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Abstract: Complex systems involve monitoring, assessing, and predicting the health of various
systems within an integrated vehicle health management (IVHM) system or a larger system. Health
management applications rely on sensors that generate useful information about the health condition
of the assets; thus, optimising the sensor network quality while considering specific constraints
is the first step in assessing the condition of assets. The optimisation problem in sensor networks
involves considering trade-offs between different performance metrics. This review paper provides a
comprehensive guideline for practitioners in the field of sensor optimisation for complex systems.
It introduces versatile multi-perspective cost functions for different aspects of sensor optimisation,
including selection, placement, data processing and operation. A taxonomy and concept map of
the field are defined as valuable navigation tools in this vast field. Optimisation techniques and
quantification approaches of the cost functions are discussed, emphasising their adaptability to
tailor to specific application requirements. As a pioneering contribution, all the relevant literature is
gathered and classified here to further improve the understanding of optimal sensor networks from
an information-gain perspective.
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1. Introduction
1.1. Background to the Literature

Health management applications are critical for ensuring the reliable and effective
operation of mission and safety-critical complex engineering systems, such as spacecraft,
submarines, aircraft, and industrial plants. These applications rely on sensors that generate
useful information about the health condition of the assets; thus, optimising the sensor
network quality while considering specific constraints is the first step in assessing the condi-
tion of assets. This is particularly important for systems that operate in harsh environments,
where the accuracy and reliability of sensor data are essential for effective maintenance and
operation.

Integrated vehicle health management (IVHM) involves monitoring, assessing, and
predicting the health of various systems within a vehicle or a larger system. This approach
aims to provide a comprehensive understanding of the system’s health, by integrating
data from various sensors and other sources and analysing it using advanced algorithms
and analytical techniques to support condition-based maintenance (CBM) [1]. In recent
years, there has been a growing interest in sensor optimisation techniques for IVHM,
which concern optimising sensor placement, selection, and data processing to improve the
accuracy and reliability of health monitoring systems.

Sensing technology is an essential tool for understanding and interacting with the
physical world; by providing accurate and timely data, sensors allow us to make decisions
and reason about the physical phenomena in an environment. IVHM systems build on this
to provide accurate and comprehensive information about the state of the system with an
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optimal sensor suite that contributes to the increased availability of the system and effective
reasoning over performance and maintenance actions. The sensor optimisation problem
in complex systems involves finding the most effective combination of sensor types and
locations that will provide the most accurate and comprehensive monitoring of a system.

In order to optimise sensor selection for IVHM or complex systems, various factors
must be considered, including the cost, weight, size, and power consumption of the sensors.
These factors can impact the feasibility and practicality of using certain types of sensors
and can affect the overall performance and accuracy of the IVHM system. Historically,
these objectives, from an engineering perspective, are viewed as the sensor optimisation
problem; however, this study takes a broader view, including the information gained from
the sensor suite.

Additionally, the optimisation problem in sensor selection also involves considering
trade-offs between different performance metrics. For example, from information theory,
increasing the number of sensors may improve the accuracy of the IVHM system but may
also increase the weight, cost and computational complexity of the system. Balancing these
trade-offs requires careful consideration of the specific requirements and constraints of the
application, as well as a deep understanding of the underlying physics and dynamics of
the system being monitored. Another important factor in sensor selection is the type of
data that is required for fault detection and diagnosis. Different types of sensors may be
better suited for monitoring different aspects of a vehicle’s health, such as temperature,
pressure, vibration, or fluid levels. By selecting the right combination of sensors, IVHM
systems can ensure that they are able to detect potential faults and provide accurate and
timely alerts to maintenance personnel.

This review intends to provide a comprehensive overview of the existing literature on
sensor optimisation for complex systems. It will explore various optimisation techniques
used in different domains and highlight the key findings and limitations of each approach.
Additionally, the review will identify areas for future research and discuss the potential
benefits of sensor optimisation for IVHM systems.

1.2. Problem Statement

The use of IVHM systems in aircraft operation has become increasingly important for
ensuring safety, increasing operational efficiency, and reducing downtime and maintenance
costs. However, the effectiveness of these systems relies on the identification of optimal
sensors and their locations. Sensors are used to translate physical phenomena into digital
form, and the optimisation of these sensors can be performed in three different ways;
physical, system and algorithmic. The first way is the improvement in the quality of the
sensing technology itself, the second is location and quantity combined to obtain better
information quality, and the last involves improving processing techniques.

The number of heterogenous parameters in flight data, collected from different types
of sensors in the aircraft, is increasing due to high safety requirements, incident and
accident investigation, maintenance, and diagnostic purposes. Analysing the entire sensor
dataset, including up to thousands of parameters in modern aircraft, is neither practical
nor computationally manageable for onboard diagnostic purposes. The data types range
from Boolean data, to control system BITE codes, to high-frequency vibration or acoustic
data. The analysis of the latter, which relies on defining which features in the data have
more importance in terms of clear condition indicators, is an open research area.

The optimal sensor-suite identification problem in IVHM systems involves determin-
ing the sensor suite that will provide the most comprehensive and accurate monitoring
of the aircraft’s health situation. This requires consideration of various factors, such as
the type of data required for fault detection and diagnosis, the cost and weight of sensors,
and the power consumption. While there has been significant research in this area, there
remains a need for further investigation of the system-level optimisation of sensor suites
for IVHM systems.
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There are numerous research papers published on aircraft component and subsystem-
level sensor optimisation, yet only a few papers consider system-level condition monitoring
in aircraft. There is a need for further investigation into the use of advanced optimisation
techniques and the integration of multiple subsystems for more comprehensive health
management. Different complex engineering systems that utilise sensor optimisation
techniques will be investigated to improve the current research in the IVHM domain.

Also, other complex system applications that benefit significantly from sensor opti-
misation are wind turbines, power generation plants, railways, satellites, etc. Figure 1
shows some examples of complex systems. Kulkarni et al. discussed an outline for a
sensor-selection framework specifically designed for diagnostic applications, and they used
wind turbines in their experiment [2].
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Figure 1. Some examples of Complex Systems.

Defining a step-by-step methodology to rank/identify aircraft sensors for system-level
condition monitoring and the optimisation of the sensors for onboard/online diagnosis
where several domain-specific objective functions and constraints occur is addressed in
this study. Additionally, faulty sensor detection, which comprises most of the faults in
the aviation industry, is mainly neglected in the optimal sensor-suite selection research.
This issue will also be considered for integration in the sensor-suite selection part. Figure 2
outlines the direction and examples of complex system’s themes.
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The motivation for further research in sensor optimisation for IVHM systems is driven
by the potential benefits of more accurate and reliable onboard diagnosis for health mon-
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itoring systems. This could lead to improved safety and availability as well as efficient
CBM. Additionally, advances in sensor technologies and optimisation techniques present
new opportunities for many different fields. The research will also identify areas for future
investigations and highlight the potential benefits of a detailed sensor optimisation strategy
in IVHM, providing guidance for researchers and practitioners in the field.

1.3. Scope of the Study

This research is focused on exploring the existing literature on sensor optimisation
for: placement, selection, operational applications, and data processing techniques that are
used to improve diagnostic information.

A systematic and thorough approach to sensor selection must be carefully designed to
ensure the data collected are relevant and useful in the target application. The following
questions need to be considered in the design phase:

• What is the specific application for which the sensor data will be used? This will help
guide the selection of appropriate sensors and data collection methods.

• What are the key variables or parameters that need to be measured to achieve the
desired outcome? For example, if the goal is to monitor the performance of a machine,
collecting data on factors such as temperature, vibration, and power consumption is
needed.

• What is the required level of accuracy for the data? This will help determine the
appropriate resolution and precision for the sensors.

• What is the frequency at which data need to be collected? This will impact the selection
of sensors and the required data storage and processing capabilities.

• What are the environmental factors that may affect sensor performance, such as
temperature, humidity, and electromagnetic interference? This will help guide the
selection of sensors that are capable of operating reliably under the specific conditions
of the application.

By answering these elementary questions and conducting a thorough analysis of the
target system and the specific applications, a framework can be designed to ensure that the
selected sensors are appropriate for the task at hand and that the resulting data are accurate
and useful for analysis and decision-making.

2. Structuring the Review
2.1. Methodology of the Review

To conduct a literature review on sensor optimisation in the complex system domain,
electronic databases, including scientific journals, conference proceedings, and relevant
books, were searched by using keywords related to the topic. The articles and books were
then screened for their relevance to the research gaps, and only those that met the inclusion
criteria were selected for review.

The inclusion criteria for this review are studies that examine sensor optimisation
in complex systems to improve diagnostic information quality, particularly those used in
the aviation domain. The physical improvement of the sensing technology itself and the
structural health management (SHM) field are beyond the scope of this research. Some
SHM examples are included in order to demonstrate the use of the proposed method.

In this review, our methodology encompasses a systematic literature selection process,
including database searches and well-defined inclusion criteria, to gather pertinent sensor
optimisation research. We meticulously extract and categorise data from selected sources,
enabling a comparative analysis of sensor optimisation techniques, application domains,
and future trends. Our review methodology culminates in a concise summary of key
findings, emphasising the practical implications of sensor optimisation across diverse
domains. This structured approach ensures methodological rigour and contributes to
advancing the understanding of sensor optimisation techniques within complex systems.

Table 1 shows search results from the Scopus data. Search terms included various
combinations of keywords.
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Table 1. Search Results in Scopus Database.

TITLE–ABSTRACT–KEYWORDS Document Results

(Sensor AND Optimisation) 75.169

(Sensor AND Optimisation) AND (Complex AND Systems) 10.103

(Sensor AND Optimisation) AND (Complex AND Systems) AND
(aircraft) 602

(Sensor AND Optimisation) AND (Complex AND Systems) AND
(aircraft) AND (diagnostic) 85

“Sensor Optimisation” 509

“Sensor Optimisation” AND “Complex Systems” OR “aircraft” 63

“Sensor Optimisation” AND “Complex Systems” 9

Without any restrictions, a search on sensor and optimisation yielded 75,169 articles
that are based on their titles, abstracts and keywords. When the other identified keywords
of the study were added, this number dropped, as shown in the table, until a result with
only 85 articles was found. When a stricter grouping was explored (by using quotation
marks), it resulted in nine articles that consider different complex systems.

After analysing the relevance and contribution of each article to the field, the infor-
mation found was synthesised in order to categorise the articles into different themes and
analyse the main findings and trends. Identified associated paper references were also
searched to expand the knowledge that was gathered over the field, and additional studies
that met the inclusion criteria were included.

2.2. Taxonomy

A taxonomy that was developed through a comprehensive analysis of the results
obtained from a Scopus search, as well as relevant books and papers, is presented in
Table 1. The primary objective of this taxonomy is to classify and organise the various
approaches used to optimise sensor suites for complex systems. The taxonomy’s classifi-
cation criteria are based on the key domains and techniques employed in the process of
sensor-suite optimisation.

At the highest level of categorisation, the taxonomy consists of several main branches,
each representing a significant area or approach used in sensor optimisation. These
branches serve as the fundamental divisions, providing an overarching structure to the
taxonomy. Subsequently, within each main branch, further divisions and subcategories are
established by posing fundamental investigative questions. These questions are designed
to explore and dissect the various aspects and intricacies of optimising sensor suites for
complex systems comprehensively.

By employing this matrix organisation table, the taxonomy facilitates a systematic and
methodical examination of the field, enabling researchers and practitioners to navigate
through the vast array of sensor optimisation methods and concepts effectively Figure 3
represents the taxonomy of sensor optimisation.

This approach not only provides a comprehensive overview of the field but also offers
actionable insights and recommendations for enhancing sensor performance and capa-
bilities within complex systems. The initial taxonomy serves as an inclusive framework,
laying the groundwork for subsequent sections to delve into sensor improvement areas.
By leveraging the strengths of approaches, this paper can deliver a well-rounded explo-
ration of sensor optimisation while offering targeted recommendations for improvement
wherever appropriate.
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Figure 4 presents a concept map that has been thoughtfully organised to align with
the key themes derived from the comprehensive literature review. Each major title in
the concept map corresponds to a significant area of investigation, facilitating a clear
understanding of the interrelationships and connections between the various concepts and
topics explored in the reviewed literature.

The concept map visually organises the main themes from the literature review, pro-
viding a coherent and interconnected representation of the key concepts and considerations
in sensor optimisation within complex systems. These brief descriptions offer readers a
clear roadmap for further exploration and understanding of the topics presented in Figure 4.
Brief descriptions of the main branches are given in the following paragraphs.
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Selection: The type and number of sensors employed in the system must all be consid-
ered throughout the selection process. Making sure the chosen sensors are adequate for
the task and deliver accurate and reliable data is the major goal of sensor selection. To this
end, there are several factors that need to be assessed accordingly, like power management,
signal acquisition and calibration. Choosing a certain sensor-type consideration of sensi-
tivity, accuracy, or dependability is imperative. Sensor quantity entails choosing the right
number of sensors to balance redundancy, information gain, and cost.

Placement: The placement of sensors requires taking into account their physical
location as well as how they are mounted or integrated into the system. The fundamental
goal of sensor positioning is to make sure that sensors are ideally situated to gather the
necessary data to assess the system’s health information. This category further separates
into structural placement, network topology and sensor location subcategories. According
to the system’s structural characteristics, the first entails deciding how the sensors should
be placed, the second deals with how the sensors should be set up in a network to ensure
total coverage and redundancy, and the last one deals with location and interferences.
Data Processing: In order to identify errors and forecast system behaviour, data processing
takes into account considerations linked to how sensor data are processed, examined, and
interpreted. Data processing’s primary goal is to convert sensor data into useful information
that can be applied to decision-making. With good data processing, the best use of the
data can be made with appropriate techniques to maximise the information gain. The three
subcategories within this area are feature extraction, fault diagnosis and prognostics. To
extract pertinent characteristics from sensor data, feature extraction uses time–frequency
analysis, statistical techniques, and wavelet transforms. Machine learning, neural networks,
and expert systems are used in fault diagnostics to find systematic flows. Prognostics
include estimating the system’s remaining useful lifetime, examining degradation, and
determining failure modes.

Operations: Considering how sensors are powered, how data are acquired, and how
they are calibrated to preserve accuracy over time are all part of operations. The fundamen-
tal goal of operations is to make sure that sensors are accurate and performing well. There
are three subcategories within this category: network lifetime, coverage efficiency, and
monitoring. To ensure reliable operations, coverage efficiency over the network lifetime
of the sensors should be managed precisely. It is imperative to capture the necessary
information and adjust system parameters in response to changing conditions to inform
decision support systems by continuous monitoring.

Overall, the proposed taxonomy provides a comprehensive framework for under-
standing the key concepts and considerations related to sensor optimisation in IVHM
systems. This is also useful for organising and synthesising the literature, as well as for
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identifying patterns and trends in the research domain and guidance for future research
directions. The remainder of this paper follows with a detailed review of the identified four
major areas, linked with a specified cost-function proposition for each area, and ends with
a conclusion including a discussion on future research directions.

3. Selection

Effective sensor selection can significantly improve the accuracy and reliability of
health monitoring, fault diagnosis, and prognosis. For this reason, sensor selection is a
challenging task that involves various considerations: the type and number of sensors, the
performance characteristics of sensors, and the cost of sensor installation and maintenance.

This section presents an overview of sensor-selection methods and techniques for
IVHM applications. Starting with a discussion of the selection process and frameworks
available in the literature, various methods for sensor selection, such as analytical, heuristic,
and machine learning-based approaches are explored. Selecting sensors based on infor-
mation gain, such as mutual information-based, entropy-based, and Fisher information-
based selection methods, as well as dynamic sensor-selection optimisation perspectives, is
also documented.

Lastly, the evaluation of performance characteristics for sensor selection, including
figures of merits, objective and cost functions, and information gain, are presented. The
limitations and challenges of information-gain optimisation, such as complexity and compu-
tational requirements, lack of comprehensive models and data, and integration with other
optimisation approaches and decision-making frameworks, are emphasised. Also, multi-
objective optimisation and multi-criteria decision-making techniques for sensor-selection
optimisation, as well as sensor redundancy and implementation techniques, are presented.

3.1. Sensor-Selection Methods

For clarity, it is important to note that “sensor selection” has two distinct meanings in
this field. The first refers to the process of selecting sensors from an existing network to
optimise their performance by determining which sensors should be active at any given
time. The second meaning, which is the focus of this work, pertains to selecting sensors for
integration into a system during the design and build process. In this case, the selection
process is geared towards choosing the most suitable sensors for the specific task at hand [2].

Several methods have been proposed to address sensor selection for IVHM systems,
ranging from heuristic and analytical approaches to machine learning-based techniques.
These methods differ in terms of their underlying assumptions, computational complexity,
and solution quality. The selection process involves evaluating and comparing different
sensor performance characteristics, such as sensitivity, selectivity, reliability, and cost.
Moreover, sensor selection should account for adaption to changing operating conditions or
system states. The first sensor-selection use case was in aerospace systems, and it was based
on design and performance requirements rather than a health management perspective. A
model-based procedure that systematically selects an optimal sensor suite for the overall
health assessment of a designated host system is described in [3]. This procedure, known as
the systematic sensor-selection strategy (S4), was developed and implemented at NASA’s
John H. Glenn Research Centre with the primary objective of enhancing design phase
planning and preparations for in-space propulsion health management systems.

Figure 5 illustrates the overall architecture of the S4 strategy, depicting the systematic
approach to sensor selection and optimisation. On the other hand, Figure 6 provides
a detailed representation of the step-by-step process for applying the S4 strategy to a
specific system.

The S4 strategy encompasses a well-structured and comprehensive framework for identi-
fying and choosing the most suitable sensors to be integrated into in-space propulsion systems.
By employing a systematic methodology, it ensures that the selected sensors are aligned with
the system’s requirements, performance objectives, and environmental conditions.
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A general approach to sensor selection from a health management perspective was
addressed in [4] with a proposed architecture that provides a justifiable, defendable sensor
suite to address system health assessment requirements and additionally considers use
outside of the aerospace community.

Sensor selection involves a multi-stage process that typically includes a knowledge-
based selection, a down-select iteration, and a statistical evaluation algorithm. This process
aims to identify the optimal set of sensors that can satisfy the requirements of the IVHM
system while minimising the overall cost and complexity. The result of the analysis indicates
that general sensor-selection problems addressing diagnosability, or observability, are NP-
complete and are therefore computationally intractable [5]. To solve complex problems
in a reasonable time, approximate search solutions are needed. Brute force or exhaustive
search methods are ideal but can take too much time. Instead, refined search methods are
used to find optimal or near-optimal solutions based on the objective function, which is an
algorithmic representation of established figures of merit (FoMs) and system constraints.

Many techniques have been developed for general optimised solution searches. These
optimisation techniques are well documented in [6], and Table 2 shows a selection of
techniques found in this literature review with references.
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Table 2. Sensor-Selection Techniques Encountered and the Associated References.

Researcher Technique Application

Kulkarni et al. [2]

Proposes a method that utilises a scalable
multi-objective framework for sensor selection to

maximise fault detection rate while minimising the
total cost of sensors

A wind turbine gearbox is considered to
demonstrate the efficacy of the proposed framework.

Santi et al. [3]
A model-based procedure (S4) that systematically
selects an optimal sensor suite for overall health

assessment of a designated host system.
In-space propulsion health management systems

Maul et al. [4]

S4 selected as the framework for further
development and verification. Segmented into three

groups: Knowledge Base, Iterative Down-Select
Process, and Final Selection.

Applied to subsystem components of the Space
Shuttle Main Engine

K. Nakai et al. [7]
Objective functions based on D-, A-, and

E-optimality criteria of optimal design are adopted
to greedy methods.

Applied to randomly generated systems and a
practical dataset concerning the global climate.

Guan et al. [8] Proposes a comprehensive evaluation method of
sensor selection for PHM based on grey clustering.

Illustrated by an electronic control system, in which
the effectiveness of different methods compared

Joshi et al. [9] Convex Optimisation

The problem of choosing sensors or measurements,
from among a set of candidate measurements, to

obtain the best resulting estimate of some
parameters

Shamaiah et al.
[10] Greedy Sensor-selection Algorithm The problem of sensor selection in resource

constrained sensor networks.

Wang et al. [11]
Entropy-based sensor-selection method which can
provide quantitative description of the information

contained in sensor data

Condition monitoring and prognostics of aircraft
engine

Xu et al. [12] Multi-objective Genetic Algorithm Aircraft Engines

Najjar et al. [13]
The minimum Redundancy Maximum Relevance
(mRMR) criterion with unsupervised embedded

algorithm

Heat Exchanger Fouling Diagnosis in Aerospace
Systems

Jiao et al. [14] Improved Binary Wolf Pack Algorithm Typical discrete combinatorial optimisation problem

Manohar et al. [15] Balanced Model Reduction Closed-loop Flow Control

Yan et al. [16] Hybrid Bayesian fisher information and mutual
information Unreliable sensor networks

To solve an optimisation problem, it is important to find an effective and achievable
solution within a reasonable time frame. Heuristic approaches like genetic algorithms,
particle swarm optimisation, and simulated annealing rely on stochastic search strategies
and can yield promising results. Machine learning-based methods like decision trees,
random forests, and support vector machines can also be effective in identifying the
underlying patterns of a system by using a training dataset. One way to solve sensor-
selection problems in the diagnostic domain is through information-gain optimisation.

Several information-gain-based methods have been proposed in the literature, such
as mutual information-based methods, entropy-based methods, and Fisher information-
based methods [11,16]. These methods are effective in reducing the number of sensors
required while maintaining the high accuracy of health monitoring systems. While different
sensor-selection methods have their own advantages and limitations, it is important to
consider the underlying assumptions, computational complexity, and solution quality of
each method when selecting the appropriate method for a given application.

Finally, it is worth noting that prior knowledge and uncertainty should be considered
in the sensor-selection process. Prior knowledge about the system, its components, and
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its failure modes can provide valuable information for selecting the most informative
sensors. Moreover, it is important to consider the uncertainty associated with the sensor
measurements, system model, and diagnostic task when selecting sensors. Several studies
have proposed methods for incorporating prior knowledge and uncertainty in the sensor-
selection process, such as Bayesian approaches [17] and fuzzy logic-based methods [18].

3.2. Evaluation of Performance Characteristics for Selection

Figures of merit (FoMs) are quantitative measures of performance that can be used to
evaluate the suitability of sensors for a particular application. FoMs provide a framework
for evaluating and comparing different sensors and selecting the best sensor for a given
application. FoMs can be categorised into two groups: objective FoMs and subjective FoMs.

• Objective FoMs are quantitative measures that can be directly calculated from the sensor
data. They include sensitivity, specificity, accuracy, precision, and response time.

• Subjective FoMs are qualitative measures that require expert judgment. Some exam-
ples of objective FoMs include ease of use, reliability, and maintainability.

Sensor-selection methods in the diagnostic domain can be evaluated based on different
performance characteristics, such as fault detection rate (FDR), fault isolation rate (FIR),
false alarm probability (FAP), and correct classification rate (CCR). These performance
characteristics are influenced by the choice of sensors and their arrangement. Thus, it is
essential to carefully evaluate the performance characteristics of sensors before selecting
them for a specific application [19].

Objective functions are mathematical functions that need to be optimised to select the
best sensors. These functions are designed to maximise the performance of the system,
subject to constraints such as budget, weight, and power consumption. Cost functions are
also used to evaluate the cost of the sensor system and parameter trade-offs, including
the cost of sensors, energy consumption, installation, maintenance, and replacement. The
sensor-selection problem requires the achievement of excellent performance while min-
imising costs. However, these two objectives often conflict as better performance typically
comes with higher costs. Thus, researchers must find the optimal balance between cost
and performance.

When setting up large, complex systems, it is important to consider the cost of sensor
configuration, as it often involves purchasing and installing a significant number of sensors.
In addition to these upfront costs, ongoing usage costs should also be factored in, which
may vary based on factors like connectivity, bandwidth, and sensor risk. Energy usage
was the main objective for most of the sensor-selection studies in [19], where the focus
was solely on communication energy, which consists of detecting and transmission energy.
There are other variables to consider, like in [20], where the performance (fault detection
reliability of aircraft engines) of the sensor was also considered as well as cost (installation
and communication).

Information gain is a measure of how much a sensor measurement reduces the un-
certainty about the system state. Information-gain optimisation is a method of selecting
sensors that maximise the amount of information gained from sensor measurements. It
has been widely used in the design of sensor networks for various applications, including
health monitoring, surveillance, and environmental monitoring. When implementing
information-gain optimisation in practice, several considerations need to be considered.
These include cost constraints and trade-offs, sensor availability and compatibility, and
robustness to noise and uncertainty. Fault trajectories, fault tolerance, fault detection,
and fault isolation are essential considerations for the evaluation of information gain in
diagnostics [3].

Although information-gain optimisation is a powerful tool for sensor selection, it has
several limitations and challenges. One of the main challenges is the complexity and com-
putational requirements. Information-gain optimisation involves the calculation of mutual
information between sensors and system states, which can be computationally expensive
for large-scale systems. Another challenge is the lack of comprehensive models and data.
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Information-gain optimisation requires accurate models of the system and the sensor char-
acteristics, as well as accurate data on the system states and sensor measurements. Finally,
integration with other optimisation approaches and decision-making frameworks is also a
challenge. Information-gain optimisation needs to be integrated with other optimisation
approaches and decision-making frameworks to ensure that the selected sensors meet the
overall system requirements.

3.3. Multi-Objective Optimisation/Multi-Criteria Decision-Making Techniques for
Sensor-Selection Optimisation

Sensor selection is often a multi-objective optimisation (MOO) problem that requires
the simultaneous satisfaction of several objectives. These objectives can include diagnostic
performance, robustness, and cost-effectiveness. In such cases, MOO techniques can be
employed to consider the trade-offs between these objectives and to find the optimal sensor
set that meets the desired criteria. In MOO, the goal is to find the Pareto-optimal solutions.
A solution is Pareto-optimal if it represents the best possible trade-off between conflicting
objectives. This set of Pareto-optimal solutions forms the Pareto front, which represents
the boundary of the feasible solutions that cannot be further improved without sacrificing
performance in other objectives. The evaluation of the Pareto-optimal solutions can help
decision-makers identify trade-offs between different objectives and select the best solution
based on their preferences and constraints.

Multi-criteria decision-making (MCDM) techniques such as the analytical hierarchy
process (AHP) and the technique for order of preference by similarity to ideal solution
(TOPSIS) can be used to rank sensors based on their diagnostic performance and other
criteria. The AHP is a widely used MCDM technique that involves breaking down complex
decisions into a hierarchy of objectives, criteria, and alternatives, and assigning relative
weights to each level. TOPSIS is another MCDM technique that ranks alternatives by their
similarity to the ideal solution and their distance from the worst solution.

Different MOO methods, such as mathematical programming, evolutionary algo-
rithms, and hybrid methods, can be used to solve the sensor-selection problem. Mathemati-
cal programming methods, such as linear programming and mixed-integer programming,
are efficient but may be limited by the complexity of the optimisation problem. Evolu-
tionary algorithms, such as genetic algorithms [21], are robust and can handle complex
optimisation problems but may require a large number of iterations. Hybrid methods [22],
which combine different optimisation techniques, can provide a balance between efficiency
and robustness.

One popular method for multi-criteria decision-making is the analytical hierarchy
process (AHP), which involves the decomposition of the problem into a hierarchy of
objectives, criteria, and alternatives. The AHP then assigns weights to each element in the
hierarchy and uses them to rank the alternatives based on their overall desirability [23].
Figure 7 show the multi-level hierarchical structure for fuel-cell-stack fault-diagnosis sensor
criteria weight definition.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 40 
 

 

can help decision-makers identify trade-offs between different objectives and select the 

best solution based on their preferences and constraints. 

Multi-criteria decision-making (MCDM) techniques such as the analytical hierarchy 

process (AHP) and the technique for order of preference by similarity to ideal solution 

(TOPSIS) can be used to rank sensors based on their diagnostic performance and other 

criteria. The AHP is a widely used MCDM technique that involves breaking down 

complex decisions into a hierarchy of objectives, criteria, and alternatives, and assigning 

relative weights to each level. TOPSIS is another MCDM technique that ranks alternatives 

by their similarity to the ideal solution and their distance from the worst solution. 

Different MOO methods, such as mathematical programming, evolutionary 

algorithms, and hybrid methods, can be used to solve the sensor-selection problem. 

Mathematical programming methods, such as linear programming and mixed-integer 

programming, are efficient but may be limited by the complexity of the optimisation 

problem. Evolutionary algorithms, such as genetic algorithms [21], are robust and can 

handle complex optimisation problems but may require a large number of iterations. 

Hybrid methods [22], which combine different optimisation techniques, can provide a 

balance between efficiency and robustness. 

One popular method for multi-criteria decision-making is the analytical hierarchy 

process (AHP), which involves the decomposition of the problem into a hierarchy of 

objectives, criteria, and alternatives. The AHP then assigns weights to each element in the 

hierarchy and uses them to rank the alternatives based on their overall desirability [23]. 

Figure 7 show the multi-level hierarchical structure for fuel-cell-stack fault-diagnosis 

sensor criteria weight definition. 

 

Figure 7. Multi-level hierarchical structure for fuel-cell-stack fault-diagnosis sensor criteria weight 

definition [24]. 

Another similar approach to the AHP is grey clustering, which is an essential 

technique for the analysis and evaluation of systems. Its efficiency in handling diverse 

feature types makes it indispensable in assessing sensor-suite options. The recommended 

course of action is to assign a grey classification to the clustering object [8]. 

Another commonly used technique is the TOPSIS, which involves ranking 

alternatives based on their similarity to an ideal solution and their distance from the worst 

solution. The TOPSIS has been applied to sensor selection and MOO problems in several 

studies [16,24,25]. 

The best method for sensor selection, whether it is MOO or MCDM, depends on the 

specific requirements and constraints of the application at hand. Each approach has its 

own set of advantages and limitations, and the choice should be made based on the 

characteristics of the problem and the goals of the sensor-selection process. 

The decision on which method to choose can be influenced by the following factors: 

1. Number of Objectives: If the sensor-selection problem involves multiple, conflicting 

objectives, MOO is well-suited to identify trade-offs and find Pareto-optimal 

solutions. On the other hand, if the decision primarily revolves around a single 

dominant criterion, MCDM may be more appropriate. 

Figure 7. Multi-level hierarchical structure for fuel-cell-stack fault-diagnosis sensor criteria weight
definition [24].



Sensors 2023, 23, 7819 13 of 39

Another similar approach to the AHP is grey clustering, which is an essential technique
for the analysis and evaluation of systems. Its efficiency in handling diverse feature types
makes it indispensable in assessing sensor-suite options. The recommended course of
action is to assign a grey classification to the clustering object [8].

Another commonly used technique is the TOPSIS, which involves ranking alternatives
based on their similarity to an ideal solution and their distance from the worst solution. The
TOPSIS has been applied to sensor selection and MOO problems in several studies [16,24,25].

The best method for sensor selection, whether it is MOO or MCDM, depends on
the specific requirements and constraints of the application at hand. Each approach has
its own set of advantages and limitations, and the choice should be made based on the
characteristics of the problem and the goals of the sensor-selection process.

The decision on which method to choose can be influenced by the following factors:

1. Number of Objectives: If the sensor-selection problem involves multiple, conflicting
objectives, MOO is well-suited to identify trade-offs and find Pareto-optimal solutions.
On the other hand, if the decision primarily revolves around a single dominant
criterion, MCDM may be more appropriate.

2. Complexity of the Problem: For large-scale and complex sensor-selection problems,
MOO’s ability to handle multiple objectives can be advantageous. However, if the
problem is relatively simple and straightforward, MCDM may provide a quicker and
more straightforward solution.

3. Decision-Maker’s Expertise: If the decision-maker is familiar with MOO techniques
and capable of interpreting the Pareto front, MOO could be a compelling choice.
Conversely, if simplicity and transparency are essential, MCDM may be preferred.

4. Data Availability: The availability of reliable data for multiple objectives may influence
the choice of method. If the data for different criteria are scarce or uncertain, MCDM
might be a more practical option.

Ultimately, the best method for sensor selection will vary based on the specific context
and the priorities of the decision-makers. In some cases, a combination of both MOO
and MCDM might be used to leverage the strengths of each approach and arrive at a
well-informed and balanced decision. Careful consideration of the problem’s complexity,
objectives, and available resources is crucial in making an informed choice for the sensor-
selection process.

3.4. Sensor Redundancy

Sensor redundancy is a crucial technique used in many industrial and engineering
applications to increase the diagnostic reliability and fault tolerance of systems. By using
redundant sensors to detect and isolate faults, the system’s diagnostic reliability and
accuracy can be improved. Once the system is built, its reliability remains constant and
cannot be changed. However, what can be managed is the system’s operational reliability
or the ability to maintain its desired level of reliability over time.

This is where sensor redundancy comes into play. While we cannot change the system’s
inherent reliability, we can use redundant sensors to monitor the system’s behaviour
continuously and detect potential faults or deviations from the expected performance. By
using redundant sensors, we can create a system of checks and balances that helps ensure
the system continues to operate within acceptable performance limits.

The redundant sensors serve as a means of managing the system’s operational reliabil-
ity by providing real-time data on system health and performance. If a sensor malfunctions
or provides erroneous readings due to a fault, the redundant sensors can act as backups
and provide accurate data. This technique involves measuring the same parameter with
multiple sensors, providing a backup in case of sensor failure or malfunction. Determining
the optimal number of redundant sensors is crucial for achieving the desired level of perfor-
mance while minimising the cost of the system. The optimal number of redundant sensors
depends on several factors, such as system criticality, the likelihood of sensor failures, and
cost considerations. Reliability-based approaches, probabilistic analysis, and cost–benefit
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analysis are some of the techniques used to determine the optimal number of redundant
sensors. Developing algorithms capable of processing data from multiple sensors and
determining the correct measurement is necessary.

Implementing redundancy can be achieved through various approaches, with the
voting algorithm being one of the most effective. This algorithm compares data from
multiple sensors and selects the most accurate measurement, enhancing the system’s
diagnostic reliability and accuracy. Recent studies have proposed innovative algorithms and
methodologies to improve performance and availability of complex systems through sensor
technology. One study [26] introduced a new voting algorithm that assigns priority to
each sensor’s measurement in real time, allowing for accurate fault detection and isolation.
Results from fault inoculation experiments demonstrated that the proposed algorithm
outperforms the majority voter and enhanced weighted-average voter in terms of reliability
and availability. While this algorithm is more complex and requires more comparisons and
CPU time for each voting action, it can handle severe outliers and overcomes the problem
of having no clear majority that exists in the majority voter. The traditional majority voting
approach follows the majority decision, but it may struggle when there is no clear majority.
The proposed voting algorithm, on the other hand, employs an adaptive prioritisation
method to handle situations with no majority and make accurate decisions by giving higher
importance to more reliable sensors in real time. This approach enhances the reliability and
availability of complex systems and makes the voting algorithm more robust and effective
in critical applications.

Another study [27] proposed a simple and efficient way to estimate the diagnostic
coverage and false alarm values of redundant sensor systems using statistical methods. By
estimating these values, this methodology enables the development of a safety concept and
functional safety analysis for sensor systems in safety-critical applications. This approach
can also be useful for statistical sensor system optimisations and ensuring the reliability
of IVHM systems. In addition, ref. [28] proposed statistical design, estimation, and opti-
misation approaches for efficient product definition and the design of integrated sensor
systems for safety-critical applications. This study highlights the limitations of relying on
redundant configurations alone and proposes a methodology that optimises individual
sensing channel performance and dependability figures, dependent on the redundant sen-
sor output function and its diagnostic mechanism parameters. The proposed methodology
was demonstrated for a redundant integrated linear-hall magnetic-field sensor system for
safety-critical automotive applications, and it provides a practical method for sensor sys-
tem architects to perform an overall optimisation of redundant sensor systems, including
dependability requirements.

Overall, to ensure that IVHM systems are reliable and readily available, it is essential
to prioritise sensor redundancy. By utilising multiple sensors, the system’s fault tolerance
can be improved, and its diagnostic capabilities can be enhanced. After conducting a
thorough review of the relevant literature, it is apparent that there are various strategies
for optimising sensor redundancy in IVHM applications. Overall, these papers provide
valuable insights into the optimisation of sensor redundancy for IVHM applications.

3.5. Cost Function for Selection Optimisation

This section delves into the importance of the cost function in guiding decision-making
during sensor selection.

The cost function for sensor selection plays a pivotal role in achieving a balanced
approach that maximises system performance while considering the associated costs. It
allows engineers and decision-makers to weigh the trade-offs between sensor capabilities
and their economic implications. By incorporating cost considerations into the optimisation
process, a more cost-effective sensor configuration can be obtained, aligning with the
project’s budgetary constraints.
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A comprehensive cost function for sensor selection includes the following factors:

1. Sensor Performance: Represents the performance characteristics of the sensors, in-
cluding sensitivity, selectivity, reliability, accuracy, precision, response time, and
robustness. Sensor performance can be quantified based on metrics such as accuracy,
precision, sensitivity, response time, or any other relevant performance criteria.

2. System Compatibility: Refers to the compatibility of the selected sensors with the
target system, considering factors such as physical dimensions, communication pro-
tocols, power requirements, environmental suitability, and integration complexity.
System compatibility can be quantified by assessing how well the sensors can inte-
grate and communicate with other components of the complex engineering system.
This can be measured based on compatibility protocols, communication standards, or
successful integration tests.

3. Cost-Effectiveness: Addresses the cost-related considerations in sensor selection.
Cost-effectiveness can be quantified by considering the total cost of ownership of
the sensors, including acquisition costs, installation costs, maintenance costs, and
any other associated expenses. This can be represented by a monetary value or a
cost-to-benefit ratio.

4. Information Gain: Quantifies the amount of useful information that can be extracted
from the sensor data for the intended application, considering factors such as data
quality, relevance, comprehensiveness, and the potential for decision-making and
analysis. Information gain can be quantified by evaluating how much valuable
information the sensors can provide for the system. This can be measured based on
metrics such as data entropy reduction, information theory, or the ability to detect
and identify relevant events or patterns.

5. Sensor durability can be quantified by assessing the expected lifespan, reliability, and
robustness of the sensors under normal operating conditions. This can be measured
in terms of mean time between failures (MTBF) or failure rates.

6. Sensor redundancy can be quantified by assessing the level of redundancy or backup
sensors in the system. This can be measured based on the number of redundant
sensors available or the ability to seamlessly switch between sensors in case of failure.

7. Sensor calibration stability can be quantified by assessing the ability of the sensors
to maintain consistent and accurate calibration over time. This can be measured by
evaluating calibration drift or the need for frequent recalibration.

8. Sensor interoperability can be quantified by evaluating the ability of the sensors to
work seamlessly with other sensors and systems within the complex engineering
system. This can be measured based on interoperability protocols, data exchange
capabilities, or successful integration with other components.

These approaches provide a starting point for quantifying the objective functions in
the selection part of the sensor optimisation process. The first four factors are considered for
the general cost function in the selection part, however, depending on the specific context
and requirements of the complex engineering system, the actual quantification methods
and metrics may vary.

Cost (f) = α × Sensor Performance + β × System Compatibility + γ × Cost Effectiveness + δ × Information Gain

To quantitatively represent the cost function (cost (f)), appropriate weights are assigned
to each cost component based on their relative importance within the complex engineering
system. These weights can be determined through rigorous cost–benefit analyses, consider-
ing factors such as the project budget, expected sensor lifespan, and specific operational
requirements. By employing multi-objective optimisation techniques, the cost function can
be effectively integrated with other objective functions, such as sensor performance and
compatibility, to obtain an optimal and cost-effective sensor configuration.

By incorporating a well-defined cost function into the sensor-selection process, com-
plex engineering systems can make informed decisions that strike the right balance between
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sensor capabilities and economic considerations. The cost-optimised sensor configuration
contributes significantly to the overall success and sustainability of the system.

4. Placement

Optimal sensor placement (OSP) aims to determine the optimal number and location
of sensors to be deployed in a system while considering various factors such as cost,
measurement accuracy, and system performance. The use of OSP is particularly important
in systems where the placement of sensors can significantly impact diagnostic accuracy
and the performance of the system it is monitoring. For instance, in fault diagnosis systems,
improper sensor placement can lead to the inaccurate detection and diagnosis of faults.

4.1. Theoretical Background and OSP Methods

Various theoretical principles are used in OSP, including statistical analysis, mathe-
matical modelling, and simulation techniques. One key aspect of OSP is understanding the
key parameters that affect optimal sensor placement and the trade-offs between objectives
and constraints. Another important aspect is the use of inverse problems to determine the
location of the source of a signal from sensor measurements. Modelling sensor data using
the Gaussian process (GP) is also a commonly used technique in OSP, which is a natural
generalisation of linear regression that allows for the consideration of uncertainty about
predictions. A comparison of the main used techniques in OSP is shown in Table 3.

Table 3. Comparison of the Optimisation Techniques.

Optimisation
Technique Pros Cons

Statistical Analysis Provides valuable insights from
data analysis

May require large datasets and
complex statistical methods

Mathematical
Modelling

Enables accurate representation of
system behaviour

Can be computationally intensive
for complex systems

Simulation
Techniques

Allows testing in virtual
environments

May not fully capture real-world
complexities

Inverse Problems Determines source location from
sensor measurements

Can be sensitive to measurement
errors and noise

Gaussian Process
(GP)

Accounts for uncertainty in
predictions

May require significant
computational resources

Nakai et al. [7] discussed different approaches to sensor-placement optimisation for
various applications. The focus was on selecting the optimal set of sensors to estimate high-
dimensional data based on different optimality criteria, such as D-, A-, and E-optimality,
which are used to maximise the determinant, minimise the trace of the inverse, and max-
imise the minimum eigenvalue of the Fisher information matrix, respectively. The per-
formance of the greedy algorithms based on these criteria was evaluated using randomly
generated systems and a practical dataset related to climate science. A comparison of the
pros and cons of the two approaches is stated in Table 4.

Table 4. Comparison of the Optimisation Approaches.

Approach Pros Cons

D-, A-,
E-optimality

Evaluates optimality based on
specific criteria

May not consider other important
aspects of sensor placement

Greedy Algorithms Relatively simple to implement May not always find the global
optimum
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Wan et al. [29] reviewed the optimal sensor placement for aircraft structural health
management (ASHM), which mainly focuses on structural health monitoring and assess-
ment, microstructure fault monitoring and isolation, overload, corrosion monitoring, and
residual life assessment. The authors emphasise the importance of OSP for ASHM and
discuss the difficulty of optimising sensor placement in large aircraft structures. The study
proposes the use of singular value decomposition (SVD), QR decomposition, and fuzzy
measurement coverage to optimise sensor measuring points. The final result of the OSP is
verified through QR decomposition and fuzzy measurement coverage, and the scheme of
OSP is analysed for aircraft wing structure. A comparison of the approaches is shown in
the Table 5.

Table 5. Comparison of the Optimisation Approaches.

Approach Pros Cons

Singular Value Decomposition Useful for large-scale
structures

May not be applicable to all
types of systems

QR Decomposition Efficient for sensor placement Limited to certain types of
optimisation problems

Fuzzy Measurement Coverage Incorporates uncertainties in
coverage

Requires careful tuning of
fuzzy parameters

Krause et al. [30] also discussed the problem of choosing sensor locations when mon-
itoring spatial phenomena modelled as Gaussian processes (GPs). They note several
common strategies and tackle the combinatorial optimisation problem of maximising the
mutual information between the chosen locations and the locations that are not selected.
The paper proves that this problem is NP-complete but describes a polynomial-time ap-
proximation that is within (1 − 1/e) of the optimum by exploiting the sub-modularity
of mutual information. The paper extends its algorithm to exploit lazy evaluations and
local structure in the GP, yielding significant speedups. It also extends the approach to
find placements that are robust against node failures and uncertainties in the model, again
exploiting the sub-modularity of the objective function. Finally, the paper demonstrates
the advantages of the approach towards optimising mutual information in an extensive
empirical study on two real-world data sets. A comparison of the approaches shown in
Table 6.

Table 6. Comparison of the Optimisation Approaches.

Approach Pros Cons

Mutual Information Exploits sub-modularity for
efficiency

NP-complete problem, may
not find the global optimum

Lazy Evaluations Speeds up optimisation
process

May not fully capture all
system dynamics

Robust Placements Considers uncertainties and
node failures

Requires additional
computational complexity

The reviewed studies emphasise the importance of OSP in improving fault diagnosis
efficiency, sensor layout selection, and ASHM. Each study proposes a different approach to
optimising sensor placement, including the use of dynamic fault tree, dynamic Bayesian
network, SVD, QR decomposition, and fuzzy measurement coverage. They demonstrate
the complex nature of OSP and highlight the need for a systematic approach to sensor
placement, considering different criteria and factors such as the number of sensors, edge
effect, measurement degree of freedom, similarity of sensor locations, and hiddenness of
fault position, and provide insights that can be applied to various fields such as aerospace,
energy, and transportation.
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OSP methods have been widely used in various fields to solve the sensor placement
problem. These methods can be broadly categorised into three groups: heuristic, evo-
lutionary and deterministic. The optimisation of sensor placement is a challenging task
that involves finding the optimal locations for sensors based on a set of objectives and
constraints. A range of optimisation techniques has been developed to address this prob-
lem, including sensitivity-based and topology-based approaches, as well as linear and
non-linear optimisation methods.

Some of the most commonly used optimisation techniques for sensor placement
include evolutionary algorithms, particle swarm optimisation, and greedy algorithms.
Evolutionary algorithms, such as genetic algorithms or differential evolution, are based
on the principles of natural selection and survival of the fittest. These algorithms generate
a population of candidate solutions and iteratively improve them by applying genetic
operators, such as mutation, crossover, and selection. Particle swarm optimisation is a
population-based optimisation technique inspired by the behaviour of bird flocks or fish
schools. It involves iteratively adjusting the position and velocity of a set of particles to find
the optimal solution. Greedy algorithms are simple heuristic techniques that aim to find
the optimal solution by iteratively adding or removing sensors based on a set of criteria,
such as the information gain or the cost–benefit ratio.

Sensitivity-based approaches aim to identify the most sensitive locations in a system
by analysing the response of the system to changes in the input parameters. This involves
calculating the sensitivity coefficients, which describe how changes in the sensor mea-
surements affect the system output. These coefficients are used to guide the placement of
sensors to maximise the system’s response to changes in the input parameters.

Topology-based approaches focus on identifying the most critical locations in a system
by analysing the topology of the system. This involves identifying the most important
nodes, edges, or regions in the system using graph-based techniques, such as centrality
analysis or clustering. These techniques can be used to guide the placement of sensors to
maximise the coverage of the critical regions in the system.

In [31], Clark et al. discussed the problem of optimal sensor placement under a cost
constraint, which arises in various industrial and scientific applications. A well-established
greedy algorithm for optimal sensor placement without cost constraints is extended to in-
corporate cost constraints, and the algorithm’s effectiveness was demonstrated on datasets
related to facial recognition, climate science, and fluid mechanics. The paper emphasises
that the cost-error landscape varies by application, and intuitive connections to underlying
physics are observed.

Gomes et al. [32] examined the problem of identifying structural damages in large-scale
structures, mainly in aerospace applications. A metaheuristic algorithm called the “firefly
algorithm” (FA) is used to identify structural damages by solving an inverse problem. The
Fisher information matrix is used to optimise sensor placement, and the results demonstrate
that optimised sensors contribute to the improved identification of damages, especially
in complex and large-scale structures. The proposed optimised damage identification
process using FIM-FA has the potential to be extended to a wide range of structural health
monitoring (SHM) applications in complex structures, where traditional non-destructive
inspection methods may not be practical due to the complexity and restricted access to
the structure.

Feng et al. [24] reviewed the development of an OSP scheme to improve fault diagnosis
efficiency considering common cause failure. The study introduces a dynamic fault tree
converted to a dynamic Bayesian network to calculate reliability parameters and construct
the decision matrix. An efficient TOPSIS algorithm is adopted to determine the potential
sensor locations. A diagnostic sensor model is also developed to take into account the
failure sequence between a sensor and a component. The authors provide a case study to
prove the significant impact of common cause failure on sensor placement.

Yang et al. [33] focused on the investigation of OSP for a multi-rotary-joint solar
power satellite (MJ-SPS) using six OSP methods to select the best sensor layout. Three
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standards and two novel criteria, i.e., sensor distribution and similarity of sensor locations,
are added to evaluate the effectiveness of the sensor configurations. The study emphasises
the importance of the work for the MJ-SPS and OSP methods, comparing different numbers
of sensors and orders of modal shape.

It is important to note that the optimal sensor placement depends not only on the
system’s objectives but also on the type and number of sensors available, as well as the
impact of environmental factors on sensor performance. For instance, the placement of
temperature sensors in a heat exchanger may differ depending on the type of temperature
sensor used (e.g., thermocouple, RTD, or infrared sensor) and the impact of fouling or
corrosion on sensor accuracy.

Overall, the choice of sensor-placement optimisation method depends on the complex-
ity of the problem, the computational resources available, and the required level of solution
accuracy. Each method has its advantages and disadvantages, and the optimal method
should be selected based on the specific requirements of the problem. A comparison of the
methods is shown in Table 7.

Table 7. Comparison of the Placement Optimisation Methods.

Methods Pros Cons

Dynamic Fault Tree Captures time-varying
dependencies

Complexity increases with
system size

Firefly Algorithm (FA) Efficient for large-scale
structures May require parameter tuning

Dynamic Bayesian Network Accounts for time
dependencies

Requires accurate model
representation

Genetic Algorithms Global search capability Convergence may be slow

Particle Swarm Optimisation
(PSO) Converges quickly May get stuck in local optima

Sensitivity-Based Approaches Identifies sensitive locations Sensitive to measurement
errors

Topology-Based Approaches Identifies critical locations Complexity increases with
system size

4.2. Sparsity and Data-Driven Learning

In this section, we discuss the use of sparsity and data-driven learning techniques in
OSP. Sparsity has been extensively used to improve the performance of inverse problems by
reducing the number of unknowns and increasing the robustness of the solution. Sparsity
is a well-known concept in data science and optimisation theory. This concept has been
widely applied in various fields, including image and signal processing, machine learning,
and optimisation [34–36].

In sensor-placement optimisation, sparsity can be used to identify important mea-
surement points in complex systems, leading to significant cost savings in the number of
sensors required. Data-driven learning approaches, such as compressed sensing and di-
mensionality reduction, have been used to achieve sparsity in sensor placement [37]. These
methods have been successfully applied to a variety of applications, including structural
health monitoring, power-systems health monitoring, and water distribution networks.

Compressed sensing is a mathematical technique that allows for the recovery of
a sparse signal from a small number of measurements. Compressed sensing has also
been used in conjunction with other optimisation methods, such as convex optimisation,
to improve sensor placement performance. Dimensionality reduction is another data-
driven approach that can be used for sensor-placement optimisation. Dimensionality
reduction is the process of reducing the number of variables in a dataset while retaining
the most important information. This can be achieved using techniques such as principal
component analysis (PCA), proper orthogonal decomposition (POD) or T-distributed
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stochastic neighbour embedding (t-SNE). It can be used to identify important measurement
points in a system and reduce the number of sensors required.

When dealing with nonlinear systems, standard techniques for feature selection and
sensor placement that rely on linearity assumptions or simple statistical models can result
in costly oversensing without guaranteeing the recovery of desired information from the
measurements. To this end, Otto et al. [38] discuss the importance of sensor placement
and feature selection in solving inverse problems in nonlinear systems and highlight the
limitations of existing techniques that rely on linearity or simple statistical models. To
overcome these limitations, the authors propose a novel data-driven approach based on
secant vectors between data points for a general type of nonlinear inverse problem. The
approach is used to develop three efficient greedy algorithms that provide different robust
and near-minimal reconstruction guarantees. The algorithms are demonstrated on two
problems where linear techniques fail: sensor placement for reconstructing a fluid flow with
a complex shock-mixing layer interaction and selecting fundamental manifold learning
coordinates on a torus.

Overall, the use of sparsity and data-driven learning techniques in OSP offers new op-
portunities for improving the accuracy and efficiency of solutions, especially in applications
involving large datasets and incomplete measurements.

4.3. Case Studies in Placement Optimisation

Sensor-placement optimisation has been widely applied in various fields, including
structural health monitoring (SHM), power-systems health monitoring, water distribution
networks, non-destructive evaluation (NDE), condition-based maintenance (CBM), and
prognostics and health management (PHM). In this section, an overview of some case
studies that have implemented sensor-placement optimisation techniques is given.

Structural health monitoring (SHM) is a field that aims to provide real-time information
on the health condition of structures to ensure their safety and prevent catastrophic failures.
The use of sensor-placement optimisation in SHM has been widely investigated in the
literature. For example, Ostachowicz et al. [39] presented an unbiased state-of-the-art
review of the research carried out in this area for researchers and practitioners in the SHM
and optimisation fields. The review covers the definition of the optimisation problem,
classification of techniques used, optimisation algorithms applied, and multi-objective
optimisation. The authors of the reviewed article have focused on three commonly accepted
and widely used techniques in the SHM community, which are vibration-based monitoring,
strain monitoring, and elastic wave-based monitoring.

Power systems are critical infrastructures that require constant monitoring to ensure
their reliability and prevent blackouts. Sensor-placement optimisation has been applied in
power-systems health monitoring to improve the accuracy and efficiency of fault detection
and diagnosis. A Bayesian belief network (BBN)-based approach has been proposed to
optimise sensor placement for power-systems health monitoring in the work by Pourali
et al. [40]. The approach utilises functional topology, physical models of sensor information,
and Bayesian inference techniques, along with constraints, to determine optimised sensor
placement based on information metric functions. The methodology aims to address
important questions such as inferring the health of a system or subsystem with limited
monitoring points, using upward, downward, or distributed propagation techniques. The
dynamic BBN serves as the engine for projecting the health of the system. Such approaches
are critical for ensuring effective power-systems health monitoring while minimising costs
associated with excessive sensor placement.

Water distribution networks are critical infrastructures that require constant mon-
itoring to ensure their safety and prevent leaks and contamination. Sensor-placement
optimisation has been applied in water distribution networks to improve the efficiency
and accuracy of leak detection and localisation. For example, Aral et al. [41] proposed
a simulation-optimisation approach based on a single-objective function. The proposed
model incorporates multiple factors used in the design of the system to mimic a multi-
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objective approach and provides the final design without specifying a preference among
the multiple objectives. A reliability constraint concept has also been introduced in the op-
timisation model to identify the minimum number of sensors and their optimal placement
required to meet a pre-specified reliability criterion for the network. A progressive genetic
algorithm approach has been utilised for the solution of the model by evolving subdomain
sets of the complete set of junctions present in the system. The algorithm has been tested
in two networks and compared with the outcome of other solutions presented in a water
distribution systems analysis symposium, showing promising results for effective water
sensor-placement optimisation.

In a recent study, Kim et al. [42] discuss utilising the convolution neural network
(CNN) algorithm for the NDE of aluminium panels. The objective is to classify the locations
of defects by exciting the panel to generate ultrasonic Lamb waves, capturing the data
through a sensor array, and then utilising deep learning to identify the features of 2D
reflected waves from the defects. The study also explores the impact of optimal excitation
location and sensor placement to improve the performance of the method. To ensure the
training model’s robustness and effective feature extraction, experimental data are collected
by slightly varying the excitation frequency and defect location. The algorithm delivers
high accuracy in classifying each defect location, even when a bar is attached to the panel.

PHM plays a crucial role in ensuring the safety and reliability of aerospace systems.
Design for testability (DFT) is an important consideration for improving PHM performance,
as information sensing and testing are the foundation of PHM. However, traditional DFT
approaches, which only focus on fault detection and isolation requirements, are inadequate
for sensor design and optimisation for PHM. To address this issue, a process for sensor
selection and optimisation for PHM is proposed by Yang et al. [43]. A qualitative analysis of
the intrinsic requirements of PHM for testability and a quantitative definition of correspond-
ing testability indexes are presented. Fault detection uncertainty is systematically analysed
from various perspectives, including fault attributes, sensor attributes, and fault-sensor
matching attributes. Object and constraint models for the sensor optimisation selection
problem are studied in detail, and a sensor optimisation selection model is developed
for aerospace system health management. The model considers sensor total cost as the
objective function and the proposed testability indexes under uncertainty test as constraint
conditions. As the model is NP-hard, a generic algorithm (GA) is introduced to obtain the
optimal solution.

4.4. Cost Function for Placement Optimisation

This section focuses on the significance of the cost function in guiding decision-making
during sensor placement.

The cost function for sensor placement serves as a valuable tool in achieving an optimal
sensor deployment that maximises system performance while considering the associated
costs. By incorporating cost considerations into the placement optimisation process, en-
gineers and decision-makers can make well-informed choices that align with budgetary
constraints, ensuring cost-effectiveness without compromising system functionality.

A comprehensive cost function for sensor placement includes the following factors:

1. Sensor Coverage: Quantifying the extent to which sensors capture relevant informa-
tion within the system’s operational area. This includes assessing the spatial coverage
and the quality of information gathered by the sensors. Sensor coverage can be
quantified by assessing the spatial or temporal area covered by the sensors. This can
be measured using metrics such as percentage coverage, spatial resolution, or time
interval between data collection.

2. Sensor Connectivity: Evaluating the strength and reliability of sensor connections
within the system. This encompasses metrics such as signal strength, connection
success rate, and communication robustness. Sensor connectivity can be quantified by
evaluating the ability of the sensors to establish and maintain reliable communication
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within the system. This can be measured based on metrics such as connection success
rate, latency, or signal strength.

3. Interference Minimisation: Assessing the ability of the sensor placement to mitigate
interference sources and maintain signal integrity. This includes considering interfer-
ence rejection ratio, signal-to-interference ratio, and the effectiveness of interference
mitigation techniques. Interference minimisation can be quantified by assessing the
ability of the sensors to reduce or mitigate the impact of interference sources. This
can be measured based on metrics such as signal-to-interference ratio, interference
rejection ratio, or the ability to operate in noisy environments.

4. Resource Utilisation: Accounts for the efficient usage of system resources by the
sensors, such as power consumption, bandwidth utilisation, and computational
requirements. Resource utilisation can be quantified by evaluating how efficiently the
sensors utilise system resources such as power, bandwidth, or processing capacity.
This can be measured based on resource consumption rates or resource allocation
efficiency.

5. Scalability can be quantified by assessing the ability of the sensor placement to ac-
commodate system expansion or changes in the system’s scale. This can be measured
based on the ease of adding or removing sensors, as well as the impact on overall
system performance.

These approaches provide a starting point for quantifying the objective functions in
the placement part of the sensor optimisation process. The first four factors are considered
for the general cost function in the placement part; however, depending on the specific
context and requirements of the complex engineering system, the actual quantification
methods and metrics may vary.

Cost (f) = α × Sensor Coverage + β × Sensor Connectivity + γ × Interference Minimisation + δ × Resource Utilisation

Quantifying the cost function for sensor placement involves assigning appropriate
weights to each cost component based on their relative importance within the specific
complex engineering system. These weights are determined through a thorough anal-
ysis, considering factors such as project budget, resource limitations, and the system’s
operational requirements. By employing multi-objective optimisation techniques, the
cost function can be effectively integrated with other objective functions, such as sen-
sor coverage, connectivity, and interference minimisation, to obtain an optimal sensor
placement configuration.

By incorporating a well-defined cost function into the sensor-placement optimisation
process, complex engineering systems can achieve an optimal sensor deployment that max-
imises system performance while adhering to budget constraints. The cost-optimised sensor
placement contributes significantly to the overall efficiency and success of the system.

5. Data Processing

Effective data processing is a critical component in the optimisation of sensor systems,
aiming to maximise the information obtained. By employing advanced techniques, data
processing enables the extraction of meaningful insights, leading to improved system
performance and decision-making. This section explores various approaches and method-
ologies used in data processing to enhance the information gained from sensor data. The
full potential of sensor data can be achieved by optimising the information gained from
sensor data through effective signal processing, feature extraction and selection, machine
learning techniques, and data fusion. In the following sections, we delve into each of
these approaches to understand their contributions in maximising the useful information
obtained from sensor data.
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5.1. Signal Processing Techniques

Signal processing techniques are employed to enhance the quality of sensor signals
by reducing noise, amplifying relevant features, and mitigating interference. Through
these techniques, engineers can maximise the information gained from sensor data, leading
to improved system performance and more accurate analysis. The following techniques
are discussed in this section: filtering techniques, time–frequency analysis techniques and
waveform feature extraction techniques.

One of the most used noise reduction techniques, filtering, which includes low-pass,
high-pass, and band-pass filters, is applied to remove unwanted noise and artefacts from
the sensor signals. By selectively attenuating or amplifying specific frequency components,
filtering improves the signal-to-noise ratio and enhances the quality of the acquired data.
This allows for a more precise analysis and interpretation of the sensor measurements. The
Butterworth filter is a commonly used low-pass filter that removes high-frequency noise.
Another widely utilised technique is the Kalman filter, which recursively estimates the
system state based on sequential measurements, effectively filtering out noise. Additionally,
adaptive filters are employed to adjust their parameters in response to changing noise
conditions, allowing for the tracking of time-varying signals. In an optimal filtering example
of a stochastic singular system with correlated noises presented by Sun et al. [44], all results
generalise the Kalman filter and its effectiveness, presented in a simulation example.

Time–frequency representation (TFR) has been a field of active research in the last
few decades and continues to be a subject of interest today. A precise and accurate rep-
resentation of nonstationary signals in the time–frequency domain is crucial, particularly
in mechanical fault diagnosis. Traditional TFRs depict the energy or power of signals in
two-dimensional functions of time and frequency, effectively capturing fault signatures in
diagnostic applications. Various TFR methods employ different kernel functions, such as
the short-time Fourier transform (STFT) with a linear kernel, the Wigner–Ville distribution
(WVD) with a quadratic kernel, and the wavelet transform, which utilises an analysis basis
constrained in both time and frequency [34].

Waveform feature extraction techniques are employed to extract relevant features from
sensor data. Peak detection is a commonly used technique that identifies the maximum
or minimum values within a waveform, providing insights into signal characteristics [45].
Zero-crossing detection identifies the points at which a waveform crosses the horizontal
axis, offering information about signal behaviour. Fourier analysis, which decomposes a
signal into its frequency components using the Fourier transform, enables further analysis
and interpretation for larger datasets [46].

In summary, signal processing techniques are essential for optimising the information
gained from sensor data. By effectively applying these signal processing techniques,
engineers can extract valuable insights, improve system performance, and make informed
decisions based on the processed sensor data.

5.2. Feature Extraction and Selection

Feature extraction and selection methods are utilised to identify and extract relevant
information from the processed sensor data. By focusing on key features, these tech-
niques reduce the dimensionality of the data and the computational burden associated
with processing large datasets, enhance computational efficiency, and highlight the most
informative aspects.

Feature extraction is an important step in the data processing phase of the basic
condition monitoring process. This extraction process is particularly important for handling
noisy sensor data and avoiding excessive input features, especially in the case of vibration
data, during the classifier learning phase. Therefore, feature extraction is often considered
the first and essential step in any classification task [47].

Common basic features include maximum, mean, minimum, peak, peak-to-peak
interval, and others. Additionally, more complex feature extraction methods like principal
component analysis (PCA), independent component analysis (ICA), and kernel principal
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component analysis (KPCA) can be employed [48]. These advanced methods enable the
extraction of more intricate and informative features from the sensor data, enhancing the
accuracy and effectiveness of classification algorithms.

Feature selection has gained significant attention in recent years in machine learning
applications. Its objective is to identify and retain the most relevant features from an original
dataset, aiming to enhance the quality and efficiency of feature sets used in various tasks
such as classification, regression, clustering, and time-series prediction. This objective can be
achieved using a variety of methods, including filter, wrapper, and embedded approaches.

Irrelevant or redundant features can lead to overfitting and performance degradation,
making feature selection essential for mitigating these issues. By reducing the dimensional-
ity of the dataset and selecting the most informative subset of features, feature selection
techniques offer benefits such as improved interpretability of models, reduced computa-
tional costs, and enhanced learning accuracy. These techniques have found widespread
adoption across domains like text mining, image analysis, and biomedical research. The
visual representation of the feature selection process, as depicted in Figure 8, showcasing
the transformation of an original feature set into a carefully selected subset, resulting in
improved performance and efficiency of machine learning algorithms [49].
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Filter approaches involve ranking features based on statistical measures such as
correlation or mutual information. Wrapper approaches evaluate the performance of a
specific machine learning algorithm using different subsets of features and select the subset
that yields the best performance. Embedded approaches involve selecting features as part
of the training process for the machine learning algorithm [50].

Several feature extraction and selection techniques have been applied in complex sys-
tems, each with its own strengths and limitations. In a study on feature selection for pattern
classification systems, Peng et al. [51] investigated the use of the minimal-redundancy-
maximal-relevance criterion (mRMR) based on mutual information. Their goal was to
select a compact set of superior features at a low cost. The proposed approach involved a
two-stage feature selection algorithm that combined mRMR with other advanced feature
selectors, such as wrappers. The algorithm was extensively evaluated using different
classifiers (naive Bayes, support vector machine, and linear discriminate analysis) and
diverse datasets (handwritten digits, arrhythmia, NCI cancer cell lines, and lymphoma
tissues). The experimental results demonstrated the promising improvement in feature
selection and classification accuracy achieved by incorporating mRMR.

The choice of feature extraction and selection technique depends on various factors,
including the specific problem being addressed, the type of data being analysed, and the
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available computational resources. It is crucial to evaluate the performance of different
techniques in the context of the given application to determine the most suitable technique.

5.3. Machine Learning Techniques

Machine learning (ML) techniques have emerged as powerful tools for data processing
in sensor systems. By leveraging algorithms such as classification, regression, and anomaly
detection, machine learning can automatically learn patterns and relationships within
sensor data. This enables the system to make predictions, detect anomalies, and uncover
complex insights that might not be immediately apparent. Integrating machine learning
into data processing enhances the system’s ability to extract valuable information and
optimise the sensor system’s performance.

In the field of PHM, data-driven methods, particularly ML and deep learning (DL)
techniques, have gained widespread adoption for tasks such as anomaly detection, fault
diagnostics, and prognostics [52]. These methods possess the capability to handle large
volumes of highly nonlinear data effectively. DL models excel at processing operational data
and automatically generating features for various tasks, including detection, classification,
and prediction of patterns within the data. This reduces the reliance on domain expertise
and extensive manual feature engineering, particularly when complete and representative
data are available.

Learning problems in the context of DL can be categorised into four main groups:
supervised, unsupervised, semi-supervised, and reinforcement learning. To implement
DL algorithms, three key components are required: (1) training and testing data, (2) an
objective function, and (3) an optimisation scheme. Variations in these components give
rise to a multitude of distinct DL algorithms and architectures, such as convolutional neural
networks (CNNs), recurrent neural networks (RNNs), long short-term memory networks
(LSTMs), generative adversarial networks (GANs), and autoencoders [52].

Supervised learning involves learning from labelled datasets to make predictions or
classifications based on observed patterns. Unsupervised learning, on the other hand,
focuses on finding hidden patterns and structures within unlabelled data. Semi-supervised
learning combines labelled and unlabelled data to leverage both sources of information.
Finally, reinforcement learning involves learning through interactions with an environment,
where the algorithm receives feedback in the form of rewards or punishments to optimise
its actions. Each type of learning offers a range of capabilities and is applicable to various
tasks within complex engineering systems. The selection of the most suitable technique
depends on the nature of the problem, the available data, and the desired outcomes.

Rezaeianjouybari et al. [53] presented the state-of-the-art, challenges, and opportuni-
ties for deep learning applications in PHM. Well-documented lists of activation functions
in deep learning, optimisation algorithms in deep architectures, regularisations in training
deep networks, performance metrics for PHM model evaluation, public datasets for system
health management, and mainstream deep learning tools were presented. The work con-
ducted is commendable and valuable for the PHM community. The comprehensive survey
on deep learning applications in PHM provides a solid foundation for researchers and
practitioners interested in leveraging advanced machine learning techniques for system
health monitoring and prognostics. The insights into performance metrics tailored for PHM
model evaluation enable researchers to assess the effectiveness of their models accurately.

In the context of data-driven predictive maintenance (PdM), the use of machine
learning (ML) algorithms has gained attention for its potential in artificial intelligence.
However, the performance of ML algorithms can be compromised when dealing with
high-dimensional and discontinuous machine data. Standard dimension reduction tech-
niques may not effectively handle such challenges. To address this, Aremu et al. [54]
proposed an ML-based dimension reduction framework that clusters observations based
on data modality and utilises Laplacian eigenmaps embedding to obtain low-dimensional
representations. The framework is applied to the Commercial Modular Aero-Propulsion
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System Simulation dataset, demonstrating its effectiveness in handling high-dimensional
discontinuous machine data for ML-based PdM analysis.

Thoppil et al. [55] discussed popular deep learning architectures and their signifi-
cance in machinery health prognostics, using benchmark time-series machinery failure
datasets and highlighting the contributions of researchers in implementing deep learning
approaches for accurate machinery health diagnostics and prognostics. However, the need
for large-scale machinery failure data, the challenges of hyper-parameter optimisation
and architecture design, and the black-box nature of deep learning algorithms remain
limitations to be addressed.

Saufi et al. [56] discussed deep learning models and their applications in machinery
fault detection and presented classification tables for the models used in different diag-
nosis stages, such as fault detection, fault identification, fault size estimation and fault
growth prediction.

Intelligent fault diagnosis (IFD) has gained attention for automating machine fault
recognition and reducing human labour. However, existing reviews lack comprehensive
coverage and future guidelines. To address this, Lei et al. [57] provided a systematic review
and roadmap of IFD’s development, encompassing traditional machine learning theories,
the advent of deep learning, and the prospects of transfer learning. The roadmap highlights
potential research trends and challenges in IFD. Yang et al. [58] also presented a detailed
textbook about the foundation of transfer learning and its applications.

Overall, the choice of ML technique depends on the specific application and the
characteristics of the data. It is important to carefully evaluate different techniques and
select the most appropriate one for the problem at hand.

5.4. Data Fusion Techniques

Data fusion techniques are widely used in complex systems to improve the accuracy,
reliability, and robustness of the results by integrating information from multiple sources.
Data fusion can be performed at different levels, such as sensor-level fusion, feature-level
fusion, and decision-level fusion, depending on the application requirements and the
available data. Figure 9 represents three levels of information fusion techniques used in
diagnostic and decision support systems. The selection of the appropriate fusion technique
depends on the characteristics of the data, the desired outcome, and the computational
resources available.
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In the realm of sensor data management, the efficient handling of data from multiple
sources is paramount. The integration and management of multi-source sensor data
pose unique challenges and opportunities for optimising data quality and information
extraction. When dealing with diverse sensor types and sources, the harmonisation of data
formats, synchronisation, and alignment become crucial tasks. Additionally, strategies for
addressing data redundancy and ensuring data integrity play a pivotal role. The selection
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of appropriate fusion techniques, such as sensor fusion algorithms and data integration
frameworks, becomes instrumental in achieving comprehensive and meaningful insights
from heterogeneous sensor data sources. By effectively managing multi-source sensor
data, organisations can unlock the full potential of their sensor networks, enhancing the
robustness and reliability of their data-driven decision-making processes. In this section,
we delve into the intricacies of multi-source sensor data management.

Sensor-level fusion combines the raw data from multiple sensors (multi-source sensors)
to form a more accurate and reliable representation of the underlying physical phenomenon.
It is particularly useful in situations where the sensors have different response character-
istics or are affected by different sources of noise. Sensor-level fusion can be achieved
using techniques ranging from simple weighted averages to more advanced methods
such as fuzzy logic, Kalman filters, and probabilistic approaches. Several studies have
demonstrated the effectiveness of sensor data fusion in various applications [59].

Feature-level fusion combines the extracted features from multiple sensors to form
a more informative and discriminative representation of the underlying physical phe-
nomenon. Feature-level fusion can be achieved by concatenating, weighting, or selecting
the most informative features based on their relevance and redundancy. Feature-level
fusion is particularly useful in situations where the sensors have different measurement
modalities or provide complementary information. In the context of vibration monitoring,
feature-level fusion has been successfully applied for sensor fault detection, combining
correlated measurements through statistical feature extraction [60].

At the decision level of the diagnostic and prognostic process, the fusion of results from
multiple independent methods can enhance the accuracy and confidence of estimations.
Different techniques may be more effective in identifying specific problems, making their
combination valuable. Decision-level fusion can be achieved by voting, weighting, or select-
ing the most reliable algorithm or model based on their performance and the uncertainty
of the results. It is particularly useful in situations where the algorithms or models have
different assumptions or are trained on different data. Additionally, estimations from these
methods can be combined with other sources of information such as vibration analysis,
maintenance history, observations during inspections, and negative information. These
fusion approaches occur at two levels: the automated decision level and the supervised
decision level. While significant research has been conducted on the automated decision
level, there is a scarcity of examples in the literature regarding the supervised decision
level [61].

Overall, in a self-organised distributed system, collective decision-making plays a
crucial role. Various approaches have been proposed for collective decision-making, in-
cluding voting models, swarm methods inspired by biology, and methods for task and role
allocation. However, decentralised information fusion systems face a significant challenge
in terms of real-time communication. Current real protocols rely on a central control unit to
manage communication timing and flow. Overcoming this challenge is essential for the
development of future approaches to decentralised information fusion systems [62].

5.5. Cost Function for Data Processing Optimisation

This section highlights the significance of the cost function in guiding decision-making
during data processing.

A comprehensive cost function for data processing includes the following factors:

1. Data Accuracy: Quantifying the level of agreement between sensor measurements and
ground truth values, ensuring that the processed data are reliable for decision-making.
Data accuracy can be quantified by assessing the level of agreement between sensor
measurements and ground truth values or reference data. This can be measured
using metrics such as mean absolute error, root-mean-square error, or statistical
measures of accuracy.

2. Computational Efficiency: Evaluating the efficiency of data processing algorithms
and techniques to minimise resource consumption, such as processing time, memory
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usage, and energy consumption. Computational efficiency can be quantified by
evaluating the computational resources required for processing sensor data. This can
be measured based on metrics such as processing time, memory usage, or energy
consumption during data processing.

3. Feature Relevance: Assessing the significance of extracted features from sensor data
to ensure that the most relevant and informative features are utilised for analysis.
Feature relevance can be quantified by assessing the significance of extracted features
from sensor data for the intended analysis or decision-making process. This can be
measured based on metrics such as feature importance scores, information gain, or
correlation coefficients.

4. Model Complexity: Considering the complexity of data processing models to strike
a balance between accuracy and computational overhead, avoiding overly complex
models that might be resource-intensive. Model complexity can be quantified by
evaluating the complexity or simplicity of the models used for data processing. This
can be measured based on metrics such as the number of parameters, the depth of the
model, or the computational complexity of the algorithms.

5. Sensor Data Integration can be quantified by assessing the ability to combine and
merge data from multiple sensors to create a comprehensive view of the system. This
can be measured based on the effectiveness of data fusion algorithms, data alignment
accuracy, or the quality of integrated data outputs.

6. Sensor Data Privacy can be quantified by evaluating the level of protection and confi-
dentiality applied to sensor data. This can be measured based on privacy-preserving
techniques, encryption methods, or compliance with data privacy regulations.

These approaches provide a starting point for quantifying the objective functions
in the data processing part of the sensor optimisation process. The first four factors are
considered for the general cost function in the data processing part; however, depending
on the specific context and requirements of the complex engineering system, the actual
quantification methods and metrics may vary.

Cost (f) = α × Data Accuracy + β × Computational Efficiency + γ × Feature Relevance + δ × Model Complexity

Quantifying the cost function for data processing involves assigning appropriate
weights to each cost component based on their relative importance within the specific
complex engineering system. These weights are determined through comprehensive evalu-
ations, considering factors such as data processing performance requirements, available
computational resources, and budget constraints. By employing multi-objective optimisa-
tion techniques, the cost function can be effectively integrated with other objective functions,
such as data accuracy, computational efficiency, feature relevance, and model complexity,
to achieve an optimal data processing configuration.

By incorporating a well-defined cost function into the data processing optimisation
process, complex engineering systems can achieve an efficient and cost-effective utilisation
of sensor data. The cost-optimised data processing contributes significantly to the overall
efficiency and decision-making capabilities of the system.

6. Operation

The operation of sensor optimisation is a multifaceted process with specific objec-
tives aimed at enhancing the overall performance and efficiency of sensor systems within
complex applications. The operation of sensor optimisation is a multifaceted process with
specific objectives aimed at enhancing the overall performance and efficiency of sensor
systems within complex applications. The primary purpose of the operation side of sen-
sor optimisation is to strategically select, configure, and calibrate the sensor in service to
maximise its utility. This process involves several key objectives, such as data quality im-
provement, resource optimisation, robustness and fault tolerance, adaptability to changing
conditions, and data fusion and integration.
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The fundamental goal of operation is to make sure that sensors are accurate and per-
forming well. This can include sub-categories such as monitoring and control, maintenance
optimisation, fault diagnosis and prognosis, and performance optimisation. It is imperative
to capture the necessary information and adjust system parameters in response to changing
conditions to inform decision support systems by continuous monitoring. In summary,
the operation of sensor optimisation serves the overarching purpose of improving the
effectiveness and efficiency of sensor systems within complex applications.

6.1. Monitoring and Control

Real-time monitoring and control are critical aspects of complex systems. The use
of sensors and data analytics enables the real-time monitoring and control of systems,
providing continuous feedback on the system’s health and performance. By monitoring
system parameters in real time, faults can be detected and addressed before they escalate
into costly system failures. In addition, real-time monitoring and control can also provide
insight into system performance, enabling the optimisation of system parameters for
increased efficiency and effectiveness.

Real-time monitoring and control are applicable to a wide range of systems, including
manufacturing, transportation, and energy systems. In manufacturing, real-time mon-
itoring and control can be used to optimise production processes, reducing waste and
increasing throughput. In transportation, real-time monitoring and control can be used to
optimise vehicle performance, reducing fuel consumption and improving safety. In energy
systems, real-time monitoring and control can be used to optimise power generation and
distribution, reducing costs and increasing reliability.

Zhou et al. [63] discussed the importance of condition monitoring (CM) in improv-
ing the reliability of rotating machinery (RM). They emphasised the need for an efficient
CM method with simple and intuitive attributes for industrial applications. The devel-
opment of health indicators (HIs) that connect fault detection, degradation assessment,
and prognosis applications is crucial in CM. The paper reviews the construction methods
of HIs for rotating machinery, covering both classical technical approaches and recent
data-oriented intelligent methods such as deep learning. The benefits and potential of
efficient HIs for condition monitoring are analysed, along with current challenges and
future research opportunities.

By monitoring system parameters in real time, safety-critical faults can be detected and
addressed before they pose a threat to system operators or the public. In addition, real-time
monitoring and control can be used to implement safety protocols, such as emergency
shutdown procedures, in the event of a system failure.

Overall, real-time monitoring and control are critical aspects of complex systems. By
leveraging sensor data and advanced data analytics techniques, real-time monitoring and
control can provide insight into system health and performance, enabling the optimisation
of system parameters for increased efficiency and effectiveness. Real-time monitoring and
control also have implications for system safety, enabling the detection and prevention of
safety-critical faults.

6.2. Maintenance Optimisation

Maintenance optimisation is an essential aspect of complex systems, and it involves
the use of various techniques to determine the optimal maintenance schedule for a system.
The main goal of maintenance optimisation is to minimise the cost of maintenance while
ensuring that the system operates at its optimal level. Two of the most commonly used
maintenance optimisation techniques in IVHM systems are condition-based maintenance
and predictive maintenance.

There are several factors to consider when selecting the appropriate maintenance
optimisation technique for an IVHM system. These include the cost of maintenance, the
criticality of the system, the availability of replacement parts, and the system’s operating
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environment. Additionally, it is important to select a maintenance optimisation technique
that is compatible with the sensors and other monitoring tools used in the system.

In safety-critical systems, such as industrial plants or aircraft, the prevention of failure
while maintaining high availability is crucial. Advanced prognostic algorithms and sensing
techniques are being developed for predictive maintenance to achieve reliable and accurate
prediction. However, there is a lack of in-depth studies on evaluating sensing techniques
based on their prediction performance and inspection scheduling. Park et al. [64] addressed
the need to evaluate the cost-effectiveness of different sensors by considering their contribu-
tion to reducing unnecessary inspection or measurement costs while maintaining prognosis
performance. The authors conducted simulations to analyse prediction performance under
varying measurement intervals and different levels of noise during degradation. Addition-
ally, they analysed real run-to-fail (RTF) datasets from two different sensors to design an
optimal measurement system for predictive maintenance. The study provides insights into
selecting sensors based on cost-effectiveness and resistance to noise in order to improve
maintenance strategies.

Demetriou et al. [65] introduced the economic aspect as a new factor in sensor selection
for the improved filtering of dynamical systems. The price of a single sensor, represented by
high covariance values, is considered to incorporate the economic perspective into sensor
optimisation for optimal filtering. Instead of relying on a single expensive and highly
accurate sensor, the unit price and total price of a network of inexpensive noisy sensors are
utilised as alternatives. The study presents algorithms for integrated sensor optimisation
for both finite and infinite dimensional systems and provides examples to illustrate the
effects of considering economic aspects in sensor selection.

Moradi et al. [52] addressed the challenging problem of performing and updating risk
and reliability assessments for complex engineering systems (CES) with high frequency.
The complexity of operational data and system complexity necessitate the use of novel
data-driven methods such as DL and engineering knowledge. The authors propose a
mathematical architecture for the operation condition and risk monitoring of CES, utilising
a Bayesian network (BN) to model system and subsystem relations, adverse event scenarios,
and subsystem-level information fusion. Bayesian DL models are trained for subsystem
diagnostics based on condition monitoring data, and their outputs are integrated into the
BN. The proposed architecture effectively addresses both data and systems complexity,
providing system-level insights and the ability to incorporate human inputs and qualitative
information. The effectiveness of the approach is demonstrated through a case study on a
vapour recovery unit at an offshore oil production platform.

In conclusion, the maintenance optimisation of complex systems and the use of
condition-based maintenance and predictive maintenance techniques can significantly
improve the diagnostic reliability and performance of the system. The selection of the ap-
propriate maintenance optimisation technique should be based on several factors, including
the cost of maintenance, the criticality of the system, and the operating environment.

6.3. Fault Diagnosis and Prognosis

This section focuses on the techniques used for fault diagnosis and prognosis in
complex systems. These techniques are essential for operation optimisation and system
availability, as they allow for the detection and prediction of system faults before they can
lead to system failure.

Gao et al. [66] focused on the growing need for the early detection and identification
of abnormalities and faults in industrial systems to minimise performance degradation
and ensure safety. The authors highlight the importance of real-time fault diagnosis and
fault-tolerant control methods in achieving these objectives. They provide a comprehensive
review of fault diagnosis approaches and their applications, focusing on both model-
based and signal-based perspectives. The paper aims to offer an extensive overview of
the advancements in this field, with particular emphasis on the results reported in the
last decade.



Sensors 2023, 23, 7819 31 of 39

Baraldi et al. [25] proposed a general method for extracting a health indicator to mea-
sure the degradation state and predict the future evolution of industrial components. The
method combines feature extraction techniques, including empirical mode decomposition
and auto-associative kernel regression, with a multi-objective binary differential evolution
(BDE) algorithm for optimal feature selection. The optimisation objectives focus on desired
characteristics of the health indicator, such as monotonicity, trendability, and prognosability.
A case study on turbofan engines is conducted to predict the remaining useful life. The
results demonstrate the effectiveness of the proposed method in extracting accurate health
indicators for prognostics.

6.4. Performance Optimisation

Performance optimisation is essential for efficient and effective IVHM, and sensor
optimisation plays a necessary role in achieving this goal. IVHM systems need to be
designed to optimise system performance, including operational efficiency, diagnostic
reliability, availability, and maintainability. Performance optimisation aims to achieve these
objectives by continuously monitoring and analysing system performance data and taking
corrective actions when necessary.

Koutroulis et al. [67] reviewed the challenge of constructing comprehensive health
indicators (HIs) in prognostics and health management (PHM) using large amounts of
condition monitoring data. The authors propose a novel anticausal-based framework
with reduced model complexity to predict the cause from the effects of causal models,
specifically designed for complex systems operating under time-varying conditions. Two
heuristic methods, complexity estimation and Granger causality, are used to infer the causal
models. The framework demonstrates strong generalisation capabilities and robust online
predictions of HIs, outperforming existing deep learning architectures in terms of average
root-mean-square error (RMSE) by nearly 65%. The validation and comparison of the
framework are conducted on NASA’s N-CMAPSS dataset recorded from a commercial jet,
further enhancing the CMAPSS simulation model.

Overall, performance optimisation techniques enable the continuous monitoring and
analysis of system performance data, allowing for real-time corrective actions to be taken to
maintain optimal system performance. In conclusion, this section provides a comprehensive
overview of sensor optimisation for improved operation in industrial systems. It covers
various aspects, including real-time monitoring and control, maintenance optimisation,
decision support systems, fault diagnosis and prognosis, and performance optimisation.
The insights and strategies presented in this section contribute to the development of
efficient and reliable sensor operation techniques for industrial applications.

6.5. Cost Function for Operation Optimisation

This section emphasises the significance of the cost function in guiding decision-
making during sensor operation. The cost function for sensor operation plays a central
role in achieving reliable, energy-efficient, and optimised sensor performance while con-
sidering the associated costs. It allows engineers and decision-makers to strike a balance
between system diagnostic reliability, energy consumption, maintenance requirements, and
performance improvements while adhering to budget constraints.

A comprehensive cost function for sensor operation includes the following factors:

1. System Reliability: Evaluating the ability of sensors to perform their intended func-
tions consistently and accurately over extended periods without failure or disruption,
lifespan considerations. System reliability can be quantified by evaluating the prob-
ability of the system operating without failure over a given period. This can be
measured using metrics such as mean time between failures (MTBF), mean time to
repair (MTTR), or availability percentage.

2. Energy Efficiency: Assessing the energy consumption of sensors during operation
to ensure optimal energy utilisation and reduce overall power consumption. Energy
efficiency can be quantified by evaluating the energy consumption of the system in
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relation to the desired output or task. This can be measured based on metrics such as
energy per unit of data processed, energy per unit of time, or energy efficiency ratings.

3. Maintenance Cost: Considering the costs associated with routine maintenance, sen-
sor calibration, and periodic servicing to sustain the sensor’s operational efficiency.
Maintenance costs can be quantified by evaluating the expenses associated with main-
taining and servicing the sensors and related components. This can be measured in
terms of monetary costs, time required for maintenance activities, or the frequency of
maintenance interventions.

4. Performance Optimisation: Quantifying the degree to which sensor operation aligns
with the system’s performance objectives, ensuring optimal utilisation of sensor data
for decision-making. Performance optimisation can be quantified by evaluating the
improvement in system performance achieved through optimisation efforts. This can
be measured based on metrics specific to the system, such as throughput, accuracy,
response time, error rates, or any other performance-related indicators.

5. These approaches provide a starting point for quantifying the objective functions
in the operation part of the sensor optimisation process. Depending on the specific
context and requirements of the complex engineering system, the actual quantification
methods and metrics may vary.

6. Security can be quantified by evaluating the level of protection against unauthorised
access, data breaches, or cyber threats. This can be measured based on metrics such
as security vulnerability assessments, penetration testing results, or compliance with
security standards.

7. Sensor Longevity can be quantified by evaluating the expected lifespan or operational
duration of the sensors. This can be measured based on mean time between failures
(MTBF), sensor degradation rates, or estimated lifetime usage.

8. Sensor Environmental Impact can be quantified by evaluating the ecological footprint
or sustainability aspects associated with the production, usage, and disposal of the
sensors. This can be measured based on metrics such as carbon footprint, material
recyclability, or compliance with environmental regulations.

These approaches provide a starting point for quantifying the objective functions in
the operation part of the sensor optimisation process. The first four factors are considered
for the general cost function in the operation part; however, depending on the specific
context and requirements of the complex engineering system, the actual quantification
methods and metrics may vary.

Cost (f) = α × System Reliability + β × Energy Efficiency + γ × Maintenance Cost + δ × Performance Optimisation

Quantifying the cost function for sensor operation involves assigning appropriate
weights to each cost component based on its relative importance within the specific com-
plex engineering system. These weights are determined through comprehensive analysis,
considering factors such as system requirements, maintenance schedules, energy budgets,
and performance goals. By employing multi-objective optimisation techniques, the cost
function can be effectively integrated with other objective functions, such as system relia-
bility, energy efficiency, maintenance costs, and performance optimisation, to achieve an
optimal sensor operation configuration.

By incorporating a well-defined cost function into the sensor operation optimisation
process, complex engineering systems can achieve reliable and energy-efficient sensor
performance, optimising the overall efficiency and longevity of the system.

7. Conclusions

In this comprehensive literature review, the various aspects of sensor optimisation
in complex engineering systems are explored. The review encompassed sensor selection,
placement, data processing, and operation, each of which plays a crucial role in enhancing
system performance, reliability, and cost-effectiveness.
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Throughout the review, the importance of cost functions as indispensable tools for
guiding decision-making in each stage of sensor optimisation is highlighted. The cost
functions allowed engineers and decision-makers to strike a balance between performance
requirements and financial considerations, ultimately leading to cost-effective and efficient
sensor configurations.

In the sensor-selection stage (Section 3), how the cost function played a pivotal role
in evaluating the economic implications of sensor choices is discussed. By considering
acquisition costs, installation expenses, maintenance requirements, and other relevant
factors, the cost function enabled the selection of sensors that aligned with project budgets
while meeting system performance objectives.

Similarly, in the sensor placement stage (Section 4), the cost function facilitated optimal
sensor deployment by accounting for coverage, connectivity, interference minimisation,
and resource utilisation costs. Through comprehensive analysis, engineers achieved sensor
placements that maximised system performance while minimising operational costs.

In data processing (Section 5), the cost function played a vital role in ensuring the
efficient analysis and utilisation of sensor data. By balancing data accuracy, computational
efficiency, feature relevance, and model complexity, the cost function enabled the extraction
of valuable insights while minimising computational overhead and resource utilisation.

In sensor operation (Section 6), the cost function guided decisions to achieve reliable,
energy-efficient, and cost-effective sensor performance. By considering system reliability,
energy consumption, maintenance costs, and performance optimisation, the cost func-
tion optimised sensor operations to support the system’s long-term sustainability and
performance excellence.

In conclusion, this literature review demonstrated the significant role that cost func-
tions play in the optimisation of sensors in complex engineering systems. By considering
cost implications alongside other performance metrics, cost functions enable well-informed
decisions that lead to the success and sustainability of the system. As sensor technol-
ogy continues to advance, the development and refinement of cost functions will remain
essential in driving innovation and efficiency in the field of sensor optimisation.

7.1. Summary of Key Findings

Throughout this literature review on sensor optimisation in complex engineering
systems, several key findings have emerged, shedding light on the crucial role of cost
functions and their impact on decision-making. The review explored sensor selection,
placement, data processing, and operation, along with an integrated approach for multi-
objective sensor optimisation. In this section, the main findings that contribute to a deeper
understanding of the significance of cost functions in sensor optimisation are summarised:

Balancing Performance and Cost: Cost functions provide a systematic approach to
balancing sensor performance requirements with associated costs. By quantifying and
weighing cost components, engineers and decision-makers can make informed choices that
optimise system performance while adhering to budgetary constraints.

Cost-Effectiveness in Sensor Selection: The cost function for sensor selection considers
various cost-related factors, such as sensor acquisition costs, installation expenses, mainte-
nance, and long-term operational costs. By evaluating these components, decision-makers
can select sensors that meet performance criteria while remaining cost-effective.

Optimising Sensor Placement Efficiency: In the context of sensor placement, the cost
function guides decisions to achieve optimal sensor coverage, connectivity, interference
minimisation, and resource utilisation. By incorporating cost considerations, engineers
achieve cost-efficient sensor deployments without compromising system performance.

Efficient Data Processing Strategies: The cost function for data processing ensures the
efficient utilisation of sensor data. By considering data accuracy, computational efficiency,
feature relevance, and model complexity, engineers can extract valuable insights while
minimising computational overhead and resource consumption.
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Reliable and Energy-Efficient Sensor Operation: Cost functions play a vital role in
optimising sensor operation, balancing system reliability, energy efficiency, maintenance
costs, and performance improvements. By quantifying these cost components, decision-
makers achieve reliable and energy-efficient sensor performance.

Integrated Multi-Objective Optimisation: The integrated approach to multi-objective
sensor optimisation employs cost functions alongside other objective functions, resulting in
balanced and efficient sensor configurations. Trade-off analysis and Pareto front analysis enable
decision-makers to make informed choices that optimise multiple objectives simultaneously.

Role of Cost Functions in Future Sensor Optimisation: As technology evolves and
sensor optimisation advances, cost functions will continue to be critical tools in guiding
decision-making. By considering cost implications alongside other performance metrics,
cost functions support innovation and efficiency in sensor optimisation.

In conclusion, this literature review underscores the vital role of cost functions in
sensor optimisation for complex engineering systems. By effectively incorporating cost
considerations throughout the sensor optimisation process, engineers and decision-makers
can achieve cost-effective, efficient, and reliable sensor configurations. As the field of
sensor technology continues to evolve, cost functions will remain indispensable in driving
advancements and ensuring the successful implementation of optimised sensor solutions
in diverse engineering applications.

7.2. Contributions and Implications

In this section, we will outline the contributions of this literature review on sensor
optimisation and highlight its implications for research, engineering practice, and decision-
making in complex engineering systems.

7.2.1. Contributions

This literature review makes several key contributions to the understanding of sensor
optimisation in complex engineering systems:

Comprehensive Overview: The review provides a comprehensive overview of sensor
optimisation, covering essential aspects such as sensor selection, placement, data pro-
cessing, and operation. By examining each stage of the optimisation process, the review
offers a holistic perspective on the challenges and opportunities in achieving efficient and
cost-effective sensor configurations. A taxonomy and a concept map of the area have
been generated.

Role of Cost Functions: The review emphasises the critical role of cost functions
in guiding decision-making at each stage of sensor optimisation. By quantifying the
trade-offs between performance and cost, cost functions empower engineers and decision-
makers to make informed choices that align with budgetary constraints while optimising
system performance.

Integration of Objective Functions: The integrated approach to multi-objective sensor
optimisation highlighted in the review illustrates the importance of considering all objective
functions simultaneously. By combining cost functions with other performance metrics,
decision-makers can achieve balanced and efficient sensor configurations that cater to
multiple optimisation goals.

7.2.2. Implications

The findings of this literature review have several implications for research, engineer-
ing practice, and decision-making in the field of sensor optimisation:

Informed Decision-Making: By incorporating cost functions into the optimisation
process, decision-makers can make informed choices that balance system performance
requirements with financial considerations. Cost functions provide a quantitative basis for
decision-making, promoting cost-effective and efficient sensor configurations.

Performance-Driven Optimisation: The integration of cost functions with other objec-
tive functions emphasises the need for performance-driven optimisation. Decision-makers



Sensors 2023, 23, 7819 35 of 39

must consider not only cost implications but also overall system performance to achieve
successful sensor configurations.

Future Research Directions: The review identifies emerging trends and future research
directions, such as advancements in sensor technology and the integration of AI and ma-
chine learning. Researchers can use this information as a foundation to explore innovative
approaches to sensor optimisation.

Based on the insights gained from this review, decision-makers involved in sensor
optimisation in complex engineering systems are recommended to:

Integrate Cost Functions: Incorporate cost functions into the decision-making process
at each stage of sensor optimisation. By quantifying cost implications, decision-makers can
make cost-effective choices that align with system performance objectives.

Consider Multi-Objective Optimisation: Embrace an integrated approach to multi-
objective optimisation, combining cost functions with other performance metrics. This en-
sures a balanced and efficient sensor configuration that meets multiple optimisation goals.

Monitor Emerging Trends: Stay informed about emerging trends and advancements
in sensor technology. Continuously evaluate how these advancements can improve sensor
optimisation practices and enhance system performance.

In conclusion, this literature review highlights the significant role of cost functions
in guiding efficient and cost-effective sensor optimisation in complex engineering sys-
tems. By considering cost implications alongside other performance metrics, engineers
and decision-makers can achieve optimised sensor configurations that support the success
and sustainability of complex engineering applications. The review’s findings offer valu-
able insights for researchers, engineers, and decision-makers seeking to enhance sensor
optimisation practices and improve decision-making in diverse engineering scenarios.

7.3. Recommendations for Future Research

This literature review has provided valuable insights into the role of cost functions
and their impact on decision-making. Building on these findings, several areas for future
research are recommended to further advance the field of sensor optimisation:

Enhancing Cost-Function Models: Future research can focus on refining and expand-
ing cost-function models for sensor optimisation. This includes investigating advanced
techniques for quantifying cost components and exploring novel approaches to weigh the
importance of different cost factors in specific engineering applications.

Dynamic Cost Functions: Investigate the development of dynamic cost functions
that adapt to changing operational conditions and evolving project budgets. Dynamic
cost functions can provide real-time decision support, enabling sensor configurations that
respond to varying performance requirements and cost constraints.

Uncertainty and Risk Analysis: Incorporate uncertainty and risk analysis into cost
functions to account for uncertainties associated with sensor performance, cost estimations,
and environmental variations. Understanding the impact of uncertainties on optimisation
outcomes can lead to more robust and reliable sensor configurations.

Integration of Lifecycle Cost Analysis: Extend cost functions to include lifecycle cost
analysis, considering the long-term costs associated with sensor maintenance, calibra-
tion, and replacement. Lifecycle cost analysis can provide a comprehensive view of cost
implications over the sensor’s entire operational lifespan.

Optimisation Algorithms: Explore advanced optimisation algorithms that effectively
handle the multi-objective nature of sensor optimisation. Investigate the application of
evolutionary algorithms, genetic algorithms, and machine learning techniques to efficiently
search for optimal sensor configurations within the multi-dimensional cost-performance space.

Real-World Deployment Studies: Conduct real-world deployment studies to validate
the effectiveness of cost-function-driven sensor optimisation in practical engineering ap-
plications. These studies can provide valuable insights into the challenges and benefits of
implementing cost-optimised sensor configurations in diverse industrial settings.
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Benchmarking and Comparative Studies: Conduct benchmarking and comparative
studies to evaluate the performance of different cost-function approaches and optimisation
algorithms. Comparative studies can provide valuable insights into the strengths and
limitations of various optimisation strategies and guide future research directions.

Industry–University Partnerships: Foster partnerships between academia and industry
to bridge the gap between theoretical research and practical implementation. Collaborative
projects can accelerate the adoption of cost-function-driven sensor optimisation in real-
world engineering applications.

In the end, these recommendations offer a roadmap for future research endeavours
in sensor optimisation, emphasising the continued advancement of cost-function models,
multi-objective optimisation techniques, and real-world deployment studies. By addressing
these research areas, the field of sensor optimisation can further evolve, enabling engineers
and decision-makers to make informed choices that balance system performance and
cost-effectiveness in complex engineering systems.
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