(t,z) = Aug(x) + f(t,2) + g(t,2), 0<z <1, (4.7.5)
v(0,2) =0, (4.7.6)
v(t,0) = v(t,1) =0. (4.7.7)

Since the initial value v(0,x) = 0 in (4.7.5)-(4.7.7), it is easier to consider the numerical
analysis for the time discretization scheme of (4.7.5)-(4.7.7). From now on, we shall
consider the fully discrete schemes for solving (4.7.5)-(4.7.7). Let A = — 5% with D(A) =
H;(0,1) N H?*(0,1). Then (4.7.5)-(4.7.7) can be written as the following abstract form

§ DM + Av = —Aug + f(t) + g(t), v(0) =0, (4.7.8)

Let 0 <ty <t; <--- <ty =T be a partition of the time interval [0,7] and 7 the time

step size. Let 0 = xy < 21 < --- < xp; = 1 be a partition of the space interval [0, 1] and h

the space step size. Let S, C H}(0,1) be the piecewise linear finite element space defined

by S, = {x € C]0,1] : x is the piecewise linear function defined on [0, 1] and x(0) =

x(1) = 0}.

The finite element method of (4.7.5)-(4.7.7) is to find v, (t) € Sy such that, with y € Sp,
(6 Dfon(t), x) + (Vun(t), Vx) = —=(VPauo, VX) + (f(), x) + (9(1), X), (4.7.9)
ur(0) = 0, (4.7.10)

where P, : H — S), denotes the Ly projection operator defined by

(tha X) = (Ua X)7 v X € Sh-
Let V™ =~ vp(t,),n = 0,1,..., N be the approximation of v,(t,). The L1 scheme is to
find V" € Sy, with n=1,2,..., N, such that, with V° =0, [71]

<Tfa Z W V7, X) +(VV™VX) = —(Vug, V) + (F(ta), x) + (9(tn), X),

(4.7.11)

where the weights are defined in [132], [97], [71]. Let Ay : S, — Si be the discrete
analogue of the operator A defined by
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Then (4.7.11) can be written as the following abstract form

TN Jwa VI AV = = Apug + f(tn) + g(ta), VO =0. (4.7.13)
j=1
Let p1(x), po(z), -+, oam—1(x) be the linear finite element basis functions defined by, with

j:1727"'7M_1a

¢

S bl , .
z—a 1 L1 <z <y,

i(x) = TR o < o
! zj—wipa’ I AR

0, otherwise.

\

To find the solution V" € S), n=20,1,---, N, we assume that

M-1
= Z afngpm,
m=1
for some coefficients o}, k = 1,2,--- ,M — 1. Choose x = ¢, = 1,2,--- M — 1 in
(4.7.11), we have withn =1,2,--- | N,

n M-1 M—-1
T J[Z Pm> P1) 0 ] + > (Ve Vo)
7=1 m=1 m=1
M-—1
= (Veom, Vo) ap, + (f(tn), 1) + (9(tn), 1), (4.7.14)
m=1

To get o™ n = 1,2,---, N from (4.7.14), we also need the inital o’ which can be
obtained by

ug ~ Prug = g amgom

To solve (4.7.14) by MATLAB, we need to write (4.7.14) into the matrix form which

we shall do now.

Denote
O{? (.f(tn 7(;01)
n ag n f(tn)7 P2
Q= ) f - 9
-1 ) 1y (f(tn), or1-1) 1)1
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and

() 1) )

After some simple calculations, we may get the following mass and stiffness metrics

2 1
306 0
Y M—-1 ) g
= <(S0m7sol)>m,l1 - ST )
6
L2
0 6 3/ (M-1)x(M-1)
and
2 -1 0
S v - M-1 1 -1 . -
= <( Pm wl>>m,l1 - E o 5
0 -1 2
(M—1)x(M—1)
respectively. Then (4.7.14) can be written as the following matrix form, n =1,2,--- | N,
T Z w,_;Ma? +Sa" = —Sa” + " + g", o’ given, (4.7.15)

J=1

Denote A; = M™!'S. Then (4.7.15) can be written as, with n =1,2,--- | N,

T Z Wy ;o0 + Apa™ = —Apa® + M + M 'g”, o given, (4.7.16)
j=1
which is the matrix approximation form of (4.7.13). Hence o™,n = 1,2,--- /N can be

calculated by the following formula

n—1
" = (wo+7Ap) 7" ( —7YAp® + M L M g — Z wn_ja”_j> . o given.
j=1

(4.7.17)
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We now consider how to calculate £". The lth term (f(£,),¢:) in £ can be approxi-

mated by using the midpoint quadrature formula

(ﬂMwojéﬂMwmz/WHMWM+fMﬂMwM

Ty

Ti—1 + T—1+ T+ T4

~ flta, P (P g, L (P
_h T+ 1 T+ Tig
= 5 (10 T+ F(e 2 ).

In MATLAB, we use the following code to calculate f” with some given f(¢,z).

% find (f, phi)
function y=f_phi(x,n,tau,alpha)

% case 1: f(t, x) = x"2 (1-x)"2 exp(t)-(2-12 x+12 x"2) exp(t)
tn=n*tau;
h=x(2)-x(1);
x0=[0;x(1:end-1)]; x1=x; x2=[x(2:end); x(end)+h];
x=(x0+x1)/2;
y1=(x.72) .*((1-x) . "2) *exp(tn) - (2-12*%x+12*(x.~2) ) *exp(tn) ;
x=(x1+x2)/2;
y2=(x.72) .%((1-x) . "2) *exp(tn) - (2-12*x+12%(x.~2) ) *exp(tn) ;
y=h/2x(y1+y2);

Y%case 2: f(t, x)=0

y=zeros(size(x)); Y%£=0
Remark 38. One may modify the MATLAB function

f_{phi}(x,n,tau,alpha)

3

to consider other f such as f(u) = u® — u.

We next consider how to calculate g™ which is more complicated than f". Approx-
imating the Riemann-Liouville fractional integral by the Lubich first order convolution

quadrature formula and truncating the noise term to M — 1 terms, we obtain the Ith
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element of g" by, with [ =1,2,--- , M — 1,

dﬁn’f (t)
dt

g"(l) = (9(tn), 1) = ¢D;” Z%ﬁ{Qem

=[St o U], 7

T

where w§_7), j=0,1,2,---  n are generated by the Lubich first order method, with v €
[0,1],

=S
j=0

To solve (4.7.18), we first need to generate M —1 Brownian motions 32 (t),m = 1,2,--- , M —
1 which can be done by using MathWorks MATLAB function fbm1d.m.

Let Nref = 2”7 and 7' = 1 and let dtref = T/Nref denote the reference time step
size. Let 0 =ty <t; < --- < tnrey = T be the time partition of [0,7]. We generate the
fractional Brownian motions 8% (to), B2 (1), - BH (txres), m = 1,2,--- , M — 1 with the

Hurst number H € [1/2,1] by using the following code:

% Fractional Brownian paths with Hurst number 1/2 \leq H \leq 1
w=[1;
for j=1:M-1
[(Wj,t]=fbm1d (H,Nref,T);
W=[W Wjl;
end

W(1,:)=zeros(1, M-1);

Remark 39. When H = 1/2, fbm1d(H, Nref, T) generates the standard Brownian

motions. The standard Brownian motions can also be generated by the following code

’» Standard Brownian paths
dWw=sqrt (dtref)*randn(Nref ,M-1);
W=cumsum(dWw, 1) ;

W=[zeros(1l, M-1); W];
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Since we do not know the exact solution of the system, we shall use the reference time
step size dtref and the space step size h = 277 to calculate the reference solution vref.
The spacial discretization is based on the linear finite element method.

We then choose kappa = 2°,2% 23 22 and consider the different time step size 7 =
dtref * kappa to obtain the approximate solutions V" at t,, = nr.

Let us discuss how to calculate the Ith element of g" in MATLAB. Denote

_ - (=7
Wy = [wg 7wy, wy ) ]1><(M—1);

and

ZM*l 1/2(€m’el)ﬁm(tn)_ﬁm(tnfl)

m=1 /ym T

ZM__ll 77%’{2(67715 6[) B (tn—1)=Bm (tn—2)

dWdt =

M-1_1/2 Bm (t1)—Bm (to)
Dot Ym (€m, €1) T (M—1)x1

The 1th element of the vector g" satisfies
g'(l) =w,xdWdt, [=1,2,--- M—1.
Based on this idea, we use the following MATLAB function
g_{phi}(x,n,tau,ga,kappa,W)

to calculate g"(l) in our numerical simulations.

% find (g, phi)
function y=g_phi(x,n,tau,ga,kappa,W)
y=1[1;
M=length(x)+1;
%Find w_ga=[w_{0}"{-ga} w_{1}"{-ga} w_{n-1}"{-ga}]
w_ga=[];
for nn=0:n-1
w_ga=[w_ga w_gru(nn,-ga)l;

end
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for k=1:M-1
A=dWdt_k(x,n,tau,kappa,W,k);
yl=tau~ (ga)*w_ga*A;
y=ly;y1l;

end

% Find dwdt_k
function y= dWdt_k(x,n,tau,kappa,W,k)

y=zeros(n,1);

M=length(x)+1;

for m=1:M-1
beta=2; % white noise beta=0, trace class beta=2
ga_m=m" (-beta) ;
kl=n:-1:1; Ytn=n*tau=(n*kappa)*dtref
dW_k1=W(kl*kappa+l,m)-W((kl-1)*kappa+tl,m); %dW_k is a vector
h=x(2)-x(1);
x1=((k-1)*h+kxh)/2; x2= (kxh+(k+1)*h)/2;
e_phi=h/2*(sqrt(2)*sin(pi*m*x1)+sqrt(2)*sin(pi*m*x2));
y=y+ga_m~ (1/2)*e_phix(dW_k1/tau) ;

end
Finally we shall consider how to calculate the Lo projection P,ug of ug. Assume that
M-1
f%uOZ:E:(ﬁéwm.
m=1
By the definition of P, we obtain

M-1
> ab (m 1) = (uo, 1)
m=1

0

Hence a” can be calculated by

a® =M 1u’, (4.7.19)
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where

(UO, <P1)
0 (uo, 2)
(uo, QOM_I) (M—1)x1
Remark 40. When we use (4.7.19) to calculate o, we have to calculate M~ which will
produce some computational errors. In our numerical examples, we shall simply choose
a®(l) = uo(zy), 1 = 1,2,--- , M — 1 (instead of (4.7.19)) which also give the required

accuracy for our numerical simulations.

Example 41. Consider the following stochastic time fractional PDE, with o € (0, 1),

2
CDeu(t, ) — % = f(t,x) +g(t,x), 0<t<T, 0<z<l, (4.7.20)
u(0,z) = up(x), (4.7.21)
u(t,0) = u(t,1) =0, (4.7.22)

where f(t,z) = 2?(1 — z)%e! — (2 — 12z + 122?)e’ and the initial value ug(x) = z%(1 — x)?
and g(t, x) is defined by (4.7.4).

Let v(t,x) = u(t,x) — up(z) and transform the system (4.7.20)-(4.7.22) of u into
the system of v. We shall consider the approximation of v at T = 1. We choose the
space step size h = 276 and the time step size dtref = 277 to get the reference solution
vref. To observe the time convergence orders, we consider the different time step sizes
T = kappa * dtref with kappa = [2°,2%,23 22] to obtain the approzimate solution V. We
choose M1 = 50 simulations to calculate the following L2 error at'l' = 1 with the different

time step sizes

loref = Vi@ = y/Elloref — VIl
By Theorem 35, the convergence order should be

vref — V|2 = O(rminthetr=1/2h) 4.7.23
(%H)

In Table 4.7.1, we consider the trace class noise, that is v,, = m=2,m = 1,2,...

and we observe that the experimentally determined time convergence orders are slightly



a | v | 7=1/4 T=1/8 1/16 1/32 order
0.5 0.0 | 7.4317e-01 6.7559¢-01 6.4005e-01  5.1914e-01

0. 3021 0.1375 0.078 0.1725 (0.00)
0.5 104 | 44679-02 2.8694e-02 2.3152e-02 1.5683e-02

0.5619 0.6389 0.3096 0.5035 (0.40)
0.5 0.6 | 9.0785e-03  4.359e-03  2.282¢-03  1.5110e-03

0.8524 1.0582 1.6763 0.8623 (0.60)
0.9 | 0.0 | 6.5226e-02 3.4896e-02 2.3907e-02 1.4621e-02

0.7093 0.9024 0. 5457 0.7191 (0.40)
0.9 | 0.6 | 5.4063e-03 2.7815e-03 1.9341e-03 1.1227e-03

0.7847 0.9588 0.5241 0.7559 (1.00)
0.9 | 0.8 | 4.0498e-03 1.8511e-03 1.1434e-03 6.2200e-04

0.8783 1.1294 0.6951 0.9010 (1.00)
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Table 4.7.1: Time convergence orders in Example 41 at T = 1 with trace class noise

Ym=m 2 m=12,...

better than the theoretical convergence orders. The numbers in the brackets denote the
theoretical convergence orders.

In Figure 4.7.1, we plot the experimentally determined orders of convergence with v =
0.6 and & = 0.5 in Table 4.7.1. The expected convergence order is O(7min{hatr=1/2}) —
O(7). We indeed observe this in the figure where the reference line is for the order O(7).

In Figure 4.7.2, we plot one approximate solution with a = 0.9 and v = 0 for all
z € (0,1) and ¢t € (0,1) in Example 41. In Figure 4.7.3, we plot one approximate solution
with a = 0.9 and v = 0 at time 7' = 1 in Example 41.

In Figure 4.7.4, we plot one approximate solution with a = 0.9 and v = 0.9 for all
z € (0,1) and ¢t € (0,1) in Example 41. In Figure 4.7.5, we plot one approximate solution
with o = 0.9 and v = 0.9 at time 7" = 1 in Example 41.

We observe that the solution with o = 0.9,y = 0.9 is much smoother than the solution

with a = 0.9,v = 0 as we expected.
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4 A plot of the error at T=0.1 against log2 (A t)
- T T T T T T

6- eference line 1

-8.5 -8 -7.5 -7 -6.5 -6 -5.5 -5
log2(A 1)

log2(error)
&
T

Figure 4.7.1: The experimentally determined orders of convergence with v = 0.6 and

a =0.51in Table 4.7.1

Figure 4.7.2: Approximate realisation of the solution with & = 0.9 and v = 0 for x € (0, 1)
and t € (0,1) in Example 41

0.05r

_005 | | | | | | | | |

Figure 4.7.3: Approximate realisation of the solution at time 7' = 1 with o = 0.9 and

v = 0 in Example 41
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0.1

0.05

Figure 4.7.4: Approximate realisation of the solution with @ = 0.9 and v = 0.9 for
z € (0,1) and t € (0,1) in Example 41

01 T T T T T T T T T

> 0.05

Figure 4.7.5: Approximate realisation of the solution at time 7' = 1 with o = 0.9 and

v = 0 in Example 41
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A plot of the error at T=0.1 against log2 (A t)
I I I I

AF | - s
w
5 -of .
o
S 8l |
g -
10 ¥ 1 1 1 1 1 =
-8.5 -8 -7.5 -7 -6.5 -6 -5.5 -5
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Figure 4.7.6: The experimentally determined orders of convergence with v = 0.8 and

a = 0.5 in Table 4.7.2

Example 42. Consider the following stochastic time fractional PDE, with o € (0, 1),

SDu(t, ) — % = f(u(t,z)) +g(t,x), 0<t<T,0<zx<l, (4.7.24)
u(0,x) = up(x), (4.7.25)
u(t,0) = u(t,1) =0, (4.7.26)

where f(u) = sin(u) and the initial values ug(x) = x*(1 — x)? and g(t,x) is defined by
(4.7.4).

We use the same notations as in Fxample /1. In Table 4.7.1, we consider the trace class
noise, that is v, = m~2,m =1,2,... and we observe that the experimentally determined
time convergence orders are consistent with our theoretical convergence orders. The num-

bers in the brackets denote the theoretical convergence orders.

In Table 4.7.2, we consider the trace class noise, that is v, = m=2,m = 1,2, ... and we
observe that the experimentally determined time convergence orders are consistent with
our theoretical convergence orders. The numbers in the brackets denote the theoretical
convergence orders.

In Figure 4.7.6, we plot the experimentally determined orders of convergence with v = 0.8
and o = 0.5 in Table 4.7.2.
The expected convergence order is O(7™n{la+7=1/2})y — O(7). We indeed observe this in

the figure where the reference line is for the order O(7).



a | v | 7=1/4 T=1/8 1/16 1/32 order
0.5 0.0 | 7.4680e-01  6.7394e-3  6.3525e-01 5.1577e-01

0.3006 0.1481 0.0853 0.1780 (0.00)
0.5 0.4 | 4.8982e-02 3.0706e-02 2.3346e-02  1.547e-02

0.5934 0.6737 0.3954 0.5542 (0.40)
0.5 0.6 | 1.1733e-02 6.1260e-03  3.5130e-03 1.8018e-03

0.9632 0.9376 0.8023 0.9010 (0.60)
0.5 ] 0.8 | 3.8149e-03  2.1440e-03 1.3858e-03 8.5028e-04

0.7047 0.9023 0.6296 0.7219 (0.80)
0.9 | 0.0 | 6.7694e-02 3.6219e-02 2.4353e-02 1.4678e-02

0.7305 0.9023 0.5726 0.7351 (0.40)
0.9 104 |9.2713e-03 5.3332e-03 3.4346e-03 2.0406e-03

0.7511 0.7978 0.6349 0.7279 (0.80)
0.9 | 0.6 | 9.8655e-03 5.0390e-03 2.7109e-03 1.4385e-03

0.9142 0.9693 0.8944 0.9260 (1.00)
0.9 | 0.8 | 9.8791e-03 4.9514e-03 2.3681e-03 1.1356e-03

1.0602 0.9965 1.0641 1.0403 (1.00)
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Table 4.7.2: Time convergence orders in Example 42 at T" = 1 with trace class noise

Ym=m 2 m=12,...

Example 43. Consider the following stochastic time fractional PDE, with o € (0,1),

SDu(t, ) — % = f(u(t,x)) +g(t,z), 0<t<T, 0<zx<l, (4.7.27)
u(0, ) = up(x), (4.7.28)
u(t,0) = u(t,1) =0, (4.7.29)

where f(u) = —u® + u and the initial values uo(z) = 2*(1 — x)? and g(t, ) is defined by
(4.7.4).
We use the same notations as in Example /1. In Table 4.7.1, we consider the trace

class noise, that is v, = m~2,m = 1,2,... and we observe that the experimentally
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determined time convergence orders are consistent with our theoretical convergence orders.
The numbers in the brackets denote the theoretical convergence orders.

In Table 4.7.3, we consider the white noise, that is v,, = 1,m = 1,2,... and we
observe that the experimentally determined time convergence orders are slightly less than
the orders in the trace class noise case as we expected.

In Figure 4.7.7, we plot the experimentally determined orders of convergence with v =
0.6 and o = 0.9 in Table 4.7.3. The expected convergence order is O(r™n{latr=1/2}) —
O(r).

We indeed observe this in the figure where the reference line is for the order O(T).

a | v T=1/4 T=1/8 1/16 1/32 order
0.5 0.0 | 7.1957e-01 6.7388e-01 6.4560e-01  5.3525e-01

0.2704 0.0946 0.0619 0.1423 (0.00)
0.5 104 | 4.8614e-02 3.0505e-02 2.3321e-02 1.5482e-02

0.5911 0.6723 0.3874 0.5503 (0.40)
0.5 0.6 | 1.1684e-02 6.0865e-03 3.4920e-03  1.7909e-03

0.9634 0.9409 0.8016 0.9019 (0.60)
0.5 | 0.8 | 3.7847e-03 2.1331e-03 1.3813e-03 8.4861e-04

0.7029 0.8273 0.6269 0.7190 (0.80)
0.9 | 0.0 | 6.7242e-02 3.5923e-02 1.4633e-02 1.4633e-02

0.7311 0.9045 0.5646  0.7334 (0.40)
0.9 0.4 | 9.2195e-03 5.3122e-03 3.4275e-03  2.0384e-4

0.7498 0.7954 0.6321 0.7258 (0.80)
0.9 10.6 | 9.8077e-03 5.0123e-03 2.7012e-03 1.4346e-03

0.9129 0.9684 0.8919  0.9244 (1.00)
0.9 | 0.8 | 9.8145e-03 4.9210e-03 2.3553e-03 1.1303e-03

1.0591 0.9960 1.0630 1.0394 (1.00)

Table 4.7.3: Time convergence orders in Example 42 at 7" = 1 with trace class noise

Ym = m72

,m=1,2,...
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4 A plot of the error at T=0.1 against log2 (A t)
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Figure 4.7.7: The experimentally determined orders of convergence with v = 0.6 and

a =0.9in Table 4.7.3



Chapter 5

Galerkin finite element approximation
of a stochastic semilinear fractional
superdiffusion with fractionally

integrated additive noise

5.1 Introduction

This chapter discusses the Galerkin finite element method applied to approximate the so-
lution of a semilinear stochastic space and time fractional superdiffusion problem with the
Caputo fractional derivative of order o € (1,2) driven by fractionally integrated additive
noise [107, 47, 46, 43, 94, 104, 62, 102, 106, 78]. After discussing the existence, unique-
ness and regularity results, we approximate the noise with a piecewise constant function
in time in order to obtain a regularized stochastic fractional superdiffusion problem. The
regularized problem is then approximated by using the finite element method in spatial
direction. The mean squared errors are proved based on the sharp estimates of the various
Mittag-Leffler functions involved in the integrals. Numerical experiments are conducted
to show that the numerical results are consistent with the theoretical findings.
Model problem

Consider the following stochastic semilinear superdiffusion problem driven by fractionally
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integrated additive noise with, 1 < a < 2, % <P <1,0<~vy<1, see [40, 13, 94, 38, 108,
109],

CDu(t, z) + (—=A)Pu(t, ) = f(t,u(t,z)) + ED; " W(t,z), 0<t<T, z€D,
u(t,z) =0, 0<t<T, x€0D,
U(O,ZL’) :Ul(x)’ ZL'ED,

———~ =w(z), €D, (5.1.1)

where D is a bounded domain in R? d = 1,2,3 with smooth boundary 0D and
§D2u(t) and FD; "u(t) represent the Caputo fractional derivative of order o € (1,2) and
the Riemann-Liouville fractional integral of order v € [0, 1] respectively. In addition,
(=A)? is the fractional Laplacian and W (¢, z) denotes the space-time noise defined on
a complete filtered probability space (Q, F {Fi}i>o, P). The initial values v; and vy and
the nonlinear function (source term) f are given functions in their respective domain of
definitions.
The non-stochastic case of our model problem (5.1.1) known as superdiffusion equation
has been well-studied by several researchers because of its numerous applications in engi-
neering, physics and biology. The noise term W (¢, ) in (5.1.1) describes random effects on
the movement of particles in a medium with memory or particles subject to sticking and
trapping [39]. The fractionally integrated noise FD, VW(t, x) is a typical example of the
case where the internal energy depends as well on the past random effects. For the physi-
cal system the different stochastic perturbations are basically from many natural sources
which sometimes cannot be ignored and hence we need to put those into the corresponding
deterministic model and consequently we obtain stochastic partial differential equations.
The following researchers among others have recently studied stochastic partial differen-
tial equations theoretically [37, 65, 79, 61] and numerically [112, 54, 80, 83, 133, 66, 81].
The stochastic subdiffusion with 0 < a < 1 has also been very actively investigated, see
[12, 38, 39, 40]. [12] discussed sufficient conditions for a Gaussian solution (in the mean-
squared sense) and derived temporal, spatial and spatio-temporal Holder continuity of
the solution. [38] analyzed moments Holder continuity and intermittency of the solution
of one-dimensional nonlinear stochastic subdiffusion problem.

It is not possible to find the analytic solution of the space-time fractional equation



123

(5.1.1). Therefore one needs to introduce and analyze some efficient numerical meth-
ods for solving (5.1.1). Li et al. [89] considered the Galerkin finite element method of
(5.1.1) for the linear case with the additive Gaussian noise, that is, f = 0 and v = 0
and obtain the error estimates. In [91], the authors studied the Galerkin finite element
method for approximating the semilinear stochastic time-tempered fractional wave equa-
tions with multiplicative Gaussian noise and additive fractional Gaussian noise, but they
only established error estimates for a € (%7 2).

In this chapter, our focus lies on the application of the Galerkin finite element method
to solve (5.1.1). Firstly, we establish the existence of a unique solution for (5.1.1) using the
Banach fixed point theorem. Additionally, we analyze the spatial and temporal regulari-
ties of the solution. To approximate the noise, we employ a piecewise constant function
in time, resulting in a stochastic regularized equation. This equation is then tackled using
the Galerkin finite element method. We provide corresponding error estimates, utilizing
the various smoothing properties exhibited by the Mittag-Leffler functions. We extend
the error estimates in [91] from the linear case of (5.1.1) with Gaussian additive noise to
the semilinear case with the more general integrated additive noise. We also extend the
error estimates of [91] for the stochastic semilinear time fractional wave equation from
a€(3,2)toae(l,2).

To establish our error estimates, we employ a similar argument as developed in our
recent work [91], which focused on approximating the stochastic semilinear subdiffusion
equation with a € (0,1). We demonstrate that the solution’s spatial and temporal regu-
larities for (5.1.1) with « € (1, 2) surpass those with a € (0,1). Moreover, we observe that
the convergence orders of the Galerkin finite element method for (5.1.1) with « € (1,2)
are higher than those with a € (0, 1), as expected.

5.2 Notation and preliminaries

This section deals with some notations and preliminary results to be used in our subse-
quent sections. Let H (D) or simply H* be the standard Sobolev Hilbert space of index
s € R* with usual norm and inner product. Also, let H = L?(D)(Lesbegue measurable

function or square integrable function) with norm |- | and the inner product (-,-) and let
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Hi ={ve H':v=0o0ndD}. Note that A = —A with domain D(A) = H*(D)N H}(D)
is a closed linear self-adjoint positive definite operator with compact inverse and has the
eigenpairs (Mg, e), k=1,2,3, -+ subject to the homogeneous Dirichlet boundary con-
ditions. Further we assume that (Mg, ex), k = 1,2,3,---, is a sequence of eigenpairs of
A:D(A)CH— H.

Set H*(D) or simply H* for any s € R as a Hilbert space induced by the norm

0o
02 =) Xi(v,en)”.
k=1

For s = 0, we denote H° by H. For any function ¢ € H?, % < B <1, define (—A)Py :=
P )\’,f(w,ek)ek. Let LQ(Q;HS), s € R be a separable Hilbert space of all measur-
able square-integrable random variables ¢ with values in H*® such that ||¢|| L2(Es) T
(E|¢|2)2 < oo, where E denotes the expectation.

We define the space-time noise W (¢, ) by, see [51] and [89],

W(t,z) = ow(t)Belt)er(x), (5.2.1)
k=1
where o(-),k = 1,2,3,---, are some real-valued continuous function rapidly decaying

with respect to k so that the series converges. Here, the sequence {5}, is mutually
independent and identically distributed one-dimensional standard Brownian motions and

the white noise ﬁk(t) = dﬂgt(t),k =1,2,3,---, is the formal derivative of the Brownian

motion [y (t).

5.3 Existence, uniqueness and regularity results

This section focuses on the existence, uniqueness and regularity results of the mild solu-

tion of the stochastic semilinear space-time fractional superdiffusion model (5.1.1).

Assumption 5.3.1. [125] There is a positive constant C' such that the non linear function

f:RT x H— H satisfies

1f(t,w) = f(t2,u)| < O(|t1 —to| + [luy — U2||)7 (5.3.1)
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and
1f(tw)ll < O+ ul]). (5.3.2)

Assumption 5.3.2. [74, 89] The sequence o (t) with its derivative is uniformly bounded
by pur and 7, respectively, i.e.,

0% ()] < g, (5.3.3)
|07, (8] <, Y€ 0,T], (5.3.4)
where the series >~ | i and >, v, are convergent.
Assumption 5.3.3. [89] Let 1 < a < 2, % <pf <1, 0<vy <1 It holds, with 0 < r < k,
- 2y\r—K
Zuk)\k < 00,
k=1
where
257 v > 2

and A\, k = 1,2,--- are the eigenvalues of the Laplacian A = —A, with D(A) = H}(D)N
H?*(D).

K =

Lemma 5.3.1. [89, Lemma 2.4] An adapted process {u(t)}:>o is called a mild solution to

(5.1.1) if it satisfies the following integral equation with 1 < o < 2, % <p<1,0<y<1,

t t
u(t,z) = Ea,g(t)U1+Ea75(t)U2+/ ]Ea,g(t—s)f(s,u(s))ds—i—/ Eop-(t—s)dW(s), (5.3.5)

0 0

where dW (s) denotes

dW (s) = Zok(s)ekdﬁk(s),
k=1
and

ang(t)vl = Z Ea71(—)\£ta)(2}1, ek)ek,

k=1
I~Ea75(t)v2 = Z tEa72(_)\£ta)(U2, ek)ek,
k=1
Eop(t)v =Y 1% By a(=At") (v, ex)ex,
k=1

Eo s (v =Yt By 0 (=N (0, ex)ex
k=1
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Lemma 5.3.2. [89, Lemma 2.5] The solution u(t) of the homogeneous problem of (5.1.1)

satisfies, for t > 0

ct™ +Ct' |’U2|r, 0<qr<p<28,
lu)lp < (5.3.6)
Ct=|uilg + Ct' = val,, g7 > p,

and it also implies that
|00 u(t)], < Ot % |uy|, + Ct 17 |uy,. (5.3.7)

Proof. By the boundedness property of the Mittag-Leffler function, we get that

[Eap(t)orly =D A|Eaa(=A) (01, )

k=1
) /\Bta )\q< ) - Ct (5 ; 8)
v, e 3.
(1 + Aoy FD
A8y Bt
where we have used W)Wﬂ)? <Cfor 0 < b5 <2
Also
= 2 p 2 p—r
[Eap(t)va], < Ct7 77 gy, for 0 < 5 <2, p>r. (5.3.9)
Note that ¢ > p, we obtain from Lemma 2.1 and 2.4 in [89] that
2 q 2 —2a|,, |2
|Eq 5(t)v1] § 1+)\/Btoz) (v, ex)” < C2%o g, (5.3.10)
and in a similar way
B p(t)va]> < C220sf2, 7> p. (5.3.11)

Thus, (5.3.7) follows immediately by the triangle inequality. On the other hand, it follows
that

O Eas(O0rfE = 30 (Bap(t)or, )’ = 30| B (A0, o)
(=1

/=1
B+pq

p=a) e CAﬁta vq
@it Z GO 7 Na(oy,e0)? < CroCHT) 2

(5.3.12)

A similar estimate for |0 E, s (t)va]2 holds and this completes the proof. O
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Lemma 5.3.3. [74] Let 1 < o < 2, 5 < < 1,0 <~ < 1 For any ¢t > 0 and

1
2
0 <p-—q <28, there holds,

(p—

ES q)
By (t)oly < CtHEF05 0y, (5.3.13)

Proof. By definition,
[Easr (0] =D AT B4 (= A0 2| (v, €4) 2
k=1
o0 Bio pP—aq
< Ot -g50-0) 3 (Apt*) 7

M(v, ) |v]?.

< CtQ(—1+(a+7)—%(P—Q))|U 2 (5.3.14)
< o 3.
which completes the proof. n

To establish the proof of the existence and uniqueness of the mild solution of (5.1.1),

we shall apply the Banach contraction mapping theorem.

Theorem 44. (Ezistence and uniqueness theorem) Let 1 < o < 2, % < B <1 and
0 <~ < 1. Let Assumptions 5.3.1 and 5.3.2, 5.3.3 hold. Let vy,vo € L*(2; H). Then,
there exists a unique mild solution u € C([0,T); L*(D; H)) given by (5.3.5) to the problem
(5.1.1) for allt € [0,T].

Proof. The proof of this theorem is similar as the proof of Theorem 27 and one only need
to replace a € (0,1) by a € (1,2). We omit the proof here.
O

Theorem 45. (Regularity) Let 1 < a < 2, % < B <1, 0 < vy < 1. Assume that
Assumptions 5.3.1-5.3.3 hold. Let v; € L*(Q; HY), vy, € L*(Q; H?) with p,q € [0,20).
Then, the following regularity results hold for the solution u of (5.3.5) with r € [0, k| and

0<p<r<28,0<qg<r <28,

(g=7) (r—p) >
Blu()l? < 5l + 0 F uf2 + CE( s Ju)I) + (S uta),
s€[0,T] 1

(5.3.15)

Proof. The proof of this theorem is similar as the proof of Theorem 29 and one only need

to replace a € (0,1) by a € (1,2). We omit the proof here.
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Assumption 5.3.4. There is a positive constant C' such that the nonlinear function

f R x H— H satisfies, with uy,us € HY with 0 < g <2fand 1 <3 < 1.
I(=A)2(f(tr,wn) = f(ta,ua))|| < L[t = to] + [[(=2)% (w1 — u)]|) (5.3.16)
and
I(=A)2F(tw)]| < O+ [I(=2)2ul]). (5.3.17)

Theorem 46. Let 1 < a < 2, % < p <1, % < v < 1. Assume that Assumptions

5.8.2-5.3.4 hold. Let vy, vy, € L*(Q;H?). Then, there exists a unique mild solution
u e C([0,T]; L*(%; Hzﬁ)) given by (5.3.5) to the model problem for all t € [0,T].

Proof. Set C([0,T]; L*(; H*)),, t > 0 as the set of functions in C/([0,77; L*(Q; H*"))

with the following weighted norm
lolRs = sup (160, ) v o € C([0.73 22 1)) (5.3.18)
te[0,7

For the proof, it is now enough to show that the map T : C([O,T];LQ(Q;HQB))A —
C([0,T]; L*(2; H?%)), is a contraction. We first show that Tu € C([0,7]; L*(Q; H*))
for any u € C([0,T7]; L*(<; H 2)). By Cauchy-Schwarz inequality, we obtain with u €
C([0,T]; L*(9; H*)),

E|Tu(t)[35 < 4E[Eq5(t)01]35 + 4BE|Eqs(t)v2l35 + 4E| /Ot Eos(t — ) f(s,u(s))ds|35
+ 4E| /Ot Eop(t — s)dW (s)|35
<AE[Eq5(t)v1/35 + 4E[Eq 5(t) s34 + 4 /Ot E|Eq5(t — ) f(s,u(s))|35ds
} 4E) / Bt — 5)AW(5)2s. (5.3.19)
0

By the smoothing properties of E, 3 and Eaﬁ with p = ¢, and using the Assumption 5.3.1,
it follows that

¢
E|'Tu(t)|§6 < C’E|vl|gﬂ + C’E|v2|gﬂ + Ct/ (t— 8)2(_1+a) (1 + E|u(5)|§5)ds
0

t
+4E|/ Bop(t — 5)AW (5) 2. (5.3.20)
0
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For the integral E| fot Eop-(t—s)dW(s) \35, a use of the isometry property and Assumption
5.3.3 and 5.3.4 with the smoothing property of the operator E, 5., for A = —A, D(A) =
Hi(D)N H*(D) and 0 < r < &, yields

t t (o)
_ K—r+28 — r—r
El/ Eaﬁ,w(f—S)dW(S)@ﬁ:EH/ A3 Eapa(t —5) Y on(s)AZ erdBi(s)|?
0 0 k=1
0 ot
= Z/ JA5  Ea g, (t — s)ou(s) AT e ds
k=170
K Eor+26 = - r—K
<o [ 1A= By olPas) (S uta).
k=1

K—r+28 —

To resolve the integral [} [|A">" Eq.(s)|?ds < o0, it is enough to choose r = 2,

which means that £k = r = 2 since 0 < r < k. Hence, we need to restrict 2y > 1 in order
to get k = 20 by Assumption 5.3.3. With such choices of x and r and by noting that

% < v <1, we arrive at

t t 00
Bl [ Busa = W (s)3 < C( [ 143, () ds) (3 iN)
k=1

00 t 2
< C(Zﬂz)\z—n> / <8a+71a(ﬂ230)) ds
k=1 0
o0 t oo
C’( Z ,ui) / s¥172ds < C’< Z ,u%) < oo. (5.3.21)
k=1 0 k=1

We note that vy, va € L*(Q; H*) and u € C ([0, TT; L*(%; H*)), we obtain sup,(o 1 E[Tul3, <
0o, which implies that Tu € C([07T]; L2(Q; H%))‘

Next, we look at the contraction property of the mapping 7. For any given two
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functions uy and uy in C([0,T]; L2(Q; H?)),, it follows that

Ele™(Tu(t) — Tus(t))35 = E|€_M/O Eas(t — 5)(f(s,u1(s)) — f(s,ua(s)))ds|34

2

IN
=

(/ NI By ot — ) (5,101(5)) — (5, ua()laads)
< CE( / (1 — ) BN N (s, ua(s)) — 5 us(s))apds )
< CB( [ (¢ =B e () — o) o)

<om( [ 1 [i6= B ) ) — wa(o)l) )

t
< Ct/o (t _ 5)2(2*5—1)672/\678)615 S}(l)l,}] E’ef)‘s (u1(5> — UQ<S)) |§5
se|0,

2

t
< Ct/ 75 2Dy sup E|e*’\8(U1(S) —uz(S))gg
0 s€[0,7T

t
< C’t/ 2D 2w g sup Ele™ (uy(s) — ua(s)) 25
0 s€[0,7]

t
< C’t/ (%)2a*26—2xdx)\—1[ sup Elui(s) — ua(s)[34]
0

s€[0,7

t
S Ct|:/ l_2a—26—2xdx:| AI—QOC[ sup E|u1(3) —U/Q(S)@ﬂ]
0

s€[0,7

< O(T)A 2 st]E|u1(s) — ua(s)[35- (5.3.22)
s€l0,T

Based on the same argument of the existence and uniqueness theorem proof, the rest of

the proof follows and this concludes the proof. m

5.4 Approximation of fractionally integrated noise

Let 0 =t <ty <--- <ty <tyy1 =T be the discretization of [0,T] and At = % be the

dBk(s)

time step size. The noise ==

can be approximated by using Euler method,

dBk(s) ~ ’i+1 _BIZ o api
ds At =B

with 6}6 = Bk(tl), 1= 1,2, s ,N, where ﬂk<t1+1> - 5k(t1) = \/E N(O, 1) and N(O, 1)

is the normally distributed random variable with mean 0 and variance 1. Assume that

o}}(s) is some approximation of oy (s). To be able to obtain an approximation of

Wit x) = Zak(t)ﬁk(t)ek(x), in [t;,tip], i=1,2,---,N,
k=1
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in (5.1.1), we replace it with

Walt,2) = Y o (ex() (D (0B8)x(1)):

Here, x;(t) is the characteristic function for the ¢ time step length [¢;, ¢,,,], i =1,2,--+ | N
and o} is some approximations of o;. The following is the regularised stochastic space-

time fractional superdiffusion problem. Let u, be an approximation of u defined by

CDup(t, ) + (=A)Pun(t,z) = f(t,un(t, z)) + fD;VWn(t,x), (t,z) € (0,T] x D,

up(t,x) =0, 0<t<T, x €D, (5.4.1)
Ouy, (0,
w(0.2) = (), 220D )

The solution of (5.4.1) takes the following form:
t t

up(t) = Ea7ﬁ(t)vl+Ea”3(t)v2+/ I_Ea,g(t—s)f(s,un(s))dst/ Eo 5, (t—s)dW,(s). (5.4.2)
0 0

Here dW,(s) = > -, ag(s)ek(Zle(ﬁﬁi)Xi(s))ds where y;(s) is the characteristic func-
tion defined on [t;,t;44], i =1,2,--- , N.

Assumption 5.4.1. [51] Suppose that the coefficients o} (t) are generated in such a way

that,

|ow(t) — o ()] < i,
ok (D] < .,
|(0x) ()] <k, ¥Vt e[0,T].

dWh(s)

7=, we need the following regularity assumption.

To regularize the noise

Assumption 5.4.2. Let 1 < a < 2, % <pB <1, 0<y <1 It holds, with 0 < r < &,

o0

> ()N < o0,

k=1

where k is defined by

26, v > %

2- )8 —¢6 v< 3,
and A\, k = 1,2,---, are the eigenvalues of the Laplacian —A with D(—A) = H}(D) N
H?(D).



132

Theorem 47. (Existence and Uniqueness) Let 1 < o < 2, % <p <1, 0<y <1
Suppose that Assumptions 5.8.1-5.8.4, 5.4.1-5.4.2 hold. And let vy, vy € L*(Q; H). There
exists a unique mild solution u, € C’([O,T];L2(Q;H)) given by (5.4.2) to the problem

(5.4.1), for all t € [0,T].

Proof. The proof of this theorem is similar as the proof of Theorem 27, we omit the proof
here.

]

Theorem 48. (Regularity) Let 1 < a < 2, % < B <1, 0 <~y < 1. Suppose that
Assumptions 5.8.1-5.3.4, 5.4.1-5.4.2 hold. Let v, € L*(Q; HY) with q € [0,26] and vy €
L2(Q; HP) with p € [0,283]. Then the following reqularity result for the solution u, of the
equation (5.4.2) holds with r € [0, k] and 0 < q,p < r < 24,

Elu,(t)|? < Cta7E|v |2 + Ot |1)2|2 + CE( sup |lu.(s)|]”). (5.4.3)

s€[0,T7]

Proof. The proof of this theorem is similar as the proof of Theorem 29, we omit the proof

here.

5.5 Error estimates

We now give the error estimates between v and wu,, where u and u,, are the solutions of

the equations (5.1.1) and (5.4.1) respectively.

Theorem 49. Let 1 < a < 2, % < B <1, 0 <y < 1. Suppose that Assumptions

5.3.1-5.8.4, 5.4.1-5.4.2 hold. Let u and u,, be the solutions of the equations (5.1.1) and
(5.4.1) respectively. Then we have for any given € > 0,

1. foroz—l—yﬁ%

2B8(at+y—1)

N _28lat-1) "\ 2t
Elu(t) —u, ()P <CY N« )+ C(APd AT e (1)’

k=1

+ CE(ALHFDN TN ()2, (5.5.1)

k=1
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2. for 3 <a+v<3,
Ellu(t) — ua(1)]> < C 3" A5 ) + C(A0* AT o)
k=1 k=1

+ CEETITAL (). (5.5.2)
k=1

Proof. Subtracting (5.4.2) from (5.3.5) we obtain
ult) = ) = [ Baplt = 9)(Fs.u9) = F(s,a(5))ds
+ /0 Eop,(t —s)(dW(s) — dW,(s))

= Gy + G, (5.5.3)

where
61 = [ Baslt =) (005D ~ 6wl ).
and
Gy = /0 t Eop.(t—s) (dW(s) - de(s)).

By the definitions of dW and dW,,, we now rewrite G5 as

o

Gy = /0 9 B (= X0 - 9)7) ( Z(am(s) — () (ems 6B (5) ) exds

+ { Z /t‘“ _ g)atr-l iEa’aﬂ( Ot — ) (Z 0" (5)(em, €x)dBm(s ))ek
_ Z /t“l _ gyt iEavaﬂ( (t—s) (Z o (s)(em, ex) (OB )d3> ek}
k=1

= Go1 + Goo,
where
t o0
Gy = / St = ) By (= At = 9)7) (D2 (0(5) = 03 (5))ems e8)din(s) ) ds
k=1 m=1
and
N tz+1 o
Glay = {2/ B S)a+'y71 ZEOQCYJF’Y )\ﬁ t— s (Z 0' €m € dﬂm( ))Gk
o=1 7t k=1

N 1 00
Z /tz+ _ g)atrl Z Eoaty(—A t —5) ( Z o" (5)(em, ex) (0B, )ds) ek}.
=17t k=1
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We first estimate E||Gy]|?. From the form of Gy, using the smoothing property of the

operator E, 5(t — s) and Assumption 5.3.1, we arrive with 1 < o < 2 at
t 2
EJ|G) | = E( / (= 5) £ (s,u(s)) = F(s,un(s)llds)
t 2
<B( [ (=5 uls) — unls)]ds)
0
t t
< c/ (t—s)a—i’dsE/ (t — )* 2 |ju(s) — un(s)||?ds
0 0
t
< oo / Blu(s) — un(s)|2ds. (5.5.4)
0

For the estimate of E||Gy||?, using the Ito isometry property and the Assumption 5.4.2,

we obtain

t o
E|Gurl =Bl [ 3t ) By (— Mt~ 5)%)

0 k=1

I

(O (5) = () Ems €4)dBrn(5) ) s

- / St — )2 By gy (<(E — )) 2 (0n(5) — o7 (5)) s

Note that, for a + v < %, a use of the boundedness property of Mittag-Lefler function
yields

t t
/ (t — )2 DB, 0 (=X (E = 5)%)2ds < C/ (t — s)2@t=Ds = CpHotn-1,
0 0

(5.5.5)

Also, for 1 < a + v < 3, by using the asymptotic property of Mittag-Lefler function,

we have

t
/ (t = )X | B (ZAL(E = ))[*ds

0
- /tl (t _ S)a+’y*1 |2d8 _ /t
—Jo 1+)\£(t—s)o‘ 0

_2B(atny-1) [t
=\, «
0

()\f(t — 3)0‘)a+§_1 \- Blaty=1) |2
k
1+ M (t—s)

By _ )2 t= o  28(aty—1)
(A (t 58) ) ( ds < C\, = . (5.5.6)
L+ N (t—s)

ds
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Thus, we now arrive at

2B(at~y—1)

E|Gyl? < CZA (g2, for 1< a+v <3 (5.5.7)
k=1
We now estimate Gaos. We first denote W f et dBm(s) and replace

the variable s and 5 in the second term of Gy,. Using the orthogonality property of

er, k=1,2,---, we obtain

N 7 00
BlGal =BI3 [ -9 Faas
k=1
(- At — ) <Za Y(em, ex)dBm(s )>ek

(7%
_Z/ (t — 5)>tL ZE‘”‘” t—s) )
(=1 vt

o0

(S eney [ t”1<em,ek>dﬁm<s>)ekd§\|2

m=1 te

:EHZ / = ZE Nt = 5))ok(s)exdBi(s)

e ]' tl+1 S\a+y—1 B \a\  n(= = 2
—5) Z Bty (=X (t = 5)%) ok (5)endSd By (s) ||
te k=1

o) N tz+1
- Z ! Z/ ) B (<AL — 8)°) 07 (5)dB (5)
k=1 (=1

1
-> / - Ait / T = 8T B g (— N ( — 5)%)(3)d5d B4 (5)

N 2
=17t

N
(=

N A e O R e

S B (i = 9o sas] )

17t
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Thus, a use of the Cauchy-Schwarz inequality yields
tey1 1

B Gl i fj | ([ = ol =)

(0105 = ot s+ [ (t= 8 B (Nt = 5)°)

ty

(£ = )" B (A — s)“))az<s>ds)2ds

= [ren 1 o [ 2(aty—-1 ay|?
<2Z EZ (t ) ‘Eaa-i-v( Ap(t —s) )‘
t t
=171 k=1t

op(s) — o, (s )‘ dsds

toy 1 tota
+2Z / / ( = ) By (<AL (E — )
=17t

2
(= T B (X~ 5)%) 07:(5) Pdsds

=20 4+ 2I,.

For I, using the mean value theorem and the Assumption 5.4.1 we arrive at

toy1 ©
L@y [ sy
te  p=1

t
n a+y— ay |2
= (A2 () / (= 8P| By o (At — 9))ds.

k=1

2
oty (=t = 9)7)| (73)%ds

¢ 1

Now, following the same estimates as in (5.5.7)

_ 2B(aty-1)

LSOO N« ()% forl<a+y<3. (5.5.8)
k=1

For I,, we note by the Mittage-Leffler function property [111] that
(t = 8)°" 7 Bnatr (=Xt = 8)%) = (¢ = 8)°T7 7 Egagr (=N (t = 5)°)
° d (03 - o
= / % |:(t — T) Al lEa’a_i_,\/(—Alg(t — 7_) ) dT
= [ =) (A = 7))

< C|/ a+’y 2d7’|



hence,

N tog1 1 o] ) tot1 S o 2 B
]QSCZ/t Ezﬂk/t[ (/(25—7')0‘7 dr) dsds.
(=1 k=1 5

£
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(5.5.9)

Now we estimate [ (¢ —7)*"7~2dr for the different o and . We shall show that, with

1
0<e<y,

(

‘ /:(t — 7‘)“+7_2d7) <

C(t —max(s, 5))*2At, 3 <a+v<3.

\

C(t — max(s, 5)) "2 T (A2 a4y < 3

(5.5.10)

Case 1. We now consider the case oo + v < % If 5 < s, then with 0 < e < %, it implies

that

| / (t — 7)o" 2dr| = / (t—7) 24 (¢ — )72y
< (t—s)75F / (t—7)*7 5 <dr
1 1

=—(t—s) 2" ———
( ) a+7—%—6

Since a’ — b’ < (a —b)?, for a > b > 0 and 0 < § < 1, then for o + v < 2,

—(t—T) TR < (s — 8™ T < (AT

and this implies that
| /s“ — 7)< Ot — 5) 7T (AL T
Similarly, we may show that for s < 5, with 0 < e < %7
| /s(t — )2 < Ot — §) 2T A)TTTEE
Therefore, for a + v < % obtain,
| /8“ — 1) 2dr| < O — max(s, )3T (AL)

Case 2. Next, consider the case % <a+7v<3. If s <s then we get,

(5.5.11)

(5.5.12)

(5.5.13)



\/ )24 < Ot — 3)*M % (s — 3) < (t — s)*T AL

Similarly, for s < s, it follows that

|/ ) 2dr| < Ot — 5)*T2(AL) < C(t — 3)“T 2 At

Therefore, for < a4y <3 we get,

| / (t — 1) 2dr| < C(t — max(s, 5))*TT 2 At

Note that

\/ )M 2dr| < O(t — max(s,5))*2At, for a + v < 2,
and

\/ 7)1 2dr| < Ot — min(s, 5))*M2At, for a + v > 2.

Thus, we derive the following estimate for I,. For a + v < %

N
I < CZ/
=1

174

tot1

oo

t
C(At) (a+vy)—1—2¢ (qu)2/ (t_S)flJrZeds
k=1 0

< OtZe(At)Q(a+’y)71726 Z(Mz)Q

k=1

For%§a+’7<3,

Lot

[2<CZ/

te

o

< o [ - Pt i < ope
0

k=1

Together with the estimates we obtain the following results.

1 > toy1
>y / (t — max(s, 5)) 2D At 2dsds
k=1 te

(A Z(Mk)2

o]
k=

1

1 i tot1
Sy / (t — max(s, 5)) "2 (AN 1=2 g5
k=1 te
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(5.5.14)

(5.5.15)

(5.5.16)
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1. For a4+ < <. it follows that for ¢ > 0,

2B(aty—1) s _2B(atn—-1)
Ellu(t) — u,(t)|I” < CZA TP OO N T ()
k=1
+ CE(ALHFNTI2EN ()2, (5.5.17)
k=1
2. For%§a+7<3,
2B(aty—1) 1) > 2ﬁ(a+7 1)
E|u(t) — u,(t ||2<CZ/\ 2 W2+ C(A? Y A Ok
k=1
+ O ALY (). (5.5.18)
k=1
An application of the Gronwall’s Lemma completes the rest of the proof. O]

5.6 Finite element approximation and error analysis

Let D be the spatial domain and let T, be a shape regular and quasi-uniform triangulation
of the domain D with spatial discretization parameter h = maxge7;, hx, where h is the
diameter of K. Let Vj, ¢ H B, % < B <1 be the piecewise linear finite element space with

respect to the triangulation 7y, that is
Vi, = {UhEHB(D) Z’Uh|KEP1(K), VKEE} (561)

Recall that Ay, : 'V, — Vj, is the discrete Laplacian operator defined by ((—Ah)w, X) =
(V@/J,Vx), vV x € V.

The semi-discrete finite element method approximation of the equation (5.4.1) is to

seek ul'(t) € V,, for t € [0, T] such that

6 Dfu(t) + (=An) up(t) = Puf(t,uy (1)) + Pu(Dy AW, (1)), t € (0,T),

u(0) =P, (5.6.2)

where vl Proq, vz P,y are chosen as L? projection of the initial functions v?, vg €

Vi
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As it is in the continuous case, the solution of (5.6.2) takes the form

t

t
u(t) = EZ,B(t)PhUI+EZ,,8(t)PhU2+/O Egﬁ(t—s)th(s,uZ(s))ds+/0 EZ’B7V(t—s)Pden(s),
(5.6.3)

where for each ¢ € [0,T7], the operators E 4(t), Egﬁ( ) and Eaﬁv( ) are defined from
Vi, =V, by

E. 5(t)vy, = Z Ea1((=A0)°tY) (vn, €} )er,
k=1

tv, = ZtEag (=AM Bto‘) (vh, eﬁ)ez,

B o (ton =3t By ((ZADP2) (v, €f el
k=1
Lemma 5.6.1. For any ¢t > 0 and 0 < r,q < p < 24, there hold for v, € V},,
B 5()vnlpn < CE° o |Uh’q7 0<qg<p<2B,

~ —r)
(B (yonlpn < CH5 vy, 0 <7 < p < 28,

(p—q)
B! o () vnlpn < CEFOITGG 0,100 < g < p < 28,

a,By
n “lta—al=2
|EZ,5(t)Uh|p,h <Ct H 28 |vh|q, 0<qg<p<24.

Lemma 5.6.2. [89] (Inverse Estimate in V},) For any ¢ > s, there exists a constant C'

independent of h such that

lnlen < CR T uplsn, ¥ v € Vi

We now consider the error estimate. Let u — u” = (u — u,) + (u, — u”) since the

estimate E||u(t) — u,(t)|* is known. We will show the estimate E|ju,(t) — u”(¢)]]?.

Theorem 50. Let 1 < a < 2, % < B <1,0 <~y < 1. Suppose that Assumptions 5.3.1-
5.8.4, 5.4.1 hold. Let u, and ul' be the solutions of (5.4.1) and (5.6.2) respectively. Let
v1,v9 € L8 Hq) with 0 < q < 26. Then, there exists a positive constant C' such that

for any € > 0, with r € [0, k] and 0 < max(q, ) <r <203

(un(t) = up (1))

< Cho E!v1!2+E|vz\3+E( st IIUn(S)||2)

B
2

El[u,(t) — up (0)]* + hE[ (-2

+ ChQrt— + Ch2rt—2+ aty)—

(5.6.4)
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Proof. Introducing @”(t) € V}, as a solution of an intermediate discrete system

S Dy (t) + (= Ap)Panr(t) = Puf(t, @n(t)) + Pu(D; "dW, (1)), t € (0,7,
i (0) = Py,

04" (0) = Pyvs. (5.6.5)

We split the error u () — u,(t) := (ul(t) — al(t)) + (@ (t) — un(t)) :== C(t) + n(t)

n

Again using Pyu, we split n(t),
n(t) == (@ — Pyuyn) + (P, — uy,) := 0 + p. (5.6.6)

From Lemma ?7? it follows that, with € [3, 2],

8 .
E|pt)|* + IPE[(=A)2p(t)||> < Ch* Elun(t) ]2, (5.6.7)
which means that
B
E|p(t)|I” + WEH(—A)?p(t)H2
< Ch?* (C 240t
£ CB[ sup [f(sm()]’+CY ufnx,;—“)
s€[0,T me1
< Ch* (C’t S HCtT
+CE( sup [un(s)]? +Czumx ) (5.6.8)
s€[0,T] me—1

To estimate 6, note that 6 satisfies the following equation

6 DO(t) + (—2n)°0(t) = (—An)° (Rutn — Pruy),
6(0) =0, (5.6.9)

and hence, the representation of solution 6 is written as
t
0(1) — / B 5(t — 8)(—An)° (Rutin(s) — Putin(s))ds. (5.6.10)
0

Choose p = 0 and p = [ separately, from Lemma ?? with v = 0 and Lemma 5.6.1, it
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follows that for ¢ = € — 25 + p and 0 < € < 23 that

IO < B[ 18800~ )30 (Rt 5) — Pt s
< OB [ (=950 (Rt = i) 510

< CE( /0 (= )5 (Rt — Patn)(5)es pnds)?

< onr ([ -9 7as) [ -9 Bluo)ds

< Ch¥ =245 B|u, (s)|2ds. (5.6.11)

Now an application of regularity shows

2—

t
e N R
+E( sup Hf(S,Un(S))HQ)}ds
s€[0,T7]

< Cp*rom {E|’Ul‘2 + Elvsf2 + E( S}lp] un (3)]1%)], (5.6.12)
s€(0,T

(

ae_ 1 _,r=9
where we used the fact that f; t—s)2 s 5

(1 5) 515

since 0 < 95 <2 and 0 < a(5%) < 2.
We now combine (5.6.8), (5.6.11) and (5.6.12) to arrive at an estimate for n as, with p = 0

and §, 0 < p <r <205,

Eln(t)lpn < O 272 oll72 0 70y + 02072000 + ECsUD_ [ (5)]7)

s€[0,T
r— —al
Ch> (¢ @i Tt ) (5.6.13)
Now to estimate ¢, note that ((t) € V}, satisfies
6 DEC(t) + (=An)"C(t) = Pu(f (un) — f(un)), (5.6.14)
and therefore we now write (¢) in the integral form as
t
C(t) = / Eos(t = 5)Pu(f (up(s)) — f(ua(s)))ds. (5.6.15)
0

Again, choose p = 0, 5. From Lemma ?? with v = 0 and Lemma 5.6.1, it follows for ¢ = p



143

and for 1 < a < 2, that

E[C|,, < E(/O [Eas(t — )P0 (f (un(s)) — f(un(S)))lp,hdS>

<x | (1= s P(Fl(s)) — (6D s

OE( / (= ) unls) - u,’z<s>|pds)2

<o [t as( [ 0= Blunts) — k) as))

< Ct” /Ot(t — 8)* 'El|u,(s) — uZ(s)ﬁds. (5.6.16)

IN

Combining (5.6.13) and (5.6.16) it follows for p = 0 and 8, and 0 < p < r < 20 that

Blun(t) — u (02 < Ch-220-7 [Ew 24 Bloaf? + B( sup [Jun(s >H2)]

s€[0,7T
+ ChAr=P) (t‘ 24t 3)
t
+ C'/ (t — ) "Elu,(s) — ul(s)[2ds. (5.6.17)
0
An application of the Gronwall’s Lemma completes the rest of the proof. O

Theorem 51. Let 1 < a < 2, % < B <1,0< v < 1. Assume that Assumptions
5.8.1, 5.8.2, 5.8.8, 5.8.4 and 5.4.1 hold. Let u and u" be the solutions of (5.1.1) and
(5.6.2) respectively. Let vy, vy € L*(Q; HY) with 0 < q < 2. Then, there exists a positive

constant C' such that, for any € > 0 with r € [0, k] and 0 < max(q, 5) <r < 20,

1. f0r0¢+'y<§

2B(aty—1) 1) © a+7
E|u(t) — u!(®)]? < cz A, @ 24 C(A)? Z/\k AR
k=1
+ Ct2€<At)2(a+’Y)_1_2€ (MZ)Q + O~ 2e+2r [E|U1|§ + E|U2|2
k=1
+E( sup [lua(s)]]?)] + Chzee 2+ Ch¥t 70 (5.6.18)

s€[0,T]
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2. for 3 <a+v<3

2B(aty—1)

Ellu(t) - H2<CZA S )+ O (A1) A
k=1

2ﬂ(a+'y 1)

(7)?

+ O (At)? (u2)2 + Ch™* M [Elun|g + Elvag

kmg

(r—q) (r—q)
+E( sup [Jun(s) )} Ch*t 7 s C’hQTtQ_aTEWQﬁ- (5.6.19)

s€[0,T]

Remark In particular, when the noise is the trace class noise i.e.,

OPW (t, )
BT Z'Y]?Bk ex(x

r(Q) = Z% < 0.
k=1

Under the Assumption 5.4.1, we have n = 0, v =0, > oo, (u)* = > oo Yk < 00, where
a—1,6=1,~v=0, we obtain with ¢ > 0,

Elfu(t) — u, (t)[* = O(h*~ + (At)' ™),

which are constant with the results obtained in [133] for the stochastic heat equation.

5.7 Numerical simulations

In this section, we shall consider numerical simulations for the following stochastic semi-

linear fractional wave equation, with a € (1, 2),

SDu(t, ) — 82822 z) = f(u(t,z)) +g(t,x), 0<t<T 0<uz<l, (5.7.1)
u(0,z) = up(x), augt’ ?) =ui(z), O0<z<l, (5.7.2)
u(t,0) =u(t,1) =0, 0<z<l1, (5.7.3)

where f(r), r € R,up(z) and uy(x) are given smooth functions. Here, with v € [0, 1],

_O?W(t,x) - dﬁ ()
t,x) = ¥D; T —— = “ 5.7.4
g( 7$) 0 t ata Tnzz ) ( )
where 3,,(t), m = 1,2,... are the Brownian motions. Here e,,(x) = v/2sinmnz denote

the eigenfunctions of the operator A = —8‘9—; with D(A) = H}(0,1) N H?(0,1). Further
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Ym,m = 1,2 ... are the eigenvalues of the covariance operator ) of the stochastic process

W (t), that is
Qem = YmCEm-

We shall consider two cases in our numerical simulations.

Case 1: the white noise case, e.g., v, = m~? with 8 = 0 which implies that

B = =Y m =Y 1=
m=1 m=1 m=1

Case 2: The trace class case, e.g., ¥, = m~? with 8 > 1, which implies that

tr(Q) = ifym = im_ﬂ < 00.
m=1 m=1

The numerical methods for solving stochastic time fractional partial differential equa-
tions are similar to the numerical methods for solving deterministic time fractional partial
differential equations. The only difference is that we have the extra term ¢ in stochastic
case and we need to consider how to approximate g.

Let v(t,x) = u(t,x) — up(x) — tuy(x). Then (5.7.1)-(5.7.3) can be written as the

following

SDu(t, ) — Av(t,z) = Aug(x) + tAue(x) + f(u(t,z)) + g(t,x), 0<t<T, 0<z<]l,

(5.7.5)
v(0,2) =0, 8”(805 2y, (5.7.6)
v(t,0) =v(t,1) = 0. (5.7.7)

Since the initial values v(0,z) = 0,

8”((1’9”) = 0 in (5.7.5)-(5.7.7), it is easier to consider

0

the numerical analysis for the time discretization scheme of (5.7.5)-(5.7.7). For simplicity,
we assume that the initial values ug(x), ui(x) are sufficiently smooth, then we may write

(5.7.5)-(5.7.7) into the following abstract form: with v'(t) = 28 F(t) = f(u(t)),

SDov(t) + Av(t) = —Aug — tAu, + F(t) + g(t), v(0) =0, (0) = 0. (5.7.8)
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Let 0 < tp < t; < --- <ty =T be a partition of the time interval [0,7] and 7 the
time step size. Let 0 = zp < x1 < -+ < xp; = 1 be a partition of the space interval [0, 1]
and h the space step size.

Let S, C HJ(0,1) be the piecewise linear finite element space defined by
Sy, ={x € C[0,1] : xis a piecewise linear function defined on [0, 1] and x(0) = x(1) = 0}.

The finite element method of (5.7.5)-(5.7.7) is to find v, (t) € S such that, V x € Sy,

(6 Dfon(t), x) + (Vua(t), V)
= —(VPyuo, VX) — t(VPyuy, Vx) + (F(t), x) + (9(t), x), (5.7.9)
v (0) = v5,(0) = 0, (5.7.10)
where P, : H — S} denotes the Ly projection operator.

Let Ap, : S, — S, be the discrete analogue of the operator A defined by

(Antp,x) = (Vi Vx), ¥ x € Sh. (5.7.11)

Then we may write (5.7.9)-(5.7.10) into the following abstract form:

6 Doy (t) + Apon(t) = —ApPyuo — tAPyuy + PoF (1) + Pog(t),

v (0) =0, v, (0) = 0. (5.7.12)
Remark 52. When we consider the abstract form of the finite element approximation
of (5.7.8), we may choose ug, = Phug and uy, = Pyuj as the initial approximations
of up,u; € H and replace the elliptic operator A in (5.7.8) by the discrete analogue

Ap 0 Sp — Sp. In other words, for any initial values ug, u; € H, the abstract form (5.7.12)

is well defined.

Let V™ =~ wv(t,),n = 0,1,..., N be the approximation of wv,(t,). We define the
following time discretization scheme: find V" € S, with n = 1,2,..., N, such that,

Vx € Sh,
(7_—04 zn: wn—jvja X) + (vvnj VX)
7j=1

= —(VPyuo, VX) — (VPyu1, VX) + (F(tn), x) + (9(tn), x), (5.7.13)
V0 =0, (5.7.14)
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where the weights are generated by the Lubich’s convolution quadrature formula, with

€ (1,2),
(1—2) ijzj.

Hence (5.7.13)-(5.7.14) can be written as the following abstract form

TN Cw, VI AV = — Ay Poug — ty A Pyus + Ft,) + g(t,), VO =0.

Jj=1

(5.7.15)

Let p1(x), pa(z), ..., onm—1(x) be the linear finite element basis functions defined by,
with j = 1,2, .., M — 1,

e T < <
f (x) i bR T, <x <XT;
J Tj—Tjt1’ J AR

0, otherwise.
\

To find the solution V"™ € S, n=0,1,

M-1
- Oémgo’m)
m=1

for some coefficients aj, k = 1,2,..., M — 1.

., N, we assume that

Choose x = ¢, 1 = 1,2,..., M — 1 in
(5.7.13), we have, withn =1,2,... N,

M-1

(Vom, Vor)uy,

n M-1
an J[Z Pm; Qi ozin]Jr
m=1

J

=1 m=1
M-1 M—1

= (V@m, VSOZ) —ty Z (V%m V(;Ol)urln + (F(tn)a (Pl) + (g(tn)a (Pl)a
m=1 m=1

(5.7.16)

where we assume the initial values P,ug and P,u; have the following expressions:

Prug = Zumsom, Ppuy = Zumcpm

To solve (5.7.16) by MATLAB, we need to write (5.7.16) into the matrix form which
we shall do now.



148

Denote
Qay (F(tn)a%
Q" — &2 , F"= (F<tn)’(p2) )
and
(9(tn), 1) ul
. (9(tn), > o_ |
g" = . U= ’
0
(g(tn),SOMfl) (M—1)x1 Upr—1 (M-1)x1
and
up
1
U
ulz '2 )
1
UM=1 /) iy

After some simple calculations, we may get the following mass and stiffness metrics

2 1
506 0
Y M—-1 ) g
= <(90m790l)>m,l1 - SR )
6
L2
0 6 3/ (M-1)x(M-1)
and
2 -1 0
S— (Vo vo)) =L !
- <( Prm g0l)>771,l1 N E -1 7
0 -1 2
(M—1)x(M—1)
respectively. Then (5.7.16) can be written as the following matrix form, n =1,2,... N,
T Z w,_;Ma? +Sa" = —Su’ — t,Su' + F" +g", o given, (5.7.17)

j=1
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Denote A;, = M~!'S. Then (5.7.17) can be written as, with n =1,2,..., N,

e Z wy,_;00 + Apa™ = —Apu’ —t, Aput + MTIFT + Mg, o given,

j=1
(5.7.18)
which is the matrix approximation form of (5.7.15). Hence o™,n = 1,2,..., N can be
calculated by the following formula
n—1
" = (wo+7*Ap) ! < — A’ — ot Aput + TOM T 4 oM T g — Z wn,ja”’j> )
j=1
(5.7.19)

We now consider how to calculate F".

Case 1. Assume that F'(t) is independent of u, that is, F'(t) = f(¢). Then the kth
components (F(tn), gpk), k=1,2,...,M — 1 in F" can be approximated by using the
midpoint quadrature formula

xT

(F(t). 1) = / fpede = [ ftgeds+ [ " bt n da

Tp—1 Tk

Tr—1 + Tk Tr—1+ Tk Ti + Try1 T+ Tpa
~ f(tn, Jer( )b+ f(tn, =)o =)k
2 2 2 2
h Tp—1 + Tp Tk + Ty
= —( f(t,, —— ty, ———— )
> (Fltn, LTI 4,

In MATLAB, we use the following code to calculate ™ with some given f(¢,z).

% find (f, phi)
function y=f_phi(x,n,tau,alpha)

%h case 1: f(t, x) = x"2 (1-x)"2 exp(t)-(2-12 x+12 x"2) exp(t)
tn=n*tau;
h=x(2)-x(1);
x0=[0;x(1:end-1)]; x1=x; x2=[x(2:end); x(end)+h];
x=(x0+x1)/2;
y1=(x.72) .*((1-x) . "2) *exp(tn) - (2-12*%x+12*(x.~2) ) *exp(tn) ;
x=(x1+x2)/2;
y2=(x.72) .*((1-x) . "2) *exp(tn) - (2-12*%x+12*(x.~2) ) *exp(tn) ;
y=h/2x(y1+y2);
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Ycase 2: f(t, x)=0

y=zeros(size(x)); %f=0

Case 2. Assume that F'(t) depends on u(t), that is, F\(t) = f(u(t)). Then kth element
(F(tn), gok), k=1,2,...,M—1in F" can be approximated by using the following formula:

(Pita)on) = [ Futtpnds~ [ putt,)ends

xT

»&ID“»&ID“[\DID‘[\DID‘&\

F(ultar))or d + / " ) da

Tk

1 x>
|
-

Tp—1+ Ty T+ T4

Futaer, 25 4 Flultor, 574 |

F (u(tno1, 751)) + Flultaor, 7)) L Flultay, 2)) + Flutny, 2511))
2 2

Fulty v, 251)) + 2F (u(tn 1, 20)) + Fu(ty, xk+1))]

Q

Q

F_i+ Fy+ F],
where, with £ =1,2,..., M — 1,

F_l = F(u(tn_l,azk_l)) = F(’U(tn_l,fl?k_l) + Uo(ﬂ?k_l) + tn_lul(a:k_l)),
Fo=F(u(ty_1,21)) = F(v(ta_1, %) + uo(xs) + tn_1ui(xy)),

Fi = F(u(th-1,2k41)) = F(v(tn-1, Trs1) + uo(Tps1) + tnorta (p41)).

In MATLAB, we use the following code to calculate the kth element of (f(u(t,)), ¢x)

in F™.

% find (fu, phi)
function y=fu_phi(x,n,tau,alpha,v,Ph_u0,Ph_ul)

tn=n*tau;
h=x(2)-x(1);
UO=v+Ph_uO+tn*Ph_ul;
U_1=[0;U0(1:end-1)]1;
U1=[U0(2:end) ;0] ;
% £f(uw)= sin(u)
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FO=sin(U0); F_1=sin(U_1); Fi1=sin(U1);
y=h/4* (F_1+2*F0+F1) ;

We next consider how to calculate g” which is more complicated than F". Approx-
imating the Riemann-Liouville fractional integral by the Lubich first order convolution
quadrature formula and truncating the noise term to M — 1 terms, we obtain the lth

element of g"” by, with l =1,2,... , M — 1,

dp,, (1)

g"(1) = (9(tn)s 1) = D7 Y 1l (em(@), 1)

n M—-1
- B (t;) = B (tj—
””wa[E o2 (ems 1) ) = Bnltiz)) © (5.7.0)
j=1 m=1

T

(=)

where w ;

[07 1]7

,j =0,1,2,... n are generated by the Lubich first order method, with v €

=07 =S e
j=0

To solve (5.7.20), we first need to generate M — 1 Brownian motions 37 (t),m =
1,2,..., M — 1 which can be done by using MathWorks MATLAB function fom1d.m.

Let Nref = 2" and T = 1 and let ditref = T/Nref denote the reference time step
size. Let 0 =ty <t; < -+ < tnpey = T be the time partition of [0,7]. We generate the
fractional Brownian motions 3 (¢y), 82 (t1),... B2 (tnrer), m = 1,2,..., M — 1 with the

Hurst number H € [1/2,1] by using the following code:

% Fractional Brownian paths with Hurst number 1/2 \leq H \leq 1
w=[1;
for j=1:M-1
[(Wj,t]=fbm1d (H,Nref,T);
W=[W Wjl;
end

W(1,:)=zeros(1l, M-1);

Remark 53. When H = 1/2, fbm1d(H, Nref, T) generates the standard Brownian

motions. The standard Brownian motions can also be generated by the following code
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% Standard Brownian paths
dWw=sqrt (dtref)*randn(Nref ,M-1);
W=cumsum (dW, 1) ;
W=[zeros(1, M-1); W]l;

Since we do not know the exact solution of the system, we shall use the reference time
step size dtref and the space step size h = 277 to calculate the reference solution vref.
The spacial discretization is based on the linear finite element method.

We then choose kappa = 2°,2% 23 22 and consider the different time step size 7 =
dtref = kappa to obtain the approximate solutions V" at t,, = nr.

Let us discuss how to calculate the Ith element of g” in MATLAB. Denote

W, = [w(()_’Y)v w§_7)7 ey wiz_—’;)]lx(Mfl)a

and
27]\7{:—11 77171/2<em7 el)w

Sont A (e, ) Bt} P (tns)

m=1 ’ym T

dWdt =

M-1_1/2 Brm (t1)—=Bm (to)
D=1 Vm (€m, €1) T (M—1)x1

The 1th element of the vector g" satisfies
g'(l)=w,xdWdt, [=1,2,... .M —1.
Based on this idea, we use the following MATLAB function
g_{phi}(x,n,tau,ga,kappa,W)

to calculate g"(l) in our numerical simulations.

% find (g, phi)
function y=g_phi(x,n,tau,ga,kappa,W)
y=01;
M=length(x)+1;
%Find w_ga=[w_{0}"{-ga} w_{1}"{-ga} w_{n-1}"{-ga}]
w_ga=[];
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for nn=0:n-1

w_ga=[w_ga w_gru(an,-ga)l;

end

for k=1:M-1
A=dWdt_k(x,n,tau,kappa,W,k);
yl=tau” (ga)*w_gax*A;
y=Ly;y1l;

end

% Find dwdt_k
function y= dWdt_k(x,n,tau,kappa,W,k)

y=zeros(n,1);

M=length(x)+1;

for m=1:M-1
beta=2; % white noise beta=0, trace class beta=2
ga_m=m" (-beta) ;
kl=n:-1:1; Ytn=n*tau=(n*kappa)*dtref
dW_k1=W(k1*kappa+l,m)-W((k1-1)*kappa+l,m); %dW_k is a vector
h=x(2)-x(1);
x1=((k-1)*h+kxh)/2; x2= (kxh+(k+1)*h)/2;
e_phi=h/2*(sqrt(2)*sin(pi*m*x1)+sqrt (2)*sin(pi*m*x2)) ;
y=y+ga_m~ (1/2)*e_phix* (dW_k1/tau);

end

Finally we shall consider how to calculate the Ly projections P,ug and P,uq of ug and
u1, respectively. Here we only consider the case P,ug. The calculation of P,u; is similar.

Assume that

M—-1
P o 0
rlo = Uy, P -
m=1
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By the definition of P,, we obtain

M-1
> up(om, 01) = (uo, @1).
m=1

Hence u® can be calculated by
u’ =MV (5.7.21)
where
(U07 901)
VO — (Uo, 902)
(uo, SDM*l) (M—1)x1

Remark 54. When we use (5.7.21) to calculate u’, we have to calculate M~ which will
produce some computational errors. In our numerical examples, we shall simply choose
u’(l) = ug(zy), 1 = 1,2,...,M — 1 (instead of (5.7.21)) which also give the required

accuracy in our numerical simulations.

Example 55. Consider the following stochastic time fractional PDE, with o € (1,2),

§Du(t, ) — % =f(t,x)+g(t,z), 0<t<T O0O<z<l, (5.7.22)
(0, 7) = up(z), 8“5907; ) (), (5.7.23)
u(t,0) =u(t,1) =0, (5.7.24)

where f(t,x) = 22(1 — x)%e' — (2 — 122 + 122%)e! and the initial value ug(x) = x*(1 —
2)% uy(z) =z and g(t,z) is defined by (5.7.4).

Let v(t,z) = u(t,z) — uo(z) — tuy(z) and transform the system (5.7.22)-(5.7.24) of u
into the system of v. We shall consider the approximation of v at T'=1. We choose the
space step size h = 276 and the time step size dtref = 277 to get the reference solution
vref. To observe the time convergence orders, we consider the different time step sizes
T = kappa * dtref with kappa = [2°,2%,23 22] to obtain the approzimate solution V. We
choose M1 = 20 simulations to calculate the following L2 error at'l' = 1 with the different

time step sizes

loref = Vil = y/Elloref — VIl
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A plot of the error at T=0.1 against log2 (A t)
T T T T

reference line

log2(error)
o)
T

11 | | | | | |
-8.5 -8 -7.5 -7 -6.5 -6 -5.5 -5

log2(A t)

Figure 5.7.1: The experimentally determined orders of convergence with v = 0.6 and

a = 1.1 1in Table 5.7.1

By Theorem 51, the convergence order should be
[oref — V|re(um) = O(rmnthetr=l/2h), (5.7.25)

In Table 5.7.1, we consider the trace class noise, that is v, = m 2,m = 1,2,...
and we observe that the experimentally determined time convergence orders are consistent
with our theoretical convergence orders. The numbers in the brackets denote the theoretical
convergence orders.

In Table 5.7.2, we consider the white noise, that is v, = 1,m = 1,2,... and we
observe that the experimentally determined time convergence orders are slightly less than
the orders in the trace class noise case as we expected.

In Figure 5.7.1, we plot the experimentally determined orders of convergence with v =
0.6 and a = 1.1 in Table 5.7.1. The expected convergence order is O(7™n{batr=1/2}) —
O(7). We indeed observe this in the figure where the reference line is for the order O(T).

In Figure 5.7.2, we plot the experimentally determined orders of convergence with
v = 0.6 and o = 1.1 in Table 5.7.2. We observe that the convergence order is almost
O(7) in the figure where the reference line is for the order O(T).

In Figure 5.7.3, we plot one approrimate solution with o = 1.5 and v = 0 for all
z € (0,1) and t € (0,1) in Ezample 55. In Figure 5.7.4, we plot one approximate solution
with o« = 1.5 and v =0 at time T =1 in Example 55.

In Figure 5.7.5, we plot one approrimate solution with o = 1.5 and v = 0.9 for all
z € (0,1) and t € (0,1) in Ezample 55. In Figure 5.7.6, we plot one approximate solution
with o = 1.5 and v = 0.9 at time T' =1 in Example 55.
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A plot of the error at T=0.1 against log2 (A t)
T T T T

reference line

log2(error)
4
T

log2(A t)

Figure 5.7.2: The experimentally determined orders of convergence with v = 0.6 and

a = 1.1 1in Table 5.7.2

0.1
”””..."' ‘-:';"."'n'u!!!";’ /]
- ’ll"’"""l"""""""y.lI’llllllllllll;;l"':i':lll,
“““\“'!'llr; %

]

Figure 5.7.3: Approximate realisation of the solution with « = 1.5 and v = 0 for x € (0, 1)
and t € (0,1) in Example 55

008 T T T T T T T T T

0.06 7

> 0.04

0.02

Figure 5.7.4: Approximate realisation of the solution at time 7' = 1 with o = 1.5 and

v = 0 in Example 55
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a | v |t=1/4 7=1/8 1/16 1/32 order
1.1 1 0.0 | 1.91e-2 1.07e-3 6.76e-3 3.75e-3

0.82 0.67 0.85  0.78 (0.60)
1.1 1 04 | 1.15e-2  5.25e-3 3.33e-3 1.63e-3

113 0565  1.03  0.94 (0.80)
1.1 1 0.6 | 1.01e-2 4.54e-3 2.43e-3 1.16e-3

115 090 105  1.03 (1.00)
1.1 | 0.8 | 8.54e-3 3.96e-3 1.93e-3 9.07e-4

110 1.03  1.09  1.07 (1.00)
1.6 | 0.0 | 1.38e-2 6.34e-3  3.50e-3 1.68e-3

112 085  1.05 1.01 (1.00)
1.6 | 0.4 | 7.76e-3 3.70e-3 1.82e-3 8.07e-4

106 1.02  L17  1.08 (1.00)
1.6 | 0.6 | 6.73e-3  3.33e-3 1.61le-3 6.96e-4

1.01 1.04 1.21 1.09 (1.00)
1.6 | 0.8 | 6.33¢-3  3.19¢-3 1.54e-3 6.61e-4

0.98  1.05 122  1.08 (1.00)

Table 5.7.1: Time convergence orders in Example 55 at T" = 1 with trace class noise

Ym=m 2 m=12,...

We observe that the solution with o = 1.5,y = 0.9 is much smoother than the solution

with « = 1.5,7 = 0 as we expected.

Example 56. Consider the following stochastic time fractional PDE, with o € (1,2),

SDu(t, ) — % = f(u(t,x)) +g(t,z), 0<t<T, 0<zx<l, (5.7.26)
w(0, ) = up(x), 8“%0]; ) _ uy(a), (5.7.27)
u(t,0) = u(t, 1) =0, (5.7.28)

where f(u) = sin(u) and the initial values ug(z) = 22(1 — 2)* uy(x) = 22(1 — 2)(1 — 2x)

and g(t,x) is defined by (5.7.4).
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a | v |t=1/4 7=1/8 1/16 1/32 order
1.1 1 0.0 | 6.58¢-2 4.86e-2 3.61le-2 2.37e-2

043 043 0.60  0.49 (0.60)
1.1 104 | 1.32¢-2 7.00e-3 4.45e-3 2.29e-3

0.92 0.65 0.95  0.84 (1.00)
1.1 1 0.6 | 1.06e-2 5.0le-3 2.75e-3 1.34e-3

1.08 0.86 1.03  0.99 (1.00)
1.1 ] 0.8 | 8.75e-3 4.10e-3 2.03e-3 9.59e-4

1.09 1.01 1.08  1.06 (1.00)
1.6 | 0.0 | 2.69e-2 1.64e-2 1.02e-2 5.58e-3

0.70 0.68 0.87  0.75 (1.00)
1.6 104 | 9.7le-3 5.07e-3 2.68e-3 1.26e-3

0.93 0.91 1.08  0.98 (1.00)
1.6 | 0.6 | 7.40e-3 3.75e-3 1.87e-3 8.24e-4

0.97  1.00 118  1.05 (1.00)
1.6 | 0.8 | 6.54e-3  3.30e-3 1.60e-3 6.88e-4

0.98 1.04 1.22 1.08 (1.00)

Table 5.7.2: Time convergence orders in Example 55 at T' = 0.1 with white noise ~,, =

Lm=12,...

We use the same notations as in Example 55. In Table 5.7.3, we consider the trace
class noise, that is v, = m=2,m = 1,2,... and we observe that the experimentally
determined time convergence orders are consistent with our theoretical convergence orders.
The numbers in the brackets denote the theoretical convergence orders.

In Table 5.7.4, we consider the white noise, that is v, = 1,m = 1,2,... and we
observe that the experimentally determined time convergence orders are slightly less than
the orders in the trace class noise case as we expected.

In Figure 5.7.7, we plot the experimentally determined orders of convergence with v =

0.6 and o = 1.6 in Table 5.7.3. The expected convergence order is O(r™n{batr=1/2}) —
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A plot of the error at T=0.1 against log2 (A t)
6F T T T T T T ]

reference line .

log2(error)

log2(A t)

Figure 5.7.7: The experimentally determined orders of convergence with v = 0.6 and

a = 1.6 in Table 5.7.3

A plot of the error at T=0.1 against log2 (A t)

-5 T

reference line

log2(error)
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Figure 5.7.8: The experimentally determined orders of convergence with v = 0.6 and

o = 1.6 in Table 5.7.4

O(7). We indeed observe this in the figure where the reference line is for the order O(T).
In Figure 5.7.8, we plot the experimentally determined orders of convergence with
v = 0.6 and a = 1.6 in Table 5.7.4. We observe that the converegnce order is almost O(T)

in the figure where the reference line is for the order O(T).

Example 57. Consider the following stochastic time fractional PDE, with o € (1,2),

SDu(t, ) — % = f(u(t,z)) +g(t,x), 0<t<T,0<z<l, (5.7.29)
u(0,z) = up(x), 8u(80t, 2) = uy(z), (5.7.30)

u(t,0) = u(t,1) =0, (5.7.31)
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a | v |t=1/4 7=1/8 1/16 1/32 order
1.1 0.0 | 1.48e-2 8.28e-3 4.96e-3 2.77e-3

0.84 073 084  0.80 (0.60)
1.1 | 04 | 8.46e-3 3.86e-3 2.68e-3 1.34e-3

113 052 099  0.88 (1.00)
1.1 1 0.6 | 6.57e-3 2.69e-3 1.61le-3 8.16e-4

128 074 098  1.00 (1.00)
1.1 0.8 | 4.57e-3 1.85e-3 9.91e-3 5.00e-3

130 090 098  1.06 (1.00)
1.6 | 0.0 | 1.32e-2 5.77e-3  3.18e-3 1.54e-3

119 085  1.04  1.03 (1.00)
1.6 | 0.4 | 7.73e-3 3.62e-3 1.75e-3 7.90e-4

109 104  L15  1.09 (1.00)
1.6 | 0.6 | 6.64e-3 3.24e-3 1.55e-3 6.77e-4

1.03 1.06 1.19 1.09 (1.00)
1.6 | 0.8 | 6.17e-3  3.07e-3 1.46e-3 6.34e-4

1.00 1.06 1.20 1.09 (1.00)

Table 5.7.3: Time convergence orders in Example 56 at T" = 1 with trace class noise

2m=1,2,...

Ym =M
where f(u) = —ud+u and the initial values ug(x) = 2*(1 —2)?, uy(x) = 22(1 — 2)(1 — 27)
and g(t, x) is defined by (5.7.4).

We use the same notations as in Example 55. In Table 5.7.5, we consider the trace

2m = 1,2,... and we observe that the experimentally

class noise, that is v, = m~
determined time convergence orders are consistent with our theoretical convergence orders.
The numbers in the brackets denote the theoretical convergence orders.

In Table 5.7.6, we consider the white noise, that is v,, = 1,m = 1,2,... and we

observe that the experimentally determined time convergence orders are slightly less than

the orders in the trace class noise case as we expected.



a | v |t=1/4 7=1/8 1/16 1/32 order
1.1 1 0.0 | 6.57e-2 4.86e-2 3.60e-2 2.36e-2

043 043 0.60  0.49 (0.60)
1.1 1 04| 1.08e-2 6.14e-3 4.06e-3 2.14e-3

0.81 0.59 0.92  0.77 (1.00)
1.1 1 0.6 | 7.38e-3 3.48e-3 2.11e-3 1.07e-3

1.08 0.72 0.97  0.92 (1.00)
1.1 0.8 | 497e-3 2.16e-3 1.18e-3 5.95e-4

119 087 099  1.02 (1.00)
1.6 | 0.0 | 2.70e-2  1.64e-2 1.02e-2 5.58e-3

0.71 0.68 0.87  0.75 (1.00)
1.6 | 0.4 | 9.84e-3 5.10e-3 2.68e-3 1.27e-3

0.904 092  1.07  0.98 (1.00)
1.6 | 0.6 | 7.40e-3 3.72e-3 1.83e-3 8.17e-4

0.99 1.02 1.16 1.05 (1.00)
1.6 | 0.8 | 6.42¢-3 3.21e-3 1.54e-3 6.66e-4

0.99  1.05 120 1.08 (1.00)
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Table 5.7.4: Time convergence orders in Example 56 at 7' = 0.1 with white noise ~,, =

Lm=12,...

In Figure 5.7.9, we plot the experimentally determined orders of convergence with v =

0.6 and o = 1.6 in Table 5.7.5. The expected convergence order is O(r™n{batr=1/2}) —

O(7). We indeed observe this in the figure where the reference line is for the order O(T).

In Figure 5.7.10, we plot the experimentally determined orders of convergence with

v = 0.6 and o = 1.6 in Table 5.7.6. We observe that the convergence order is almost

O(T) in the figure where the reference line is for the order O(T).
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. A plot of the error at T=0.1 against log2 (A t)

reference line

log2(error)
(o]

l0g2(A t) .

Figure 5.7.9: The experimentally determined orders of convergence with v = 0.6 and

a = 1.6 in Table 5.7.5

. A plot of the error at T=0.1 against log2 (A t)

reference line

log2(error)
(o]

KN
o
T
1

log2(A t)

Figure 5.7.10: The experimentally determined orders of convergence with v = 0.6 and

a = 1.6 in Table 5.7.6
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a | v |7=1/4 7=1/8 1/16 1/32 order
1.1 0.0 | 1.91e-2 1.07e-2 6.75e-3 3.74e-3

0.82 0.67 0.84  0.78 (0.60)
1.1 104 | 1.15e-2  5.24e-3  3.32¢-3 1.62e-3

113 065  1.03  0.94 (0.80)
1.1 0.6 | 1.0le-2 4.53e-3 2.42¢-3 1.16e-3

115 090 105  1.03 (1.00)
1.1 ] 0.8 | 8.50e-3 3.94e-3 1.93e-3 9.04e-4

110 1.03  1.09  1.07 (1.00)
1.6 | 0.0 | 1.38¢-2 6.34e-3  3.50e-3 1.68e-3

112 085  1.05 101 (1.00)
1.6 | 04 | 7.77e-3  3.70e-3 1.82e-3 8.08e-4

1.06 1.02 1.17  1.08 (1.00)
1.6 | 0.6 | 6.74e-3  3.33e-3 1.61le-3 6.98e-4

1.01 1.04 1.21 1.09 (1.00)
1.6 | 0.8 | 6.35e-3  3.20e-3 1.54e-3 6.62e-4

098  1.05 122  1.08 (1.00)

Table 5.7.5: Time convergence orders in Example 57 at 7' = 1 with trace class noise

Ym =m 2 m=12,...



a | v |7=1/4 7=1/8 1/16 1/32 order
1.1 ] 0.0 | 6.58e-2 4.86e-2 3.6le-2 2.37e-2

043 043  0.60  0.49 (0.60)
1.1 104 | 1.32e-2  6.99¢-3 4.45e-3  2.29e-3

0.92 0.65 0.95  0.84 (1.00)
1.1 1 0.6 | 1.06e-2  5.00e-3 2.75e-3 1.34e-3

1.08 0.86 1.03  0.99 (1.00)
1.1 ] 0.8 | 8.71le-3 4.08e-3 2.02e-3 5.56e-4

.09 101 1.08  1.06 (1.00)
1.6 | 0.0 | 2.69e-2 1.64e-2 1.02e-2 5.57e-3

0.70 0.68 0.87  0.75 (1.00)
1.6 | 04| 9.71e-3  5.07e-3  2.68e-3 1.26e-3

0.93 0.91 1.08  0.98 (1.00)
1.6 | 0.6 | 7.41e-3 3.75e-3 1.87e-3 8.25e-4

0.97  1.00 118  1.05 (1.00)
1.6 | 0.8 | 6.55e-3 3.31e-3 1.60e-3 6.90e-4

0.98 1.04 1.22 1.08 (1.00)
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Table 5.7.6: Time convergence orders in Example 57 at 7" = 0.1 with white noise ~,, =

Lm=12,...



Chapter 6

Conclusion

This thesis considers the numerical methods for approximating the e-dependent stochastic
Allen-Cahn equation, along with stochastic semilinear space-time fractional subdiffusion
and superdiffusion problems.

For the e-dependent stochastic Allen-Cahn equation, the noise exhibits smoothness
both in time and space, characterized as mild noise. To tackle this, we propose the
space-time Galerkin method (discontinuous in time and continuous in space) to effectively
approximate the equation. By using finite element approximation, we derive a posteriori
error estimates in the H! norm.

In the context of the stochastic semilinear time-space fractional subdiffusion problem,
the noise maintains smoothness in space but acquires nonsmoothness in time. Its rep-
resentation involves eigenfunctions and Brownian motions, allowing us to express it as a
series. Through an innovative approach that involves approximating the time-dependent
noise using piecewise constant functions, we regularize the problem. Employing the finite
element method, we proceed to approximate the regularized version, ultimately establish-
ing optimal convergence orders with respect to time and space. These convergence rates
are contingent upon « € (0,1) and v € [0, 1], where « signifies the fractional derivative
order and v represents the fractional integral order.

In the context of the stochastic semilinear time-space fractional superdiffusion prob-
lem, we encounter a similar scenario where the noise maintains spatial smoothness but
temporal nonsmoothness. Again utilizing the representation based on eigenfunctions and

Brownian motions, we facilitate regularization by approximating the time-dependent noise
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using piecewise constant functions. Applying the finite element method, we approximate
the regularized problem and establish optimal convergence orders concerning time and
space. Remarkably, these convergence orders surpass those obtained in existing literature
under similar assumptions.

This thesis opens avenues for further exploration:

1. Investigate adaptive methods for solving the e-dependent stochastic Allen-Cahn

equation, capitalizing on the a posteriori error estimates furnished in this study.

2. Undertake the fully discretization of the stochastic semilinear time-space fractional

subdiffusion problem addressed herein.

3. Undertake the fully discretization of the stochastic semilinear time-space fractional

superdiffusion problem examined in this work.
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Appendix

1. Matlab codes in Section 4.7

In this section, we include the MATLAB code for solving stochastic space-time frac-
tional subdiffusion in Section 4.7. One may copy the codes and run them to get the

numerical solutions in Section 4.7.

function Y = sfpde( )

% Solves

% D_t~{al} u(x, t)-u’’(x,t)= g(x, t)+ D"{-gal} dwW/dt, 0<t<1, 0<x < 1
T u(0)= x"2(1-x)"2

hglx, t) = x72 (1-x)"2 e"t -(2-12x+12x72) e"t

% Consider the time convergence order

% Time discretization: Grunwall-Letnikov method space discretization: FEM,
% E-M uses 5 different timesteps: kappaxdt

% where kappa=[2"2, 273, 274, 275, 276];

% Examine strong convergence at T=1: Xerr_appr=E | Xn - X(T) |.

%Check the convergence order

% Xerr_appr = (E \[Xn -X(T)\[72)"{1/2} \leq C tau~{1/2},

%sfinite element method

% Let 0= t_0 < t_1 < \dots < t_N=T be the time partition of [0,T] and tau
% the time step size.

% Let 0< x_0< x_1< \dots x_M =1 be the space partition of [0, 1] and h the
% space step size

% Let u-ul=v

% v satisfies the following abstract form

% D7{al} v(t) + Av =-Au0 + £f(t) +g(t), t>0
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v(0) =0,

The variational form is to find v such that
(D~{al} v(t), \phi) + (v’, \phi’)
=- (u0’, \phi’)+ (£, \phi) +(g, \phi) ,
\forall \phi \in H_{0}"{1}(0,1)
The finite element method is to find vh such that
(D"{alpha} vh(t), \chi) + (vh’, \chi’)
= - (u0’, \phi’) + (£, \chi)+ (g, \chi) , \forall \chi \in S_h
The L1 scheme is to find V'n such that
( \tau~{-\alpha} \sum_{j=1}"{n} w_{n-j} V°{j}, \chi)
+ (U{n}’, \chi’) = - (u0’, \phi’) +(£°{n}, \chi)
+(g~{n}, \chi), \forall \chi \in S_h

Let
V*{n} = \sum_{m=1}"{M-1} \alpha_{m}~{n} \phi_m
we get

w_{0} \sum_{m=1}"{M-1} \alpha_{m}"{n} ( \phi_m, \phi_1)

+ \tau"{\alpha} \sum_{m=1}"{M-1} \alpha_{m}~{n} ( \phi_m’, \phi_1’)
- \tau"{\alpha} \sum_{m=1}"{M-1} \alpha_{m}~{0} ( \phi_m’, \phi_1’)
+ \tau"{\alpha} (£°n}, \phi_1) + \tau"{\alpha} (g"n}, \phi_1)

+ \sum_{j=1}"{n-1} w_{n-j} \sum_{m=1}"{M-1}

\alpha_{m}"{j} ( \phi_m, \phi_1), 1=1, 2, \dots, M-1

Matrix form
(w_{0}I+ taux Ah) alpha™n =
- tau”{alphal}*Ah alpha”0

+ Mass”{-1} \tau~{alpha} * f°n + Mass~{-1} \tau"{alpha} * g'n

- \sum_{j=1}"{n-1} w_{n-j} alpha~{j}
where
Ah= Mass~{-1}*Stiffness,

the integral (f_{n}, phi_{1}) is calculated by the midpoint rule
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(£"{n}) (1) = (£_{n}, phi_{1})

= h/2+[ £ _{n}((x_{1-11x_{1})/2)+ £ _{n}((x_{1H+x_{1+1})/2)]
Here Mass = h *x [2/3 1/6 0 0O ... 0
1/6 2/3 1/6 0 ... 0
0 0 ce 2/3 1/6
0 0 ... 1/6  2/31]
Stiffness = 1/hx 2 -1 0 O 0
-1 2 -10 0
0O 0. 2 -1
0 O -1 2]
Remark 1: The algorithm of fpde is similar as the algorithm for pde,

please see the MATLAB code for parabolic pdes
Remark 2: Initial value uO is better than Ph(u0) in experiements,We shall

choose alpha~0(k) = u0 (x_{k}) instead of alpha~0(k) = Ph(u0) (x_{k})

correction algorithm for recovering the optimal convergence orders
Matrix form for the correction algorithm, n=1, 2, 3, ..., N,

(w_{0}I+ taux Ah) alpha’n

tau”{alphal}*Ah alpha~0 *(1+c0)

+

Mass~{-1} \tau~{alpha} * f"n + Mass”{-1} \tau“{alpha} * g°n
\sum_{j=1}"{n-1} w_{n-j} alpha~{j}

where

c0 1/2, n=1

=0, n=2, 3, \dots, N

hAlgorithm;

%Step 1, Given initial value U~0 ( UO =u0, not Ph (u0))
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hStep 2, Find U”1
%Step 3: Find U2

clear

alpha =default(’ 0 <alpha <=1 (default is alpha=0.3)’, 0.3);

ga =default(’ga \in [0, 1], (default is alpha=0)’, 0.0);

c0 =default(’cO = 0 or 0.5 corrections (default is c0=0.0 )’,0.0);
M1 =default(’M1=No of the simulations (default is M1=20)’, 20);

H =default (’H= Hurst number (default is H =0.5)’, 0.5);

randn(’state’,100)

hspace discretization

x0=0; x1=1; M=2"6;

h=(x1-x0)/M; x=linspace(x0,x1,M+1); x=x(2:end-1); x=x’;

%time discretization
t0=0; T=1;
Nref = 277;

error_Mi=[];
for s = 1:M1 % M1: the number of the simulations
S
dtref=T/Nref;
% Brownian paths W=[B_1(t), B_2(t),...B_{M-1}(t)
% dW=sqrt(dtref)*randn(Nref,M-1); W=cumsum(dW,1); W=[zeros(1l, M-1); W];
% Fractional Brownian paths 1/2 \leq H \leq 1
w=[];
for j=1:M-1
[(Wj,t]=fom1d (H,Nref,T);
W=[W Wjl;

end
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W(1,:)=zeros(1, M-1);

% exact solution
kappa =1;
[vref]=sfpde(alpha,Nref,M,c0,ga,T,kappa,W);

happroximate solutions

kappa =[2"5, 274, 273, 272]; % N=Nref/kappa, tau=T/N

error=[];

for i=1:length(kappa)
[V]=sfpde(alpha,Nref,M,c0,ga,T,kappa(i),W);
err=vref-V; err_L2norm=sqrt((err’*err)*h);
error = [error err_L2norm];

end

error_Ml=[error_Ml; error]; Y%error_Ml is a matrix

end

error_M1_L2= sqrt(sum(error_M1.*error_M1,1)/M1); % \le \|_{L"2(D)}

%Find the convergene orders
ratio=[];
for j=1:length(error_M1_L2)-1
ratio=[ratio error_M1_L2(j)/error_M1_L2(j+1)];
end
format short

ratio= log2(ratio);

ratio

mean(ratio) % Show the ratios and mean of the rations

format shortE
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error_M1_12 % Show the errors

Jmain program
function [vref]=sfpde(alpha,Nref,M,c0,ga,T,kappa,W);
x0=0; x1=1; h=(x1-x0)/M;

x=linspace(x0, x1, M+1); x=x(2:end-1); x=x’;

N = Nref/kappa;
tau=T/N;

% construct matrix A for finite element method
Mass=2/3*diag(ones(1,M-1))+1/6*diag(ones(1,M-2),1)+1/6*xdiag(ones(1,M-2),-1);
Mass=h*Mass;
Stiffness=2*diag(ones(1,M-1))+(-1)*diag(ones(1,M-2),1)+(-1)*diag(ones(1,M-2),-1);
Stiffness=(1/h)*Stiffness;

Ah=inv (Mass)*Stiffness;

% vO
vO=zeros(M-1,1);

%»Find L2 projection of u0.
JWe may use Ph_u0=Ph1(x,u0,Mass) to calculate Ph_u0, but the results
hare not good.We simply use u0 instead of Ph (u0)

% to avoid calculate Mass~{-1}.

% Case 1: u0 = x~2(1-x)"2;
Ph_u0=(x."2) .*x((1-x)."2);

vN=[v0] ;

% First time level, n=1



% Find v1= the value at tl1, (correction c0=0.5, No correction c0=0)
initial =-(1+c0)*tau”~alpha*Ah*Ph_u0;
f1=inv(Mass)*f_phi(x,1,tau,alpha);
gl=inv(Mass)*g_phi(x,1,tau,ga,kappa,W);
v=(w(0,1,alpha)*eye(M-1)+tau~alpha*Ah)\ (tau” (alpha)*fl ...

+tau” (alpha)*gl + initial);
vN=[v vN];
% find v2, v3, .... VN
for n=2:N
suml=0;
for j=1:n
suml=sumi+w(j,n,alpha)*vN(:,j); %summation
end
initial =-tau”alpha*xAh*Ph_u0; %u0
fn=inv(Mass)*f_phi(x,n,tau,alpha); %f
gn=inv(Mass)*g_phi(x,n,tau,ga,kappa,W); %g
v=(w(0,n,alpha)*eye(M-1)+tau~alphaxAh)\ (tau” (alpha)*fn ...
+tau” (alpha)*gn - suml + initial);
vN=[v vN];
end

vref=v;

Jweights L1 scheme
function y=w(k, j,alpha)

if k==0
y=1/gamma (2-alpha) ;

elseif j==1 && k==]
y=-alpha/gamma(2-alpha) ;

elseif k==1 && j>=2
y=(27 (1-alpha)-2)/gamma(2-alpha) ;

elseif k>=2 && k<=j-1
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y=((k-1) ~(1-alpha)+(k+1) ~(1-alpha)-2*k~ (1-alpha) ) /gamma(2-alpha) ;
else k==j && j>=2;
y=((k-1) "~ (1-alpha)-(alpha-1)*k~(-alpha) -k~ (1-alpha))/gamma(2-alpha) ;

end

% find the L2 projection of u0
function y=Ph1(x,u0,Mass)
h=x(1)-x(2);
x0=[0;x(1:end-1)]; xl=x; x2=[x(2:end); x(end)+h];
x=(x0+x1)/2;
y1=u0;
x=(x1+x2)/2;
y2=u0;
y=h/2x%(y1+y2) ;

y=inv (Mass)*y;

% nonsmooth initial data u0
function y=Ph2(x,Mass)
h=x(1)-x(2);
M=length(x)+1;
y= zeros(M-1,1);
for j=1:length(M-1)
if j <= ceil(M/2)
y(j)=0;
else
y(j)=h;
end
end

y=inv(Mass) *y;

% find (f, phi)
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function y=f_phi(x,n,tau,alpha)
% case 1: f(t, x) = x72 (1-x)72 exp(t)-(2-12 x+12 x72) exp(t)
tn=n*tau;
h=x(2)-x(1);
x0=[0;x(1:end-1)]; xl1=x; x2=[x(2:end); x(end)+h];
x=(x0+x1)/2;
y1=(x.72) .*((1-x) . "2) *exp (tn) - (2-12*x+12x(x.~2) ) *exp(tn) ;
x=(x1+x2)/2;
y2=(x.72) .*((1-x) . "2) *exp(tn) - (2-12*%x+12*(x.~2) ) *exp(tn) ;
y=h/2%(y1+y2) ;

Ycase 2: f(t, x)=0

y=zeros(size(x));  %f=0

% find (g, phi)
function y=g_phi(x,n,tau,ga,kappa,W)
y=01;
M=length(x)+1;
#Find w_ga=[w_{0}"{-ga} w_{1}"{-ga} w_{n-1}"{-ga}]
w_ga=[];
for nn=0:n-1
w_ga=[w_ga w_gru(nn,-ga)l;

end

for k=1:M-1
A=dwdt_k(x,n,tau,kappa,W,k) ;
yl=tau~ (ga)*w_gax*A;
y=ly;y1l;

end

% Find dwdt_k



191

function y= dWdt_k(x,n,tau,kappa,W,k)

y=zeros(n,1);

M=length(x)+1;

for m=1:M-1
beta=2; % white noise beta=0, trace class beta=2
ga_m=m" (-beta) ;
kl=n:-1:1; Ytn=n*tau=(n*kappa)*dtref
dW_k1=W(kl*kappa+l,m)-W((kl-1)*kappa+tl,m); %dW_k is a vector
h=x(2)-x(1);
x1=((k-1)*h+kxh)/2; x2= (kxh+(k+1)*h)/2;
e_phi=h/2*(sqrt(2)*sin(pi*m*x1)+sqrt(2)*sin(pi*m*x2));
y=y+ga_m~ (1/2)*e_phix(dW_k1/tau);

end

function [ y ] = w_gru(k,al)

% Grunwald-Letnikov weights

if k==0;
y=1;
elseif k==1;
y=-al;
else
y=al;
for 1=1:k-1
y=y*(al-1);
end
y=(-1) "k/factorial (k) *y;

end

function [W,t]=fbmi1d(H,n,T)
pA
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Jhttps://de.mathworks.com/matlabcentral/fileexchange

%/3893b-fractional-brownian-motion-generator

%fast one dimensional fractional Brownian motion (FBM) generator
% output is ’W_t’ with t in [0,T] using ’n’ equally spaced grid points;

% code uses Fast Fourier Transform (FFT) for speed.

% INPUT:

yA - Hurst parameter ’H’ in [0,1]

pA - number of grid points ’n’, where ’n’ is a power of 2;
YA if the ’n’ supplied is not a power of two,

% then we set n=2"ceil(log2(n)); default is n=2"12;

yA - final time ’T’; default value is T=1;

% OUTPUT:

% - Fractional Brownian motion ’W_t’ for ’t’;

b - time ’t’ at which FBM is computed;

b If no output it invoked, then function plots the FBM.

% Example: plot FBM with hurst parameter 0.95 on the interval [0,10]
% [W,t]=fbm1d(0.95,2712,10); plot(t,W)
% Reference:
% Kroese, D. P., & Botev, Z. I. (2015). Spatial Process Simulation.
% In Stochastic Geometry, Spatial Statistics and Random Fields(pp. 369-404)
% Springer International Publishing, DOI: 10.1007/978-3-319-10064-7_12
if (H>1)|(H<O0) % Hurst parameter error check
error (’Hurst parameter must be between O and 1’)
end
if nargin<2
n=2"12; % grid points
else
n=2"ceil(log2(n));
end

if nargin<3



T=1;
end

r=nan(n+1,1);r(1) = 1;idx=1:n;

r(idx+1) = 0.5%((idx+1) .~ (2*H) - 2*idx.”~(2*H) + (idx-1)."(2*H));

r=[r; r(end-1:-1:2)]; % first rwo of circulant matrix
lambda=real (fft(r))/(2*n); % eigenvalues
W=fft (sqrt(lambda) . *complex(randn(2*n,1) ,randn(2*n,1)));
W = n”(-H)*cumsum(real (W(1:n+1))); % rescale
W=T"H*W; t=(0:n)/n; t=tx*T; % scale for final time T
if nargout==0
plot(t,W); title(’Fractional Brownian motion’);
xlabel(’time $t$’,’interpreter’,’latex’)
ylabel (’$W_t$’, ’interpreter’,’latex’)

end

function reply = default(query,value)
hdefault  gets response to IFISS prompt

%  reply = default(query,value);

%  input

h query character string: asks a question
b value integer: the default response

T

%  IFISS function: AR; 31 August 2005.
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% Copyright (c) 2005 D.J. Silvester, H.C. Elman, A. Ramage (see readme.m)

global BATCH FID

if exist(’BATCH’) & BATCH==1,
replycell=textscan(FID,’%f%*["\n]’,1);
reply=deal (replycell{:});
disp(query)
disp(reply)
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else

reply=input ([query,’ : ’]1);

if isempty(reply), reply=value; end
end

return

2. Matlab codes in Section 5.6

In this section, we include the MATLAB code for solving stochastic space-time frac-
tional superdiffusion in Section 5.6. One may copy the codes and run them to get the

numerical solutions in Section 5.6.

function Y = sfpde( )

% Solve

% D_t~{al} u(x,t)-u’’(x,t)= f(x, t)+ D {-ga} dwWw/dt, 0<t<l, 0<x < 1
A u(0,x)=u0(x), u’(0,x)=ul(x)

A u(t,0)= u(t,1)=0,

%h f(x, t) = x"2 (1-x)"2 et —-(2-12x+12x"2) e"t

h1<al <2

% Consider the time convergence order

% Time discretization: Grunwall-Letnikov method

% space discretization: FEM

h

% E-M uses 5 different timesteps: kappaxdt

% See lord’s book

% where kappa=[2"2, 273, 274, 275, 276];

h

% Examine strong convergence at T=1: Xerr_appr= E | Xn - X(T) |.
% Check the convergence order

% Xerr_appr = (E \|Xn -X(T)\|1°2)"{1/2} \leq C tau~{1/2},
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%finite element method

% Let 0= t_0 < t_1 < \dots < t_N=T be the time partition of [0,T] and tau
% the time step size.

% Let 0< x_0< x_1< \dots x_M =1 be the space partition of [0, 1] and h the
% space step size

% Let u-u0- t*xul=v

% v satisfies the following abstract form

% D°{al} v(t) +Av =-Aud -t Aul + £(t) +g(t), t>0

h v(0) =0,

% The variational form is to find v such that

% (D°{al} v(t), \phi) + (v’, \phi’)

% =— (u0’, \phi’) - tx(ul’, \phi’) + (f, \phi) +(g, \phi) ,

% \forall \phi \in H_{0}"{1}(0,1)

% The finite element method is to find vh such that

% (D~{alpha} vh(t), \chi) + (vh’, \chi’)

% = - (u0’, \phi’)-(ul’,\phi’)+(f, \chi)+ (g, \chi) , \forall \chi \in S_h
% The numerical scheme is to find V°n such that

% ( \tau~{-\alpha} \sum_{j=1}"{n} w_{n-j} V°{j}, \chi)

h+ (U {n}’, \chi’) = - (u0’, \phi’)- t_n * (ul’, \phi’) +(£"{n}, \chi)
% +(g”{n}, \chi), \forall \chi \in S_h

% Let

% V{n} = \sum_{m=1}"{M-1} \alpha_{m}"{n} \phi_m

% we get

% w_{0} \sum_{m=1}"{M-1} \alpha_{m}~{n} ( \phi_m, \phi_1)

% + \tau"{\alpha} \sum_{m=1}"{M-1} \alpha_{m}"{n} ( \phi_m’, \phi_1’)

%= - \tau"{\alpha} \sum_{m=1}"{M-1} \alpha_{m}~{0} ( \phi_m’, \phi_1’)

% + \tau"{\alpha} (f°n}, \phi_1) + \tau“{\alpha} (g"n}, \phi_1)

%+ \sum_{j=1}"{n-1} w_{n-j} \sum_{m=1}"{M-1}
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\alpha_{m}~{j} ( \phi_m, \phi_1), 1=1, 2, \dots, M-1

Matrix form
(w_{0}I+ taux Ah) alpha™n =
- tau”{alphal}*Ah alpha”0

+ Mass”{-1} \tau~{alpha} * f°n + Mass~{-1} \tau"{alpha} * g'n

- \sum_{j=1}"{n-1} w_{n-j} alpha~{j}
where
Ah= Mass~{-1}*Stiffness,

the integral (f_{n}, phi_{1}) is calculated by the midpoint rule
(f°{n}) (1) = (f_{n}, phi_{1})
= h/2%[ f_{n}((x_{1-1}+x_{1})/2)+ f_{n}((x_{1}+x_{1+1})/2)]

Here Mass = h *x [2/3 1/6 0 0O ... 0
1/6 2/3 1/6 0 ... 0
0 0 ce 2/3 1/6
0 0 ... 1/6  2/31]
Stiffness = 1/hx 2 -1 0 O 0
-1 2 -10 0
0 0. 2 -1
0 O -1 2]
Remark 1: The algorithm of fpde is similar as the algorithm for pde,

please see the MATLAB code for parabolic pdes
Remark 2: Initial value u0 is better than Ph(u0) in experiements,We shall

choose alpha~0(k) = u0 (x_{k}) instead of alpha~0(k) = Ph(u0) (x_{k})

correction algorithm for recovering the optimal convergence orders
Matrix form for the correction algorithm, n=1, 2, 3, ..., N,

(w_{0}I+ taux Ah) alpha’n
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T

tau”{alpha}*Ah alpha~0 *(1+c0)

% + Mass”{-1} \tau"{alpha} * f°n + Mass~{-1} \tau"{alpha} * g'n
% = \sum_{j=1}"{n-1} w_{n-j} alpha~{j}

% where

% cO = 1/2, n=1

% =0, =n=2, 3, \dots, N

%Algorithm;

%Step 1, Given initial value U0 ( UO =u0, not Ph (u0))
%Step 2, Find U~1
%Step 3: Find U~2

clear

alpha  =default(’ 1 <alpha <=2 (default is alpha=1.6)’, 1.6);

ga =default(’ga \in [0, 1], (default is alpha=0.6)’, 0.6);

M1 =default(’M1=No of the simulations (default is M1=20)’, 20);

beta =default(’beta=3(trace class)or O(white noise) (default is beta=3)’,3);

randn(’state’,100)

Jsome parameters
c0=0; hcorrection parameter

H=0.5; %Standard Brownian motion

%space discretization
x0=0; x1=1; M=276;
h=(x1-x0)/M; x=linspace(x0,x1,M+1); x=x(2:end-1); x=x’;
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%time discretization
t0=0; T=0.1;
Nref = 277;

error_Mi=[];
for s = 1:M1 % M1: the number of the simulations
s

dtref=T/Nref;

% Brownian paths W=[B_1(t), B_2(t),...B_{M-1}(t)
% dW=sqrt(dtref)*randn(Nref,M-1); W=cumsum(dW,1); W=[zeros(1l, M-1); W];

% Fractional Brownian paths 1/2 \leq H \leq 1
w=[];
for j=1:M-1
(Wj,t]l=fbmld (H,Nref,T);
w=[W Wjl;
end

W(1,:)=zeros(1, M-1);

% exact solution
kappa =1;
[vref]=sfpde(alpha,Nref,M,c0,ga,T, kappa,W,beta);

happroximate solutions

kappa =[2"5, 274, 273, 272]; % N=Nref/kappa, tau=T/N

error=[];

for i=1:length(kappa)
[V]=sfpde(alpha,Nref,M,c0,ga,T,kappa(i) ,W,beta);
err=vref-V; err_L2norm=sqrt((err’*err)*h);

error = [error err_L2norm];
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end
error_Mil=[error_M1; error]; Y%error_M1 is a matrix
end

error_M1_L2= sqrt(sum(error_M1.*error_M1,1)/M1); % \le \|_{L"2(D)}

%Find the convergene orders
ratio=[];
for j=1:length(error_Mi1_L2)-1
ratio=[ratio error_M1_L2(j)/error_M1_L2(j+1)];
end
format short

ratio= log2(ratio);

ratio

mean(ratio) % Show the ratios and mean of the rations

format shortE

error_M1_L2 % Show the errors

%iplot

figure(1)

Dt=dtrefxkappa; y=error_M1_L2;
plot(log2(Dt), log2(y),’*-’)

hold on

r=mean(ratio);

plot(log2(Dt), r*log2(Dt)) horder is 1
xlabel(’log2(\Delta t)’)
ylabel(’log2(error)’)
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title(’A plot of the error at T=0.1 against log2 (\Delta t)’)
x=1log2(Dt); x1=x(2); yl= r*xl;

% text(xl,yl,’\leftarrow reference line with slope 17,...

yA ’HorizontalAlignment’,’left’)

text(x1,yl,’\leftarrow reference line’,...

’HorizontalAlignment’,’left’)

Jmain program
function [vref]=sfpde(alpha,Nref,M,c0,ga,T,kappa,W,beta);
x0=0; x1=1; h=(x1-x0)/M;

x=linspace(x0, x1, M+1); x=x(2:end-1); x=x’;

N = Nref/kappa;
tau=T/N;

% construct matrix A for finite element method
Mass=2/3*diag(ones(1,M-1))+1/6*diag(ones(1,M-2),1)+1/6*xdiag(ones(1,M-2),-1);
Mass=h*Mass;
Stiffness=2*diag(ones(1,M-1))+(-1)*diag(ones(1,M-2),1)+(-1)*diag(ones(1,M-2),-1);
Stiffness=(1/h)*Stiffness;

Ah=inv(Mass)*Stiffness;

% vO
vO=zeros(M-1,1);



%Find L2 projection of u0.

JWe may use Ph_u0=Ph1(x,u0,Mass) to calculate Ph_u0, but the results

hare not good.We simply use u0 instead of Ph (u0)

% to avoid calculate Mass~{-1}.

% Case 1: u0 = x"2(1-x)°2;
Ph_u0=(x."2) .%x((1-x)."2);
%Ph_ul=(x.72).*%((1-x).72);

Ph_ul=sin(2*pi*x);

% Case 2: u0 = x(1-x);
%Ph_u0=(x."1) .*x((1-x)."1);
»Ph_ul=sin(2*pix*x);

%case 3: u0 = ones(M-1, 1);

% Ph_uO=ones(M-1,1);

%hcase 4: u0 = sin(pi x);

%Ph_u0 =sin(pix*x);
Y%case 4: u0 = 0;

% Ph_u0 =zeros(M-1,1);

vN=[vO0];

% First time level, n=1

% Find vl1= the value at t1, (correction c0=0.5, No correction c0=0)

t1= 1xtau;

201
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initial =-(1+c0)*tau~alpha*xAh*Ph_u0 -tau~alpha*tlxAh*Ph_ul;
f1=inv(Mass)*f_phi(x,1,tau,alpha);
gl=inv(Mass)*g_phi(x,1,tau,ga,kappa,W,beta);
v=(w_gru(0,alpha)*eye(M-1)+tau~alpha*Ah)\(tau~ (alpha)*fl ...
+tau” (alpha)*gl + initial);
vN=[v vN];
% find v2, v3, .... vN
for n=2:N
suml=0;
for j=1:n
suml=suml+w_gru(j,alpha)*vN(:,j); ‘summation
end
tn=n*tau;
initial =-tau”alpha*Ah*Ph_uO-tau~alpha*tn*Ah*Ph_ul; %u0
fn=inv(Mass)*f_phi(x,n,tau,alpha); %f
gn=inv(Mass)*g_phi(x,n,tau,ga,kappa,W,beta); %g
(w_gru(0,alpha) *eye (M-1)+tau~alpha*Ah)\(tau” (alpha)*fn ...

<
I

+tau” (alpha)*gn - suml + initial);
vN=[v vN];
end

vref=v;

Jweights L1 scheme
function y=w(k,alpha)
if k==0
y=1/gamma (2-alpha) ;
elseif j==1 && k==j
y=—alpha/gamma(2-alpha) ;
elseif k==1 && j>=2
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y=(2" (1-alpha)-2)/gamma(2-alpha) ;
elseif k>=2 && k<=j-1

y=((k-1) " (1-alpha)+(k+1) "~ (1-alpha)-2xk~ (1-alpha))/gamma(2-alpha) ;
else k==j && j>=2;

y=((k-1) " (1-alpha)-(alpha-1)*k~ (-alpha) -k~ (1-alpha))/gamma(2-alpha) ;

end

% find the L2 projection of u0
function y=Ph1(x,u0,Mass)
h=x(1)-x(2);
x0=[0;x(1:end-1)]; x1=x; x2=[x(2:end); x(end)+h];
x=(x0+x1)/2;
y1=u0;
x=(x1+x2)/2;
y2=u0;
y=h/2*(y1+y2);

y=inv(Mass) *y;

% nonsmooth initial data u0
function y=Ph2(x,Mass)
h=x(1)-x(2);
M=length(x)+1;
y= zeros(M-1,1);
for j=1:length(M-1)
if j <= ceil(M/2)
y(j)=0;
else
y(j3)=h;

end
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end

y=inv(Mass)*y;

% find (f, phi)
function y=f_phi(x,n,tau,alpha)

% case 1: f(t, x) = x"2 (1-x)"2 exp(t)-(2-12 x+12 x"2) exp(t)
tn=n*tau;
h=x(2)-x(1);
x0=[0;x(1:end-1)]; x1=x; x2=[x(2:end); x(end)+h];
x=(x0+x1)/2;
y1=(x.72) .*((1-x) . "2) *exp(tn) - (2-12*%x+12*(x.~2) ) *exp(tn) ;
x=(x1+x2)/2;
y2=(x.72) .%((1-x) . "2) *exp(tn) - (2-12*x+12%(x.~2) ) *exp(tn) ;
y=h/2x%(y1+y2);

Y%case 2: f(t, x)=0

hy=zeros(size(x)); %E=0

% find (g, phi)
function y=g_phi(x,n,tau,ga,kappa,W,beta)
y=01;
M=length(x)+1;
#Find w_ga=[w_{0}"{-ga} w_{1}"{-ga} w_{n-1}"{-gal}]
w_ga=[];
for nn=0:n-1
w_ga=[w_ga w_gru(nn,-ga)l;

end
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for k=1:M-1
A=dWdt_k(x,n,tau,kappa,W,k,beta);
yl=tau” (ga)*w_gax*A;
y=ly;y1l;

end

% Find dwdt_k
function y= dWdt_k(x,n,tau,kappa,W,k,beta)
y=zeros(n,1);
M=length(x)+1;
for m=1:M-1
% beta=0; white noise beta=0, trace class beta=3
ga_m=m" (-beta) ;
kl=n:-1:1; Ytn=n*tau=(n*kappa)*dtref
dW_k1=W(kl*kappa+l,m)-W((kl-1)*kappa+tl,m); %dW_k is a vector
h=x(2)-x(1);
x1=((k-1)*h+kxh)/2; x2= (kxh+(k+1)*h)/2;
e_phi=h/2*(sqrt(2)*sin(pi*m*x1)+sqrt(2)*sin(pi*m*x2));
y=y+ga_m~ (1/2)*e_phix(dW_k1/tau) ;

end

function [ y 1 = w_gru(k,al)

% Grunwald-Letnikov weights

y=1;
elseif k==1;
y=-al;
else
y=al;
for 1=1:k-1



y:
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y*(al-1);

end

y:

(-1)"k/factorial (k) *y;

end

T

function [W,t]=fbmi1d(H,n,T)

Jhttps://de.mathworks.com/matlabcentral/fileexchange

%/38935-fractional-brownian-motion-generator

%fast one dimensional fractional Brownian motion (FBM) generator

b
h
h
b
h
h
h
h
h
h
h
b
h
h
b
h
h
h

output is ’W_t’ with t in [0,T] using ’n’ equally spaced grid points;

code uses Fast Fourier Transform (FFT) for speed.

INPUT:
- Hurst parameter ’H’ in [0,1]
- number of grid points ’n’, where ’n’ is a power of 2;
if the ’n’ supplied is not a power of two,
then we set n=2"ceil(log2(n)); default is n=2"12;
- final time ’T’; default value is T=1;
OUTPUT:

- Fractional Brownian motion ’W_t’ for ’t’;
- time ’t’ at which FBM is computed;
If no output it invoked, then function plots the FBM.

Example: plot FBM with hurst parameter 0.95 on the interval [0,10]
[(W,t]=fbm1d(0.95,2712,10); plot(t,W)
Reference:
Kroese, D. P., & Botev, Z. I. (2015). Spatial Process Simulation.
In Stochastic Geometry, Spatial Statistics and Random Fields(pp. 369-404)
Springer International Publishing, DOI: 10.1007/978-3-319-10064-7_12
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if (H>1)|(H<O0) % Hurst parameter error check
error (’Hurst parameter must be between O and 1’)
end
if nargin<2
n=2"12; % grid points
else
n=2"ceil(log2(n));
end
if nargin<3
T=1;
end
r=nan(n+1,1);r(1) = 1;idx=1:n;
r(idx+1) = 0.5%((idx+1) .7 (2xH) - 2*idx.”~(2*H) + (idx-1)."(2%H));
r=[r; r(end-1:-1:2)]; % first rwo of circulant matrix
lambda=real (fft(r))/(2*n); 7% eigenvalues
W=fft (sqrt(lambda) . *complex (randn(2*n,1) ,randn(2*n,1)));
W = n~(-H)*cumsum(real (W(1:n+1))); % rescale
W=T"H*W; t=(0:n)/n; t=t*T; % scale for final time T
if nargout==
plot(t,W); title(’Fractional Brownian motion’);
xlabel(’time $t$’,’interpreter’,’latex’)
ylabel (’$W_t$’, ’interpreter’,’latex’)

end

function reply = default(query,value)

hdefault  gets response to IFISS prompt

%  reply = default(query,value);

%  input

pA query  character string: asks a question

yA value  integer: the default response
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b
% IFISS function: AR; 31 August 2005.
% Copyright (c) 2005 D.J. Silvester, H.C. Elman, A. Ramage (see readme.m)
global BATCH FID
if exist(’BATCH’) & BATCH==1,
replycell=textscan(FID, ’%f%*x["\n]’,1);
reply=deal (replycell{:});
disp(query)
disp(reply)
else
reply=input ([query,’ : ’1);
if isempty(reply), reply=value; end
end

return



