
Expert Systems With Applications 237 (2024) 121525

A
0

c
a
i
g
w
E
p
a
p

t
b
n
a

Contents lists available at ScienceDirect

Expert SystemsWith Applications

journal homepage: www.elsevier.com/locate/eswa

Keypoints-based Heterogeneous Graph Convolutional Networks for
construction
Shuozhi Wang, Lichao Yang, Zichao Zhang, Yifan Zhao ∗

School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK

A R T I C L E I N F O

Keywords:
Activity classification
Computer vision
Graph convolutional networks
Keypoint extraction

A B S T R A C T

Artificial intelligence algorithms employed for classifying excavator-related activities predominantly rely on
sensors embedded within individual machinery or computer vision (CV) techniques encompassing a large
scene. The existing CV-based methods are often difficult to tackle an image including multiple excavators and
other cooperating machinery. This study presents a novel framework tailored to the classification of excavator
activities, accounting for both the excavator itself and the dumpers collaborating with the excavator during
operations. Distinct from most existing related studies, this method centres on the transformed heterogeneous
graph data constructed using the keypoints of all cooperating machinery extracted from an image. The resulting
model leverages the relationships between the mechanical components of an excavator in varying activation
states and the associations between the excavator and the collaborating machinery. The framework commences
with a novel definition of keypoints representing different machinery relevant to the targetted activities. A
customised Machinery Keypoint R-CNN method is then developed to extract these keypoints, forming the basis
of graph notes. By considering the type, attribute and edge of nodes, a Heterogeneous Graph Convolutional
Network is finally utilised for activity recognition. The results suggest that the proposed framework can effec-
tively predict earthwork activities (with an accuracy of up to 97.5%) when the image encompasses multiple
excavators and cooperating machinery. This solution holds promising potential for the automated measurement
and management of earthwork productivity within the construction industry. Code and data are available at:
https://github.com/gillesflash/Keypoints-Based-Heterogeneous-Graph-Convolutional-Networks.git.
1. Introduction

According to the ‘Productivity in the construction industry, UK’
from Census 2021 (Martin, 2021), average productivity levels in the
onstruction industry have remained consistently below the UK aver-
ge. Moreover, although the expenditure, skills and capital investment
n this industry are growing, the productivity is not showing equal
rowth. This presents a lower conversion of resources to outputs,
hich requires more efficient resource allocation and management.
arthworks, crucial and resource-intensive components of construction
rojects, involve shaping target areas using mechanical equipment,
nd require optimisation to address the increasing demand for higher
roductivity and safety in infrastructure development (Parente et al.,
2015). Building information modelling (BIM) (Eastman, 1974), a holis-
ic process of creating and managing information about an asset to
e built, has been growing to address this challenge. As a new tech-
ology that overturns the way to manage a construction project, BIM
llows the team to capture and visualise the data they create during
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the process to benefit the coordination of operation and maintenance
activities. However, most practical applications of BIM are currently
concentrated in the design phase, and not always in the operations and
maintenance phase (Lu et al., 2020). To assess specific construction
progress and provide feedback to site managers, the current practices
usually require people to update the information in this phase man-
ually (e.g., machinery activity or weather), which is time-consuming,
expensive, and error-prone work (Gong & Caldas, 2010; Kim, Ahn et al.,
2018).

The application of digital twins on construction sites to accurately
reconstruct and visualise building-related assets is a popular research
topic. There are three major directions of digital twins in the con-
struction phase. First, digital twins are developed and applied on
infrastructures such as highways and bridges (Broo et al., 2022; Chi-
achío et al., 2022; Jiang et al., 2022a; Pregnolato et al., 2022). They
provide a multidimensional view of how assets are designed and exe-
cuted at the construction site, including staff behaviour, vehicle work
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phases, and space utilisation (Batty, 2018; Grieves, 2015). More specif-
cally, Jiang et al. (2022b) designed and implemented a digital twin
pproach for highways only based on existing map data and then
ested it in a section of the A1(M) motorway in the UK. They applied
his digital twin for clearance checking on underpass roads in a road
idening project. Pregnolato et al. (2022) developed a digital twins-
ased workflow for an existing asset in the built environment and
ested it on the Clifton Suspension Bridge in Bristol (UK). In addition,
t provides a means to test simulated scenarios, including the impact
f design changes, weather disturbances, and safety events (Broo et al.,
022). As the second direction, the study of digital twins has focused
n the analysis of human activities. Han and Lee (2013) developed
two-dimensional human skeleton detection, which could be recon-
tructed into three dimensions for improving safety management. Li
t al. (2015) collected the information from the sensors on personal
rotective equipment to supervise the people’s position and behaviour
or training, analysing and evaluating for safety enhancement. Earth-
ork is one of the most essential and fundamental phases in most
onstruction projects. Opoku et al. (2021) suggested that although
digital twin technology has been used to assess the structural integrity
of construction-related objects during the construction phase, there is a
relative lack of real-time modelling and analysis of detailed processes.
The application of digital twin technology to dynamic objects, such
as machinery, holds significant promise in enabling potential real-time
interventions to improve operational behaviours or fleet management.

As a typical earthwork machine, excavators are well used due to
their advantages in flexibility and adaptability (He & Jiang, 2018).
According to the type of data used, there are two major methods to
estimate excavators’ activity, either based on sensors in an individual
machine or external cameras covering a large scene. For the first
approach, data are collected by specific electronic sensors such as
Bluetooth (Park et al., 2017), tape recorders (Akhavian & Behzadan,
2016; Cheng et al., 2017), inertial measurement units(IMU) (Kim,
Ahn et al., 2018), etc. Based on this type of data, Rashid and Louis
(2019) presented a recurrent neural network (RNN) based model for
data augmentation for generating synthetic time-series training data
about sensors on excavators. Bae et al. (2019) applied dynamic time
warping (DTW) algorithm to determine similarities between reference
signals to identify six excavator tasks. The research based on control
signals Shi et al. (2021) adopted the Pulse-Width Modulation (PWM)
technology and applied the Long-Short-Term Memory (LSTM) classifier,
which produces an accuracy of 93.21% in pose estimation. Besides the
information from internal machinery sensors, sound information are
implemented within the construction site environment to facilitate the
identification of equipment and tools present on site (Akbal et al., 2022;
Scarpiniti et al., 2021). Although the accuracy of activity classification
of the individual machines is high, one limitation of sensor-based ap-
proaches is the challenge of addressing group activities, which involve
different types of machinery. Analysis of data from various machines
could be difficult due to the difference in data format or sample rate
etc. Furthermore, sensors could be costly, and the solution can have
limited scalability. Computer vision (CV) methods are attractive in this
application because image acquisition devices are less expensive while
covering multiple machines at the same time.

In the CV-related studies, Lundeen et al. (2016) demonstrated the
feasibility of marker-based sensor technology for excavator pose esti-
mation. Soltani et al. (2017) used markers to recognise the parts of an
excavator to extract the 2D skeleton of excavators based on videos. In
the scope of deep learning methods, Kim, Chi et al. (2018) proposed a
2-stage (work or idle) algorithm based on the interrelationship between
excavators and dumpers. Kim and Chi (2019) designed a Convolutional
Neural Networks (CNN) and Double-layer LSTM for sequential pattern
analysis. It was claimed that time information could significantly assist
in the analysis of excavator movements. Roberts and Golparvar-Fard
(2019) applied Hidden Markov Model to detect and track the exca-
2

vators’ activity based on a video dataset. Chen et al. (2020) applied
a three-dimensional CNN on videos for classifying three excavator
activities. Kim et al. (2021) combined the camera with the kinematic
sensor as hybrid sensing to improve the recognition performance of
three excavator activities. Additionally, a lightweight Fully Convolu-
tional Network (FCN) was applied to achieve satisfactory accuracy with
faster speed (Guo et al., 2022). Tang et al. (2023) proposed a data
fusion strategy to utilise different types of onboard sensors for enhanced
accuracy and robustness in full-body pose estimation of excavators.
In the field of computer vision, two steps are typically involved in
order to obtain the class of an action, namely feature extraction and
classification based on the extracted features. There are some state-
of-the-art in generic classification tasks, such as Resnet (He et al.,
2015) and Vison Transformer (Dosovitskiy et al., 2020), could be also
regarded as this process to some extents. Although these methods excel
in classifying images, they usually are not straightforward to determine
actions from a single image containing multiple object. Furthermore,
certain one-stage action recognition models based on videos, such as
ActionFormer (Zhang et al., 2022) and TriDet (Shi et al., 2023), are
also difficult to output different actions based on different objects.

In modern construction sites, some specific tasks usually involve
multiple types of machinery and multiple vehicles of the same type.
Therefore, analysing the interaction between vehicles is beneficial to
determine the work phase correctly. Kim, Chi et al. (2018) applied
Tracking-Learning-Detection (TLD) to track heavy equipment and then
analysed their interactions using a knowledge-based system based on
the distance between the excavator and the dumpers. Focusing on
the relationship of objects, Kim and Chi (2022) introduced a graph
neural network-based model to detect entangled and intertwined vi-
sual relationships. The limitation of this approach is that it ignores
the relationship between operational parts in one type of machinery
(e.g., excavator), which could be necessary to accurately assess the
productivity of such a vehicle (Sato et al., 2022).

The main research gap is that current activity identification meth-
ods for construction machinery either ignore the relationship between
excavators and corporation machinery or the relationship among op-
erational parts in individual machinery. Moreover, there is difference
between the relationship between the joints on the same machinery and
the relationship between different vehicles. Therefore, it is more logical
to model the different relationships separately. This approach will also
provide more information to improve the accuracy of the AI models
than treat all relationships as the same.

In this study, the hypothesis is that the pose of machinery, which
can be represented by a limited number of keypoints, is sufficient to de-
termine the type of earthwork activity. Furthermore, it is assumed that
the interaction between the excavator and cooperating dump trucks
contributes to improving the performance of the classification model.
This article proposes an end-to-end framework, called Construction
Equipment Keypoints detection and Heterogeneous Graph Convolution
Networks (CEKP-HGCNs), for classifying excavator-related machinery’s
activity. The keypoint-based 2D human pose estimation (Cao et al.,
2021; Fang et al., 2017; Tompson et al., 2015; Wei et al., 2016) inspires
the proposed framework. Next, the keypoints are grouped, satisfying
that there is only one excavator in the group with all dumpers in the
whole image. These groupings are then converted into heterogeneous
graph structure data. Besides the node attribute (location and label),
each group (or graph) also includes three types of relationship, which
are ’relationship between keypoints on excavators’, ’relationship be-
tween keypoints on dumpers’ and ’relationship between keypoints on
target excavator and dumpers’. Next, the graph dataset is applied to
classify the actions via a heterogeneous graphical neural network.

The novelty of this work is highlighted by the introduction of a
feature engineering approach to extract keypoints of machinery, which
represent pose features, and the development of a customised hetero-
geneous graph neural network for activity classification using these
features. Another distinctive aspect is that, unlike existing methods

that often only focus on excavators, the proposed solution takes into
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Fig. 1. The architecture of the proposed CEKP-HGCNs framework. It consists of four stages: (1) preprocessing image including data augmentation; (2) extraction of keypoints of
ll machinery in the image using a Machinery Keypoints RCNN model; (3) construction of graph data by assigning the type and attribute of nodes, the type of edges between
otes of the same machinery and edges between notes from different machinery; (4) classification of earthwork activity based on the graph data using a Multi Keypoint RHGCNs
odel.
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ccount other cooperating machinery to achieve more precise activity
ecognition. In contrast to state-of-the-art approaches that usually focus
n image pixels, the proposed solution tends to be more transparent and
ore adaptive to variations of data capture environment, occlusion,
nd machinery models. The contribution of this study includes:

• Definition of keypoints and relationships among them to repre-
sent the pose of excavators and dumpers, as well as an extraction
algorithm called Keypoint-RCNN.

• A Relationship Heterogeneous Graphical Convolutional Networks
to analyse the relationships between the moving parts of an ex-
cavator and dumpers, which not only improves the performance
of activity classification by grouping machinery, but also allows
to recognise multiple group activities in a single image.

. Methodology

.1. Overview of methodology

This paper introduces a novel classification framework, named Con-
truction Equipment Keypoints Detection and Heterogeneous Graph
onvolution Networks (CEKP-HGCNs), to recognise the activity of exca-
ators involving multi-vehicles based on a keypoint detection algorithm
nd heterogeneous graph convolution networks (HGCNs). It should be
oted that this method accommodates the activity of a single excavator
ithout other vehicles. The proposed framework is illustrated in Fig. 1.

First, a keypoint extraction model predicts the two-dimensional loca-
tions and labels of carefully defined keypoints for each excavator and
dumper in the image. In this part, a keypoint detection algorithm for
excavators and dumpers, named machinery keypoint-RCNN, is tailored
and carried out to extract the keypoints of mechanical components. The
output of machinery keypoint-RCNN is the type of the point and its
pixels location 𝑋𝑖 and 𝑌𝑖. Six keypoints represent an excavator, while
two keypoints represent a dumper. After obtaining the point location
and label, we can transform the outcomes into Graph data, which
includes adjacency matrix, nodes attributes and types, edges types and
graph class. Next, this Graph data is passed through novel HGCNs to
identify the activity. The detail of each step is presented below.

2.2. Machinery keypoints extraction

2.2.1. Machinery keypoints definition
Typical excavator’s activity suggested in existing literature (Feng

et al., 2016; Kim & Chi, 2019; Roberts & Golparvar-Fard, 2019; Shi
et al., 2021, 2020) consist of digging, lifting, dumping, and swinging
according to the tasks performed by mechanical components of the

.

3

excavation, examples of which are shown in Fig. 2 d
Fig. 2. The four investigated working stages/activities involved an excavator. The
involvement of dumper is not essential.

According to the major mechanical components and aiming to
minimise the number of total keypoints, this paper defines six keypoints
to describe the pose and activity of excavators, which are (i) body
end; (ii) cab boom; (iii) boom arm; (iv) arm bucket; (v) left bucket
end; (vi) right bucket end, as shown in Fig. 3. To be more specific,
the points (i) and (ii) describe the direction of the excavator body;
the pairs of (ii)–(iii) and (iii)–(iv) describe the poses of the boom and
arm, respectively; the points (iv), (v) and (vi) could not only describe
the pose and position of the bucket but also could describe the lateral
orientation, which is beneficial for identifying body direction when the
central axis is perpendicular to the image. Two keypoints are defined
to represent a dumper: (vii) dumper body front: the middle point of
the dumper body front, and (viii) dumper body end: the central point
of the dumper body end. Compared to the existing methods using only
one keypoint to represent a dumper (Luo et al., 2020), two keypoints
can measure the direction and potentially describe an activity in more
detail, such as unloading.

2.2.2. Machinery keypoint RCNN
In real-world applications where images are captured over a long

working distance, the existing non-deep learning-based methods either
identify key components of a vehicle by detecting artificial mark-
ers (Soltani et al., 2017) or extract the keypoints with a large margin
f error due to a relatively small region of interest on the whole image.
his paper proposes to use a deep learning-based method, machinery
eypoint RCNN, to address this challenge. Established upon Mask-
CNN (He et al., 2017), Keypoint-RCNN has been used for human
ose estimation but not for the keypoint extraction of excavators and

umpers. Mask-RCNN is widely implemented as a classic two-stage
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Fig. 3. The defined keypoints for an excavator and a dumper, (i) excavator’s body end;
(ii) excavator’s cab boom; (iii) excavator’s boom arm; (iv) excavator’s arm bucket; (v)
excavator’s left bucket end; (vi) excavator’s right bucket end; (vii) dumper body front
and (viii) dumper body end.

object detection model. The differences between Keypoint-RCNN and
Mask-RCNN are the output size and the method of encoding keypoints
in the mask. As shown in Fig. 4, the input image of machinery keypoint
RCNN is resized as 1 × 3 × 800 × 800. The machinery keypoint RCNN
model is built on the top of the feature extractor based on Feature
Pyramid Network (Lin et al., 2016) (FPN), which is for fusing feature
aps at multiple scales to preserve information at various levels. The
egion Proposal Layer predicts the approximate location of 𝑁 number
of objects detected in the feature map. It is followed by a Region
of Interest (ROI) Align Layer, which is an operation for extracting a
small feature map from each ROI in detection and segmentation-based
tasks (He et al., 2017). Instead of applying an ROI-Pooling layer in
aster-RCNN (Ren et al., 2015), ROI Align could solve the problem
f quantisation of the ROI boundaries. The output of the ROI Align
ayer is passed to two branches: a branch consisting of a flatten
ayer and a series of fully connected layers, and a branch called the
eypoint RCNN head. In the first branch, a fully connected Layer is
plit into two separate blocks: one is for predicting the class scores
or the object and background, and the output size is [𝑁, 2]; another
lock is for predicting the bounding-box coordinates for the object,
nd the output size is [𝑁, 4 × 2]. The second branch is a series of
onvolution layers with an output size of [𝑁,𝐾, 56, 56], where 𝐾 is the
umber of the keypoints (e.g., 6 for excavators and 2 for dumpers).
he ground truth of keypoints is encoded as a one-hot structure. For
ach visible ground truth, a channel-wise Softmax function from the
inal feature map [𝐾, 56, 56] is used to minimise the cross-entropy loss.
ig. 5 presents an example of encoding the keypoints in the output mask
n excavators. The keypoint mask is expanded to 𝐾 channel, and each
4

hannel corresponds to a specific keypoint.
Fig. 4. The architecture of the machinery keypoint-RCNN for excavators, where 𝑁 is
he number of objects proposed by the Region-Proposal Layer. In this study, Resnet-50
s used as the backbone.

Fig. 5. An example for encoding the machinery keypoints in the output mask on an
excavator. There are 6 (K=6) one-hot 56 × 56 binary masks, each of which has only
a single pixel labelled as the object.

2.3. Heterogeneous Graph convolution networks (HGCNs) for activity clas-
sification

Graph Convolution Networks (GCNs) (Kipf & Welling, 2016) have
become a widely applied technology in recent years. For the classifi-
cation applications of GCNs, there are three primary levels, concluded
by Zhou et al. (2020): node-level, edge-level and graph-level, where
node-level focuses on nodes, trying to categorise nodes into several
classes; edge-level focuses on classifying edge types or predict whether
the edge is existing or not between the nodes; graph-level requires the
model to learn the graph representations. This framework introduces
a GCNs-based model at the graph level. Besides, different nodes and
edges have been defined according to their actual physical meaning
to carry out a more logical and rigorous analysis. Besides the level of
the tasks, the type of the graph also requires definition. As presented
by Zhou et al. (2020), according to whether the type of the nodes and
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Fig. 6. An example for the definition of graph attributes overlaid on the image (top) and an abstract of the graph (bottom).
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dges are the same, there are homogeneous graphs (with the same type
f nodes and edge) and heterogeneous(nodes and edges have differ-
nt types). In this study, the physical attributes of nodes on various
achinery differ. Besides, the physical attributes of links between the
odes on the same machinery or cross-machinery are different. This
eans that the types of nodes and edges in the same graph are different.
herefore, the proposed graph is a heterogeneous graph representing
ultiple types of nodes or edges attributes. As shown in Fig. 7, the
ommon practice is firstly to group nodes according to their types,
nd then perform graph convolution by each same type of node group
nd apply the graph readout function by aggregating over the nodes of
ifferent types. The final step is to perform the soft classification.

.3.1. Graph attributes definition
As a data structure, Graph 𝐺 = (𝑉 ,𝐸,𝑅) consists of Nodes 𝑉 , Edges

𝐸, and relation types 𝑅. In this project, the nodes are keypoints de-
tected by the machinery keypoints RCNN, and each keypoint’s label and
position are applied as Node Type 𝑉𝑡𝑦𝑝𝑒 and Node Attribute 𝑉𝑎𝑡𝑡𝑟. There
are two types of nodes: nodes in excavators and nodes in dumpers. For
the definition of the edge, logically, the connection between keypoint
pairs on the same machinery differs from the connection between
keypoints on different machinery. The graph has three edges: edges
between the nodes in the same excavator, the edges between the nodes
in the same dumper, and the edges between a node in the excavator
and a node in the dumper. Fig. 6 shows an example of graph data in
this study. It should be noticed that the nodes and edges from the same
machinery use the same colour. In this study, the edge between the
point of the excavator’s arm bucket (point iv in Fig. 3) and the point of
the dumper body front(the point vii in Fig. 3) is defined as the ‘cross
vehicles connection’.
5

d

2.3.2. Heterogeneous Graph Convolution Networks (HGCNs)
This project defines the task as a heterogeneous graph classification

task. After applying mini-batching, the proposed classification frame-
work contains, Relational-GCNs layers, activation layers, readout layer,
dropout and classifier. In this model, the first step is to perform message
passing on this batch of graphs by updating the features of nodes or
edges. Next, aggregate the features of the same nodes or edges in
the graph, and then Aggregate different types of nodes and edges in
the readout function. In the final step, classify the graph based on
graph-level representations. The general structure of the Relationship
Heterogeneous Graph Convolution Networks (HGCNs) model is shown
in the algorithm 1, where the input: 𝑉𝑎𝑡𝑡𝑟 is the node attributes (key-
oint’s location); 𝐺𝑙𝑎𝑏𝑒𝑙 is the graph label; 𝐸𝑡𝑦𝑝𝑒 is the edge type; 𝑣𝑡𝑦𝑝𝑒
is the node type, and 𝐴 is the adjacency matrix which represents the
adjacency between nodes.

This HGCNs-based model for graph classification follows three
stages: 1. Embedding nodes by performing message-passing roundly; 2.
Executing the Readout layer, which aggregates node embedding into
a unified graph embedding; 3. Training a final classifier on the graph
embedding.

This HGCNs-based model includes graphs convolution layers in the
embedding nodes step, followed by the ReLU activation. In the Readout
ayer, Henaff et al. (2015) suggested that performing max or mean
ooling is essential to reduce the dimensionality in the graph domain,
nd the mean pooling is selected as it is the most common one in
xisting HGCNs-based models. The last parts are a dropout process and
linear classifier. We conducted tests on the selection of the number
f HGCN layers, specifically testing 2, 3, and 4 layers. No significant
ifference was observed among these options. Consequently, according
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Fig. 7. An example for the graph classification pipeline involving 4 stages. From left to right, (1) dividing the input batched graphs into sub-graph according to the edges types;
2) performing message passing on each type of edge to update features; (3) aggregating over the edges of different types in the readout function; (4) classifying graphs based on
raph-level representations.
a

ℎ

Algorithm 1 Graph-level Convolution Network Classifier
1: Random Shuffle Graph
2: Data splitting
3: Mini-batching of graphs
4: for graph in batch do
5: for nodes, edges with same types do
6: Graph convolution
7: Relu
8: end for
9: Readout(average)
10: Dropout layer
11: Linear layer
12: end for

to the research (Li et al., 2018), a structure with two HGCN layers has
een employed to achieve a relatively low computational complexity.
dditionally, the hidden layer consisted of 256 neurons.

Relational Graph Convolution Network
Motivated by messages-passing architectures (Gilmer et al., 2017),

Schlichtkrull et al. (2017) define the propagation model for computing
the forward update of an entity:

ℎ(𝑙+1)𝑖 = 𝜎(
∑

𝑟∈𝑅

∑

𝑗∈𝑁𝑟
𝑖

1
𝑐𝑖,𝑟

𝑊 (𝑙)
𝑟 ℎ(𝑙)𝑗 +𝑊 (𝑙)

0 ℎ(𝑙)𝑖 ), (1)

here ℎ(𝑙)𝑖 is hidden state of node 𝑣𝑖 in the layer 𝑙 of the neural network.
𝑟
𝑖 describes the set of neighbour indices of node 𝑖 with the relation
∈ 𝑅, 𝑐𝑖,𝑟 is a normalisation constant. 𝑊

(𝑙)
𝑟 is a linear transformation

unction that uses a parameter matrix to transform the neighbour nodes
f the same edge type. 𝜎 is the activation function, where we apply
he ReLU activation (𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥)). Intuitively, the function (1)
ccumulates the transformed feature vectors by a normalised sum.
nlike the GCNs, the relation-specific transformations depend on the
ype and orientation of the nodes and edges. And this function describes
hat the different type of relationship is aggregated separately. It is
oticed that a single self-connection of a special relation type to each
ode is added to the representation of the node at layer 𝑙 + 1 could be
nformed by the corresponding representation at layer 𝑙.
To avoid the number of parameters proliferating due to apply-

ng a function (1), Schlichtkrull et al. (2017) provides two meth-
ods for weight regularisation, which are basis-decomposition and block-
diagonal-decomposition. To alleviate the overfitting problem, the basis-
decomposition is carried out in this project, each weight 𝑊 (𝑙)

𝑟 is defined
as the following function:

𝑊 (𝑙)
𝑟 =

𝐵
∑

𝑎(𝑙)𝑟𝑏𝑉
(𝑙)
𝑏 , (2)
6

𝑏=1
where 𝑉 (𝑙)
𝑏 ∈ R𝑑(𝑙+1)×𝑑(𝑙), and 𝐵 is a hyperparameter to control the

number of 𝑉 (𝑙)
𝑏 . According to the function (2), for different types of

relation 𝑟, its parameter matrix 𝑊 (𝑙)
𝑟 is linear combination of 𝑉 (𝑙)

𝑏 and
coefficient 𝑎(𝑙)𝑟𝑏 . Therefore only 𝑎(𝑙)𝑟𝑏 is related to the relation type 𝑟.
Meanwhile, effective weight sharing between different relation types
is achieved for all 𝑉 (𝑙)

𝑏 , which could be trained on data with frequent
relations. Because the sparse relation matrix is composed of 𝑉 (𝑙)

𝑏 shared
parameters, this regularisation method is beneficial for alleviating the
overfitting problem.

Graph Readout
Each graph in the dataset has its unique structure and characteristics

of nodes and edges. Therefore, to predict a single graph, it is common
to aggregate as much information as possible in a single graph. This
operation is called ’Graph Readout’. Common aggregation methods
include summing over all node or edge features, averaging, and finding
the maximum or minimum value element by element. In this model,
we carry out averaging as an aggregation method. Given a graph 𝑔, the
verage node feature readout could be defined as:

𝑔 = 1
|𝑉 |

∑

𝑣∈𝑉
ℎ𝑣, (3)

where ℎ𝑔 is the representation of the graph, 𝑉 is the set of the nodes, ℎ𝑣
is the feature of certain node. In this model, once the ℎ𝑔 is available, the
data is passed through a 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 and 𝐿𝑖𝑛𝑒𝑎𝑟 layer for classification
output. The 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝐿, is cross entropy and can be written as:

𝐿 = −
𝑀
∑

𝑐=1
𝑦𝑜,𝑐 log(𝑝𝑜,𝑐 ), (4)

where 𝑀 is the number of classes; 𝑦𝑜,𝑐 is a binary indicator (0 or 1) if
the class label 𝑐 is the correct classification for observation 𝑜; and 𝑝𝑜,𝑐
is the predicted probability that observation 𝑜 is of class 𝑐.

2.4. Evaluation methods

This framework includes two learning-based models: machinery
keypoint RCNN and multi-keypoints HGCN. To evaluate the Keypoint
detection model, we used Object keypoint similarity (OKS), defined
by COCO. It applies the mean average precision (AP) over 10 OKS
thresholds as a standard evaluation metric that considers the Euclidean
distance and the scale effect (Anon, 2016). The OKS plays a similar role
as the IoU in object detection. It is calculated from the scale and the
distance between predicted and ground truth points. We usually refer
to the AP as the quantitative evaluation standard.

Four different standards are carried out to evaluate the performance
of the HGCN classification model in the identification of the activity
of excavators. Accuracy represents the ratio of correctly classified
samples. Precision and recall describe the ratio of correctly predicted
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and identified retrieved samples, respectively. Besides, precision and
recall are interdependent, and the F1-score is the harmonic mean of
these two metrics. The calculation formulas are as follows (Koo et al.,
2019; Shi et al., 2021):

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

(5)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(6)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(7)

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(8)

3. Experiment and result

3.1. Experiment environment

To evaluate the performance of the proposed framework, we con-
structed an image dataset from six YouTube videos. Each video includes
different numbers and types of excavators and dumpers. Besides, the
construction site environment in each video is also different from the
others. The total dataset for machinery keypoint RCNN includes 465
manually labelled images. Data augmentation was then applied through
horizontal and vertical flips, as well as brightness adjusting ranging
within ±30%. This resulted in an image dataset comprising a total of
1395 images. Roboflow was used as the image annotation tool, and the
output is in the COCO format. Before resizing into 1 × 3 × 800 × 800,
the original size of images is 1 × 3 × 1920 × 1080. For the HGCNs,
the dataset was produced by a trained machinery keypoint RCNN,
including 1185 graphs, divided into 5-fold for cross-validation (237
graphs in each fold). The value for each node attribute, representing
the point location, is based on the orthogonal coordinate system, where
the centre point is [0, 0] according to the original image. We tried to
make the proportion of each category of activity as even as possible
(27.8% for Digging, 21.5% for Dumping, 29.5% for Lifting and 21.1%
for swinging). The developed codes were performed on the Operation
System of Ubuntu 20.04. The programming language is Python, and
the deep learning environment is PyTorch 1.10. Deep Graph Library
with CUDA 11.3 is the main library for HGCNs. CPU and GPU are Intel
i9-9900k and Nvidia 3090, respectively. Both keypoint detection and
classification networks were trained using the Adam optimiser, whose
capability has been well demonstrated in Kingma and Ba (2017). The
nitial learning rate for both models was set as 0.001. It was adjusted
ynamically based on the loss of the validation dataset. During the
raining process, early stopping was carried out to avoid over-fitting for
oth deep learning models. The patience was set as 50 epochs, which
eans the training would be stopped when the current validation loss
s not less than the one in the last 50 epochs.
The graphs are batched before being fed into the HGCNs to reduce

he computational cost so that the framework can work in near real-
ime. In the GCN, some typical procedures achieved by rescaling or
adding each data into a set of the same shapes are hardly feasible
r may lead to unnecessary memory consumption. To address this
oint, adjacency is stacked diagonally, and the node and object features
re connected directly in the node dimension. This procedure has
ome crucial advantages over other batching approaches. Firstly, the
elational Graph convolution operators that rely on a message-passing
cheme do not need to be modified since messages are not exchanged
etween two nodes that belong to different graphs. Secondly, there is
o computational or memory overhead since adjacency matrices are
aved in a sparse fashion holding only non-zero entries such as the
dges.
7
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Table 1
Model performance comparison of different keypoint extraction methods and different
backbones.
Object Methods AP AP0.50 AP0.75

Excavator

MobileNet (Sandler et al., 2018) backbone 0.814 0.873 0.827
Hourglass (Liang et al., 2019) 0.827 0.913 0.871
Proposed (Resnet18) 0.817 0.887 0.863
Proposed (Resnet34) 0.831 0.925 0.879
Proposed (Resnet50) 0.838 0.935 0.897

Dumper

MobileNet (Sandler et al., 2018) backbone 0.913 0.939 0.921
Hourglass (Liang et al., 2019) 0.881 0.943 0.937
Proposed (Resnet18) 0.933 0.974 0.954
Proposed (Resnet34) 0.957 0.981 0.970
Proposed (Resnet50) 0.984 0.987 0.986

Table 2
Performance comparison of different numbers of neurons.
Neurons Accuracy

32 95.1%
64 95.3%
128 95.6%
256 97.5%
512 97.1%

3.2. Result and analysis

For the proposed machinery keypoint RCNN, Fig. 8 shows the
visualisation of the mode output. It includes six scenes containing
at least an excavator in operation. The objects and the mechanical
keypoints are well identified in scenarios (1) and (5), which have a
single excavator and dumper. In scenarios (3), (4) and (6), multiple
excavators and dumpers are well identified and represented. Although
sometimes the left and right ends of the digger bucket are obscured in
the diagram, they still can be identified. Fig. 9 shows the prediction
and ground truth of keypoints in one image. In general, the keypoints
in the moving parts, i.e. from the boom to the buckets, were iden-
tified with no significant deviation. The predictions provide a more
accurate representation of the location of the keypoints of the excava-
tor’s moving parts. Table 1 shows a performance comparison for each
evaluation metric between the proposed keypoint detection model,
methods based on stacked Hourglass networks (Liang et al., 2019) and
applying MobileNet (Sandler et al., 2018) as backbone. Overall, the
proposed model performs well on both excavators and dumpers. Hour-
glass performs better compared to using MobileNet as the backbone.
In terms of accuracy, the state-of-the-art and the machinery keypoints
RCNN performed well from the AP perspective, while the machinery
keypoint RCNN improved AP by 0.011 and 0.103 on excavators and
dumpers, respectively. The comparison of applying MobileNet (Sandler
et al., 2018) and different layers of ResNet for the proposed machinery
keypoint RCNN is also shown in Table 1. ResNet50 has exhibited the
best performance for all matrices.

For the HGCNs model, Fig. 6 represents the visualisation of the
GCNs classification process. This figure suggests that one image could
nclude not only one graph. As mentioned before, the graph is grouped
ccording to only one excavator and all the dumpers in the image.
ach graph contains different types of points and relationships. By
erforming the HGCNs model, the class of each graph is predicted. This
ndicates that the proposed framework has the ability to identify the
lass even though the image contains multiple excavators, which differs
rom the state-of-the-art. We first evaluated the performance using dif-
erent numbers of neurons in the hidden layer. Various neuron counts
ere tested and an accuracy of approximately 95% was observed even
hen the number of neurons is as small as 32. After settling on 256
eurons, we found that increasing the number further did not yield
ignificant improvement. Ultimately, we selected 256 neurons for the

roposed model. Table 2 presents the results of this sensitivity test.
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Fig. 8. The visualisation of the output of the machinery keypoint-RCNN model. Scenarios (1) and (5) contain an excavator and a dumper; Scenario (2) includes an excavator and
multiple dumpers. Scenarios (3), (4) and (6) contain multiple excavators and multiple dumpers. In each example, the green rectangle describes the bounding box of excavators,
and the red one describes that of dumpers. The green dots represent the keypoints of excavators, and the red dots represent the keypoints of dumpers.
Fig. 9. The comparison of the output of the machinery keypoint-RCNN model (orange dots) and ground truth (blue dots).
The training log of the HGCNs is shown in Fig. 11. The image shows
that before 200 epochs, the loss of the model presents a remarkable
decrease, while the training accuracy shows a corresponding increase.
For the validation loss, the general tendency suggests the same increase
even if there is a significant fluctuation. After training 200 epochs, the
model converges with a training accuracy close to 98% and a validation
loss close to 96%. The loss degree to 0.2 after 100 epochs remains
to decrease until the end while the training and validation loss does
not show a significant change. This figure suggests that after training
epoch 200, the model could be regarded as convergence and able to
produce an effective prediction. Besides, as shown in Fig. 10, when the
ground truth of the keypoint is used as the training data for the HGCNs
model instead of the machinery keypoint RCNN, the training log does
not show a significant difference. This could be further illustrated by
the fact that the output of mechanical key point detection also has a
strong ability to represent mechanical poses.

Fig. 13 shows the Confusion Matrix, which is utilised for the per-
formance evaluations of the methods after the classification. The total
number of test datasets for HGCN is 237. Generally, the prediction
accuracy is 97.5%. In terms of precision, the Digging class has the
highest percentage, which is 98.5%. According to Fig. 13, the F-score
for each class and weight F-score could be calculated, shown in Table 3.
It is noticed that the digging class is not the most of the training
dataset (as mentioned before, the training dataset and testing dataset
are almost the same). However, the lifting class takes up the most
8

part while having less precision than the digging class. This indicates
that the performance for a particular category is less influenced by
the amount of data in the corresponding class. Moreover, as shown in
Table 3, the F-socre of dumping is the highest one even dumping class
takes up 21.5% in the training set. This also means that each class that
is not exactly equal in the training set will not significantly impact the
model performance. In terms of recall, the lifting class owns the highest
percentage of 98.6%. There are more mispredictions of swinging and
digging, which are 4% and 3%. This is most likely caused by the
multi-machinery scenario where the bucket’s position is similar in both
categories. To justify the selection of the heterogeneous graph, we con-
ducted an additional sensitivity analysis that utilised a homogeneous
graph, allowing only one type of edge. The training log of this test is
displayed in Fig. 12, which suggests that the model exhibited slower
convergence within 1000 epochs compared to using a heterogeneous
graph, as shown in Fig. 11. Both the training and validation accuracy
(around 80%) are significantly lower than that of the heterogeneous
graph (>90%). This result suggests that heterogeneous graph datasets
contain more information by considering different edge types, leading
to better classification performance.

To further evaluate the performance of the proposed algorithm
against state-of-the-art methods, we applied Vision Transformer (Doso-
vitskiy et al., 2020) (ViT), VGG-16 (Simonyan & Zisserman, 2015)
and ResNet-34 (He et al., 2015) to the same set of images used in
this research. Since these methods can only estimate one activity for
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Fig. 10. The visual result of HGCNS classification. The green dots represent the joint on the excavators; the blue lines represent the link between the dots on the same excavator;
he red dots represent the keypoints on the dumpers; the pink lines represent the link between the dots on the same dumper; the brown dashed lines describe the connection
etween the excavator and dumpers.
Fig. 11. Training log of the HGCNs model using (a) the output from the machinery
eypoint-RCNN as the training dataset, (b) the Ground Truth as the training dataset.
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Fig. 12. Training log of applying homogeneous graph data that includes only one type
of edge.

Table 3
F-score for each class and weight F-score.
Class F-score

Digging 97.7%
Dumping 98.0%
Lifting 97.9%
Swinging 96.0%

weight recall 97.0%
weight precision 97.5%
weight F-score 97.2%

each image, the ground truth is determined by the activity of the
excavator that occupies the majority of the image. The ground truth
of the proposed method allows multiple activities to be assigned to
a single image. For all methods, the training epoch was set to 300.
Table 4 presents the accuracy and computational cost of the four
tested methods. The proposed method achieved the highest accuracy

(97.4%), followed by thw two CNN-based methods which perform
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Fig. 13. The Confusion matrix of testing. The right column presents the Precision, and
the bottom raw presents Recall. The right bottom box presents the overall accuracy.

Table 4
Classification accuracy and computational complexity of the proposed method in
comparison to other state-of-the-art image-based classification models.
Method Accuracy Trainable Para FLOPs

Resnet-34 (He et al., 2015) 95.4% 21.5M 3.6B
VGG-16 (Simonyan & Zisserman, 2015) 93.5% 138M 15.5B
ViT (Dosovitskiy et al., 2020) 81.8% 85M 17.6B
Proposed 97.4% 43M+0.4M 50B+5M

the second-best. In terms of computational cost, ReseNet-34 has the
fewest trainable parameters, while the proposed method has the second
fewest. Our method has the highest FLOPs while Resenet-34 has the
fewest. It should be noted that the time cost of our method comprises
two parts: keypoint extraction and activity classification. Keypoint
extraction dominates the trainable parameters and FLOPs. To further
test the performance in real applications, we applied the proposed
model in a state-of-the-art edge computing platform, NVIDIA AGX Orin,
and achieved 10 fps (frame per second).

4. Conclusion

To address the strong demand for the classification of excavator-
involved activities, this paper reports a Heterogeneous Graph Convo-
lutional Networks (HGCNs) based framework to infer the excavator’s
activity from the machinery keypoints extracted from an image. First,
we introduced a machinery keypoint RCNN model to extract the lo-
cation and type of the machinery keypoint. To treat the information
on keypoint relationships located in the same machinery or across
machines, we introduced a Heterogeneous Graph Convolutional Net-
works (HGCNs) model focusing on the processing and aggregating
different types of keypoint attributes of action parts and the different
relationships between them. With such a model, the relationship be-
tween the excavator and the cooperating machinery can be learned
and referenced to improve the accuracy of the classification of exca-
vator activities. The main research findings include: (a) the proposed
machinery keypoint extraction model can predict all keypoints even
when components are obscured; (b) the heterogeneous graph is a more
appropriate choice than the homogeneous graph for this application,
effectively encoding different types of notes and relationships; (c) the
inclusion of notes and relationships with co-operating machinery can
10
improve the classification accuracy; (d) the proposed solution can work
effectively with limited training data.

It should be noted that the proposed solution has limitations. Firstly,
the computational demand increases with the increment in the num-
ber of machinery in an image. Secondly, as a computer vision-based
method, the working environment, such as working distance, illumi-
nation or weather, poses an inevitable threat to the image quality. A
potential solution for future studies is the fusion of data from other
types of sensors. Thirdly, the proposed framework is based on images
rather than videos, which only considers spatial information while
neglecting temporal information. This study considered that process-
ing video data usually requires a large machine learning model and
high computational resource, which may not be appropriate for edge-
computing devices. However, in terms of the accuracy of activity
recognition, video data can provide additional information that images
alone cannot provide. In future work, our aim is to explore more intelli-
gent forms of group synthesis graphs to further decrease the graph size
and, consequently, reduce the computation time of the classification
model. Furthermore, we plan to replace the existing keypoint detection
method based on mechanical joints with a more efficient alternative.
We will consider implementing a bottom-up approach to diminish the
computational resources dedicated to the keypoint extraction stage.

Measuring activities of construction machinery can directly provide
information such as productivity (e.g., the amount of materials moved),
the utilisation of specfic machinery, and greenhouse gas emissions. This
information can be further used for construction fleet management
and optimisation, responding to changes in schedules, supply chain
or weather conditions. It can be considered as the sensing/monitoring
module to create a digital twin for construction sites. Such research
represents a promising start towards achieving the digitalisation of the
construction industry.
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